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Abstract

Mathematical programming (MP) problems can be viewed as abstractions of
real-world situations. They consist of an objective function which needs to be
maximized or minimized, subject to a set of constraints which defines a feasible
region. The feasible region denoted by R, is often defined by a set of linear
inequalities. For “real world” problems there can be thousands of inequalities
and variables. A problem with such large systems is that there are often errors
in formulating the constraints which may cause the feasible region to be empty.
Another problem is that many of the constraints may be redundant. We define
such systems as contaminated systems of linear inequalities.

This thesis develops the first method to simultaneously deal with infeasibility
and redundancy. The new procedure is a probabilistic approach based on an

equivalence to the set covering problem.
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Chapter 1 INTRODUCTION

1.1 Overview

Systems of linear constraints are used to model various phenomena. A model
containing reasonable detail could involve thousands of variables and thousands of
linear constraints. One problem with such a system is that it is often inconsistent.
A system of constraints is inconsistent if it defines an empty feasible region. We
might then wish to locate a minimal infeasible set. The system might then be made
feasible by deleting or modifying the constraints belonging to this infeasibility set.
The problem of locating a minimal infeasible set has been studied by many authors
( Chinneck and Dravnieks [14], Roodman [30], Van Loom [27], and Gleeson and
Ryan [21]).

Another problem with a large system is that many of the constraints may
be redundant. A constraint is redundant if it can be removed without affecting
the feasible region defined by the original system. It is desirable to identify
and remove redundant constraints in a pre-optimization phase. Not only does
the elimination of redundant constraints reduce the computational effort required
to solve an associated mathematical programming problem, but it also provides
insight into the mathematical model represented by the system of linear constraints

[25]. The problem of identifying redundant constraints has been studied by
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INTRODUCTION

many authors [2, 5, 7, 9, 20, 31, 36]. The two most popular approaches are

the probabilistic methods [1] and the deterministic methods [25].

1.2 The Thesis Statement

Given a system of linear inequalities constraints. We hypothesize that both
problems, locating a minimal infeasible set and removing redundancy, can be
solved simultaneously with a probabilistic technique based upon Boneh's set
covering equivalence [4]. We believe that this unified approach is important
not only for theoretical reason. but also for practical reasons. A unified approach

will likely lead to computational efficiencies.

1.3 Purpose of this Investigation

The purpose of the thesis work is to:

I. Show that the problem of locating a minimal infeasible set of linear inequal-

ities has a set covering equivalence.

2. Show how both problems, locating a minimal infeasible set and removing
redundancy, can be handled simultaneously using the set covering equivalence

approach.

1.4 Objectives and Scope of the Thesis Work

The objectives and scope of the thesis work are as follows:

University of Windsor, 1996 2



INTRODUCTION

1. Develop an efficient method for implementing Boneh's set covering equiva-
lence to simultaneously solve both problems: locating a minimal infeasible
set and removing redundancy.

2. Program and test the proposed set-covering equivalence method to solve both

problems: locating a minimal infeasible set and removing redundancy.

1.5 Organization of the Thesis

Chapter 2 describes some basic linear programming concepts and the related
concepts of redundancy and infeasibility. Chapter 3 surveys the existing ap-
proaches for locating a minimal infeasible set. Chapter 4 surveys some of the
existing approaches for removing redundancy. Chapter 5 presents the new method
to solve both problems simultaneously. Chapter 6 describes the programming of
the new method and its performance on test problems. Chapter 7 presents a sum-
mary of findings and conclusions. Chapter 7 also discusses recommendations and

suggests possible future work.

University of Windsor 3



Chapter 2 PROBLEM DEFINITIONS AND NOTATION

2.1 The Linear Programming Problem

We consider the linear programming (LP) problem:
mar {CT.I' | Ar < b}.

where ¢ and x are n-vectors, A is an mxn matrix. and b is an m-vector. Letting

a] represents the i-th row of A, with b; the i-th component of b, we can also

1

write the LP as
mar {CT.’I' I (L,»T.I' <h.i=1.... Ill}. 2.1)

2.1.1 Feasible Region

The feasible region for the linear programming problem (2.1) is denoted by
Randis givenbyR={r e R" |Ar <b}={re R" |afor <hii=1... m}.

T

We say that “«;r < 0,7 is the i-th constraint, and we denote the set of all

constraints by G(I), that is,
G(I) = {a,,T;l.' <hlie 1}.

where I = {1,2, ..., m}. For any subset I' of I, we have the set G(I') and the

corresponding region R’.

University of Windsor, 1996 4



PROBLEM DEFINITIONS
AND NOTATION

As an example, consider Figure 2.1 with the set of 5 linear constraints given

in the right panel.

1. a,Tx=x| —X:)_SS.
" 2. asz = —X; +X2 £ 0.
3. a3Tx =x; <8.
o 4, a4T = —X| —X2 € 0.
o S. a5Tx= —X3 £ 0.

Figure 2.1 Feasible Region

In this and subsequent diagrams showing sets of constraints the feasible region
is represented by the shaded region in the corresponding figure. The arrows on
the constraint boundaries point to the half-space that satisfies the corresponding

inequality.
2.1.2 Necessary and Redundant Constraints

Let I’ = N{(k}. The k-th constraint is said to be redundant with respect to

G() if R = R/, that is, if either R" =R = @ or if R'# @ and
mar {u{r |z € R’} < h.. 2.2)

The k-th constraint is said to be necessary with respect to G(I) if R # R/, that

is, if there exist an x'€ R’ such that a, Tx' > by.

University of Windsor 5



PROBLEM DEFINITIONS
AND NOTATION

A constraint is redundant if removing it from the set causes no change
to the feasible region. A constraint is necessary if removing it from the set
causes a change to the feasible region. Note that with respect to a given set of

constraints a constraint is either redundant or necessary, but never both.

As an example, consider Figure 2.2 with the set of 6 linear constraints given

in the right panel.

- I. aTx =x; — x» <8.
" 2 asz = —X; +X3 <0.
3. a3Tx =x; £ 8.
o 4. a4Tx = —X] —X3 < 0.
o 5. asTx = —x5 < 0.
. - - 6. aglx = —x» < 4

Figure 2.2 Redundant Constraint

We can see that constraints 1, 4 and 6 are redundant and that all others are

necessary.

Acoording to Telgen [35] redundant constraints can be further classified
depending upon whether or not (2.2) holds as an equality or inequality.

Let I' = Nk}. The k-th constraint is weakly redundant with respect to G(I)
if R'# 0 and

University of Windsor, 1996 6



PROBLEM DEFINITIONS
AND NOTATION

-mu;r{u{.r |r e R'} = . (2.3)

Let I' = Nk}. The k-th constraint is strongly redundant with respect to G(I)
if either R" = R = 0@ or if R’ # 0 and

mu.r{u{..r | r € 1?.'} < b. 2.49)

As an example, consider Figure 2.3 with the set of 6 linear constraints given
in the right panel. Constraints (1), (2), (3) and (4) are necessary with respect to
G(I) and constraints (5) and (6) are redundant with respect to G(I). Furthermore.
constraint (6) is weakly redundant and constraint (5) is strongly redundant. From
Figure 2.3 we see that weakly redundant constraints “touch™ the feasible region.

and that strongly redundant constraints do not ““touch™ the feasible region.

3 -

- (1

- x - . a;Tx=—=x; +x2<0
2. asz =X] + X2 < 10
3. a3Tx=x,<6
4., asTx =-x2<0
5. as™x = —x; +2xp < 4
-x 6. agTx = —x; —x2<0

Figure 2.3 Weakly and Strongly Redundant Constraints

University of Windsor




PROBLEM DEFINITIONS
AND NOTATION

2.1.3 Infeasible Sets of Constraints

A set of constraints is said to be infeasible if it defines an empty feasible

region R.

Consider Figure 2.4 with the set of 4 linear constraints.

1. a;Tx = —X] —Xx> <0.
AN / 2. aTx=x; —x3 0.
\\\ / 3. a3Tx = —x; <0.
N o 4, asfx = Xy £ 4,

Figure 2.4 Infeasible Set of Constraints

LetI={1,2, 3,4} I = {1, 2, 3}, I"= {4}. The upper shaded region is R’

and the lower is R”. Weseethat R = R' N R" = 0.

2.1.4 Implicit Equality Constraints

Implicit equalities are inequality constraints that are satisfied as equality in
all solutions x € R [35], that is, constraint k is an implicit equality with respect

to G(I) if axTx = by, V x € R.

University of Windsor, 1996 8



PROBLEM DEFINITIONS
AND NOTATION

2.1.5 Minimal Number of an Irreducible Set of Constraints

The total number of constraints in an irreducuble set of constraints determining
R is minimal if and only if the set contains no redundant constraints and no
implicit equalities [35].
2.1.6 Irreducible Inconsistent System

An irreducible inconsistent system, IIS, is a system with a minimal set of

inconsistent constraints [14].

2.1.7 Theorem

If there are n variables in the original system of linear inequalities defining
a linear programming problem. the maximum cardinality of any irreducible

inconsistent system is n+l. PROOF([16]. p- 24).

University of Windsor 9



Chapter 3 INFEASIBILITY

In this chapter we survey some of the existing approaches for identifying a

minimal infeasible set of constraints.

3.1 A Survey of the Literature

The problem of detecting minimal infeasible sets has received some attention,
and various mathematical approaches to post-infeasibility analysis have been given

[21. 22, 23, 24, 27, 28, 30].

In 1980, Roodman [30] describes how to remove infeasibility when the phase
1 LP terminates with some of the artificial variables having nonzero values.
Sensitivity analysis is used to find the minimum adjustment to the right hand
sides of the corresponding constraints to achieve feasibility. This approach is not
useful if the adjusted constraint is in fact correct while some other conflicting

constraint is in error.

Greenberg [22, 23] described a set of heuristics which rely on tracing back
through a series of manipulations of the model, such as removal of redundant
constraints, bound tightening, path and cycle generation, and matrix analysis.
These heuristics were not designed specifically for locating minimal infeasible

sets of constraints, they often do so, but cannot guarantee such a result [14].

University of Windsor, 1996 10



INFEASIBILITY

In 1983. Murty [28] described how to use the phase 1 LP solution to find a
set of constraints which is causing infeasibility. The shadow prices of the phase 1
solution are used to relate possible causative constraints as is done by Roodman
[30], and, in addition, the reduced costs for the original variables are used to
implicate possible causative nonnegativity constraints. However, the indicated set
may consist of a number of minimal infeasible sets, and no method is given for

further localization [14] .

In 1981, Van Loom [27] presented a simplex variant and a set of necessary
and sufficient conditions for the recognition of a minimal infeasible set. In this
method, the search for the elements of the set is undirected. leaving no option
but a combinatorially explosive exhaustive search {14]. The method also suffers
from problem blow-up because equality constraints must be converted to a pair
of inequality constraints and nonnegativity constraints must be explicitly added
to the working constraint set. Greenberg and Murphy [24] point out that Van
Loon’s method could be extended to find minimal causative sets more efficiently

by pivoting through alternative bases.

In 1990, Gleeson and Ryan [21] described a complete localization algorithm.
They combine van Loon’s result with a variant of Farkas Theorem [21] of the
Alternative to obtain a polytope in which each vertex indexes the members of
a minimal infeasible set of constraints. Gleeson and Ryan’s method shares the

drawbacks of Van Loon’s method, but has the advantage of a directed and efficient

University of Windsor 11



INFEASIBILITY

search [14].
Chinneck and Dravnieks developed an algorithm [14] for locating a minimal
infeasible set of constraints. The algorithm is linear-programming based. A

general description of the algorithm follows.

3.1.1 Locating Minimal Infeasible Constraint
Sets in Linear Programming

Although various mathematical approaches to post-infeasibility analysis have
been given previously, Chinneck and Dravnieks’s algorithm[14], with their claim,

is the first robust infeasibility localizer reported.

The approach to locate an infeasibility is to gradually eliminate constraints
from the original set defining the problem until those remaining constitute a
minimal infeasible set. This approach is called filtering the constraint set. Three
basic filtering routines are developed. They are: deletion, elastic and sensitivity,

which are then combined into a recommended integrated filtering algorithm.

Deletion filtering is the cornerstone, providing a positive identification of a
single minimal set which causes the infeasibility. Given an LP having one or more
irreducible inconsistent systems, deletion filtering operates by considering each
functional constraint individually, as follows. Temporarily remove the constraint
from the LP, then test the reduced LP for feasibility. If the reduced LP is

infeasible, then remove the constraints permanently; if the reduced LP becomes

University of Windsor, 1996 12



INFEASIBILITY

feasible. then return the constraints to the LP. Continue in this fashion until all

of the constraints have been tested.

Elastic filtering speeds IIS localization by quickly eliminating non-IIS func-
tional constraints from large models. It uses elastic programming and the fact
that stretching constraints in an IIS sufficiently permits a feasible solution. The
algorithm generates a series of LPs in which some of the functional constraints are
elastic and some are nonelastic. After each LP is solved, any stretched constraints
are reconverted to nonelastic form by removing the elastic variables. Enforced
constraints are members of some IIS, since only IIS constraints are stretched. En-
forcing functional constraints forces another elastic member of the IIS to stretch
when the next LP is solved. When all of the members of an irreducibly inconsis-
tent set of functional constraints (IISF) have been enforced, the next LP will be
infeasible, then the method is halted. The output of the elastic filtering algorithm

is the set of enforced constraints, which must contain at least one IISF.

Sensitivity Filtering uses the fact that stretching a constraint is equivalent to
altering the right hand side (rhs) of the constraint. Sensitivity filtering is applied
when an LP is infeasible. The phase 1 or elastic solution will show sensitivity to
a small adjustement of the right hand sides (rhs’s) of some of the IIS constraints,
but never to the rhs of a non-IIS constraint. See reference [27] for a detailed
description on how to use right hand side (rhs) manipulation of the constraints

to recognize an IIS.
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INFEASIBILITY

The three filtering algorithms can be combined in various ways to create
efficient integrated algorithms to locate minimal infeasible constraints sets. Taking
into consideration that infeasibility is discovered by solving a phase 1 LP, and that
sensitivity filtering of the phase 1 solution is cheap [14], the authors, Chinneck

and Dravnieks, assumed that this will be the first step in any integrated algorithm.

Depending on whether the goal is to identify a single IIS as quickly as
possible, or to identify as many IISs at reasonable cost, final filtering can proceed
in a number of different ways. The authors suggested two ways to combine
the algorithms described earlier. They are: Deletion/Sensitivity Filtering and

Elastic/Sensitivity Filtering.

3.2 Conclusion

In this chapter we have reviewed some of the existing approaches for locating
a minimal infeasible set. Most of these approaches are linear programming based
methods and they deal with locating a minimal infeasible set only. Our method,
the method given in chapter 5, differs from these existing approaches in that it
is based on a set-covering equivalence method. It also differs from the existing

approaches in that it simultaneously deals with redundancy and feasibility.
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Chapter 4 REDUNDANCY

4.1 Introduction

The first paper devoted entirely to redundancy was given by Boot [8]. Boot
suggested checking the redundancy of an inequality by replacing the inequality
sign of a constraint by a strict inequality in the reverse direction. The constraint
is necessary if the resulting system is consistent. One disadvantage of the method
is that a system of linear constraints has to be examined for feasibility in order
to examine a constraint for redundancy.

In 1965, Zionts [37] gave some improvements upon the implementation of
Boot’s method, but not to the point where it achieved practical value. In addition,
a number of other methods were developed that dealt with redundancy, among
which the geometric vertex enumeration method is the most well-known. The geo-
metric vertex enumeration method’s essential characteristic is the establishment
of a number of situations in which redundancy can be recognized immediately
without further computations.

In 1971, Lisy [26] used the rules given by Zionts to identify all redundant
constraints in systems of linear constraints. Gal [20] enlarged this approach by
adding rules for situations in which constraints can be identified immediately as
being nonredundant. Reference [25] presents a complete description of Gal's

method. The methods are equivalent in that they classify constraints as redundant
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REDUNDANCY

or necessary; they produce results that are unconditionally correct; they perform
iterations of an active set linear programming algorithm (for example, the simplex
method [18]). Later Caron et. al [12] expanded the above methods by adding

rules to deal with degeneracy.

As we have seen, the problem of identifying redundant constraints has been
studied by many authors [25]. The two most popular approaches are the proba-
bilistic hit-and run method [1] and linear-programming based methods [25]. In
addition to these two approaches, there is the set-covering approach proposed by

Boneh [4].

4.2 The Probabilistic Hit-and-Run Methods

The first hit-and-run method was the so-called Hypersphere Direction (HD)
method was introduced by Boneh and Golan [6] for generating random points
inside a feasible region defined by a system of linear inequality constraints and
for classifying these constraints as either redundant or necessary.

In 1980, Telegen [34] suggested the coordinate direction (CD) method as an
alternative to HD.

Smith [32] introduced a class of hit-and-run algorithms, which he called
mixing algorithms, for generating random points in a feasible region R. Later
in 1984, Smith [33] showed that if R is open and bounded then the sequence of

iteration points of the HD algorithm converges to the uniform distribution over R.

University of Windsor, 1996 16



REDUNDANCY

In 1987, Berbee et al. [2] showed that if R is a convex polyhedron then
the sequence of iteration points of the CD algorithm converges to the uniform
distribution on R.

In 1986, Caron et al. [10] presented a class of hit-and-run algorithms made
up of so-called continuous variants and discrete variants.

In 1990, Belisle et al. [17] considered a general class of hit-and-run
algorithms where R is a bounded open subset of R".

The probabilistic Hit-and-Run methods are based on the following idea. If a
randomly generated line intersects the interior of the feasible region R, then the
end points of the feasible segment of that line identify necessary inequalities with
probability one. The most well-known probabilistic method is the Hyperspheres

Direction or HD method [3].

4.2.1 The HD Algorithm

An iteration (see table 4.1) of HD starts with a feasible interior point, say
xj. In the hit step, we first generate a random direction vector s;. This is done
by selecting a point uniformly distributed over the surface of the n dimensional
hypersphere

H={zxeR":|lz||=1}.

Together, x; and s; define a line in R" which passes through the interior of

the feasible region R. We then determine the feasible segment of the line by
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the calculation of the intersection points of the line with the boundaries of the
constraints. The inequalities that are hit by the end points of the feasible line
segment are said to have been detected, and are classified as necessary. In the run
step we generate a new interior point xj,: from a uniform distribution over the

feasible line segment. These steps are repeated until a stopping rule is satisfied.

Upon termination, all constraints that have not been detected are classified.

possibly with error, as redundant.
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(Input) : I, G(I), and xg € int (R).

(Initialization) : Set j =1, Jo = 0.

(The Hit Step) : Generate a random vector s; uniformly distributed over the
surface of the n dimensional hypersphere H.

(Calculate) :

oi, = (/),' - u;r;l'j)/((llrsj')

oy, = mi-n{(r,-l | o, 2 ()}

o, = 'mu..'r{(r,-l |o;, < 0}

P

b. Jj=1Ju1 U {uvy

(The Run Step) : Set j — j+l, xj — Xxj4 and check all stopping criteria. If
termination is not due then go to the Hit Step.

(Solution) : Necessary inequalities are Jj

Table 4.1 The HD Hit-and-Run Algorithm.
The time complexity of a Hit-and-Run method is defined to be the time
required to complete one iteration of the algorithm. According to reference [1]

the Hit-and-Run method has time complexity O(mn).
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4.3 The Set Covering (SC) Equivalence Approach

The basic idea of the Set-Covering equivalence for identifying redundant

constraints has been suggested by Boneh [4].

The first step in the Set-Covering approach is to randomly generate points in
R". and to each point assign a binary word of length m where m is the number
of constraints. The k-th digit of the binary word is unity if and only if the k-th
constraint is violated by the given point. The list of distinct binary words forms
the rows of a set covering matrix. Any feasible solution to the set covering
problem can be used to classify each constraint as either necessary or redundant.

The approach can be summarized as follows:
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(Input): T and G(I).

(Initialization) : Seti « 1.

(Generation of Observations) : Generate a point x; € R" either at random or
by a specific strategy. For all j, j = 1, ..., m. Evaluate aiji and the
corresponding binary word €; = (c¢;,.....¢;, ) such that ¢;, is unity if and only
if aiji > bj.

(Acceptance-Rejection) : If ¢; is a new binary word then insert the binary
word e; as a new row in the matrix E.

(Termination) : Set i «— i+1 and check all stopping criteria. If termination is
not due then go to (Generation of Observations).

Generate the set covering problem associated with the matrix E.

(Solution) : Solve the generated set covering problem. The solution of the
generated set covering problem is an m-vector that can be used to classify
each constraint as either redundant or necessary. If Y¥ = (y;, ..., ym) is a
solution to the set covering problem, then if y; = 1 implies that constraint i is

necessary and y; = 0 implies that constraint j is redundant.

Table 4.2 The Set-Covering Approach.

4.3.1 Example

The example presented here is small enough so that the results can be verified
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by inspection. Consider the following figure with the set of five linear constraints.

X:
a R . - RJ ’ 1 alTx = XI - xl .<_ 8-
4 Rz " 2 asz = —xl +X2 S 0-
s . 4. agTx = —x; —x2 < 0.
o -X 5 aSTx= —X3 £ 0.
¢ Ra R”
R-
Rs
Rvo

Figure 45 A Set-Covering Example

The set of constraints defines a partition of R? into 12 distinct regions. Each
region corresponds to a single binary word. The corresponding 12x5 matrix

contains one row for each of these regions. The set covering matrix is

(1 0 1 0 07
00 1 0 0
01 1 00
0 1 0 0 0
01 0 1 0
E=101 011
00 0 1 1
1 0 0 0 1
1 0 0 1 1
1 01 11
1 0 1 0 1]
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Notice that E does not contain the zero binary word generated by region R;;. This
word indicates a feasible region. It is not included in the set-covering problem as

it does not contribute to the classification of constraint as redundant or necessary.

Now the problem of finding a minimal feasible set or a minimal infeasible set can

be formulated as a set covering problem and when formulated it reads as follows:

nn cy

sit.: Ey>1

where c is taken to be a vector of ones throughout this thesis.

The number of distinct rows in E is 12. The number of nonzero entries in
E is 27 and its density is therefore 27+60 (which is approximately 50 %). It
is evident from the figure that constraints (1) and (4) are redundant. The set
of all feasible solutions of the set-covering problem in the example is: {11111,
01101, 10111, 11101} where 11111 is the trivial solution. and 01101 is the
optimal solution which corresponds to an irreducible solution, where by irreducible
solution we mean the solution is a minimal feasible set or a minimal infeasible set.
The solution y = (0,1,1,0,1) indicates that constraints 2, 3, and 5 are necessary

constraints.

4.4 The Main Theorem

As we have seen from the previous example, the set covering approach is

University of Windsor 23



REDUNDANCY

essentially a method of sampling words from the set of all possible binary words
that correspond to the regions defined by a system of linear inequalities. It is also

the interpretation of these binary words.

According to Boneh [4], if we consider all the constraints violated by an
infeasible point x; € R;,. We can show that these constraints can not be a subset

of the redundant constraints. More precisely we have the following theorem.

4.4.1 Theorem

If x; is an infeasible point in R" then at least one of the constraints violated

by the point x; is necessary in any irreducible set of constraints.

Proof : Assume to the contrary that all the constraints violated by the point
x; are redundant. According to the definition on page 5 (definition of redundant
constraints) all these redundant constraints can be removed without altering the
feasible region R. But when all these constraints are removed, the point x; becomes
feasible (since it fulfills all the constraints which are not removed) while x; is
initially assumed to be infeasible point, hence a contradiction which completes

the proof.

Consequently, a solution to the set covering problem can be used to classify

the constraints as redundant or necessary.
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4.5 Conclusion

In this chapter we have reviewed some of the existing approaches for removing
redundancy. These approaches deal with removing redundancy only. Our method,
the method given in chapter 5, differs from these existing approaches in that it

simultaneously deals with redundancy and feasibility.
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Chapter 5 A METHOD FOR CLEANING CONTAMINATED
SYSTEMS OF LINEAR INEQUALITIES

5.1 Introduction

The method to be described in this chapter is designed to find a minimal
representation of a system of linear inequalities that represents a feasible region
to a mathematical programming problem. Fundamental to the method is a new
technique to generate the set covering matrix associated with a given system
of linear inequalities, and an equivalence of the set-covering approach to the

infeasibility problem.

5.2 Exposition of the Approach

Basically the method cleans contaminated systems of linear inequalities by
finding a feasible solution to the set-covering problem associated with the system
under consideration. The approach to clean contaminated systems of linear
inequalities is a new method to deal with both problems, detecting a minimal
infeasible constraint set and identifying and removing redundant constraints,
simultaneously. First, the approach tests the system under consideration for
feasibility by examining the rows of the generated set covering matrix. A row
of zeros in the set covering matrix corresponds to a region which fulfils all

constraints, i.e., a non-empty feasible region. If the system is feasible, then
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the solution of the associated set covering problem is used to identify a minimal
feasible set. If the system is infeasible, i.e., if there is no row of zeros in the set
covering matrix, then the solution of the associated set covering problem is used
to identify a minimal infeasible set. The system might then be made feasible by

deleting or modifying the constraints belonging to the minimal infeasible set.

5.3 A Probabilistic Set Covering Approach to
the Minimal Representation Problem
Input: Given a3; € R", i =1, .., m, b; € R.

Step 0: (Initialization):

a. Generate Xg = (X01, -ver XQjs «oes Xon) ¥ uniformly distributed in the n
dimensional hypercube centered at the origin with side length 2. i.e.,
Xoj uniformly distributed over (-1,+1), j = 1, ..., n.

b. Calculate the m-bit binary word, ¢q = (¢q, - .... cq, . .... cq,, ) for xo. Where

eo, =0. i f (L'-T.'I‘() < b
co, = l.otherwise

m

c. Compute eg’s equivalent decimal value, dy = 3 ¢g_(2)"™".
s=1

d. Initialize the binary search tree B, i.e.,insert dg in B.

e. Initialize the set covering matrix E, i.e., Set E= [eg].

f. Setk =0.
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Step 1: (Generation of Observations):

a. Generate a direction vector s uniformly distributed over the surface of

the n dimensional unit hypersphere centered at the origin, that is.

* Choose zj to be N(0,1), j = I, ..., n.

o Let zx = (zkq+ ovor Zkn)T.

«  Set s = zi/llzill. Where lizll = /=2, + ... + =3, .

b. Define L(xk. sx) = {xx + osx | ¢ € R}.
c. Compute the distance from xi along L(xy, sk) to the boundary of the i-th

inequality a;Tx < b;. That is, for i = 1, .... m calculate

Tri = (h,- - u,-TrL.)/(u,»T.sk)

d. Sort oy;’s , i.e., create an index set ajy, .., @y such that op,,, < 7y, <
- < Ofka, <0< Tlaj, <. < Tka,,

e. Generate oy uniformly distributed over (o, — €. op,,, +€). Where
€ = (04, —0r,)/m.!

f. Determine p such that oy, < 04 < oy,

ap=1

Step 2: (Acceptance-Rejection Step):

a. Generate the m-bit binary word ¢;’ (j = I, ..., m) associated with
ary k

every region through which L(x, sx) passes. There are m such regions

! When we tested our algorithm we used ¢ to be uniformly distributed over (0.1). We did not have any reason for

that choice, we now suggest € = (g, — o, )/m as a better and more appropriate choice.
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(excluding the region containing xx which has binary word ey). Let (-.:’
denote the binary word in the region along L(x, sx) determined by «j

and aj,; and let ¢’ denote the i-th component of ¢}’.
e Forj=I+1, .. m

« Initialize ¢}’ = ¢}’™" (for j = l+1, initialize ¢’ = ex).
« If¢;’™" =0. then set ¢’ = I and do nothing because the newly

generated binary word is redundant. See section 5.5.

a,

« If j=p. thenset e, = ¢, .

 Else ¢;’™' =1, and set ¢}’ = 0.

:(l/

 If j=p, then set ep = ¢, ’.

*+  Check if ¢}’ is a new binary word, compute ¢’ ’s equivalent
decimal value, d,, = il c-:;fj(Q)""“.

* Check if d,, is already in the binary search tree, B. If d, is
not already in the binary search tree, i.e., if d,, is inserted

in the tree, then insert ¢;’ as a new row in the set covering

matrix E.

b. « Forj=1 .., I
Q,

« Initialize ¢’ = e’™" (for j = I, initialize ¢}’ = e).
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If ¢{’~' = 0, then set e;:‘! = | and do nothing because the newly

generated binary word is redundant. See section 5.5.

a,

« Ifj=p, thensete, = ¢, .

Qa,-

Else ¢;'™' =1 and set ¢}’ = 0.

« If j=p. then set ep = ¢"'.
* Check if ¢’ is a new binary word, compute ¢}’ 's equivalent
decimal value, d,, = 'Z":l c;f_'(z)"'—s.
o=
« Check if d,, is already in the binary search tree, B. If d,,, is
not already in the binary search tree, i.e., if d,, is inserted

in the tree, then insert ¢}’ as a new row in the set covering

matrix E.

Remove all newly redundant rows from the set covering matrix E. See

Section 5.5 part 2.

Xk+1 = Xk + 0kSk. Where si comes from step la and o come from step le.
Set the m-bit binary word, ey, associated with xi to €p, 1.€., e = €p.
where e, comes from either step 2a or step 2b.

k = k+l.

Check all stopping criteria

The total number of iterations (e.g. 1000 iterations).
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» The number of iterations we did go without adding a new row to the

set covering matrix.

If termination is not due, then go to step 1.

Step 4: Using the set covering matrix E, generate the associated SC problem.

Step 5: (Solution): Find a solution to the generated SC problem using Chvatal's

algorithm [15].

Step 6: Use the solution of SC problem to find a minimal representation to the original

linear programming problem.

5.4 Example

In this section we present an example in order to clarify the method and

terminology.

Consider Figure 5.6 with the set of nine linear constraints which defines an

empty feasible region.
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':-(sa I. alTx=2x1 +X2S7
2. asz = —X| + 2X2 <4
ne 3. azTx=%x; —x3<2
ot 4, aTx=x, +x2<4
. @) S. asTx = —x; £ 0
“ ) 6. ag'x=—-x2<0
- ' 7. a;Tx=x;<2
‘ . SN 8. agTx =x;<25
@ N ’ . 9. ang =Xy £-25
lé)
Figure 5.6

The values that will be used here are the actual values we obtained from

testing our method using this example.

Step (0:a) Generate an initial point xg = (—0.7879, —0.98520)T

Step (0:b) Calculate the m-bit binary word associated with xg we get eg =
(0.0,0,0,1,1,0,0, 1)

Step (0:c) Compute ey’s equivalent decimal value, dg, o = f:l cos(2)" 0.
We get dg = 25 -

Step (0:d) Initialize the binary search tree B, i.e., insert dg = 25 in the binary
search tree B.

Step (0:e) Initialize the set covering matrix E, i.e., Set E= [eg] = [0, O, O,

0,1, 1,00, 1]
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Step (0:f) Set k = 0.

In step 1: (Generation of Observation): we perform the following substeps:

Step (1:a) Generate a direction vector sg = (—0.9506, —0.3103)T. As it can
be seen in the follwoing figure (Figure 5.7) xg and sq defines the line L(xg .

so) that intersects the constraint boundaries.

Xz
A
- (5)
) -
ay < (2
, (3)
(4) v
\J
(8) Lixe. So)
* (6)
[y
X
So Xa i -
‘/'
v
9

Figure 5.7
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Step (1:c) Compute the distance from xi along L(xg, so) to the boundary of
the i-th inequality

aTx < b fori=1,.. m, ie ., calculate

Tk = (b,» —lliTr;.)/((:iT.s‘.).

We get : 0g; = —4.3231, 0gy = 15.7028, 093 = —2.8153, go4 = —4.5783.
aps = —0.8288. aos = —3.1748. aogr = —2.9326. gog = —11. 2315 and ad09

= 4.8818.

Sort 7y;’s in increasing order. We get the following: ggg = -11.2315, 704

-4.5783, a¢

-4.3231, 0g¢ = -3.1748. 097 = -2.9326, 093 = -2.8153. 705

-0.8288. 009 = 4.8818 and gy = 15.7028.

We have {«, a3, a3, a4, as, ag, a7, ag, a9} = {8, 4, 1,6, 7.3,5,9, 2}

with / =7 and «; =5 and /+]1 = 8 with ;4 = 9.

The constraint boundaries partition L(xg. so) into 10 regions (including the
region that contains xg, R3 in the Figure 5.8). We want to sample a point from each
region and we do this in two steps that corresponds to the (Acceptance-Rejection
Step) in the algorithm.

Note: Figure 5.8 does not show the exact representation of the constraint set.

We use this figure for illustrative purposes only.
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k
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(+) )
- -
Figure 5.8

In step 2 (Acceptance-Rejection Step), we do the following:

Starting with

sorted oy;'s values, we divide o;’s values into two subsets; positive oy;'s

values and negative oy;'s values. We get the following positive ay;'s: gg9 =

4.8818 and 0oy = 15.7028 and the following negative o;'s: ggg = -11.2315,

go4 = -4.5783, aor = -4.3231, gpg = -3.1748, go7 = -2.9326. a3 = -2.8153.

agps = -0.8288.

Now starting with x¢ in R3 which has a binary word e; = (0. 0, 0, 0. I, 1.

0, 0, 1) and moving in the negative direction, i.e., for i = a7, ..., a;. We

perform the following:

*  We cross the boundary of constraint 5 in going from R3 to Ry. We set

the binary word ¢ = e, = (0,0,0,0, 1, 1,0, 0, 1). Since c',:’,_) = | then

we set ¢;, = 0 and the binary word to (0, 0, 0, 0, 0, 1, 0, 0, 1). In this

case we compute c';’,'s equivalent decimal value, ds = 9. We check if ds

is already in the binary search tree, B. At this point the binary search tree
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B contains 25. Hence ds = 9 is not in the binary search tree, i.e.. it is
inserted in the tree, then we insert the binary word ¢} as a new row in

the set-covering matrix E.

» Now we cross the boundary of constraint 3 in going from Ry to Rs. We
set the binary word ¢3 = ¢} =(0,0,0, 0,0, 1,0, 0, 1). Since "'2,; = 0 then
we set ¢} = 1. and the binary word ¢3 to (0, 0. 1, 0, 0, 1. 0, 0. 1) and
do nothing because the newly generated binary word that corresponds to

Rs is redundant.

« Now we cross the boundary of constraint 7 in going from Rs to Rg. We
set the binary word ¢} = ¢} = (0,0, 1,0.0, 1, 0,0, 1). Since ¢}_ = 0 then
we set ¢;_ = | and the binary word ¢} to (0, 0, 1,0, 0, 1, 1, 0, 1) and
do nothing because the newly generated binary word that corresponds to

region Rg is redundant.

¢ Now we cross the boundary of constraint 6 in going from Rg to R7. We
set the binary word ¢ = ¢; = (0,0, 1, 0,0, 1, 1, 0, 1). Since ¢§ =1
then we set ¢§ =0, and the binary word ¢ to (0, 0, 1, 0, 0, 0, 1, 0,
1). In this case we compute cg’,’s equivalent decimal value, dg = 69. We
check if dg is already in the binary search tree,B. At this point the binary

search tree B contains 25 and 9. Hence dg is not in the binary search

tree, so dg is inserted in the binary search tree, then we insert the binary
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word ¢§ in the set-covering matrix E.

» Now we cross the boundary of constraint 1 in going from R7 to Rg. We
set the binary word e} =¢$ = (0,0, 1.0,0,0, 1, 0, 1). Since c},l =0, then
we set ¢) = 1, and the binary word ¢} to (1,0, 1,0, 0,0, 1, 0, 1) and
do nothing because the newly generated binary word that corresponds to

Rg is redundant.

» Now we cross the boundary of constraint 4 in going from Rg to Rg. We
set the binary word ¢} = ¢; = (1,0, 1,0, 0,0, 1,0, 1). Since ¢} =0, then
we set ¢; = 1, and the binary word ¢} to (1,0, 1, 1,0, 0, 1, 0, 1) and
do nothing because the newly generated binary word that corresponds to

Ry is redundant.

» Now we cross the boundary of constraint 8 in going from Rg to Rjg. We
set the binary word ¢f = ¢} =(1,0,1,1,0,0, 1,0, 1). Since ¢§ =0, then
we set c‘z_ = 1, and the binary word ¢§ to (1,0, 1,1, 0,0, 1, 1, 1) and
do nothing because the newly generated binary word that corresponds to

R0 is redundant.

Now starting with xo in R3 which has a binary word ¢; = (0, 0, 0, 0, 1, 1,
0, 0, 1) and moving in the positive direction, i.e., for i = ag and ag. We

perform the following:
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*  We cross the boundary of constraint 9 in going from R3 to R;. We set the
binary word ¢ = ex = (0, 0,0,0, 1, 1,0,0, 1) . Since ¢ =1, then we
set (-:2,' =0 and the binary word e?, 0 (0,0,0,0,0, 1. 1, 0, 0), we compute
c?,’s equivalent decimal value, dg = 24, and we check if dg is already in

the binary search tree, B. At this point the binary search tree B contains

25, 9, and 69. Hence dg is not in the binary search tree. We insert it in

the tree, then we insert the binary word ¢) in the set-covering matrix E.

» Now we cross the boundary of constraint 2 in going from R, to R;. We
set the binary word ¢ = ¢ = (0, 0,0, 0,0, 1, 1. 0, 0). Since ¢, = 0.
then we set ¢, = 1 and ¢§ = (0, 1,0, 0,0, I, 1, 0, 0) and do nothing
because the newly generated binary word that corresponds to region R

in Figure 5.8 is redundant.

After this iteration we have the following set-covering matrix :

000011001
E_ |00 000 1001
001000101

000011000

and the following binary tree :
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25

69

24

In step 3: We update k and xx and go back to step 1 (Generation of

observation).

The method continues in this fashion until a stopping criteria is met (the
number of iterations, 1000 iterations, was used as a stopping criteria in this
excample). After 1000 iterations, the binary search tree B contains the following
values: 25,9, 1, 5, 3, 24, 17, 69, 37, 33, 35, 39, 76, 72, 73, 152, 145, 77, 131,
129, 88, 147, 357, 293, 179, 163, 295, 325, 332, 333, 364, 359, 419 and 423.

The set-covering matrix appears as follow:
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0 0 000 10 0 1
001000101
000011000
00000000 1
00001000 1
001001000
010011000
00000010 1
001001001
01 0010001
100100101
101101100
110100011
E={1 00100111
001001101
1010007101
0100110 0
01001101
00 010000 1
000000011
010100011
01 0010011
00 0100011
01 0000011
101100111
01 00 00O0O0 1
000101100 0

Comment: We have 34 entries in the tree, but we have less then 34 rows in E.

Once we have the set-covering matrix E, we remove redundant rows from the
set-covering matrix. Then we generate the set-covering problem associated

with E and find a solution to the generated set-covering problem. Using the
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set-covering problem solution, the method outputs a minimal set of constraints
that represents the original problem.
For this example, the output of the method was the following set of constraints

{9. 6, 5, 8} which is not a minimal infeasible set.

5.5 Points To Rember When Using The
Set-Covering Approach

1.

While we are sampling points from the set of all possible points, what if a
feasible point is found, i.e.. if all (f:'l are zero, fori = 1, ..., m. Then we
stop the set-covering approach and we use the regular hit-and-run algorithm.
In the hit-and-run algorithm we sample only those points with a single 1 in
its corresponding binary word. Knowing this (By the theorem 4.4.1 ). we
classify the corresponding constraints as necessary.

Every time we generate a new binary word c;‘,‘, =1, .., m). If azeroin
position i is changed to one then we know the newly generated binary word is
redundant. By redundant we mean the binary word is covered by an existing
binary word. A binary word is covered by another if for i = I, .., m, if c}:.’"
> ¢}, where ¢’ is the i-th entry in the j-th binary word . In our example,
in moving from Rg to Rg we had ¢} = (1.0.1.0.0.0.1.0.1) for Rg and

¢; = (1.0.1.1.0.0.1.0.1) for Rg. Note that the 4™ bit in ¢} was changed

from 0 to I to get ¢}. If y is a set-covering solution with (¢l Ty > 1, then it
get ¢y y g X
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follows that (ct,)Ty > ((—:,{,)Ty > 1 as well. Thus ((-z,)Ty > 1 is a redundant

constraint in the set-covering problem, and it is removed.

5.6 Special Aspects of the Approach

The approach is a new method that can be used to identify redundancy and/or
to identify a minimal infeasible set in a system of linear constraints. Given that
it is a probabilistic approach it does not guarantee a minimal representation. This
approach differs from the other existing approaches in that it does not require prior
knowledge about the feasibility of the system. When our algorithm is finished.,

we have concluded with either:

1. A minimal infeasible set.

2. A minimal set of necessary constraints.

In the first case, we have as output an irreducible infeasible set. In fact,
this conclusion could be wrong. However, we can now apply the IIS method of
Chinneck and Dravnieks [14] on a much smaller constraint set. So our approach
can be considered as a preprocessor.

In the second case, we have a feasible region. However, some necessary
constraints may have been incorrectly classified as redundant. In spite of this, we
solve the reduced LP problem. We then check the LP solution for feasibility with
respect to the entire constraint set. If it is feasible, great. If not, we add back in

the violated constraints and resolve using a dual simplex algorithm starting with
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the infeasible “optimal solution™. In this case our approach is a preprocessor for

the LP code.

5.7 Time-Complexity

We did not do a time-complexity analysis of our set-covering approach. As
was seen in previous chapter the approach iteself is a combination of more than
one algorithm. Some of the algorithms have a well-known time-complexity such
as the set-covering algorithm and the hit-and-run algorithm. We have chosen
a version of the hit-and-run algorithm that has a per iteration time-complexity
O(mn). As for the set-covering algorithm, it is well known that it is an NP-hard
problem. For this reason we have chosen a heuristic algorithm to find a solution
to the set-covering problem that has a linear time-complexity [15]. As for the
other steps of the algorithm many of them involve matrix operations, such as
multiplication, addition, inversion and subtraction, with a very well-known time
complexity. In order to minimize the number of matrix operations we stored our
data in PF format [11]. PF format is a packed format for storing equalities and
inequalities. PF format uses the vectors A, and AINDEX. The float vector A has
length AMAX and contains the non-zero constraint coefficients and the right hand
sides. The constraints are stored sequentially. The integer vector AINDEX has

length AMAX and contains the index of the pointers indicating the position in A
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and AINDEX where data about the constraints begins and ends. As an example,
consider the system given by:

I. 3x; +4x7 <9

2. 2x; +x3 <4

3.x3 =0

Here we have AMAX = 8, and A, AINDEX as given below:

A AINDEX
9 -3
3 1
4 7
4 -6
2 1
1 3
0 -8
1 1

Since AINDEX(1) = -3 data on the first constraint ends at I = 3. Since
AINDEX(4) = —6 data on the second constraint ends at I = 6. Since AINDEX(7)
= —8. Therefore, we know that, for example, the data for constraint 3 is contained
in position 7 to 8 of A and AINDEX. A(7) =0, so the right-hand side for constraint

31is 0. A(®) = —1 and AINDEX(8) = | so coefficient of x; in constraint 3 is 1.
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Chapter 6 PROGRAMMING THE METHOD

6.1 Introduction

The C computer language was selected for programming because of its
widespread use and because of its powerful tools to create and maintain dynamic
data structures. In programming the method, special care was taken to minimize
the effects of any programming bias, such as memory allocation. Common
subroutines were used where possible for steps that are common, such as binary

search and quicksort algorithms.

C*™ is a superset of C, that is, programmers can use a C** compiler to
compile C programs. Therefore the C language was used mostly to program the
method and when it was necessary the C** language was used in order to allocate

memory efficiently.

We present some details of the programming process used for the method.
This will enable the reader to gain a better understanding of the specifics such as
memory space requirernent and the order of operations. We begin this discussion
by presenting the general algorithm and then discuss the details of programming

every subroutine associated with it.
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6.2 Programming The Set Covering Approach For
The Minimal Representation Problem.

The approach has been described in detail in the previous chapter. In general
the approach attempts to clean, remove redundant constraints and/or identify a
minimal infeasible set in a system of linear inequalities by generating the set-

covering problem associated with it.

The algorithm consists of four basic steps:

1. Initialization

2. Generation of observations.
3. Acceptance-Rejection,

4. Termination, and

5. Solution.

In the following sections, we present details of the programming process

used for each step.
6.2.1 Step 1: Initialization

The first step of the algorithm consists of three initialization steps

1. Generating an initial starting point, xo. The point was chosen to be uniformly
distributed over the n-dimensional hypercube centered at the origin with length

2. Knuth’s suggestion ([29], p. 280) was implemented to generate Xo.
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2. Calculate the m-bit binary word. eq, associated with the initial starting point
Xo. This was done by direct substitution.
3. Initialize the set-covering matrix, i.e., Set E = [eg].

4. Initialize the binary tree B, i.e., insert ey’s equivalent decimal value in B.

6.2.2 Step 2: Generation of Observations

The second step of the algorithm consists of generating the observations
points. The strategy used for generating the observations was developed by using

the principles of the hit-and-run algorithm and it consists of the following steps

1. Generate a direction vector sy normaly distributed over the surface of the n
dimensional hypersphere. The Box-Muller method ([29], p. 289) for generat-
ing random deviates with a normal (Gaussian) distribution was implemented
to generate zy;, such that sg = zy/lizyll and zy = (2|, ..y Zkn)'-

2. Define L(xgk, Sk) = xx +0sk, 0 € R.

3. Compute the intersection points of L(xy, sx) with the boundary of the i-th

inequality a;Tx < b; for i = I, ... m, i.e , calculate

Ori = (b,- - (L,-T.’I.'j)/((llrsk).

4. Using quicksort [19], we sort oy;'s , i.e., create an index set oy, .., ¢y such

that Oka;, £ Okay < ooo £ Opq, £ ... < Oka,,
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6.2.3 Step 3: Acceptance-Rejection Step

The acceptance-rejection step consists of two steps.

1. Compute €;'s equivalent decimal value, d;. This is done by a simple routine

following the general rule for converting a binary number to decimal.

2. Check if d; is already in a binary search tree with no duplicate. If d; is
inserted (details of inserting a node in a binary search tree will be given in

the following section), then insert e; as a new row in the set covering matrix E.

6.2.3.1 Inserting A Node In A Binary Search Tree

A special binary tree called a binary search tree with no duplicates is created.
A binary search tree (with no duplicate node values) has the characteristic that
the values in any left subtree are less than the value in its parent node, and the
values in any right subtree are greater than the value in its parent node. Figure 6.9
illustrates a binary search tree with 12 values. Note that the shape of the binary
search tree that corresponds to a set of data can vary, depending on the order in

which the values are inserted into the tree.

University of Windsor, 1996 48



PROGRAMMING THE METHOD

47

25 77

11 65 93
43

Figure 6.9 A Binary Search Tree

The steps for inserting a node in a binary search tree are as follows [19].

1. If *weePtr is NULL, create a new node. Call malloc, assign the allocated

memory to *treePtr, assign to (*treePtr)->data the integer to be stored, assign

to (*treePtr)->leftPtr and (*treePtr)->rightPtr the value NULL, and return to

the caller (either main or a previous call to insertNode).

2. If the value of *treePtr is not NULL and the value to be inserted is less

than (*treePtr)->data, function insertNode is called with the address of

(*treePtr)->leftPtr. Otherwise, function insertNode is called with the address

of (*treePtr)->rightPtr. The recursive steps continue until a Null pointer is

found, then step 1 is executed to insert the new node.
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6.2.4 Step 4: Termination

The third step of the algorithm is a decision step. It consists of whether we
continue or terminate the algorithm. The termination step consists of three basic

steps which are straightforward:

Check all stopping criteria such as

e The total number of iterations

While programming the approach the only stopping criteria that was used is

the total number of iterations ( 1000 iterations). If termination is not due then

a. Update the necessary variables, xx and k

b. Go to step 2.

Else

Go to step 5, the solution step.

6.2.5 Step 5: The Solution Step

The final step of the algorithm consists of finding a minimal feasible solution
to the set-covering problem generated in the previous steps. The problem is
solved using Chvatal’s algorithm [15]. A general description of the algorithm is

presented in Appendix A
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6.3 Performance Monitoring

In order to evaluate the performance of our method, we ran test problems
and recorded the iteration number, a feasible point, if founded, and the set of
necessary constraints and/or a minimal infeasible set that has been detected. This

information was recorded in Table 6.4.3.

6.4 Test Problems

We evaluated the performance of the method on two types of problems:

1. Feasible problems.

2. Infeasible problems.

We now present the results in Table 6.4.3.
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Flie name m n Feasible After how J # of total
point found | many iterations
iterations
hi.oxt 2 20 yos 45 13 1000
h2.xxt ‘8 2 yes 1 6 1000
h3.txt 3] 10 yos 8e2 7 1000
h4.mxt -rg 10 o N/A 12 1000
h5 0t 24 ] yes 862 7 1000
h6.txt 27 10 no N/A 12 1000
h7 t ) 14 yos 836 12 1000
h8.oxt 31 16 ¥es 245 12 1000
h9.txt 31 18 yos 450 10 1000
h10.ta B 20 yes 906 16 1000
h1l.xt K0 18 yes 38 13 1000
hi2.xt 31 20 ¥6s 38 18 1000
h13.1xt n 20 yos 38 18 1000
h1d.xt 7 21 yos 38 27 1000
h15.txt 3] 24 yes 38 21 1000
hi6.oxt A ] no N/A 18 1000
h17.0a 27 15 m N/& 12 1000
5.t 24 5 yes 133 7 1000
6.0 16 20 o N/A s 1000
s11.ea 2 15 yes 3 13 1000
s12.0a 12 5 %) N/A 2 1000
s13.0a 14 12 no N7A, 2 1000
st ] 25 no N/A 16 1000
515 txt 20 16 [1°) N/A 4 1000

Table 6.4.3 Results

where m is number of constraints, n is the number of variables, and J is the

cardinality of a minimal feasible/infeasible set.

As can be seen from Table 6.4.3, problems of different sizes were chosen.

For the large size-problems we compared our results with the results in [11]. Our

results were consistent with their results regarding the problems classification as
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either infeasible or feasible. There was some inconsistency regarding, J. But we
do not expect our results to be exactly the same as our algorithm is a probabilistic
algorithm.

We choose small problems so we can verify our results by inspection. For
those problems, feasible or infeasible, the results were accurate. As an illustration
consider the following example (h2.txt in Table 6.4.3).

6.4.1 Examples

I, aTx=2x; +x2<7
e 2. alx=-x,+2x2<4
o 3. a3Tx =X — X252
‘ 4. a’x =x; +x3<4
& & 5. asTx =—x, <0
' . 6. ag'x =-x2<0
' ' . 7. a;Tx =x; €2
) . A @ 8. ang =Xy <25
Figure 6.10

As it can be seen from Figure 6.11, the system of linear inequalities defines a
non-empty feasible region R. If we inspect the above figure we see that constraints
(1) and (3) are redundant and constraints (2), (4), (5), (6), (7) and (8) are necessary.
The result of our algorithm was as follows: After the first iteration, the algorithm

reported that a feasible point is found and the original set-covering equivalence
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approach was switched to the regular Hit-and-Run algorithm. After a 1000
iterations of the Hit-and-Run algorithm a minimum feasible set was reported as
{2, 4, 5, 6, 7. 8} which is correct

Now consider the example given in Figure 5.7. As can be seen from the figure,
the system of linear inequalities is inconsistent. The result of our algorithm was
as follows: After the 1000-th iteration of the set-covering approach, no feasible
point was found and a minimum infeasible set was reported as { 5, 6, 8, 9}.

If we examine Figure 6.11, the reduced set of constraints {5, 6, 8, 9} is still
inconsistent. However, it is not a minimal infeasible set as constraint 5 could

yet be removed.
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- (5)

(6)

9

Figure 6.11

According to N. Chakravarti [13], the reduced set of constraints can be made
feasible by removing one constraint. If we remove constraint (9), then the reduced
set of constraints becomes feasible and we have a non-empty feasible region as

it is shown Figure 6.12.
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- (5)

(6

Figure 6.12

In these small examples it appears that the algorithm may be performing well,

but true computational comparison with other methods awaits implementation.
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Chapter 7 CONCLUSION

7.1 Contributions of the Thesis Work and
Completed Objectives

The first major contribution of this thesis work is that it has demonstrated
that the minimum infeasible problem has a set covering equivalence.

The second major contribution of this thesis is the development of an effi-
cient method for implementing Boneh’s set covering equivalence to solve both
problems: classifying linear inequalities as redundant or necessary and identifying
minimal infeasible sets of linear inequalities. This thesis developed an efficient
way to ensure that no duplicate binary words are inserted in the set-covering ma-
trix. The thesis also provided a new approach to eliminate redundant observation
points as they were generated. Details of this procedure have been explained in
the previous chapter.

Finally, this thesis has provided computer-aided tool that can be used in
conjunction with other existing deterministic algorithms to decide what can be
done to clean a system of linear inequalities that represents a mathematical

programming problem.
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APPENDIX A THE SET COVERING PROBLEM

A.1 The Set Covering Problem

A.1.1 Definitions and Notation

Consider a set [ = {1,2, ..., m} and
aset P={P, Py ...,Phywhere ;CLjel={1,..n}
A subset J* C J defines a cover of I if :
U=
JjeJ*
The set J” is refered to as a cover.

Let a cost ¢j > 0 be associated with every je J. The cost of J* = z} ¢
JEJ*

The set covering problem is to find a cover of minimum cost and can be

witten as Integer Linear Program (ILP):

n

mn g = E Cjrj

=1
n

Z eijzj 21 & = 1. ... m

j=1
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where

o= {1 if Jisim the cover
! 0 otherwise

e = {1 ifi € P_,'
i O otheruwisc
A.1.2 Example

LetI =1, 2.3.4,5,6, 7},

I = {1, 2. 3, 4},

P = {P,, P,. P3, P4},

P, = {1, 2, 3},
P, = {5. 6}.
P3; = {4} and

pa = {4, 5,6, 7}.

The matrix, E = [ej;], appears as follows:

10 0 0]
1 00 0
1 00 0
E= {0011
01 01
01 0 1
0 0 0 1]
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J¥ = {1, 4} C ] defines a cover of I since

Ur=r

JjElrI*
The above example can be represented by the following figure:

3
> P2
> |
5 6
4
7
v
P3 . » P4

A.2 A Greedy Heuristic Algorithm for
the Set Covering Problem

The efficiency of an algorithm is a function of the number of units used to
encode the input. We are interested in identifying algorithms guaranteed to run

in time proportional to some polynomial in the number of units of input.
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A.2.1 Polynomial-Time Algorithm

An algorithm that runs in time proportional to some polynomial in the number

of units of input is said to be a polynomial-time algorithm.
A.2.2 Nondeterministic Algorithm

When an algorithm is faced with a choice of several options, and it has the

power to “choose™ any one then is said to be a nondeterministic algorithm.
A.2.3 NP-Complete Problem

Any problem that can not be solved by a nondeterministic polynomial-time
algorithms is said to be NP-complete.

Heuristics are criteria, methods or principles for deciding which among several
alternative courses of action promises to be the most effective in order to achieve
some goal. Heuristics are not infallible. They can sometimes lead to a suboptimal
solutions or fail to find any solution at all.

The set-covering problem is known to be NP-complete. In view of this
fact, the relative importance of heuristics for solving the set-covering problem
increases. Several polynomial greedy heuristics for its solutions are known e.g.
Boneh & Samuel and Chvatal. This thesis will use the following greedy heuristic

algorithm due to V. Chvatal.

Step 0 : Set J* = 0.
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Step 1 : If Pj = 0 for all j then we stop and J® is a cover. Otherwise find an
index k maximizing the ratio IPjl/cj and proceed to step 2. Where IPjl denotes
the cardinality of Pj, i.e., the number of elements that makes up P; .

Step 2 : Add k to J*, replace each P; by Py/Px and return to step 1. Where

Pj/Py is the set P; with the elements of the set Py being removed.

The above algorithm does not deal with the case where there is more than one
index k such that the ratio [P;l/c; is maximized. If such case arises, the following

rules will used :

. f U = I,thenset) ={J k and stop.
2. If |y P # I.then choose k = max{k’'s} to maximize the ratio IP;l/c; and

continue with step 2.

Also the above algorithm does not deal with the case where there is no cover.
i.e, a feasible solution for the problem. If such case arises, i.e.. if Pj # 0 for
all j and there is no index k maximizing the ration Ipjl/cj, then the algorithm is
stoped in step 1.

The ratio IPjl/cj counts the number of points covered by Pj per unit cost.

Throughout this thesis a uniform cost ¢; = 1 will be assumed.
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