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ABSTRACT )
The static electric quadrupole interaction'in poly--

crystalline and single crystalline PbHfO. at Hf—siﬁes has

3
been investigated by the perturbéd angular correlétion
method. . - - |

The quad?uﬁole intgréction frequency wq? the‘electpib
field‘gradieﬁt-vzi} the asymmetry parapetéf'}p, the
- smearing § ‘were-determined as a function of témperafﬁre.
The direction of the field gradient was established by
determining the polar angle B and the azimuthal angie o
defined;hith respect to'g coordinate system whose é—akis'
is the c—axié. The variation of the direction of V., with
'temperature was also.sthdied. The frequencies were also
‘determined by the nuﬁericai integration éf the perturbed

function over a finite time interval T-= 36 ns.

- The invéstigations confirm the structural phase

transformations undergone. by the antiferro-electric PbeOB'

(iii)
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—_ . CHAPTER I

INTRODUCTION . - -

T

with extranuclear fields has proven quite useful in |

many contexts. Nuclear resonance and épéctroscopic

techniques have, for example been valuable in

elu01dat1ng the nature of chemlcal bonding 1n molecules

and compounds and in characterlzlng the propertles of

'magnetlc mateylals. In non-magnetlc substances, the

nuclear electric quadrupole interaction (QI) has had
wide applicability as an aid to determing the

distribution of electric charge surrounding a nuclear

"site. The experimental techniques most commonly used

for this purpose are nuclear magnetic and'quédrupole
resonaﬁce;‘MOSSbauer effect and perturbed angular
cofrelations.‘The formef two are approprigte for
measurements on the stable nuclear ground states of
relafively abundant species in the sample under
consideration.Perturbed angular correlation methods
are good for measurements of the quadrupole interactions
wi%h dilute concentrations of impurity ions.

This method h&s been shown to be a useful tool
for the study of hyperfine interactions in solids.

This provides information about the strength and

" symmetry of the. slectric fleld gradlent (EFG) at the

nuclear s1te, and as such has been used 1n studies-

=1~

The study of the interaction of the atomic nucleus .- «

Tt g A . - - — b e Pl i -l M L vm ]
B e e I AT e e e Bt ot et s R p A IO T A e

T R e et Aty S
T R R T R ST

%

R k-5

-



e ety ey
LTI AL oy parny SammepsuneryanTy
T T T I S T S e e

.

of high. co—ordlnaylon complexes, whlch surround the-
dlfferentlal perturbed angular correlatlon (DPAC) -
"probe nucleus. An advantage of DPAC when compared to

: the Mossbauer effect is that it can be used over a

wide range off%emperature and thus is spe01ally

useful to,.detect temperature dependent conformatlonal

-

-_1nterconver51ons that might occur in these compounds.'

Compounds poesessing‘perovskite - type strucgggem

are usually ferro-electric or anti-ferroelectric. A
study of the internal electric field ‘gradient in -

these compoundsnis of great interest. The reason is

-
s

that since the EFG reflects the microscopic charge
distribution, its determination and -especially the"
investigation of its temperetdre'dependence should
icontribute to the coilective'phenomena in ferrcfelectnic

-

‘and anti-ferroelectric substances.
A possibility of using nuclel as a microscopic

fleld sen81t1Ve probe is due to the fact that the
angular correlatlon of two successive gamma—rays can

" be perturbed by the hyperfine 1nte;actlcn between the

nuclear moments of the 1ntermed1ate state of: the cascade

and the electromagnetic field acting on the nucleus. In

partieular, the electric quadrupole interaction with

the EFG can be-measured provided the nuclear spin is

greater than or equal to unity.

This thesis presents a study of the temperature

e ey

T
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dependence of the EFG and the quadrupole frequency in
antl ferroelectrlc lead hafnate (PbeO ) by the method
.of time. dlfferentlal perturbed angular correlatlon
"(TDPAC) The variation of the dlrectlcn of the EFG
- w1th temperature is also studled.
These experlments at varlous temperatures were"
“ccnducted in order to 1nvestrgate the “series of

'structural phase transformatlons which the perovskite

compound PbeO undergoes.(P D, Dernler et al. 19?5)

3
The change in the structure 1nfluences the crystalllne
field and hence the magnltude and dlrectlon of the
electric field gradient. Therefore, these —
experiments were deeigned to invesgtigate the

'_temperature dependence of the quadrupole perturbation
interaction, i.e. the effect of temperature on

anissotropy.
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CHAPTER II

THEORY OF ANGUIAR CORREIATION

/
2.1 Introduction:

‘a nucleus decays frbm'an initial level by emitting

Angular correlation can be defined aé"fol;ows:

radiétion Ry in the ﬁirection-ﬁiy to an intermediate.
level and from there through the emission of radiation
R, in the direction—E; to the final stafe. Since the.
nuélei (and hence nuclear spins);are rahdémly

‘oriented, the intensity distribution of the first

radiation Ry will be isoﬁropic;' ) L

Now, consider an arbitrary axis constructed through
the source along which the‘first radiation is detected. |
This_causeé the magnetic sub-levels, m, of the inter—
mediate level to be populated according to the
transition probabilities m; =—) M. Thust‘such-éh
observation gives ;ise to an ensemble of nuclel ﬁith
an unegual population 6f magnetic sub-levels. Because

of these unequal populations the radiation R, corres=

2
ponding to the sum of all transition probabilities
M—3Ma, then has a -definate anisotropic distribution
with respect to the direction Ez of the first radiation.
(Fig. 2.1.1). The intensity distribution of the:sgppnd

radiation with respect to the direction of the first

radiation is known as the angular correlation of the

two muclear radiations.

L]




T AT g T AW ey e s w1 a3y baahittn TeETTI TN

-

-5

Mathématibally. the angular correlation described
above can}be defined in terms of the "cofrelation' N
functlon" W(e)dw. where W(®8)aw is the relative probaﬁillty
that radlat;on R2 is emitted at an angle @ with respect
'to the direction k1 of the first radia‘tion‘R1 into the
'solid angle dw. '

" When the nucleﬁs'is not disﬁufbed by egtranuclear
“fields and the unequallm-population in the intermediate
level is Bgeserved until the second radiation is emitted .
- then "unperturbed angular éorrelétion".results. This .
happens wheﬁﬂEﬁe mean lifeZ, of the ihtermediéte level:
is shorter than the 1nteract10n time h/AE, where AE is
the . 1nteract10n energy between the nucleus and the
extranuclear flelds. For very short-lived cases

'Cljs;lo 11 secs. ) this condition is always satlsfled.
But -for states with longer lifetimes, periurbations are
'possible. and the unequal population of the m—stétes
in the intermediate level is changed, thus resulting
in change in cofrelation. This is known as the
"perturbed gﬁéu&ar correlation”.

Generalizations of fhe theory of cascade radiations
and, expressing the results in the form that can be
readlly applied to experimental data has been worked
on by many. The progress is. largely due to the use of
three +tools: (1) group.theory' (ii) Racah algebra
~and  (iii) density matrices. The mathematical
preliminaries for the development of this theory is

given in the Appendix.
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Fig. 2.1.1: Two nuclear radiations emitted in cascade

and the quantum numbers involved (ﬁi'“'ﬂf
represent the parities of the initial,
intermediate and final states respectively).
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2.2 Unperturbed Anguler Correlafion:-

.In this sub-section, the directional-cerrelation -
function W(X, .T:’z)dnldn is defined as the probability

‘that a nucleus decaying through the cascade I;— I

T
emits two radiations Rl'and R, in the directions.ia;
— g ' s :
and k2 into the solig angles'df;1 and dﬂé. The derivation

" is based on the first orderlpenturbation theory.
Consider a nucleus decaying from a randomly populated
level i w1th spln I » described by the density matrix P
to the 1ntermed1ate level with spin I; the emitted
radiation R is observed in the direction kl. Perturbatlon '
theory in the flrst order describes this process and
" yields the density matrlx for the intermediate level, P.
The second steprin the cascade I-—-)If is treated in the
same maﬂner, differing only in that the density matrix
is not known a priori, but is the result of the preéeding
transition. ' | ‘
Consider the transition'Ii—él ; Apilying Egn.(A.31)
to this transition by setting a = m; and b = m and P =P,

we get:

&Glrin) = Z <n 'Hll ><n ERED
< \Hll > '(:%.2.1)

2 | 2 o
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- In thq abbve equation and in ald ?he following equations,
angle.indepe;deﬁt fé%tofS'have beén assumed to be unity.
" The s'ymbol.S1 indicates summation over all unmeasured
radiatign ﬁroperties.'sucﬁ as épin and bolérization.

Using Eqn.(A.25), the Eqn. (2.2.1) becomes:
Gleled -5 dnlny la) oy 5] 0 (222
e m. '
; . . ,

For the second tran81t10n from the intermediate level to
the final level, set a = mand b = me in Eqn.(A.Bl) and
apply. Thus we get '

. | e
W(kl.k ) = slszz Z <mf] H, 'm><m| P|m®

mf * m‘pm

4 x <nt|Hy |ng) (2.2.3)

-

Substituting Eqn. (2.2.2) into Eqn. (2.2.3) gives:

W(kl.k ) = 5,5, mZm <mf’ H, | >Qn |1, \m
%. QHIH |m>@1h{lm§

(2.2.4)

"
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"2 3" Perturbed Angular Correlation: Influence of

-

_ Ertranuclear Fields- .

~ The angular correlation of a. cascade I-—e I-;I
'w111. in general be altered as soon as the nuclei in.
their intermediate level I'are subject to torques, duq
to the 1nteractlon of elther the magnetlc dipole moment
) )& with an extranuclear magnetic field B, -or of the
electric quadrupole. moment Q with the fleld gradlent(ITG)
3V /32, i.e. v ozt We will consider only the perturbation
of the angular correlation due to the 1nteraction of Q@
with V S

By a proper choice of axes, u51ng Laplace's equatlon
and the ax1al symmetry of the field, the fleld gradlent can
be expressed in . terms of.'VZZ only'wherg the z-axis
is chosen as the symmetry a&is. The generalization to
- non-axial {rhombic) fields can be considered by
introducing an ‘asymmetry parameter |

1 Ve = Vi

sz

S

Axiélly symmetric field gradients are assumed in the
following discussions.

In a semi-classical pPicture, the interactibn between
such an electric field gradient and a nuclear electric
quadrupole moment gives rise fo an aligning torque
exerted on the nucleus. The resulting precession of the

angular momentum about the z-axis of the field gradient
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has several’ characterlstlc frequencies whith depend on
3the relatlve\orlentatlon of the nuclear spin afls 1
with respect to the‘axis of the field (z-axis). (See/
Fig. 2.3.1). This is also seen in the non—equldlstant
SPllttlng of the 21 + 1 energy levels caused by the
electrlc quadrupole coupllng.. .

The poteﬁtial energy of such a system where the
position of the'axié of .the quadrupole mdmentlwith

respect to the field axis (z- axls) is spe01fled by

the magnetlc quanhlm number m, is given by:

“)(m ) ~-[Bm - I(I+1)] eQv v, .
hI(2I- 1)

(2.3.2)

Positions-of I correspond to +m, and —mz (angle ©
and 180 - 8) respectively énd have the same energy
~glving riﬁq.to two-fold degeneracy. Classically, this
degeneracy 1is explained'py the vector I precessing in
one direction forJangle 8 (900.(+mz) and with the same
precession freqﬁency but. in the opposite direction for
the anglé 180° - @ (-mz). Thus the quadrupole precession
is not unidirectional like the magnetic precession.
The characteristic frequencies cofrespond to tpe energy
differences between neighbouring levels jand expressed
in tefms of frequency W where

AEy  4[Eglm,) - Ea(f“'z)] .
wo o= —Ef— = E : . (2.3.3)

!
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The smallest non}V§nishing-ffequencyﬁls?given by _ -

wg = e, . -for intéger I - (2.3.4)
BI{2I-1)h ‘ - '

wgu=.3§szz o fdr'half4int§éer I " (243.5)
2I(2I-1)h ' h

-

“The common: feature of static electric interactions is

the preceséion 6f the nuclear spin around a wefij

défined stationary axis, the symmetfy axis of the field.m
In the preceding discussion, this axis was used as the
.quantization axis for which the m, values were defined.

The precession of I does not change these projections

i.e. the interactions do nof induce transitions between the

mz‘sublevels, defined with respect to the field axis as
the axis of qpantization. But, the population of the

. m-sublevels defined with respect to a direction other
than the field direction as the axis of quantization.
changes periodicaily with the precession of I about

the field axis. This change causes an attenuation of the
correlation as the second radiation is emitted from =z
level with altered population. In the language of
density matrices, the-transition among m-states are |

described by a time dependence in the density matrix

of the intermediate'syate.

R o .|
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Fig. 2.3.1: The pfecession of the nuclear angular
—-) .
momentum I and the electric quadrupole moment

Q around the symmetry axis of an electrostatic

gradient. ' -
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But, if the field axis z coincides with the axis N
.,represénting‘the diredtion of émission of radiation.‘l ;
-ﬁl used for thé intrbdﬁctibn of unequal}y populated :
mkl-states then the m, are the ggmg as mkl,-Since m, ié-
does not change neither doesﬂmklland the correlation . ' E
is unperturbed. _ ‘ - 1
Thé influence of extranuclear fields on angular‘ , i

correlation quEndé on ‘the magnitude of the interaction
and the time for which it acts i.e. .on the mean life-
time, T, of the intermediate stage. Perturbed angular

correlation results 1f w_ Ty 7 L.
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2.4 Mathematlcal Trfatment of ﬁxtranuclEar ~

Perturbatlons:

Expfession 2.2.4 may be written as:

W(kl'k2'o) Z Z < ‘ Hz ‘mb>\

3 oMy Ty m' ,mb.m
X <@a| Hll m£>$;mam5 e

x <mf| Hy | m{)f@;, HlJ mey gmém{) (2.4.1)

Hl and H2 represént the interaction between the nucleus.
and the radiation field. In the absence of extranuclear
perturbations the final states <ma[ gnd‘<ggj after
emission of the first radiation are identical with
the initial states‘[mg)aﬁd |mé> of thé second radiation.
(Fig., 2.1.1).

 A§sume that the nucleus interacts with an extra- .
nuclear field while it is in it$ intermediate state.
‘The interaction is described by the Hamiltonian K
and is assumed to act from the time of emission of
the first radiation (t=0) until theltime t at which
the second radiation is emittéd.

During this time interval the states |my change
to different states'[mﬁ) under the influence of extra-
nuclear perturbation. This chahge can be described
by a unitary operator )\(t)_that describes the

evolution of the state vectors |m ). Thus the

b AU S

“w L
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perturbed angular correlatlon can be expressed ass

W(kl,kz.t) = Z Z <mf|H M) | ) - s

m
,mf a.m

x(‘“a_l }Fl[ m;) ng | Hy A(9) | ny
x {my | Hy | my)y-

. (2|4.2) . ' o b

The states {m) form a complete set and thus the state

vector A(t)lm >'can be expressed as:

)\('t)\m Z<m | AGY [ my | my) (2.4.3)

Similarly T N . ) _
A [y S Gl Ao ad [y as
my o ' o

The time evolution opexrator satisfies the Schfoedinger
equation:

s

_?i(/\(t))'= S () - | (2.4.5)
dt - ke . L

For time dependent interaction, the solution of the
Eqn. (2.4.3) is:

AMt) = exp lit " (2.4.6)
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‘ o v
The 'pertu.rbed- angular ‘correlation function' ‘becomes:

u(ky 'T."z't) Azl > > > g | #,| m,)
Mgty Ty vy Mg Ty,
X <mb | A(%) [ma> <ma| H, | mi> .
R EA RN ECA PO

, x Koy | Hy| mgy ‘ - R

of the ith nuclear radiation are replaced by the
express:.ons obtained by us:mg the transformatlon
| properties. rotatipr'lal matrices and Clebsch-Gordan
’coei‘f.icients. When the summation over fni and mf' are
performed and the correlation restricted to d_irectional

correlation only, the matrlx elemen‘ts become

Z<ma,H1|m><m ERENE D> Z(. 1)2I-T, +n-L

LyL' k,N
% (2k1+1)=~’ I I xN\[T 1 X kon L)
m, -m, NjE LI

PR P NI ER T S A RO

(2.4.8)

where Cy (L L') are the radiation parameters for radiation

of mu‘ltlpole order L and L'T The arguements 8 and (]3 of
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W

Fig. 2.4.1: Angular co-ordinates of the propogation

directions -k’

-—,
1 and k2.
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“the épherical ha:monics_refef to the direction of

observation’ of the radiation with respect to an

arbitrarily chosen'quantization_axis z (Fig. 2.4.1).

A similar expression is obtained for - K

%—(‘“flﬁz |my <ng | B, | g
f .
The perturbed angula¥ correlation function becomes:

oL Kpax NN
i 1 2 172 :
- t kl’ 2

Nl,N2

~ .3 N N
X [(21:11»1)(21;24-;_)“]“‘-’?‘ Yki(el.tbl)‘fki(ez.qlz)

S o | : | (2.4.9)
where ;
N N, 2I+m_+
Gyl (t) = E 0" mb [21;- +1)( 2Kk +1)J
1o .
Moy

x(i' I kq(z‘ 1 kz)' -
My Ty NyfAmy, -my Ny ‘
x o | A1) | ma> <o A®Y [ m)" (2uka0)

The influence of the extranuclear perturbatlon is

i}

described by the perturbation factor G 1 2(1:).
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(1) LZL.( 1)l ok (LlLl){I I, kl<I|]L1 A I}(IIIL'TI'"I}
1 1 1 i
1{(2) is defined similarly.

The Eqn. (2.84.9) represents the time dlfferentlal
u'perturbed angular correlatlon-l e. the correlatlon .

measured 1f the second radiation is observed .within o o

time t énd t + dt after the emission of the first

radiation. | .
\ In case of vanishing perturbafion (indicated by

t = 0) the evolution matrix reduces to the unit matrix

and using;EQn. (A.6) , the perturbation factor reduces

to _ ‘.

e § - o (2.4.11)
klk klkz NlNz .

The unperturbed correlation function is thus obtained

w(e,0) _S Akl P, (cos @) o . (2.4.12)
I

where ‘A, = Ak(l)Ak(2)

and ® is the angle between k, and k2.
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2.5 Static Interactions (Classical Fields):

For perturbed angular correlation caused by the
interaction of nuclear‘magnetiq.or-eléctric moments with
a stationary external fiéld whiéh éan be descpibed-'
classically, the matrix elements of A(t) can be

expressed in the m-representation. Designating the

unitary matrix which diagonalizes the interaction

" Hamiltonian K by U we get:

vkul=E : (2.5.1)

E is the diagohal.eqergy matrix with diagonal elements

‘En (energy eigenvalues). By expansion of the exponential

function, we obtain: f v_

y o iKE/M -1 e_iEt/h \ | (2.5.2)
ﬁqn.(z.ﬂ.é) then becomes

A(t) = gl ciEV/D g | : | - (2.5.3)

and the matrix elements of A(t) in the m-représentation

(o | A6 [ - Zn@l oy [e-iEn“b/h](n Im) (2.5.4)

where {m|n) are the matrix elements of the unitary
matrix U that is obtained by solving Eqn. (2.5.1}).

The perturbation factor is then::




'
Ve g Y

T PP
Bokh A

B S S et R

A T T Y Y e Y A P L T T L P e L T AT
. '

. =21~

ON,N 21
' le 2 (%) = ZZ( 1) +ma b [(2k1+1)(2k +1)]

x' ex;E:(;,nE )t/h] <n[ mb>él IEN; o
RN EVRCHEN >( I ) ( \

a' "My N b Iy N

(2.5.5)
z

If the field has axial symmetry eg. an axially symmetric

electrostatic field, the symmetry axis of the interaction -

can be chosen parallel to z and used as the quantization
axis for the eigenfunctions of the Hamiltonian K. The
eigenfunctions are then simply [m>> and K as well as

A{t) are diagonal in this reﬁresentation (U= 1):

Gl A0 mY = einga] S S s
The perturbation factor Eqn; (2.4.10) then Becomes :
b 3 | |
- 12 =
1‘1 2(1:) Z[(21:1+1)_(21c2+1)] (I I kl) (I I 1c2>_
m . m' -m N m' -m N
X expEi(Em;Em.)t/h] (2.5.7)

Further, if the axially symmetric field is parallel to
the propogation direction of the first radiation Ry

then Yﬁ (0,¢) must be ¢ independent.
1 :

A

N ) 2
Ykl(o,pﬁ) = SNOkzk;ri)(hTr)].

THEeTAT ST T TR DT AT T e T

1
i

4
.8
i
<
LM
o)
4

i
i3

S e oh e
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Fig.2.5.1: Position of z' axis defined by Euler

angles £and §.

OO —
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Using Eqn. (A.6) the Eqn. (2.5.7) reduces-to
Giiiz(t) =Sk1k2 N B (2.5.8)
Thus-the aﬁgular corrglatioh is-ﬁot influenced by sﬁch
a field as explained in Séction 2.4,

Iﬁ sdﬁe cases angular correlatio; measurements are-
observed using radioactive soﬁrces that consist of an
ensemble of randomly oriented microcrystals fpowder
.source). If the angular correlation is perturbed by
crystalline fields whose direction is related to the ' ;
symmetry axis of the microcrystals, the observed angular
correlation is obtained by averaging over random
directiqné of fhe symmetry axes of the microcrystals.
Assuming that the interacting fields in an individual
are axially symmetric and denote this symmetric axis by
z'., The interactiog Hamiltonian 1is diégonal in the 3z'
systém: ‘

K(z') = & (2.5.9)
n -

with eigenvalues En' The direction of the symmetry
axis 2' of the microcrysfal is specified by the Euler
angles (&, #, O) with respect to the z-system (fig.2.5.1)

The Hamiltonian in the z-system is obtained by applying



e e LA
. -2’4'- '

. 7 _'1
D(I)(Oo "ﬁ el °{|) = D(I) (d (] ﬂ,O)

’

-1 . ' .
K(z) = D(I)-‘ﬁ-(d .+ f,0) K(z") (T (a, g ,0) (2.5.10a) s

R d
Since K{(z') is diagonal, we can -also write

-1 : T ‘ .
D(I)(ot » 8,0} K(z) p{1) (at , #,0) = K(z') = En(z.s._lob)

corresponding to Egn. (2.5.1)

Therefore, the unitary transformation'-D(I)(nt y 8,0)

' ‘diagonalizes 3{(2). The matrix elements of the evolution

operator A (t) in the m-representation are thus according

j
i
:
!
i
!
H
!
1
i
i
i

't:o’_Eqn. 7(2.5.4): ' .

{m, Lf\(t)lm> Z (I) [EXP'iEnt/ﬁ}D%) (2.5.11)
a

and the perturbing factor 1is

1 ?('t) = > > [(21<1+1)(2k +1)] ST
,mb n,n'

x (I T kl) (I I 1{2)
my ~Mg Ny my, —mb N

(0" (1) o par (E -F
Dmnb Dnma nmb Dy my exp":"(En"En')t/,fl

(2.5.12)

Using the general contraction relation, the summation

over m, and m, can be performed
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. A * +* . . T ""

Z(I' I kl) p{I) | p(D " (I TR g g

Ma Mg Ny| MMy ey Antnopy ) Pty i

Ta . B ' " o 5

\ (2.5.13)

And similarly :E‘oerb - 1 Z

Integrating over the Euler angles  «and Fﬁ‘ yellds , :

N. N “ 4 b ' 1 ' o L
o P8 =1/ [(zklu)(zkzm]? : *‘1}( Pl .“2)
172 - "-n p;/\n' -np,

x exp -i(E -E ,)t/h

Jn-q'

k k)
x p1 1( &, f,0)x DpzN (ot , B, O)do(Slnpdﬁ

¢ o

(2.5.14)

By virtue of the orthogonality of the D-functions the

integral reduces to

-1
I (2K, 11) g.klk gplp.nglNz.

The perturbation factor of the powder source is

(t) cNiNzuz)m'{s S — g Ny (2.5.18)
G 't = = ¥ . 5.1
ke (2k+1) G— 08
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This equation has been derived from

- - e p , o : |
: N,N, Z 2 =-i(E_-E_,)t/n !
172 I Tk : ,
Gkk(t? =‘Gk o (%) = ( } e n n | |

n'-n ip

n,n’

(205.16) i

by comparison with Eqn. (2.5.7). _\ N

If the interacting fields in the individual - ici
-microcrystals are not axialiy symmetric with respect

$o some crystalline,akis z', then the interaction

e e -

Hamiltonian K(z') is not diagonal. Denoting the unitary
transformation that diagonalizes K(z') by U, then Eqn.
(2.5.10) must be changed to

-1
v o, g, ¥) k(2) D) T, 8, w) v

-U K(z)U !l = E - (2.5.17)
In the derivation of the perturbation factor for powder’
sources, the matrix element <n| m) of U, must be
carried along in the calculation of Gkk(t). The
resulting perturbation factor for a non-axially -

- symmetric interaction in the micro-crystals becomes
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‘* . ) * ' :
x{n|my (n]|m) (n'| np) SHEN, (2.5.18)
which can again be put in the form J
NN, 4, B, , k 'N . | o -
G, (t) =G (t) = —— E G ' (t) (2.5.18b) g
Kok kioKy  12k+1) ok 2 o
N=-Xk -

-t L b

Since G, (t) is independent of Ni,'Nz, the addition

theorem of spherical harmonics can be applied to Egn.(2.4.9)
and the directional correlation displayed by a powder

source has the form

wp(e.t)‘= zz‘Ak(l)Ak(Z)Gkk(t)Pk(cos e} : (2.5.19)
k-

. the effect of the ran&émly oriented perturbation does

" not change the form of the angular correlation. It only

attenuates the coefficient of the Pk(cos @). The
perturbation factors Gkk(tj for sourcestthat as a
whole display no privileged direction are called

attenuation factors.
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2,6‘ Static Electric Quadrupole Interaction:

My work for this thesis is based on the perturbation '
due to this interaction.

 The Hamiltonian d€§cribing the interaction of &
fixed electrostatieq_;gre:d;ent'wffh"%"ﬁe electric

quadrupble moment ofﬂ%hélnucleus ig given by:

- (2)y(2) q m(2) o
K. = /5T 1<y = 4/57% ( 1 T (2) \

(2)

where T is the second rank tensor operator of the

‘nuclear quadrupole moment with the components:

p{2) . Z e r2 vd (e, ;é ) (2.6.2)
q p PP _ : : :
wheré epare the point charges in the nucleus at points
(rp.Sp,¢p) Walis the tensor operator of the classically
external fl_eld gradient.

If the electrostatic field is caused by point charges
e, (ions in a crystal lattice) at positions (fc,ec,ﬁc)
with respect to the nuclear cenFre, the spherical'

(2)

components of the fleld tensor V are given by:

(2) - '
Yy —Z ec/rcAY% (6,:6,) -_ (2.6.3)
C

or in terms of arbitrary cartesian co-ordinate system
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x',y',2' the components are

(2)_11_5' . _ .
VO Eﬁvzt ] n‘:
R

2
Vay T E‘/:z;r (Vyrgh 2 Vge,0) . -

(2) % ‘ o
v -1 g - , .

b T S e e i i e el
AR S B e

B R L SN
ST e Fa e A A

If the co-ordinate system (x,y,z) is chosen such that

the mixed derivatives of the potential V disappears:

(2) " | :
v =%f1—51‘— V., |

(2) | .
APS R - (2.6.5)

. _ ' ._..]; -5_ ’
%/% (Vxxf Tvyy) B L /;\' q’vzz

where the asmmetry‘pérametér !L of the electric field

2
Vi3

1

is defined as

V. - v | '
r](: XX V¥ (2.6.6)

v
22

Choose the principal axes system such that

[ Vil < Vgl < Vel
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restricts YL to' 0 ( '1, .L J., because of Pdi_ssdn'S*

equation:

VY +V. _+V_ =0,

8-
g
R
Y
iy
i
d.
'."‘
Q
A
o3
1
]
5
b
2
v
)

xx T\yy o lzz , : .
The gradient, tensor v{2) i< then determined by the ’
parametér '1r and V__.
‘When the fields are axially symmetric with respect to
. the Z-a}[is i '} =. Ou
vi2) o yt2) o 4,
*s ag]
' o

g

(%ﬂ)s& .sz

The interaction Hamiltonian is then

*
- /1; (2) | - '
Kg = s T, V. (2.6.7)
fHe matrix elements of this Hamiltonian in the
m-representation are obtained by applying the Wigner-
Eckart theorem:
- B L (2) >
<Im| KQ l Im'>. _ - 15 sz '<Im"‘| To 1 Irn'
R A I-m (2)
=T v,, -1 o2 1\ | P .
_ -m 0 m' I 3
g r-‘""‘

(2.6.8)

““The 3 - j symbol vanishes for m 7’= m', the matrix Kq is

. diagonal,
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The conventioﬁgl definition of the eléctric Quadrupole

Q isy - ' A
‘-eQ = <I‘I Iz;gp(szg --;-g? "II> | . (2.6.9) o 4
or : o _ ; , ) | . %E
,eQ = 4\/__5'.[?_ <II [ T((JZ) I;II> ‘ ' {(2.6.10) '3 '

Applying Wigner-Eckart theorem we get:

i'eQ = 4Er(1 2 Ij({ “ng)“ 1) a (2..6.11)“‘

I 0 I _
) ' ' ;‘3'.

\After the evaluation of the 3-j symbols, the quadrupole

interaction matrix elements are:

(pl | 1) = By = o z@adewv,,
- 4I(21-1) .

Introducing the quadrupole frequency, we obtain:

wg = -eqv, o (2,6.13)
' u1(21-1)h '
E, = [I(I+1.) - 3m2] wqh | | (2.6.14)
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-

.
-

Let the angular frequency—corresponding to the smallest
non-vanishing energy difference be LA then

Wy = 3wy ' for integral I

w& = bwg - for haif—integral I

The energy splittings due to the static quadrupole
interaction are not uniform as mentioned in Section 2.4. )

Thus the influence of a quadrupole interaction on

Lo Siiimems ST AR

an angular correlation cannot be described semi-clasically

A'by a simple precession of the correlation pattern. -
The perturbation factor for jhe static electric

quadrupole interaction is according ‘o Eqn. (2.5.7):

I 1 kl)(l I k%
m' -m N m' -m N

- m'z) th) (2.6.15)

Since the exponential term depends on the summation
index m, the orthogonality of the 3-j symbols cannot be

used to eliminate the inteffereﬁce term with kl # kz.

Thus the interference factors Ay (1)Ak (2) must be
. ' 1 o

computed from the factors Ay (1) and A
. L 2
be known individually. This needs an accurate knowledge

(2), which must

of the multipole expansion of the two radiations
involved in the cascade.

From Egn. (2.6.15) if'kl-or k, is zero, then

2

&
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N = 0 and this implies that m' = m.

When m' = m, the exponential term is unity and using
the orthogonality of the 3-j symbols reésults in the
ﬁanishing of the perturbation factor. Thus, the
;nterferénce term occurs only if ko ;ﬁ L,

The perturbation factor of Egqn. (2.6.15) can be

written as

N.N k.k : .
G 1\2('t) "-'Z S 172 cos (nw 't) . (2.6.16)
2 n

with o

‘ ! . : ' ‘
ol E (1' 1 ki) (I I k2~>\l

n N rﬁ%m' @. -m N m _z N 6

X [(2k1+1)_(2k2+1)1 Bl (2.6.17)

where the prime on the summation sign shows that the
summation over m and m' should include those terms where

m and m' satisfy the conditions:

|m2 - m'2| =n for integer I
1 5 ) (2.6.18)
Elm - m' i' = n for half-integer I
k1k2

Values of the coefficiénts Sn N have been calculated
for some cases. With these the directional correlation
perturbed by an axially symmetric electrostatic gradient

in an arbitrary direction (eg. for a non-cubic crystal

e
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source) can be found.
. For a polycrystallipé'powder source, the effect

of an axially symmetric quadrupole interaction on the

angular correlation measurements is represenfed by the

attenuation coefficients given in Egn. (2.5.i5)

. - . . . 2 . .
Gkk(t) = ; (I I k) exp [—Bi (mz-m‘z) th
m|.'m m‘ "‘m p O :

L]

The calculation‘of these coefficients for powder sources
where the per%urb;tién is the result of rhombic fields
is more complicated. The rhombic field Hamiltonian p
must be diagonalized and the eigenvalugs and
eigenfunctions must be determined for various values
of wq and 1 - The attenuation coeffici