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ABSTRACT

o

s ’ ' Y
) ] ‘
2

The techniques of cluster

4

analysis are among the most widely used

r
1)

and little understood techniques for the statistipal analysis of data.
A mathematical sbasis for these tqchnfques remaine to be constructed,

Thie paper describes the work done up to the present in the construction

of such a basis. In the course of this discription a survey'of the

more common‘cluster analytic techniques is given and the admieaibility

of thes techniques under criteria suggested by G N. Lance and Ww.T.

. Williams is given.

e
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A SURVEY OFfiLUSTER ANALYSIS AND ITS ADMISSIBLE PROCEDUREQ

—
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4

I: INTRODUCTION

@ ¢

‘\ * . We are, here, concérned.uith certain admigsible techniques for the
analysis of multivariate data, which attempt to.sdlve the following

problem: ' -

- Given a sample of N objecta or individuals, each of
which is measured on each of p variables, 'devise a
classification scheme for-grouping the objects into
g classes. The number of classes and the characteristics °
of the classes to be'determined. [9]

The most commonly -used term for “techniques whijh eeek to eeparate
e data into consituent gnoups is cZuster analyste.. )
Ideal oath for such an analyeie(would yield obvious cluetere that,
;at least in smallescale cases,‘couIJ be picked~out without the need for
-complicated mathematical techniques and without a precise definition o;
the term cluster'. In two or. three dimensions the data could be
examined eieually and any clusters present identified.’
T In practice, oo;ever, things are not so simple and , consequently,.
there has been a great proliferation of clustecing techniquee. The

importance of clustering techniques in such. diverae fielde as psychology,

zoology, biology, botany, sociology, artifical intelligence and

information retrival has added to the.proliferation of clustering

»
techniques
"V This paper attacks the problem of choosing a clustering procedure
from among the myrﬁad prOPDBEd Too often in practice not endugh is

known about a priori. conditions, the possible losses involved, etc.,

=3



‘to determine a best procedure,

This type of perplexing problem i; solved in decisfon tﬁeo;y by
Esgfricting atteqtion‘to‘admissible decision reles. This approach
eliminates ogbiqus_bad rules, though ad@itional information oftes is

‘necessary to select, from among the adﬁissible rules, the best. The )

: sdﬁgestion is), therefore, to formulate some Optimum properties that a ¢

. reasonable procedure should satisfy and call a procedure satisfying thES\
admissible. Obviously, requiring admissibility eliminates qnly bad . \

clustering procedures but does.ndt attempt to determine the best

- ‘method.
Let A denote some property which would be satisfied.by aey o
| » ' reasenable clessering procedure either iq‘generaf or.wﬁeﬁ used in a T .
o ) __.special application. Any procedhre which satisfies A 1s cslled R T .
| O ‘ o Aradmiss%ble.- T . T <;¥§§::::: .
The attempt to present a(formal structure withim which admissiﬁle |

Q ’ . . v - \

clustering procedures may be i://;dfied and studied leads us to conaider g

in sgw,fsf:;i;:;;;e=e£_the_gsr comm,

-attendant problems.

on clustering procedures and their ol

Wk restatethe original problem in order to present the original

model upon which all that follows is based. © . € . '
“ A

Let Y be a finite subset of RF with N eledents.
The protlem is now to determine a covering of Y
‘which has some optimum properties (admigsibility) o
for the purpose of classification. In gome ‘ . d\,ﬁJ/
clustering techniques not all members of the
cover ate considered.-

BT = B de e i
]
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II: THE ASPECTS.OF CLUSTER ANALYSIS e

The ideal strategy for- the dgvelopment of a data simplification
technique is ee.follows: ' - .
. 1~ ~ ’ . - 0 ) N
//// . . First, formulate a precise mathematical characterization
=== > ~

~ - J-)'
of the data and the kind of representation desired so that the

simplification methods may be treated as transformationa from
- .

"y @ structure of one kind to %hat/of another, Cor

Next, formulate criteria of adequacy of the operations
< L] At

includﬂhg invariant and covariant Tepresentation, preservation

- of gtructure and optimality conditions.

Then the ‘existence of approﬁh{é&e}gethods, their uniqueness

a
it

and mathematical properties must be ascertained. o -
. .

- - - * ]
Fl

Finally, efficient algorithus must be found. The eéidtence
and gmiquenesg of eppropriate methods may be unconstructiVe or
may sPecify a computationaly unfeasible algorithm ” ‘ ‘\\
Unfortunately, the development of clustering methods has followed

i

an inversé sequence. In the 1940's and 1950'5 a variety.of cluetering

algrithma were proposed. Over the years 1t was gradually realized_that

sone Buperficelly different methode‘implement the -same method, and that
différent methods differ widely in their properties. The recent work

of Jardine and Sib@:n [16,17] and Lance and Williams [23] has resulted

in the construction of a general theory within which such methods may be
b .

analyzed. . O

T ( '
The generalezheggyygesumes that. it is reascnable to seek clusters

in data, these being subseta of Y characterized by the poeaessien of the

properties of coherenée and isolation. This aseumption,and experience

v ' | T

I
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lead to the following dichotomies for clustering methods.

Clustering procedures can be divided immediately, into two

'clnsses. , ,
. -"1) those methods which vork directly with the data,
11) those metnods-which work wit;ua dissimilarity coetficient.
In what what follows we will investigate both of these classes.

We also have the following division of clustering methods into

disjoint classes.

¢

1. Sequential versus Simultaneous Methods.

e © Most clustering methods are. sequential A recursive sequenée of

-

operationa is applied to the set Y producing a sequence of covers

for Y. Simultaneous techniques are rare and only one example will
be given. _ . : "

: . ' o . ERLW
2, Agglomerative versus Divisive Methods, R

PR

.

Staring with'a cover of t sets, agglomerative techniques
group thege into covers having succeasively fewer sets, arriving
eventually at a.single get containing all-the elements of Y By

contrast divisive techniques commence with a cover of t sets,*
g

subdividing these sets into oovgrs having successively more sets, y

arriving eventually at a cdver of N sets.

3 Nonoverlapping versus Overlapping Hethoda

s e

In a nonoverlapping method any twa’ members of a cover are:

:disjoint. . .
e

~ The goals of a cluster anhlySis may be approached by several methods.
The availability of sufficient information makes it desirabie to formulate |

explicit criteria for comparing solutions. Qomputationalddifficulties

’
4




T

‘may prevent the finding of a global optimization thod ~which finda an

¥

optimum and may force the use of a local optimization method dhich finda
an optimum over some restricted class of solutions even 1n the presence

of some criterion. The end result may not have any optimality properties

that can be stated

[
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$II: THE STRUCTURE OF CLUSTER ANALYSIS

In_order to formalize the concept of'clustering with a dissimilarity

coefficient we need the following notation. In what foll

Y

ows 1

From graph theory, we have the following definition :
eftnztzon : Let rtI(P) A maximal linked Bet for r, denoted HL(r)

is a set S P such that

. | \\
1) SxS¢r} .

}
11) (Ya¢s)(gbes) (a,b)¢r. '
A

It ie convienient to think of this in grahical terms. If we draw a
graph whose ‘vertices are the elements of P, and whose edges link just
\

those pairs of elements of P contained in r, then the ML-gsets are the |

vertex sets of waximal complete subgraphs. ML-sets have appeared in \
literature [21] under various .other ndned:

. ¢
8: . o
Kuhn's clumps, \
cliquea,. o .
maximal cliques, ’

maximal complete subgraphs.

It should be noted that the definition of an ML-set implies that

its elements form a coherent unit isclated from other elements in P.

This property will be used later to supply a definiET;u for a cluster.
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Systems of clustets such as those shown above will not be ‘

 admissible within this' framework.

Definition 2: Let YERP, OK¥|=N< @, A dissimilarity coéfficient.DC,

i

Defﬁnifion 3: A DC is said to be even if

on Y 18 a function d:YxY+R such that
1) (¥a,beY) d(a,b)> o,
T ‘d(a,a)=0, -

i141) - d(a,b)=d(b,a)

(Va,i;ch) d(a,b)-0+d(a,c)=d(b,§).

Definition 4: A DC is sald to be definite 1f

d(a,b)+a=b,

Definition 5: A DC ié.said to satisfy the ultrametric inequality if

Notation:.

(¥a,b,ceY) d(a,‘b)‘ﬁ max { d(a,c),d(b,c)}.

C(Y) = the set of all DC's on Y. ' .

C'(Y) = the set of all definite DC's.on Y.

‘M(Y) = the set of all DC's on Y satiaf&ing the triangle

ilnequality.
U(Y) = the sét of all DC's on Y satisfying definition 5.
M'(Y) = M(Y)NE'(Y) = the set of all metrics on Y.

U'(Y) = UCY)NE'(Y) = the set of all ultrametries on Y.
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Definition 6:

Definition 7:

Definition §:

Definition 9:

Let d,d'¢C(Y). Then d is said to be dominated b} d',
denoted d'>>d, if
(da,beY) d(a,b)<d'(a,b).
A set X%C(Y) is said to be bounded if
(W'eC)( dex) d<<d’'.
We define supX By supX(a,b)=sup { d(a,b)|dex}.
A bounded set X<C(Y) will also be called sup-cloged.
A numerically agglomerative clugtering (NSAC) ig a
function c:[0,»)+E(Y) such that
1) Wh,h'e[0,=)(05hsh") c(h)Se(n’),
- 11) c(h) is eventually YxY,
111) (dh2, 0) (A6> 0) c(h+E)mc (h).
A NSAC is aéid to be definite if ¢(0) is the equality

i .

relation on Y.

Definition 10: A numerically stratified divise clustering (NSDC) is a

Definition 11;
Definition 12:

Definition 13:
(/’/’ Defﬁnitiaﬁ 14:

function c:[0,=)+L(Y) such that .
C 0 @0, {(05hg ) cmB o),

1i) c(b) is eventually the equality relation on Y,

1ii) vh 20) (36>0) c(h+8)=c(h).
AN NSDC 1g called definite if-c(0)=y Y.
A# NSAC (NSDC) is called hierarchical if

(h 20) ceE@.. ’,;i

A definite hierarchical NSAC (NSDC) is called a dendogram.

Let ¢ be an NSAC(NSDC). A cluster for c at level h is the

elements of ML{c(h)).



Theorem 1: There exists a 1-1, onto, correspondence between the set cCY)
and the set of all NSAC's on Y (denoted NSAC(Y)).

#,

Proof: Let T be defined by
(¢d)b={ (a,b)|d(a,b) < h} (dec(Y),. he[0,=))
("8 (a,b)=inf L b](a,blec(h)}  (coNSAC(Y) , (a,b)e¥xT).
It is easy to show Td is a NSAC, T_lcgc(Y) and T is one-to-one.
To show that T is onto requireg.the use of ii1) in definition 6,
This result is due to Jardine and Sibson [16,17].
Theorem 2: There exists a 1-1, onto, cor}espondence between the set C(Y)

1

and the set of all NSDC's on Y.

Proof: Let T be defined by

(ed)h={ (a,b)|d(a,b) < 1/h} (deC(Y) ,he (0,%))
(T"1e) (a,b)=sup { 1] (&,B)ec(1/h)}  (he (0 =) ,¢eNSDC(Y))
Corollggg There exists a 1-1, onto, correspondence between the NSAC's
and the NSDC' 8 on Y.

This corollary explains why the division between the‘agglomerative
and devisive clustering techniques is artifical. More agglomerative
algorithms exist because they are easier to fmplement.

T induces a 1-1 correspondence between C'(Y) and the definite
NSAC's (NSDC's) and between U(Y) and the hierarchical NSAC's (NSDC'a).
The possibility of identifying the NSAC™s (NSDC's) on Y with the DC 8
on Y is fundamental to all that follows. If we aelect some subset of the
NSAC's as the kind of output we would like a cluster method to have, then

this get will correspond to some subset ZeC(Y). Hence a cluster method

may be regarded as a function D:C(Y)92. Mathematically this ig an

agreeable situatton, attention can be focuged to objects of one kind and -
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-
constraints imposed on a cluster method can be formulatéd neatly. The
output from a cluster method is a list of elements of ML(c(h)) for each
~ splitting level of h of c. A splzéfinglevel is a level h' such that
c{h)#c(h') if h<h'; h=0 1g-a splitting level if z.md only if the NSAC is
definite, ' ' _ _
Definition 15: With each chosen Z one method D:C(Y)»Z will be associate&,
namely the method for which D(d) is the maximal eiement
of Z dominated by d - the Z-subdominant of d. Such methods

wiil be called subdominant methods.
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. IV: ADMISSIBILITY CONDITIONS

The first condition would be desirable in almost any situation.

It has been studied elsewhere where it "is called the comparison property‘

[171]. 1t is based on a 1-1 transformation of the data.

Let C ;{ x ,T..,x },...,C ={ x ,...,xu} be\a clusterirfg of Y.
1reeoXy et
Let b PERTRIN be any' reordering of the pointa of Y and define
L] .
Cl= {y veees¥y bpeea,Clm{ x N
"N 1, e P N
We call Ci,..,,Ct an image of CyseeesCyn

- A clustering c:

1 "’Ck is gaid to be image admiseible if 1t does
npr have an image which is uniformly better in.the sense that
;j d(xi,xj)giﬂ(yi,yj) when the i'th and i'th points arelin
| the same cluster,
11) d(xi,xj) d(yi’yj) when the 1'th and j'th points are in
different clusters,
with-strictlinequality holding for at least one pair of indices.

A second form of admissibility arose from the feeling that oee
cluster should net 'cut throeéh another'. One way to prevent such
clusteringa is to require convdex admissibility. If the set Y resides in
a linear space then a clustering Cl""’ck is said to be convex
adnzsszble 1f the k convex hulls of Cl""’ck do not intersect.

Convex admissibility, while useful in many situations, does not

. seem very universal since it eliminates many reas nable clusterings.

For example let C1 be a cluster in the plane tigh grouped on the

perimeter of the entire half circle with radius 4 and center (0,0)
lying above the x-axis and let C2 be a cluster covering the disk with

radius 1 about (0,0) as in the following diagram:

L4

-LJ
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Then the clustering C

12 is not convex admigsible but appears

reasonablé.

Given any set of points A§R2 we define the linkage L of A as
follows: perform a nearest neighbour clustering on A (the exact
technigue will be described latter). As two sets are grouped'dréw a
straight line connecting any pair of points one in the first set and the
other in the second, which are closest. The linkage L }ﬁ’the network of

lines formed when all of A is so comnected. An example -of a linkage is

given by the following diagram:

. ”/
For the case YCRZ a clustering Cl""’ck 1s called cormected~”
admissible 1if Ly »o..,L, are pairwise disjoint.
1 'k
Clustering in Rz is very common in multivariate analysis, especially

due to the practice of reducing many dimensions to two dimensions to get

v el e



by no means a panacea.

e
.

~13

approxiﬁate scatter diagrams. As with all admissibility conditions,

connected admissibility preventﬁ & certain type of bad behaviour but is

Yoy,

There are several ways of defining well-structured data [11] but in-

general the data is so arranged as to make the correct clustering obvious. \
A procedure is well-structured admissible if it gives the correct-
’ [4

clustering whenever it {s confronted with well-structured data.

A clustering method is saild to be well-structured (exact treel . '\

adnissible if 1t has an exact tree structure; i.e. if one can reconstruct

the dissimilarity matrix of the original data from knowledge of the tree

4

"(NSAC) alone.’

Theorem 3: A necessaryland'sufficient condition that a cluster method
be well-structured {exact tree) admisgible is that the |
dissimilarity coefficient satisfy the ultrametrgc inequality.
(This result is claimed By Johnson [18] without formal proof).
Proof: First note that the definition of well-structured (expct tree)
admissibiliéy requires that the cluster method produce a NSAC

(tree) whose spilitting levels (nodes) are a known function of the
~

original diesimilarities.

Let deU(Y) it is then easy to see how such a tree can be

constructed,

Let c be such an NSAC. Then its splitting levels h1 <‘h2 €eun® 11k

o

are a known functiom, f say, of the original distances. Also we

have hi<hj+di< dj’

so that f is strictly increasing.
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Then £ 1(r"le)(a, b)wf HMink h|(a b) c(h)] 1s its

correSponding DC. Use of i) in definitiou 6 shows that £ (T c)

satisfies the ultrametric inequality.

= A cluster method is said to be weZZ-structured (k—group) admiseible

- if there exists a cluatering Cl,...,Ck such that all within-cluster .

distances are smaller then all beb eenﬂcluater distances.

A cluster method is said to- bg’ weZl gtructured (perféct} admigsible

if the clustering is such that the\digsimilarity between any two, objects
in the same group 1s the same value 5, and the dissimilarity between two
. .

objectgiin different groups is the same value 8y (al< 52).

We now turn to more specialized conditions which are not generally -

<
useful but which are important in several applications. Among these are
the various forms of proportion admissibility.
Proportion admissibility attempts to give an analytical description

of the idea importent in some applications that the geometrical aspects

- of the clusters are more important than the density of points in the

clusters,

A procedure is said to be point proportion admissible if after we

duplicate one or more points any number of times and reapply the
procedure the bouhdariea of the clusters in Y are not changed.

A procedure giving clustefs Cl""’ck at some stage is sald to be

cZuater_proportion adnissible at that stage if af?er duplicating each
cluster an arbitrary number of times; i.e. each point within the same
cluster is duplicated the same number of times, it jielde clusters

-

having the same boundaries at thet stage.

hY

..
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“\\\\¥f a ‘clustering resulta in k clusters, and all points in any one of,

these clustgrs, say- Cj’ are removed from Y the procedure is cluster

omission adhzsszble if when applied to the subget H-Cj to get k-1 clusters

it ylelds the original clusters except for Cj.
In many applications it is hard to asglgn a scale to variables and

*

the only relevant information in the data is the order of the variables

or ranks. For auch problems it would be comforting to "know that, monotone
. - * 4

transformations of the dissimilarities do not change the clustering. Im

other words, one can;afbitrarily assign distances as long as their

-

.rankings are preserved.

A procedure is monotone admisgible if a montene transformation

+

applied to g#ch element of the diséimilarity matrix doe#‘nop chhnge the -~
N
resulting clustering. By a monotone transformation we mean a stf{ctgy

~ o

increasing function f:with £(0)=0. .
| Objécts should be clustered in response to some observed sirhctufe

in the data and noé be clustered unnecessarily. Thatis, the resultant

NSAC, or DC in Z, qhould in some .sense be the best fit to thé origigfl

data. With this in mind a clustering method DC is optimal admissible

if

" d*eZ,D(d) <d’ < d+d'=D(d)

. where

D(d)=sup{ d'|d'cZ,d %<d}.
This ensures that D(d) is a local optimum. TQ ensure global optimality -

“the following condition is imposed. on Z;

if X is a bounded subset of Z, then the DC, supXeZ.

B
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Theorem 4: Monotone and optimal admissibility imply that z-{ 0} is path

T

connected,

Proof: Let d",deZ and let

a_(a,b)=max{ xd(a,b),(1-x)d" (a,b) } (xc[0,11).

‘Then doad', d1=d. By monotone admissibility xd and (l-x)d' are in

Z for all xe(0,1). By optimal admissibility then,
( xe(l,OI)-dxez,_

( xe(1,0)) d,a'¢o+ax+d,

i

. and since the function sending x to dx is continuous, it is a path

I
in z-{ 0} from d to d'.

i L)
- []
’ -~
&
. L
. < ‘
“ \ \
- P
L3
- -
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V: THE ADMISSIBILITY OF SOME CLUSTERING PROCEDURES

5.1: Lance and Williams combinatorial clhstgf%qaiprbcedures. [23]
The algorithm for these techniques is as fallows:

1) fuse those groups having the smallest didsimilarity

coefficients. g o

11) calculate

- Yy e de gt Byt gl
////, where dij is the distance between groups i and ] and

1141) go'té ).
The effect of h; algbrithm is\;o generate a sequence Dg,D,,...,D
of dissimilarity matrices of.{ecreasing order.
The following constraintg can be imposed on «,Bf\and y to ensure that

dk(ij) is a DC and to determine the type of ML-sets resulting from the

’

procedure;

X, =y 9 °‘u*‘°"a*/3=13'_<}/=0

.
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' The following general admissibility conditions hold for all

combinatorial techniquea

.
A) Combinatorial clustering procedures are image admissible.

Proof: Let Cl""’ck be a clustering resulting from a combinatorial -

procedure. Lepnits splitting level be h-h . Let XyseeerXy be the

I

objects to be clustered and 1et’d(x j) be the dissimilarity

between Xy and xj. Suppose f 1s a 1-1 map of Xys.eeXy ORtO 1tself

such that

i) if % and xj are in the same Ck,’ then

[

11) if Xy and x Erk-in different clusters, thenl

]
).

af f(xi),f(xj)}zﬁd(yityj
. To show image admissibility, we need to show that all the inequalities

in 1) and 1i) are equalities.

-

Let the splitting levels of h up to h be ligted as

ho< h1< ...<ha-h.

We show by-induction on the levels of hi that ifhat level hi the

clusters are C (i),..-:.r,Ck (1) then ) ¢ '
| f(Cl(i)}, f(C (i))}y{c (i),...,Ck }.

For ho this is clear. Suppose the result is true for h (L <8)

<
By 1) for two clusters C 1 Cj(i) if d ey h o 1» then

. : f(C )? f(Cj)- bin

since‘Ce(i) and Cj(i) belong to the same cluster at level hi+1'

This proves that f(Ce) and f(Cj) are clustered together at level

¢ [ !
hi+1; i.e. clusters at level hi+1 map onto tﬁemselves. This result

v

- holds at level s.
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From 1) and the fact that q;é%' 1
N .

~
: k(s) " k(s) o
N g [ dxy,x,)= )§ ILaleex;), £ x )]
b - ‘3=1 pairs 'J=1 pairs
*a “4n in :
‘ T <

L

we gee that d(xi,xi)nd[f(xi),f(ﬁj)]. A similar agruement holds

for xi_and xj in different clusters by using 11i), thus completing

the proof. - -

B) Combinatorial clustering pracéduﬂesxare well-structured {(k-group)
admigsible.
Proof: Let C,,...,C be a clusterdng reé&lting from a combinatorial
procedure, Let its splitting level be hﬂhB, and let the splitting | -
levels of h up to h be listea as
1-.;0< h1< ...<hB-h.
We show by induction‘on the levels of h

1 that 1f at level'ﬁi the
clusters are Cl(i),J.f,Cki(i) then

'd(_"k"i‘z)édce’cf /

e

where X, and x, are both in cluste Ch(i), say, and‘Ce(i), Cf(i)

are dist?ﬁct clusters.

For h,, we have that (vi,1) .4, 3=h0land if d(xi’xj)-hO’

{

X, and xj are fused into cluster Cl(O), say, and the result holds.
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Suppos e result holds for hi (1<s). Then two cl_usters,Ce,Cj

are fused 1f d by the definition c. splitting

ey Py 204 By< By,

levels,

Also hi+1 is the minimum distance between all pairs of groups

u

at level h i.e., necessarlly all within-cluster distances are

141}
less than all between-cluster distances as required.
The following results appear obvious:

C) Combinatorial procedures are cluster proportion admissible.

D) Combinatorial procedurds are cluster omission admissible.

E} Combinatorial procedures are not convex admigsible.

This is a conjecturf. A general counter-example to convex
A v

admissibility remains to be determined. Counter-examples for

particular combinatorial procedurés are presented in what follows.

o
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5.2: Some important partieular combinatoriql procedureas,

9.2.1: Nearest Neighbour

Groups initially consist of single objects which are fused according
to- the distance between their nearest members, the groups.uith the
smallést'distancés being fuséd. Each fusion decreases by one the number
of groups. In this case, then, the distance.between their closest members.

. Accordingly, in the‘general algorithm:
' o ma g ; B;O,; Y =

or dk(ij)=min(dki,dkj).
This is, also, called the single-link or minimum method.

5.2:2: Furthest Neighbour

-

This method is exéctly the opposite of the nearest neighbour method,
“in that the distance between groups 1s, here, defined as the distance

between their most remote pair of members.

Accordingly

. 5.2.3: Centroid

Here, clusters are Hepicted to lie in ﬁuclidean space, aﬁd are
replacgd when formed by the coordinates of their centroids. The distance
between groups is defined to be the distance between group centroids. The

. -
method is then tovfuse groups according to this distance, groups with the

smallest distances between them being fused first.

Accordingly,

uinni/(n +n,) 3 qj-nj/(ni+n )

173
B m—g o H v =0

3

SR\ o ~
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5.2.4: Median

This technique was developed to overcomne a disadvantage nf the e
centroid method where if the sizes of the tno groups to be fused aré very
different the centroid nf the new group will be very close to that of the //
larger group and may remain within that group: the characteristics of the

smaller group are then virtually lost. The proposed strategy is based on

+ the following. If we represent the centroids of the groups to be fused by

(i) and (j), then the distance of the centroid of the third group(h)from -
the group formed by the fu51on of (1) and (j) lies.along the median of the
triangle defined-by (i);(j) and (h).

Geometrical congsiderations lead to the following constraints:

Ca

o o 4 B=-Y ; y =0

_8.2.5: Group Aﬁerage

This method defines the distance between groups as thé average of the
distances between all pairs of objects In the two groups and can be useq_
provided the concept.of an average measure is acceptable. In this context
Lance and Williams [23] point out that the concept of an average

correlation coefficient is not entirely acceptable, and suggest a more

' satisfnctory method might be achieved by setting

1 -1
dijchs( ninj zi,jcos sij) .

vhere dij is the distance between groups i ‘and 3s n, and nj are the numbers
in these groups, and Sij represents some inter-object measure.
The constraints for the Group Average method are
@ = ni/(n ) : aj=nj/(nifnj)

B=Y=0

e
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5.2,6: Ward's Method

’

At any stage of an ;nhlysis the losg of information which results
from the grouping of individualg into clusters can be measured by the
total sum of squared .deviations of every point from the mean of the
cluster to which it belongs. At each step in the analysis, union of every
possible pair of clusters is considered and the two clusters whose fusion
results in the minimum increase in the error sum of squares are combined.

ag= (gt )/ (agha )
a,=(nytn )/ (aptnginy)

B=—nk/(ni+nj+nk) H
vy =0

5.2.7: An example of combinatorial clustering

We will consider the clustering of the points given below. These
coordinates correspond to ppinté regularly spaced in an H-configuation,
having had a small random noise added to each coordinate. The dissimilarity

matrix of Euclidean distances among these points was used as input to the

above six combinatorial techniques. This matrix is given in Appendix II.

1 X(I) (1) I X(I) Y(I)
1 2.964 0.489 19 -3.981 ' 3.512
2 -2.957 T -2.529 20 2.976 2.482
3 '4.039 3.474 21 -2.965 2.490
4 -4,017 -2.503 22 -3.993 2,452
5 Ci.021 0.527 23 4.011 ~0.467
6 -3.018 -3.486 24 3.962 2.458
7 -0.022 0.480 25 1.986 ~0.492 .
8 4.027 -2.550 26 -3.991 -0.518
9 =4.049 1.469 27 4.044 1.471
10 4,026 -1.509 28 -3.012 1,526

e T
L3
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I X(I) W 0\ (1) Y(I)
11 ~4.014  _3.541 29 ~3.012  -1.474
12 2,005 0.495 30 3.039 3.546

.13 2.973 -0.509 31 -0.994 0.458
14 3.065 . 1,493 32 -3.012 3.464
15 - -3.965 518 33 . -2.975 ~0.549
16 2.951 3 eer 34 2.985 ~1.494
17 3.997 ~3.491 35 -2.952 0.486
18 . 3.003 -3.530 36 4.016 0.545

37 -3.984 -1.505

\\

The next three pages comsist of .the resulting c}usterings at each
stage ca a Nearest neighbour analysis ( clusters of siﬁgle points are
-quited ). Pag; 28 contains ﬁhat 1s ugually called in literature a
dendogram. In actuality it is a graphi;alrrepresentation of a dendogram
constructed to aid in interpfetability. The presence of a few points
located 8o as to form a bridge between the arms of the H results -in the
production of two large elongated clusters This behaviour ,is often
called the 'chaining effece’, and is’ sometimes considered to be a
defect of this method. In the case where the clusters are compact and

. well separated, the obvious clusterq are found without evidence of thia
effect. In some other cases, to the extent that the results are very
sensitive to noise or to glight changes in the position of the data
polnts, this is certainly a valid criticism of the method. However, thia
very tendency to form chains can be advantageous if the clusters are

elongated or posses elongated: limbs.
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NEAREST NEIGHBOUR CLUSTER ANALYSIS OF THE H-CONFIGURATION

SPLITTING NUMBER
STAGE LEVEL } . CLUSTERS OF
' CLUSTERS
1 0,429 (29,33) 36
2 0.430 (27,36), (29,33) 35
3 0. 44é (8,17), (27,36), (29,33) 34
4 0.449 (8,17),(12,35) , (27,36), (29, 33) 33
5 0.456 (8,17),(9,15), (12,35), (27,36), (29,33) , 32
6 0.460 (2,6),(8,17),(9,15), (12,35),(27,36) , (29,33) 31
7 0.466 (2,6),(8,17), (9,15, (12,35, (21,28), (27,36), 30
(29,33) . ,
8 0.467 (2,65,(5,25),(8,17),(9,15),(12,35),(21,23), 29
(27,36),(29,33) . :
9 0.471 (2,6), (5,25),(8,17),(9,15), (12,35, (19,32), 28
(21,28),(27,36), (29..33)° :
10 0.473 (2,6),(5,25), (7,31),(8,17), (9,15) , (12 /35) , 27
11 0.473 (2,6), (5,25),(7,31),(8,17), (9,15), (12, 35),, 26
©(19,32),(21,28), (27,36 , (29,33, 37) |
12 0.476 (2,6),(5,25),(7,31), (8,17, (9,15) , (12,35),, 25
(13,21,28,32), (27, 36), (29,33, 37) '
13 0.479 (1,5,25),(2,6), (7,31), (8,17}, (9,15),, (12,35), 24
) (19,21,28,32),(27,36),(29,33,37)
14 0.485 (1,5,25), (2,6),(7,31),(8,17), (9, 15,22), 23
(12,35), (19,21,28,32), (27, 36} , (29, 33, 37)
15 0.486 (1,5,25),(2,6), (7,31), (8,17, (9,15,22), 22

(12,35),(13,34),

(29,33,37)

(19,21,28,32), (27,36),
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‘ NEAREST NEIGHBOUR CLUSTER ANALYSIS OF THE H-CONFIGURATION (CONT.)

LY

v

. ! . " . : tmmm
SPi;g;{gG CLUSTERS OF
' CLUSTERS

6 0.487 (1,5,25),(2,6),(7,31),(8,17), (9,15,22), - 21
: (12,35, (13.34), (19, 21,28 ,32), (20 24),
(27,363, (29,33,37)

17 0.488 ° (1,5,25),(2,6),(7,31),(8,17),(9,15,22), 20
' (12,35),(13,34), (19,21,28,32), (20,24), -
(26,29,33,37), (27,36)

.18 0.491 (1,5,25),(2,6),(7,31),(8,17),(9,15,22), 19

(12, 35) (13 34) (19, 21 »28,32),(20,24,27,36),
(26,29,33,37)

19 - 0.492 (1,5,25),(2,6),(7,31),(8,17),(9,15,22), | 18
(12,35),(13,34), (14,20,24,27,36), -
(19,21,28,32), (26,29,33,37)

20 0.495 (1,5,25),(2,6),(7,31),(8,17,18),(9,15,22), 17
(12,35),(13,34), (14,20,24,27,36),
(19,21,28,32), (26,29, 33,37)

21 - '0.498 . (1,5,25),(2,6,11),(7,31),(8,17,18) , (9,15,22) , 16
A (12,35),(13,34), (14,20,24,27,36) , .
(19,21,28,32), (26,29,33,37)

22 0.499 (1,5,25,13,34),(2,6,11),(7,31),(8,17,18), 15
- (9,15,22),(12,35), (14,20,24,27,36),
(19,21,28,32), (26,29,33,37)

)

23 0.499 .- (1,5,13,25,34),(2,6,11),(4,26,29,33,37), . 14
: (7,31),(8,17,18),(9,15,22) , (12,35),
(14,20,24,27,36),(19,21,28,32)

24 . 0.499 (1,5,13,16,25,34),(2,6,11), (4,26,29,33,37), 13
: (7,31),(8,17,18),(9,15,22) ,(12,35),
(14,20,24,27,36),(19,21,28,32)

25 0.503 :*  (1,5,13,16,25,34),(2,6,11),(3,30), 12
o (4,26,29,33,37),(7,31), (8,17,18),
(9,15,22),(12,35), (14,20,24,27,36), \
(19,21,28,32) .
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NEAREST NEIGHBOUR CLUSTER ANALYSIS OF THE H-CONFIGURATION (CONT.)

‘ o | NUMBER
STAGE SPgéggf“G - CLUSTERS - oF
: CLUSTERS
26 0.508 (1,5,13,14,16,25,20,24,27,36,34), 11
(2,6,11),(3,30); (4,26,29,33,37),
y (7,31),(8,17,18),(9,15,22) ,(12,35),
(19,21,28,32)
27 0.512 (1,5,13,14,16,20,24,25,27,34,36), ' 10

(2,6,11},(3,30), (4,26,29,33,37)",
(7,12,31,35),(8,17,18), (9,15,22),
(19,21,28,32)

28 0.513 (1,5,13,14,16,20,23,24,25,27,34,36) , 9

(2,6,11),(3,30),(4,26,29,33,37),
(7,12,31,35),(8,17,18),(9,15,22),
(19,21,28,32)

29 0.514 (1,5,13,14/16,20,23,24,25,27,34,36) , -8
(2,6,11),(3,30), (4,26,29,33,37), T
(7,9,12,15,22,31,35),(8,17,18),

(19,21,28,32) .

30 0.520 (1,3,5,13,¥4,16,20,23,24,25,27,30,34,36), 7
(2,6,11),(4,26,29,33,37), N
(7,9,12,15,22,31,35),(8,17,18), v
(19,21,28,32) . :

31 0.53% - (},3,5,13,14,16,20,23,24,25,27,30, 34, 36), 6
o (2,6,11), (4,26,29,33,37),
(7,9,12,15,19,22,28,31,32,35), (8,17,18)

32 . 0.536 (1,3,5,13,14,16,20,23,24, 25,27, 30, 34, 36) , 5
| . (2,6,11), (4,7,9,12,15,19.22.26,28.29.31,

) 32,33,35,37), (8,17,18)
33 . 0.539 " (1,3,5,1%,14,16,20,23,24,25,27,30,34, 36) 4

(2,4,6,9,11,12,15,19,22,26,28,29,31, 32, 33,
35,37),(8,17,18)

34 0.541 (1,3,5,8,13,14,16,17,18,20,23,24,25,27,30, 3
| 34,36),(2,4,6,9,11,12,15,19,22,26,28,29,31, .
32,33,35,37) ‘

35 0.542 (1,3,5,8,13,14,16,17,18,10,20,23,24,25,27, 30, 2
: | 34,36),(2,4,6,9,11,12,15,19,22,26,28,29,31,
32,33,35,37) )

-~

.
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Application of the Furthest Neighbour technfjue to the H data
producgs the clusterings reported on pages 30~32 and the dendogram graph
on page 33. Application of this technigque can pe thought of as preducing
a graph in which edges connect all nodes in a cluster. When the nearest
clusters are merged, the graph is chﬁnged by addiﬁg edges between évery
palr of nodes in the: two clusters. If we define the diameter of a
cluster asfzhe largest distance between poinés‘in the cluster,.then-tpe'
distance between two clusters is merely the diameter of their union. If
we define the diameter‘of-a partition as the largest diameter for
clusters in thé partition, then each iteration incfeése the diameter of
a partition by as. little as possible. This is advantageous when the true
clusters are compact and roughly equal in size, However, when this 1s
not. the case, as happens with two elongated clusters, say, the resulting
groupinés can be meahinglesé: This is another example ‘of impossing
structure on data rather thanlfinding structure in it.

For the purpose of completeness we include the clustering at'each
stage for the Centroid, Median, Group Average and Ward's method and

their respective dendogram graphs. These methods represent a vafying

degree of compromise between the 'chaining effgg&*’ﬁf the Nearest

-

Neighbour technique and the compact clusterings resulting from the
Furthest Neighbour technique. Also the global optimumsearch techniques
Centroid, Median and Group Average all reverse their steps in the region
of stages 16,15,14 inorder to form a new clustering at a splitting level *

lower then that in stage 17.
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FURTHEST NEIGHBOUR CLUSTER ANALYSIS OF THE H-CONFIGURATION

STAGE

SPLITTING
LEVEL

CLUSTERS

e

NUMBER

11

12
13
14
15
16
17

18

1 19

0.486

0.487

- 0.488

0.503

0.508

0.539

0.541

0.543

0.910

Stages 1-10 are exactly the same as those °
for the Nearest Nearest Neithbour technique.

(2,6),(5,25), (7,31
(13,34),(19,32), (2

(2,6),(5,25), (7,31
(13,34), (19,32), (2
(20,24)

(2,6),(5,25), (7,31
{13,34),(19,32), (2
(27,36),(29,33)

(2,6, (3,30), (5,25
(12,35), (13,34) . (1
(26,37), (27,36, (2

(1,14)(2,6), (5,25)
(3,30),(12,35),(13
(21,28),(26,37), (2

(1,14),(2,6),(3,30
(9,15),(12,35), (13
(21,28), (26,37), (2

(1,14),(2,6),(3,30
(9,15),(12,35),(13
(20,24), (21,28), (2

(1,14),(2,6),(3,30
(9,15), (10,23), (12
(19,32), (20,24), (2
(29,33)

(1,14),(2,6), (3,30
(9,15), (10,23), (12
(19,32), (20,24), (2

.

),(3,17),(9;15),(12,35),
1,28),(27,36), (29,33)

),(8,17),(9,15),(12,35),
1,28).(27,36),(29,;3), ¢

), (8,17),(9,15), (12,35),
0,24),(21,28),(26,37),

),(7,31),(8,17),(9,15),
9,323, (20,24),(21,28),
9,33) -

»(7,31),(8,17),(9,15),
,34),(19,32), (20,24),
7,36),(29,33)

), (4,11),(5,25),(7,31), -
,34),(19,32), (20,24),
7,36),(29,33)

), (4,11),(5,25), (7,31),
,34),(16,18),(19,32),
6,37),(29,33),(27,36)

), (4,11),(5,25), (7,31,
.35).(13,34).(15,18);
1,28)1(26,37),(27,36),

), (4,11),(5,25), (7,31),
,35),(13,34), (16,18),

- . L

23

22

21
20

19

18

1,22,28),(26,37), (27.36),




31

FURTHEST NEIGHBOUR CLUSTER ANALYSIS OF THE H-CONFIGURATION (CONT.)

SPLITTING

STAGE LEVEL

NUMBER

CLUSTERS _ OF

CLUSTERS

—

20 0.967

21 - 1,047

22 1,055
23 . 1.058
24 1.066
25 1.071
26 - 2.4;2‘
27 .. 2.564

28 4,441

ne1e

(1,14),(2,6);(3,

30),(4,11),(5,25),(7,31), 17

(9,15),(10,23),(12,35),(13,34),(16,18),

(19,32), (20,24),

(27,36),(8,17)

(1,14),(2,6), (3,
(8,16,17,18) , (9,
(19,32), (20,24),

(27,36)

(1,14),(2,6), (3,
(8,16,17,18), (9,
(19,32), (20,24).,

(1,14), (2,6, (3,
(7,31), (8,16,17,
(12,35),(19,32),

(1,14,27,36), (2,
(7,31, (8,16,17,
(12,35), (19,32),

(21,22,28), (26,29,33,37),

30),(4,11Y, (5,25), (7,31), 16
15),‘10,23),(12,35),(13,34),
(21,22,28), (26,29, 33,373,

30), (4,11),(5,25),(7,31), 15
15),(10,13,23,34),(12,35), ’
(21,22,28),(26,29,33,37),(27,36)

20,24,30), (4,113, (5,25), .14
18),(9,15),(10,13,23,34), .
(21,22,28),(26,29,33,37), (27, 36)

6),(3,20,24,30), (4,11),(5,25), 13
18),(9,15),(10,13,23,34),
(21,22,28),(26,29,33,37)

(1,14,27,36),(254,6,11),(3,20,24,30), (5,25), . - 12

(7,31),(8,16,17,
(12,35), (19,32),

(1,14,27,36), (2,
(7,31),(8,16,17,

18),(9,15),(10,13,23,34),
(21,22,28),(26,29,33,37)

4,6,11), (3,20,24,30), (5,25), 11
18),(9,15), (10,13,23,34),

(12,35),(19,21,22,28,32), (26,29, 33,37)

(1,14,27,36),(2,
(7,31),(8,16,17,

4,6,11),(3,20,24,30)(5,25), 10
18),(9,12,15,35) , (10,13,23,34),

(19,21,22,28,32), (26,29,33,37)

(1,14,27,36),(2,

4,6,11),(3,20,24,30), e

(5,7,25,31),(9,12,15,35), (10,13,23,34) ,
(19,21,22,28,32),(26,29,33,37)
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FURTHEST NEIGHBOUR CLUSTER ANALYSIS OF THE H-CONFiGURATION (CONT.)

- . NUMBER
SPLITTING i .
STAGE LEVEL CLUSTERS . OF

CLUSTERS

4.869 - (1,14,27,36),(2,4,6,11), (3,20, 24,30), ' 8.
(8,16,17,18),(9,12,15,26,29, 33, 35,37},
(10,13,23,34),(19,21,22,28,32) , (5.7, 25, 31)

25

30 4.988 (1,10,13,14,23,27,34,36), (2,4,6,11), - : v 7
(3,20,24,30), (8,16,17,18), , ‘
(9,12,25,26,29,33,35,37),(5,7,25,31),

(19,21,22,28) -

31 12,808 (1,10,13,14,23,27,34,36) - 6
- (2,4,6,9,11,12,15,26,29,33,35,37),
(3,20,24,30),(5,7,25,31), (8,16,17,18),
(19,21,22,26) .

32 13.047 (1,8,10,13,14,16,17,18,23,27, 34, 36) , 5
(2,4,6,9,11,12,15,26,29,33,35,37), - -
(3,20,24,30),(5,7,25,31), (19,21, 22, 26)

H

33 17.214 (1,8,10,13,14,16,17,18,23,27,34, 36) | 4
© (2,4,6,9,11,12,15,26,29,33,35,37),
(3,5,7,20,24.25,30731),(19,21,22,26)

3% 25.037 7(1,8,10,13,14,16,17,18,23,27,34,36), 3
(2,4,6,9,11,15,19,21,22,25,26, 24, 33.35,37),
(3,5,7,20,24, 25,30, 31)

35 25.219 (1,3,5,7,8,10,13,1&,16,17;18,20,23,24,25,27, 2
30,31, 34,36),
i (2,4,6,9,11,15,19,21,22,25,25,29,33,35,37)

/
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FURTHEST NEIGHBOUR DENDOGRAM GRAPH FOR THE H-CONFIGURATION
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(8,16,17,18),(9, 15) (10, 23) (12, 35) (13 34),
(19, 32) (20 24) (21,28),(26,29,33,37)

\./’

7~

(// 34
CENTROID CLUSTER.ANALYSIS FOR THE H-CONFIGURATION
NUMBER
STAGE SP;EﬁEENG CLUSTERS
. CLUSTERS
n Stages 1 13 are exactly the same as those
for the Furthest Neighbour technique.
14 0.495 (2,6), (5, 25) (7,31),(8,17),(9,15), (12,35) , 23
. ' (13, 34) (19 32) (20,24), (21 28) (26 29,33,37),
(27 36)
15 0.503 (2, 6) (3,30), (7 a1),(5,25),(8,17),(9,15),(12,35), 22
(13, 34), (19, 32) . (20,24) (21 28), (26 29, 33,37),
(27,36)
16 0.508 (1,14),(2,6),(5,25),(8,17),(7,31),(9,15), 21
‘ (12,35),(13, 34) (19,32),(20,24), (21 28),
(26,29,33,37),(27, 36), (3,30)
17 0.526 (1,14,27,36),(2,6),(5,25),(7,31),(8,17), ° 20°
: o, 15, (12 35), (13 34), (19,32), (20 24), .
- (21 28) (26,29,33, 37), (3,30) '
18 0.539 (1,14,27,36),(2,6),(3,30),(4,11),(5,25),(7,31), 19
(8, 17) (9 15) (12, 35) (13,34), (19 32),(2p524),
‘ (21, 28) (26 ,29,33,37)
19 0.528 (1,14,27,36),(2,4,6,11),(3,30), (5,25),(7,31), 18 * .
‘ (8, 17y, (9 15); (12, 35) (13,34), (19 32),(20,24), )
. (21,28), (26,29,33,37)
20 0.541 (1,14,27,36),(2, 4 6,11),(3,30),(5,25),(7,31), 17
(8, 17) (9 15) (12, 35) (13 34),(16,18),(19,32),
_ (20, 24) (21, 28) (26,29,33,37) _
21 0.536 (1,14,27,36),(2,4,6,11),(3,30), (5\231157,31), 16
~ (8,16,27,18), (9, 15). (12,35), (13,34) ,32), -
(20,24), 21, 28). (26,29 ,33 37)
22 0.543 Q, 14 27,36), (2,4,6,11),(3,30),(5,25),(7,31), 15
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CENTROID CLUSTER ALALYSIS FOR THE H-CONFIGURATION (CONT.) ‘
: , NUMBER
. STAGE sriégginc ~—  CLUSTERS : OF
é) . _ CLUSTERS
23 . . 0.541 (1.14,27,36),(2,4.6.1L),(3,30).(5.25), ' - 14
‘(8,16,17,18),(9,15),(10,13,23,34),(12,35),
(19,32),(20,24),(21,28),(26,29,33;37),(7,31)
e

24 0.544 (1;14,27,36),(2,4,6,11),(3,20,24,30),(5,25)t 13
‘ (8,16,17,18),(9,15), (10,13,23,34) , (12,35) , .
(19,32),(21,28),(26,29,33,37) , (7,31)
25 0.604 (1,14,27,36),(2,4,6,11),(3,20,24,30), (5,25), 12
(8,16,17,18),(9,15), (10,13,23,34) , (12, 35}, .
(19,32), (21,22,28), (26,29,33,37), (7, 31)

26 " 0.903 (1,14,27,36),(2,4,6,11), (3,20,24,30), (5,25), 11
- (8,16,17,18),(9,15),(10,13,23,34), (12, 35) ,
(19,21,22,28,32),(26,29,33.373, (7.31)

27 - . 1.295 (1,14,27,36),(2,4,6,11),(3,20,24,30),(5,25), 10
- (8,16,17,18),(9,12,15,35),(10,13,23, 34) .
(19,21,22,28,32),(26,29,33,37), (7,31)

28 . 1.569 (1,14,27,36),(2,4,6,11),(3,20,24,30), (5,25, . 9
' (8,16,17,18),(9,12,15,35,26,29,33, 37§,
(10,13,23,34),(19,21,22,28,32), (7.31)

29 1.982 (1,3,14,20,24,27,30,36),(2,4,6,11), (5,25), 8
: (8,16,17,18),(9,12,15,35,26,29,33,37) .
(10,13,23,34),(19,21,22,28,32) , (7,31)

30 2,024 . (1,3,14,20,24,27,30,36),(2,4,6,11), 7
B ' (5,7,25,31),(8,16,17,18), , ‘
(9,12,15,35,26;29,33,37),(1qJ13,23,34),
(19,21,22,28,32) ’

31 2.043 (1,3,14,20,24,27,30,36), (2,4,6,11) _ - 8
~ (,7,25,31),(8,10,13,16,17,18,23,34) |
(9,12;15,35,26,29,33,37),(19,21;22,28,32)

32 3.987 (1,3,14,20,24,27,30,36), (2,4,6,11), 5
(5,7,25,31),(8,10,13,16,17.18,33,34) ,
(9,12,15,19,21,22,26,28,29.32,33.35,37)
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CENTROID CLUSTER ANALYSIS FOR THE H-CONFIGURATION (CONT.)

rd

o 23

NUMBER
STAGE SELLTTING CLUSTERS “ .OF
CLUSTERS
5.672 (1,3,5,7,14,20,24,25,27,30,31,36), ° 4
(2,4,6 11) (3 10 13 16 17 18 ,23 34),
(9 12 15 19,21 22 26 28 29 32 33 ,35,37) ‘
34 6.609 (1 3,5,7,8,10,13,14,16,17,18, 20,23,24 25 3
’ 27, 30 31 34 36) (2 4 6 11) ‘
© (9,12 15 19,21,22,26 23 ,29,32,33,35 37)
35

7.873 (1, 3 +3, 7 8,10,13,14,16,17, 18 »20,24,23, 25 .2
: 27 30 31 34 36) (2 4 6,9, 11 12 15 19 21 22

'26 28,29,32,33 35 37) .

5
3

=

'b-—})’
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MEDIAN CLUSTER ANALYSIS FOR THE H-CONFIGURATION

. ‘VNUMBER :
spgéggch CLUSTER: OF
//Jéf) CLUSTERS
. ‘ . -~ ' —

Stages 1-25 are exactly the same as those
: - .for the Centroid method.

STAGE

26 ) 0.792 (1,14,27 36) (2,4;6,11),(3,20; 2% ,30),(5,25), 11
' - ‘ (7.31),(8,16.17.18) . (9,15 (10,13 ,23,34),
,(12 35), (19 21,22,28 32) (26 29,33,37) |

27 - 1.295 - (1 14,27,36),(2,4,6,11),(3,20,24,30),(5,25), 10
‘ : (7, 31) (8 16,17 l&) (9, 12 »15 35) (10,13,23, 34),
(19 21, 22 »28 32) (26, 39 33 37)

28 1.569° . (1,14,27,36),(2,4,6,11),(3,20,24,30),(5,25),
(7.31), (8,16.17.18) . (9,12,15 ,26,29,33,35,37),
{10,13,23 34) (19 21_22 28 32)

-

29 1.982 (1,3,14,20,24,27,30,36) , (2,4,6,11), 8
) - (5,25),(7,31).(8.16.17,18)
-(9,12,15,26,29,33,35 37) (10,13,23,34),
(19,21 22 ,28,32) N
30 2.024 (1,3,14,20,24,27,2Q,§%),(2,4,6,11), 7
' (5,7,25,31),48,16,17,18),
(9,12,15,26,29,33,35,37) , (10} 13 ,23,34),
(19,21,22,28,32)

31 2.043 (1,3,14,20,24,27,30,36) , (2,4,6,11) | 6
(5,7,25,31), (8,10,13,16,17,18,23, 34),
(9,12,15,26,29,33,35,37), (19,21,22,28,32)

32 4.157 . (1,3,14,20,24,27,30,36), (2, 4,6,9,11,12,15, 5
26,29,33;35,37), (5,7,25.31)
(8.10, 13_16 17,18,23,34) , (19,21, 22,28,32)

3 - 5.672 (1,3,5,7,14,20,24,25,27,30,31, 36), 4
. (2,4,6,9,11,12,15,26,29,33,35,37) ,
L (8,10,13,15,17,18,23,34),(19,§é,22,28,32)

34 ,  6.386 (1,3,5,7,8,10,13,14,16,17,18,20,23,24,25,27, *""3///
| 30,31,34,36) , (2,4,6,9,11,12,15,26,29, 33 35 37),
(19,21,22,28.32)

35 9.831 (1,3,5,7,8,10,13,14,16,17,18,20,23,24,25,27, 2
‘ ‘ 30, 31 34 36) (2,4,6 9, 11 12 15, 19 21 22 26 28
i29 32 33,35 37)
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MEDIAN DENDOGRAM GRAPH FOR THE H-CONFIGURATION
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GROUP AVERAGE CLUSTER ANALYSIS OF THE H-CONFIGURATION

' ' ' ' NUMBER
SPLITTING : : :
LEVEL CLUSTERS | | . OF

CLUSTERS

STAGE

Stages 1-18 are exactTy the same as those
for the Furthest Neigbour technigue.

19 0.720 . (1,14),(2,6),(3,30),(4,11),(5,25),(7,31), 18
, " (9,15),(10,23),(12,35), (13,34), (16,18),

(19,32, (20,24 , (21,22.28) , (26.37) (27, 26),

(29,33), (8, 17) .

20 0.723 | (1,14),(2,6),(3,30),(4,11),(5,25),(7,31), 17
| (9,15),(10,23),(12,35), (13,34) ; (16,18),
“(19,32)7 (20, 24) , (21,22.28) . (26,29,33,37), .
(27,36),(8,17)

21 0.761 (1,14,27,36),(2,6),(3,30), (4,11),(5,25), 16
(7,31),(9,15),(10,23),(12,35),(13,34) ,(16,18), -
(19,32),(20,24),(21,22,28),(26,29,33,37),(8,17)

22 0.778 (1,14,27,36), (2,4,6,11), (3,30, (5,25), (7,31), 15
: (9,153, (10,23), (12,35), (13,34) . (16,183, (19,32),
(20,24), (21,22,28),(26,29,33,37), (8,17)

23 0.782 (1,14,27,36),(2,4,6,11),(3,30),(5,25),(7,31), 14
: . (8,16,17,18),(9,15),(10,23), (12,35), (13,34)
(19,32), (20,24),(21,22,28), (26,29,33,37) -

24 0.791 (1,14,27,36),(2,4,6,11),(3,20,24,30), (5,25), 13
(7,31),(8,16,17,18),(9,15), (10,23),(12,35),
(13,34),(19,32), (21,22,28) , (26,29,33,37)

25 ' 0.798 (1,14,27,36),(2,4,6,11),(3,20,24 ,30),(5,25), 12
(7, 31) (8 16,17 18) (9,15), (10 13 23,34),
(12 35) (19, 32) (21,22,28),(26,29,33,37)

26 1.232 (1,14,27,36),(2,4,6,11), (3,20,24,30), (5,25), 11
(7,31),(8,16,17,18),(9,15), (10,13,23.34)
(12,35), (19,21,22,28,32), (26,29,33,37)

27 1.521 (1,14,27,36),(2,4,6,11),(3,20,24,30) , (5,25), 10
, : (7,31),(8,16,17,18),(9,12,15,35), (10,13,23,34),
(19,21,22,28,32), (26,29,33,37)
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GROUP AVERAGE CLUSTER ANALYSIS OF THE'H—CONgIGURATION (CONT.)

3

NUMBER

STAGE SptéggiNG CLUSTERS OF

OLUSTERS
. | &

28 - 2.243 (1,14,27,36), (2,4,6,11) 43,20, 24,30y , (5, 25y, 9

(7,31),(8,16,17,18), (9;12,15,26,29, 33, 34, 37) ,
| (10,13,23,34), (19,21,22, 28, 32

29 2.259 (1,14,27,36),(2,4,6,11), (3,20,24,30), 8
(5,7,25,31), (8,16,17,18, (9,12,15,35) ,
(10,13,23,34),(19,21,22,28,32)

30 2.490 (1,3,14,20,24,27,30,36),(2,4,6,11), S

| (5,7,25,31),(8,16,17,18), (9,12.15, 35), S
(10,13,23,34), (19,21,22,28, 32)

31 2.563 (1,3,14,20,24,27,30,36), (2,4,6,11) , - 6
(5,7,25,31), (8,10,13,16,17,18,23,34) ,

(9,12,15,35), (19,21,22,28,32)

32 5.107- - (1,3,14,20,24,27,30,36),(2,4,6,11), - 5
(5,7,25,31),(8,10,13,16,17,18,23,34),
(9,12,15,19,21,22,28,32,35) _

33 . 7.045 (1,3,5,7,14,20,24,25,30,31,36), (2,4,6,11) , 4
(8,10,13,16,17,18,23.34) , - ' o
'(9,12,15,19,21,22,28 .32, 35)

L | _
34 9.348 (1,3,5,7,8,10,13,14,16,17,18,20,23,24, 25, 30, 3
o 31,32,35,36),(2,4,6.11), -
; (9,12,15,19,21,22,28,32.35)
35 9,672 (1,3,5,7,8,10,13,14,16,17,18,20,23,24,25,30, 2

31,32,35,36),(2,4,6,9,11,12,15,19,21,22, 28,
32,35) i : '
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GROUP AVERAGE DENDOGRAM ,GRAPH FOR THE H-CONFIGURATION
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WARD'S METHOD CLUSTER ANALYSIS OF THE H-CONFIGURATION

o NUMBER
CLUSTERS . OF -
CLUSTERS

SPLITTING

STAGE LEVEL

Stages 1-18 are exactly the same as those
~for the Furthest Neighbour technique.

19 0.805 (1,14),(2,6),(3,30), (4,11),(5,25), (7,31), . 18
(8,17),(9,15),(10,23), (12,35) (13,34), '
(16,13),(19,32),(20,24),(21,2!128),(26,37),
(29,33),/(27,36)

20 0.989 (1,14),(2,6),(3,30),(4,11),(5,25), (7,31), 17
(8,17), (9,15), (10,23), (12,35), (13,34),
(16,18), (19,32),(20,24) ; (21,22,28),
(26,29,33,37), (27,36)

21 1.052 (1,14,27,36),(2,6),(3,30), (4,11), (5,25), 16
: (7,3L,(8,17,(9,15),(10,23),(12,35),(13,34),
(16,18), (19,32), (20,24), (21,22,28),
(26,29,33,37) :

22 1,056 (1,14,27,36),(2,4,6,11),(3,30),(5,25),(7,31), 15
(19,32),(20,24),(21,22,28),(26,29,33,37)

23 . 1.072 (1,14,27,36),(2,4,6,11),(3,30), (5,25),(7,31), 14
’ o (8,16,17,18),(9,15),(10,23),(12;35),(13,34),
(19,32),(20,24),(21,22,28),(26,29,33,37) °

246 1.081 (1,14,27,36),(2,4,6,11),(3,30),(5,25),(7,31), - 13-
(8,16,17,18),(9,15),(10,13,23,34),(12,35),
(19,32),(20,24),(21,22,28),(26,29,33,37)

25 | 1.087 (1,14,27,36),(2,4,6,11), (3,20,24,30), (5,25), 12
""(7,31),(8,16,17,18),(9,15), (10,13,23,34),
(12,35),(19,32),(21,22,28),(26,29,33,37)

26 2.166 (1,14,27,36),(2,4,6,11),(3,20,24,30), (5,25), 11
(12,35), (19,21,22,28,32), (26,29,33,37),
(7,31),(8,16,17,18),(9,15), (10,13,23,34)

27 2.590 (1,14,27,36),(2,4,6,11),(3,20,24,20),(5,25), 10
(7,31),(8,16,17,18),(9,12,15,35), (10,13,23,34) ,
©(19,21,22,2832),(26,29,33,37)
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WARD'S METHOD CLUSTER ANALYSIS OF THE H-CONFIGURATION (CO§I.)

- ) NUMBER
SPLITTING
LEVEL CLUSTERS OF

» CLUSTERS

STAGE

28 - 4.048 (1,14,27,36), (2,4,6,11),(3,20,24,30) | 9
(5.7.25,31),(8,16,17,18),(9,12,15,35), :
(10,13,23,34),(19,21,22,28,32), (26,29,33,37)

. LN .

29 6.273 (1,14,27,36), (2,4,6,11),(3,20,24,30), 8’
. (5.7,25,31),(8,16,17,18), - -

(9.12,15,26,29,33,35,37),(10,13,23,34), "
(19,21,22,28,32) -

30 7.925 - (1,3,14,20,24,27,30,36),(2,4,6,11), 7
: (5,7,25,31),(8,16,17,18,), -
. (9,12,15,26,29,33,35,37),(10;13,23,34),

(19,21,22,28,32)

31 . 8.169 (1,3,14,20,24,27,30,36),(2,4,6,11), 6
: (5.7.25.313, (8,10,13,16,17,18,23,34),
(9.12,15,26,29,33,35,37), (19,21,22,28,32)

32 22,167 (1,3,14,20,24,27,30,36), . 5
: ' : (2,4,6,9,11,12,15,26,29,33,35,37),
(s,7,25,31),(8,10,13,16,17,18,23,34),
.(19,21,22,28,32)
33 . 30,251 (1,3,5,7,14,20,24,25,27,30,31,36), .4
' (2,4,6,9,11,12,15,26,29,33,35,37),
_(8,10,13,16,17,18,23,34),(19,21,22,28,32)

34 50.526 (1,3,5,7,14,20,24,25,27,30,31,36), 3
- (2.4.6,9,11,12,15,19,21,22,26,28,29,32,
'33,35,37), (8,10,13,16,17,18,23,34) .

35 63.446 (1,3,5,7,8,10,13,14,16,17,18,20,23,24,25,27, 2
30,31,34,36), (2,4,6,9,11,12,15,19,21,22,26,
28,29,32,33,35,37) ‘
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' ) . WARD'S HETHOD-DENDOGRAM GRAPH FOR THE H-CONFIGURATION
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5. 2. 8: Proofs avd Cow terexamples for Part'i{:ular Comb# atorial
Procedures _ ' ]

A) Th Neargst Neighbour aid Furthest Neighbour procedures are w«_all-

structured (exact tree) adniss Hle.

This ia clear, since at each step in the analysis the dissimilarify

coefficient 18 & ultrametric. This fact also quarantees the next property.

B} The Neamst Ne ightour and Furf:hest Ne —zghbour procedures are maiotane

admws ible,

C) Nome of theee procedures, with the exception of Nearest Ne ighbour,

are comected adn ia.'_s"zble.

For the case of Furthest Neighbour this may be shown by considering

the following diagram:

P

ivg

w

d 1 : W

In this case for e sufficiently small we get { g,b_,c,gﬂ and

{ e,f,g,h} at one stage. The dissimilarity messure in this case being

the city block metric . Similar examples exist for the other techniques.
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D) Cmtz;oid, Group Average and Ward's Method are not point proport im
admissible.

. This results from the fact that at eac}} stage the inter-group

- distances depend on the number of elepents :Ln the groups.

E) Cemtroid, Gravv Average and chﬂd 8 Method arc r.ot manotone acbmsstble.
- We give the counterexample for the Centroid method. Consider the
points a=[-{ (1+e)2-k}5,&3. b=[-" E(1+e)2-k}*,-g], ¢=(0,0), ‘and

d=.(1+35£,0)., There are four inter-point distances 1, 14%e, and

_ [2+3e+e2+(2+e)£ (+€) 2251574, Map this into 1, l4ke, (1+(1+e}2)5 and

[(2+3/2><e)2+%f] » respectively. Then the clustering changes from

(a,b,c) and (d) to (a,b) and (c,d). Other counter—examples exist for

the other methods named

F) Neareegt Ne'aghbour ana qu-thest Nezqhbour proecedures are not cavex

‘admigeible.

Congider the following set of points

a=(0,0) - | £=(2.2,0.2)
b-(};?) , g=(1,-1.1) ‘
,;;(i,l.l)  R=(1.5,-1.1)
d=(1.5,1,1) ' i=(2.0,-1)

"e=<z".o.1\»\'J  im2.3,-0.2) 6 o

These points form the .configuration diagrammed below:
, _ p) N :

g h i . :
Then the clustering change from (a,b,c) and (d) to (a,b).

/ . | ’ | -
.Qk“ _ . . - I‘

e ——— e

~

=
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At one stage in the Nearest Neighbour p_rocédure, we get (a,b) and
(C,g,e,f,g,h,i,j ) and at one stage in the Furthest Néighbour—procedute
. . 4
- /
we get (a,b,f,1;3) and c,'d,e,g;})« Proving the result.
- R . \/
/ (]
el
¢ : a
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~ &3 Lirg's (kr)-cluster procedure, [25,26] ' }
//// This is a ﬁoﬁoverlapping generalization of the Nearest Neighbour |
cluster procedure .and one would éxpect it to Have similar propertigs.
. Defn itin 16: Given (Y,D}, where D is a matrix of dissimilarity- ‘ et
coefficieqts, a nonempty XY is r-connected 1f for
each pair of elements (x,y) in X, there exists an’
r-éhain of X connecting x and y; i.e., there exi;;a - :‘ f
a sequence xfxl,xz,...,xm=y in X such that
- & ' d(xi’xi-i-l f‘ér for i=1,2,...,m-1,
Definition 17: Given (Y,D) a néuempty Xy is_(k,-r)—bonded, where k -
| is a positive integer if
(VxeX) (3a k;element subset T X[xéTj
‘(Vte:T) c{(x,t)_f .
D efiriitiori 18: Given (Y,D) a noempty XEY is.(k,r)#connected if X
is (k,r)-bonded and r-connected.
D efanition 19: A subset S&Y 1s maximal with respe.ct to some propert;
P ifVS satisfies P and is not a proper subset of any
set in X that stisfies P.
D ?f-in ition 20: Given (¥,D,k) a subset XcY is a (k,r)-cluster if r
) ishthe.minimum value of S for wﬂich X is (k,a)- '
connected for gsome s and X is maximal (k,r)-connected.

Definition 21: XY is a k-cluster 1f X 1s a (k,r)-cluster for ‘Bom;.- T.
. i

If C i5 a (k,r)-cluste;: and C' is a (k;r')-cluster with r<_<1:_',
then either CNC'=¢op.CcC'. The parameter r can be'int:erpfeted as.the
;time of birth' o'f- a (k?.r)-cluster. The 'isolation :Ln_dex.‘ or ‘'survival
time' of a cluster is defined as follows: ' -

-

. .
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Definstton 22;: Given (Y,D,k) and a (g,r)—cluster C¥Y, thé isclation
index of C, denoted UC), is r'-r, where r' is the
parameter of the smallest k-cluster properlx/\

containing C.
The algorithm used to implement the method is.as foli;ws:

'i)_Replace the dissimilarity matrix D by its corresponding
matrix & of ranks. Let r-(K;I], the smallest rank that
can give rige to a (k,r)-cluster,

ii) find Br’ the maximal (k,r)*bonheé set of Y.

114) If.Br#¢ R éecompose Br into r-connected components
(k-clusters ) Sl""’ém » m2 1, ‘

iv) If a new cluster is found, save all relevant information
(cluster size and element identification) about this
cluster, and 1f some previously found cluster C, whose
isolation iIndex is not yet ﬂefined, is a proper sﬁbset of
the new cluster, then 1(C) isMuted.. .

v) Increase r by 1 and repeat steps ii)-iv) ﬁntil the largest

cluster X is feached.

In most clustering methods, one generally gives (n-1) cluster
candidateé in the process of clusfering n points. One distinctiye feature
of the k-clustering methed, as a consequence of the definition of a
(k,r)-cluster, is that often the number of poasible k-clusters is
considerably‘less thag (n-1), This phenomenon ;nd an illustration
of some clustering definitions are proved for k=2 an& 3 bylfhe following

example:



S _

km2,r=5
1=(1,2,3,5,6) .
II=(1,2,3) -
I111=(1,2,3)

I. maximal r-connected set
1I. bonded sets
~III. cluster

51

A-matrix
1 -2 3 4 5 .6
1 ' .
2 1
3 5 2
4|1 15 13 6
5| 12 10 3 7
6 9 11 8 14 " &
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k=3,r=10
3,4,5,6)
3,5,6)
3,5,6)

(1,2,
(1,2,
1,2,

I
II=
I11=(

»2,3,5,6),

-
”~~
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"
~r
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-~
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A
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S 6a1: The (lé;r)—clusteriné of the H-co nfiguratiot.

5 HISTORY OF CLUSTERING |
BOND SIZE=3
ISOLATION
CLUSTER MODE SIZE " INDICES CLUSTERS
1 56 4 9. 26,29,33,37
2 65 12 1. 9,15,19,21,22,26,28,29,32,
. 33,35,37
3 66 13 3. g, 12 15 19,21,22,26,28, 29
: 32 33 35 37
4 Y 4 3. 8,16,17, 18
5 69 15 8. 2,4, 9 12 15,19,21,22,26,28,
) . 29, 32 33,35,37
6 71 8 1. 8, 10 13 16 17 18,23.34
7 72 16 3. 1,3, 8 10‘13 14 16,17,18,20,
23 24 27,30,34,36
8 75 17 19. “1,3,8,10,13,14,16,17,18,20,
' 23, 4,25 27,30,34,36
9 77 17 17. 2,4,6,9,11, 12 15 19 21,22,
26,28,29 32,33,35,37
94 37 O 1,2,3,&,5,6,7,8,9,10,11,12,

10

13,14,15,1€,17,18,19,20,21,
22,22,24,25,26,27,28,29,30,

31,32,33,34,35, 36,37

The dendogram graph for this analysis appears on the following page.

The clusters-that emerge towards the end of the combinatorial processes

are on the whole unatural. The coafiguration of points while it doea

not suggest any particular set of points to be clustered, it does suggest

. symzetry. The lack of symmeE?y in the combinatorial results tends to -

indiczte the sensitivity of the algorithms to small local perturbétions.

The distance watrix cf ranﬁs was cluctered by Ling's method using k=3.

Examination of the isolati®n indices reveals, that clusters 8 and 9 may

reasonably be considg;adfis 'real'. Under the probabi%ity model

studied in Ling[26] , which is not quite appropriate for the data under

—cyt
v

e e A o e bt b L
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consideration but nevertheless offers .2 rough guide to the agsessment

of the clustering indices, these clusters are geen to be statistically

significant. The symmetry of the configuration, which wag not brought

out by the other methods °

examined, is easily geen here.

‘. THE (K,R)—CL'USTERING?

DENDOGRAM GRAPH FOR THE H-CONFIdURAfION
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. 5. 8.2: The admi gsi bility praperties of (k,r)}-clustering.

4) The (k r)-clustering procedure 18 'Lmage admti ss1 ble.

This is true since the algorithm works only with the ranks of the
DC's which are unaffected by any one-to-one map of the data points into
themselves. This consideration also shows the following to hold:

B) The (k,r)-clustering procedure tig mo noto ne adii ss i ble.

C) The (¥ r)-clustering prc)cecfure i8 not eonvexr adni sat ble.
. . — !

This seems reasonable due to this technique's relationship with

the Nearest Neighbour method. But a counter-example appears hard to

find.

D) The (k, r)—cluster ing procedure is cmnected adni ssi ble.

The entire point in develeoping this technique was to Bupply this
connected property.
E) The (k,n}-cluster ing procedure % gnot well-structured {exact 'l:ree)
admp', gg 1 ble,

Again' the procedure works only with the ranks of the DC's so that it

is not possible to work backwards-to obtain the original dissimilarity

matrix. .

F) The (k,r)-cluster ing procedure i & @ell-stmctured ( k-group)

- . -
adni-ssible.

This and the following appéar obvious.

" G) The (k,r)-clustering procedure i gnot well-structured (perfect)

adni sai ble.

B) The (k,r)-clustering procedure i s point proporti cn admi seible.
This holds if a suitable ‘method is used to break tied ranks.

I) The (k,r)-clustering procedure 1 g cluster proport'z. o aa’m'z. ss 1 ble

J) The (kr)-clustering procedure i 8 cluster omi seia admi 8si ble.

}
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5. 4: Jayrdine ard Sibeon 's B., finue, clustering procedures, [17]

This 1s an overlapping technique based on an absolute festriétion,

namely that the overlap between distinct ML-sets at the same level ghall - -

_not contain more than k-1 elements of Y. Thﬁs, Bl is the single link

"method and as k incrgaa'es the methods Bk allow progressively more
overlap between the-t-iL--sets until when k=N-1 the overlap restriction
becomes vacuous and Bk-f.[ for k> N-1. | ‘

If r is a symmetric 'br‘eflexive relation on P (reI(P)) and a,b,cEP,-
then r is transitive i1if |

[(a,c)erﬂ(c,b)cr]‘-’-(a,b)er.

The first condition to be imposed is obtained from this ordimary
transitivity relation by replacing the ainglé. element ¢ by the k~element
set S, which must be completely linked. On the left hand side of the

jmplication the condition {a}xSer corresponds to (a,c)er and Sxfbler

to (c,b)er. So:that

Defin i ti-on. 23: Let ref(Y). v is (weakly) k-transitive, (denoted '!:k),
if whenever' seY, |Sl-k, a,beY,
J then [{ a}xsUsxsUsx{ bllcr+(a tz .

The effect of this condition 18 easy to see in terms of ML-sets.

 Suppose that 51’52 are distinct ML-sets for r. Then both Sl—S and

2
§,-5, are non-empty. There éxists. acS)-S,, bes,~5, such that (a,b)er,
becauée if this. where not so Sl S2 would be an ML-set. It follows that
Islr)Szl <% if r satistfies defimition 23, that is, the overlap between
distinct ML-sets contains at most k-1 elements. Then the left-hand side
of j:i';e implication in definition 23 is true if and only if {a}xé and
Sx{b} lie wholly inside the ML-sets’ for r. If they. lie in the sane

ML-set, then (a,b)er and the condition is satisfied. If they iie wholly

/

ok
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in distinct HL-sété the S must lie in the intersection of these.two

ML-sets and so must contain at most k-1 elements, and again the

condition is satisfied. 73 ;he left-hand side of %he'implication is

false, then the condition 15 satisfied anyhow. Thus the k-transitivity

condition is preéiaelj the condition to épply to a symmetric reflexive E

relation to ensure that the overldé between disfinct MlL~sets contains

at most k-1 elements, ] . ‘ ' !
The assoclated set.of NSAC's consists of those NSAC's fér vwhich

c(h) 1is k~transitive fof all h. The set of k-transitive symmetric \

rE§lexive ‘relations on .a set P will be degoted by Jk(P)..Aﬁ NSAC such ' %

that c[O,“OEJk(P) will be called a (finé) k-dendogram. C, (P) is the set

of DC's identified with the set of k—dendograms under the ébrrespondence

T in théofem 1, but. this a very inconéeﬁient way of‘characterizing it;

a condition analogous to the ultrametric inequality is desired ig

possible. This leads to the following definition:

Defini ti o 24: Let deC(Y). d is (weakly) k-ultrametric

if wheneveg SSY;|S|-k, a,bef
then d(a,b);ma:'c{ d(c,t;)lce{ e}V {a,b}, ecsl.
If whenever Rgf, we write |
diam(d,R)=max { d(X,Y)|X,YeR},
: —_—
then the k-ultametric inequality can be written as ‘ »
d(a,b) <max{ diam(e,S\J g),diamEe,SUb)} .
it 4is egsily seen that d ig k-ultrametric 1f and only if Td(h)eJk(Y).‘
There is8 a very simple condition which iz equivalent to the
k—ultrametric inequality. The condition-is that on every (k+2) -element ) %
subset of Y, the largest dissimilarity value on the subset should occur

more than once in the subset.
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Thus if d(x,z)=diam(d,R) whefe x,2€eR, |R|-k+2 ’

d3x',z eRl{x z{ x',z'}) d(x,z)=d(x', ')

o

If this condition is taken to characterize C (Y), thegﬁhsﬁis immediately

s
obvious that C (Y) is sup-closed and, consequently, glves rise to a

well-defined, sub- dominate, method C(Y)*C (Y): this is the fine

-clustefing method B, .

The implications
| T=T) ¥ Ty e g Ty ™
where NN is the vacuous condition, give rise to the containment relations
E(Y)=J, (1)eJ,(V)c.. .LJN_chN_l-E',(Y)' ‘
and 80 toO
- UY)=C, (¥)cC,y (¥)E. . .CCp o (V)eCy_, (¥)=C(Y) .
It follows that Bl is the single link method BN 2=I and B ‘B -Bk for

k<j. As k increases B (d) yields progressively more, and more information

about d,  until when k> N-l B (d)-d and complete information is recovered.

The relation B jan for k=< j is computationally valuable for An the

process of finding B (d) from Bk+1(d) we do not need to go beck-to e
itgelf. | |

This definition of Bk_ae.the subdominant method associated with
CkCY)'is by no means- the simplest, eecause, ﬁk has speciel properties
which derive essentially from’its relatedness to an absolute restriction
on overlap. For each hel0,=), [TBk(d5](h)eJk(Y).and, because of the
restrietion, J (Y) is fixed and independenf'bf d and h. | .

It is poseible to write

- I8, (@) Iy~ y [1a w1

where % 1s a function from (Y) to Jk(Y) whichlmape each element of
.- . . i
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LIY) to the smz;llest element of'J (Y) containg it. If D:C'(Y)‘-*Z is a
cluster method, and if there e.xists a function ~ y:I(Y)-+E(Y) aucﬁ that
[1p (@) ] ()= [ra(n)] )
for all deC(Y), h> 0, then D is called a uniform cluster method, Thus
the methods.Bk are uniform cluster methods, and all we need,knoﬁ is the

-

function vy : Z(Y)+Jk(Y). In terms of ML-sets, if r is a relation,

then the sets in_ML(r) will in general have arbitrary overlap. Add pairs

to r so that whenever Sl and S2 are in I{L(r) and lS ' |> k, 5, and S,

* are replaced by S, S5, in HL(r ). Continue until HL(r ) contains no pairu

172
S]_,S2 with | |S ng |> k. Then r is ¥ l‘__(r)

This suggests a method of generating uniform cluster methods which
aré also subdominant. Let JSI(Y), Yy :I(Y¥)~J which associates with each
element of L(Y) the smallest member of J containiug it,. Then 1f ZJ is
the set.of DC's corresponding to those NSAC's for-which clo ,®)ET, the
subdominant method D defined by Zs is given by

 In@lw=y [enm].

In order for ‘to be well-defined gome conditions must be placed on J,

these conditions are given-in Jardine and Sibson [17,chapter 10].

A) The, B,, fine, clustering procedure is_1image admi ssi ble

This appears clear.

B) The B,, fine, clustering procedure 18 not carvex admiss ible.
LA 3

No overlapping clustering procedure can fulfill this requireﬁeﬁt:.
@

C) The B.,_, fine, clustertig procedure is not ecomected adnise ble.

This again is due to the fact that clusters may overlap.

D) Tre B, fine, clustering procedure _ig not we Lll-gtructured

1(_e:cact tree) adnissible



. The generating DC may not be truly ultrametri.c.

E) The B.,., fane, clustering pracedu.rwe 18 not well—atructured { kgroup)

adniag ble.

Do to the fact of overlap, at certain stages, some within-cluster

diataﬁces may be equal to some between-cluster distances. It also follows

that:

F) The B,, fine,. clustering procedure is not well-structured (perfect)

adn iss ble. ' o €

G) The B,_,f'ine cluste'r-inq procedure 1is pbint proportio_adniss ble.

) The B,_,fzne clustering pracedure 15 cluster propotion admiss 1ble.

I) The B,‘,f'm e, cZueter'z,ng procedure is not elugter omisgion admws Dle,

Removal of all elements of one cluster also causes 1;emoval of some
elements from other clusters and may change the cluster "Jomdar‘}'es.

J) The B,, fine, clustering procedurév 18 morotone adnisggible
.3 . N

This is a flat cluster method and hence monotone admissible by

definition see Jardine‘and Sibsor.\ [17 ,chapter 10].

K) Th Bk’ fine, _clustez;inq procedure is optimal admissible.

This follows because the Bk .clustering procedures are suf:dominate
methods. Note that this result alao' applies to -Bl’ the Nearest Neighbour
procedure, and the (k,r)-clustering procedure which are also lx;embera of
this family of uniform cluster prc‘)cedu'{eé, the family of flat cluster

methods.

L) The B,,,' fine, elustering procedure, t?e_(k,r)-cluster procedure

ard the I'Vea.res‘t e ighbour procedure are path comected

This follows by theorem 4 and is iniplied by the fact that they belong

to the same family of uniform cluster methods. .

o
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55: Jardnie gmd Sibor's B,S, coarse, cluster procedure.

These are overlapping techniques closely related to the B

k

methods

are are defined in_terms of abeolute?srestriétione on reiat:ions, but these

restrictions do not have the simple 1nterpretation in terms of overlap

between m.-eete as do the latter methods.

The strong k—transitivity condition“ 8'1‘1'c on which coase k"-‘ellﬁeterin'g

i

g

is based iB similar to that of weak k—transit:ivity and follows.

Defzn f:z o 25: Let r E(Y) r-is (etrongly) k-transitive

-

-

if wheneye’r‘ scy, |S|-k,‘a,beY,

‘then, . [{ a}XSUSX{ b}] r+(a,b)er.

i

st:rongly k—transitive relations on Y. The corresponding set of Dc' 8 1is

Ck(Y), D/C}'s satisfying the st;:ongly k-—_ultramet_:ric inequality,

Defintion 2 6: Let deC(Y). d is (strongly) k-ultrametric

if whenever S£Y, |S|=k, a,beY

‘then d(e,b)é'mai': {-d(l;,e) | ce{ a,b}, eesk.

A coase k-dendogram 13 an NSAC such%rthat c[O o) c 3¢ (Y), the set of

-CE(Y) is readily seen to be sup-closed. The resr.'lltant sub—dominant

method is the coarse k-clustering method BE:C(Y)-*CE(Y).

We have the fellowing diagrams of implicat:i;ns and containments:

¢

Like the B

Tm T+ T ..+ T + T. .=NN
1 2 """ “N-2 . N=1 . -

TwST1+ST2+...+$ -
E(Y)nJl(Y)'-JQY)C...CJ = (Y)

oo - -\J J u W

3

E(Y)-JJ(Y) JJ(Y)L.. N 2 N 1 )
U(Y)=C {Y)<C (Y)c.....t-CN ZCCN 1 AQ}

n u U u Il M
U(Y)HC (Y)CC (Y)l--...ﬁ:CN ZCCN I-C(Y) "

y

" methode, the Bk methods are uniform cluster methods.

-

.
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Coarse k-clustering lacks the convenient interpretation in terms of

" overlap between ML-sets available for fine k~clustering. Certainly strong

k-trangitivity implies transitivity with the convers hélding ohly for

k=1 or k N-1. So that the ML-gets for a stfongly k-tratsitive relation

"have overlap of at most k-1 elements of Y, but are not charaéterizgd by

this property. Coarse k-clustering may be regarde as allowing overlaps
’
of the same kind as the fine k-clustering but making less efficient

use of them.

[

This inefficiency makes this a badlclusteriné procedure relative
to the Bk methods although they satisfy exactly the same admissibility

conditions. ‘ : : ~

N
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Y

9. 6: Jardine md Sibson '3‘ C (u~diome tric) cluster#1g procedures,

This type C cluster method is b;§e§ on an internal restriction for
.controlling'overlap in terms of overlap diameter in rélation to the curreat
level. The methogs C are subdominant methods aesociated with the
restrictiﬁa“hhat the diameter of the overlap of distinct ML-sets at level
h will be at most uh, where u is a constant, .

/ i el
Definitin 27: Let deC(Y). d is u-diametric

if whenever ¢ *éCY, a,bey,
then setting J
Z=max {d1am(d,SU{ a},dian(d,5U{ b})},
we have -
diam(d S)>ul+d(a Wbl T, (u> 0)
If d is u-diametric, then the NSAC Td has the property that if
Sl,S2 are distinct Ml-sets at level h, then
' diam(d,S,NS,) < uh: .
.it follows that E (Y), the set of u-diametric DC' 8, is sup-cloged. So
that there is a sub-dominant method C C(Y)*E (¥); this method is called
u-diametric clustering. If u> 1, thg condition diam(d,S)>ul cannot be
'satisfied, so for u;_l, Eu(Y)-C(Y) and C;-I.‘
' If d is definite, then (VScY)IshMi;m(d,sp_ 0. Thus 1f u=0,
|S|>1+d(a,b);1mui{diam(d,SO{ a} ),diam(d,su{ b} 5},.and d is weakly
2-transitive. So that on the set of definite DC's, tHe methods C, and
B2 are the same. However, they are not‘equivalent on the get of
nondefinite DC's. If two objgéfs have_small or zero DC's, it may be
Inferred that duplicates have been chosen. This will upset the type B

methods which count objects, but not the type C.methods baged on

diameter. However, fhere is a price to pay for this advantage. The type C
N
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—_— . » ' ) )
\\\hechggs are not uniform, and since the DC's employed must have more.

5
pE

SO .
‘than ordinal-significance, thsy are not monotone admisgible.

Just as Bk is nested, so Cu is nested for values of u which may

be taken to be in' the range [0,1] and Cu'Cv-Cu if u<€v. Note that Cu

‘ c
\\\_‘—__—_ﬁ;if—fifdfg9zﬁingle link method EEE\Eny value of u,.

The type C methods satisfy the same admissibility requirementé as
. the type B methods except for monotone admissibility.

s
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5. 7 _g_gloci‘a B formatin Theory Method [29] -

It must be absolutely .clear tﬁat the term 'information' 1s here
used in a strictly technical sense.;It is conceived as a physical
property of events related to probability. In accordance with this
definitio n a rare event conveys more information than a common event,
Information as a technical term thus is conceptuglly related closély to
surprisal than to either knowledge or informativeness in ordinary sbéech.

For reasons of conveﬁ@ence, our collection of objects will be
conceived of'as a set of individual freguencies, each according to the
problem at hand, répresenﬁing an individueal, or a character..Information
theory offers several distinct functions suitable for the definition of
structure in such a collect;on. Thesé functions include total information
and mutual information and joint information. In the following diagram
I(h) and I(1) indicate:the total information.within the frequency

distributions labelled Xh and X, respectively.

i

I(h,1) and I(h;1i) on the other hand, represent the joint information andcjf/’“

muﬁual information between Xh and Xi. fhe collection consists of r

3

frequency distributions which are either independent, or related, as the

case may be. Each distribution is conceived as.a union of several subsets

~
of frequency classes, th’ XhB and so forth. The union may take place in

such a manner that the frequencies are pooled between classes possessing

I

L ——

e e a e
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equal class values or identical:class symbols. However, pooling of -

frequencies is ot justified if, the subsets are qualitatively disjoint.
A much used measure for total information is Shahnon's [22]
entropj function. This function for the h'th frequency distribution Xh

is

= - P £

ALY 11,.Phj =N1n N - ):fhj In £, | )

wﬁgre the f's are class frequencies, of which there are oy the p's are

_independent g posteriori probabilities, and N is the total number of

observations so that

f

. N = Zf hj/N . | 2)

hy 204 Py ™

If th and th are subsets of classes such that
Xoa np ™ %has
then ~~ ' b
_I(h)‘ABi L(h) +I(h),. , ‘ )
o The total Information conveyed jointly by twe subsets in h, is never
less than the pooled‘information conveyed separately by the subaets. This

relation will be used to find optimum unions, or subdivisioms, in the

-

- collection. i o .

The tr I's may be pool;x\to derive an overall measure of joint

information:

r ¢
1(1,2,...,0)= J(I(3). .
-1 "

‘ 3 C ¢ :
This is valid only if the r dist ions are independent. If they are

not, the pooled value of infébrmation exceeds the true joint information
by an amount equal to the mutual information shared between the r

distributions.
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It i1s possible to represent the r frequency distributions in an

" r-dimensional contingency table. In such a table, original class frequencies
< :

appear as r sets of marginal totals,- and the values in the body of the

- table specify the frequencies of the joinﬁ observations made. on the
r entities simultaneously. When r=2, we have the common case of paired

-comparisons and the joint information of Xh and X, 1s

b i
. Y
b T | ' .
- I(h,i) = _j§1 kzl fjk in pjk =N 1ln N —Zz fjk In fjk' 4)

A similar expression can be found for the joint information I(l,2,...,r)

in the case of any r dimensional table.
If we visualize the contingency table as containing the relationship

between subsets th and xiA and the relationship th and X, 1is

1B
represented by a second table, the the following relations hold:

I(h,1),p2 T(h,4) +I(h,1)

. 5)
RACIEINES [CYES O I |
or

'.IZ(h,;T.)A I(h)A+I(i)A. : 6)

The quantity I(h,i)A corresponds to a contingency table relating th
a?d xiA' Similarly I(h,i)B corresponds to a table relating X8 and xlB'
In .this context, I(h,i)AB corresponds to a table derived from the two
tables corresponding to subsets with or without pooling frequencies,
depending on the problem at hand.

Inequality 5 plays an important role in selecting optimal fusions
or subdisions in cluster analysis. It also implies that the value of the

Joint information in AUB cannot be less thanm a qqantity obtained by

pooling the joint information corresponding to the subsets. Inequality 6
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is discussed in detail by Khinchin and Kullbach [22]. Note that the --

joint information as given in eqqation 4, differs from the_booled
information, given in equatioﬁ 3, by a correction for mutual
informaticn.

The information possessed in common betﬁeen two frequency
distributions Xﬁ and Xi, called mutual information, can be eipreased in

the following terms:

O N §
I(h;i) = § ] fg 10— dk )
3=1 £ o Ear
Kl hj ik

n
ﬂ.h
- {{fjk In £, + N 1o N -y g 1o £y -l £y e £y
=1 k=1
) | 7

Equation 7 is called the error or independence component of the

discrimination information ['2]. Tiivfhe case of an r-dimensional
contingency table the simplest expression for the overall mutual
et

information 1is.

—
- ———r

' T
‘ T(1;2;...3x) = z I(h) - 1(1,2,...,7)
h=]
For N sufficiently ldrge, the mutual information is asyﬁptotically
distributed as x2 with (nh-l)(ni-l) degrees of freedom in the case of
a'two dimensional teable, or nlnz...nr-nl-nz-...-nr+t—l degrees of freedqm
in the case of an r-dimensional contingency table.
_The fdllowing relations are of importance:
I(h;i)AB};_I(h;i)A + Ig‘h;i)B 8)
and

4

I(h;1i) < I(q) where qu).- min (I(h),I(1)).

PRI
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similar expressions can be easily derivedAfor the r—dimensional case.
Ineﬁuality 8 implies that the mutual information in A B canmot be less
then the quantity obtained by pooling the mutual information
corresponding to the subsets.

The relative relatedness of two frequency distributions can.be

measured by Rajski's coherence coefficient which for Xh and Xi ib\\\\\“

R(h;1) + (1-d%(h;1))™ : . 9)

where d(h;i) = 1 - %%%i%%_is called Rajski's metric. R(h;1i) varies
. ]

~

between zero and unity, indicafing réspectiveiy the degree of

relatedness from none to perfect. The probability corresponding to

"21(h,1) is called the relative measure of relatedness.

As a computational example of the proceding consider the follo%ing,
data indicating the performance of 2 specles in 28 stands of vegetation

evaluated in accordance with an arbitrary scale.

~SUBSET A :
SPECIES | 1 2 3 &4 5 6 7 8 91011 12 13
h 13 3 3 3 3 3 30 + 020 0 3
i 1 + 1+ + + 1 2 2 2 2 2 1
SUBSET B
SPECIES | 14 15 16 17 18 19 20.21 22 23 24 25 26 27 28
h 3 3 3 3 3 2 4 3 3 3 373 + &4 2
i + + + 4+ 1 0 1 1 2 0 000 + 0
, CLASS VALUES. e
+ 0 1 2 % :
+ 0 1 0 1 2
cuss ol 5200 | 2
VALUES 31 g 3 ¢ 2 19
4 1 0 1 0 2
X[ 96 7 6 28
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e
I(h)=29.9027 - I(h,1)=56.5515
I(1)=38.4041 I(h;i)=11.7554
d(h;1)= 0.7922 . R(h;i)= 0.6103
SUBSET A SUBSET B
CLASS VALUES o CLASS VALUES -
T 1 2] X : + 0 1 2 -
T 6 i .o 0 L 00 ihn »
olo o 3 3 210 2 0 o ‘2
304 4 1| 9 34 3 2 1] 10
X, ¢ 4 513 41 01 0| 2
X5 6 3 1[15
I(h),=10.2735 - I(h),=14.8228
T(1)2=14.2067 1(1) =18.5272
I(h,1)A=18.9581 | I(h,1)5=29.0022
I(h;1)g= 5.5221 _ I(h;1)0= 4.3428
d(h; )= "0.7088 d(h;1)= 0.8503
R(h;i)p= 0.7054 R(h;1)o= 0.5263

p-]

The clustering techniques based on information rely on the
heterogeniety information given by

AT, = 1(1;2)A£-1(1;2)A-1(1;2)B ‘ ‘11).

where the I's represent the mutual information between two freguency

- distributions Xl and X2 representing the row and column classifications

in a table A or B in-AUB. If the goal is the classification of the

rows of X, A is fused with B if AL, is minimun, The probability is
defined by the asymptotic telation : A
» ° [}
ZAIAB x2 at (r +r 1)(c +c l)e(rAfl)(cA—l)n(rB-l)(cB-l)

or rﬂl when r =r_ degrees of freedom. The symbols r ey indicate

ATB A*SAacTB

the number of rows and columns in table A and B respectively.

-
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Basic data are usually not given as frequencies. It is nevertheless
possible to summerize most types of data in frequency tables.and then

manipulate these tables to derive a measure of heterogenity between

subjects. There are two alternative avenues of approach to follow in

this éonnection. The first makes use of the Joint information and 1s ag

follows

ap~1(1,2,...,r) -I(l 325000,r) —I(l 2,...,1‘)
The eecond utilizes an expression similar to the error component of

digcrimination information as applied to r—dimensional frequency tables

and ig

IAB-I(l;.‘Z; - ;r)AB-I(l';Z;'.. . ;r)'A—I(l;Z;. . .;r)B
»

where the different I's repregsent the ‘joint information between r rows,
. Or the mutual information, within the disjoint subset A or B of the '

colums of X and in AVB, @

-
N

A) B formation theam cZuster'L ng procedures are image adnissible,

A one—to—one map of the data onto itself cannot effect the .

frequency tables on which the method is based

;L B) Fi format in theory clusters ng pracedures are not cover adn iggible,
1)

.

C) B format im theory clustert ng procedures are not comected adniss ble,

D) .‘r}zfamat'tm theory cZustemrng procedures are not well-ef:uctured

3
, (exact tree) adrnweﬂ:le. _ : ’ '

The information statiatics are not by nature ultrametrics,

E) n fomatm theory clustering procedures are well-structured ( k~group)

admwa ble,

F) B format in theory clusteri ng pifacedures are not well-structured

{perfect) adniss ble, !

.



2

The followiné results hold because of the method's depen&ence on
group size. A relative measure of infbmétion including the average
informatioh or entrophz

 Em=I®/a
the prbbabilities corresponding to information at given degrees of
freedom, or other measures such as Rajski's metric or the coherence
could be used to get around thig problem. R - -

G) 1 format im thec_)rz,f clugtering procedures are not point proportim
' \

adnissible. . _ -

H) In f‘émat't'm theory clustering proceduves are not eluster proportim
<t

adnissible,

-

I) I formatio theory elustert ng procedurcs are cluster omiggion
adnigaible,

J) B formatim theory clusteri ng procedures are not monotone admissible.

/

_———— .- i e - ra
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2.8: Unsupervised Bayesian Estimation.

5.8.1: Introductory Remarks.

a \N—
An outline of the theoretical development of this aection due to

L.\
Patrick (31) is given in APPENDIX: I. This ig the only clustering technique
which, in the classical sense, has'a statistical appearance,
Emphasizing mixtures, Patrick and Costello (34) showed that the Bayes

minimum~conditional-risk. solution involves the information function

M(b,b") Sln nxle) nxlp) ax |

vhere h(xlb ) is the true density and G?r\b) is a mixture probability

characterized by b. They showed that an estimate of 11@2),

‘_)l(l:_) = t 1n h(x b)

o =)
should be evaluated at every b in the parameter space. The Bayee solution
with mean square error loss then uses ﬂjb) indirectly to weight b to
form the average estimator (]_:n)B which is a Bayes estimator. This averaging
property of the Bayes approach can be contrasted with a stochastic-
approximation approach (based on some starting value (b) which searches
for the maximum of M) with respect to b. Stochastic approximation

is starting-point dependent whereas Bayes can average out ?he starting

points. The ° quasi Bayes' approach developed later, was developed to,

" incorporate the desirable Bayes averaging effect with the desirable _

stoehastic-approximation property of reduced complexity.

Propertiee of mixtures were first consideredlin statistical
literature and applied to the unsupervised estination problem by engineers.
The prgB}em of unsupervised estimation is to resolve an unknown mixture
into the underlying catagories or, equivalently, to find the indicies
(parameter vectors) and weights (mixing parameters)- that eipress the

*
3 I
3
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unknown mixture demsity as a linear.éombination of densityrfunction;.

Maximum-likelihood-estimator equations for the two-ca;;gory problem
where F is‘Gauasian were developed by Cooper and CooPerL[7] for the chse
of a Qingle unknown parameter., Patrick [30'31j extended this to more thgn
‘one—unknown parameter. These results were for M=2 and known ( Mis the
nunber of catagories) The multicatagory problem and H unknown has a
numerical solution developed by Wolfe [52].

Stochastic-approximation algorithms which seek the maximum of the

average likelihood function are defined by Sakrison [43] for a normalized

‘ problem 1f xl,xz,... »X_ have density hL|b ), a maximmn-likelihood

estimator b for b ig a solution of

b- arg{mgx ln f(xl,xz, ..,_11'2)} .

= arg{ max ln l'l h(x [b)}
b

) n
= arg { max z In h(is |_1_)_)}
o E s=]1

(\ = arg { max ni(b)}
. ’j . b ,
e ' :
IN the decision-directed approach, a prior'i_; there are M mean vectors

covarianve ;a:},&ces , and @ pr dori catagory propabilities
(E'l)' (E‘i) ] (Pi)p . 1'1,2,‘-..,}{'.

When a ‘sample x; is received it 1s assumed to be from catergory i 1if

@)
In RO ) ) LTEP I 2y~ )

@l e

\t

.
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© 18 larger than for any one catagory. The x, is used to update (m Yns
_ : . =1 0

(X ) to Om )1; (Z ) . Alﬁo (P ) can- be updated Thua,'onder certain
l .-
conditions, the deciaion-directed approach may be considered a good

tracking procedure.

' - *
A minimum—norm—equare-error estimator for b’ leads to the definitiom

s

of a criteria I(b),
I - 2E[h(x|b) - |h(x|b)||]2
= 2fh(x[b) h(x]b Ydx ,-f h2(x[b)dx
-l IRl 12 - &2
where e (b= |h(x|b)-—h(x|b Y142,

An eetimator called 'quasi-Bayes' 1s now developed using both criterion -
i . g : .
“n(b) and I(b).-

* '_'-v., ' 7 ' . . |
Assume that b isfcontained in a known bounded set B' so that the

.-t

1'th component b of b lies in the known interval [o ,B ]. The set B'ig

decomgosed into V cellg formed by equally subdividing the interval [“i Bi]

4 N k
into VE subintervale where I V =y, After the 1i'th cbservaticn §h°f x
) ;

is pbtained Vv 5. a.(stochastic approximation) estimates (b ) +1° r= 2,...,V
)’

are computed the starting points (E )v’ r-1,2,...,v being the centres of

the cells in B' : - }3

The ifth component (b ) n+1 is computed by means of

- ' B a B . '
T : T i
(bi)nE\' Bt (yr 20" ¥z, 2n- RIS NN 2

where {,a;} and { cn} re infinite sequences satisﬁying

limc = 0
n .

n-ﬁﬂ)

-

nzlan.- 0
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T atedc

n=l
, ) i . .
and ?r on and Yr,2n—1 are noisytmeasurements of the regression funet;en.

i

-yr,Z = ln h(x|(b ) +c_ & ),
' Qi = 1n h(x|(br) —c_e.) ' -

. r,2n~1 == "n n1"" . . '

The vector e is a column vector having 1 in the 1'th row and zero's

‘elsewhere. If (b;)n+1 falls outside ehe‘r'th cell; i.e., 1if

[CANREICHN B (B~ )/V,,
then (b;‘:)n+1 is moved to the nearer end point )
( (Bi)oﬂs(si—ai)/v;. | - /
So that (b;)n;l will differ in absolute value from its star;ing'point
(b’;:)o by at most 'a(si-ai)'/vi.
- Having'iecremented the Vs.a. estimates, next form the 'quasi-Bayes'
estimator (E)n+1‘aa ‘ T
®)p41 Z @) 2N %),
where p((b Do Ix ) ie the a posterzorz probability mass. Thus, (b)n+1
a weighted average of the v 8.a. estimates, the weighting coefficeint of
the r'th.s.a. estimate being the Bayes a posteriori probability mass at
the centre of the ¢'th cell. Forming V s.a. estimates in this way
effectively divides the interval of search for b by V . For n sufficiently
1arge, (h)n+ can be made to differ from’ b by as little as required
It may be. concluded, Appendix I, that the 'quasi-Bayes' estimator singles

out the s.a. estimator whose starting position is the best, in the sense

~

. . | .. A
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# ‘ . : ' :
that the corresponding density function is 'cleosest' in the norm—

.square-error sense to the true dedsity. -

\;\Of importance in the Bayesian clustering_technidhes are the empirical
and histogram distribution and denﬁity of the mixture. The empiriqal

diatribut;on of the mixture from N samples 1s defined as-

Zx@k -y ®

and the empirical density is

.1 N
€ ﬁz S(xx),
where X and § are the usual characg%ristic and delta functibns resbectively.
. : .
Defining N ordered regions- S} i—l on a bounded portion of the
observation space V., where \JIL =V L’ u(I j) =0, k#j ( u denotes

Lebesque measure), the histogram estimate o the mixture density is
N

\ ¢, (E)Bkzlx_lk (®ayy

where -ﬁ N-1 ) a1t N Ik(x) k-1,2,.;,,N*.

The distribution histogram egtimate 1ig -

1
-

*
cm 1w @]
C,=1) x; X} a

T Tem W
This will be generically refered to as the histogram mixture functiona.
R, s ' . \
: el
¥ '
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3 8.2: Bayesim Clusteri ng Tec?n iques.

1) C‘Zuater ing Teelm ique derived ﬁ'om n(b).

In this section n(b) 1s investigated under the ssumption that the
catagories are Gﬁussian and 'separated . This approach presumes a
search over admissible partitions and thus admissible b given. n samples.
- Advantages and disadvantages of thig approach are summarized as

£ ollows

Advantages: - : ‘ -
‘1) A criterion such as nﬁh} evaluates the goodness of the clustering.

The use of a criterion may be necessary when the number of catagories

M is unknmm. ’

2) The partition based on n samples is updated with the n+1 st sample

without the need to store the first n samples.

3) A przorz-knowledge about Pi and the other catagory parameterg can

be utilized.

Disadvantages:

1) The procedure may not work well when the 'separable' criterion ig

violated.

" 2) The procedure ‘does not provide for agssuming (if true) that the

caﬁsgories are widly separated; consequently, the partition
- , oo
¥

adjustment. procedure may be more complex then necegsary for the

problem eoncerned"’

For an symptotic minimum risk solution 1t ig necessary to find the
‘ r

parameter vector beBM with M nonzero mixing parameters H<H‘, that

maximizeg

n(b) « [ 1n h(x]b) h(x) dx L

= [iInf[ {f(xlb )P, Jh(x) dx
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The samp}e space is partitioned into M disjoint regions defined by
sk & {xleGlbor > £l IRy, gmk), kel 2. 0N,
giﬁen a paramfter vector b. It is assumed that over each partioned get

the class 1s Gaussian having mean vector mes covariance matrix _ng, with )
the density truncated at the partition boundary. The true mixture h(x)

18 asaumed bounded,

=

Under these assumptions n(b) can be .expanded to -

.M :
nke) =], j.k 1n[f(£|9k)pk]h(y dx
o k-l S .

M { . _
"y Hgooos |

1 .
x | InP, + ln( - )
l k (zﬂ)LIZIEkI;i
frm) B em) hx) dx
s - ]

‘ ‘Iskh(ﬂ)di . | . ) %

-

(NIH

Ignoring for now the defintion of Sk’ take a fixed set of regions

characterized by independent parameters. It can be shown by taking partial

M
derivatives with respect to each parameter under the constraint Z P, =1 -
. k=1
»
that for this fixed partition n(b) is maximized if the parameters are defined
.B.Bl ' « .
Pkﬂfé h(i)d.’.:. » C ) ’ )
k : , :
. e - \
m=fg h@dx / [, hGdx,  °
¢ Sy k!
| B em) eop) @ / g h@as, k2, .
X _ - _ .
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Maximizing n(b) is equivalent to finding the partition and value of M which

v

-
maximizes ’

n( = ZP ln( —wz—;;b
1z, |
This equation illustrates the advantage of the separable aasumption. If

the complexity—reducing assumption Ek- aiI is made, it can be shown by

taking partial derivatives, that

+

' - 3
oZ= Isklla—gkllzh(:gslg / fskhc:gd;. k=1,2,...,M.

The following rules define the manner i;'which the statistics of two

-

’ .
fused classes are updated. It is assumed classes r’and 8 are fused into h |

Case A: Two Clusté:s: .

o~ 1) nj- nr+ng,

s \ .
2) Ej- (n?gl+ nsg)/ nj,
3) Cj- (nFCr+nBCB)/ nj;

Case B: A cluster (class r) and. an isolated point (class s)
. 1) nj- nr+1,
2) ) (‘?'Er-*“#s)/ n’,

r ],
3) Cj- (n .Cr“‘cs)/n H

" Case C: -Two igolated points:

“ 1) o= 2,

Case D: A cluster (class r) and the n'th gample:
1) o= np+1,
2) o = jn~m +x )/n .

3 Crﬂ (n Cr+x x')/n : ' "

n
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~ points. Then given a sample X ‘there are two types of ;;ossible acticns:

) . ’ ' ‘ 81

Case E: An isolated point (class r) and the n'th sample:
. 1) ér_ 2,
_2) E,r" (E.{’"_‘A /2,

= Al
3) Cr (Cr+?—cn§n Wz,
The algeithm is started by using the first M" semples as M' isolated

1} Assign X_ to one" of-M' classes (M' possible actions),

i1) Combine two of the M' clasges and make X a new isolated class
(1;5 possible actions.

The n(b) criterion is calculated for each of the M‘+(g‘) possible actions.
The updat{e\cbrresponding to the action uhicﬁ maximizes r_1_(§) is then

performed. Effectively,. the favourable action produces the largest estimated

_n(b) by accepting classes having large estimated values of

k
P, 1n pklz |".

k
SPECIAL CASE: Zk-:er and Pk-IIM, where M 18 kno \. »
Under these conditions ' w
li o b 2
1 1 , - ; ‘
n®) = 1 —757 - 57 o [l 1Em eas), ‘
M) ToT. b3 ) .

»

and paximizing n(b) is eqivalent to finding

M
mé;:kzl Iskl |x-m, | | 2h(x)dx.

' This criterion,. or the slight generalization for Pk.

1s relevant to the class of decision-directed algorithms. It is extremely

not identical,

easy to implement an algorithm to. asymptotically minimize risk under ‘'this

L] — ' "\lu

: - -
r .
%, A
i ¥
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a priori assumpti&n. One disadvantage of this_c:ihé;;;;\ia that it cannot %
be used to determine M if this knowledge is not avallable. This drawback . \

e

ie due to the fact that it does not incorporate a cost for adding additional

catagories., Parallel processing for_M-l,Z,...,M' can produce more clasgses

~-

than are really there. For example, let h(x) be a one-dimensional Gaussian

~

distribution with mean zero and variaﬁcg o? 1f is is assumed that M=2,

the solution generated by the above criterion is a partition through x=0.

;
!
4
|
!
T
i

Denoting the variances on either side of this partition by ail_;-l,Z, the
strict inequﬁl;ty‘ 'cf+0§-¢c2 holds. So even though there is only‘one claaﬁ
the criterion ié leas for M=2 than for M=l and the criterion's use to
determine M fails. For certain applications, knowledgévof M.may not be an
unréasonable assumption, and the criterion yielﬂs on of the simplest 6
unsupervised estimation algorithms in e#is;ence [39] .

/\

] RN
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2f Clustering Utzlw:ng "Portable Magn ifying Glass" (Cluster Map or

Gravity tech u;ue)

Suppose x has a density

h(x)-? PEGxl m,2)).
T | _1

ES

If the covariance matrix of the test function is carfully chosen and the
. N

M catagories reasonably separate, it can be assumed that the test function
t(E|2‘.E:9;) "singles out" the d'th member if f(ﬁlgd,ﬁd) is the dominant
cluster near x ,

x

]z, OBG=t xlx , 0P £(x|m,,L,).

Under the above assumptions, t(x)h(x) is itself Gaussian: denote this

)

as a Gaussian function with mean vector - X, and covariance matrix gs The
procedure for estimating theg‘rameters D, ané 'Ed characterizﬁé the d'th
cluster is as follows: i
1) Estimate Y and Eg utilizing a method to be described, after
selecting a point s, . | ‘
2) Queply Pd\and g T e
3) Calculate'/-md and Ed in terms of X 9.3’ 8, Pd and :58.]
4) repeat steps 1 and 3 using another point X
Uging a theorem by Miller, we have that
\ =(c, L H . )
m=(E ‘b +I)( b 38 ) +x .
Moments of t(ﬂ]x qa)h(x) are estimated next, where h(x) g
h(x)-— Z 6(x—x)

: . g=1
. A %

- L~ -
The momeénts are ,



e et
e

|
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n
Legleo,

: ulﬂh ’

i
t - ‘1 n “ ‘
At jzlzju t(ijlx.(fé’ L u=1,2,...,1,

1 B k !
- fows b i) oy g Ot I,
u,v-1,2;...,Lr\
and then

jg-(-ﬁ-gj)' _']:1,2,...,1.,

Esﬂcgsuv ), u,y—i,Z,.:.,L,

- 1y-l
La= G2 ) T,

- ._1 " :
Baam(Ega D Fx )4 )

A set of parameters (E d’gsd) may be associated with sample x

. -8 8’

s=1,2,:..,n. If the assumption of separability ig ;fasoﬁaﬁly well satigfied
the set of points (Ead’gsd)’ s=1,2,...,n, may be/pﬂpected to form clusters
in the parameter space.

Por some special applicatiqns, it may suffice to assume §i=§_ for all

v .,
catagories i=1,2,.., M, where E:is known and'supplied as a priori knowledge,
Then it remains to egtimate means. In this cage
. ~1 N
BaqmE D L) + ..
“If £ is chqen to be an a ) multiple of ¢ , then

iy gﬂd= -qzs+(1+§) ?s.
- If Ed ig unknown! it may be reasonablé to employ the following

estimatioff procedure. Let E%d be an a priori'quess for- L. with confidence

=d
J L)
‘of nalsamples, then, o ,;\\
: ~
i //
S o
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8 -
Esd n.+n E-ad nd+na (ca-g' )

and ny 1s the number of samples within some distance of X,

Advantages and disadvéntages of the cluster-map approach are the - -

f fq;ldwing:

Advantages: %

1) Search for an optimum partition fs not the objective of the
procedure, This is an advantage from a time and complexity

viewpoint but a possible disadvantage.

L4

2) Clusters are disbiayed 2ﬁ”the-parameter space. By successive

applications of the mapping, these clusters get tighter,
: b
Disadvantages: _ L

PR

1) A criterion euch as n(b) for evaluatiug cluster quality is not
utilized. This could be a disadvantage if it ig necessary to kvow the
precise number of clusters, which is a difficult problem. <\,

2) The catagory covariance matrix must be/;rovided by interaction.

3) Means and covariances are’not directly estimated but displayed
as clusters in the paraeeter space. A subsequent mapping is required

to extract means and covariances or to display the cluster in, one-,

two- or three-dimensional space.

»

4)-To obtain the parameter estimates of (Z d,m ) corresponding

to the individual sample X, requires processing all n samples. Even 1if

the test function tx|x gﬂ}-is truncated, it must'be determined which

samples x.,X.,...,X are within the influence of the teat function. ¥
=1°=2 -n

by

85
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3) Chatr map ‘ , /

A relatively simplé mapping'of'clusters in an L-dimensional space gé
a lower-dimensional spaﬁe is described now and called a chain map.

'Let Ei,gz,iff,gn be n samples. Then:

15 Axrbitrarily chose any one of the n vectors, say X,

'2) Locate the nearest sample to Xy, say 32 using Euclidean di?tance_.
Plot the distance between 3 and Xys denoéed d12’ along the ¥y axis;

3) Continue thisg érocess, producing the 'chain' and plot distances

between elements in the chain. -

The chain map can be very-educational when viewed on a computer-

. outpdzfi}splay device. When catagories.are well separated with the <1,

respective catagories 'tightly clustered', the cluster can be identified
as those samples between large.jumés in the mapped space. If the c#tag?rigs
are not tightly clﬁatered,.then there may be frequent 'gha 1 jumps' in the
display. This is why it may be ad;antageoué to apply a 'cluster tightenef'
such as a cluster. map pfior to applying chain map.

Caution should be exercised in using a chain map bec;use it does
not directly provide for a distance meaéure between two vectots other than
Euclidean distance. In some appliﬁations it is useful to computé the
global variances using the mixture of data from all M catagories. and then

measure the distance between x and y as

-

L 2 -
E (xi_yi)

{m] Uzi .

T



8) Clustering tech ique depived from L(b). C‘:_’j
Let h(x) be a mixture of functions from the Gaussian family
M
.- . x * *
: | hixlp ) -iZIPiN(glgi.Ei).
the parameter space B is_’f:he set of points (Ei)’ where 31“‘(9-1’31)‘ Constraints
are N
052, 1
? ,
P =1,
=11

It follows that

M M
2=

where : ' . \
_Cij‘j N(ElEi’Ei)N(E'Ei:%)dEt
By completing the square, integration yields
-L/2 5o~ -1, ~1,%
X L +L. 7|
7515, 1712 e

egy=(2m) I;i

ZymLymE, ve have :

ci.1

- e |5 e - L - m) % (o,

87

.—j))"

* Now, | |h(x b) ||2e1implifies when & high signal-to-noise. ratio prevails. A high

signal-to-noige ratio is defined asm.. L : V-“
. N I .
FE:L&E:]) Egi-}-_gj )(Ei-_gj):» a >>1,.
Then, the class-conditional d.f.'s are 'quasi—oﬁ:ogonai';
1"03." . "'I i Lt ot ‘ i ' ’ .

gy Mixle, 2 NG la, 5 ax =0, 1.
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' directed flavour,in this approach,

68
Accordingly

| [nx|b,

Thuc, when the Cl&_,l{t‘f are widely separafe'd'," the joint density q(b|x Jon the

I3

parameter factors, in an approximate sense, into the M d.f.'s on the

e

parameters for each class, the approximation improving as increaaea. o

A clustering algorithm ig obtained as followa..Lct

\
| SO LE I RN SEE ) ZPfcx b,
' : im=] g=1l {=]
If F 18 Gaussian with E\diagonal _ .
. M (x _-m, ) -
\MNJ 1 sr_ir
wm ) L Fep(-1} Segtey
A=1 . B=l =] dr _
whcrc‘qéx,i@ the r'th cpmponent of.g_and cir is the r'th comconeqt along the
diagonal of L. ;" ' . ) ® ) )

Suppose X is a currently unclassifieqd

in

sample; measure the ;distance

x. oy 75“‘3

1 & S
[_-f z iu }s 1'13.2::}-:?!: .
- -r ) ee.

3
1

and_classify x > as in the class 1 having smallest distance&w
T v
mean vector ‘m and the covariance matrix I, using this sampl
B o -

n update the

» Note a decision

! “

—
3

g

~»,
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4) Conthnut ty Man

I1t.is\desirable that the measure d,, of the dissimilarity betweep two

.

T

" vectors x4 and Ej increase with“an increase in disrepancy between: the two ‘ R

. 3
vecter components xi k.and xj'k for any k. Two possible distances- are the
- ) Py .’ -

squared Euclidean distance .and the city—block' distance.

It is desirable that the mapping from VL to VZ be one-to-one and

continuous. The or@=to-one property assumes that a sample point in VL

will not map to mofe than one sample point in VZ The continuous property

assunes that, samples close in V are ,gl se' in VZ Unfortunately a

bicontinupud/;;p—;;sh V to V,, l=L, 15, in general, impossible.f. . //
A map suggeste&'hy Shepard and Carrol attempts to obtain-continuity

—e— J

as followd: Let the distance betweén 5; and Ej Ee-defined as
t 1] . .
K .. L

—_— ij kz (xik

and the distance between the two correspo
2 -
as

-

iﬁg mapped saﬁples in_VZ be defined

o]

2
ij Szl(yis yjs) .

A measure of continuity, considering_x as a funcgion of y, In the vicinity of

-zi and Ij is . - o . . o
.f d \‘ N
_ 52 - A | . .
. 13 14 -

If the mapping of tHe?eamples from QL to Vz could be achieved maintaining
62j=1ffor all i,j, then rhe-properties of the'ce;agories or clusters would
not be lost. Such a juggling for all pairs seems a eifficult task; neverthe-
less, Seepard ani'Carroll Eﬁélhave proposed a measure ‘

52= z;f‘j-iw ' )

1¥] ij
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whére the weight w

distances; for example ’ .
wij-.llnij or . 'wijﬂ lldij'
-‘Perha%s a better weight would be ) . ,
VigT 1 dij<T anq-Dij<T
h =0 : ‘otherwige,

where T is an a priori threshold.

The object is to minimize §2 by adjusting the locations of points’

v, Obviously a solution is,ta make all.D

this possibility, Shepard gnd Carroll suggest dividing &%by

-~ 3 1/p?
v iy M
to obta:!.n b 2 -t / .
“ d . ‘
K= Zz B (EX(DZ )"1 }2
i#y 5 ETa
Dy, . i3 .
as, the measure to pe miﬁimized: '
7 ‘ y -

M

=~

90

13 decreases monotonically with increasing multidimensional

A

in

14 arbitrarily large. To eliminate
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5 6.3: The admzss'zb'zl%ty of thz Bayes im cluster 'z,ng techi‘r.ques.

A) AZZ the Bayesim tec?n'z.cyes are mage admweﬁle.

This, appears clear. Reordering the,sa?ple space will not effect.the

calculation ‘of the required statistics. : ¢

o
. .

B) All Baz;es'zm techz'z,q.tes .are not emves nor.comected aci'mws*:ble. :

Bayesian technlques can produce overlapping clusters . This' is :
s : . .

A Y

especially true if the separable assumption does mnot hold.

.4 .
C) The cmdzth rwell-structured exact.tree', does not apply to the.

majority of the Bay_eszm tec?n-z,qces which do not work mth @ dwsmviar@)

coe -icim t

i

D) Bayes i techmiqes based or n(b) and T(b) are not mll-étfu‘ctured (-k-group)’
_ T 7

admiss ble. . T ‘ 2
: .t P A )
This again results from possible overlapping clusters.

E) Techtiqueg based ar n(b) ad I(b) are ne ither potnt proportiom adnissible

or cluster omise in admissible,

-

Duplicatioq_of one or mores points or ‘the omission of any one cluster,

will adveraely effect the calculation of a posteriort probabilitiea at the

k-1'th stage. Since these probabilities are a priori in the k'th stage a

a2

different clustering may then arise.

F) Technqxes based or n(b) ard T(b) a:r’e cluster proportion admwsﬂﬂe.

73
Duplicating eac cluster does not effect the a posteriori probabilities
and the calculation of fhe required statistics.

G) Teem 'z.ques Based on n(b) md T(b) are not monotoe adniss ble.

The required statistics are not monotone invarient.

H) It H&not easy to see how optimal qa‘?nissz'bilitq may be extended to the

Bayesg in tecmi qes /




3

k2

. 'VI: DISCUSSION AND REMARKS Oﬁ FURTHER STUDY

Because'of their conceptual simplicity, the.combinagorial clustering
procedures are the best known and most frequently used methods. But all. the
combinatorial procedures ténd to be overly sensitive to mavericksA or.'sporta

or 'outliers' or ~wildshots and eo, before, a Combinatorial cluster analysis

is applied some attempt should be made to remove them. Methods for the

-detection and removal of outliners is given in [1] and are usgually based on

principal components analysis. ) .

Also, the combinatorial procedures are overly sensitive to noise in the

[

structure. In the case gf the data in the H patern, the symmetry of the
- +

_pattern is nearly entirely lost due to noise. The {k,r)-method seems rather

"robust against such permutatione and clearly shows the strucggfe s’ symmetry

The closely related Bk’ fine;'clﬁstering, not given here, also indicates this
symmetry while adding a new dimension: It seems to see the structure as

consisting of'two vertical bars in one plane overlying a horizontal bar in

another. T ) , y ‘

Ie nust be admitted that onme of the biggest deficiencies of cluater
anaiyeis is the lack of rigorous tests for the presence of clusters.and for.
testing the significance of those that‘are fonnd. It would‘also be e;tremely
useful, to have a test to tell us.when it was likely to be nrofitable to make
a cluster analysis; aslopposed to some other method. .

The general idea of the ‘clusteriness' of a set of points is related

‘to the concept of entropy. The analogy i{s not to close, because entropy

measures'disorder; and both a regularl§ spaced distribution and a»clustered-

distribution are ordered and thus have low entropy. Also, it is not widely

-recognized that the degree of clustering depends on the scale of the

observations. This is also true in prinéipal .component analysis on the



‘covariance matrix where the.first principal component may only represent a

-~

sfze. factor.,. N v

-~ ~

- .. Perhaps the_Post difficult problem is to set up'satisfactory null

' hypothesis. A random distribution of objects in hyperSpace seems to be the

most generally useful hypothesis, and this is different from the common

assumption of multivariate statisties that a multivariate normal distribution

is appropriate,

Partial answers to thesé problems are provided by the information .

theory and an;sian approach. This is particularly true of the former where
we;hnve a robust, nonparametric, statistic of known distribution en wﬁich
to base tests. For the Bayesian golution, the criteria n(b) and_‘z(h)
while useful, have unknonn properties of robustness, and their distributions
are at nresent unknonn. In this area, the determination of tests of
significance is the most wide open area for further Btudy. .

The minimum and maximum combinatorial procedures represent the two

‘ a
extremes in measuring tne distance between clusters., In attempting to
extend the Eoncept of power to clustering methods, Baker and Hubert [ 2]
|

studied these two methods and found that they aré differently.sensitiveoto
particular partitions of %tjects imbedded in the dissimilarity values. These
results Indicate that the minimum pro:enure is 11kel§ to reject the randomnesa
hypothesis and estimate the true partition better when the 'true' partition
includes a single large subset. - T | | T

From a theoretical point of view, the use of partitiSns of objecte at

. -

a specific level. appears promieing since: it reduces the.poher and estimation

Pl

problem to a tractabie single level. Although the combinatorial problems
are conslderable, concelvably it would be possible to work towards a concept

of power for the complete dendogram by combining the results obtained fog

individual levels, This area of compnter'simulation to compare the power

v

'



of the combinatorial procedures appears pronisingl
After'running any method of.cluster analysis, it is usually helpful
to obtain some:graphical representation of the groups found. One way is to
find the canonical variates, and plot the groups in the space of the first -

two, or in combinations of any two, of these variates. A further possible

way of obtaining a two-dimensional mapping after clustering, is to. compute Coa

an inter-group distance matrix and use this as’ input to a multi dimensional

scaling technique such as that of Kruskal [19] Euclidean distance could be

used, but perhaps better would be either Mahalancbis -Dz, or Sibson's
4 -7 o ‘

4

A . N [ R
and Jardine's [17 ] extension of this to the case of unequal within group
»

variance-covariance matrices. . ' ) N

.

This brings up to point of the relationship between cluster analyeis :
and multi-dimensional sealing. The Bk’ fine, clustering met&fds and the
u—diametric method tend to\yield nice low dimensional structures when the
resulting groups are displayed through the use of a multidimensional scaling -

kN
techniquen In.the Bayesian Continuity map approach the distance ,measure

[}

62 is the square of the stngss used as a criterion in multidimensional scaling

procedures. An investigation of the relationship of cluster analysis to

ordination techniques ‘would prove fruitful but would be difficult because ' -

- L3

* of the topological and differential geometry involved ' v

Application of the, admisaibility criteria to the clustering procedures

reported here, the minimum method and the (k,r)~method look good., This agrees /fgi’(——‘

with previous results reported by Jardine and Sibson. It becomes apparent that -

these conditions are not entirely satisfactory. First, the overlapping
3 -
techniques are treated unfairly which suggests that a different set of

14

criteria be develdped to handle this particular case. Second, the conditions

provided no globally optimal best method. Although the application of other -

[N



" are desirable. All other clustering techniques are "potential sources o .

r

95

criteria tend to suggest that the family of uniform clustering technique%\are

globally optimﬁl among combinatorial procedﬁrea with probable local optimality

r

achieved by the (k,r)-method by virtue of its indifference to noise.

'

‘The fiﬁiing of mixtures of multivariate normal distributions using such

programs, as Normap and Mormix, developed by ﬁolfe.'[53,,54] may be extremely

useful in many gituatione and the sequence of 1likelihocd ratio tests for the

number of groups which-attend these methods is possibly the best procedure

3

available given the assumption of normaiity. The method also has the

considerable advantage in that it does mot rely on an arbitraty choice of

dissimilarity or distaﬁge measure. Unfortunatelj, because of the large number
of parametefs to be estimated, these metheds ideally require largé'aets of

data,,and, in general, they consume large amounts of computer time, Also,

A

the deveidpment of the theory of mixed non-normal distributions is still -

primitive. - Moreovér, thé problem of local maxima of the 1ike11hood'function
arises, and several run‘hgsing'different initial estimates of the paraﬁeteta

19
initial estimates. . . -

Cluster analysis is potentially a very useful techﬁiqﬁe,\but it requires

care in its apglicationz/because of many associated preblems. In many of

) ' . P gy A
the applications that have been reported in the literature,the authors have
elther ignored or haye been unaware of these problems and, consequently, few

results of lasting value can be pointed to. . Hopefuily, future users of the

techniques will adopt a more cautious approach and, in additien, remember that, .

along with most statistical techniqueé, classification procedures are
essentially descriptive techniques for multlvariate data, and solutions given .
should lead to a proper re-examination of the data watrix rather than a mere

acceptance of the clusters produced.

0



96

4

In this paper, an’attempt has been made to review ;egﬁniques of cluster

—

analysis, and to describe and illustrate problems associated witf them.

- ’ ' !
Because of' thé ever-growing volume of relevant literature, any review of the
. ‘

. fleld is likely to be out of date before it 1s started. However, it is hoped

¢

that this paper will serve'some purpose, if only to dissuade people from

‘ . ¥
using wuncritically the nearest clustering program available.
L] \\ . .
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APPENDIX I

AN OVERVIEW OF THE THEORY OF UNSUPERVISED

* BAYESYAN ESTIMATION

i -
1) Convergence Theorems.

Unsupervined.estimation arises.in classes of problems including
nonetationary class probalilities, statistically dependent measurement
vaectors xl,:lt?_,...,_:»_gn » and unknown synchronization ( for wavefotme, and,
sometimee, in the case of images, called unknown registration ). The general

problems were formulated in a Bayesian ninimum-conditional-risk framework by

Patrick 28 -, with the mixture concept empahasized Combined with similar

- work by Hilborn and Lainiotis ., this provides a precise formal definition

of the problem,

Implicit in the solution of unsupervised estimation problems is the

eoncept of identifiability ~ that there should be a one-to-one mapping or

* relationship between a set of mixing parameters and the resulting mixtures.

-,

Teicher's work on finite mixtures wag reduced by Yakowitz and
Spragins 57 to a suffffciency théorem that a necessary and sufficient
condition for the iﬂentifiability of a class of mixtures is the linear

1ndependence of the density functions in each finite mixture.. They showed

-also that a large number of parametric families ( including Gaussian) are

identifiable.

. X .
The Bayes estimator for the true parameter b characterizing h(x)
' .
computes the a posteriori density of each point b in BM using Bayes theorem,
- k.
0 Mkf(xllb )P, ] po(hl.c)

k
p(b |x,) =
- X [numerator]

1)

!
k=1,2,...,V, all 3¥ B
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1 ‘
f// given one sample X1, an a priori density { pO(EF)]kzl and the familty P
f of densities, For a given sequence of n sample En’ an arpriori density, and
the family F, the a posteriori density is
. 3 |
D ere (nkaoky k.
[ L £ 620 pip % _,)

ki, =1
p(o % ) = 2 - ’

) [numerator]

- k=1,2,...,V
Samples xl,gz,...,x are assumed parameter conditionally independent and the
prior probabilities P: are assumed independent of .the samplesg.

Implementation of the above, requires that BM be a finite set of V
vector pointsg ( b '} . For a quadra}ic loss function and this discritized -

parameter space, the Bayes estimator ish
. v .

) kzl b o %,
vith p(b Ix ) calculated as above.
Denoting the true mixture demsity of h(x), we define
1= E[lnthxp*) [ln(h(x]bk))]h(x)dx .
We now show how the convergence properties of p(b |x ) and (b) depend on

n(b ), which {s a measure of the projection of ln(h(xlb )) onto h(x).

The convergence properties of the Bayes estimator on a finite BJ Twere

discovered by Patrick [ 297 and are listed below. The followiné assumptions
are necessary: {3
v » I hGe X%, ,x )L b) hex_[b) ,
II) There exists an integer s> 1 guch that

]
E[|ln(h(x[8") |°] <=  for all bres!
III) The probability measures correaponding to

_ h(ﬁlg_) are absolutely continuous with Trespect

R to the Lebesque measure p .

<

Y
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IV) w[x| |h(_:5|_llk)- h(E|EJ)|>9 J>0 for all g-k,f

" itk
V) B(x|bk) contains the true mixture h(x)

VI) The a priori probabilities po(b ) are nonzero.

Xy
Theorem I:l: Conditinns III,IV and V dmply . ' " :
)b -arg [max 0] fs untque. i
e’ ' ‘ d

In addition conditions I,III and VI imply .
» , .
b) P[%i_’_{ﬂ (E)n'll]'l'

. 4\\ . - .*.
") (e (m) E[|®), - 3'][2] senS /2,

s

Corollary: If condition I in the previous theorem is satisfied and\if in K

addition - !

—

(BB ) (o> =) sup flath(xp) | =

xeB

k *
F=mnax [[b" - b |]
then
E[[I(b) -b |1 R2u-p"
et x B’é an p—dimensional observation having denisty h(¥ Ib ). Individual

observations X . are denoted xi,_z,... 'E-n ‘and are parameter individuﬁly

independent and identically ‘distl;ibuted. . - : '

n ‘ - T -‘;
. ,- . e
Assumptions: : -

I) AHe function n(b) = E[ln(ﬁ’(x|b))] is uniquely maximum at/
b=b";1.e.  b#bp A <n®. o
) %

" II) A practical bound on.B is availlable; i.e., it is known that

b eB" B and that for all b eB’, © 2

b - || &< | '

E4

i
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Y I E (In(h(x[B)) - _(B))% <=, b .
Theorem I:2: Let ¢ be an arbitrarily small ‘positive constant and let Ge

) . * g
denote an ¢ neighbourhood of b . If for .the family H,

conditions I to III hold, then' for n sufficiently large,

LN

8500 fp, s pbl% )bk exp (-n20).
Thus the 'time constant' ofi the convérgér/ce gfite is dependent upon the ‘
magnitude of t:l'u=i gradient of p(b) near _l;; the ra.tev is enhanced the more
sharply pealied the gncti'on n 1is at h*. This result also shows‘ that the rate '
de"pends, through k, ‘up;)n the tightness of the bound oan.

. %* .
Corollary: Let ||b - b ||<<®, then for the Bayes estimator

®, =[5 bp(®I% db ,

N

-

{7 a2 ik (@), - b]|2 <knGRc) exp(n26)4e.
7 - ./ 0 ='n> =1l
The Bayes ex tor (b) minizing average risk on B for a quadratic
b . - n
loss function is defined as, ¢ .

. v
m, = . DG %),
- r=1

- where p(E‘: |3_cn) is the a posteriori prd"bability mass .on kr computed as

L3

n T ~—
'J ol B (B
p(hr i‘t-l) -’ v ‘[i ‘ L] _r-’-1,2,...,v.
I 1 nex[bD)
r=] g=1
N

The following set of results show that p(hr |£n), r¥m, diminishes to z'erc_f

exponentially for large emough n with probability zero. 'I‘he‘,that the

Bayes estimator on a finite set iBl asymptotically superefficieht; i.e., it
L. ) . ) |
has variance smaller than O(l/n). An estimator can be super ﬁficient only

e
s

[ - B R -



' -
et A AR Ry =TT

-

L

-

AN | » o © 101

on a set of parameters of Lebesque zero,

——

'l'heorem I:3: If condition/III holds, then t:he a poeteriori probability mass )
) p(b Ix Jis bounded -for n sufficieyy ldzge by
. ."' p(b |x )r!pr(—nG ), r‘q‘m,
with probability‘ 1, where - —[ n" ) - I'L(b )J

-

Corollar : For n max{ n6 }, the méan norm—square—error )

2o E [ll(b> N SILS A

[ -

\{s bounded above by - . ' -

L]

—

~

o2 L)@k - B expl-nd) -
v jL Zm R -
o2 < Cexp@:& ) v . .

with probability. 1,' where C is a positive constant and
Q

6‘-¢miﬁ{-6j} ’
A j*m :'

T

This last implies that the. Bayes estimator converges in L? to the point

in BV at which n.is greatest. However, for some family H and some b » N WAy

.

. be multimodal and b may not be close- to b .

The form of the Bayes a postetiori probability suggests that there may

»

be other.product-type functions whi¢h can be utilized similar to tl}at‘ of

Bayes. One such function results in the so-called minimum-norm-square-error

i

estimator, denoted (a) - ig defined on B' as ' ] .

(a) - IB,b q(blx )db ,

{ 2h(x |b) - ] E)HZ

gwl
where : . q(h[_:'_:n) = — L —
' f [ f2umerator] db E
B! ' 5.
Varnnl
—



and tpq norm is defined as ) ) . Co _ .
JE@2 = [e2@ax . |
The norm-square-error between h(x[b) and the true density function h(x I_b_*)
‘is defined to be ' _ | |
C e® =lib - halh ),
=lne 2 [12-280 nx(p) ] +|| nexfp] )Il2

This can be described as the expected fractional squared error,

ez(_]_l) ._ f [ h(xlb) - h(xlb ) ]h(ilk*)d_x_
’ h(x|b )

»
-

* o
- ] r e - hal) g
=~ hix|b) . - <

A " We define I®) as

I® o 2hGR ]~ hlp (2
' *
=|hGxfp:3]|2 - e2(p)
Theorem I:4: Let Cr'E denote an &’ neighlibourhood of h*. If h(x[b) has finite

.

means for all be B', then with probability 1, for n sufficiently

" large, ’ .
-1'/ €
Jprg a®li)d < Kew[W(e2@) - o26%)],
r € B
vhere E'SB"GE- QEEGE_ and K is a finit number.
Theorem I:5: Foi‘ n sufficiently large, -

PO ) < epl-nle?®) - e26™I], rm

with probability 1,
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. Cor'ollary: Define the E?:pected norm-square-error in‘-(_a_)n by g2(); 1.e.,
2@ o E|l@, - 172, '
+ For n sufficiently large, .
Uz(n) < -Cexé{ -n ( e.z(k') - ez(y.m))}.
with probability 1, where 0<C <= _  b'e{p'} e

This shows that the con\;'ergence rate depe on both how close h(ﬁlhr), .
::s‘m, is to h(§|_ll*) rlative to h(£|hm), and also upbn how close h(£|__§_*) , In
thé norm-square sense. ‘That is, the probability mass at -_llr, r#m, will
dimihi;h to zero'-faster the closer _,Qm is to 1':_*. .

Theoretical results ‘tha}compare the convergence rate ﬁsing _E(_'?_) versus
the rate us;Lng n{b) are-not ‘_av_ailable. Although such results would be useful
it must be\gamembered that’ pragﬁ:{it’ic lasémeions méy-lead'to estimators Vthat ‘
make such teoretical results unneéeééary. o . -

The regression functioﬁ__i h‘as appeal over N because the former :I.n-volved'
'h(ﬁ-lg) rather than -ln(h(ilg)) and yields better results in situations under
a high siénal—_to-noise agsumption. )

Yhe aver."age norn-square-error in (h)n is
2@ & Elle_ -p*ll%

=1 tm=l

"' - 11 EL D -3p'T [65 -3'1

' ' : B L r ‘t
: _ NCRNEBE (PR
This yields /

) .

5
X

" - t, -~ m -
" " % }E[ €O, - eI LeH - ¢M ]
) r=1 =1 , I .

T,t¥m
ry . £, ‘L
p(( )0| x)p(R)G|x, )

. m *_ . r m
+2E [ (b7)-b ] jm LR -0 ]
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Since the parameter set is bounded,

r m v
e, - 6O [1<& <o ’

By the Schwarz inequality and letting

s2m) " o E [P, - 5712

L we have : ..
| \ v
o2@) < (v-1) R? ;m Ep((6)g %]
s - T ) ' '
v
+ 2Ru§(n) E Jm[p((g )olicn)] + Uti(n)
i v r
,, < Av-1) R2 ;m Elp(® )2 )]
‘f ) T . r-',?_}
) ’l - . . . ] . , t’
[ |

v _
+ 2RgZ(n) rgm Elp (") |x ) I o2().

It can be ghown that,-for large n, p((hr)d@n) < 0 exp(—ndr) s B.€.,

whereas by the Rao-Cramer lower bound, czm(n) > O(nl-'l), so that for large

n, c2(n)= cé(n). That is, the performance of -the quasi-Bayes estimator

is asymptotically indistinguishable from that of the s.a. estimator, which

is best in the semse of having the starting point.at which the regression

function is the greatest,

An alternative way of implementing the averaging technique is to use

_I‘_(E-), and then form the average with q((gr)oln_':n), 1<rxV, as the weighting
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coefficients. Specifically, the 1'th component of (E?)n+1 is computed as

Dy = O+ 26, —ut
' i'n+l n ¢, I,2n r,2n-1"?

i ‘
ur,Zn and ur,Zn-l be;ng noisy measurements of the regresaion function [;i.e., ’
i r
ur’zn-‘Zh(l:nI (R)n+c )—||h(](b) +ced]l?,
i

= r — e - — 2.
| U, zae1™ M @0, e - [[RCIERD, - el
The average is then computed as : ‘ ‘

)4 r
® .= 7 @)
=1

n+l a( (ﬁr)o |=3.

n+l
It may be concluded.the average estimator singles out the s.a. estimator
whose atarting‘point.is the best, in the sense that the corresponding density
function is 'closest' in the norm-square-error &emse to the true density,

The merit o&,t%e Bayes approach is that it shows p(b|x ) must be
computed for each point b in the parameter space. Because this a posteriori
density is‘computed at each point b, the Bayes estimator (b) =fb p(b[x )dp
need not be staring point-dependent. Stochastic approximation is, on the
other hand, starting point—dePendent given n iterations in the stochas'tic
approkimatiou_algorithm, the estimator's performance may be expected to be

poor. : .

Denote the estimate of I'(b) based on X;,X,,. ..,x by

N
1
IL® = < ] {hx]Db) - h(
g=1 .
2 2
- = ) h(ﬁslh)- h(+[b) ap
g=1 '

Let e be some prespecified allowable error in the parameter estimate and‘let
c and d be positive constants with ¢ smaller than e. Denote by (b) the

k'th recursive estimate of b based on n observations. Then

(-Ej)n,llc+l (b )n k “i(—& k + c-‘-?'-j) - -I-‘-(Cé)n,k)

The algorithm increments the estimator in the direction of the gradient
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by an amount proportional to the gradient. The iterations on k terminate when
¢

H® 1 = ®g e

-

For large L, it may be impossible to search over all possible values of
b, The algorithm lgay have application as a follow-up to clustering where the

starting vector-point (P-j)n 1 has been determined using a clustering
' '
algorithm,

It must be emphasized that the estimator resulting from a stochastic

hill climb is generally not as good as the Bayes. estimator. At best, the -

estimétor.j (l:_)n is the
»

»

soliut:ion maximizing ._I_‘nC_Ig_) of ﬂn@) . The Bayes
estimator evaluates -
1 n
ﬂn(l’.?' = 3-);1 la(h(x |b) '
for each point b in the

parameter space and thén takes an average.
. ) _ .
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it} A Class of Min 4 mum=- Jtegral-Sqare-D ﬁtm&e'AZgorithms '

The class of minimum-integral-square-difference algorithms req;ires the
restriction of 4 to a finite get  { g_}N of N vector points.

We are intergsted in unbiased estimét;is of the mixing pérameters of F
which'are contained in L! L2 and which are optilmum in the sense that they
minimize the squared norm of the difference between the estimated mixture
fénction us ing a finite family of functioms and either the hitoéyam mixture‘
funtion or the empirical mixture function. The unbiased vector estimator
2= (B (@), B (a®),....2 @), .
which maximizea. '

]

ffle, T etxlade_ (b |%sx, D
TR A - - :
is an example. Robbins' functions will be used in two simple stochastic
approximation algorithms that estimate mixing parameters. Y

Although the family of distributions is not in L1 L2,

(vg> 0)C v >Y0'F* - {.F*(ﬁlﬁij 12-1) ’ v

* i
F(xla") = FlxlaD, x| < x
-0, otherwise
eVL, i=1,2,...,n N
is in L) L2 and composed of limearly independent functions.

Taking the set of regions -{ I} j-l define a new family of functions

b T e

Td{xig) = X . Kb, ., f=1,2,...,n,

12 fur * T 14

where b - I f(x[ui)dx i=1,2,...,n33=1,2,... n*.
. ij ij — = - . < sitsy [ Rl ] ’

The corresponding family of cumulative demsities may be défined as

-

.
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* . !
1 n t
D(x|a") = tzl X1 (x) z"bij , i-l,%,...,n
A £ gml :
The functions N - { b(EIEi)] I_l are not in L! Z2. But, we can retain their

:meortaﬁt: properties in the cases of interest by requiring that

T,=tal el <y xeovy),
n .

by * =0, 1=1,2,...,n.

The resuléir.)g family 1g in L1 12,

r
The functions '({ f‘(il_a_i)_} ﬂ:-l from F span an M’'-dimensional subspace

Uin L1 L2, Let Ujl be the orthogonal complement of this subspace. Define

the function

EJ- (xlui)

i , -
¢ (E) .|= Ilfl (}_lgi)Hz . . J'.ﬁl,Z,...,M.

These functions are called 'Robbin's functions' and have the property that

i exleh) ax - Sy

Assumﬁng that the mixture density function? h(x) contains only functions in

E|dDy,

. Ly N
t
JP® @i - [ e T fald) pead) ax .
. . J=1

\

1 ' ’
‘ = P(a7), i=1,2,,..,M"
Let Ei(j’k) be one of the parameter pbi;lts 21, E"-,...,_“. If each subset
i1s of size M', there are ( ;},) subsets of parameters, and k denotes the

k'th subset. The last équation suggests the following algorithm for estimating

P(_ai(j’k)), the j'th mixing parameter for the k'th subset.

ALGORITHM 1:

Pn(Ei(j,k)) - ! ¢i(jgk)(£) Cn(i) di! 1-1’2’._"’,!!.‘ )

where cn' is the empirical probaility density function of the samples, This

-
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suggests the basis of the second algorithm due to Robbins, -

) .} n: )
Pn(gi'}:’ )k)) - % 21 N ‘:’i(j ’k) (E.S)I iwl,2,...,M",
: g= :

.or in terms of the last estimate of P(ui(j k)) ,
ALGORITHM 2: _
RS -l oo ALKy i(j k)
P (o Y= — P 1 & )+ o (x )

Q

i=1,2,.:.,4" - !
We now show that the systéms resulting from algorithms 1 or 2 minimize

1), as required. Taking the k'th subfamily of F as before, the gstimated

piﬁture density can be factored relative to ‘{'f(§]5%<j'k))j * into
c! (x) + c--L x) .
T Tk
Then the integral mean square difference becomes, ‘ . {\m/j
i ] Le G- zfcx i“"’)lzdx
. v -
= [ @)+ Cl(x)— { fxla 1O “’)]2dx
“k 1=t

-1 ,II%k x)]]? dx .
o
And tﬁé integral square difference is minimized relative to the
it ) 1 eubfamilies. |
The second algorithm maximizes the weighted 1ikelihood function over BM
Define'the estimator
-(ﬁ)n, = arg [mgx [ m. 1h(x b )P ) )]I b sBM“

/
, -
where PD(-) is the a priori parameter density function on BM . In what follows’

.y
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Br [ew] & | s@ial) an,

: * .
where h(x|b ) is the true mixture functiom.

4

Theorem I:6: If
’ ' '
i) B! 1s closed and Py(b) 1s continuous on B witn Py(0)> O,
11) h(x|b) is ‘jointly measurable 0] in x,b.. I
111) the first and second-order part:[.als- of 1nH(x|b) with
respect to the components © . of b exist and are
: cohtinuous )
\\ . ’ . - * !
tv) % [ sup[ oPlmGxlp)/ @y 1| Jlebll <k B! J<e

for some ¢ >0; conditions 1ii) and iv) imply that

3 inh(x b)

* [
B 2 8, B,

.*] = 0,
b

tb*) - -Eb* [ ﬁ;‘_ﬁ’ﬂl’)—

cij '-a Gi wj- b*] .
31nh 3 lnh
= E.P:"[:aeai aoj .1?_*]
v) c(g*) is positive dgfinit'e.v, ‘
. - . r ‘ * * 4
vi) E*[ sup[ 1oh(x[) - 1abx[b)] | [esb (] > e ped’ <=

for some € >0,
vii) a bound M' on the number of active classes is knowm,
vit) {nG[p) | B B’} 1s identifiable,
' .the-n

pliim®)_ =b" 1= 1.

‘o

e T

a-rw



; , ' : 111
- iii) The Construction of Robbins' Furetims: .

Let M'=n and denote the Robbins’ functions:by'{ ¢ k.i . From their
definition, the

¢ functions -are linear combinations of
] .

{f(xlu »e 1=17
: : .n ' :
k i
¢ (x) = I ooy £Gxlad). 1)
T
Let Q denote an nxn matrix and let
~ . ) . i i
- 9y ¢ ] fleclehe .
The by orthogonality, AQ = I
-.0 I A= Q—l
The row vectors of A give the coefficients for 1)
If . .
P = [ !Zldsl(x) ey & Z ¢(x)]‘
" . A H_B_l —g*? ’n

g=]

is the vector of mixing paramete estimates based on n samples and

[ P(ul).---.P(un)]

is the vector of true mixing parameters, the mean—square error 1is

5| [z~ 2y[[2] =

using the results E[¢k(§)]

{ E (@ - 2@,

= Png) and ¢ (x ) is statistically

independent of ﬁr(gj) for j#s.

Pl

For many j-problems representing the parameter.space with the finite set
1
{a}

may be an approximation. Nevertheless, with probability 1

» the values
obtained by sequential approximation offthe algorjthm caonvefge at a rate 0(1/n)

although not necessarily.to the true parameter. /lLet ? { (x)P denote the
true mixture. Then the estimator for P(u 1Q k)) has a limit

' [ 028 ) z £_GOP_dx

v

- { e/ ¢i'f3 k) ®f, (x)dx.
1(4 EQ =] g=]
And 1if h(x) £ span{ £(x [a"*¥) } , then, with probability 1,
n . P
. lim z P (ui) < 1. .

i=1

S 3
-
-
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APPENDIX IIL K

THE DISSIMILARITY MATRIX FOR THE gy)

H-CONFIGURATION

112




113

-

N

6660 92 |LBG6 € |IEZ0 ¢ |OOBO CE|UheT7 'V |0%E9 ¢t |8B1I8 6 |982%°C |G08BG VI]G860°0 |S6LG Y7]LZIG0 1 |9621 92| L€
%660°1 |SLTI'BT|1885°0%[S60T°Z |06%6°2E|968L Y [BYS1°8 [0£98°zZE|zs8y v [9106°9€(868Z°% [19€0°62(2H5S°0 |of
84081 7870 |€TL9°8 |Z9EE"9T|BYBO°T |6196°8Z[SZ6Z'Y [9068°L [ZE68°L [IEE0'S [T106°8Z[1s4S*Yy {S66%°LT|sE
Z68% 0 |18Z%°H1|2886°9Z|0T¥S°0 €821 6Z|{Y00T T |¥69%°9 |0200°0Z|60L6°C |09T0°SZ|0968°¢1[€68T 8T |%996° T |vE
1069°L1|¥ST0°T [8ST0°S [8196°%Z|6219°Z -[0916°9Z (5688 Y [6£1E'y [6295°8 oomm\u £069°2E(9096°T [99L1°8T (€€
czog Gz |SY16°y |0L£0°SZ|1ZET €| LL26°2 |BLGB"TH|2226°8 |ZIST vz |SSyw T1[690€ 81 (€858 °vZ 5656 L1|918Z 22| z¢
T96€°8 |LT11S°0 (29SS ZT|LYES HT|9LLT S |Z6ZT L1|92L%°0 |BSZE 6 |STEO"T [00S6°8 |LETT°LT|88E°9 |veeg L 1€
16728 |2st€ t1lzsB6 6%|9€9Z€1(894Z LT [£890° 61|08 6 |1990°€%|€E65°9 [£181°€v|9Z0S 0 |88ZY 9E|4CcLa y- ¢w
1616781 |SSYy° T |28€9°¢ [€49L°wT[€898°'Yy [9TSE ST|T16LE°9 [1420°T |SYET"OT|%EE0"T {9660°LE|08SS°0 |0E8L°61]6
£086°6T |SBED'T [Z6EE'CT|€TLE6Z[E6£50 (9080 EE|TLI0S |109S°2T1(STE9"8 [¥029°8 |9S5L°9Z(0£2Z°8 oqmmnma‘mx
LEES'T |STLL BI[LSTOTSY|%0%y"% |€8YL"ZE{Y980°8 (ZLSL 8 [8IZZ LE(BYI0'S [TBLET0¥[0900°C |0L0S°ZE|%s90 V(L2
(892747 |T58%°T |$695'y |zLz9'Te|85L6°T [980zZ°wE|SoLe 8 [64/8°% [190T"ET(%0L6°T |5808°0%[9955°2 |0£69°%z|9z
1886°0 [0796°L (STET'9Z(8ZBO'Y [6L89 BT (L60L°9 |T19T0°T |ZZEY"0Z|Z99%°0 |0L6%°C2|9€55 9 |B6LL 9T |Z8LY°0) |S2
9068°Y |Z6ZL 6T[EZ0B 6%;90L8"L |TLLS TE|TZHS TT|9C68°6 |LS20°TY}T68T°9 |D0ET %% |061S°0 [E1LE'9E|S9EY T |42
.96£5°0 |88SS"8T[0ST6°9E(0EYS 0 |BSSE ¥E|969T 2 |DUBS T [909Z°67|T¥96°% |068Z°YE[199L°L [9Z0%°9Z|1500°T l£z
£9b9-gz |0T68°E |2856°L1|6966°6€|Ly8Y 0 |20L9° %Y |8828°6 |zc01 81|622% %1 (€942 Z1(L8LL°2€|8146°21)9921°9% |z2
69Z1°2Z[80SY"Z |L9EL 8T [0EEY"ZE|LB0T°T [8Y%T°LE|L0OSE 9 [L£68°£1|8048'6 [€L10°€T|1210°CC|2565°21[68LS 6112
aciy y |C6LEHT[E€895 ZY|ECTS '8 | %8BT ST |8ZTIT €1|086%°9 |szir GE(0ZZ8°E |1698°9€|0L50°T |€SST°0E(1986°1 |02
£€92°Z€ 78OS 9 |62L8°9Z[2199 vy |TEB0°T |6LEY OS|CEEY 2T |L6Y6° 72| 1596 9T,/ L060°8T|0091°TE|TTLL 8T (8589 BZ|6T.
LE9S % |E0¥9°0Z|T6T9°%Z|SS9S T [€09E"LE[SYO0 T |€ST9"2T|2LZI 81 |8E6T 0T|S09T"SZ|9%90°SZ|8192°81(69£0°8 (81T
H0L6"Y [T956°ST{€680°CC|94%96° T |8699 %% |Zevy'0 |9096° 6T (1509 %2 | 005 21 |1265°TE]G95Z 28199 vE|LEsy 8 (21
$996°T |0Z¥L°9T|8508°9Z|0190°T |L¥%E°Z€|908G°0 [L5€8°8- |SROE QL |S6TY"9 |969Z°%Z|v88E QT {6ZSY LT|ceyy Yy |o1
£665° 4z |T126°1 [68€2°9 %286 CC|LSGH°0 |2E49°9c|ehiL L |wwob-g [T0E% 2T|6¥95°% |oTov°9¢|1081°S |6500°%Z )¢t
9900°Z|¢6%2 €1|€S8S°LE|ZLB6"Y [LTIT"SZ|EBEY B [€91Z°S [ZSLL OE|6¥T1S T |8TI6°2€|295%°T [Z001°9Z[€L0S 0 w1
0°0 |2¥68°2T|9S00°6Z|Y¥¥SO°T |SOT9 9T 1SS9°C [1%L6°%. |€LLE°2Z|8TYY T |TTI9 9Z (€005 8 {92Z9°61[086%°0 (€1
0'0 |LZ91°0T|SY61°0CT([EE9S"C |S8Z8°TT|E996°T |€LE%°8 -[88LC % |1916°9 [220L°TZ|%520°S |ssvE-Z1|z1

0°0 |€SBE“HE|L0GG 2L |66T8°2E|2ZSO 9T GL6Y 0 [66%6°0Z|LBES 0 {SOE0°LS[L0L0'T |L99%°2E{TT

0'0 [0L£Q°ZE!BTHS 0 |ZTL1°0T)ze9s79z(2£85°9 |60£8°2€|2sTy 2T |ET106°vZ (6655 |oT

] 0°0 [0£89°0%|%.65'8 |SL0B°ZT|196Z°€T mmmmrm 64144528858 |€120°52 |6

0°0 [9£8.°'TT]0%53°62[026T 6 |09¥EZE|EHyT BT {E88E " vZ]L281°C |9

0'0 |9Zsc"z1)oSyws o |zszyre1|6szL°ZT)1vEg 8 |185% % |;

) 0°C |880Z°9T|1186°0 |YIZI'6%{865% 0 y»Z6L°SZ|9

0°0 |[19£2°L7|9968°8 |8185°ZT|cags 1 |¢

. _0°0 |8EOE°0S|T195°0 |29€8°8Z|%

. . 0°0 |006%°Z%{6ZE0°S |¢’

09 |cesorzz|z

: ) 0°0 "IT

€1” Z1 1 o1 6 g L - g 3 t € y ¢ 1 |-

a P



114

H

x

SLIY LT

0°0 [CIOT"%E|SY15°¢ |SE8Z %¢|0996°0 |6L18 C1|Z96E°9 6¢L7°0 |6590°S [Z2S9°9E Lt
) ;- 070 |28LZ°%Z|T0O19°T {¥SE0°ST|S956°8Z(9ESS 2T (€086 |9%EL 92 |0L21°521162%°0 |96
R . 0'0- |2%85°61[65€S°0 [09€y % |€L16°T |8£29°'2Z|9ZZ6°1 |92%6°0 |1456°%z|ce
. 0'0 [€£0Z°81[6ZLZ70F|%128°6 |2z04°21)2286°41|2295 22|%956% (vE -
: : 0°0 |8250°8 [z69¥°z |989v°9z|s8zy'0 lsesiz (vEl9°9zee
’ . 0°0 |2¥SS*9 |90TE'8T|6161°216448°T 968792z
: " 0°0 |%006°21|5z06°€ |$909°z7 |scoz'er(1e
0°0 [5106°0¢|szve"0z|8259°2 {oe
0'0 |o00s*% [10€Z°6Z(62
) 0°0 |1568°%z|8z
) : 00 |12

I3 9¢ 13 v 3 Zt i3 ot 62 8z i7
TZBY°0 [YY18 61|12y 6€|LB6Y C6|0628 L |2667'8 |6891 Z€| 1G85 Z1]7657 9¢|E028 CE|9ES w2 [79%0°2 |vi61 6Z|ZE
0129°ZE|6190°Z |ZI€8°T [TZTS"0 (Y068°EE{L852°9Z|89TY°Z |SLLE 9E|6ST8"8 |8Y91°8 |8BLIS |S8%8°IE[€0Z6°0 |9¢
BEYO"T |6I61°ZT|T9¥8°SZ(8569 vz [y T |1800°C (9295°61|8L01°S [1564°52[9750°2¢ (6958 12[9ET5 0 |088Y 81 (5E
5808°9Z|TT4%°2 [4982°8 [LEG0°T |L1ET'2€|7LE9°ST|€Y06°L |926L°9€(8240°Z |1905°2 |986%°0 |€€41°9Z|6z9%°y |be
991S°0 [9L%8°ZT|0Z85'BZ| %S0 ¥2|Z120°S 8419 % | L00E 2Z{615L 8 (#TTE"22|02E9°82(CovY 61 |€650°T .| 1502 0Z | e
7L0%°8 |¥906°9T|E928"¥Z|SL8E ZE|€E66°0 [¥SLY°0 |ZOTY'81|90L%°0 -|18%5 27 |069L°8%|95T5 cc]9c6. % |098Z°0Z |26
€£96"% |80y "y 0T8Z"YT[82S6°2T|0S87°9 |6900°% |L826°6 [SvZI'6 |10v6'ST|ezez0z|8zeT 21|2sTh'y |v269°8 |1E
£896°2€|6L12°S [8L10°T |S¥25°8 |6Z2€°SZ(9T18S 8T(0895°0 |80%9°vz|ssc0 sz|9Biz sz|ozez 81 |vz11 62| vi01 2 |oE
Z9E670 19727 HT(98Y0°ZE|€891°GZ|6/81°8 [BLS8"L [0ESL"6Z|9668°21|L€02°0Z|TL6S 92 (8962781 |18E 2 |TS0L 22 |62
T895°T |9%¥Z0'ET[926L ¥Z{€L%9°92|6606°0 [8S99°0 |058E°81|9Trv z |91£8 06| 1841 L€ |80S8" 52| 129670 *| Tooe "81 |8z
£8ST'YE|696S°T 706%°0 |S8/8°1 (8L£4°Z€(TZ80°ST| #1801 |1€8Z°9E|89%0°ET|BTIE Z1{00S% 8 |1925°Z€|266°0 |72
070 [EZLE BT HESO"9E|€LTO TE|HOTY % [¥0S0°S |6692°8Z|S021°8 |1766°82|vE2E " 9¢ |0vv0 9z |0LES 0 |Zvis-9z |97
0'0 |6Y88°C |ZOTS"Z [0S6L'61|2252 1[TOLY 2 [L29€°2Z(9509°8 (245676 [LL16%Y |Si0s°21|L190°T lcz
070 |06£Z°% |OT99-TE|ZZ66°EZ|¥98Y°0 |1T0T°ZE|6L8E 81(6S69°L1|€292 21 |%00E €£{1988"0 |4z -
0°0 |€£262°9€{ZTH0L 8Z|6E88° Y |7CSB 6€|0661°S |vzLs*y |1219°z |ve6z ze|wise z ez
. 0°0 |T625°0 |6£8Z°9Z|6T95°0 |T199€ 2 (L6567 | TIEC 9E[9048°1 (S922°¢SZ |22
0°0 |8LY9°LT1|%8E0"T |/826°SE|60z1°27)L606°6Z|vvyy 2 |0Lgs 81|12
. : -« |00 |v0£L wz|vzL0°81|965€"81|90LE 21 |v210 92]vT6v 0 oz
. 0'0 [loe8T 6%|ZSvE 95! €050z 128% Y |50z 92|61
. ' ~ 0°0 |8v6%°0 [10%5°0 |9699°Z€{1919°21 8T
g 0'0 |[T9%0°1 |LzEl'6E|cEL8 21|21
— . . . 1 0°0 |9svy 8z|Syy6 L |91
0'0 |gsno'szler
| . . 0°0 |%1

9z ST =]z ¥ 77 iz | oz 6T | 81 1 91 5T . T

- L " ’ -

. . - ) e AA.- e - -

e X Dt

a



R AT TR T

115

. BIBLIOGRAHY >

[l,r Anscombe, F J. 'Rejection of Outliers.’ Tecmometrics,2, 123 146,1970

[2] Baker F.B. and Hubert L.J. Measuring the Power of Hierarchical
Cluster Analysis. JAS4,70,31-38,1975 ‘
ESJ Ball: G.H. Data Analysié in the Social Sciences:.-What about the
: Detailg? 1In Proceedmgs of the Fall Joint Computer
Corference, Stan ford. New York: Maemillan, 533-559,1965

[ 4] - Clagsification Analysis Stanford Research Institute,
SRI project 5533, 1971

[5] =Bolshev, L.N. Cluster Analysis Bull. I.S.I., 43, 41l1- 425,1969

[6] Bonnér, R.E. On Some Clustering Techniques. I.B.M. J. Res. Dev.,
: 8, 22-32, 1964 ~-
. 2
{7] Cooper, D.B. and Cooper, P.W. Nonsupervised Adaptive Signal
‘ Detection and Pattern Recognition. Biformation and
Caitrol;7, 416-444, 1964 Qb - -
[8] Day, N.E. Estimating the Components of a Mixture of Normal
Distributions. Biometrika, 56, 463-474, 1969
ot
[9] Everitt, B. Cluster Analysis. London: Heineman Educational Books:
1974 ‘

[10] Fisher, L. and Van Ness, J. Admissible Clustering Procedures
Bzometrika 58, 91-104, 1971

[11] Friedman, H P. and Rubin J. On -Some Invariant Cri%eria for Grouping
: - "Data JASA,62, 1159-1178, 1967
"
[12] Gitman, I. and Levine, M.D. An Algorithm for Detecting Unimodal
Fuzzy Sets and its Application as a Clustering Technique.
IEEE Trans. Comp. , C19 583-593, 1970

[13] Gower, 3.C. Multivariate Analysis and Multidimensional Gecmetry.
' The Statistieiom, 17, 13-25, 1967 )
[14] .- A~General Coefficient of Similarity and Some of its
Properties. Biometrics, 27, 857-872, 1971

[15] Gower, J.C.'and Ross, C.J.S. Minimum Spanning Tress and Single -
Linkage Analysis. Appl. Statist., 18, 54-56, 1969

8



[16]
[17]
(18]
[10]

" [20]

[21]
[ 22]
[

[ 23]

[ 24
[25

[ 26

5 . . [

“( ' (116 - .
Jardiné, J. Towards a General Theory of Clustering, Biometrics,

25,609-610, 1969

Jardine, J. and Sibson, R. 'Matheﬁa%ical Taxonomy. .New york:
John Wiley and Sons:1971

i

Johnson, S.C. Hierarchical Clustering- Schemas Psychometrika,
32, 241-254, 1967 ! o

Krugkal, J.B. Nonmetric Multidimensional Scaling: a Numerical
Method., Psychometrikz, 29, 115-119, 1964

Kruskal, J.Bs and Carroll, J.D. Geometrical Modeas and Goodness-
of-fit Functions. In Multivariate analysis
(P.R. Krishnaiah, ed.), II, 639-671. New York:
« Academic Press: 1969

Kuhns, J. Work Correlations and Automatic Indexing. Res Rep.,
Ramo Wbolbrzdye Lorp. , California: 1957

Kullback, S. Information Theory and Statistics. New York:
John Wiley and Sons: 1959 ' ~ .

Lance, G.N. and Williams, W.T. A General Theory of Classification
Sorting Strategies. I. Hierarchica} Systems. Cbmput. Je o,
9, 373-380, 1967

A General Theory of Classificatory Sérting Strategies.
II. Clustering Systems. Comput. J., 10, 271w276

" Ling, R.F. On the Theory and Construction of k-clusters.

Comput, J. 15, 326-332, 1972 ’ —

A Probability Theory of Cluster Analys:f.s *JASA, 68,
159-164, 1974 ‘ )

L Zi]V,Mahalanobis, P.C. On the Generaliz¢d Distance in Statistics.

[ 2d

[ 24

[ ad
[ 31

[ 32

Proc. Natl. het Scei (IMga), 12, 49-55, 1936

Patrick, E.A. Learning Probability Spaces for Classification and ‘
Recognition of Patterns with or without Supervision.
Ph.D. Thesis, Purdue University, Lafayette, Ind., 1965

As&mptotic Distribution of Maximum Likelihood Estimators
for a Nonsupervised Adaptive Reciever. IEEE Iitem.
Con feren ce Record, Philadelphia, 1966

\\\\ On a class 6f Unsupervised Eétimation Problems,
IEEE Trans. If. Theory, IT-14, 407-415, 1968

Concepts of an estimét;on System, Adaptive System and
a Network of Adaptive Eatimation Systems. JEEE Trats.
System seince ard Cybernetics, 1, 79-85, 1969 ’

Fundamentals of Pattern Recognition. Englewood Cliffg,
N.J. : Prentice-Hall{Inc.: 1972




LY

st T Y Ty e e T

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

s
i

[43]

[44]

[45]

[46]

a

117

Patrick, E.A. and Carayannopolds, . Codes for Unsupervised
Estimation of Source and Binary Channel Probabilities.
Bformat'wz ad Cotrol, 14, 358-375, 1970

Patrick, E.A. and Costello.’ Asymptotic Probability of Error

using Two Decision-directed Estimators for Two Unknowm.

Meens.  IEEE Travs. Iif. Theory, IT-14, 160-162, 196

Unsupervised Estimation and Processing of Unknown

Signals. Purdue School of Electrieal Btg—ueertng,
- Tech. Rep EE 69-18, 1969

On Unsupervised Estimation Algorithms. IEEE Trane. I f.
Theory, IT-=16, 556=559, 1970

Patrick, E.A. and, Hancock, J.C. The Unsupervised Learning of
Brobability Spaces and Recognition of Patterns.
JEEE Item. Coivention Record, 1965

Interactive Computation of Aposteriori Probability
for M-ary Nonsupervised Adaptation. IEEE Trans Iif.
Theory, 1T-12, 483-484, 1966

Patrick, E.A. and Liporac‘e,L. Unsupervised Estimation of
Parametric Mixtures. Purdue School of Electrical
Bigineert ng Tech. Rep. , EE 70—31, 1970

Patrick E.A., Costello, J.P. and_ Monds, F.C. Decision

Pirected Estimation of a Two Class Decision Bounda
IEEE Tr'ms. Computers, C-19, 197-205, 1970 -

Rao, M.R, Cluster Analysis and Mathematical Programming.
JASA, 66, 622-626, 1971 *

Rubin,J. Optimal Classification into Oroups: an Approach
for Solving the Taxonomy Problem. J. Theor. Biol.,
15, 103-144, 1967

Sakrison, D.F. Stochastic Approximation, a Recursid% Method
. for Solving Regression Problems. I Advances in
Communjcation Systems (A.V. Balakrishnan, ed. ),
51-106, New York: Academic Press: 1966
r
Shepard R.N. and Carroll J.D. Parametric Representation of
Monlinear Data Structures. In Multivariate Analysis

«(P.R. Krishnaiank, ed.). New York: Academic Press:
1966

Sibson, R. A Model for Taxonomy I1I. Math Bicseti ., 6,
405-430, 1970

Some Obgervations pn a Paper by Lance land Williams.
Comput, J. , 14, 156~157, 1971

N J

8

A



e g R TR

—

[4a7]

" [48]

[49]
[50]

[51]

[s2]

[53]

[s4]

[55]
[56]

{57]

118

.Sneath, P.H.A. A Comparison of Differeht Clustering Mehtods
- as -Applied to Radomly Spaced Points. (lassification

Soe. Bull. , 1, 2-18, 1966 .
Evaluation of Clustering Methods. In Numerical

Taxonomy (4.J. Cole, ed.). London: Academic Press:

1569

Sokal, R.R. and Sneath, P.H.A. Principles' of Numerical
TaxohoEx. San Francisco: W.H. Freeman and Company:

1963

Switzer,P. Statistical Techniques in Clustering and Pattern °
Recognition. Department of Statistics, Stanford Univ.,

TR139

Ward, J.H. Hierarchical Grouping to OPtimize an‘OBjective

Fiﬁction. JASA, 58, 236-244, 1963

~f
v

Wolfe, J.H.[ A Computer Program for the Maximum Analysis of
Types. U.S. Naval Persowmel Research Activity, Tech,

Yakowit;,

Yakowitz,

Bull. , -65-15, 1965
NORMIX: Computational Methods for Estimating the
Parameters of Multivariate Normal Mixtures of

Distributions. U.S. Naval Persamel Resecarch Activity,

Tech. Memo. SRM 68-2, 1967

Pattern Clustering by Multivariate Mixture Analysis.

U.S. Naval Persomnel Research Activity, Res. Memo
SRM 69-12, 1969

A Monte-Carlo Study of the Sampling Distribution of

the Likelihood Ratio for Mixtures of Multinormal
Distributions. Naval Persowmel and Training
Rescarch Laboratory, Tech. Bull. STB 72-2, 1971

S. A Consistent Estimator for the .IJdentification
finite Mixtures. Am. Math Statisties, 40,
1728-1735, 1969

of

S. and Spragins, J. A Characterization Theorem cn

the Identifiability ¢f Finite Mixtures. sn. Math
Statistics, 39, 209-214, 1968



" VITA AUCTORIS'

Graduated St. Annes High School, Tecumseh, Ont,

Received B.A. from The University of Windsor

119

1963

1972 .



	A survey of cluster analysis and its admissible procedures.
	Recommended Citation

	tmp.1363370417.pdf.Ptv0h

