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Abstract

’

The work presented in this thesis describes a digital interface Intellectual Property (IP)
core, for use in a System-on-Chip (SoC) environment. This IP core allows the main SoC

bus to read and write to peripheral devices, such as A/D and D/A converters,

respectively.

The microprocessor IP core typically defines the properties required for the main SoC
bus. In the thesis the system bus requirements are based on the use of the ARM IP
microprocessor core (V2.0). Both high performance bus (AHB) and peripheral bus (APB)
specifications are available, together with state transaction specifications for bridging
between the two bus systems. Peripheral IP cores connect to the APB bus, which

interconnects to the APB port on the interface (bridging) IP core.

This thesis develops a high level Verilog description of an interface (bridging) IP core
and a Verilog description of related interface circuitry that would be resident in the
peripheral IP cores. The interface IP core has both an AHB port and an APB port. The
Verilog description of the interface (bridging) IP core and the circuitry resident in the
peripheral IP core have both been mapped to a 0.35-micron CMOS technology. The
interface core is comprised of 1612 elements consisting of logic gates, multiplexors,

inverters, and shift-registers.
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Chapter 1

Introduction

1.1 Introduction

The world market for electronic systems is following an exponential growth curve. The
functionality and value of electronics-based products are increasingly being embedded in
the integrated circuits that are the critical elements of these products, most noticeably in
the areas of communications, multimedia, and transportation. The functionality of
integrated circuits is growing to system-level proportions in which several complex sub-
components, including logic, memory, numerical and signal processing, and radio
frequency circuits reside on a single chip or chip set. Creating single chip solutions to
system challenges is already the target of intense research and development effort around
the world, and so-called “System-on-Chip” (SoC) designs, are becoming closer to a
reality. Semiconductor manufacturing technologies are routinely capable of
implementing chips comprising millions of gates, with hundreds of thousands of
information bits spread over a constellation of embedded memories together with

embedded communication networks and analog or mixed-signal interfaces.

We are now entering the era of block-based design (BBD), heading toward virtual

component-based SoC design, which is driven by our ability to hamess reusable virtual

—
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components (VC), a form of intellectual property (IP), and deliver it on interconnect-

dominated deep submicron (DSM) devices.

1.2  Overview of SoC design

The conventional approach to integrated circuit design is to merge large numbers of
simple components, through integration techniques, to produce complex chips, which
become subsystems of a printed circuit board-based system implementation. The shift to
SoC implementation involves a phenomenal increase in complexity by merging
subsystems of chip-level complexity into a single chip. The subsystems that make up this
SoC include standard interface blocks, reused design cores, embedded software, and new,

innovative, custom designed “user blocks”.

The SoC design methodology is a new paradigm in digital logic and microelectronics. It
is a method by which whole systems are created on a single integrated circuit chip. In
many case, this required the use of IP cores that have been designed by multiple IP core
providers. SoC is similar to traditional microcomputer bus systems hereby the individual
components are designed, tested and built separately. The components are then integrated

to a finished system.

SoC design is defined as a complex IC that integrates the major functional elements of a
complete end product into a single chip or chipset. In general, SoC design incorporates a
programmable processor, on-chip memory, and accelerating function units implemented

in hardware. It also interfaces to peripheral devices and/or the real world. SoC designs
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encompass both hardware and software components. Because SoC designs can interface
to the real world, they often incorporate analog components, and can, in the future, also

include MEMS components.

13 Reuse — The key to SoC design

The conventional Fundamental to the possibility of highly integrated SoC designs is the
notion of design reuse. Reusing IP has long been touted as the fastest way to increase
productivity. Chip designs have for the last 20 years reused design elements. What has
been changing has been the level of reuse abstraction. In an ASIC style flow, involving
RTL logic synthesis and automated standard cell place and route, the reuse abstraction
has been at the basic cell level, where a cell represents a few gates of complexity. In
addition, reuse of standard modules produced by generators or by hand, such as

memories etc. has been common.

SoC design has involved the reuse of more complex elements at higher levels of
abstraction. Block-based design, which involves partitioning, designing and assembling
SoCs using a hierarchical block-based approach, has used the IP block as the basic
reusable element. This might be an interface function such as a PCI or 1394 bus interface
block; an MPEG2 or MP3 decoder; an implementation of data encryption or decryption
such as a DES block, or some other complex function. The importance for SoC using an

IP is increasing in modern design methodology. The past design method is not suitable.

1.4 SoC interface and communication

Chapter 1  Introduction 3



The main goal in the design of numerous microcomputer-based systems is to produce a
reliable, high-performance, easy-to-use product at the lowest cost. An important part of
the design is the interface between the microcomputer and the equipment it monitors or
controls. Interfacing is a term that applies across a broad range of electronic
implementation. It relates to systems as well as to individual transistors. The addition of
interfacing circuitry to a microcomputer provides a useful means of expanding capability
and enhancing performance. It gives the microcomputer the ability to communicate with

a variety of external devices, or other computer systems.

Designing functional parts of large digital systems is no longer the key element of
successful implementation. Instead, the on-chip communication and interconnects form
the challenge. Communication using traditional methods such as on-chip buses is
complex to design, verify and control. Especially, the traditional methods will neither
have sufficient flexibility nor tolerate high on-chip noise. When the internal
communication of the design gets more complex it will also increase the design
productivity problems. It is a very well known fact that already now designers cannot use
all the capacity that the processing technologies are providing. Thus in the future SoCs
not only the functional parts but also the internal communication structures must be built
using reusable blocks with configurable architectures and interfaces. That kind of
interconnection network can be adjusted according to the application with minimum
additional design costs. By using a reuse approach through the design process, including
communication design, the design time and cost can be decreased. This development of

methods is forming the design and implementation of SoC communication.
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Fig.1.1 illustrates the generic architecture of a SoC. System designers obtain cores in hard
(implemented in a particular technology) or soft (register-transfer-level) format from
cores. Cores are integrated via a custom or commercial interconnection network with a
controller and a timing and function interface to the external world. Cores can be either

new or legacy cores — inherited from existing designs.

Core Core
library A library B
v 4R
Core 1 Core 2 Core 3
: ! y -—
Interconnection switch Interface | 1{0]
«—>

!

Controller (in HDL) or microprocessor

Figure 1.1: Generic SoC architecture

1.5  Thesis overview

The primary objective of this research is to develop a digital interface IP core, which
enables the programmer to transfer a block of characters from peripheral devices (like
MEMS) to the SoC main system bus. In addition, the interface IP core will also be
implemented to enable the programmer to transfer data from main SoC bus to peripheral

device, like a D/A converter.

Fig. 1.2 shows the flowchart of MEMS signal.
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MEMS MEMS CMOS CMOS

Acoustical —{ Flip Chip —{ Signal —| AD

Array Socket Conditioning Converter |
Digital DSP —
Befm Processor Amay Digital SoC
Steering And Control Interface Main
Engine Algorithm Interface IP Core Bus

Figure 1.2: The flowchart of MEMS signal

The design of embedded SoC IP core will be based on giving a written specification for

the on-chip interconnection.

1.6  Thesis organization

This thesis is organized as follows: Chapter 2 introduces some interface principle and
methods. Chapter 3 provides information of some on-chip bus interconnect architectures.
After the comparison, one of them will be selected as the basic architecture of the
designed IP core. Chapter 4 describes the designed IP core’s specification. Chapter S lists
the design partitioning steps, including the description of core modules and testbench
modules. Chapter 6 shows the synthesis (Synopsys) and physical design (Cadence)
processes by using CMOSP3S technology. Chapter 7 concludes this thesis and gives a

future direction.
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Chapter 2

Interfacing Techniques

2.1 Introduction

The component elements of the microprocessor are interconnected by wiring paths
known as buses. There are three types of buses: address, data, and control. The address
bus carries binary-coded patterns (addresses) from the microprocessor to the ROM,
RAM, and peripheral interface. The addresses identify unique locations that will be the
source or destination of information transferred to or from the microprocessor. This
information travels over the bi-directional data bus. The information falls into the four
general categories of instructions, control words, status indicators, and data. Instructions
contained in ROM are executed by the microprocessor, but intelligent peripheral devices
that contain their own processors can execute instructions initiated by the microprocessor.
Control words usually originate in the microprocessor and are transmitted to intelligent
peripheral devices. Data are available from all elements of the microprocessor and travel
on the data bus. The control bus contains a variety of signals such as reset, interrupt, halt,

acknowledges, and so on.

The interface unit offers the following operations:

e Write a single data element or block write;

~
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o Send a Read-Request for a single data element or Read-Request for a block;

e Transmit interrupt requests to the processor.

A programmer sees the interface as eight registers that are Data, Address, Command,
Begin Address, Data Amount, Status, Interrupt Address and Interrupt Data. All of these

registers are parameterized to width of the processor bus.

2.2  Design considerations

The most suitable method of interconnect will depend on the type of information to be
transmitted, how frequently transmission occurs, the way in which the bus lines are
shared, and the urgency of the communication. The main factors that influence the

structure of the bus interconnections may be summarized as follows:

e How rapidly data are transferred;

e  Whether concurrent communication is required;

e How often devices communicate;

e How long a delay between requesting and starting transmission is acceptable;

e How much information is transmitted during a single transfer;

e How likely are transmission errors;

e How reliable are the devices controlling the bus;

¢ How important is it that the bus continue to function correctly if one or more of
the interconnected devices fails;

e Whether all devices and communications are to be treated equally;
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e Whether it is important to minimize the number of interconnections and to
simplify the bus interconnection logic;

e Whether the devices to be connected are physically remote;

e Whether the interconnect scheme must provide for expansion in terms of the

number of interconnected devices.

23 Interface scheme

Selecting the best interface method for each IP is crucial to use the full power of IP. In
this section, we explain the interface methods we support. The general interface method
is shown in Figure 2.1. It can have in/out-buffers if needed and the in/out-controller that
controls the interface scheme. The protocol transformer transforms IP specific various
protocols into our standard synchronous one. We have selected to use the synchronous
protocol as our standard one due to the fact that many IPs operate in synchronous mode.
The operands in memory are fetched by the in/out-controller and passed to the in-buffer.
The data in the in-buffer is passed to the IP via protocol transformer. The results from the
IP are stored in the out-buffer, and then passed to memory under the control of the in/out-

controller.
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From memory
and/or kemel To IP

In-Buffer [ Protocol Transform —>

To memory

and/or kemel From IP
<+ Out-Buffer |[¢—1 Protocol Transform [¢

Figure 2.1: General interface method

By changing the in/out-controller and/or by inserting/eliminating the buffers, various
interface methods are possible. The factors we consider in deciding a specific interface
method for an IP are as follows. First, input and output characteristics of IP are
considered: the number of input (output) ports, the input (output) data rate, the number of
input (output) data, the latency from input to output, and whether the IP is pipelined or
not. Second, parallel execution is considered. Parallel execution enables additional

reduction in execution time by overlapping the execution of kernel with that of IP’s as

illustrated in Figure 2.2.
Kemel: |- A -|-—|-C-|-D | |A-j8--D-| Overlap of execution
[P: o] B fooeeeed] | |
Sequential execution Parallel execution

Figure 2.2: Execution of four code segments, A — D, in kernel and IP
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According to the above analyzing, we support the interface type shown in Figure 2.3. It
has very powerful performance. For this type, the in/out-controller is implemented in a
FSM. The buffer enables to handle an IP having more than two in (out)-ports by
assigning a buffer to each port and to transfer high-rate in/out-data. In fact, high-rate
transfer occurs between the buffer and the IP, while low-rate transfer occurs between the
buffer and FSM to fill the data required to start the IP into the buffer and to move results
from the buffer to memory after the IP finishes its job. In addition, parallel execution
without memory contention is possible because the IP accesses the buffers instead of

memory.

FSM Buffers

X-Memory |« ( 2 > Ls
=@ == {7 Je

Figure 2.3: Hardware interface with buffer

In our specific IP core design, we need to transfer data between the high-speed system
bus and low-speed peripheral devices (such as a A/D converter). Under this condition, the
input data rate is different from output data rate. We use a kind of elastic buffer — FIFO to
solve this problem. FIFO can form a bridge between subsystems with different clock

rates and access requirements. A detail will be given in Chapter 4.

24 Device select signal
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When interfacing a peripheral to a system master, each device needs to be given a unique
address. The microprocessor selects the device it wants to communicate with by
supplying a suitable ‘device-selection’ pulse to the device’s enable line. There are
normally many addresses available for the designer to use in deriving device-selection
signal. One method of decoding is memory mapping, in which the microprocessor deals
with a device as one or more memory locations. With this method, the communication is
achieved by executing instructions such as ‘move to’ or ‘load from’ memory. Another
method of decoding is input/output mapping, which is supported by some, but not all,
microprocessors. With this method, the microprocessor executes IN and OUT
instructions to produce and address of an input or an output device rather than an address

of memory.

There are different ways of deriving selection signals. They depend on several factors,
such as the type of microprocessor and the available addresses. We combining two types
of signals produced by a microprocessor to generate device-selection signals. The first is
the device control signal, which allows the microprocessor to control the communication
process; the second signal is the addressing signal, which allows the microprocessor to
identify a device with which it wishes to communicate.

Device-control Signal + Addressing Signal = Device-selection Signal

24.1 Deriving device-control signals

We consider two signals, which identify the direction of transfer of information, the read

and write signals. They permit a microprocessor to indicate whether it wishes to read
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from an input or to write to an output destination. During communications, the
microprocessor generates either of these two signals together with an addressing signal to

identify the device it wishes to communicate with.

24.2 Deriving addressing signals

A microprocessor uses an addressing signal to identify the location of a device within the
addressing area. When interfacing a device to a microprocessor, the designer needs to
consult the memory map of the microprocessor to find the area available for use in
deriving addressing signals. The size and boundaries of the area vary from one
microprocessor to another. A large number of devices can be addressed by a single
unique location. In some case, however, a block of sequential addresses can be reserved
for the interface. In such cases, one or more address locations are allocated to each device
to satisfy that interface requirements may grow or change in future. Therefore, the design
depends on several factors, such as the size of the unused addressing area, the minimum

number of addresses required per device, and future requirements.

Figure 2.4 shows a circuit, which can be used to generate the two signals. The address
needed to set X1 to a low state is represented by 1000 0111 1111 1xxx, which
corresponds to addresses 87F8H and 87FFH. Since output X2 is active only when both
X1 and A2 are low, an addressing signal is produced through X2 when the address lines
are represented by 1000 0111 1111 10xx, addresses 87F8H to 87FBH. Similarly, X3 is
active only when A2 is high and X1 is low. When the address lines are 1000 0111 1111

11xx. This represents addresses 87FCH to 87FFH.
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Figure 2.4: deriving addressing signals

2.5 Device synchronization methods
Three basic approaches are commonly used in synchronization design. They are program-
controlled synchronization, interrupt-controlled synchronization and interface-controlled

synchronization.

2.5.1 Program-controlled synchronization

The device is informed when data communication is required by setting one or more flags
in a command register. It then synchronizes its operation to that of the bus and indicates
that it’s ready to supply or accept the data by setting one or more flags in a status register.
The interfaced device behaves as a reluctant slave. The command and status registers are
directly synchronized devices that are part of the bus interface. The interface must
implement the slave talker and listener data transfer control logic for both the device and

the two synchronization registers. Figure 2.5 shows the flowchart.
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Write device command to bus
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Read device status from bus
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Check device ready for data

Y y
Transfer data
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Figure 2.5: The flowchart of program-controlled synchronization

2.5.2  Interrupt-controlled synchronization

Where the device wishes to be a slave that has the ability to initiate bus communications,
in addition to the slave talker and listener data transfer control logic, the interface must
implement the slave device synchronization control logic of the bus. When the slave
device is ready for bus communication, the device synchronization logic sends an
interrupt request to the microprocessor, which then organizes the appropriate data

transfers over the bus. The interface device behaves as a partially independent slave.

253 Interface-controlled synchronization

In certain circumstances, the interface design must allow the device itself to control the
transfer of data over the bus; where the interrupt response line would be too long for a
slave device; if the data transfer rate is too slow when under control of the master; when

master is overloaded with other tasks that must have priority over bus communication
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with a slave device, the interfaced device behaves as an independent master and the
interface must implement the bus allocation control logic and the master and slave, talker
and/or listener, data transfer control logic. The device and its interface are synchronized
under the control of local synchronization logic. Program-controlled or interrupt-
controlled synchronization is used to indicate completion of the transfer to the other
master device that is talking part in the communication. The method is known as DMA if
the communication is between an /O device and the memory of a microprocessor.

system.

In this thesis, we will apply the program-controlled synchronization to the IP core design.

2.6 Interfacing A/D converters to microprocessor

The operation of numerous systems is based on obtaining a single result regularly
through an A/D converter. This result is used as an input to a software task that is
executed immediately after the end of the A/D conversion process. An A/D converter
provides the microprocessor with a digital value equivalent to the amplitude of the

analogue signal at the time of conversion.

2.6.1  Operating A/D converters

Most A/D converters are designed to accept a command from a controlling device before
commencing a digitization process. This command is called the start of conversion (SC).
It may be in the form of a pulse, a logic level, or a software command. The provision of

such a command is very useful, particularly when digitizing waveforms. It allows a
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controlling device to read the magnitude of an analogue signal at a particular instant of

time. It also makes it possible for that device to reconstruct the signal.

Consider two methods of operating an A/D converter. The first is operation under the
control of a microprocessor. In this method, the microprocessor starts an A/D converter
by supplying the SC command. The second method is often referred to as the free-
running operation. It is based on operating the converter without the intervention of the
microprocessor. In this method, the SC command can be supplied to the A/D converter
from external, or onboard, circuitry. Alternatively, the converter can be connected so that
it does not need an SC command, i.e. one conversion starts immediately after the
completion of another. Use can also be made of a converter that does not need an SC
signal. Many A/D converters produce an end-of-conversion (EOC) signal to indicate the
completion of a conversion. A microprocessor can therefore examine that signal to detect

when to read the digital result.

In the thesis, the A/D converter uses the free-running approach to digitize a value without
receiving commands from a microprocessor. Such an approach removes from the
microprocessor the need for generating the timing signals required for the operation of
the converter. This, however, implies that the microprocessor will no longer be able to

specify the instant of starting a conversion.

In such a situation, the microprocessor controls the data transfer through FIFO. The A/D

converter has three signals connected to the microprocessor: one is enable signal to select
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the A/D converter; one is FIFO control signal to control FIFO to read or write data; the

other one is the transferred FIFO data. The detail will be discussed in Chapter 4.

2.62  Reducing the involvement of the microprocessor

There are two methods to fulfill the requirement. One method is to allow the EOC signal
to interrupt the microprocessor. This approach permits the microprocessor to read the
digital value as soon as it is obtained without introducing unnecessary delays. The
interrupt activates an interrupt-serve routine, which can be very short, as all it needs to do
is to read the digital result and store it in a specified memory location. The interrupt
routine can also set a software flag to indicate to other parts of the program the
availability of a new value. The procedure consists of two parts, the initialization and the
interrupt-service routine. The interrupt-controlled approach, however, can only take place
if there is access to a hardware interrupt line of the microprocessor to which the EOC line
can be connected. The use of correctly organized interrupts is attractive, especially in
real-time control applications. However, explains that the use of interrupts may not be

attractive when the rate of their occurrence is very high.

Instead of employing the interrupt-controlled approach, a change in the state of the EOC
signal can be detected by the use of the program-controlled input method. One way of
applying this method is to program the microprocessor to continuously interrogate the
EOC line, seeking the detection of a change of state. This, however, leaves the

microprocessor waiting for the conversion to complete. If the conversion time is long,
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then enhanced performance can be realized if the microprocessor is permitted to execute

useful tasks while the conversion is taking place.

There are two methods that a microprocessor adopt the program-controlled approach to
detect the EOC signal generated by an A/D converter and be able to execute useful tasks

during the conversion time.

Solution 1:

One way of fulfilling the requirement is to adopt an approach based on estimating the
time needed for the converter to perform a conversion. The microprocessor can therefore
execute a suitable routine after supplying the SC command to the converter. When this
routine is complete, the microprocessor can examine the EOC line before reading the

digital value.

The success of the implementation of this approach depends on the correct estimation of
the conversion time. In a ramp A/D converter, the conversion time depends on the
magnitude of the analogue-input signal, which is unknown prior to the conversion. In
other conversion methods, such as when using a hardware-based successive-
approximation conversion, the conversion time can be estimated by the designer. If it
takes a relatively long time, the designer can arrange the software to make the

microprocessor execute a suitable routine during the conversion period.

Solution 2:
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It is possible to adopt an alternative approach which is independent of whether or not the
conversion time can be estimated. It is base on storing the digitized result after the end of
conversion without the intervention of the microprocessor. If the converter has no storage
ability, then an external latch can be included. The operation of the converter can be
initiated by an enable command from the microprocessor. When the conversion is
accomplished, the EOC signal instructs a latch to store the results without the
intervention of the microprocessor. The up-to-date conversion result is therefore held in

the latch and will be updated after completing the next conversion.

With such an approach, the microprocessor does not need to read the digital value as soon
as it is produced. Instead, it can command the start of conversion and then execute a
suitable routine. The time required to process that routine could be longer than the
maximum specified conversion time. Since the interval between the microprocessor
applying the SC command and being ready to read the result is relatively long, there will
be no need to examine the EOC line. This reduces the processing time and frees the
associated input line of the microprocessor to be used for another purpose. Therefore, this

solution is adopted in the thesis.

2.7 The operation of the bus

Devices wishing to use a bus must adhere to a set of rules or protocols. These protocols
define the operation of the bus in a precise way. Each bus has a different set of protocols,
although there are overall similarities. In general, bus operation can be divided into three

distinct phases.
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e Device synchronization. The slave device sends a request to the master device asking
for data transfer to occur. The request is acknowledged and its priority examined.
When the request has the highest priority and the master is ready, it initiates a data

transfer over the bus.

o Bus allocation. The master requests use of the bus. The request is acknowledged and
its priority examined by the arbitration logic. When request has the highest priority
and the bus is not being used by any other device, the master is given control of the

bus by the allocation logic.

e Data transfer. The master signals to the slave that data transfer will take place. On

completion, the master relinquishes control of the bus and considers the next highest

priority request.

During each phase of the bus operation, the master and slave devices are required to
generate the relevant bus control signals at particular times and in a particular sequence.
The precise nature of the control signal interactions is defined by the bus protocols. Each
device has a bus interface, which interprets and generates the appropriate control signals
in the correct sequence. The bus interface is a sequential logic circuit whose logical state

reflects both the condition of the bus and the device that it interfaces to the bus.

In the following chapter, we will have an overview of three bus interconnect

architectures. One of them will be selected to design the interface IP core.
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Chapter 3
Interconnect Architectures

e

3.1 Background

Interconnect on a chip is used for signal communication, as well as power, ground and
clock distribution. Interconnect effects that impact performance, compromise signal
integrity, and increase power dissipation are becoming more pronounced as technology
moves deeper into sub-micron feature sizes, and designs are operated at higher
frequencies. In this work, we investigate inter-module signal communication techniques

for high performance in the context of t he SoC application domain.

Industry experts agree that IP integration is the ideal technology for rapid SoC design
development in a cost-efficient and fast time-to-market manner. This technology has not
been widely adopted yet (full-custom designs are still favored) mostly because many
issues still need to be resolved in terms of interfacing these components together. One
idea, now finding wide acceptance in the community, is to register-bound IP’s, thus
temporally decoupling the inside of the block from the outside. This will allow IP’s to be
treated as “black-boxes” that are immune to glitches at the input, and do not generate any
at their outputs, as well as to support “plug-and-play” where system developers can

substitute one black box IP by another, given that they have the same functionality.
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In an IP-based SoC environment the interconnect strategy should be able to support:
a. Connection of heterogeneous components with a relatively large number of pins
in a “point-point” fashion;

b. “Plug-and-play” and the preservation of the synchronous design assumptions.

In this section, we introduce concepts and terminology associated with on-chip
interconnect architectures and describe and compare some popular interconnect

architecture used in commercial SoC designs.

The interconnect architecture topology consists of a network of shared and dedicated
interconnection channels, to which various SoC components are connected. These
include (1) masters, components that can initiate a communication transaction (e.g.,
CPUs, DSPs, DMA controllers etc.), and (2) slaves, components that merely respond to
transactions initiated by a master (e.g., on-chip memories). When the topology consists of

multiple channels, bridges are employed to interconnect the necessary channels.

The interconnect architecture plays a key role in SoC design by enabling efficient
integration of heterogeneous system components (CPUs, DSPs, application specific
cores, memories, custom logic, etc). In addition, the interconnect architecture also
significantly influences the system performance and power consumption directly, since
the delay and power in global interconnect is known to be an increasing bottleneck with
shrinking feature sizes, and through its significant indirect impact on the computation

time and power consumption in the system components.
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I have read three SoC interconnect specifications: IBM CoreConnect, ARM AMBA and
Silicore Corp Wishbone. All of these address the same basic goal: connecting IP cores.
They all provide basic handshaking and variable data bus sizes. None specifies a clock

frequency, which could be a problem when connecting cores from different vendors.

The purpose of this review is to choose a SoC bus for the design, that we would adopt
and use in any core development. Standardizing on a common SoC will help us as a
community to produce cores that can be easily integrated. Bridges to other SoC standards
could be developed and would allow for our cores to be used with other SoC standards as

well.

3.2  CoreConnect

It appeared to be the most complete set of documentation and technically very well
though through. IBM has provided specs for each possible building block PLB, OPB,
DCR1, Arbiter and 64+ bit extensions. IBM also provides a testsuite could not find any

information if they actually charge for it or not).

3.2.1 Logical Bus Structure

Figure 3.1 illustrates the structure of CoreConnect bus.
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Below is a summary of main features of each CoreConnect bus.

3.2.21

Figure 3.1: CoreConnect bus architecture

Technical Details

Processor Local Bus

High Performance bus

Split transfer support

Separate read and write data

Support for 16-64 byte bursts

4 levels of arbitration priority

Address pipelining (reduces latency)

Overlapped read and write (up to two transfers per cycle)

32-64+ bit data bus with 32 bit address space

Supports byte enabling (unaligned and 3 byte transfers)

Late and hidden arbitration (reduces latency)

Chapter 3
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e Special DMA modes, such a flyby and memory to memory

e Address and data phase throttling

e Latency timer (ensures latency is kept to a desired level)
3222  On-Chip Peripheral Bus

e Multiple masters

e 32 bit address space

e Separate read and write data bus

e 8-32 bit data bus

e Dynamic bus sizing

® Retry support

e Burst support

¢ DAM support

e Devices may be memory mapped (DMA support)

e Bus time out function (in arbiter)

e Arbitration support, REQ, GNT and LOCK

e Bus parking support

3.23  Applications
CoreConnect defines a clear structure for all system components and how they connect.
The DRC bus wraps in a daisy chain configuration through all components attached to

the Processor Local Bus.
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I can see CoreConnect to be an important part of a true high performance system, like a
workstation. My feeling is that CoreConnect might be too complicated and offer too

many features that will be unused in simple embedded applications.

33 AMBA

AMBA is very similar to CoreConnect. ARM includes specifications for AHB, ASB, and
APB. The "A" in the abbreviations stands for "Advanced". Descriptions of arbitration and

64+ bit extensions are integrated in to the main specifications.

331 Logical Bus Structure

Figure 3.2 illustrates the structure of AMBA bus.

ARM processor RAM
g Peripheral 1
High-bandwidth AHB or ASB |
External Memory I ———| APB
Interface o
E Peripheral 2
DMA bus master

Figure 3.2: A typical architecture of an AMBA based SoC

The high performance bus can be either AHB or ASB. Both service the same goal: High
Performance System Interconnect. A bridge from AHB or ASB is required to interface to
APB. The function the bridge provides is a simpler interface. Any latency presented by

low performance peripherals is reflected by the bridge to the high performance
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(AHB/ASB) bus. The bridge itself appears to be a simple APB bus master that addresses
the attached slaves and controls them through a subset of the control signals available on

the high performance busses.

332  Technical Details
Below is a summary of main features of each AMBA bus.
3321 AHB
The AHB is the advanced system bus. Its main purpose is for interconnecting high
performance, high clock frequency devices, such as CPU, DMA and DSP. Its main
features are:

e High Performance Bus (New Generation Bus)

e Multi Master

e Split transfers

e Single cycle bus master handover

e Non tristate implementation

e 32 - 128+ bit bus width

e Includes an access protection mechanism, to distinguish between such access as

privileged and non privileged modes, instruction and data fetch, etc.

3322 ASB
The ASB is the general-purpose system bus. It is a high performance interconnection for
micro controller and system peripherals. The main features are:

o First Generation System Bus

e Multiple Masters
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e Burst Transfers
e Pipeline Transfers
e 32-128+ bit bus width
3323 APB
The APB is the peripheral interconnect bus. Focus here was minimal power consumption
and ease of use. The main features include:
e Low performance, low power peripheral bus
e Single Master
e Very Simple, only 4 control signals (plus clock and reset)
e 32 bit address space
e Upto 32 bit data bus

e Separate read and write data bus

333 Applications

AMBA is a basic SoC bus divided into three different sub busses. Depending on
requirements, the system designer has to choose which of the three busses he will
interface to. All three busses consist of an address and one or multiple data phases.
Technically I can see it as sufficient architecture for small-embedded systems, which are

not necessarily performance driven.

34 Wishbone

The Wishbone specification is comprised of Rules, Suggestions, Permissions, and

Observation etc. Not having implemented an interface bus, it is hard to say how complete
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it might be and whether the bus will cover all needs or not. This is especially true for

wishbone.

34.1 Logical Bus Structure

Figure 3.3 illustrates the structure of wishbone bus.

High High
Performance Performance
CPU core Memory
WISHBONE
) High
Arbiter Performance
DMA core

Figure 3.3: The structure of wishbone bus

Wishbone architecture is as simple as one can imagine. A system with many components,
might want to include two wishbone interfaces: one for high performance blocks, and one

for low performance peripherals.

342 Technical Details
e One Bus Architecture for all applications
¢ Simple, compact architecture

e Multi master support
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e 64 bit address space

e 8 - 64 bit data bus (expandable)

e Single read and write cycles

e Event cycles

e Supports retry

e Supports memory mapped, FIFO and crossbar interface
o Throttling of data for slower devices provided

e Arbitration defined by the end user

343 Applications

Wishbone appears the simplest of the three busses I have reviewed. It defines only one
bus - a high-speed bus. Users of wishbone might have to create their own substandard of
wishbone. Additional features and functionality might also have to be added. Therefore,

it might leave a few things to wish for, when implementing high performance systems.

35 Summary

Table 3.1 shows a technical comparison among CoreConnect, ARM AMBA and
Wishbone architectures. All three busses are fully synchronous, using the rising edge of
the clock to drive and sample all signals. There is almost no difference in basic operations
between the busses. The most differences are in the feature set provided and

completeness/relaxation of the specification.
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Table 3.1: The comparison among architectures

IBM CoreConnect ARM Silicore Corp.
Processor Local Bus AMBA 2.0 Wishbone
Bus 32-, 64-, and 128-bits 32-, 64-, and 128-bits | Up to 64-bits
Architecture | Extendable to 256-bits
Data Buses | Separate Read and Separate Read and Combined Read and
Write Write Write
Key Multiple Bus Masters Multiple Bus Masters | One high-speed bus
Capabilities | 4 Deep Read Pipelining | Pipelining Single Read/Write
2 Deep Write Pipelining | Split Transactions cycles
Split Transactions Burst Transfers Supports retry
Burst Transfers Line Transfers Arbitration defined by
Line Transfers the end user
On-Chip Peripheral Advance Peripheral | No Peripheral Bus
Bus Bus
Masters Supports Multiple The APB Bridge
Supported | Masters
Bridge Master on PLB or OPB | APB master only
function
Data Bus Separate Read and Separate or 3-state
Write

Both CoreConnect and AMBA, offer a choice of system busses to the designer. An
integrator might face a problem, when he tries to connect devices designed for the
different portions of those interconnections. Bridges might be required to build a
complete system. With wishbone, all cores connect to the same standard interface. A

system designer may choose to implement two wishbone interfaces in a microprocessor
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core, one for high speed low latency devices and one for low speed, low performance

devices.

At the end I feel it would be a wise choice to adopt wishbone as a primary interface to
our cores. It's signaling appears to be very intuitive and should be easily adopted to the

other interfaces when needed.

According to our specific system requirement, my solution to this interface problem is
Advanced Peripheral Bus (APB), which is based on ARM AMBA specification. AMBA
is an on-chip bus standard that defines a signal protocol for the connection of multiple
blocks in an on-chip system. It provides the “digital glue” that binds IP cores together and
is a key enabler of IP reuse. By designing to the standard AMBA interface, IP developers
an implement and test modules without prior knowledge of the system into which the

component will be finally integrated.
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Chapter 4
Design Specification

4.1 Introduction

According to the above comparison, we decide to adopt APB as the design architecture.
APB is part of the ARM AMBA hierarchy of buses and is optimized for minimal power
consumption and reduced interface complexity to support peripheral functions. It is used
to interface to any peripherals which are low-bandwidth and do not require the high
performance of a pipelined bus interface. APB can be used in conjunction with either
version of the system bus. Connection to the main system bus is via a system-to-

peripheral bus, APB bridge. Figure 4.1 shows the APB in a typical AMBA system.

ARM processor RAM

B | | Pperipheral 1
High-bandwidth AHB or ASB R
External Memory I -—I APB
Interface lc);
£ | | Peripheral 2
DMA bus master

Figure 4.1: The APB in a typical AMBA system

APB has the following advantages:
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e A simple bus

a. Unpipelined architecture;
b. Easy to implement with all the peripherals acting as slaves;

c. Low gate count.

e Low power

a. Reduced loading of the main system bus by isolating peripherals behind
the bridge;
b. Peripheral bus signals only active during low bandwidth peripheral

transfers.

APB is recommended for:

o Simple register-mapped slave devices;
e Very low power interfaces where clocks can not be globally routed;

 Grouping narrow-bus peripherals to avoid loading the system bus.

4.2  Architecture
The whole interface IP core consists of two units: APB bridge and APB slaves. FIFO

buffers transfer data between APB bridge and APB slave.

42.1  APBBridge
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In this IP core design, the main part is APB bridge, which is required to convert AHB
transfers into a suitable format for the slave devices on the APB. The bridge performs the

following functions:

o Latches the address and holds it valid throughout the transfer.

e Decodes the address and generates a peripheral select, PSELx. Only one select
signal can be active during a transfer.

o Drives the data onto the APB for a write transfer.

o Drives the APB data onto the system bus for a real transfer.

o Generates a timing strobe, PENABLE, for the transfer.

The APB bridge behaves like an AHB slave; it uses one clock domain for both AHB and

APB bus side. Figure 4.2 shows the architecture of the APB bridge.

AHB Bus

Base Address
Reg‘sters ‘_ Conu'o‘
Engine
Y And
Address
Decoder
Address lSelect Signal Controll Data
—>

APB Bus

Figure 4.2: The architecture of the APB bridge
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4.2.1.1 Control engine

Control engine has the following functions:

During AHB write, the data flows from AHB to the local peripheral.
o Interacts with the AHB to execute a write.
e Transfers data from AHB to APB.

e Interacts with the APB to write data into the APB-to-peripheral FIFO.

During AHB read, the data flows from peripheral to the AHB bus.
e Interacts with the AHB to execute a read.
e Interacts with the APB to fetch data from the peripheral-to-APB FIFO.

e Transfers the data from the APB to the AHB.

4.2.1.2 Base address register

Base address register is set to reserve system address space to map to the peripherals and
the descriptor FIFO buffer. ARM recommends word (32-bit) alignment of peripheral
registers even if they are 16-bit or 8-bit peripherals. The main reason for this is to make

the hardware interface easier to implement.

4.2.13 Address decoder
Address decoder is used to perform a centralized address decoding function, which
improves the portability of peripherals, by making them independent of the system

memory map. The address decoder provides a select signal, PSELx, for each slave on the
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bus. The select signal is a combinatorial decode of the high-order address signals, and

simple address decoding schemes are encourage to avoid complex decode logic and to

ensure high-speed operation.

Figure 4.3 shows the APB signal interface of an APB bridge.

PSEL1

System bus PSEL2 .
Slave interface l Selects

APB PSELn >
Bridge

Read Data PENABLE Strobe
PRDATA

Reset PRESETn : > Address
PADDR
—P } and

Clock PCLK PWRITE control
—> —>

Figure 4.3: APB bridge interface diagram

422  APB Slave
All other modules on the APB are APB slaves. The APB slaves have the following
interface specification:
e Address and control valid throughout the access (unpipelined);
e Zero-power interface during non-peripheral bus activity (peripheral bus is static
when not in use);

¢ Timing can be provided by decode with strobe timing (unlocked interface);
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e Write data valid for the whole access (allowing glitch-free transparent latch

implementations).

Figure 4.4 shows the signal interface of an APB slave.

Strobe PENABLE

W APB

control PWRITE Slave

Reset PRESETn

Clock PCLK | PRDATA > Read Data
Write data

Figure 4.4: APB slave interface description

423 FIFO

In digital systems, it is sometimes required to transfer data between two asynchronous
clock regimes; that is, between first and second groups of logic where the first group is
controlled by a first clock signal and the second group is controlled by a second clock
signal which is not synchronized with the first clock signal. In such a system, if no
special precautions are taken, there is a possibility that the output data from the first clock
regime may change at approximately the same time as it is transferred into the second

clock regime. Because of variations in tolerances, the individual bits of a data word

Chapter4  Design Specification 39



transferred in parallel between the first and second clock regimes may come from

different clock beats of the first clock regime, resulting in corruption of the data.

A known solution to this problem is to use a FIFO memory to buffer data between the
two clock regimes. A FIFO is a special type of buffer. The name FIFO stands for first in
first out and means that the data written into the buffer first comes out of it first. FIFOs
are usually used for domain crossing, and are therefore dual clock designs. Figure 4.5

illustrates the data flow in a FIFO.

Input Data

1L

Data Storage

4

Data Storage

[ ]
[ ]
[ ]
Data Storage

.

Data Storage

1!

Output Data

Figure 4.5: First-In First-Out data flow
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In this FIFO design, there is no dependence between the writing and reading of data.
Simultaneous writing and reading are possible in overlapping fashion or successively.
This means that two systems with different frequencies can be connected to the FIFO.
Synchronizing the two systems is taken care of in the FIFO. The block diagram in Figure

4.6 shows the control lines of a FIFO.

Full €— —— Empty

Write Clock —» FIFO €¢— Read Clock

Input Data II:> :D Output Data

Figure 4.6: Connections of a FIFO

In order to operate a FIFO with independent Read and Write clocks, some asynchronous
arbitration logic is needed to determine the status flags. The previous EMPTY/FULL
generation logic and associated flip-flops are no longer reliable, because they are now
asynchronous with respect to one another, since EMPTY is clocked by the read clock,
and FULL is clocked by the write clock. Using Gray-code to synchronize the clock will

solve this problem. The detail will be given in section 4.6.

4.24 Connection
Most processors are considerably faster than peripherals that are connected to them.
FIFOs can be used so that the processing speed of a processor need not be reduced when

it exchanges data with a peripheral. Even if the peripheral is sometimes faster than the
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processor, a FIFO can again be used to resolve the problem. Different variations of

circuitry are possible, depending on the particular problem.

In this case, the processor reads input data over an A/D converter (see Figure 4.7). A

FIFO can buffer a certain amount of input data, then set a flag so that the processor reads

the data.
Data Bus
3 4,\h 4’\
[
Address Bus
Control Lines
U UULL IU
Address
Processor Memory Decode FIFO
and
Control
| Control
Input Port
Figure 4.7: Connection of an A/D with a FIFO
43 1/O ports

Chapter4  Design Specification 42



This section contains an overview of all signals used in this interface IP core. It includes
AHB signal list, APB bridge signal list and APB slave signal list. In order to completely
implement the APB bridge, Not only do I connect an A/D converter to APB through

FIFO, but also I connect a read-only device, like a D/A converter, to APB too.

Table 4.1, 4.2 and 4.3 show the AHB signal list, APB bridge signal list and APB slave

signal list respectively.
Table 4.1: AHB signal list

Name |Width|Source Description

hclk 1 Master System clock, which times all bus transfers. All signal
timings are related to the rising edge of hclk.

hresetn |1 Master Reset signal, which is active low and is used to reset the
ystem and the bus.

Haddr |32 Master The 32-bit system address bus.

Htrans (2 Master Indicate the type of the current transfer.

hwrite |1 Master Transfer direction. When HIGH it indicates a write

transfer, when LOW a read transfer.

hsize |3 Master Transfer size, which is typically byte (8-bit), halfword
(16-bit) or word (32-bit).

hwdata {32 Master AHB write data bus.

Hrdata |32 Bridge AHB read data bus.

Hready |1 Bridge Transfer done.
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Table 4.2: APB bridge signal list

Name Width| Source | Description
paddr 8 AHB APB address signal.
psel0 1 AHB APB slave0 (A/D converter) select signal, coming from
the secondary decoder.
psell 1 AHB APB slavel (D/A converter) select signal, same as psel0.
penable |1 Bridge APB strobe signal, used to time all accesses on the APB
bus.
pwrite 1 AHB When HIGH it indicates a APB write access, when
LOW a read access.
prdata 32 APB slave | APB read data bus, output from slave0 (A/D converter).
pwdata |32 AHB APB write data bus, input to slavel (D/A converter).
sbe 4 AHB Write byte enable, used to control FIFO.
devreadyO|1 APB slave | APB slave0 (A/D converter) is ready for the transfer.
devreadyl | 1 APB slave | APB slavel (D/A converter) is ready for the transfer.
Table 4.3: APB slave signal list
[Name Width | Source Description
adenable |1 FIFO A/D strobe
Slave0 fiwr 1 A/D A/D write FIFO clock
(A/D converter) | fffulla 1 FIFO FIFO is full
fidata 32 A/D A/D write FIFO data
daenable |1 FIFO D/A strobe
Slavel daclk 1 D/A D/A read FIFO clock
(D/A converter) | ffemptyd |1 FIFO FIFO is empty
dadata 32 FIFO D/A read FIFO data
44 Operation
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The APB state diagram, shown in Figure 4.8, can be used to represent the activity of the
peripheral bus.

IDLE
PSELx=0
PENABLE=0

ENABLE
PSELx=1
PENABLE=I

PSELx=1
PENABLE=0

Figure 4.8: APB state diagram

Operation of the state machine is through the three states described below:

IDLE The default state for the peripheral bus.

SETUP When a transfer is required the bus moves into the SETUP state, where
the appropriate select signal, PSELx, is asserted. The bus only remains
in the SETUP state for one clock cycle and will always move to the

ENABLE state on the next rising edge of the clock.

ENABLE In the ENABLE state the enable signal, PENABLE is asserted. The
address, Write and select signals all remain stable during the transition

from the SETUP to ENABLE state. The ENABLE state also only last
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4.5

for a single clock cycle and after this state the Bus will return to the

IDLE state if no further transfers are required. Alternatively, if another

transfer is to follow then the bus will move directly to the SETUP

state. It is acceptable for the address, write and select signals to glitch

during a transition from the ENABLE to SETUP states.

Registers

Table 4.4 describes 32-bit AHB address space mapping.

Table 4.4: AHB address space mapping

Bit # Name Description

[31:28] | APB bridge access signal | When bits are set to 1000, AHB is going to access
APB bridge.

[27:11] | APB slave select signal | Which slave is selected to have a transform. In this
case, A/D converter is set to 00000H; D/A
converter is set to 00001H.

[9:2] APB address signal The address mapping of selected slave. For both
A/D and D/A converters, when bits are set to 00H,
the FIFO data output port is selected; when bits are
set to 01H, the FIFO status output is selected.

[1:0] Write byte enable Which bit is enabled to write.

4.6 Gray-code counters

4.6.1 Synchronization: Solving the reliability problem

In the FIFO problem, we need to sample the value of a counter with a clock that is

asynchronous to the AHB system clock. Thus we could land up in a situation where the
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counter is changing from, say FFFF to 0000, and every single bit goes metastable.
However, this means the FIFO will not work. Synchronization will save counter samples

from going metastable, but we still may get sampled values that are wildly off the mark.

The important thing that we must do is to make sure that not all bits of the counter can
change simultaneously. In fact we have to make sure that precisely one bit changes every
time the counter increments. This implies that if you catch the counter transitioning, only
one bit may be in error. This is the best we can do, since we need at least one bit
transition if the counter itself is to work. What we need therefore is a counter that counts
in the Gray-code. This is because the Gray-code is a unit distance code; that is, every next
value differs from the previous in only one bit position. A common use of gray codes is
in reducing quantization errors in various types of A/D coversion systems. It can reduce

ciruit hazards caused by glitches, as well as bring a low power design.

Let now examine how this helps us. Firstly, synchronization means that we will rarely
have the sampled value of the counter go metastable, and second, the value that we do
sample will at most have one bit error. This means that if the counter’s actual value
changed from N-1 to N, you will read either N-1 or N, but no other value. This is
absolutely correct behavior for reading a counter, since at the time of change you need to
make a decision about the value. As long as you decide that the value is the old value or

the changed value, you are OK. Any other value is not OK.

4.6.2  Pessimistic Reporting: Handling errors gracefully
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According to the above, we now analyze how it can be applied to the read and write
pointers of the FIFO. We need to know the status of the FIFO buffer. For this design, the
AHB system clock is always stable. Therefore, for the A/D converter, we synchronize the
write pointer (Gray-coded) to the read pointer. This means we may have a stale value of
the write pointer, since the actual write pointer may have changed to a different value
while we were synchronizing it. If this is so, then the read side thinks that less writes
have been performed (than actually have), and if conditions match, that the FIFO is
empty. In truth, the FIFO may have some data because writes may have taken place that
the read side did not “see”. However, we merely block additional reads and this is OK. It

would be incorrect if we did not block reads when the FIFO was actually empty.

Similarly for the D/A converter, we synchronize the read pointer (Gray-coded) to the
write pointer. The write side sees “delayed” reads, and may decide that the FIFO is full
when it actually has some space. The effect of this is that writing will be blocked till the
reads “become visible” to the write side. In the meanwhile, it will not allow further

writes.

This is called pessimistic reporting. In short, reporting to the read side that the FIFO is
empty when it is not is fine, and so is reporting to the write side that the FIFO is full
when it is not. This acts as if the FIFO had dynamically shrunk a little, and is quite

harmless.
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In case of the word count, we use the same technique, providing a read-side word count
and a write-side word count. The read-side word count is likely to be lesser than the
actual word count in the FIFO, and this is quite alright because the only effect it is
allowed to have is to block further reads. Similarly the write side word count may be

greater than the actual word count, and that too is OK.

This mechanism of pessimistic reporting takes care of gracefully handling errors in the
synchronized value. In fact even if the sampled write pointer value were to remain
metastable for a while, the effect would be to block reads, causing the FIFO to “hang” for

that period for reads, but not causing data errors. The same applies to writes.

4.6.3  Creating the Empty and Full conditions

Remember from the last section that the pointers are not the only things that affect the
empty and full flags. The empty condition is when a read caused the pointers to be equal
and full is when a write caused the pointers to be equal. In other words, to generate the
full and empty correctly, we need to sample the read and write signals themselves with

respect to the other clock.

Since it is not possible to design one circuit that will satisfy pulse sampling regardless of
frequency, we bypass the problem by encoding the read or write information in the
pointers themselves. We keep a pointer width of N+1 for a FIFO that has a depth of 2N

words. The FIFO is deemed full when the most significant bits of the counters differ and
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the remaining N bits are equal. The FIFO is deemed empty when the pointers are exactly

equal.

We can convert from Gray to binary and binary to Gray using the simple equations:

8n = ba

8i=b @by Vizn

And

b = gn

bi=gi @bis; Vi#n

In the equations above, the subscript refers to the bit number in an n+1 bit binary or Gray

value.

Also knowing that a counter is nothing more than a set of flip-flops and an incrementer,
we do the following — convert the Gray value to binary, increment it, convert it back to
Gray and store it. This is the general solution to the thomy problem of generalized n-bit

Gray arithmetic. This generalized counter is shown in Figure 4.9.

Gray to Binary to
Binary Gray Registers

Converter Converter -'

Figure 4.9: Generalized Gray counter architecture
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Chapter 5

Design Document

5.1 Overview

The IP core provides an interface between the AHB main SoC bus and APB slaves. It
consists of two independent units, one handling transactions between the AHB system
bus and APB bridge; another one handling transactions between the APB bridge and
APB slaves. The core has been designed to offer as much flexibility as possibie to all

kinds of applications. An instruction of the IP core is shown in Figure 5.1.

AN N

Interface IP (Bridging) Core
Slave IP core 0
A Base Address APB
| . Interface | A/D
uP | e C FIFO
IP Core Circuitry
A A
H P °
B (:Eo;'\; Address NN B .
RAM 4 a B A Decoder GOI'—(/ °
IP Core \—v A Slave IP core n
U . APB
- D Interface | D/A
Control Engine FIFO
ﬁ And Datapath Circuitry

\ N (n=2"%

Figure 5.1: The conceptual block diagram of the interface IP core
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The interconnection of the designed interface IP core is shown in Figure 5.2. The
microprocessor acts like a master on the AHB bus. RAM and APB bridge are two slave
IP cores controlled by the microprocessor, which drives out the address and control
signals indicating the transfer it wish to perform. A central decoder is required to control
the read data and ready signal multiplexors, which selects the appropriate signals from

the slave core that is involved in the transfer. The maximum slave amount APB bridge

can take is 2'S.

== T2

APB Peripheral Bus

RAM Core

rjHi]LLE

i =
]]]:{ }

Figure 5.2: The interconnection of the interface IP core

A/D D/A

A secondary decoder within the APB bridge unit outputs select signals to each peripheral

slave IP core A/D and D/A converters. Through FIFO buffers, data transfer between the
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APB bridge and peripheral slaves. The ready signals of both slaves act on the APB bridge

together.

5.2 Core file hierarchy

The hierarchy of modules in the interface IP core is shown here with file tree.

top.v
bridge.v
adc.v
. adfifoctl.v
. fifowr.v
. fiford.v
dac.v
. dafifoctl.v
. fifowr.v
. fiford.v

5.3 Description of core modules

53.1 The top module
The module top.v consists only module bridge.v and two APB slaves: adc.v and dac.v. It

doesn’t have any logic inside.

5§32 The bridge module
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The module bridge.v is used for transacting data between AHB and APB. It consists 9
parts:

a. AHB-to-APB state machine;

b. HREADY signal generation;

c. AHB read data HRDATA generation;

d. APB write data PWDATA generation;

e. Write byte enable signal generation;

f. APB write signal PWRITE generation;

g. APB selection signal generation;

h. APB strobe signal PENABLE generation;

i. APB address signal PADDR generation.

The bridge state machine has totally 6 statuses. The default status is idle. When AHB
selects the APB bridge to access, the state goes to address preparing status. At this state,
AHB checks the status of APB bridge. If the corresponding APB bridge is ready, the state
goes to write or read cycle directly, otherwise, the state moves to write wait or read wait

status till APB bridge is ready.

For write operations, the AHB master will hold the data stable throughout the extended
cycles. While for read transfers, the APB bridge does not have to provide valid data until

the transfer is about to complete.

§3.3 The A/D converter module
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The A/D converter is an APB slave on the APB bridge. The module adc.v is used to write
data to APB bridge. When PSELO = 1, A/D converter is selected. APB address O0H is
connected to FIFO data output port from which the A/D converter writes valid data to the
APB bridge; while APB address 01H is for the FIFO status output, which shows the A/D

converter enable bit and the number of data inside the FIFO buffer.

5§34 The A/D FIFO control module

The module adfifoctl.v is used to control the FIFO buffer to read and write. The A/D
converter is static when not in use. When it gets a command from the APB bridge, it
starts to transfer data to the FIFO buffer, then APB bridge read data from the FIFO
buffer. During the processing, in order to descript the status of FIFO, we apply two
pointers, read pointer and write pointer. The memory address of the incoming data is in
the write pointer. The address of the first data word in the FIFO buffer that is to be read
out is in the read pointer. After reset, both pointers indicate the same memory location.
After each write operation, the write pointer is set to the next memory location. The
reading of a data word sets the read pointer to the next data word that is to be read out.
The read pointer constantly follows the write pointer. When the read pointer reaches the
write pointer, the FIFO is empty. If the write pointer catches up with the read pointer, the
FIFO is full, having 8 words stored. Figure 5.3 illustrates the principle of a circular FIFO

with two pointers.
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Figure 5.3: Circular FIFO With Two Pointers

The module uses a gray-coder pointer to synchronize the write pointer with the AHB
system clock. A length-3 gray-code is a simple cyclic list of distinct binary 3-tuples,
called codewords, with the property that any two adjacent codewords differ in exactly

one component. The binary to gray-code conversion table is shown in Table 5.1.
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Table §.1: Binary to gray-code conversion table

Nth step after Reset Binary Gray-code
0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

53.5 The FIFO write module
The module fifowr.v is used in both A/D and D/A converter. It’s used to write data to the
FIFO buffer. According to the different write pointer, the data is input to different FIFO

address.

53.6 The FIFO read module
The module fiford.v is used to read data from the FIFO buffer. According to the different

read pointer, the data is output from different FIFO address.

5.3.7 The D/A converter module

The D/A converter is another APB slave on the APB bridge. The module dac.v is used to
read data from APB bridge. When PSELI1 = 1, D/A converter is selected. APB address
OOH is connected to FIFO data output port from which the D/A converter reads valid data
from the APB bridge; while APB address 01H is for the FIFO status output, which shows

the D/A converter enable bit and the number of data inside the FIFO buffer.
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53.8 The D/A FIFO control module

The module dafifoctl.v is used to control the FIFO buffer to read and write. Same as the
A/D converter, D/A converter is also static when not in use. When the AHB master wants
to transact a write operation to D/A converter, it firstly transfer data to the APB bridge,
then the APB bridge input data to the FIFO buffer, so that the D/A converter can read

data from the FIFO buffer.

The read pointer and the write pointer are also applied. The gray-coder pointer was used

as the read pointer to synchronize AHB system clock.

54 Testbench
The design testbench consists of a whole environment for testing the interface including
APB bridge and FIFO buffers with bus monitors and test-cases which use those models to

stimulate transactions through the interface.

According to the property of the interface, there are several test-cases should be
simulated:
1) System reset, all outputs are set to zero;
2) AHB starts to access APB bridge, select the A/D converter to transact a read
operation;
a) AHB enables the A/D converter;

b) AHB reads data from FIFO;

Chapter 5 Design Document 58



¢) AHB reads the status of the FIFO buffer;
d) AHB doesn’t access FIFO, read data become zero;
€) AHB reads indefinite outputs when the A/D converter isn’t selected or
there is no read transaction.
3) AHB select the D/A converter to transact a write operation.
a) AHB enables the D/A converter;
b) AHB write data to FIFO;
c) AHB reads the status of the FIFO buffer;
d) AHB doesn’t access FIFO, read data become zero;
€) AHB reads indefinite outputs when the D/A converter isn’t selected or

there is no read transaction.
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Chapter 6
Synthesis & Layout

6.1 Up-front issues

This chapter shows the synthesis (Synopsys) and physical design (Cadence) processes by
using CMOSP35 IC fabrication technology. The standard cell library selected for this
design is from the technology foundry (TSMC or Taiwan Semiconductor Manufacturing
Company) and the cells are often referred to as “ Black Box™ or sometimes phantom

cells.

In this specific design, there are totally 176 I/O pads. 106 of them are inputs; the other 70
pins are outputs. In addition, 24 power pads (4 pair for core, 8 pair for ring power) will be
added to provide power to the core of the chip, the other /O cells, and dive signals off-
chip. This will allow for an average flow of 240 mA of current to the core, which at 3.3

Volts gives nearly 800 mW of power consumption.

According the pin number, the length of die is decided to be 54 times 84um plus two
365um corner cell lengths. This makes a total length of 5.266 mm. The width of die is
decided to be 4.594 mm based on the same calculation. Lastly, a 50 MHz (20 ns period)

clock speed will be applied to the design.

8
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The whole synthesis and physical design processes will base on CMC’s Digital IC

Design Flow, which is shown in Figure 6.1.

RTL Simulation Verilog

) 4
Synthesis Design Analyzer

4
Gate-Level Simulation | Verilog

A 4
Floorplanning Design Planner

A 4
Placement DP/Qplace

'

Clock Tree Generation | DP/CTGen

I

Routing & Timing | Silicon Ensemble
Verification

I

Physical Verification | DFH

Figure 6.1: Digital IC Design Flow

The design flow shown in Figure 6.1 has been elaborated in the following steps:

Step 1:
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In order to verify the Verilog code for interface (bridging) IP core, run behavioral

simulation (RTL) with a test bench under a Verilog-XL environment.

Step 2:
The Verilog code was imported into the Synopsys Design Analyzer environment and the
behavioral Verilog description (RTL) was converted to a gate-level Verilog description.

Run the simulation again to verify the functionality of the gate-level netlist.

Step 3:
Imported the gate-level verilog netlist into the Cadence Design Planner environment. The
logic gates were described in terms of 0.35-micron CMOS standard cells, floorplanning

was carried out (I/O pads, standard cells).

Step 4:
After floorplanning, placement was carried out. Standard cells were placed but not
interconnected; the clock tree structure was added. Also generated an updated Verilog

netlist to be used for final verification.

Step §:

The resulting placed design (lef and .def file) was then imported into the Cadence Silicon
Ensemble environment; routing (interconnection) and timing verification was performed.
The produced .def described the routing of the IP core in the 0.35-micron CMOS

technology.
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Step 6:

The Verilog file produced from Design Planner and the DEF file created in Silicon
Ensemble were imported into the Cadence DFII environment, Design Rule Check (DROC)
and Layout Vs. Schematic (LVS) check were performed. The DFII tool converted the
final design into a stream format. After compressing, it was ready to transmit to CMC for

fabrication.

6.2 RTL Simulation

In order to verify the functionality of the RTL code, the first step is to simulate this RTL
code with testbench. Using the Signalscan tool, we can view all input and output signals.

The waveforms under different test cases are shown from Figure 6.2 to Figure 6.7.
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Figure 6.2: CPU reads the A/D status
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Figure 6.3: CPU reads the A/D output

g_t_nput Waveform3
'w'-:-n.--x---rn
Curscrl « 150,000 pe
cursora « 130,060 ps
TimaA = 321,000 pa
.1143,070 1360, 000 1180,000 00 0, 0 470
aroup: A
hresetn = 1 —————]
nclk = 1“ — LT 1 | [ 1 g 1 g
write « 0 N um
beize(2:0) « ‘B 0 ) FE
ntrans{l:0) = °h 2 E—
haddr (31:0] « ‘b 80000000 O 0
hadata{31:0] = ‘b 00000019{[600C00 S — —_— v — (3|
£2£4ata{11:0] = ‘h 00000002 3
hready = ll I e
adapable = 1|
ftwr = 0 | W M
fefulla « ¢ -
krdats (33:0] = *B 00000000 Eﬁ.ﬁ—' OOy E—
daenable « 0
dclk = 0
ffemptyd = 1
dadata(31:0) = °h XCOOOOKX|
penable » 1 L

Figure 6.4: CPU reads the A/D status once more
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Figure 6.6: CPU writes data into the D/A
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Figure 6.7: CPU reads the D/A status

63 Synthesis

At the second step we import the design into a Synopsys database, use Design Analyzer
tool to synthesize the design into gates, making it meet all pre-set constraints. Soft-core
synthesis usually consists of instantiating the netlist directly into the customer’s design.
Elements within soft-core netlists used in the Synopsys synthesis environment carry the
company’s “don’t_touch” annotation to prevent changes to the soft-core design during
synthesis optimization. The functionality of the gate-level netlist should be verified. The
gate-level netlist contains totally 1612 references. The gate-level area and reference

report is shown in appendix B.

This step performs the symbol view of each module. Figure 6.8, 6.9, 6.10 and 6.11 show
the top interface module, APB bridge module, A/D FIFO module and D/A FIFO module

blocks respectively. We can see all input and output pins from here.
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6.4 Floorplanning

This section uses the Cadence tool Physical Design Planner for physical placement of a
design. After inserting the netlist, we place and route each firm core and time it to meet
the same timing assertions used to generate the static timing model. An updated Verilog
netlist is also generated in order to have the final verification. We remove the netlist
information and replace it with the firm-core library element before returning the design

to the customer for postlayout functional verification.

Hard cores complicate floorplanning because of their size, wiring blockage, noise
isolation requirements, peripheral test circuitry, and proximity to chip I/O pads. The core
can be places anywhere on the chip, but placement in a corner of the die allows for
maximum wiring of the remaining chip logic. Comner placement also minimizes the
chance of splitting a functional block and placing the parts on opposite sides of the core.

Figure 6.12 and 6.13 show the final floorplanned design and the zoom in view of the core

area respectively.
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Figure 6.12: The final floorplanned design

Figure 6.13: The zoom in core area view
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6.5 Physical verification

The resulting placed design (.lef and .def file) is then imported into the Cadence Silicon
Ensemble environment; routing (interconnection) and timing verification is performed.
The produced .def describe the routing of the IP core in the 0.35-micron CMOS

technology.

The Verilog file produced from Design Planner and the .def file created in Silicon
Ensemble are imported into the Cadence DFII environment. At this step, we verify the
physical (Placed & Routed) version of the design; Design Rule Check (DRC) and Layout
Vs. Schematic (LVS) check are performed. The DFII tool converted the final design into
a GDSII stream format. After compressing, it was ready to transmit to CMC for
fabrication. This is the last step; the final schematic view is shown in Figure 6.14, if
zoom in the schematics, some symbols of gates could be viewed, such as an inverter,
shown in Figure 6.14 too. Figure 6.15 is a final layout view showing the abstract
representation of the proprietary standard cells supplied by the foundry. The layout
dimensions are: 5266 x 4594 um for an area of 24192004 square um. Since it’s a black-
box library, only abstract symbols and some interconnection could be seen from the

layout. A zoom in view of a multiplexor gate is also shown in Figure 6.15.
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Figure 6.14: The schematic view of the design
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The zoom in view of a mux2D1 gate
Figure 6.15: The final layout view
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Chapter 7

Conclusions & Future work

7.1 Conclusions and contributions

In this thesis, we describe a digital interface IP core, for use in a SoC environment. This
IP core provides a bridging capability between the main SoC bus (AHB) and the
peripheral bus (APB), as well as peripheral FIFO circuitry that must be inclubed in
peripheral IP cores. The IP core allows the main SoC bus to read and write to peripheral
devices, and is developed using Verilog for ease of mapping to technology and design
reuse. The Verilog language is used to implement the state transition specifications

required for the bridging architecture.

The interface IP core is compliant with AMBA specifications that define the interface

protocol for the connection of multiple IP cores in a System-on-Chip environment.

The thesis develops a Verilog HDL description of the interface IP core (bridging) and the
required FIFO circuitry that must be implemented in peripheral IP cores so that they may
interface with the APB bus. The Verilog description has been mapped to a 0.35-micron
CMOS technology process. The resulting hardware layout is comprised of 1612 elements

consisting of logic gates, inverters, multiplexors and shift registers. The architecture
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supports a SOMHz system clock speed. The circuitry has been extendedly simulated and
the layout has undergone design rule checking satisfactorily. The final GDSII stream file

is ready to transmit to CMC for fabrication.

7.2  Suggestions for future work

The SoC design methodology is still evolving. An important area of future research is the
development of standards to foster IP core development, exchange, and interoperability.
As part of future work, the interface IP core presented in this thesis could be easily
redesigned to produce an interconnection capability between bus architectures with

different protocols.
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Appendix A
Digital Interface IP Core
Software Code

A.l The main verilog code

i
m
/Il File name: top.v

1

//// This file is the top file of the "A SoC Digital Interface IP Core" project
"

/Il Author(s): - Huimei Zheng, zhenghm@hotmail.com

/1l

gy
i

/Il Copyright © 2002 Huimei Zheng, zhenghm@hotmail.com

i

/Il This source file may be used and distributed without restriction provided that

/Il this copyright statement is niot removed from the file and that any derivative

/Il work contains the original copyright notice and the associated disclaimer.

"

I T T TR LT

‘timescale 1ns/100ps

module top(/ input from AHB

helk, hresetn, haddr, htrans, hwrite, hsize, hwdata,
// input to fifo
fiwr, fidata, daclk,

// output to AHB
hrdata, hready, penable,

// output from fifo

adenable, dacnable, dadata, fffulla, ffemptyd

)

input helk; //ahb clock

input hresetn; //active low speed

input [31:0] haddr; //address bus

input [1:0]  htrans; // Transfer Type Encoding - 00 = IDLE, 01 = BUSY,
input hwrite; //read/write signal 1=write 0 = read

input [2:0] hsize; //000=byte

input [31:0] hwdata; /32 bit write data bus

input ffwr; //fifo write clock
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§nput [31:0] fidata; // input read data

mput daclk; // fifo read clock
output [31:0] hrdata;

output hready;

output penable;

output fifulla;

output flemptyd;

output adenable;

output daenable;

output [31:0] dadata; /output write data

wire devready0, devreadyl, psel0, psell, pwrite;
wire [31:0] pwdata, rda, rad;

wire [3:0] sbe;

wire (7:0] paddr;

bridge ibridge(.hclk(hclk), .hresetn(hresetn), .haddr(haddr), .htrans(htrans),
.hwrite(hwrite), .hsize(hsize), .hwdatathwdata),
.devreadyO(devready0), .devreadyl(devreadyl),
.hrdata(hrdata), .hready(hready),
.pselO(psel0), .psel 1(psell), .penable(penable),
.pwdata(pwdata), .sbe(sbe), .pwrite(pwrite), .paddr(paddr),
;prdala(pldata)

adc iadc(.helk(helk), .hresetn(hresetn), .pwdata(pwdata),
sbe(sbe), .pwrite(pwrite), .paddr(paddr),
psel(psel0), .penable(penable),
ffwr(ffwr), .fidata(ffdata), .fifull(fffulla),
.prdata(prdata), .devready(devready0),

. le(adenable)

)

dac idac(.hclk(helk), .hresetn(hresetn), .pwdata(pwdata),
.sbe(sbe), .pwrite(pwrite), .paddr(paddr),
psel(psell), .penable(penable),
.dacik(daclk), .dadata(dadata), .flempty(ffemptyd),
prdata(prdata), .devready(devreadyl), .dacnable(daenable)
)

endmodule
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A2 APB bridge

i
nm
/lll File name: bridge.v

i

/Il This file is part of the "A SoC Digital Interface IP Core” project
i

/Il Author(s): - Huimei Zheng, zhenghm@hotmail.com

nm

I T LT LT T
m

/1l Copyright © 2002 Huimei Zheng, zhenghm@hotmail.com

m

//// This source file may be used and distributed without restriction provided that

/I// this copyright statement is not removed from the file and that any derivative

//1! work contains the original copyright notice and the associated disclaimer.

i

I T T T L T T T T

“timescale 1ns/100ps

module bridge(//input from AHB
helk, hresetn, haddr, htrans, hwrite, hsize,
hwdata, devready0, devreadyl,
/loutput to AHB
hrdata, hready,
/Iregister read and write, apb
psel0, psell, penable, pwdata, sbe, pwrite, paddr, prdata
)

input helk; //ahb clock

input hresetn; //active low speed

input (31:0] haddr; //address bus

input [1:0]  htrans; // Transfer Type Encoding - 00 = IDLE, 01 = BUSY,
input hwrite; //read/write signal 1=write 0 = read

input [2:0]  hsize; //000=byte

input [31:0] hwdata; //32 bit write data bus

input [31:0] prdata; //register read data bus

input devready0; //come from individual device

input devreadyl; //come from individual device

output [31:0] hrdata;

output hready;

output {31:0] pwdata; //register data

output [3:0] sbe; //register write-byte enable
output pwrite;  //register write signal
output [7:0] paddr; //APB address

output pselo;

output psell;

output penable;

parameter delay=1;
reg  psel0, psell;
reg intregwract;

Appendix A  Digital Interface IP Core Software Code

85



w@re devready = (devreadyO | ~psel0) & (devreadyl | ~psell);
wire  intregrdact = ~intregwract;
wire beycstrt; // Bus Cycle Start

assign beycstrt = ((htrans{1] && ~htrans{0]) || (htrans{1] & htrans{0]));
wire cifaccess = (haddr{31) && ~haddr{30] && ~haddr{29] && ~haddr{28]);

parameter  stidle = 6000001,
stadd1 = 65000010, //address prepare
stdatl = 6000100, //read cycle wait
stdat2 = 6001000, //write cycle wait
stdat3 = 6010000, //read point
stdat4 = 65100000; //write point

reg [5:0] cifstate;
reg [5:0] nextstate;

always @ (posedge hclk or negedge hresetn) begin
if{(~hresetn) begin
cifstate <= stidle;
end // if (~hresetn)
else begin
cifstate <= nextstate;
end // else: !if(~hresetn)
end // always @ (posedge helk or negedge hresetn)

always @ (cifstate or beycstrt or cifaccess or intregwract or intregrdact or devready)
begin

case (cifstate)  // synopsys parallel_case
/1 synopsys full_case
stid!e: begin

iflbeycstrt && cifaccess)
nextstate <= staddl;
else
nextstate <= stidle;
end // case: stidle
stadd]: begin
if(intregrdact && devready) //read and device is ready
nextstate <= stdat3;
else if{intregwract && devready) //write cycle and device is ready
nextstate <= stdat4;
else if{intregwract) //write cycle
nextstate <= stdat2;
else nextstate <= stdatl; //for read cycle only
end // case: staddl
stdat3: begin
if(bcycstrt && cifaccess)
nextstate <= stadd];
else
nextstate <= stidle;
end // case: stdat3
stdat2: begin //write cycle only
if(~devready) //keep on waiting
nextstate <= stdat2;
clse
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nextstate <= stdat4;
end
stdatl: begin
if(~devready) //keep on waiting
nextstate <= stdatl;
clse
nextstate <= stdat3;
end
stdatd: begin
i strt && cifaccess)
nextstate <= stadd1;
else
nextstate <= stidle;
end
default: begin
nextstate <= stidle;
end // case: default
endcase // case(cifstate)
end // always @ (cifstate or beycstrt or cifaccess or intregwract or intregrdact or devready)

always @ (posedge hclk or negedge hresetn) begin
if{~hresetn) begin
intregwract <= 1'b0;
end
clse if(nextstate{1]) begin
intregwract <= hwrite;
end // if (nextstate{1])
end

/.
* Hready generation
*

reg hready;
always @ (posedge hclk or negedge hresetn) begin
if{~hresetn) begin
hready <= 10;
end

else begin
hready <= #delay devready;
end

end

/¢
* APB write data generation
s/

reg {31:0] wregdata, pwdata;
always @ (nextstate or hwdata or wregdata) begin
if{nextstate{1])
wregdata <= hwdata;
else ifinextstate{3] || nextstate[5])
pwdata <= wregdata;
end / always @ (nextstate or hwdata or wregdata)

Fid
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* selection signals generation
.

wire selOp = ({haddr{27:11]} = 17h00000); //there can be many selection signals
wire sellp = ({haddr{27:11]} = 17h00001);

always @ (posedge hclk or negedge hresem) begin
if(~hresetn) begin
psel) <= 10;
psell <= 1D0;
end
eise ifinextstate{1]) begin
psel0 <= #delay selOp;
psell <= #delay sellp;
end
else if{nextstate{0]) begin
psel0 <= 1b0;
psell <= 1'b0;
end
end

/ ]
* sbe{3:0] generation
¢/

wire xferbyted = (~hsize[2] && ~hsize[1] && ~hsize[0]);
wire xferhwrdd = (~hsize[2] && ~hsize[1] && hsize{0]);
wire xferwordd = (~hsize[2] && hsize[1] && ~hsize[0));
reg xferbyte, xferhwrd, xferword;

always @ (posedge helk) begin
if(nextstate{1]) begin
xferbyte <= xferbyted;
xferhwrd <= xferhwrdd;
xferword <= xferwordd;
end // if (nextstate[1])
end // always @ (posedge helk)

wire bythwdxfer = (xferhwrd || xferbyte);
reg [1:0] low2bits;

always @ (posedge helk) begin
if{nextstate{1]) begin
low2bits <= haddr{1:0];
end // if (nextstate[1])
end // always @ (posedge hcik)

wire byteOact = (~low2bits[1] && ~low2bits{0]);
wire bytelact = (~low2bits{1] && low2bits[0]);
wire byte2act = (low2bits[1] && ~low2bits[0]);
wire byte3act = (low2bits[1] && low2bits[0]);
wire lhalfact = ~low2bits{1];

wire uhalfact = low2bits[1];

assign sbe[0] = (xferbyte && byteOact) || (xferhwrd && thalfact) |} (xferword);
assign sbe[1] = (xferbyte && bytelact) || (xferhwrd && Ihalfact) || (xferword);

Appendix A Digital Interface IP Core Software Code



assign sbe[2] = (xferbyte && byte2act) || (xferhwrd && uhalfact) || (xferword);
assign sbe[3] = (xferbyte && byte3act) || (xferhwrd && uhalfact) || (xferword);

id
* pwrite signal generations
*/

reg pwrite;
always @ (posedge helk or negedge hresetn) begin

if(~hresetn) begin

pwrite <= 1'b0;
end // if (~hresetn)
else if(nextstate{1])
pwrite <= hwrite;

end / always @ (posedge hclk or negedge hresetn)

Tid
* enable signal generation
/

assign penable = cifstate{4] || cifstate[5];

/®
* paddress generation
+/

reg [7:0] prdd, paddr;
always @ (nextstate or haddr) begin
if(nextstate[1])
prdd <= haddr{9:2);
end // always @ (nextstate)

always @ (cifstate or prdd) begin
if{cifstate{1]) begin
paddr <= prdd;
end // if (cifstate[1])
end // always @ (cifstate or prdd)

/.
* hrdata, read out data from devices
8/

reg [31:0] hrdata;
always @ (nextstate or prdata )
begin
if{nextstate(1])
hrdata <= prdata;
else hrdata <= 32'bz;
end // always @ (nextstate or prdata)

endmodule
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A3 A/D FIFO code

T i i
i
//l! File name: adc.v

m

/l/! This file is part of the "A SoC Digital Interface IP Core” project
m

/1 Author(s): - Huimei Zheng, zhenghm@hotmail.com

m

i il
m

/Il Copyright © 2002 Huimei Zheng, zhenghm@hotmail.com

m

//// This source file may be used and distributed without restriction provided that

//ll this copyright statement is not removed from the file and that any derivative

/1 work contains the original copyright notice and the associated disclaimer.

m
il

[e98ssstssRee SEES 244045 S0000SS8I000800444 s

1. when psel0 is 1D1, paddr == 0 will select fifo data output port
2. paddr == 1 will select fifo status output

*$ s8s998%% (222111 660808885888 3808 50888 ‘/
‘timescale 1ns/100ps
module adc(hclk, hresetn, pwdata, sbe, pwrite, paddr,
psel, penable, fiwr, fidata, fifull,
prdata, devready, adenable
)
input helk;
input hresetn;
input [31:0] pwdata;
input [3:0]  sbe;
input pwrite;
input (7:0]  paddr;
input psel;
input penable;
i ffwr;

input ;
input [31:0] fidata;

output {31:0] prdata;
output devready;

output adenable;
output fifull;
wire flempty;

wire [2:0] wptr, rptr, fists;
wire [31:0] f0d, ffld, fi2d, f3d, ff4d, f15d, fI6d, ff7d, outdata;

wire ffoportsel = (paddr = 8'0);
wire fistsel = (paddr — 8b1);
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wire regwr = pwrite & psel & fistsel;
wire fird = ~pwrite & psel & penable & floportsel;
wire first = ~pwrite & psel & penable & fistsel;

assign devready = ~ (ffempty & ffoportsel & psel);
// register write
reg [7:0] firegister; //fifo register setting, enable bit inside

always @(hresetn or sbe or pwdata or regwr) begin
if{~hresetn) firegister <= 8'b0;
else if{sbe[0] & regwr) flregister{7:0) <= pwdata{7:0];
end

assign adenable = firegister{0];

adfifoctl ififoctl( hresetn(hresetn), .ffwr(ffwr), .hclk(hclk),
frd(ffrd), .ffsts(ffsts), .full(ffull),
-flempty(ffempty), . wptr(wptr), .rptr(rptr)

fifowr fifowra(.ffdata(ffdata), .fFwr(ffwr), wptr(wptr),
f0d(f0d), .fF1d(ff1d), .f2d(ff2d), .M3d(f3d),

fF4d(ff4d), .fF5d(f15d), .ff6d(fi6d), .fF7d(fF7d)

)

fiford fiforda(.rptr(rptr),
f0d(ff0d), .fF1d(ff1d), .fR2d(ff2d), .A3d(fi3d),
fF4d(ff4d), .fFSd(fI5d), .fi6d(ffed), .fF7d(f7d),
.outdata(outdata)
)

reg (31:0] prdata;

always @(ffrd or frst or outdata or firegister or fists) begin
if(fird) prdata <= outdata;

clse if{ffrst) prdata <= {21D0, ffsts[2:0], firegister{7:0]}; //total 32 bits

else prdata <= 32'bz;
end

endmodule
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A4 A/D FIFO control code

W I LT T LT TN TR T T
m

/Il File name: adfifoctl.v

nm

/Il This file is part of the " A SoC Digital Interface IP Core” project

m

/i1l Author(s): - Huimei Zheng, zhenghm@hotmail.com

i

HHHTTTTITHI NI L TR T T LT LT T
m

1/l Copyright © 2002 Huimei Zheng, zhenghm@hotmail.com

i

///I This source file may be used and distributed without restriction provided that

/Il this copyright statement is not removed from the file and that any derivative

/! work contains the original copyright notice and the associated disclaimer.

n

T T T TR LT LT LT T T

/Avv b4 bhddd ol L4 L g e Lddddd bl dddd

“timescale 1ns/100ps

module adfifoctl(hresetn, ffwr, hclk, ffrd, fists,
fifull, flempty, wptr, rptr
)

input hresetn;

input ffwr;

m helk;

input fird;

output [2:0]  ffsts;

output ffempty;

output fifull;

output [2:0]  wptr;
output 2:0]  ptr;

parameter delay=1;

A

* delay ffwr twice to get rid of hold time hazard
./

wire wrelkO, wrelkl;

assign wrelkO = fiwr & hresetn; //delay purpose only
assign wrelk] = wrclk0 & hresetn; //delay purpose only

A
* write pointer generation
s/
reg (2:0] wptr;
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always @(posedge wrclkl or negedge hresetn) begin
if{~hresetn) wptr <= 3'b0;
else wptr <= #delay wptr + 3'b1;

end

/.

* Read pointer generation on every falling edge of fird
* read pointer increased by 1

¢/

reg [2:0] rptr;

always @(negedge fird or negedge hresetn) begin
if{ ~hresetn )
ptr <= #delay 3'b0;

else
1ptr <= #delay rptr + 3'b1;

end // always

/®
* Gray coded read status pointer
*/

reg [2:0] gwptr;

// Gray coded write status pointer
always @(posedge ffwr or negedge hresetn) begin
if{ ~hresetn )
gwptr <= 3'b0;
else
case( gwptr ) / synopsys full_case parallel_case
3'b000: gwptr <= #delay 3'b001;
3b001: gwptr <= #delay 3B011;
3b011: gwptr <= #delay 3'b010;
3'b010: gwptr <= jidelay 3b110;
3D110: gwptr <= #delay 3b111;
3'bi11: gwptr <= idelay 3b101;
3b101: gwptr <= #delay 3100;
3100: gwptr <= #delay 3'b000;
endcase // case( gwptr )
end / always @ (posedge ffwr or negedge hresetn)

reg [2:0] gwptrsy;
//gwptr sync on helk, ignore timing check on the flip-flops
always @(posedge hclk or negedge hresetn) begin
if{~hresetn) gwptrsy <= 3'0;
else gwptrsy <= gwptr;
end

reg [2:0] bgwptrsy;
// Convert synchronized read status back to binary
// This is gray code to binary conversion table!!

always @( gwptrsy ) begin
case( gwptrsy ) // synopsys full_case paralle]_case
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// This is gray code to binary conversion table!!
3%000: bgwptrsy <= #delay 35000;
3001: bgwptrsy <= #delay 3'b001;
3'b011: bgwptrsy <= #delay 35010;
3D010: bgwptrsy <= #delay 3b011;
3110: bgwptrsy <= #delay 3'B100;
3'b111: bgwptrsy <= #delay 35101;
3'5101: bgwptrsy <= #delay 3b110;
3'5100: bgwptrsy <= #delay 3bl11;
endcase // case( gwptrsy )
end / always @ ( gwptrsy )

assign #delay flsts = bgwptrsy - rptr;

assign #delay fifull = (ﬁ'sts—S'blll)"l'bl 1'b0;
assign #delay ffempty = (ffsts = 3'5000) ? 1'b1 : 1'b0;

endmodule

Appendix A Digital Interface IP Core Software Code



AS  D/AFIFO code

N i s
m

/1l/ File name: dac.v

i

//Il This file is part of the "A SoC Digital Interface IP Core” project
1/

//ll Author(s): - Huimei Zheng, zhenghm@hotmail.com

"

i
m

/Il Copyright © 2002 Huimei Zheng, zhenghm@hotmail.com

n

//1! This source file may be used and distributed without restriction provided that

/Il this copyright statement is not removed from the file and that any derivative

/11! work contains the original copyright notice and the associated disclaimer.

mt

T T L T LT LT T T T T T

/ hd * seoe N *

Digital to analog control block, including fifo interface to ahb-apb bridge
1. when psel is 1'b1, paddr = 0 will select fifo data input port
2. paddr = 1 will select fifo status output

98088080980 L2 21

“timescale 1ns/100ps

module dac(hclk, hresetn, pwdata, sbe, pwrite, paddr,
psel, penable, daclk, dadata, ffempty,
prdata, devready, daenable
)

input helk;

input hresetn;

input [31:0] pwdata;

input [3:0]  sbe;

input pwrite;

input {7:0]  paddr;

input psel;

input penable;

input daclk;

output [31:0] prdata;

output devready;

output daenable;

output [31:0] dadata;

output flempty;

wire fifull;
wire {2:0] wptr, 1ptr, flsts;
wire [31:0] fiod, ffld, fi2d, fi3d, ffad, ff5d, fisd, ff7d;

wire flinportsel = (paddr = 8'b0);
wire regsel = (paddr = 8'b1);
wire regwr = pwrite & psel & regsel;
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wire read = ~pwrite & psel & penable & regsel;
wire ficpuwr = pwrite & psel & penable & flinportsel;

assign  devready = ~(fffull & ffinportsel & psel);

// register write
reg [7:0] flregister; //fifo register setting, enable bit inside

always @(hresetn or sbe or regwr or pwdata) begin
if{~hresetn) firegister <= 8'b0;
ex:lhe if{sbe{0] & regwr) firegister{7:0] <= pwdata(7:0];

assign dacnable = firegister{0];

dafifoctl idafifoctl(.hresetn(hresetn), .ficpuwr(ffcpuwr), .hclk(helk),
.daclk(daclk), .ffsts(ffsts), .fiull(fifull),
-) empty(ffempty), .wptr(wptr), .rptr(Tptr)

fifowr fifowrd(.fidata(pwdata), .ffwr(ffcpuwr),. wptr(wptr),
f0d(ff0d), .fF1d(ff1d), .fR2d(ff2d), .A3d(f3d),

ffad(ffad), .fSA(fISd), .fFed(ff6d), .fF7d(ff7d)

)

fiford fifordd(.rptr(rptr),
fRd(ffod), .fld(ff1d), .fR2d(ff2d), f3d(fi3d),
frad(ff4d), .AESA(fE5d), .fFed(ff6d), .7d(ff7d),
.outdata(dadata)
)

reg [31:0] prdata;

always @(read or firegister or fIsts) begin
if(read) begin
prdata <= {2100, flsts[2:0}, firegister{7:0]}; //total 32 bits
end
else prdata <= 32'bz;
end

endmodule
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A.6 D/A FIFO control code

Y s
i

/Il File name: dafifoctl.v

i

//ll This file is part of the "A SoC Digital Interface [P Core” project

i

/Il Author(s): - Huimei Zheng, zhenghm@hotmail.com

i

L e
i

/Il Copyright © 2002 Huimei Zheng, zhenghm@hotmail.com

i

/il This source file may be used and distributed without restriction provided that

/Il this copyright statement is not removed from the file and that any derivative

/Il work contains the original copyright notice and the associated disclaimer.

i

I TR T T T T T T

,vvv vA LA 4 4 rovrvyvvvyveyiryvye

DA Fifo control modul

069 1 21 1] (222 2122l L 6/
‘timescale 1ns/100ps

module dafifocti(hresetn, ficpuwr, helk, daclk, ffsts, fffull,

flempty, wptr, rptr
)

input hresetn;

input ficpuwr;

input helk;

input daclk;

output [2:0] flsts;

output fifull;

output ffempty;

output [2:0]  wptr;

output 2:0]  rptr;

parameter delay=1;

/.

* delay ffwr twice to get rid of bold time hazard

*/

wire wrelk0, wrelkl;

assign wrclk0 = ficpuwr & hresetn; //delay purpose only
assign wrelkl = wrclkO & hresetn; //delay purpose only

/®

* write pointer generation
*/

reg [2:0] wptr;
always @(negedge wrclkl or negedge hresetn) begin

Appendix A Digital Interface IP Core Software Code

97



if{~hresetn) wptr <= 3'b0;
else wptr <= #delay wptr + 3b1;
end

/.
* Read pointer generation on every falling edge of daclk
* read pointer increased by 1

*/

reg [2:0] rptr;

always @(posedge daclk or negedge hresetn) begin
if{ ~hresetn )
ptr <= #idelay 3'b0;

else
1ptr <= #delay rptr + 3bl;

end // always

/®
* Gray coded read status pointer

*/

reg [2:0] grptr;

// Gray coded read status pointer
always @(posedge daclk or negedge hresetn) begin
if( ~hresetn )
gptr <= 3'b0;
clse
case( grptr ) // synopsys full_case parallel_case
3'b000: grptr <= #delay 3'b001;
3001 grptr <= #delay 3011,
3b011: grptr <= #delay 3'b010;
3'b010: grptr <= #delay 3'b110;
3b110: grptr <= #delay 3'b111;
3b111: grptr <= #delay 3'b101;
3b101: grptr <= #delay 3'5100;
3'D100: grptr <= #delay 3'5000;
endcase // case( grptr )
end // always @ (posedge daclk or negedge hresetn)

reg [2:0] grptrsy;
//grptr sync on helk, ignore timing check on the flip-flops
always @(posedge hclk or negedge hresetn) begin
if{~hresetn) grptrsy <= 3'0;
else grptrsy <= grptr;
end

reg (2:0] bgrptrsy;
// Convert synchronized read status back to binary
always @( grptrsy ) begin
case( grptrsy ) // synopsys full_case parallel_case
3'b000: bgrptrsy <= #delay 3'b000;
3'001: bgrptrsy <= #delay 3'b001;
3b011: bgrptrsy <= #delay 3'b010;
3%010: bgrptrsy <= #delay 3b011;

Appendix A  Digital Interface IP Core Software Code

98



3110: bgrptrsy <= #delay 3'100;
3'b111: bgrptrsy <= #delay 3D101;
3'b101: bgrptrsy <= #delay 3'110;
3'b100: bgrptrsy <= #delay 3b111;
endcase // case( grptrsy )
end / always @ ( grptrsy )

assign #delay fists = wptr - bgrptrsy;
assign #delay ffempty = (ffsts = 3'b000) ? 1'b1 : 1'D0;
assign #delay fifull = (ffsts = 3'b111) ? 11 : 1'D0;

endmodule
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A7 FIFO write code

L s
m

/Il File name: fifowr.v

m

/Il This file is part of the "A SoC Digital Interface IP Core” project

m

/Il Author(s): - Huimei Zheng, zhenghm@hotmail.com

n

W T T T T T
m

/Il Copyright © 2002 Huimei Zheng, zhenghm@hotmail.com

m

//l/ This source file may be used and distributed without restriction provided that

/Il/ this copyright statement is not removed from the file and that any derivative

/Il work contains the original copyright notice and the associated disclaimer.

m

I T LT LT LT R T

‘timescale 1ns/100ps

module fifowr(ffdata, ffwr, wptr,
ffod, Md, fi2d, fi3d, ffad, f15d, fi6d, ff7d
)

input [31:0] fidata;

input ffwr;

input [2:0]  wptr;

output {31:0] fI0d;

output {31:0] fld;

output [31:0] fR2d;

output [31:0] fi3d;

output [31:0) ff4d;

output [31:0] fiSd;

output [31:0] fF5d;

output [31:0] fI7d;

reg [31:0] fR0d, 4, ff2d, fi3d, ff4d, fi5d, fid, fi7d;

always @(ffwr or wptr or ffdata) begin
if(ffwr) begin
case(wptr{2:0])
3'h0: ff0d <= fidata;
3'hl: ff1d <= fidata;
3'h2: fi2d <= fidata;
3'h3: fRd <= fidata;
3'h4: ff4d <= fidata;
3'hS: fI5d <= fidata;
3'hé6: fi6d <= fidata;
3'h7: ff7d <= fidata;
endcase // case(wptr{2:0])
end
end
endmodule
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AS FIFO read code

Y O i
i

///l File name: fiford.v

m

/Il This file is part of the "A SoC Digital Interface IP Core” project

i

/Il Author(s): - Huimei Zheng, zhenghm@hotmail.com

m

T TR T T TR T
1

/11l Copyright © 2002 Huimei Zheng, zhenghm@hotmail.com

i

/Il This source file may be used and distributed without restriction provided that

/1l this copyright statement is not removed from the file and that any derivative

/Il work contains the original copyright notice and the associated disclaimer.

i

I T T T L LT T

‘timescale 1ns/100ps

module fiford(rptr,
fiud, ffld, fi2d, ff3d,
ff4d, fi5d, f6d, ff7d,
outdata
)

input (2:0] pwr;

input [31:0] f0d;

input [31:0] ffld;

input [31:0] fi2d;

input {31:0] f3d;

input [31:0] ff4d;

input [31:0] fi5d;

input [31:0] fi6d;

input [31:0] fi7d;
outpm [31:0] outdata;

reg [31:0] outdata;

always @(mtrorﬂ!)dorﬂ‘ldorﬁ!dorfﬁdorﬂ'4dorﬂ$dorﬂ'6dorﬂ7d)bcgin
case(rptr{2:0]) //synopsys full_case parallel_case
3'5000: outdata <= ff0d;
3'b001: outdata <= ffld;
35010: outdata <= fi2d;
3'b011: outdata <= fi3d;
3'5100: outdata <= ff4d;
3b101: outdata <= fI5d;
3'b110: outdata <= ff6d;
3bl11l: outdata <= ff7d;
endcase // case(rptr{2:0])
end

endmodule
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A9 Testbench

TN T T LT T T LT T e e T
m

/ll/ File name: stimulus.v

m

//l{ This file is the testbench of the "A SoC Digital Interface IP Core” project

m

/il Author(s): - Huimei Zheng, zhenghm@hotmail.com

i

T T T T TR LT L T T L T
1/

/Il Copyright © 2002 Huimei Zheng, zhenghm@hotmail.com

1/

/Il This source file may be used and distributed without restriction provided that

/lll this copyright statement is not removed from the file and that any derivative

///l work contains the original copyright notice and the associated disclaimer.

i
g

‘timescale 1ns/100ps

module stimulus;

reg helk;

reg hresetn;

reg [31:0] haddr;

reg [1:0] htrans;

reg hwrite;

reg [2:0]  hsize;

reg [31:0] hwdata;

reg ffwr; //fifo write clock
reg (31:0] fidata;

reg daclk; // fifo read clock
wire [31:0] hrdata;

wire hready;

wire penable;

wire fifulla;

wire flemptyd;

wire adenable;

wire daenable;

wire [31:0] dadata; //output write data

interface inter(hcik, hresetn, haddr, htrans, hwrite, hsize, hwdata,
ffwr, fidata, daclk, hrdata, hready, penable,
adenable, dacnable, dadata,fffulla, ffemptyd
)

initial begin
$shm_open("stimulus.db”);
$shm_probe(hclk, hresetn, haddr, htrans, hwrite, hsize, hwdata,
ffwr, fidata, daclk, hrdata, hready, penable,
adenable, dacnable, dadata, fifulla, flemptyd
)

Appendix A Digital Interface IP Core Software Code

102



end

initial begin
$display("t\tTime haddr ad fiwr fidata hrdatadadaclk hwdata dadata penable\n”);
Smonitor("%d %h %b %b %d %h %b %b %d %d %b",
Stime, haddr, adenable, ffwr, fidata, hrdata, daenable, daclk,
ead hwdata, dadata, penable);

initial begin
helk = 1'b0;
hresetn = 10,
haddr = 32'b0;
daclk = 1'b0;
fidata = 32°b0;

end
always #10 helk = ~helk;

/! accesses A/D

#15 hresetn = 1'd1; htrans = 2; hsize = 0;
@(posedge helk)

#1

hwrite=1b1;

haddr = 32'h80000004; hwdata = 57;
Sdisplay("Access A/D converter, write register”);
#20

@(posedge helk); //read status

#1 hwrite = 1'D0;

#30

@(posedge helk); //read data

#1 haddr = 32'h80000000;
Sdisplay("Read A/D data™);

#30

@(posedge helk); //read status

#1 haddr = 32’h80000004;
$display("Read A/D status");

#30

@(posedge helk); //read status

#1 haddr = 32'h80001000;

//accesses D/A

#30 hresetn = 1'b0; haddr = 32'h0;
@(posedge helk)

#1 hresetn = 1'b1; htrans = 3; hsize = 2;
@(posedge helk)

#1 hwrite = 1B1;

haddr = 32'h80000804; hwdata = 19;
$display("Access D/A converter, write register”);
#20

@(posedge helk); //write dats

#1 haddr = 32'h80000800; hwdata = 459;
$display("Write data to D/A" );
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#20

@(posedge helk); //write data

#1 haddr = 32'h80000C00; hwdata = 6545;
$display("Write data to D/A");

#20

@(posedge helk); //read status

#1 hwrite = 10; haddr = 32'h80000804;
$display("Read D/A status” );

#30

@(posedge helk),

#1 haddr = 32'h80001000;

#40 $finish;
end

always begin
#5 ffwr = 1'D0;
if{adenable) begin
#30 ffwr = 1'dl;
#S ffwr=10;
#5 fidata = fidata + 1'b1;
end
else if (daenable) begin
#65 daclk = 1'b1;
#2S5 daclk = 1'b0;
end
end

endmodule
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Appendix B
The Synopsys Report for the
Gate-level Design

*

B.1 The area report

Version: 2000.11-SP1
Date : Thu Aug 8 14:47:03 2002

bbbt bl d 44 L2 44l 4 L A d b 4 vy e

Library(s) Used:

tcb773pwe (File: /\CMC/tools/synopsys/syn_2000.1 1-SP1/cmc/cmosp35/syn/tcb773pwe.db)
tpd773pawc (File: /CMC/tools/synopsys/syn_2000.1 1-SP1/cmc/cmosp35/syn/tpd773pnwc.db)

Number of ports: 176
Number of nets: 352
Number of cells: 177

Number of references: 3

Combinational area: 5505762.500000
Noncombinational area: 129482.500000
Net Interconnect area: undefined (Wire load has zero net area)

Total cell area: 5635245.000000
Total area: undefined
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B.2  The reference report

Report : reference

Design : interface

Version: 2000.11-SP1

Date :Thu Aug 8 14:47:03 2002

Attributes:
b - black box (unknown)
bo - allows boundary optimization

d - dont_touch

mo - map_only
h - hierarchical
n - noncombinational
r - removable
s - synthetic operator
u - contains unmapped logic

Reference Library Unit Area Count Total Area

Attributes

PDI tpd773pnwe 30660.000000 106 3249960.000000
PDO0SC  tpd773pnwc 30660.000000 70 2146200.000000
top 239085.000000 1 239085.000000

Total 3 references 5635245.000000

Design :
Version: 2000.11-SP1
Date : Fri Aug 9 20:01:49 2002

Attributes:

b - black box (unknown)

bo - allows boundary optimization
d - dont_touch

mo - map_only
h - hierarchical
n - noncombinational
r - removable
s - synthetic operator
u - contains unmapped logic

Reference Library UnitArea Count  Total Area

Attributes

AN2D1 tcb773pwc 70.000000 5 350.000000
AN3D1 tcb773pwe 87.500000 23 2012.500000
AN4D1 tcb773pwe 105.000000 2 210.000000
DFCNIN tcb773pwe 332.500000 2 665.000000
DFCNI1Q tcb773pwe 332.500000 19  6317.500000
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DFCNEIQ tcb773pwe 402.500000 805.000000 n
DFCNS1Q cb773pwe 437.500000 11 4812500000 n
DFSNIN 1cb773pwe 332.500000 1 332.500000 n
DFXCNIN tcb773pwe 420.000000 1 420.000000 n
HAIDI tcb773pwe 245.000000 4 980.000000 r
ICBO cb773pwe 350.000000 100 35000.000000
IND2D1 tcb773pwe 70.000000 350 24500.000000
IND2D2 cb773pwe 122.500000 1 122.500000
IND3D1 tcb773pwe 87.500000 23 2012.500000
IND3D2 1cb773pwe 157.500000 3 472.500000
INVO tcb773pwe 35.000000 112 3920.000000
INV1 tcb773pwe 52.500000 7 367.500000
INV3 tcb773pwe 70.000000 2 140.000000
INVTNI 1cb773pwe 87.500000 96 8400.000000 n
10A22D2A tch773pwe 175.000000 43 7525.000000
IOA221IDIA  tcb773pwc 210.000000 1 2310.000000
IOA221D1IB  tcb773pwe 175.000000 85 14875.000000
ITB2 tcb773pwe 385.000000 1 385.000000
ITBNO tcb773pwe 350.000000 2 700.000000
LHIN tcb773pwe 175.000000 175.000000 n
LHIQ tcb773pwc 175.000000 567 99225.000000 n
LNIQ tcb773pwe 175.000000 40 7000.000000 n
MAOI22D0 tcb773pwe 105.000000 4 420.000000
MOAI22D0 tcb773pwe 105.000000 2 210.000000
MUX2D1 tcb773pwce 122.500000 10 1225.000000
ND2D0 tcb773pwe 52.500000 1 52.500000
NDS8D1 tcb773pwe 210.000000 32 6720.000000
NR4DO tcb773pwc 105.000000 1 105.000000
NR7D1 tcb773pwe 227.500000 1 227.500000
NR8DI tcb773pwc 245.000000 2 490.000000
OAIR1DO tcb773pwc 70.000000 1 70.000000
OR2D1 tcb773pwe 87.500000 21 1837.500000
OR3DI cb773pwc 105.000000 1 105.000000
OR4D1 tcb773pwc 140.000000 3 420.000000
TFCN1Q tcb773pwe 332.500000 4 1330.000000 n
XOR2D1 cb773pwe 122.500000 15 1837.500000
Total 41 references 239085.000000
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