University of Windsor Scholarship at UWindsor

Electronic Theses and Dissertations

Theses, Dissertations, and Major Papers

1988

A techno economic energy model for Ontario.

Damyant. Luthra University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Luthra, Damyant., "A techno economic energy model for Ontario." (1988). *Electronic Theses and Dissertations*. 846.

https://scholar.uwindsor.ca/etd/846

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

[**⇔**[

National Library of Canada

Bibliothèque nationale du Canada

Service des thèses canadiennes

Canadian Theses Service

Ottawa, Canada K1A_0N4

NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-90. AVIS

€ 3

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

Là qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a lait parvenir une photocopie de qualité inférieure.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, tests publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30.

•

339 (r. 88/04)

A TECHNO ECONOMIC ENERGY MODEL FOR ONTARIO

C

2

Damyant Luthra

1

A Dissertation submitted to the Faculty of Graduate Studies and Research through the Department of Industrial Engineering in Partial Fulfillment of the requirements for the Degree of Doctor of Philosophy at the University of Windsor

Windsor, Ontario, Canada

Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without his/her written permission. L'autorisation a été accordée à la Bibliothèque nationale du Canada de microfilmer cétte thèse et de prêter ou de vendre des exemplaires du film.

Ġ?

L'auteur (titulaire du droit d'auteur) se réserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation écrite.

ISBN 0-315-43757-X

I hereby declare that I am the sole author of this dissertation. I authorize the University of Windsor to lend this dissertation to other institutions or individuals for the purpose of scholarly research.

and the

>

I further authorize the University of Windsor to reproduce this dissertation by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

Damyant Luthra

Damyant Luthra

iv

The University of Windsor requires the signatures of all persons using or photocopying this dissertation. Please sign below, and give address and date.

ABSTRACT

F

This dissertation develops an energy planning model for the province of Ontario. The model is a single period model with a target year of 2021 and uses linear programming to minimise the total annualised costs of meeting a set of exogenous end-use demands subject to techno-economic constraints that describe the energy system of the province of Ontarional The model includes a comprehensive detailed description of fuels and technologies of secondary conversion and end-use. The process approach, used to model the energy system extends up to the end-use stage. The model allows for both exports and imports of primary and secondary fuels. Other features include modelling of the petroleum refinery and the electric sector.

Three scenarios, namely, base, low and high energy demand were developed. To demonstrate the use of the model in addressing policy issues, several policy issues were examined.

Some of the important conclusions drawn from this study are the following. In the residential sector natural gas is the optimal fuel for space heating for houses. Further, a reduction itself in space heating demand brought about by building better designed houses is cost effective. In the .transportation sector, electric cars and cars fuelled by compressed natural gas together with gasoline and diesel fuelled cars make up the total demand for cars. This reduction of "top of the barrel" demand permits refineries of lower complexity to operate, thereby reducing overall costs. In the electrical sector, there is an increase in the share of nuclear generation.

The model has been created using WATEMS (Waterloo Energy Modelling System), which provides a very simple and user-friendly environment for data entry, changes to the structure and in running different scenarios.

vii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude and special thanks to Dr. J.D. Fuller for his guidance and support_that made this dissertation possible. Working with him has been a real privilege and a rewarding experience. I would also like to express my thanks to the doctoral committee members. Special thanks to Dr. P. Brill and Dean E. West for their comments and support for this work. Thanks also to Dr S.P. Dutta and Dr R. Hackam. I would also like to express my sincerest thanks to Dean L. Smedic for her support and encouragement that made this dissertation reach its final stage.

This work would not have been possible had it not been for the care provided to me at the Burn unit at Metropolitan Hospital in Windsor. My deepest thanks to everybody at the hospital.

I would also like to thank the following people for their help and support during thus work. Jacquie Mummery (secretary, Industrial Engineering), L.F. Cory (Electronics Design Centre), Ed and Elfrieda Reimer, Dr. D Purushottam, graduate students at the department, and all my friends.

Finally, my deepest and heartfelt thanks go to my family and Pujya Abubabaji for providing the moral courage and full support that made this dissertation possible.

· TABLE OF CONTENTS

0

θ

	· •		
ABSTRA	ACT	vi	-
DEDICA	ATION	viii	•
ACKNOW	VLEDGEMENTS	. ix	•
LIST C	DF TABLES	x	
LIST (DF FIGURES	xiii	
LIST (OF ABBREVIATIONS	xvii	
(CHAPTE			
	INTRODUCTION	1,	•
II.	REVIEW OF LITERATURE ON ENERGY SYSTEM MODELS		
III.	•	5	
111.	WATEMS - AN OVERVIEW AND MODIFICATIONS AND EXTENSIONS	24	•
	Overview of WATEMS Introduction	- ,	- ,
	Possible Constraints and Objective Functions Energy Balance Constraints	· /	•
	Share Limit Constraints Bounds on Variables		
ан — — — — — — — — — — — — — — — — — — —	Objective Function Overview of the Input Spreadsheet	1	
	Connecting the Input and Report Spreadsheets /		•
	Modifications and Extensions to WATEMS		
IV.	MODELLING OF THE_ONTARIO ENERGY SYSTEM	36	
۱ پ	Non-Electric Conversion Stage (Excluding the Refining of Crude Oil)	•	
	Refinery Electric Conversion stage		÷
	Transportation and Distribution Stage End-Use Utilisation Stage	•	. •
. V.	DATA ASSUMPTIONS FOR THE BASE CASE	71	
۰			

\$

	• •		
•		5 ·	
١			
, *			
	TABLE OF CONTENTS (Continued)		
	Non-Electric Conversion Stage 🛛 💥 Electric Conversion stage		
	Transportation and Distribution Stage End-Use Utilisation Stage	. u	
•	VI. RESULTS FOR THE BASE CASE	103	
- Art	VII. ASSUMPTIONS AND RESULTS FOR THE LOW AND HIGH ENERGY DEMAND CASES	117 2	
	Assumptions	117 '	
15	Results VIII. SOME ENERGY POLICY QUESTIONS ADDRESSED BY THE		
	MODEL	141	
	Increasing Electrical Exports to the U.S. Sensitivity to Oil Prices	ţ	
	Soft Energy Strategies		
	IX. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH	168	
	APPENDICES *		
· · ·	A. DATA ENTRY INTO SPREADSHEETS Main Spreadsheet	174	
•	First Segment - Second Segment Scenario Spreadsheet	•	
	B. MODEL RESULTS FOR THE LOW, BASE AND HIGH	یے دور در	
	ENERGY DEMAND SCENARIOS	223	•
-	REFERENCES	261 .	
¢ .	VITA AUCTORIS	267	
		• • 	
- *			
		,	
-			
	•		
• •		-	
2			
		ب ۰	
		•.	÷

LIST OF TABLES

١

1.	Primary resource prices (1985 dollars) assumed for the base case	72	
2.	Cost and technical data for non-electric conversion processes (excluding refinery) assumed for the base case (2021) -	75	
3.	Technical specifications for model parameters for non-electric conversion processes (excluding refinery) assumed for the base case (2021).	76	
4.	Capacity assumptions and process complexity associated with processes for an average sized refinery assumed for the base case (2021)	78	~
5.	Data for cost and percentage range of refined products associated with the low and high capacity refineries assumed for the base case (2021)	78	
6.	Technical and cost details for new fossil and nuclear based generation assumed for the base case (2021)	79	
7.	Techical and cost data for new hydro options assumed for the base case (2021)	80	
8.	Technical data for generating options of existing stock assumed for the base case (2021)	80	۵
9. -	Costs associated with the transportation and distribution stage (1985 dollars) assumed for the base case (2021)	84	
10.	Cost and technical data for space heating options for different categories of houses assumed for the base case (2021)	87	
11.	Cost and technical data for space heating options for apartments assumed for the base case (2021)	87	
12.	Cost and technical data for water heating and air-conditioning dor houses assumed for the base case (2021)	89	

8

مشر [

¢

£

I,

х

	LIST OF TABLES (Continued)	Ø
13.	Cost and technical data for industrial boilers assumed for the base case (2021)	89
- 14.	Cost and technical data for auto and light truck and vans categories assumed for the base case (2021)	92
15.	Cost and technical data for bus and truck categories assumed for the base case (2021)	• 93
16.	Specifications of technical parameters of the end-use stage assumed for the base case (2021)	96
. 17.	Values of parameters for projection of end-use demands for the base case (2021)	98
18.	End-use demand projections for the base case (2021)	99
- 19 .	Conversion factors for primary energy resources and fuels	101
20.	Primary resource prices (1985 dollars) assumed for the low, base and high energy demand scenarios (2021)	118
21.	Values of parameters for projection of end-use demands for the low, base and high energy demand scenarios (2021)	- 118
22.	End-use demand projections for the low, base and high energy demand scenarios (2021)	120
23.	Primary energy consumption for the low, base and high scenarios (2021) for the no new nuclear policy	148
24.	End-use fuel consumption for the low, base and high scenarios (2021) for the no new nuclear policy	148
25.	Additional capacity required for different types of power plants for increasing electrical exports for the base case (2021)	150

here

xi

ĉ

LIST OF TABLES (Continued)

P

4

7

١

26.	Incremental investment required for different types of power plants for increasing electrical exports for the <u>ba</u> se case (2021)	150
27.	Investment and annual revenues (1985 billion dollars) associated with increasing electrical exports for the base case (2021)	150
28.	Description of energy conservation scenarios and corresponding annual savings in space conditioning costs as determined by the model results	159
29.	Additional annual costs for space heating in houses using optimal renewable energy based technology (wood combination furnace with gas backup) for energy conservation scenarios, as determined by the model results	164
	· · · · · · · · · · · · · · · · · · ·	

xii

*.*19

.....

)

LIST OF FIGURES

1.	Network diagram of the Ontario Energy System	*
la.	Enlarged view of the end use stage of the Ontario Energy System shown in Figure 1 (part 1)	* 39
1b.	Enlarged view of the end use stage of the Ontario Energy System shown in Figure 1 (part 1)	40
2.	The annual load duration curve and its n strip approximation.	\ 51
3.	Four step approximation of the annual load duration curve.	82
4.	Primary energy consumption (base case, 2021)	104
5.	Primary energy shares (base case, 2021)	104
6.	End-use fuel consumption (base case, 2021)	105
7.	End-use fuel shares (base case, 2021)	105
8.	Market energy consumption (base case, 2021)	107
9.	Market shares of end-use sectors (base case, 2021)	107
10.	Linear approximated load duration curve for the base case (2021) showing electrical energy generation and mode of operation for supply sources.	109
11. ¢	Residential energy consumption by end-use (base case, 2021)	_ 110-
12.	Shares of residential end-use sectors (base case, 2021)	110
13.	Comm. & Inst. energy consumption by end-use (base case, 2021)	112
14.	Comm. & Inst. fuel shares (base case, 2021)	112
15.	Industrial energy consumption by end-use (base case, 2021)	_ 114
*	attached at the end	

l

l

xiii

LIST OF FIGURES (Continued)

4

-15

?

:

į

r

16.	Industrial fuel shares (base case, 2021)	114
17.	Transportation energy consumption by end-use (base case, 2021)	115
18.	Transportation fuel shares (base case, 2021)	115
19.	Primary energy consumption (low case, 2021)	122
20.	Primary energy shares (low case, 2021)	122 \
21.	End-use fuel consumption (low case, 2021)	123
22.	End-use fuel shares (low case, 2021)	123
23.	Market energy consumption (low case, 2021)	124
24.	Market shares of end-use sectors (low case, 2021)	
25. 26.	Linear approximated load duration curve for the low case (2021) showing electrical energy generation and mode of operation for supply sources. Residential energy consumption by end-use (low case, 2021)	125
27.	Shares of residential end-use sectors(low case, 2021)	126
28.	Comm. & Inst. energy consumption by end-use (low case, 2021)	.127
29.	Comm. & Inst. fuel shares (low case, 2021)	127
30.	Industrial energy consumption by end-use (low case, 2021)	128
31.	Industrial fuel shares (low case, 2021)	128
32.	Transportation energy consumption by end-use (low case, 2021)	129
33.	Transportation fuel shares (low case, 2021)	129

xiv

LIST OF FIGURES (Continued)

l

		•	
	34.	Primary energy consumption (high case, 2021)	131
	35. _,	Primary energy shares (high case, 2021)	131
	36.	End-use fuel consumption (high case, 2021)	132
	37.	End-use fuel shares (high case, 2021)	132
•	38.	Market energy consumption (high case, 2021)	133
	39.	Market shares of end-use sectors	133
l	40.	Linear approximated load duration curve for the high case (2021) showing electrical energy generation and mode of operation for supply	1.7.4
		sources.	134
	41.	Residential energy consumption by end-use (high case, 2021)	135
	42.	Shares of residential end-use sectors (high case, 2021)	135
	43.	Comm. & Inst. energy consumption by end-use (high case, 2021)	136
	44.	Comm. & Inst. fuel shares (high case, 2021)	136
	45.	Industrial energy consumption by end-use (high case, 2021)	- 137
	46.	Industrial fuel shares (high case, 2021)	₽37
	47.	Transportation energy consumption by end-use (high case, 2021)	138
	48.	Transportation fuel shares (high case, 2021)	13.8
	49.	Auto and Light Trucks and Vans end-use fuel consumption (base case and base case with no	l
		new nuclear policy,2021)	143

xv

LIST OF FIGURES (Continued)

(-	
1	50.	Linear approximated load duration curve for the base case (2021) for the no new nuclear policy, showing electrical power requirement, energy generation and mode of operation for supply sources, as given by the model's output.	145
	51.	Primary fuel consumption (base case and base case with no new nuclear policy (2021)	- 146
· ·	52.	Changes in end-use energy utilisation patterns for auto & light truck and van categories (base case, 2021) in response to changes in oil prices	152
	53.	Changes in primary energy consumption patterns (base case, 2021) in response to changes in oil prices	154
	54.	Changes in end-use fuel consumption patterns (base case, 2021) in response to changes in oil prices	156
. *	55.	Space heating energy consumptions for each of the housing categories for different conservation scenarios (base case, 2021)	161
	56.	Percentage difference in primary and end-use energy consumption (natural gas) for different conservation scenarios (base case, 2021)	162
ş	57 .	Space heating consumption pattern for houses (renewable policy base case, 2021) for different conservation scenarios)	166
ı	58.	Primary energy consumption of natural gas (unrestricted policy, 2021) and natural gas and wood (renewable policy, 2021) for different conservation scenarios.	167

?

vvi 💬

LIST OF ABBREVIATIONS

General terms CNG Compressed natural gas Liquified natural gas LNG Energy and Power terms Joule (basic unit of energy in SI units) J Kilojoule (10³J) КJ MJ Megajoule (10⁶J) Gigajoule (10⁹J) GJ And. Terajoule (10¹²J) ТJ Petajoule (10¹⁵J) ΡJ . Exajoule $(10^{18}J)$ EJkWh Kilowatt hour (3.6 MJ) Megawatt hour (3.6 GJ) mWh Gigawatt hour (3.6 TJ) gWh یک ا Watt [basic unit of power (1 J/second)] W Kilowatt (10³ W) KW Megawatt (10⁶ W) MW Gigawatt (10⁹ W) GW

xvii

CHAPTER I

Ø

INTRODUCTION

The design of an energy planning framework is extremely broad-based and complex. The experience of the last fifteen years has clearly shown that decisions regarding the energy sector have profound implications on the economy. Further, the production, transportation, conversion and end-use of all forms of energy have varying impacts on the natural environment. Therefore, a comprehensive energy planning framework should include the energy, economic and environmental sectors.

Each of these areas is complex in itself. Although traditionally energy policy falls largely in the domain of economics, econometric techniques, which are based largely on indirect statistical inference, have many drawbacks when used to model the energy sector. Their reliance on historic patterns not only excludes new forms of energy, but also the conclusions drawn from these models depend largely on historic data bases which are often limited in the information they provide. Wassily Leontief, the world famous economist, commenting on the growing undue use of econometric models to describe various phenomena such as

1

the above type, states (Leontief, 1971),

"...econometric work...can be generally characterized as an attempt to compensate for the glaring weakness of the data base available to us by the widest possible use of more and more sophisticated statistical techniques. Alongside the mounting pile of elaborate theoretical models we see a fast-growing stock of equally intricate statistical tools. These are intended to stretch to the limit the meager supply of facts."

2

Commenting on future directions for model-building in such applications, he further states,

"To deepen the foundation of our analytical system it will be necessary to reach unhesitatingly beyond the limits of the domain of economic phenomena as it has been staked out up to now. The pursuit of a more fundamental understanding of the process of production inevitably leads into the area of engineering sciences".

Keeping with the spirit of Leontief's vision, a model the energy sector of Ontario was developed. The model is dased on a process approach which describes all energy activities in physical terms. Each activity is explicitly represented by technologies that are backed up by an extensive data base. The energy system of Ontario is described by a set of energy activities that start with the extraction stage, followed by conversion, distribution and end-use utilisation. The description includes existing energy types and technologies as well as alternative energy forms and new technologies that are under consideration. It is a single period model with a target year of 2021 that uses linear programming to minimise the total annual discounted costs of meeting a set of exogenous end-use demands subject to techno-economic constraints that describe the energy system of the province of Ontario. The model's major features are :

3

 It includes a comprehensive description of fuels and technologies of secondary conversion and end-use. As space heating and transportation sectors are of special importance to Ontario, both these sectors have a high level of detail.

2. Both inter-regional and foreign trade have been considered explicitly for primary and secondary energy fuels.

- 3. It incorporates a simple refining submodel that is embedded within the main model. This permits the model to address substitutability of petroleum products by alternative fuels and their subsequent effect on the other petroleum products. **
- 4. It includes a submodel for the electrical sector that takes into account the timing of electrical demands and supply. This submodel is part of the main model.
- 5. The model has been created using the WATEMS [Waterloo Energy Modelling System (Fuller, 1987)] framework. WATEMS is a tool for the creation of a broad class of energy-economic planning models. Data entry is in a spreadsheet format; this in itself makes the input and alterations of model structure and parameters very simple. Further,

computations for estimation of cost appd demand parameters have been incorporated within spreadsheets, thus making the task of running and documenting different scenarios very simple. The model can be used t_{0} study various policy issues. A base case scenario that depresents a most likely case has been developed for the year 2021. In view of the uncertainty that exists in dealing with the future the model has been run for a low and a high energy demand scenario. Together, these three scenarios provide an environment to draw reasonably robust conclusions from model results. For example, model results for the year 2021, show space heating using induced gas furnace is the most optimal technology for houses of the Intermediate Solar type (a medium-high insulation house category in current description). This result holds true for all three scenarios and is therefore a robust conclusion. Four policy issues have been addressed here. These are a moratorium on new nuclear power plants, increasing electrical exports to the U.S., sensitivity of model results to oil prices and evaluating "soft" strategies for space heating in houses. Results from the first study show a decrease of electrical energy consumption due to an increase in cost of electricity generation, as coal plants replace the otherwise would be new nuclear plants. This study, amongst other findings, highlights the usefulness of

such a model in examining issues, as the model takes into account the effects of changes that occur in other sectors bdue to changes in one sector. The second study highlights the "vulnerability" in increasing electricity exports when additional investment in increasing electrical generation is solely dedicated towards exports. The third study gives the changing picture of the transportation sector with increasing oil prices. For example, results indicate a trend of decreasing gasoline fuelled vehicles with increasing oil prices, the gap being filled by electric and compressed natural gas fuelded vehicles. This study highlights an important feature of the model, namely, modelling of the refinery process, which permits a realistic study of substitution of some of the petroleum products and their simultaneous effects on the refinery. The last study shows energy conservation brought about by designing better built houses, is cost effective, therefore construction of R2000 houses (a very high insulated house design) should be encouraged. The above mentioned policy studies are indicative of the wide range of policy issues that can be studied using the model.

The model adds to the existing modelling effort in Canada in several ways. By itself, it can be used to study various policy issues such as those mentioned above. Further, with the recent development of an energy model for Quebec, the two largest energy consuming provinces in Canada (Ontario is the largest energy consumer followed by Quebec) have detailed energy models. Together, they both form a major step towards the development of a multiregional model for Canada. The multiregional model would not only be national in scale but would also provide detailed regional structures. This major provision, absent in national models that have been built so far, not only skews results of these models, but also renders them of little use for regional energy planning. In Ontario itself, a possible future link-up with the economic demand models developed at the Ministry of Energy Ontario (MEO) (or a variation of these models), would take a large step in the direction of a comprehensive energy planning framework for the province. Further, submodels of the refinery and the electric sector could form building blocks for future models.

Chapter 2 describes a review of energy planning models described in literature and the contribution made by the model developed here. Chapter 3 describes an overview of WATEMS and the modifications and extensions that were done in the course of creating and using the model. Chapter 4 describes the structure of the model and the modelling process using WATEMS. Also included are the descriptions of computation formulae developed for determining costs and end-use demands. Data collection and transformation to the form required for the base case (a most likely scenario) is described in Chapter 5. Description of data input and the input data spreadsheets are shown in Appendix A. Chapter 6 analyses model results for the base case. Data assumptions and analysis of model results for the low and high energy demand scenarios are described in Chapter 7. Detailed model results for the three scenarios are given in Appendix B. Four policy questions addressed by the model are described in Chapter 9, along with the analysis of the results. This dissertation concludes with the summary of the work and conclusions drawn from this study along with recommendations for future research.

0

7

CHAPTER II

REVIEW OF LITERATURE ON ENERGY SYSTEM MODELS

Within the last fifteen years many energy models have been developed to assist in analysing energy policy in different parts of the world. The intention here is to review some of the important models that provide an overview to the distate of the art of energy modelling (on a national and regional context) as well as those models which are most relevant to the proposed research. A very comprehensive survey can be found in Manne et al. (1979) and Fuller and Ziemba (1980). This chapter concludes with the motivation for the model, the contribution it makes, and very briefly, the direction of future research possibilities emanating from this work. More on the latter subject is given in Chapter 9.

Hoffman (1972) used the process analysis approach to model the U.S. energy system, further development of which led to the Brookhaven Energy Systems Optimisation Model (BESOM, Hoffman 1973). As mentioned in the previous chapter, the process analysis approach considers the conversion of energy sources and their distribution among end-use demands in physical terms. The description can

8

encompass the entire system of energy production and distribution including new technologies emerging from research and development. BESOM consists of a network representation of the energy flows from primary energy sources through conversion, transportation, distribution and end-use utilisation. The entire U.S. is considered) as one region. The demands are specified as space heating, water heating, etc., in the form of functional end-uses as well as application type, such as iron and steel, autos, The model has a linear programming formulation and etc. the optimisation is done on the basis of total costs for a single year subject to supply, demand, environmental and other technical constraints.

Hudson and Jorgenson (H-J, 1974) developed a model based on the interaction of econometric modelling and input-output analysis. The econometric approach uses regression techniques and basically projects past or historic behaviour to the future. The model consists of a production model for nine industrial sectors (five energy and four non-energy sectors), a model for consumer demand and a macroeconomic growth model for the U.S. economy. Supplies and demands are brought into equilibrium by a balance mechanism and related to the patterns of U.S. economic growth. The model can assess the impact of energy policy on both demands and supplies of energy and on the overall level of economic activity. The model has been

9

(.

used to design a tax program for stimulating energy conservation and reducing dependance on imported sources of energy.

Both BESOM and the H-J models have their drawbacks. The process analysis approach in BESOM provides an explicit representation of the technological sector from the extraction to the end-use inclusive of future technological options. However, the process approach cannot be extended to describe economic activity. On the other hand, the econometric approach describes the technological sector in economic terms. Though well suited for describing economic activity at an aggregate level, it obviously cannot be extended to include new technologies which are not already in use.

k.,

The H-J and BESOM combined model (Hoffman and -Jorgenson, 1977) provides a detailed characterisation of the energy sector and a complete representation of the economy. The econometric model reflects changes in the economy at an aggregate level such as gross national product (GNP), employment, etc., and also includes changes in final demand for energy for a given economic or technical policy. Thus, given the economic environment, the process model determines the optimal use of resources ' with respect to technical and environmental constraints. The model can be used to study the impact of economic policy on the technological sector as well as the impact of new technologies on the economy. The time period is a single year.

A dynamic version of the combined model has also been developed (Behling et al., 1977). The integrated system, DESOM/LITM (Dynamic energy System Optimisation Model/Long Term Interindustry Transactions Model) generates energy / economic / environmental scenarios to the year 2020. A a multiregional static version of the combined model was also developed (Goettle et al., 1977). The entire U.S. was divided into nine regions, which are linked by inter-regional energy and industrial flows.

A successor to DESOM was MARKAL (an acronym for 'market allocation'), a result of an international cooperative effort conducted by Brookhaven National Laboratory, USA and Kernforschungsanlage, in Julich, West Germany (described in Fishbone and Abilock, 1981). MARKAL is a demand driven, multiperiod, linear programming model of energy supply and Its major features include capability for demand. multiobjective analysis, a choice of up to sixteen time periods and an automated data management system. For each time period, the user supplies information for various generic classes of energy technologies or resources, the important ones being, energy carriers such as primary and secondary fuels; processes, which transform energy carriers into one another; conversion systems, which converts fuels into electricity; and dewices, which change some

form of energy into a useful service. The main computer routines for matrix and report generation are written in the PDS/MAGEN language. The optimization code used is the APEX linear programming optimizer. The MARKAL framework has been used for analysing energy policy in several countries.

The Julich Energy Model system (JES) developed at Julich for energy planning for West Germany is a comprehensive energy planning framework (described in Egbert et al., 1981). The integrated framework consists of a simulation model coupled with two optimisation models. The simulation model consists of four modules, the modules for energy supply and demand coupled with a macroeconomic module and an environmental module. The supply and demand modules are linked by two optimisation models, MARKAL and, a similar but less detailed model called MESSAGE.

Similar to the Brookhaven models is the Greek Energy System Optimisation Models (GRESOM) developed for energy planning in Greece (described in Samouilidis and Berahas, 1984). GRESOM has been linked with a simplified model of the economy, thus providing a framework for analysing energy economic interactions. Also similar in approach is an energy planning model for Puerto Rico (described in Haddock and Sparrow, 1985).

Manne (1976) developed the Energy Technology Assessment (ETA) model for the U.S. using a combination of process

1.2

analysis and econometrics. It is a nonlinear programming model which maximises consumers' and producers' surplus, or equivalently, minimises costs of conservation, interfuel substitution and supply. The supply side of ETA is modelled using a conventional linear programming process analysis approach. The demand side of ETA is based on a hybrid of econometrics and process analysis. Energy demands are categorised in two broad categories, electric and non-electric and are estimated based on GNP growth and energy prices. It is a partial equilibrium model as GNP growth is an exogenous variable which is not affected by the energy sector. ETA has been used extensively to study nuclear power issues.

X

An extension of ETA was ETA-MACRO (Manne, 1977) which combined ETA with a macroeconomic growth model, thus providing a two way linkage between the energy sector and the economy. The general equilibrium model permits the exploration of macroeconomic issues as they are affected by changes in technologies or policies in the energy sector.

The IDES (Integrated Demand and Energy Supply) model (Macal, 1987) is a generalised equilibrium model that integrates energy supply and demand. The energy sector is represented by an energy network that consists of nodes and links. The nodes are of different types, each type répresenting a particular energy activity such as conversion, electrical generation, etc. An iterative

13

☆

procedure determines the equilibrium solution, i.e. sets of prices and quantities that satisfy all equations and inequalities that desribe the energy sector. The time horizon is up to 30 years in steps of 1 year. The computer code is written in Fortran. IDES can be run on a microcomputer as well as on the main frame. The framework has been used to model the energy sector of a Caribbean nation over a 20 year period.

Debanne (1980) describes a succession of network based energy planning models that looks at North America as a whole. The first model was a one commodity model and did not include transformation processes. Subsequent versions extended into multi-commodity and included transformation processes. The equilibrium models calculate period by period energy prices, demands and supplies. The models are useful for energy planning from a continental point of view.

Several models have been developed for energy planning for Canada. Helliwell et al. (described in Fuller and Ziemba, 1980) developed an econometric model which focusses on the assessment of macroeconomic impacts of large energy projects on the Canadian economy. Exogenous to the model are oil and gas prices, the gross national expenditure (GNE), price of electricity, the growth of hydroelectric supplies and growth of natural gas distribution. Given the above, the model calculates the demands for all end-use

14

А

sectors. The demands are aggregated in terms of oil, gas, coal and electricity. The supplies are aggregated as frontier natural gas, non frontier natural gas, crude oil, Athabasca synthetic crude oil, coal and electricity. The model can be used to analyse a variety of policies such as trade, energy price and taxation.

The Canadian Explor Model (CEM, described in Fuller and Ziemba, 1980) is a revised version of the basic Explor model developed at Batelle Research Centre in Geneva, for application to European countries. The macroeconomic model covers the entire economy. Though designed for analysing economic policies it contains an energy sector which permits the analysis of certain energy issues such as energy pricing studies., energy conservation programs and impacts of capital invested in the energy sector. The energy sector is divided into coal, crude oil and natural gas, oil products, electric power, gas and other utilities. It is a static model covering the period to 2000.

CANDIDE is a national econometric model of the Canadian economy with an extended energy sector (described in Fuller and Ziemba (1980). The model treats the entire nation as one region. The model has similar applications as CEM.

The Fuller and Ziemba (F-Z) model (Fuller, 1980) is a dynamic model of the Canadian energy sector for long term planning. Similar in many aspects to Manne's ETA model, it uses a combination of process analysis and econometrics. The supply conversion and distribution are handled using a process approach. Demands are obtained from an econometric Nonlinear programming is used to find the model. supply-demand equilibrium by maximising the producers' and consumers' surplus over all periods. Six time periods cover the span of 45 years from 1975 to 2020, the first three of length five years followed by three of length ten years. A very important distinction in the model is the "regionalising" of the country into two regions, East and West, with the dividing line at the Ontario-Manitoba border. The model has a high level of aggregation. The supply sources are oil, gas, coal, electricity and solar. The demands are classified as road transportation (autos), other transportation (non-auto), industrial, and domestic, farm and commercial (heating and non-heating). The process analysis is carried to the end-use stage only for the heating demand. The other demands are in terms of secondary fuels. Thus interfuel substitution is determined endogenously only for the heating category, for the others, upper and lower limits on the shares of input fuels have been placed. The model is a partial equilibrium model, i.e. it has a one way energy-economy linkage.

The Canadian Balance model developed by Daniel and Golgberg (1981) is a dynamic partial equilibrium econometric model. It consists of a linear programming supply model for Canada which is integrated with the Energy

Mines and Resources (EMR) demand model using a linear programming procedure. The linear programming supply model determines the minimum cost of supply of primary energy resources to meet the demands in each of the time periods. The emphasis on the supply are on the Western fossil fuel resources. The emphasis on the supply side are on Western fossil fuel resources. The EMR demand model derives demands for the primary resources as a function of price. Using various economic and demographic variables obtained from CANDIDE, the economic estimation equations determine sectoral end-use demands from which market sharing equations estimate the share of secondary energy forms which are then translated into demands for primary resources. A linear programming procedure is used to balance supply and demand so as to achieve price compatibility. The model has four time periods covering the span of 20 years (1980-2000), each period having a length of five years.

The WATEMS (Waterloo Energy Modelling System) framework (Fuller, 1987) is a tool for the creation of a broad class of energy-economic planning models. Examples of models that could in principal be built include the F-Z model, ETA, ETA-MACRO, the Brookhaven series of models (BESOM, DESOM, etc.), etc. Data on network structure, costs, efficiencies, etc. are entered into a spreadsheet. This data is then processed by a Fortran program (special purpose matrix generator) that translates the input data in the form required by the mathematical programming package, MINOS [Modular Incore Nonlinear Optimization System (Murtagh and Sanders, 1983)]. The solution obtained is processed by another Fortran program and entered into another spreadsheet for report generation. The framework Five basic types of constraints are available is flexible. to the user to "build" the energy system. The partial reliance on spreadsheets not only makes the input and alterations of model structure very simple but also permits the user to utilise the spreadsheet for pre-processing the data and post-processing the model results. Further, the framework is open to modifications and exténsions, thus leaving the user with tremendous flexibility in creating and running the model.

The models that have been described above are national in scale. Apart from the F-Z model, all other models view the entire nation as one region. The latter models have a high level of aggregation such as average supply-demand patterns, average costs of transportation, etc., the averaging process being done over the entire nation. The F-Z model takes the first step in "regionalising" a model that is national in scale. However, it also has a high level of aggregation. For example, the entire Eastern Canada is represented by one region. Further, the model structure itself is relatively small in size. The above models are therefore of limited use, when the objective is to provide an analysis of the energy system on a regional level.

McConaghy and Quon (1980) developed a regional model for short and medium term planning for Alberta. It is a linear programming model with four time periods ranging from 1977 to 1995. The model is formulated using a process analysis approach and is similar in many respects to BESOM. The model concentrates on the supply side and does not carry out the modelling to the end-use stage. The energy resources that are considered are crude oil, coal, oil sands, natural gas, natural gas liquids and renewable energy sources (solar, wind and biomass). The energy demands are classified in terms of energy forms demanded such as electric power, refinery products, etc. The decision variables are energy, capital, material and human resources that are required to satisfy the energy demands. The model minimises the allocation of Alberta's energy resources over a planning period to satisfy future national and provincial energy demands.

In recent years a very detailed energy model of the energy sector has been developed for Quebec (Haurie and Loulou, 1985) using the MARKAL framework. MARKAL-QUEBEC is a multiperiod linear programming model. The description starts with the extraction stage through the process of conversion and distribution and finally through end-use utilisation. The primary objective function is the total system discounted cost, minimisation of which leads to the selection of least-cost energy activities that satisfy the set of exogenous demands. MARKAL-QUEBEC can be used to evaluate a wide range of government policies, new technologies-and major energy projects for the province of Quebec.

The Ministry of Energy Ontario has an integrated framework that links a set of energy demand models with a set of models that describe the economy (Jutlah, 1985). For a given economic scenario, the energy demand models determine the demands for various fuel types which in turn are linked by a supply model that translates secondary energy demands to primary energy requirements. The methodology used is a combination of econometrics and technological forecasting. The framework is detailed and essentially provides an accounting tool for determining energy demands by fuel types for a given economic scenario on an annual basis.

Recent discussions with Ontario Hydro (Duda et al., 1987) indicate work in progress on an end-use process model for the industrial sector of Ontario. At present the work is limited to the pulp and paper industry. The model is being developed using the process approach.

The above literature review suggests that a comprehensive energy planning model should have the energy,

economic and environmental sectors, a good example being the JES system in West Germany. Secondly, it is essential to develop regional energy models, not only for regional energy planning, but also from the viewpoint of national energy planning, for which a multiregional model is quintessential (this is especially true for Canada, since there is a geographic uneven distribution of energy resources and demands. The Western regions with most of the fossil fuel supplies are the major energy producers, while the heaviest markets are in the East. As the cost of transportation and the development of transportation systems have been a formidable barrier, this has given rise to sizable regional variations in the forms of energy used, which in turn has given rise to energy issues that are markedly different from region to region).

The model developed in this dissertation is a detailed process model for Ontario. To get an idea of the detail that is supported, the Ontario energy structure in the model is described by 419 arcs (variables), while the Eastern region in the F-2 model (the nearest equivalent to Ontario's structure that was available before the model developed here), which also represents an aggregation over Quebec, Ontario, and the Atlantic provinces, is described by approximately 40 arcs (variables). Further, in recent years, energy planning in Ontario, amongst other objectives, has focussed on conservation techniques (for

space heating) and alternative energy fuels for transportation. For instance, in the transportation sector which accounts for approximately 50% of the crude oil consumption, alternative fuels such as propane, compressed/liquefied natural gas, alcohols, synthetic liquid hydrocarbons, liquid hydrogen and electricity have been and are under consideration, with some of these being actively promoted. In the residential and commercial sector, conservation techniques have been encouraged for existing buildings and for better designed new buildings (e.g. the R2000 houses). There has also been emphasis on more energy efficient heating equipment and on new methods using active and passive solar energy. Clearly evident is the lack of existing energy planning models to analyse these policy issues, and this fact provides motivation for the model in this work.

The development of this model takes a major step in two directions. Firstly, together with MARKAL-QUEBEC, they form a major part of a national multiregional model. As mentioned in Chapter 1, the multiregional model, encompassing the entire nation, would provide a more accurate and detailed enery planning model at a national as well as a regional level. Secondly, on a regional level only, a possible link with the MEO models (or variants of these), and extension of the model to include environmental effects, would provide Ontario with a comprehensive energy

22

planning framework.

The model in this dissertation has been created using the WATEMS framework. In order to create and run the model some modifications and extensions were done to the framework. These were mainly due to the Large size of the model. Amongst other changes, one particular modification was the rewriting of spreadsheet macros in such a way that no modifications were required of them as model structure changed. The above practical feature is extremely useful in the creation of large models, as otherwise one would need to update changes in the macros everytime there are changes in model structure. Extensions to the framework were done in two areas. The first extension was a design of a separate spreadsheet for scenario analysis that made it simple to create and record different scenarios. The second extension introduced a comparison facility in the framework thereby permitting the comparison between two solutions.

The following chapter gives an overview of WATEMS and a detailed description of the modifications and extensions to the framework.

CHAPTER III

WATEMS -- AN OVERVIEW AND MODIFICATIONS AND EXTENSIONS

ij

3.1 Overview of WATEMS

3.1.1 Introduction

As mentioned in the previous chapter, WATEMS is a system designed for the easy construction and updating of a wide range of energy planning models which use mathematical programming techniques. With WATEMS, two broad classes of models can be constructed. One type of model will minimise the total discounted costs of meeting projected demands, examples of such models being BESOM, DESOM, MARKAL, etc. The other type calculates a dynamic, competitive equilibrium, by maximisation of consumers' plus producers' surplus, examples being ETA, F-Z model, etc. The description here is directed mostly to the features, provided by WATEMS for modelling the former group of models, since the model developed here belongs to the broad class of cost minimisation models. In addition, since it is a single period model, only some of the features of WATEMS are used. The description concentrates mainly on those features that are actually used. More details can be found in Fuller (1987).

Briefly, data on network structure, costs, resource amounts, conversion efficiencies, process lifetimes and decline curves, bounds, discount rate, number and size of periods, and demand functions are entered into a spreadsheet, along with variable and node names, and names of units. The data is then processed by a Fortran program, which is a special purpose matrix generator and the primary component of WATEMS. The output produced is a translation of the input data in the form required by the mathematical programming package, MINOS. The solution obtained is processed by another Fortran program and entered into another spreadsheet containing titles (node names, variable names, etc.), where it can be manipulated to produce reports consisting of tables and graphs.

3.1.2 Possible constraints and objective functions

WATEMS offers the user five types of constraints, namely, energy balance, retirement and production decline, reserve, share limit, and bounds on variables. The objective function consists of two parts, the linear part made up of discounted costs and a nonlinear part that describes consumers' benefits. The model developed here uses three constraints, namely, the energy balance, share limit and bounds on variables. Further, being a cost minimisation model only the linear portion of the objective function was used. For the reader's convenience, those features of WATEMS that were used are described below. The description

is taken mostly from Fuller (1987).

3.1.2.1 Energy balance constraints: Any model built with WATEMS has a network structure; energy from various sources is collected together at nodes, and then sent out from the nodes to various destinations, which are other nodes or final demands. The fundamental variables of the model are the annual rates of flow on the arcs. At each node, m, for each time period, t, there is an energy balance constraint, which says that the amount of energy collected at the node equals the amount of energy sent out. There is provision, for some fraction, β_{mt} of the energy to be lost -- e.g. to represent transportation losses. A loss may alternatively be represented by a conversion efficiency for a process on an incoming arc.

Let X_{it} (a variable) be the annual rate of energy flowing along arc i in period t, with conversion efficiency ϵ_{it} ; and let β_{mt} be as above. Let Im be the set of indexes for incoming arcs at node m, and let Om be the indexes for outgoing arcs at node m. Then the energy balance constraint for this node and time period t is:

$$(1-\beta_{mt})\sum_{i\in Im} \epsilon_{it} x_{it} = \sum_{j\in Om} x_{jt}$$
, for all t. ...3.1

The user must enter information on the network structure (nodes of origin and destination for each X_{i+}), and on

numerical values of β_{mt} and ϵ_{it} . The parameters β_{mt} and ϵ_{it} may be specified as constant or varying functions of time. In the latter case, a few parameters specify a function of a certain form; since the model developed here is a single period model, these values are zero.

For a cost minimisation model, the optimal dual variables for constraints 3.1 represents marginal costs. WATEMS calculates marginal costs for each node and sends these to the report spreadsheet.

3.1.2.2 <u>Share limit constraints</u>: It is occasionally necessary to limit the fraction of total incoming (or outgoing) flow at a node that can be supplied by one of the incoming (outgoing) flows; this may be an upper limit, a lower limit, or an equality constraint. If f_{it} is the exogenous fraction in period t, if Im is the set of indexes of all incoming sources at the node m into which X_{it} flows, if Om' is the set of indexes of all outgoing sources at the node m' from which X_{it} flows, and if ϵ_{it} is the conversion efficiency, then the constraint is of this form:

...3.2a

at the incoming node, and,

$$x_{it} \leq f_{it} \sum_{j \in Om'} x_{jt},$$

at the outgoing node.

3.1.2.3 <u>Bounds on variables</u>: WATEMS permits the specification of bounds on any X_{it} variables. These may be upper bounds, lower bounds or fixed inequalities. 3.1.2.4 <u>Objective function (linear part for a cost</u> <u>minimisation model</u>): WATEMS maximises the negative sum of the total cost of meeting demands for the various sources. of supply (the linear part actually is part of a nonlinear objective function that describes the consumers' and producers' surplus that is maximised; however, for cost minimisation models, the linear part is the only objective).

If δ is the annual discount rate, if X_{it} and ϵ_{it} are as in section 3.1.2.1, described earlier, if σ_i is the number of basic units of energy per natural unit of variable i, if c_{it} is the cost per natural unit of output energy, and if w is the length of a period, then the linear part of the objective function is of this form:

$$-\sum_{t}\sum_{i}(1+\delta)^{-t}(c_{it}\epsilon_{it}/\sigma_{i})wX_{it} \qquad \dots 3.3$$

where the symbol "t" in the discount factor represents the number of years after year zero to the midpoint of the period in question (for a single period model, t=0); elsewhere in 3.3, the symbol "t" is an index for the periods as in the earlier definations (which again is not required for a single period model. These four features were used to model the Ontario energy system. Other features of WATEMS not used here include two sets of constraints, namely, retirement and production decline, and reserve constraints. In addition, there is the nonlinear part of the objective function that permits a calculation of competitive equilibrium of supply and demand, that was not used.

3.1.3 Overview of the input spreadsheet

Data input is in a spreadsheet. The description here is an overview and describes the approach for model creation in WATEMS.

The first few rows of the input spreadsheet are common to all models. These rows include titles that describe the information to be entered and general information about the model.

The next set of rows are used to describe the nodes of the model. Each node is described in a separate row, and is described by a node name and by entries known as "switches". If the first switch is zero then $\beta_{mt}=0$ for the node of that row. If the first switch equals 1 then β_{mt} is constant in all periods and is given by the value entered in the next column. If the first switch equals 2 then β_{mt} would follow a time pattern specified by four parameters, their descriptions being specified in the next four columns (does not apply to the model developed here). The last node information are node units, these being

()

specified in the next column. The order in which the rows are specified is of importance, since the same numerical order is used to specify the structure in the variable information section.

Variable information follows next. Each variable is described in a separate row. The name of the variable is entered in the first column. The next two columns are used to specify the model structure, i.e. the starting and ending node for that variable. The next set of columns are reserved for information regarding various features such as share constraints, bounds, costs, conversion efficiencies, etc. A feature (such as a bound on the variable) can be selected by a "switch", -- an integer placed in the appropriate column of that variable's row. A switch of zero means that the feature is not selected; a small number of positive integers have specific meanings that not only select the feature, but also specify such things as the type of bound (upper, lower, or equality). The first digit of the three digit integer indicates that the bound is on X $(X_{i+} \text{ variables})$ or on the D variable (the D variables are used for dynamic models; in the model developed here the variables are all of the X type), the second digit specifies an upper, lower or equality bound, and the third digit selects the time pattern for the bound. A similar approach is used to select other features.

3.1.4 Connecting the input and report spreadsheets with

MINOS

On completion of the input spreadsheet, macros are invoked that separate the numeric content (space separated format or comma separated format; either way it can be read by a format free FORTRAN statement) and the character information (list of nodes, variables, etc.); the numeric part is uploaded to the main frame by any file transfer program duch as KERMIT, PC-TALK, etc., while the character information is saved in another spreadsheet for the report. In the main frame a Fortran program (special purpose matrix generator) processes this information and converts it into the format required for MINOS. The solution from the optimisation program is processed by another Fortran program that reads the output from MINOS / calculates the marginal costs (prices for models that maximise the consumers' and producers' surplus) from the dual variables of the energy balance constraints, and writes the marginal costs (prices) and X-variable values to a file in comma separated value format. This file is then downloaded and re-entered in the report spreadsheet with the marginal costs (prices) lining up with the corresponding node names and the X-variable values lining up with the corresponding variable names.

The WATEMS framework provides a simple and easy method for creation, alterations and running of energy planning

models of the mathematical programming type. The framework is flexible in that, the user can model a wide range of systems or phenomena with the help of the constraints provided. Advantages of using spreadsheets for data entry are only too well known and require no elaboration. However, of particular advantage in their use here is the availability of the unused portion of the spreadsheet for computations for costs, demands, etc., i.e. the WATEMS description of the model extends to column H for node information and column AS for variable information. The columns to the right of these columns can be used for specifying data-regarding costs, etc., thus permitting pre-processing of data on the same spreadsheet. In addition, the spreadsheets and the main frame programs can be easily modified and extended in many ways.

In order to create and run the model developed here in WATEMS, minor modifications were required to the WATEMS framework. Further, because of the large size of the model, the WATEMS system has been extended in certain ways to simplify its use. These changes are described in the next section.

3.2 Modifications and extensions to WATEMS

There were a few minor modifications that were done to the WATEMS system. Changes in the matrix generator (FORTRAN program; in particular SPECS subroutine and the objective function cost subroutine) permit the model to be minimised directly rather than by the maximisation of the negative sum of the discounted costs, a form more suitable for the nonlinear consumers' and producers' surplus formulation. The macro programs in the spreadsheet were rewritten in terms of range names rather than specific addresses. This feature permitted the automatic update of the macros when nodes or variables were added to the model, thus eliminating the simultaneous update of the macro programs which was an unnecessarily time consuming repetitive task especially when working on a large model and on a regular personal computer.

As mentioned in the beginning of the chapter and in some following sections, there were some features of WATEMS that were not used. As the model was large in size, in order to reduce inputting time and overall manageability of the spreadsheet, some of the extra columns that were reserved for these descriptions, were deleted. This required a change in the READ statement of the matrix generator to map the variables with their corresponding values.

The first extension to WATEMS was the introduction of another spreadsheet. This spreadsheet contains a list of parameters that one would like to vary to create different scenarios, such as interest rates, resource, prices, etc., alongside an entry cell for inputting values. These parameters were linked with end-use demand formulae which were entered within the same spreadsheet. Therefore, with any change in the specification of the parameters produced simultaneous recomputations of end-use demands. This spreadsheet, being small in size is easy to work with. On completion of it, the information is automatically mapped on to the required cells in the main spreadsheet and the smaller spreadsheet is saved as a separate file for future reference. The automatic interfacing was brought about by writing two macros. The first one saves the file on two disks, on a separate disk for future record and on the disk that contained the main spreadsheet. On completion of it, it loads the main input spreadsheet. The other macro This macro, named as a " $\setminus 0$ " transfers the information. macro, automatically invokes itself everytime the WATEMS spreadsheet is loaded (a facility offered in the LOTUS spreadsheet). The resource prices, end-use demands, etc., are mapped on to an "unused portion" of the spreadsheet from where they are linked to the corresponding cells. Thus, to run different scenarios, only the scenario spreadsheet needs to be accessed. Changes are automatically mapped to the main spreadsheet. This facility greatly simplifies and reduces the time to create, run, and save different scenarios.

The second extension to the WATEMS framework was the addition of a new facility for the comparison of results. During the analysis of model, results need to be compared

very often. Since there are a large number of variables this facility is useful. This basically involved the writing of a FORTRAN program in the main frame that read data from three files, these being an abbreviated data file of the input data, and the two solution files (the comma separated value formatted output result files). Based on O'Leary's (1987) comments on what should be compared, the program determines whether the basic variables still remain basic, and if so, it determines whether there is any change or not in their values. Conversely, for a nonbasic variable, it determines whether it remains nonbasic or if it has changed to basic. The output results are imported as a text file (as the results contain numeric and character information) into a report spreadsheet which contains the variable names and units. The results align themselves with the corresponding variable names and theirunits.

These changes in WATEMS permitted an easy construction and running of the model developed here. The next chapter gives a description of the model and the modelling process.

35

Å.

 $< \frac{1}{2}$

CHAPTER 1V

MODELLING OF THE ONTARIO ENERGY SYSTEM

Before energy can be supplied in usable forms to the consumer, a certain sequence of activities is required. Crude oil is transported to the refinery. The refinery produces a range of petroleum products. Some of the products such as \tilde{f}_{uel}^{τ} oils are transported to power plants for electric power generation as well as transported directly to consuming industries, etc., while products such as gasoline and diesel are transported directly to local supply centres from where they are distributed to consumers. Coal is transported to power plants as well as directly to the end-use consumers (Iron and Steel Industry, tc.) Natural gas is transported to electrical generation power plants as well as to local distribution centres which finally distribute the gas to residential, commercial and industrial consumers. Solar energy follows a different pattern. It is not extractable nor transportable in the way the fossil fuels are and is available on site of utilisation. Finally, the electricity that is available from power plants is transmitted to local distribution centres from where it is distributed for end-use

utilisation.

It is this sequence of activities that is modelled for the Ontario energy system. The sequence of activities can be considered as a multistage network that starts from the supply stage, through conversion, transportation and distribution, and ends at the end-use utilisation stage. From an optimisation viewpoint, the problem can be defined as minimising the total costs of all stages subject to supply restrictions, demand requirements and technical constraints that describe the energy system. The aim in constructing the model has been to include as much detail as possible. However, the detail in structure must be supported by an equal level of quality data. Developmentof the structure and data collection have gone hand in hand, the development in structure prompting the search for data, the availability and type of which, dictated further revisions of the structure. Many data sources have been used to develop the structure, the major ones being EMR (1983a), Ontario Hydro (1985) and documents by the Ministry of Energy Ontario (MEO, 1983,1985a,b).

Much of a WATEMS model's structure can be illustrated with a diagram that shows the energy flows represented in the model. The network diagram of the Ontario energy system is shown in Figure 1 (attached at the end). As mentioned above, the model can be looked upon as a multistage network that starts with supply, through

non-electric conversion, electric generation, transportation and distribution, and finally through end-use utilisation. As the end-use utilisation stage is difficult to see in Figure 1, details are shown in Figures la and lb. The modelling of each of the stages are described below.

The model has been designed for a target year of 2021. A major assumption in constructing the model, based on introduction dates and effective lifetimes, was that out of the existing stock that describes the energy system, only some of the existing building structures, most of the existing hydro facilities, and the Bruce "B", Pickering "B", and the Darlington nuclear plants would influence the energy system in 2021.

4.1 Supply stage

The primary energy sources that have been considered are solar, lignite, uranium, hydro, municipal refuse, natural gas, propane, coal, crude oil, wood and agriculture grain crops that include corn, barley and wheat. In addition to being disaggregated by energy type, wherever appropriate they have been further disaggregated by place of origin. The modelling of the supply process essentially involves identifying different supply sources and representing them by separate arcs; each of these arcs then flows into the appropriate supply nodes. Wherever necessary, upper bounds

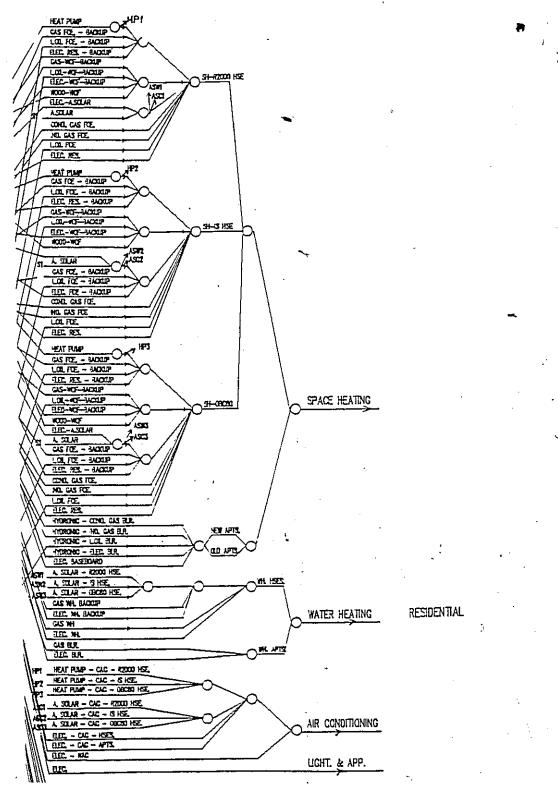
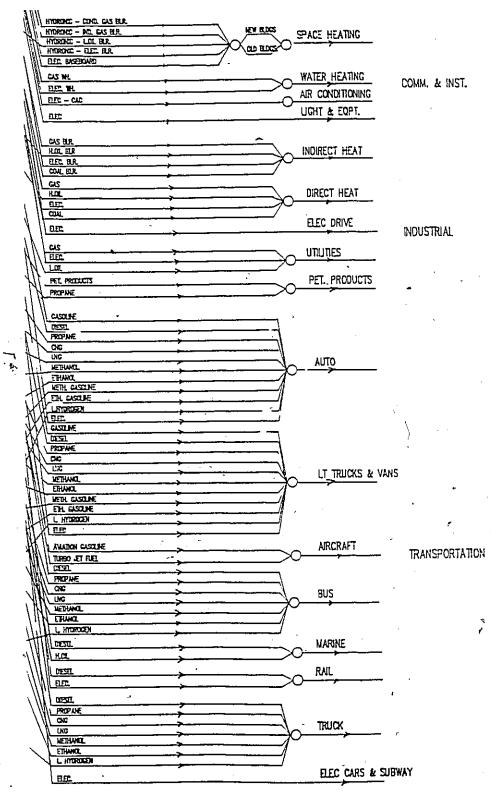



Figure la. Enlarged view of the end use stage of the Ontario Energy System shown in Figure 1 (part 1).

٩.,

Figure 1b. Enlarged view of the end use stage of the Ontario Energy System shown in Figure 1 (part 2).

have been placed to represent restricted supplies. Also, share constraints that fix the total share of supply from a particular source have been placed in some cases.

Based on future projections, natural gas supplies are represented by two arcs, one representing the major regional import (the Beaufort Sea / Mackenzie delta area, the Arctic Islands or the Eastern Offshore, depending upon future developments), and the other representing very limited quantities from Southern Ontario gasfields. There is an upper bound to the latter. Propane supplies from the West are represented by an arc. This is the major source. In addition, propane is a by-product in crude refining as well as from the MOBIL processes. Each of these potential supply sources are represented by separate arcs that flow from the ouput nodes of the processes into the propane supply node. Crude oil supplies most likely would consist of foreign imports and regional imports from Beaufort Sea / Mackenzie delta, Arctic Islands, Eastern offshore or synthetic crude from oilsands in Alberta, depending upon which sources are developed in the future. Ontario has large quantities of oilshale, but it is unlikely that it will be developed by 2021, given its high cost. Under current policy crude oil is sold at world price regardless of origin, and as there is no indigenous supply within Ontario, crude oil supply is represented in the model by one arc. Bituminous coal supplies are represented by two

arcs, US Appalachian and Western Canadian. A share constraint has been placed that forces a fixed share of Western coal. Lignite supplies are assumed to be from Saskatchewan (although Ontario has approximately 170 million tonnes of lignite at Onakawana, the quality and remoteness of location currently make mining these deposits uneconomical; it is assumed to remain so in the year 2021). Future projections for uranium supplies show Saskatchewan having the major share, followed by smaller shares for Ontario, the Northwest Territories and Nova Scotia. Uranium supplies are represented by one arc, the supply being from any of the above. Hydro-electric power is disaggregated by three types: existing hydro stock that would be operating in 2021, new small hydro (2-10 MW), and new large hydro (greater than 10 MW). In addition, some hydro plants are dedicated peaking units (explained in section 4.4) and can only be used for serving peak electric loads. Wherever appropriate, the above broad categories for hydro have been further disaggregated by dedicated peaking units and other hydro units, the latter includes those that could technically be used to service any of the electricity demand modes. Other primary resources, all indigenous to Ontario, are wood, corn, barley, wheat, municipal refuse and solar, each of these being represented by separate arcs.

ß

4.2 Non-electric conversion stage (excluding the refining

of crude oid)

The non-electric energy conversion technologies considered in this stage, include the compression and liquefaction of natural gas, syncrude from coal using the SRCII-B process, gasoline from coal, natural gas, and methanol using the MOBIL process, gasoline from coal using the Zinc Chloride process, gasoline and diesel fuel using the SASOL process, methanol from natural gas, coal and wood, ethanol from natural gas, coal, wood, corn, barley and wheat, and liquid hydrogen from natural gas, coal and electricity. Detailed data that includes quantitative description of processes and costs are available in EMR (1983a).

The modelling process here essentially involves identifying for each process, all energy inputs (both, as a fuel and as a feedstock), and outputs. Each conversion process has an associated node. Arcs, representing energy feedstocks and in some cases energy fuels, flow from the output of the supply nodes to the input of the process node. Output flows from the process nodes represent secondary fuels. For gasoline from coal using the Zinc Chloride process, methanol from coal and wood, liquid hydrogen from electricity, and for compressed and liquefied natural gas, there is just one incoming energy flow. The efficiency parameter associated with the incoming arc specifies the efficiency of the process, i.e. the ratio of the output energy produced to the input energy supplied. For all other processes, there are more than one energy flows. Equality share constraints have been placed for the incoming energy flows that specify the proportional share of the different energy inputs required by the process. Both the node loss and the efficiency parameter, have been used to specify the net energy efficiency of the process. In addition, for the MOBIL processes and the SASOL process there are more than one output. Here, equality shares on the outgoing energy flows from the process node have been placed. These specify the proportion of the different energy outputs produced by the process.

Data related to costing was available in the form of Capital costs and operating costs. As most of the processes are emerging from research and development programs, the costs are based on pilot plants which are of small and varying capacities. For comparison purposes, additional data was also specified to translate the base costs to an equal capacity basis. The large plants, which are not distribution oriented, e.g coal to syncrude production, etc., are translated to 250,000 gigajoules (GJ) per day capacity. The smaller plants that are distribution oriented, e.g. compressed natural gas plants, are translated to 40,000 GJ/day capacity. Both capacities represent average sizes of plants for the two categories. Further, as these technologies are in the pilot stage, there is an element of uncertainty involved in the investment cost estimations in moving from the pilot stage to actual large scale production. The actual costs usually exceed the estimations since technical problems arise with large scale production which were impossible to foresee at the pilot stage. Thus for each of the plants there is an uncertainty factor that increases the base case costs. Using this data, cash flow calculations that determined the per unit costs based on capital and operating costs, plant lifetimes, and discount rates were done in the following way.

Let c_b , o_b be the capital cost and operating cost (excluding the cost of energy, both, as a fuel and as a feedstock) for the base case pilot plants. Let p_b , P represent the base case and the equal capacity case production rates respectively (P is either 250,000 or 40,000 GJ per day). Then, the capital costs are translated according to plant scale exponents while operating costs are translated linearly, these being given by

$$c_{e} = c_{b} * (P/p_{b})^{CF} \qquad \dots 4.1$$

$$0 = o_{b} * (P/p_{b}) \qquad \dots 4.2$$

where c_e , O represent the capital and operating costs respectively translated for equal capacity, and CF is the exponent that translates investment costs for the base case

to the equal capacity case.

Let UF represent the uncertainty factor and let c_m represent the modified capital cost that includes modification for equal capacity and uncertainty. Then,

$$c_{m} = c_{n} * UF$$
 ...4.3

The above capital cost does not include interest during the construction period. Let L be the construction lead time, β be the fraction of construction lead time when half expenditures are made, and r the discount rate, then, the modified capital cost including interest, C, is given approximately by,

 $L^*(1-\beta/2)$ $(L^*(1-\beta))/2$ $C = c_m/2 * [(1+r) + (1+r)] \dots 4.4$ Let T be the plant's operating lifetime and SF be the service factor, i.e. the fraction of the year the plant is working, then the per unit cost of production of the output (excluding the cost of energy), is given by

 $c_p = [C^*(A/P,r,T) + 0] / (P^*365^*SF)$...4.5 where,

...4.6

$$(A/P,r,T) = r / [1 - (1/(1+r)^T)]$$

4.3 Refinery

Crude oil is made up of many different hydrocarbons. A refinery separates the components and upgrades them to the specified qualities. The output product mix is not fixed

and can be varied within certain limits depending upon the processes that exist in a refinery. The earlier refineries were relatively simple in design: the slate of products essentially reflected the component makeup of the input crude. In the last thirty years or so market demands have tilted towards a larger share for lighter products and newer products have entered the market. Consequently, modern refineries have a large number of processes with complex interconnections between them. Obviously, modelling a realistic refinery is extremely complex and could run into hundreds of variables and constraints. This is not desirable not only from the viewpoint of model size, as this is only a small subsector of the entire model being developed, but also much of the added information that is gained would be of limited use in this context. The objective here was to develop a simple representation which would describe the flexibility that exists in a refinery, which for the purposes of studying interfuel substitution is the most important feature of the refinery.

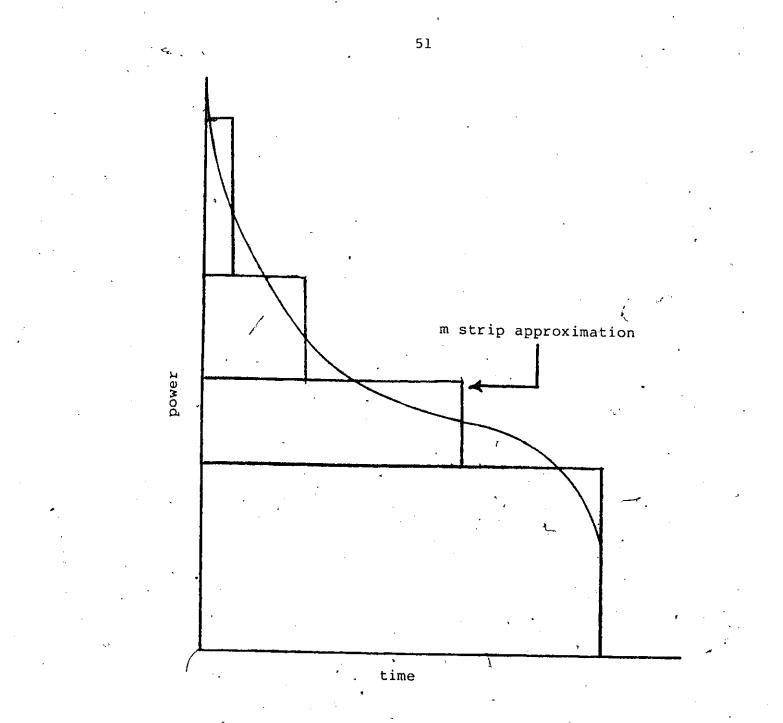
The refinery operation can be described very briefly as starting with the distillation of crude oil, the distillation products being fractions of hydrocarbon gases, gasolines, straight run oils and heavy residuals. Some of the gasolines can be sent directly to the gasoline blending unit. The heavier gasolines go through a reforming process, the reformed gasoline then is sent to the gasoline blending unit. The oils can be sent directly to the fuel oil blending unit or to the cracking unit, the cracked gasolines are sent for gasoline blending and the cracked oils for fuel oil blending. The heavy residuals are used for producing lube oils or for the blending of heavy oils. The output of the gasoline blending unit is motor gasolines and aviation gasoline. The outputs of the fuel oil blending unit are jet fuel and various fuel oils.

The approach taken here views the refinery as a two stage process. The first stage encompasses the distillation and conversion operations while the second stage represents the blending operation. The first stage yields streams of gasolines, distillates and heavy oils. In the second stage, each of these streams yield various refined products. The output of the first stage permits the output share of each stream to vary between lower and upper bounds. Output shares from the second stage have no restrictions, with the output slate of products being determined by market demands.

The above modelling approach can be used to represent any refinery. As mentioned earlier, the output slate of products is dependant upon the type and number of processes that exist in the refinery. Nelson (1976) defines a measure known as refinery complexity which is described by a number. A low value indicates a refinery with fewer processes and the value of the number increases as the

number of processes increases. Earlier refineries, therefore would be described by a lower complexity number in comparison with modern refineries, which are described by higher complexity numbers. In the above modelling approach this is reflected in the range of the output products' share bounds and in the cost. To reflect the different range of refineries in the model, there are two types of refineries, one with a low complexity with lower costs and a smaller share of lighter products, the other with a high complexity that has higher costs and a larger share of lighter products.

The costing for the refinery was done almost in a similar manner as in section 4.2. As base case data permitted directly the costing for an average size refinery, the modification for equal capacity basis did not arise. Neither did the uncertainty factor. All other computations were done similarly to section 4.2 with one minor exception. To avoid the problem of joint costing, the per unit cost of refining is computed in relation to the input crude oil, and is therefore associated with the incoming flow of crude oil to the particular refinery. This in turn implies that the costs are uniformly spread over all refined products, but prices (strictly speaking, marginal costs) of refined products are not necessarily equal, they are are rmined by the interaction of demands and supply téc


49

To summarise, the above approach for modelling the refinery is not only simple but also captures the important feature of flexibility that exists in the refining industry.

4.4 Electric conversion stage

The demand for electricity is time dependent. It varies from hour to hour , the pattern changing from day to day and season to season. A useful representation of electric demand for electric utility planning is the annual load duration curve shown in Figure 2. The annual load curve is obtained from the annual chronological load curve by reordering the loads according to decreasing intensity. The area under the curve represents the total energy requirement in the year.

In order to cater to the demand, power.plants are designed and operated to serve different load segments. In general, peaking plants operate for only a few hours per day, either over the entire year or during the peak season to meet short term electricity demands. These units are utilised for up to 20% of the time on an annual basis. Intermediate or cycling plants operate at varying loads each day. The time period of operation is anywhere between 20-65% of the time in a year. Base load units operate at full capacity most of the time. These units are generally utilised for 65-95% of the time.

The annual load duration curve and its m strip approximation. (adapted from Sherali et al. (1982)) The type of power plants used for the above ranges depend upon certain technical features such as quick starting, etc., and upon the capital and generation costs. Generally speaking, gas turbines are used as peaking units, fossil fuel plants for cyclic, and nuclear and fossil fuel plants as base load units. Hydro plants, depending upon their costs and energy availability, are used for all the load ranges.

The basic objective in modelling the electric sector is to minimise the cost of supplying energy while ensuring that demands are satisfied at every instant of Lime. Sherali et al. (1982) describe a standard linear programming model for utility planning that models the basic relationships between supply sources and demand. The first step involves the discretization of the load duration curve. This can be done in two ways. The curve can be approximated by vertical strips or by horizontal strips. The horizontal strip approximation was used here as this formulation can be adapted more easily to WATEMS with few modifications, as shown later. Approximating the load duration curve by n strips leads to the following formulation.

Let,

c = unit (annualised) capacity cost of equipment of type i (i=1,...,m), '

f_i = operating cost (per unit of energy) of equipment of

type i,

 α_j = mesh points of the time axis discretization, where j=1,...,n and $\alpha_0 = 0$, $\alpha_n = 8760$ (hrs/yr), d_j = energy equivalent of load corresponding to strip j and let the decision variables be defined as, x_i = quantity (kilowatts) of equipment of type i, y_{ij} = quantity (kilowatts) of equipment of type i used to satisfy load j

then the model is given by,

minimise
$$\sum_{i=1}^{m} c_i x_i + \sum_{i=1}^{m} \sum_{j=1}^{n} c_j f_i y_{ij}$$
 ...4.7

subject to

$$-\mathbf{x}_{i} + \sum_{j=1}^{n} \mathbf{y}_{ij} \leq 0$$
$$\sum_{i=1}^{m} \alpha_{j} \mathbf{y}_{ij} \geq \mathbf{d}_{j}$$
$$\mathbf{x}_{i}, \mathbf{y}_{ij} \geq \mathbf{0}$$

i=1,...,m

j=1,...,n

..4.8

The set of constraints defined by equation 4.8 are capacity constraints. They ensure that the output power from any equipment type does not exceed its power capacity. The set of constraints defined by equation 4.9 are demand constraints and they ensure that energy supplies meet the demands. In the Ontario energy model being developed, all variables are in terms of energy. In order to model the electric sector as described above, the above formulation which is based on power variables was modified to energy variables. The modification not only led to a simpler formulation, i.e. fewer variables and fewer constraints, but also was readily implementable in WATEMS. The modifications were done in the following way. Note, that at optimality, equation 4.8 would always be binding. Therefore, substituting for x_i , the problem can be rewritten as,

minimise
$$\sum_{i=1}^{m} \sum_{j=1}^{n} (c_i/\alpha_j + f_i)(\alpha_j y_{ij}) \qquad \dots 4.1$$

subject.to

$$\sum_{i=1}^{m} \alpha_{j} Y_{ij} \ge d_{j} \qquad j=1,\ldots,n \qquad \ldots 4.11$$
$$Y_{ij} \ge 0 \qquad \qquad i=1,\ldots,m \\ j=1,\ldots,n$$

The term $\alpha_j Y_{ij}$ represents the energy flowing from facility i for α_j hours of the year. Representing this by a variable z_{ij} , and as $(c_i/\alpha_j + f_i)$ is the cost per unit of energy, the above formulation can be rewritten as,

minimise

 $\sum_{i=l} \sum_{j=1}^{c_{ij^{z_{ij}}}}$

..4.12

subject to

 $\sum_{j=1}^{m} z_{ij} \ge d_j$

j=1,...,n .

...4.13

 $z_{ij} \ge 0$ $i=1,\ldots,m$ $j=1,\ldots,n$

where c_{ij} is the cost per unit of electrical energy of facility i operating for α_i hours in the year. The above formulation can be readily implemented in WATEMS. Modelling this as part of the existing model requires arcs that flow from the supply or the conversion nodes into the appropriate facility-supply nodes, where each facility-supply node represents a different generation plant. The efficiency of conversion associated with each arc represents the generation efficiency. The electricity produced from each plant could service all or some of the n load segments, depending upon the technical constraints of This is represented by outgoing energy flows each plant. from the facility supply node to any or all of the n load nodes. The cost term associated with each of the arcs represent the per unit cost of operating the plant for that particular mode. Output energy flows from the n nodes flow to the electrical demand node from where they are distributed to end use demands. Equality share constraints on the incoming energy flows at the electrical demand node specify the proportional make up of the load duration curve generated by the n strip approximation. Total electric demand, exogenous to the electricity submodel, is determined endogenously by the main model during the optimisation process, depending upon costs of electric and non-electric fuels and technologies that could possibly satisfy end-use demands.

Electric generation technologies considered are coal fuelled generating plants using pulverised fuel combustion steam generators and steam turbines with subcritical and supercritical steam pressure, and atmospheric fluidised bed combustion technology; lignite fuelled using pulverised fuel combustion with subcritical steam condition; gas fuelled steam turbine generating plants with subcritical and supercritical steam conditions; oil fuelled steam turbine using subcritical steam conditions; municipal refuse fuelled generation (reconditioned plant at Hearn); CANDU nuclear technology of the type existing at the Darlington site; new hydro (small, 2-10 MW) and new hydro (large, >10 MW); hydro plants that are already in existence and will be available in the year 2021 and the Bruce "B", Pickering "B" and Darlington nuclear plant that again would be available for use in the year 2021. In addition, the hydro plants have been subdivided into dedicated peaking units and others, the latter could technically be used for supplying in any mode. All above technologies are currently, under consideration by Ontario Hydro for future

expansion of the electric sector (Ontario Hydro, 1985).

Four horizontal strips approximate the load duration These strips refer to the base, intermediate, daily curve. peak and seasonal peak segments of total load. Each of these segments could be satisfied by different types of power plants; each power plant, therefore, depending upon its technical feasibility, is permitted to operate in some or all of the load ranges. The costs of operating in each segment are associated with the appropriate arcs. Data for the above plants was available in the form of capital and operating costs. The capital cost did not include interest This was determined in the manner during construction. similar to the earlier calculations described by equation Defining K as the capital cost per kW which includes 4.4. interest; V as the operating and maintainence cost per kW, and A the availability factor, then the levelized cost per kWh, c,, generated when the plant was operating in mode j (α_{i}) , is given by

 $c_j = (K^*(A/P,r,T) + V) / (A^*\alpha_j)$...4.14 In addition, power plants that are of existing stock as well as new hydro plants, have power constraints that specify the maximum power that is available. To do this, the first step involved the replication of the energy flows in the four arcs that flow from the supply node to the four mode nodes. This was done by introducing a rode on each of the four arcs. The β_{mt} 's of these nodes were specified as

-1. The output from each of these nodes (which is twice the input) was shared equally between two outgoing arcs by specifying an output share constraint of 0.5. One set of arcs lead to the n nodes while the other set is the replication of those n arcs. The efficiency parameters in each of the replicated arcs were specified as the inverse of the product of the time and the availability factor. Thus the energy flow emerging from that arc would effectively represent the power associated with the energy supply for that mode. Each of these arcs flow into the associated power node, thus the arc emerging from the power node for a plant reflected the total power operating from that facility. An upper bound on this arc ensured that the power capacity at any time was not exceeded by the capacity available.

4.5 Transportation and distribution stage

After the conversion to secondary energy forms, the fuels are transported or transmitted (in the case of electricity) over long distances, followed by distribution to end-use consumers. Both these activities have a cost and an energy loss associated with each fuel. For each fuel, an arc represents the energy flow for this stage. Each arc is associated with a cost. The arc flows into the transportation and distribution node, the energy loss during transportation and distribution being specified by the node loss parameter.

4.6 End-use utilisation stage

After transportation and distribution energy fuels are consumed to provide services. The energy demands are broadly classified under residential, commercial, industrial and transportation. Each of these sectors has been broken down into demand categories, each demand category being described by applicable technologies.

In the residential sector the demands are subclassified under space heat, water heat, air-conditioning, and electrical appliances and lighting. On a physical basis, the residential sector has been subdivided into houses and apartments, (although a preferable level of disaggregation was' single (stand alone) houses, row and town houses, and apartments, lack of data on row and town houses limited the disaggregation to the two categories mentioned above). The houses category are made up of three types that reflect the insulation capabilities, those being the R2000, Intermediate solar (IS) design and houses that have insulation levels that correspond to the minimum levels specified by the 1980 Ontario Building codes (OBC80). Apartments are of two types; those with insulation levels of new apartments built today and future apartments that have a higher insulation level. The heating devices for houses include the efficient oil furnace, induced and

condensing gas furnaces, electric furnace and baseboard heaters, heat pump with various back-ups, wood stoves with various back-ups and active solar with various back-ups. Apartment heating includes hydronic systems with different boilers and fuels and electric baseboards. Water heating technologies include gas, electric and solar. The air-conditioning category in addition to window and centralised units include the heat pump (also used for heating in winter) and the solar air-conditioner.

Modelling of the residential sector was done in the following way. Starting with the houses, each house category require different capacity furnaces, thus each category had separate arcs representing the possible technologies that could satisfy the space heating demand. For technologies requiring backup, there is an equality share constraint on the major technology, thus permitting any of the backup technologies to satisfy demand that cannot be met by the major technology. Examples are heat pumps, that are ineffective on cold days, wood furnaces that need constant refuelling and thus cannot be left unattended, and active solar technologies that cannot meet 'the entire space heating demand. The apartment technologies are described by one set of arcs which serve both categories of apartments. The sum of the energy flows from each category of houses combined together with the total energy flows from apartments give the total_space

heating demand. Each of the arcs that represent a particular technology has an associated cost and an efficiency. The cost per unit of energy is a simple discounted cash flow calculation, based on the capital cost, operating cost, discount rate and lifetime. The efficiency term is the efficiency of the device. The cost and efficiency description not only applies to space heating but extends to all end-use technologies in all the subsectors. Water heating is modelled in a similar way, with active solar technology requiring backups. The heat pump can be used for heating and air-conditioning. Equality share constraint on the arc for air-conditioning permits the heat pump to serve both air-conditioning and heating.

The commercial sector is described by space heating, water heating, air-conditioning and equipment and lighting. The building structures and heating devices are similar to those described for the apartment buildings. So is the modelling methodology.

The ideal approach in modelling the industrial sector would be to consider the major industries separately. For each major industry, the model should include the processes that are being considered as options. This would require extensive interaction with the industries to develop the database and hence the model could take several man years. In the absence of the extensive resources required for such a task, the industrial sector has been divided broadly into

five categories, namely, indirect heat, direct heat, electric drives, utilities and petroleum products. The indirect heat category is described by coal, natural gas and heavy oil boilers. Coal, gas, heavy oil and electricity describe the direct heat category. The utilities are served by natural gas and electricity. Petroleum products and propane flow into the petroleum products and petrochemical feedstock_node. Interfuel (substitution in this stage is only permitted for the indirect heat category. Each arc representing a boiler technology has an associated per unit cost (described earlier in this section) and the efficiency of conversion. The other categories are fixed by market share constraints which translate into input equality shares placed on the inflowing arcs, associated with the particular node assigned to the category.

The transportation sector is represented by seven categories, namely auto, light trucks and vans, bus, trucks, rail, marine, aircraft and electric street cars and subways. In addition to conventional petroleum fuels alternative fuels considered in appropriate categories include propane, CNG, LNG, diquid hydrogen, methanol, ethanol and electricity. Interfuel substitution is permitted in auto, light trucks and vans, bus and trucks categories. Each technology (arc) has an associated per unit cost and an efficiency. In addition, an input share constraint bounds the total demand that can be met by electric vehicles. This is because even if electric cars are cost effective, the limitations in driving range would probably permit its use only as a second car (for local travel) in a household. The rail, marine and aircraft categories have market share constraints in the form of input equality shares on the incoming arcs of the appropriate demand nodes.

9 69

The end-use demands translate as lower bounds on the appropriate arcs. These demands are specified either as level of service (e.g. kilometres in a transportation sector) or as end-use energy demands. End-use energy demands are defined in terms of useful energy or in terms of fuel energy. The former refers to the energy after conversion from end-use device and is defined as the product of fuel (energy) times the efficiency of the end-use device. This measure of energy is independent of the type of fuel. This description applies to all demand categories where interfuel substitution is carried out in the end-use stage and in those categories where although only one fuel can satisfy the demand there is scope for efficiency improvement. The latter is defined in terms of fuel energy and applies to those categories where either there is only one possible fuel that could satisfy the demand with no efficiency improvements in the end-use utilisation device, or where market share constraints have

been used to specify the shares of various fuels that satisfy the particular demand. As no end-use demand / projections exist for the year 2021 in the form required by the model, these demands were estimated in the following way.

In the residential sector end-use demands are required for space heating, water heating, air-conditioning and appliances and lighting. Consider space heating demands. These need to be computed for each of the housing types. As the space heating demand per housing unit is known, then for each housing type, the product of the unit space heating demand and the number of households would determine the space heating demand. Let,

> {R2000 house, IS house, OBC80 house, New apartments, Old apartments} the total end-use demand for category j

(j = space heating) of housing type i (i \in A), in the year 2021

Hr_{ij} = the end-use demand j per housing type i, Nr_i = the number of houses of type i in the year 2021.

then the space heating demands can be computed by,

Α

Dr_{ij}

 $Dr_{ij} = Hr_{ij} * Nr_{i} \qquad i \in A \qquad \dots 4.15$ j = space heatingThe number of housing units that are of stock already built and still existing in 2021 can be computed from existing data. If the number of total housing units existing in 2021 can be estimated (Nr), then Nr_i can be determined from the following equations.

 $Nr_i = fre_i * Nre + frn_i * Nrn i \in A$...4.16 Nr = Nre + Nrn ...4.17

where,

¢

- Nre = the number of houses of existing stock in the year 2021,
- fre = the fraction of existing stock in the year 2021 of type i, ϑ
- Nrn = the number of houses of new stock in the year 2021, ...,

No direct projections were available for the number of households in the year 2021. However projections did exist exist until the year 2006 (Statistics Canada, 1981). Using this data, a linear regression model was used to project the number of households for the year 2021. The air-conditioning demands are disaggregated into demand by window air-conditioners and demand by central air-conditioning units. In addition to the above definitions, let,

B = window air-conditioners, central air-conditioners, fc = the fraction of households with air-conditioning,

the total end-use demand for category j, Dr ; then, = $fc * \sum (Hr_{ij} * Nr_i) \quad j \in B$ Dr_i ...4.18

The demands for water heating and appliances and lighting are not a function of the type of housing units, these being given by,

jĘĊ

 $i \in A$

 $Dr_{j} = Hr_{j} * Nr$ where,

water heating, appliances and lighting , С Hr i the end-use demand j per housing unit. The commercial sector end-use demands to be computed are for space heating in old buildings, space heating in new buildings, water heating, air-conditioning, and for electrical equipment and lighting. Ideally, these demands could be computed as the product of the end-use demands per unit of floor space and the total floor space. As no projections could be found for the total floor space in 2021, this figure was approximated by escalating current floor space proportional to the projected population estimates and multiplying this estimate by a trend factor that accounts for all increases except for those due to population, e.g. a boom in office space due to an increasing trend of service industries, etc. The space heating demands are computed in the following way. Let, {old buildings, new buildings }

- Dc = the end-use demand for building of type i (i(D), for category j, (j = space heating),
- Fc_{ij} = the end-use demand for building of type i, per unit of floor space for category j,
- frc = the fraction of total commercial and institutional floor space of building type i,
- FSc,FSp = the current commercial and institutional floor space and the projected (2021) levels respectively,
- TF_c = the commercial and institutional trend factor that accounts for all increases except for that due to population increase,

then, the space heating demands are given by,

 $Dc_{ij} = Fc_{ij} * FSp * frc_{i} \qquad i \in D, \\ j = space heating \qquad \dots 4.20$ where FSp, the projected floor space is given by, $FSp = [FSc * (Pp/Pc) * TFc] \qquad \dots 4.21$ The ain-conditioning demand is the sum of the individual air-conditioning demands for both building types. Let, Dc_{j} be the end-use demand for category j, then the total air-conditioning demand is given by,

 $Dc_{j} = \sum c_{ij} * FS_{p} * frc_{i} = air-conditioning$ $i \in D$ $i \in D$

The waterheating and equipment and lighting demands are

given by,

Let,

Pi;

4

 $Dc_j = Fc_j * FS_p$ $j \in \{ water heating, equipment and lighting \}$...4.23 where, Fc_j is defined as the energy demand j per unit of floor space.

In the industrial sector demands need to be computed for the indirect heat category, direct heat category [demands for heavy oil, coal, natural gas and electricity (there is no interfuel substitution), electric drive, utilities, and petroleum products. These demands have been computed by escalating current consumption levels to projected productivity levels, the latter being estimated by multiplying the proportional increase in population with a trend factor that accounts for all increases except for population increase (similar to the commercial and institutional sector)

E = indirect heat, heavy oil - direct heat, coal direct heat, electricity - direct heat, natural gas - direct heat, electricity - electric drive, حر utilities (fuel), petroleum_products and a , petrochemical feedstock }, Di_i the industrial energy demand for category j, $(j \in E)$, for the year 2021, 1

= the present industrial energy demand for category j, TFi = the industrial trend factor that accounts for all increases except for those due to population increase,

then,

Pi_i * (Pp/Pc) * TFi Di_i = j∈E In the transportation sector, end-use demands need to be computed for passenger cars, light trucks and vans, buses, railways, marine, aircraft, street cars and subway, and medium and heavy trucks. Here again, current levels are escalated proportionally to population increases and multiplied with a trend factor that accounts for all increases excluding the increase due to population. As the average distance travelled by cars and light trucks and vans are available, the demands here are computed as a level of service, i.e. the distance that vehicles in these categories would need to travel, as this has a more direct interpretation of an end-use demand. For other categories the demands are either in the form of fuel or useful energy as in the earlier cases.

Let,

G

H

Dt i

= {cars,light trucks and vans},

{buses, railways, diesel-marine, heavy oil-marine, jet fuel-aircraft, aviation gas-aircraft, subway and street car, medium and heavy trucks}

the distance demand in the year 2021 for

category j, (j∈G) or output energy demand in the year 2021 for category j, (j∈H), = the annual distance travelled per vehicle belonging to category j, (j∈G) or the output energy consumed currently by category j,(j∈H), = the transportation trend factor for cars and light trucks and vans that account for all increases except for that due to population ipcreases,

then the distance demand for cars and light trucks and vans and the output energy demand for all other categories is given by

 $Dt_j = Pt_j * Pp/Pc * TFTa j \in G \cup H$...4.25 Finally, to conclude the model description, both imports and exports of secondary fuels are permitted. Imports are * represented by inflowing arcs and exports by outflowing. A arcs at the appropriate nodes. Because exports, in general, produce revenues, being a cost minimisation model, the model tries to export as much as possible. Thus a upper bound must be placed to avoid an unbounded solution.

Pti

TFta

CHAPTER V

2.

DATA ASSUMPTIONS FOR THE BASE CASE

The base case describes a most likely scenario for the year 2021. Prices and available quantities of primary resources represent most likely values, costs of conversion and utilisation represent best possible estimates and end use demand quantities represent most likely demand. The data for each of the stages is described below.

5.1 Supply stage

The prices of primary resources (in 1985/dollars) assumed for the base case are given in Table 1. These prices include transportation to major points in Ontario but do not include distribution costs which are considered separately. The price of natural gas was arrived at by escalating the Toronto city gate 1985 price at an annual rate of 1.21%, the rate being derived from projections by MEO (1985) for the year 2000. The same annual rate was used to escalate the 1985 price for propane. The price of uranium reflects an average cost of \$170-340 per kg reported in EMR (1983b) escalated to 1985 dollars. The prices for all other primary resources excluding crude oil

Table l.	Primary	resource prices (1985 dollars)
•	assumed	for the base case (2021)

Ζ,

6

く

۹	RESOURCE	PRICE
	Natural Gas Western Coal US App. Coal Lignite Propane Crude Oil Uranium Wood Wheat Barley Corn	\$6.21 / Mcf \$128.00 / Tonne \$97.00 / Tonne \$71.00 / Tonne \$0.30 / Litre \$49.00 / Barrel \$297.00 / Kg \$82.00 / Kg \$82.00 / Odt \$225.00 / Tonne \$191.00 / Tonne \$198.00 / Tonne

Ş

١.

are arrived at by escalating 1985 prices at an annual rate of 1%. The instability in world crude oil prices for the last fifteen years or so makes it extremely difficult to project a price for oil. The figure of \$49 per barrel reflects a 2% annual increase on a representative 1985 price of \$24 per barrel.

Current annual supplies of indigenous Ontario natural gas from Southern Ontario gasfields are approximately 5.9 petajoules (PJ) per year. These gasfields supply approximately 2% of Ontario's annual natural gas requirement. Based on an estimate of 320 PJ of remaining supplies (MEO 1985a), and if production continues at the same level in the future, the indigenous Ontario natural gas supply has an upper bound of 5.9 PJ. In recent years, the share of Western coal supplies to Ontario is steadily increasing. Based on this trend, the shares of coal are assumed to change, with US coal contributing 70 % of the total, a decrease from a current share of 82%, the other 30% being supplied by Western Canadian sources, an increase from a current share of 18%.

5.2 Non-electric conversion stage-

Data for all non-electric conversion technologies was adapted from EMR (1983a). A very detailed base case production cost worksheet was available for each process. From this worksheet, the capital cost was calculated as the

sum of the total field, land, nome office, catalyst and chemical inventory, working capital and start-up costs. The operating expenses were calculated as the sum cost of catalyst and chemicals, maintainence material and contract labour, direct labour, administration and support labour and other expenses (property tax, insurance, etc.). Annual by-product credits were the sum total of all non-energy products produced annually. Table 2 shows cost and technical data for all the processes.

Table 3 gives the conversion efficiency for each process and wherever applicable, the input and output share These were calculated from the base case parameters. production worksheets. The conversion efficiency in this context is defined as the ratio of the output energy produced to the input energy provided by the major energy input. As described in the previous chapter, this parameter is associated with the major energy input arc. The input share parameter, here associated with the minor energy input, is defined as the input energy provided by the minor energy input divided by the sum total of the minor. and major energy inputs. Obviously, to achieve energy balance, the node loss parameter for each node must be specified as the same value as the input share parameter. The output share parameter for an outgoing energy flow is defined as the energy associated with the outgoing energy flow divided by the total energy output

Table 2. Cost and technical data for nonelectric conversion processes (excluding refinery), assumed for the base case (2021)

72

÷.

•

9

ź

* • • • • • • • • • • • • • • • • • • •		T U T O			EDUA					*
	Capital	∟ u f)peratin	сни; Operating	Plant	- PLANT	CAPACITY	UNCERTAINTY	SERVICE	LEAD	PROJECT
- PROCESS OPTIONS	Cost [Million	Experse Dollars	s Credits (1982 \$)]	Capacity 6J/day	CAPACITY 5J/day	EXPONENT	FACTOR	FACTOR	TIME	LIFETIME
GAS-GASOLINE (MOBIL)	1988.87	214.01	37.53	270199	250000	0.85	1.26	0.80	רט	30
HETHANDL-GASOLINE (HOBIL)	625.44	20.18	37.53	270199	250000	0.85	1.25	0.80	ഗ	30
COAL-GASOLINE (MOBIL)	3280.78	194.89	39.76	270199	250000	0.81	1.33	0.80	ഹ	30
-	2635.46	. 197.45	28.35	307227	250000	0.82	2.09	0.80	ריו	30
COAL-6SL&DIESEL (SASOL)	3911-64	296.88	149.57	226503	250000	· 0. B0	1.15	0.85	'n	30
COAL-SYNCRUDE (SRCII-B)	1418.70	98.32	48.21	326760	250000	0.83	1.47	0.80	ഗ	30
6AS-METHANDL	171.20	17.50	0	22717	250000	0.79	1.02	0.90	N0	30
ÇOAL-METHANOL	2816.45	187.88	2.18	308933	250000	0.85	1.17	0.85	цЭ	30
WGOD-METHANOL	270,82	19.46	0	22696	250000	0.79	1.35	0.80	m	30
GAS-ETHANDL	410.45	64, 79	15.34	32105 /	250000	0.76	1.40	0.90	ы	30
COAL-ETHANDL	692.12	76.71	13.77	32105/	250000	0.78	1.47	0.80	ы	30
NOGD-ETHANGL	37.59	6.09	2.54	1591	250000	0.74	1.25	0.40	М	30
CORN-ETHANDL	116.23	16.41	7.47	13558.	Z50000	0.83	1.04	0.90	ю	30
BARLEY-ETHANOL	135.55	13.71	13,71	13558	25000	0,83	1.04	0.00	ы	30
WHEAT-ETHANOL	124.26	17.01	9,90	13558	250000	0.83	1.04	0.90	ы	30
6AS-LIQUID HYDROGEN	267.04	11.82	12.56	31848	4000	0.68	1.07	0.40	ю	30
; COAL-LIOUID HYDROGEN	448.02	26.29	1.05	31848	40000	0.72	-1.18	0.90	ю	30
ELECTRICITY-LIQUID HYDROGEN	648.53	26.36	13.09	32562	40000	0.95 4	1.04	0.40	やつ	9£
COMPRESSED NATURAL GAS	0.56	0.11	0	, 156	4000		ļ	0.95	0.5	30
LIGUIFIED NATURAL GAS	5,81	1.55	0	1000	40000		1.01	0.95	-	30
	• •									

75

adapted from EMR (1983a)

i

Table 3. Technical specifications for model parameters for nonelectric conversion - processes (excluding refinery), assumed for the base case (2021)

<u> 1</u>

		ÚT.FI TALL		ΩUTPUŢ إ`آسيT⊒0	
PROCESS Options	ENERGY Flows	EFFICIENCY PARAMETER		ENERGY FLOWS	EQUAL ITY Share Parameter
GAS-GASOLINE (MOBIL)	NATURAL SAS	0,4994	0.0132 .	GASOLINE PROPANE	0.0543
METHANOL-SASOLINE (MOBIL)	METHANOL Electricity	0.8027	0.0011	SASOL INE PROPANE	- 0.0543
COAL-GASOLINE (MOBIL)	COAL Electricity	0.3079 - -	0.0011	SASOLINE PROPANE	0.0543
COAL-GASOLINE (ZnCIZ)	CDAL	0.5659	-	SASOLINE	-
COAL-SSL&DIESEL (SASOL)	COAL	0.2593	-	GASOLINE Diesel	0.9139
COAL-SYNCRUDE (SRCII-B)	COAL	0.5488	- `	SYNCRUDE	-
GAS-NETHAKOL	MATURAL BAS ELECTRICITY	0.6222	- 0.0097	METHANOL	-
COAL-HETHANOL	coal,	0.3835	-	HETHANOL	
NOOD-METHANOL	NCCD	0.4189	- .	RETHANOL	, -
GAS-ETHANOL	NATURAL GAS ELECTRICITY	0.4171	0.0467	ETHANGL	-
COAL-ETHANOL o	CDAL GAS ELECTRICTY	0.3352	0.1525 0.0316	ETHANOL	-
NOOD-ETHANOL	NOGO Electricity	0.335! -	0.1583	ETHANOL	-
CORN-ETHANOL	CORN COAL	0.6390	- 0.2386	ETHANOL	· •
BARLEY-ETHANOL	BARLEY COAL	0.5453	- 0.3860	ETHANOL	
NHEAT-ETHANOL	WHEAT COAL	0.5720	0.3774	/ ETHANOL	- 、
GAS-LIQUID HYDROGEN	NATURAL GAS ELECTRICITY	0.6326	0.2300	CIQUID HYDROGEN	
COAL-LIQUID HYDROGEN	COAL Electricity	0.4646	0.2230	LIQUID HYDROGEN	•
ELECTRICITY-LIQUID HYDROGEN	ELECTRICITY	0.600B	-	LIQUID HYDROGEN	-
	NATURAL BAS	_ (0.0260	COMPRESSED NATURAL	645 -
IGUIFIED NATURAL GAS	NATURAL SAS	1	9.0571	LIQUIFIED NATURAL (- EAG

Ę

data adapted from EMR (1983a)

76[.]

Ì

produced from the process, i.e. the sum of all outgoing flows.

Data for the refinery sector was calculated from Nelson (1974a,b,c,d). This was done by selecting an average sized refinery and identifying the processes that would make up the two kinds of refineries described in the previous chapter, i.e. a refinery with a smaller and with a larger share of lighter refined products. For each of the refineries, the complexity and capital cost/was determined for each process. Table 4 gives details of refinery makeup and complexity. Operating expenses, amongst other factors are a function of complexity. This was calculated using the/complexity figures described in Table 4 and the functions described in Nelson (1974e,f and 1975 a,b,c,d). The assumptions in calculating operating expenses were kept identical to the non-electric technologies described above. Table 5 gives overall cost details and the output range of products for both the refineries.

5.3 Electric conversion stage

Data for the electric sector was largely taken from Ontario Hydro (1985). Table 6 shows cost and technical details for new non-renewable generating options. Table 7 shows cost and technical details for new hydro options in the categories required in the model. Ontario Hydro (1985) Table 4. Capacity assumptions, and process complexity associated with processes for an average sized refinery assumed for the base case (2021)

Refinery capacity : 100,000 bar	rels/day	
Refinery processes	capacity	complexity
· · · · · · · · · · · · · · · · · · ·	b/d	<u> </u>
Crude distillation	100000	- 1.000
_ Vacuum processing	50000	0.790
. Hydro-desulphurisation	45000	1.190
Sulphur recovery process	500	0.425
Hydrocracking and hydrogen man.	18000	5.240
Cōking plants	14000	1.070
Viscosity breaking and alkylati	on 8400	1.000
Catalytic reforming 🔪 🔪	18000	1.190
Catalytic cracking	45000	2.740

S

N.B.
1. The refinery with a larger share of lighter (refined products has all the above processes.)
The refinery complexity = 14.645
2. The refinery with a smaller share of refined products does not have catalytic cracking and hydrocracking facilities. The refinery complexity = 6.665

٩.

Table 5. Data for cost and percentage range of refined products associated with the low and high capacity refineries assumed for the base case (2021)

-	Lov comple refin	exity nery	Hig comple: refine	xity
Description	(6.0	665)	(14.64	45)
<u>Cost¹ (1973\$)</u>	·····			
Capital cost (M\$)	135	.49	236.	79 ·
Operating cost (M\$)	13.	.89	24.	34
Energy shares ²		n % share of	output stre	eams
	lower	upper	lower	upper
Gasolines	0.1313	0.2120	0.3730	0.5232
Distillates	0.2071	0.2931	0.2654	0.4267
Heavy oils	0.5269	0.5318 、	0.1347	0.1374
Propane	0.0064	0.0065	0.0207	0.028]

2. Adapted from Texaco Canada (1983)

Table 6. Technical and cost details for new fossil and nuclear based generation options assumed for the base case (2021)

New Generating Option	5	ation ize MW	Capital cost (1985\$) \$/kW	Annual - 0%M cost (1985\$) \$7%W	Lead Time during constr. (years)			Conversion
Natural gas - subcritical	4	\$ B00	497	7	11 •	40	0.80	0.3400
Natural gas - supercritical	2	\$ 1300	555	´ 8	11		0.80	0.3504
ight oil - CTU	10	\$ 25	788	2	5,	▶ 40-	0.80	0.2435
Heavy oil - Subcritical	4	1 500	944	13	11	4 0	0,80	0.3494
Coal - PFC subcritical	4	\$ 800	983	9	11	40	0.80	0.0545
Coal - PFC supercritical	2	1 300	899	11	11	40	0.80	0.3641
Coal - AFBC conventional	4	t 200	1264	23	11	40	0.80	0.3500
ignite - PFC subcritical	4	1 200	1732	24	11	40	0.00	0.3300
Jranium - Derlington NGS design	4	1 850	1594	22	14	40	0.85	

N.B. 1. All data taken from Ontario Hydro (1985) excepting for conversion efficiency data, which has been calculated based on Ontario Hydro (1985) and U.S. Department of Energy (1982).

Ċ

Table 7. Technical and cost data for new hydro options assumed for the base case (2021

)

۰.

÷.,

ı

:

ł

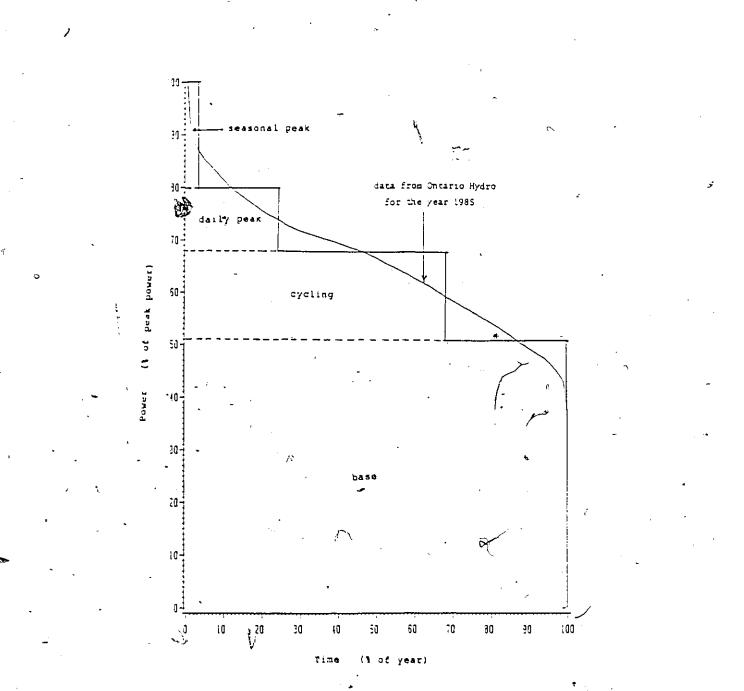
New Hydro option	Cepacity (MW)	Ereroy (g¥h/a)	Cepitel, Annual coster.Orgicoet (1985-201701985 s) Asir, Mila	Annual Annual Kight si Mi/a	Annual Nater Tentel H\$/a	Time during (years)	Plant, Litatise ((years) H	àveila- bility Factor
			, ,		• • • •	r r , , , ,		····
hydro () 10 MM; dedicated peaking)	1723	1962.2	1640	1.261	1.751	œ	- 02	0.8
vydro () 10 KW; all modes)	1001	4073.4	2638		164.5	æ	Ú2	0.8
lydro (2-10 MW; all acdes)	1234	628.1	427.7		0.550	ریا ا	.70	0.8
		-					¥	

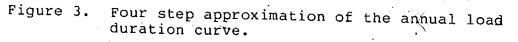
adapted from Bntario Hydro (1985)

ь.

Table 8. Technical data for generating options of existing stock assumed for the base case (2021)

Existing option	Capacity (MW)		Energy Availability (gWh/a) Factor
Existing hydro (dedicated peaking)	. 967	1516.3	0.80
Existing hydro (all modes)	4687	31605.1	0.80
Existing nuclear	8612	ı	0.85


adapted from Ontario Hydro (1984)


• j

J

gives details on each hydro site available for the 2 to 10-MW and greater than 10 MW categories. All plants that had capacity factors less than or equal to 0.2 were considered as dedicated peaking units. The data in Table 7 represents the sum of costs and technical parameters for all hydro options that make up a particular category. Table 8 shows. technical details on generating options of existing stock. All hydro plants currently operating which have been built after 1945 are included in the hydro options. The nuclear options of existing stock includes the Pickering B, Bruce -B, and the new Darlington plant.

Figure 3 shows the annual load duration curve for Ontario for the year 1985. The shape of the annual load curve is assumed to remain the same. The annual load curve is approximated by four strips such that the area under the approximated four-step load description is equal to the area under the load curve. The break points on the time axis were chosen at 200, 2000, 6000 and 8760 hours, these figures reflecting the practice in models that have been developed (Systems Control Inc., 1978 and Soyster and Eynon, 1979). The break point on the extreme end of the power axis was 100 %. The choice of the other three breakpoints was determined to be at 50.5%, 68% and 79%, such that the area under the load curve for each mode (specified by the above time breakpoints) is equal to the area of the corresponding strip. The energy shares

ን

corresponding to the above breakpoints are approximately 0.7% for seasonal peak, 3.8% for daily peak, 18.3% for cycling and 77.2% for base.

5.4 Transportation and distribution-stage

The transportation and distribution costs for applicable fuels are shown in Table 9. For natural gas, the price in the supply stage, includes transportation to Toronto (city gate price), therefore at this stage the costs of transportation and distribution within Ontario are considered. The costs were arrived at by subtracting the 1985 Toronto city gate price from the average price to the end-use sectors, and escalating this cost at a rate of 2% for 36 years. Costs of liquid fuels include the cost of transportation to distribution outlets and the costs of Based on EMR (1983a), the transportation and distribution. distribution costs for gasoline was assumed to be \$4.75 (1985 dollars) per litre. This figure has been escalated at 2% for 36 years for all petroleum fuels. For alcohols, the same cost as the above petroleum fuels has been This probably underestimates the costs, at least assumed. in the case of methanol, where there would be additional costs for replacement of existing storage systems (methanol has a corrosive effect on the materials that are currently being used for storage). However, with no data existing on the subject, the same cost has been assumed. LNG

<u></u>

Table 9. Costs associated with the transportation and distribution stage (1985 dollars) assumed for the base case (2021)

FUEL	COST Tran. & Dist. stage (\$ / GJ)
Natural Gas	1.890
Gasoline	2.520
Diesel	2.495
Propane	3.785
Ethanol	4.176
Methanol	5.354
Aviation gas	2.890
Jet fuel	2.697
Light fuel oil	2.495
Heavy fuel oil	2.324
LNG	4.746
Liquid Hydrogen	5.763
Electricity	5.671
Wood	2.350

v

ì

F

transportation and distribution costs, are higher than petroleum fuels, since they would require special cryogenic tanks and delivery outlets. EMR (1983a) report an additional cost of \$1, per GJ (1982 dollars) of energy. The cost given in Table 9 was arrived at by escalating the cost at 2% for 36 years. No estimates exist for liquid hydrogen's transportation and distribution costs. However EMR (1983a) reports that costs would be extremely high due to its added storage volume which is approximately three times more than gasoline on an equal energy basis, and due to specially built cryogenic tank vehicles for transportation and specially built storage and pumping facilities. Both of these special facilities would need to be designed with safety features due to the fuel's low \sim boiloff limits. The figure in Table 9 represents an estimate based on the above discussion. The transportation and distribution costs for wood are based on a cost of \$17 (1981 dollars) per oven dried tonne (odt), reported in MEO (1981), escalated at 2% for 36 years. The transportation and distribution cost for electricity was estimated as 1 cent per kWh (1985 dollars), again escalated at 2% for 36 years.

For all liquid fuels a loss factor of 0.3% was taken. The loss factor for natural gas was taken as 8.4%. Electricity's loss factor was taken as 7.07%. These figures have been taken from Sullivan et. al (1980).

5.5 End-use utilisation stage

pata for the end-use stage was determined from various sources. Tables 10 and 11 show cost and technical details for space heating technologies for houses and apartments respectively. The figures in Table 10 apart from solar technology were based on MEO (1983) and Economic Council of Canada (1984). For active solar a system cost of \$500. (1979\$) per square metre of collector area was reported in Seymour (1979). The average heat energy supplied is 1200 MJ per square metre of collector area per year. Based on this, the R2000 house requires 13.5 square metres of -collector area. Due to constraints such as structural strength of the roof or the land area required for the collectors, etc., the maximum collector area that could be installed on an average house is approximately 15 square Based on the heating loads for the IS and OBC80 metres. houses (see Table 16), both would require more than the maximum level. Considering the above limitation, both house categories have 15 square metres of collector area, active solar technology providing only a share of the total space heating requirement. Since 1979 however, there has been a decrease in costs as improvements have occured, therefore a system cost of \$400 (1985\$) per square metre per year has been used to calculate solar energy costs. The estimates on apartment heating costs (Table 11) were based on MEO (1983) and on discussions with various

TECHNOLOGY Option	R2000H (4 kW)	Capital cost(\$) ISH (6 kW)	08C80H	Operating [©] cost(\$)	Currency year	Device Efficiency	Device Lifetim (years)
Condensing gas furnace	1720	1980	2175	35	1981\$	0.92	20
Induced gas furnace	1107	1306	1455	35	1981\$	0.80	20
Light oil furnace	933	1100	1225	60	1981\$	0.75	20
Electric baseboard	933	1100	1225	0	1981\$	1	20
Electric heat pump	3100	3400	3700	70	1981\$	1.90	20
Nood combination furnace	1550	1700	1927	85	1981\$	0.65	20
Active solar - space heat	3900	7200	7200	60.	1985\$	-	20

A

Table 10. Cost and technical data for space heating options for different categories of houses assumed for the base case (2021)

N.B. 1. Data adapted from Various sources. See text for details

2. R2000H : High insulation design house

ISH : Medium insulation design house

OBC80H : Low insulation design house

Table 11. Cost and technical data for space heating options for Aspartments assumed for the base case (2021)

<u>۲</u> ۰	Capital	'Operati	ng	Device	# of
TECHNOLOGY OPTION	cost (19)	cost 85\$)	Device Efficiency		apartments serviced
Condensing gas boiler	6505	90	0.87	 20	4
Induced gas boiler	4683 -	90	0.80	20	Å
Light oil boiler	4107	180	0.75	20 ~	4
Electric boiler	4107	38	· 1	20	4
Electric baseboard	933	0	1	20	T

personnel connected with the supply and installation of apartment boilers. Table 12 shows cost and technical details for water heating and air-conditioning equipment. Details on water heating (excepting solar technology) and electrical air-conditioning equipment are market estimates. Solar water heating costs ranged from approximately \$6500 in 1978\$ (MEO, 1980), \$6000 in 1979\$ (Seymour, 1979), and \$4000 in 1983\$ (Andrews and Wilkins, 1983). These systems provide approximately 70% of the total water heating requirement for a household. Based on these figures and allowing for further cost decreases, a figure of \$3000 (1985\$) per system was used. No recent estimates on solar air-conditioning could be found. Middleton Associates (1976) reported an estimate of \$4000 (1976\$). In the absence of more recent estimates and allowing for improvements, a figure of \$3000 in 1985\$ was assumed for the cost of solar air-conditioning. In the absence of data for water heating costs in apartment buildings, the data for houses was used. Although the costs would represent a higher estimate, as economies of scale would decrease costs in the case of apartments, it is assumed that the relative relationship in costs between technologies would still remain the same.

The heat pump is assumed to provide 70% of the total heating load as heat pumps do not operate during very cold days. Wood furnaces are assumed to provide 90% of the

-

88

s

TECHNOLOGY Option	·Device Capacity	Capital Operating cost cost (1985\$)		Device Efficiency	
			•		 _
Standard gas water heater	30 gallons	265	-	0.8	20
Flueless gas water heater	30 gallons	475	. - .	0.8	20
Electric gas water heater	30 gallons.	215	-	1	20
Active solar water heater	30 gallons	4000	60	-	20
Electric window air-conditioner	5000 Btu	400	· –	3	20
Electric central air-conditioner-	3 ton	1625	20	3	20
Solar central air-conditioner	3 ton	4000	20	0.8	20

Table 12. Cost and technical data for water heating and air-conditioning options for houses assumed for the base case (2021)

N.B.

ù

1. Data adapted from various sources. See text for details \checkmark

Table 13. Cost and technical data for industrial boilers assumed for the base case (2021)

TECHNOLOGY Option	Boiler size Ib/hr steam	Capital cost (1979\$	Operating cost	Device Efficiency	Device Lifetise (years)
Industrial gas boiler Industrial heavy oil boiler Industrial coal boiler	100000 100000 100000	2260 3200 7500	235 310 640	0.80 0.75 0.80	20 20 20 20

Data source: Canadian Energy Research Institute (1979)

heating load as these need constant refuelling and need to be attended regularly, in the absence of which (roughly 10% of the time), these would not work. The solar space heating technologies, based on the maximum collector size and the heating loads provide 92% of the heating load for IS houses and 48% of the heating load for the OBC80 houses. Also, approximately 10% of the heat energy supplied is required in the form of electricity to run the active solar technology. This translates to an input equality share of 0.0909. Solar water heating technology is assumed to provide 70% of the total water heating demand as mentioned earlier in this section. The heat pump has an output share of approximately 84% for space heating and 16% for air-conditioning. These figures are based on heating and air-conditioning loads (see Table 16). The shares of heating loads4 for each house and apartment category are dependent on the number of houses of each type and the individual heating loads; both of these are described later in this section.

43

£

For the_commercial and institutional sector, data for apartment buildings were used.

Costs and technical specifications for various industrial boilers are shown in Table 13. These costs were taken from Canadian Energy Research Institute (1979). For the utility subsector in the industrial sector, it is assumed that natural gas would supply 65% of the total energy, the other 35% being supplied by electricity. In the direct heat category, the shares of gas and heavy oil are assumed at an 8% level each, coal at 83% and electricity at 1%; these figures represent 1985 levels.

Table 14 shows cost and technical data for the auto and light trucks and vans categories of the transportation sector. The costs were based on figures reported in EMR The end-use utilisation energy efficiency for (1983a). these two subcategories is defined as millions of kilometres per peta joule of input energy. For gasoline cars, the efficiency figure in Table 14 corresponds to a fleet average efficiency of 8.5 litres per 100 kilometres. The end-use utilisation energy efficiency is the same for alcohol blends and liquid hydrogen. For diesel, alcohols, propane, CNG and LNG, a 10% improvement in energy efficiency has been assumed. This efficiency improvement is due to higher compression ratios associated with engines running on these fuels. For electric cars the efficiency figure corresponds to 0.5 kWh per mile reported by Hedley et al. (1976). For light trucks and vans running on gasoline, the figure corresponds to 11.4 litres per 100 kilometers, the average efficiency figure for this category in 1985. All other efficiencies have been relatively scaled. Table 15 shows cost and technical features for all the other_remaining categories in the transportation sector. The cost categories are defined for those sectors

Ĉ,

	Incremental Capital cost per vehicle = (1982\$)		
*			
Propane - auto	500	386.08	10
Methanol - auto	500	386.08	10
Ethanol - auto	500	386.08	10
CNG - auto	500	386.08	10
LNG - auto	500	386.08	10
Gasoline - auto	0	350.98	10
Diesel - auto	0	386.08	10
Methanol-gasoline - auto	120	350.98	10
Ethanol-gasoline - auto	120	350.98	10
Liquid hydrogen - auto	5000	350.98	10
Electric - auto	1500	555.60	10
Propane – light trucks & vans 🔹	500	287.86	10
Methanol - light trucks & vans	500	287.B6	10
Ethanol - light trucks & vans	500	287.86	10
CN5 - auto & light trucks & vans	500	287.86	10
LNG - light trucks & vans	500	287,86	10
Gasoline – light trucks & vans	0	261.69	10
Diesel - light trucks & vans	0	287.86	10
Methanol-gasoline - light trucks & van	15 [.] 120	261.69	[*] 10
Ethanol-gasoline - light trucks & vans		261.69	10
Liquid hydrogen - light trucks & vans		261.69	10
Electric - light trucks & vans	1500	414.40	10

Table 14. Cost and technical data for auto and light truck and van categories assumed for the base case (2021)

N.B. For data sources see text

92

ŕ

ŧ

1

·J

:\

TECHNOLOGY Option	Incremental Capital cost per vehicle (1982\$)	Device Efficiency	Device Lifetine (years)
Propane – bus CNG – bus LNG – bus Methanol – bus Ethanol – bus Liquid Hydrogen – bus	1500 1500 1500 1500 1500 1500	0.24 0.24 0.24 0.24 0.24 0.24 0.22	7 7 7 7 7 7 7
Diesel – truck Propane – truck CNG – truck LNG – truck Methanol – truck Ethanol – truck Liquid Hydrogen – truck	0 3750 3750 3750 3750 3750 3750	0.26 0.24 0.24 0.24 0.24 0.24 0.24 0.22	7 7 7 7 7 7 7 7

Table 15. Cost and technical data for bus and truck categories assumed for the base case (2021)

N

93

Ð

.

where interfuel substitution is permitted. For the others, the shares of fuels are fixed, thus no cost estimations have been done. For the buses and trucks category, the costs represent roughly half the percentage increase in the cars category, since the cost for the changes, i.e. for engine, fuel system, etc., in proportion to the parts that do not change, drive trains, suspension systems, etc., would be less for buses and trucks than for the cars. The efficiency term here is defined in the standard way i.e. ratio of output energy to input.

Market penetration for electric vehicles has an upper bound of 20%. This figure reflects the technology limitation in driving range. Thus even if electric cars are cost effective, they perhaps would only compete as a second car in a household. Other shares include, 0.4% share of aviation gas to the total aircraft energy requirement, the rest being provided by jet fuel, and a 47% input share of diesel for marine category, the rest being provided by heavy oil. These values represent actual shares in 1984.

Houses, apartments and commercial and institutional buildings built after the year 1950 are assumed to exist in the year 2021. For the residential sector this amounts to a total of 1,869,261 household units that would be existing in the year 2021 out of the household units currently existing (Statistics Canada, 1987). The ratio of houses to apartments for the existing stock was taken as 61:39 (MEO,

D

1985b) with 99% of the houses belonging to the OBC80 (houses with insulation levels described by 1980 building code) and 1% belonging to the IS (houses with insulation levels inbetween OBC80 and R2000 houses) category. As no data were available to estimate the number of commercial and institutional buildings, based on residential data, 34% of all buildings in this category existing in 2021 was assumed as existing stock.

The values of parameters used to determine certain shares (mentioned earlier) and end-use demands are shown in Table 16. As described in the previous chapter, the end-use parameters are defined in terms of useful energy or in terms of fuel energy. The space heating loads for different houses was taken from EMR (1983c). Space heating for old apartments, water heating and appliances and lighting loads per household are reported in terms of fuels in MEO(1985b). These were translated into useful energy demands by multiplying the fuel demands by their device efficiencies. New apartments were assumed to be 30% more efficient than old apartments, the figure obtained from MEO (1985b). Air-conditioning loads for OBC80 house category was taken from Middleton Associates (1976). For the commercial sector, the parameters were again available in the form of fuel demands (MEO, 1985b). These too were translated into useful energy demands by multiplying the fuel demands by their device efficiencies. New commercial

CATEGORY	TYPE	END-USE DEMANDS/SEF PER YEA	RVICES
RESIDENTIAL			
Space heat R2000 house	Useful	16.20	GJ/unit
Space heat IS house	Useful	39.10	GJ/unit
Space heat OBC80 house	Useful	74.41	GJ/unit
Space heat New apartments	Useful	12.60	GJ/unit
Space heat Old apartments	Useful	. 18.00	GJ/unit
Water heating	Useful	20.41	GJ/unit
Window a/c units-OBC80 house	Useful.	2,70	GJ/unit
Central a/c house-OBC80 house	Useful	7.20	GJ/unit
Appliances ₂ & lighting	Fuel	20.61	GJ/unit
COMMERCIAL ²	-		,
Space heat New buildings	Useful	0.66	GJ/m_0^2
Space heat Old buildings	Useful	0.94 '	GJ/m ²
Water heating	Useful	0.04	GJ/m_2^2
Air conditioning - Old bgs	Useful	0.18	GJ/m_2^2
Equipment and lighting	Fuel	0.28	_GJ/m ²
INDUSTRIAL (1984 demands)	1.	-	
	Useful	268	PJ
Direct heat - coal	Fuel	211	РJ
Direct heat - heavy oil	Fuel	40	PJ
Direct heat - natural gas	Fuel	40	\mathbf{PJ}
Direct heat - electricity	Fuel	3	\mathbf{PJ}
Electric drive.	Fuel	119	\mathbf{PJ}
Utilities	Fuel	71	`PJ
Pet. prods. & APet.ch. fstk.	Fuel	204	\mathbf{PJ}
TRANSPORTATION (1984 demands)		
Average distance per car	Useful	16210	km
Average distance per van/1.t.	Useful	16890	km
Buses	Useful	7.43	₽J
Rail	Useful	21.60	₽J
Marine - diesel	Useful	7.29	PJ
Marine - heavy oil	Useful) 12.50	PJ
Aircraft - aviation gasoline	Useful	0.26	PJ
Aircraft - turbo jet fuel	Useful	42.38	\mathbf{PJ}
Truck	Useful	15.77	PJ
Subway and St. cars	Fuel	1.37	ΡJ

TABLE 16. Specifications of technical parameters of the end-use stage assumed for the base case (2021)

- Data for space heating loads for houses taken from EMR (1983c). Data for space heating in apartments, water heating, and appliances and lighting have been adapted from MEO (1985b).
- 2. Data adapted from MEO (1985b)
- 3. Data for distance travelled for cars and lt.trucks and vans taken from SC (1985). For all other categories data adapted from SC (1986).

buildings are also assumed to be 30% more efficient than existing buildings. 1984 figures for the industrial sector were taken from MEO (1985b). The average distance travelled by a car and a light truck and van were taken from Statistics Canada (SC, 1985a). The 1984 fuel consumptions were reported in SC (1985b). Wherever required, these have been translated to useful energy in the manner described earlier.

The values assigned to certain additional parameters that the model uses to determine end-use demands are given in Table 17. Population projections for both Canada as a whole and the provinces exist, starting with a base year of 1983 and extending up to the year 2006 (SC, 1985). The projections for total Canadian population further extend up to the year 2031 in steps of five years, Starting with a medium growth projection series the projected fraction of Ontario's population to total Canadian population from the year 1983 to 2006 was used as data for construction of a linear regression model. The fraction obtained from the time series model for the year 2021 multiplied with the projected value for the total Canadian population for the year 2021 produced the estimate for Ontario's population for the year 2021. In a similar manner a linear regression model for determining the number of households in the year 2021 was based on medium growth projected data given in SC (1981). All other values given in the table were based on

PARAMETER	VALUE
Population (millions)	10.4764
Housing units (millions)	5.5979
Fraction of housing units that are houses	0.39
Fraction of houses of the R2000 type	0.45
Fraction of houses of the IS type	0.5
Fraction of houses of the OBC80 type	0.05
Fraction of housing units with a/c	0.8
Fractional improvement in heating loads of	
of new apartments and C&I buildings over	-
existing buildings	0.30
C&I floor space trend	2.51
Industrial production trend .	1.82
Transportation trend (all categories	
excluding auto and light trucks & vans 🦯	1.00
Auto & light trucks & vans trend	1.55

Table 17. Values of parameters for projection of end-use demands for the base case (2021)

*

į.

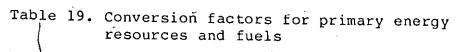
₹.

ø

CATEGORY	TYPE	END-USE DEMANDS/SERVI	
RESIDENTIAL		···	
Space heat R2000 house	Useful	16.1	РJ
Space heat IS house	Useful	43.65	
Space heat OBC80 house	Useful	97.04	
Space heat New apartments	Useful	19.14	
Space heat Old apartments	Useful		
Water heating	Useful	114.23	
Window air-cond. units	Useful	15.94	
Central air-cond. units	Useful	21.54	
Appliances & lighting	Fuel	115.37	
COMMERCIAL			10
Space heat New buildings	Useful	194.32	P.T
Space heat Old buildings	Useful	60.78	
Water heating	Useful	14.40	
Air conditioning	Useful	47.49	
Equipment and lighting	Fuel	100.80	
INDUSTRIAL			
Indirect heat	Useful	571 . 37	РJ
Direct heat	Fuel	542.59	
Electric drive	Fuel	253.71	
Utilities	Fuel	151.37	
Pet. prod. & Pet.ch. fstk. TRANSPORTATION	Fuel	434.92	
Auto	Useful	121.16	Gkm.
Light Trucks & Vans	Useful	21.08	
Buses	Useful	2.27	
Rail	Useful	6.60	
Marine	Useful	2.75	
Aircraft	Useful	14.99	
Truck	Useful	18.53	
Subway and St. cars	Fuel	1.61	-

ø

trends reported in MEO (1985b,1986). Based on these values the end-use demands for each category are shown in Table 18.


A discount rate of 8% was used to amortise all capital costs for production (with the exception of electrical generation plants) and end-use technologies over their respective lifetimes. A discount rate of 3% was used for electrical generation plants, the 3% figure being the actual rate used by Ontario Hydro.

Imports or exports for refined products were not permitted for the base case. For electricity, exports were permitted upto a level of 50 PJ and were priced at 4.533 c/kWh (1985\$). The price figure represents 1985 export price escalated at an annual rate of 1% over, 36 years and the upper bound reflects current export levels.

Lastly, WATEMS permits data input in terms of natural units. However, a conversion factor defined as the number of basic units per natural unit must be specified (defined in 3.1.2.4). The basic unit for the model is the peta joule. The conversion factors for various resources where natural units have been used are given in Table 19. The conversion unit for uranium converts directly to petajoules of electricity.

The above data was entered into spreadsheets. Details on data input along with the input spreadsheets are given in Appendix A. The model has 419 variables and 242

l

,2

RESOURCE /	NATURAL UNITS	NUMBER OF BASIC UNITS PER NATURAL UNIT
Natural Gas Western Coal US App. Coal Lignite Crude Oil Wood Uranium Wheat Barley Corn Propane Electricity	10 ³ Mcf 10 ³ Tonnes 10 ³ Tonnes 10 ³ Tonnes 10 ³ Barrels 10 ³ Tonnes 10 ³ Tonnes 10 ³ Tonnes 10 ³ Tonnes 10 ⁶ Litres gWh	0.00107 0.02933 0.02999 0.01534 0.00610 0.02000 0.18054 0.01420 0.01420 0.01420 0.01420 0.01420 0.02560 0.00360

Note: The basic unit is the peta joule (10¹⁵ joules)

constraints. Results of the base case are analysed in the following chapter.

/ 102

CHAPTER VI

RESULTS FOR THE BASE CASE

Figure 4 shows primary energy consumption for the year 2021 as calculated by the model for the base case. The primary energy consumption increases from 2830 PJ in 1984 to 4014 PJ in 2021. There is a significant change in the primary mix with a substantial decline in the share of oil and substantial increases in the share of nuclear electricity and coal (Figure 5).

The end-use fuel consumptions are shown in Figure 6. In particular the share of coal in the total fuel mix increases sharply (Figure 7). This increase is due to coal substitution in the indirect heat category in the industrial sector, despite higher capital costs of coal boilers relative to gas and oil fired boilers. As mentioned earlier, the model does not distinguish between different industries, the indirect heat category represents an average of cost and efficiency parameters for the entire range of boilers used in industry. The increase in coal share therefore represents an upper limit on the possible increase. In reality, the cost effectiveness would only hold for some industries. There is a decrease in the share

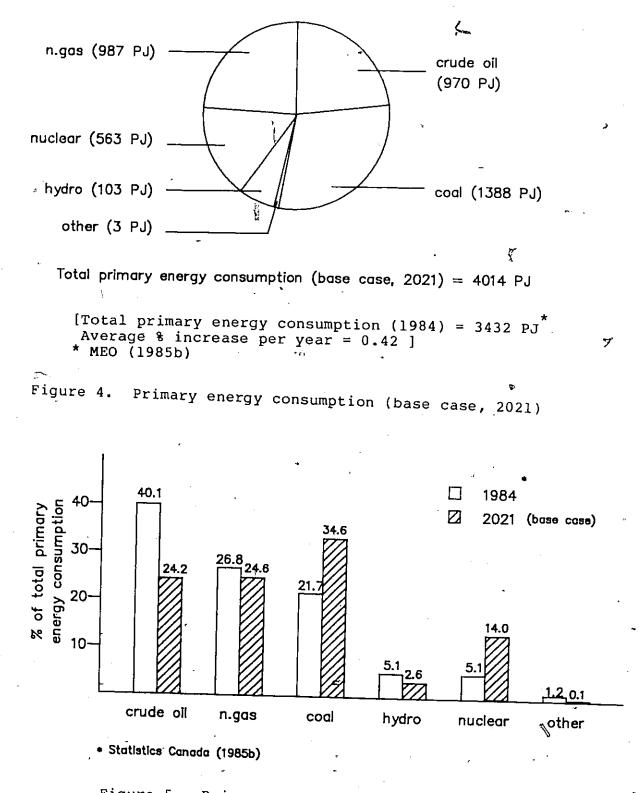
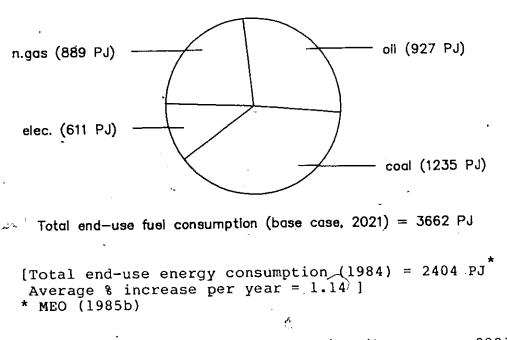



Figure 5. Primary energy shares (base case, 2021)

4

Figure 6. End-use fuel consumption (base case, 2021)

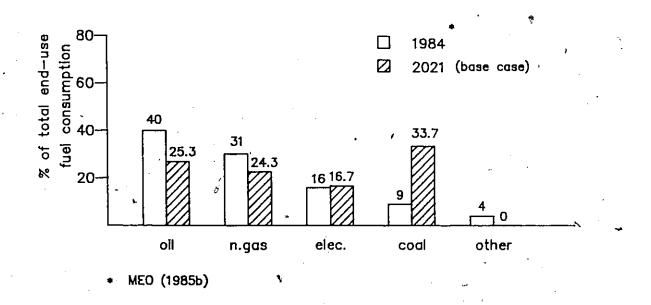


Figure 7. End-use fuel shares (base case, 2021)

\$

of oil. In the residential and commercial sectors oil consumption is nil (since other technologies are more cost effective). The share of oil decreases both in the industrial as well as transportation sectors.

- (

Results showing market shares are shown in Figures 8 and 9. The decrease in the share for the residential sector is mainly due to better designed energy efficient buildings and heating devices. The relative increase in the share of the industrial sector to a high level (approximately 59%), reflects to some extent the inflexibility of the "under-modelled" industrial sector. Despite higher capital costs, better efficiency of electric vehicles leads to low operating costs which makes electric vehicles cost effective relative to other technologies in the Auto and Light truck categories. Market penetration is at the maximum allowable level of 20 %. As electric vehicles have nearly twice the end-use energy efficiency in comparison with gasoline vehicles, this is reflected in the decrease in the transportation market share.

The share of electricity in the total end-use fuel energy remains nearly at the same level as 1984. There is an increase in electric energy generation, with nuclear generation having the largest share (78%), followed by hydro (14%), fossil (8%) and a very small fraction by municipal refuse. The above least cost generation mix is

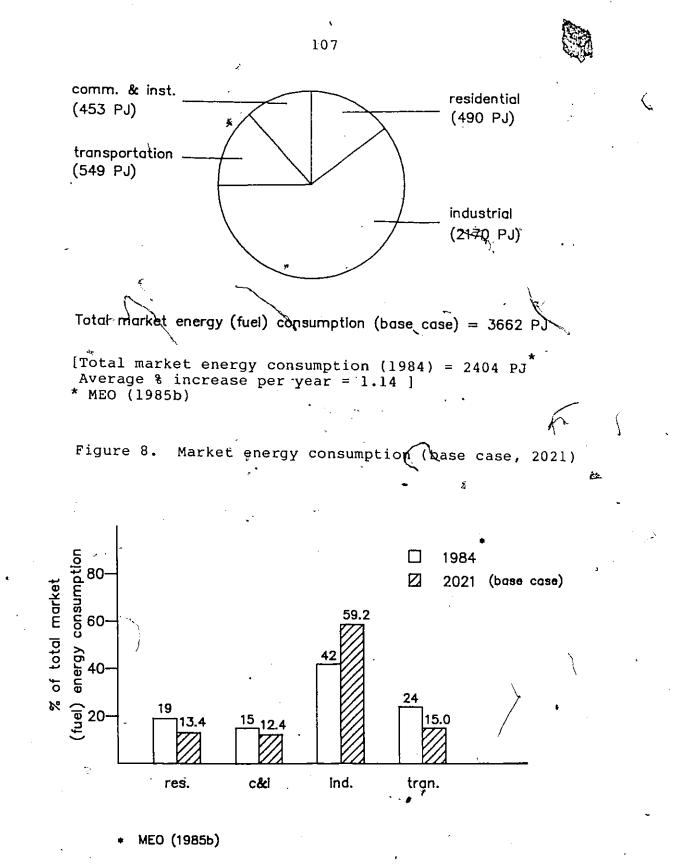
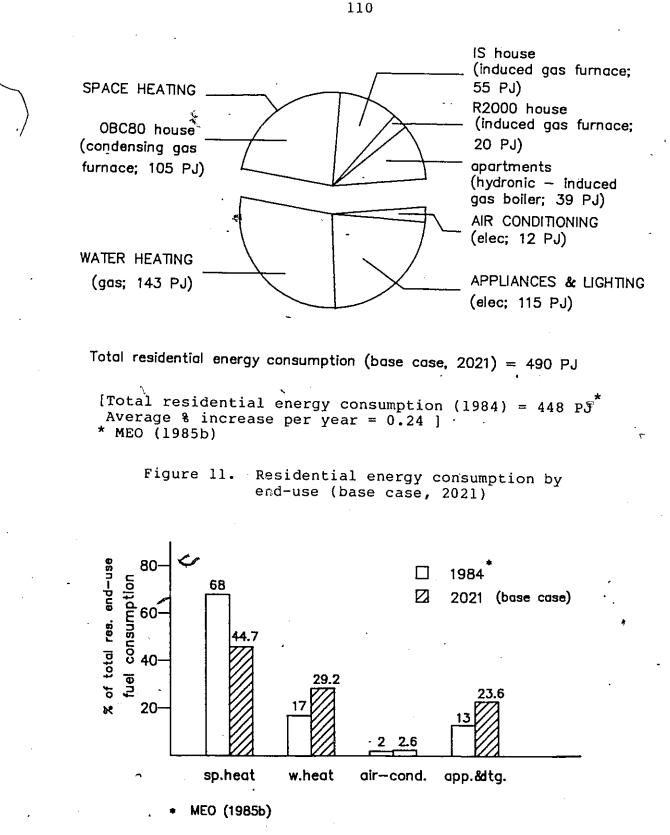


Figure 9. Market shares of end-use sectors (base case, 2021)

in accordance with the expected trend of an increased share of nuclear generation. Ontario Hydro estimates that by 1993, the year by which all current commitments are completed, the generation mix would consist of nuclear **L**. power with a share of 70%, followed by hydro (24%) and fossil generation (6%). Figure 10 gives the power and energy produced from the type of plant and mode of operation. The base load is entirely provided by nuclear power. The cyclic or intermediate load is nearly entirely met by hydro and coal generation, and a very small fraction by the reconditioned municipal refuse plant at Hearn. The daily peak mode is met by hydro and coal generation. The seasonal peak by hydro and gas generation. The total peak power load is approximately 43 GW.

Figure 11 shows end-use energy consumption for the residential sector. For houses, the induced gas furnace is the preferred option for the R2000 and the Intermediate Solar house, and the condensing gas furnace for the OBC80 house. The reason for induced gas heating in R2000 and the Intermediate Solar house over the condensing gas furnace is that the induced gas heating has a lower capital cost than the condensing gas furnace and as the energy requirement for both these houses is low, capital costs dominate making this option more cost effective. However, with energy requirements per household increasing for the OBC80 house, the better efficiency of condensing gas furnaces reduces

£


/ existing hydro (0.95 GW, 1513 gWh) // new hydro [(2-10 MW), 0.13 GW, 628 gWh] - new hydro [(> 10 MW), 1.26 GW, 6036 gWh] coal-spc (1.91 GW, 9173 gWh) existing hydro (4.69 GW, 22502 gWh mun ref-Heam (0.2 GW, 780 gWh)³ new CANDU (12.4 GW, 92348 gWh) ex. nuclear (8.61 GW, 84125 gWh) existing hydro (0.02 GW, 3 gWh) coal-spc (3.91 GW, 6255 gWh) gas-sbc (9.19 GW, 1417 gWh) Linear approximated load duration curve for the base case (2021) showing electrical energy generation and mode of operation for supply I 8760 İ 7008 22 || 5256 ttme (hours) $\|$ 1204 || 1752 Figure 10. beak bower consumption (42,860 MW) 10. 12 12 12 8 Power

sources.

109

٠:

Ņ

X

Figure 12. Shares of residential end-use sectors (base case, 2021)

ini.

operating costs and compensates for the higher capital cost. For apartment buildings, hydronic heating with induced gas boilers is the most cost effective amongst the technologies considered. Water heating by natural gas is more cost effective than electric. It is worth noting that this is so in spite of the fact that the capital cost for the flueless gas water heater (the type considered here) is double that of an electric water heater. Solar space and water heating do not appear in the solution. Solar air-conditioning does not either. Heat pumps, despite their dual purpose of air-conditioning and heating, do not enter the solution. This is probably due to additional capital cost for back-up heating equipment as heat pumps are not effective on very cold days.

Residential shares of end-use sectors are shown in Figure 12. As mentioned earlier, the sharp decrease in the share of space heating can be attributed to better designed buildings and heating devices. In fact, space heat consumption levels decrease from 305 PJ in 1984 to 219 PJ in 2021 despite increases in the number of household units.

Figure 13 gives the energy consumption for the commercial and institutional sector. Amongst the technologies considered, hydronic heating with induced gas boilers is the preferred option. Water heating is by gas. Figure 14 shows the fuel shares for the Commercial and Institutional sector.

Ą

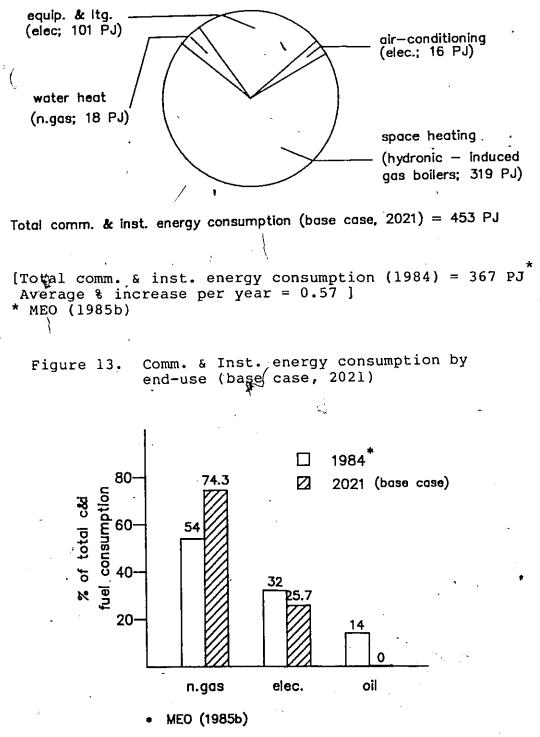
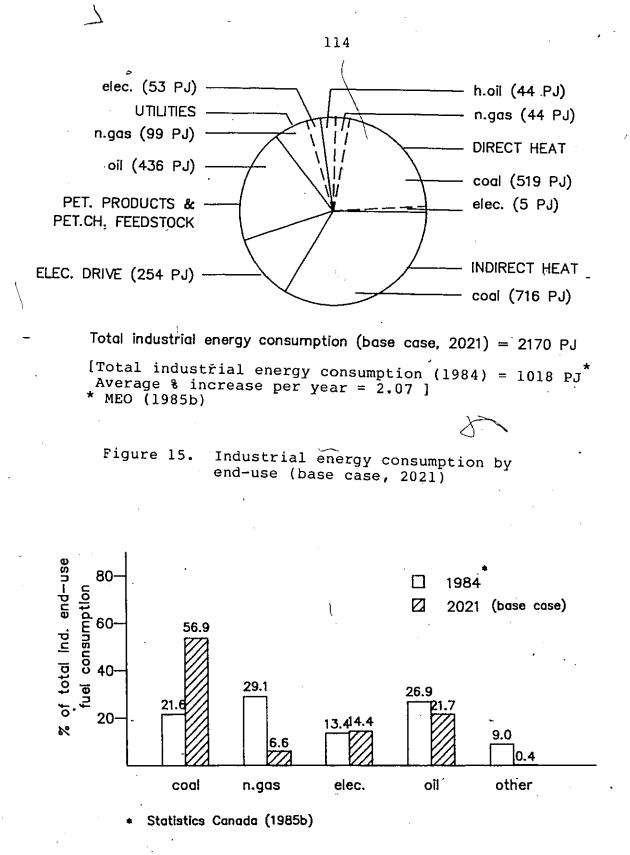
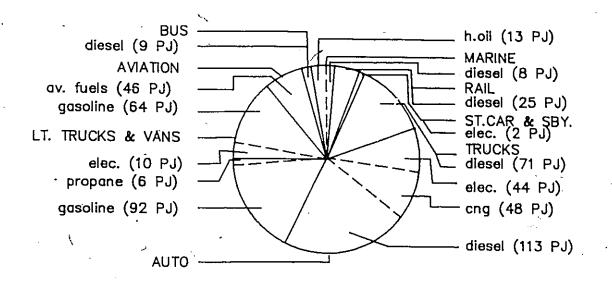


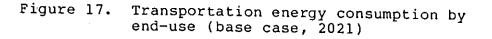
Figure 14.

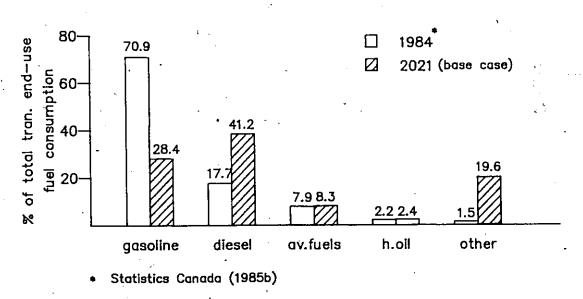
Comm. & Inst. fuel shares (base case, 2021)

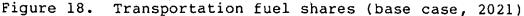
Results for the industrial sector are shown in Figures 15 and 16. Interfuel substitution is only permitted for the indirect category. For all other categories, market shares based on historic levels were fixed. As mentioned earlier in this section, coal is most cost effective for indirect heat. The major shift is due to the penetration of coal for boiler fuel.

Figure 17 and 18 show consumption in the transportation sector. For cars, from a predominantly gasoline market, there is a significant shift towards diesel and CNG fuelled cars with small percentages of electric and propane fuelled cars. The shift away from gasoline becomes immediately obvious when looked at from the refinery point of view. A reduction in gasoline and an increase in diesel permits refineries of lower complexity to operate, thus reducing costs. Worth noting is the fact that despite higher capital costs by approximately \$600 per car for CNG fuelled cars over gasoline powered cars, it is more cost effective to produce CNG cars than produce the extra gasoline from a higher complexity refinery. Also, despite higher capital costs of approximately \$1700 per car for electric cars over gasoline, fuelled cars, they too appear in the optimal solution. The small percentage of propane cars is due to the fact that only propane produced from the refinery as a by-product is cost effective. Propane imported from other regions is not cost effective.


Figure 16. Industrial fuel shares (base case, 2021)


.



Ł

Total transportation energy consumption (base case, 2021) = 549 PJ [Total transportation energy consumption (1984) = 571 PJ Average % increase per year = -0.11] * MEO (1985b)

Detailed results for the base case are given in Appendix B. To account for the uncertainty that exists in examining the future the model has been run for two additional scenarios, namely, the low energy demand and the high energy demand scenarios. Creation of the two scenarios along with model results are presented in the following chapter.

1

CHAPTER VII

ASSUMPTIONS AND RESULTS FOR THE LOW AND HIGH ENERGY DEMAND CASES

7.1 Assumptions

The base demand represents the most likely scenario. As mentioned at the end of the previous chapter, in view of the uncertainty that exists when dealing with the future, the model has been run for two additional scenarios, the low and the high energy demand scenarios.

The low energy demand scenario can be a result of various factors such as lower population levels, high energy prices, etc. that combine together to reduce energy consumption. On the other hand, the high energy demand scenario reflects a situation where factors such as high population, low energy prices, etc. increase the energy demand.

The prices of primary energy assumed for both the scenarios are shown in Table 20 along with the base case for comparison purposes. The prices for the low demand case generally represent an escalation of all primary resource prices by approximately 25% over the base case. Conversely, for the high demand case the prices represent a

Table 20. Primary resource prices (1985 dollars) assumed for the low, base and high energy demand scenarios-(2021)

RESOURCE	UNITS		PRICE		
		low	base	high	
· · · · · · · · · · · · · · · · · · ·			;		
Natural Gas 🧎	\$/Mcf	7.64	6.21	4.64	
Western Coal	\$/Tonne	160.00	128.00	96.00	
US App. Coal	\$/Tonne	121.00	97.00	73.00	
Lignite	\$/Tonne	89.OÒ	71.00	53.00	
Propane	\$/Litre	0.38	0.30	0.22	
Crude Oil	\$/Barrel	62.00	49.00	36.00	
Uranium 🗅	\$/Kg	371.00	297.00	233.00	
Wood	\$/Odt	103.00	82.00	62.00	
Wheat	\$/Tonne	281.00	225.00	169.00	
Barley	\$/Tonne	239.00	191.00	143.00	
Corn	\$/Tonne	248.00	198.00	149.00	
Corn	\$/Tonne	248.00	198.00	149	

Table 21. V

21. Values of parameters for projection of end-use demands for the low, base and high energy demand scenarios (2021)

	<u> </u>		
PARAMETER	-	VALUE	
*	low	base	high
Population (millions)	9.5809	10.4764	12.1306
Housing units (millions)	5.1732	5.5979	6.3478
Fr. of housing units of houses	0.61	0.61	0.61
Fr. of new houses of R2000 type	0.60	0.45	0.30
Fr. of new houses of IS type	0.38	0.50	0.62
Fr. of new houses of OBC80 type	0.02	0.05	0.08
Fr. of housing units with a/c	0.70	0.80	0.90
Fr. improvement in heating loads			,
of new apartments and C&I			
buildings over existing buildings	0.35	0.30	0.25
C&I floor space trend	2.01	2.51	3.0Í
Industrial production trend	1.46	1.82	2.18
Transportation trend (all			
categories excluding auto and			
light trks.& vans)	0.80	1.00	1.20
Auto & light trucks & vans trend	1.24	1.55	1.86

•

reduction by the same figure over the base case.

The values assumed for certain parameters that determine end-use demands are shown in Table 21 (see previous page). The population figure was obtained by a procedure similar to that used for the base case, using low and high growth projection series for total Canadian population (Statistics Canada, 1985). Similarly, low and high growth household projections were used to determine the number of households (Statistics Canada, 1981). It was also assumed that higher energy prices would have an increasing effect on the average insulation level of a houshold unit, i.e. there would be, say, more R2000 houses in comparison with the base case, which in turn would result in lower energy demands. The converse is assumed to exist for lower energy prices. It was also assumed that higher energy prices would reduce economic growth, thus depressing energy demand, while lower energy prices would have a converse effect. This is reflected, in the trend factors. All other values such as costs of conversion, share fractions, etc., are kept the same as in the base End-use demand projections are shown in Table 22. case.

7.2 Results

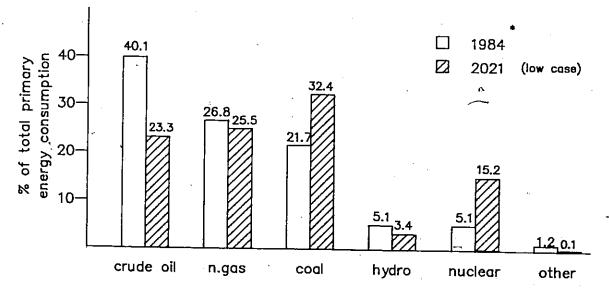
Starting with the results for the low case, there are certain differences in comparison with the base case in the pattern of energy consumption, i.e. in the type of fuel and

CATEGORY	TYPE		END-USE DEMANDS/SERVICES		
• .		low	base	high	
RESIDENTIAL					
Space heat R2000 house	Useful	14.22	16.10	19.44	\mathbf{PJ}
Space heat IS house	Useful	38.59			
Space heat OBC80 house	Useful	96.07		+	
Space heat New apartments	Useful			•	
Space heat Old apartments	Useful			+	
Water heating	Useful		114.23		
Window air-cond. units	Useful		15.94		
Central air-cond. units	Useful		21.54		
Appliances & lighting	Fuel		115.37		
COMMERCIAL				100,01	÷Ū
Space heat New buildings	Useful	121.44	194.32	306.54	\mathbf{PJ}
Space heat Old buildings	Useful				
Nater heating	Useful		14.40		
Air conditioning	Useful		47.49		
Equipment and lighting	Fuel	73.76	100.80		PJ
INDUSTRIAL					
Indirect heat	Useful	420.33	571.37	794.6	3 PJ
Direct heat	Fuel		5 542.59		
Electric drive	Fuel	186.69	253.71	352.8	4 P.T
Jtilities	Fuel	111.36	5 151.37	210.5	
Pet. prod. & Pet.ch. fstk.	Fuel		434.92		
TRANSPORTATION					. 10
Auto	Useful	88.59	9 121.16	168.24	4 Gkπ
Light Trucks & Vans	Useful	15.41			
Buses	Useful	1.66			5 PJ
Rail	Useful		6.60		
Marine	Useful	2.01			B PJ
Aircraft	Useful	10.97			
Trucks	Useful	13.56			
Subway/and St. cars	Fuel	1.18			1.PJ

TABLE 22. End-use demand projections for the low, base and high energy demand scenarios (2021)

₫

end-use technology used to satisfy end-use demands. For R2000 houses, electric space heating replaces the induced gas furnace as the preferred option. As this scenario is associated with higher energy prices for fossil fuels, there is a relative decrease in the cost of electricity generation in comparison with fossil fuels, thus causing the above substitution. There is a slight change in the transportation sector with propane fuelled cars not appearing in the optimal solution. This difference is not very significant as propane fuelled cars were having approximately 1% share of the auto market in the base case, the propane being obtained from refineries as a by-product.


All other patterns of consumption for all end-use sectors remains the same as in the base case with lower levels of consumption. The net reduction in electrical energy demand causes a reduction in the share of fossil-fuel generation. This is understandable as this scenario is associated with higher fossil fuel prices in comparison with hydro. The results for the low energy demand scenario are shown in Figures 19 to 33.

The results for the high energy demand scenario reveal the following changes. With lower fossil fuel prices, the induced gas furnace becomes more cost effective than the condensing gas furnace for the OBC80 house category. Also, there is a significant shift in the transportation sector. For cars, in the base case demand was met by electric,

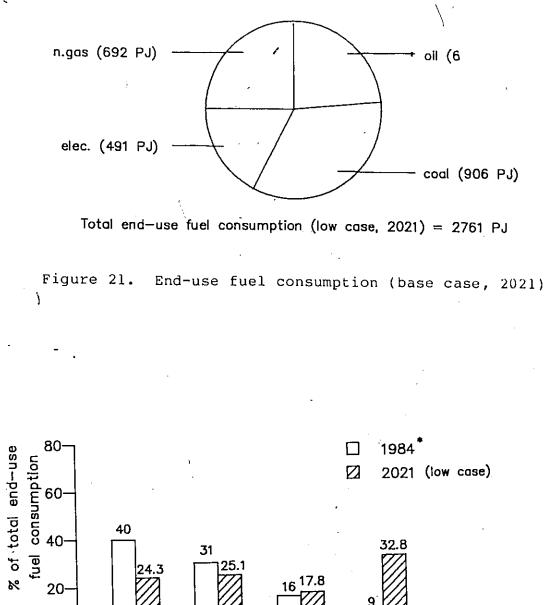

Total primary energy consumption (low case) = 3016 PJ

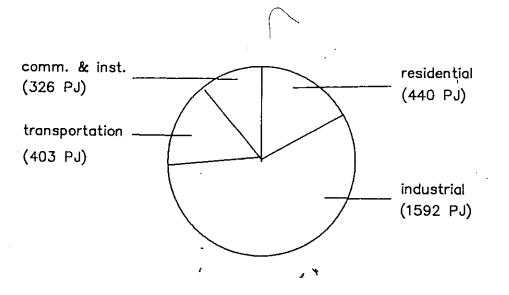
Figure 19. Primary energy consumption (low case, 2021)

Statistics Canada (1985b)

Figure 20. Primary energy shares (low case, 2021)

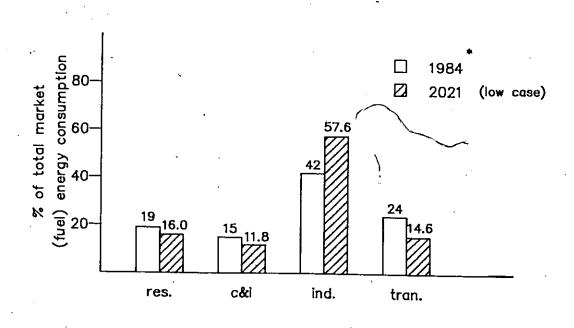
coal n.gas elec. oīl _

MEO (1985b) *


Figure 22.

4

End-use fuel shares (low case, 2021)


0

other

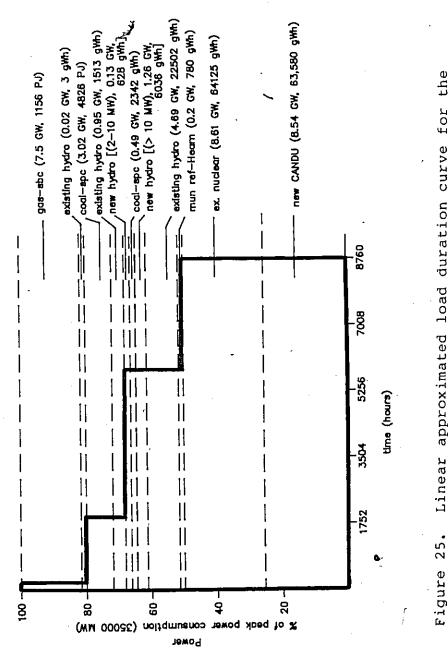
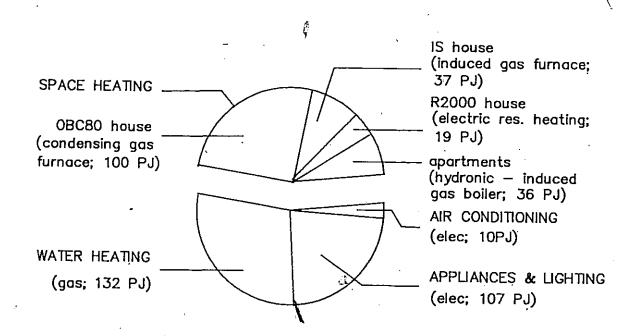

Total market energy (fuel) consumption (low case, 2021) = 2761 PJ

Figure 23. Market energy consumption (low case, 2021)

• MEO (1985b)

Figure 24. Market shares of end-use sectors (low case, 2021)



Ð,

Linear approximated load duration curve for the low case (2021) showing electrical energy generation and mode of operation for supply sources.

125

لمغتق

Total residential energy consumption (low case, 2021) = 440 PJ

Figure 26. Residential energy consumption by end-use (low case, 2021)

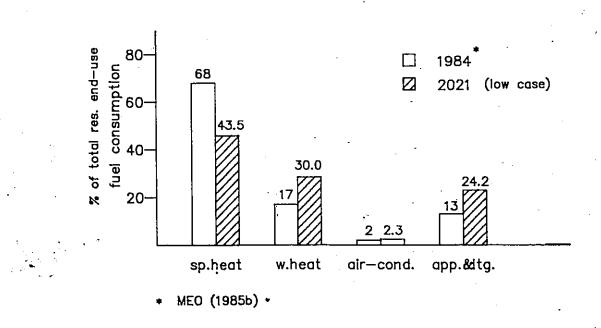


Figure 27.

Shares of residential end-use sectors (low case, 2021)

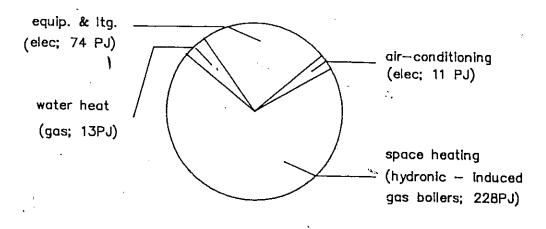


Figure 28. Comm. & Inst. energy consumption by end-use (low case, 2021)

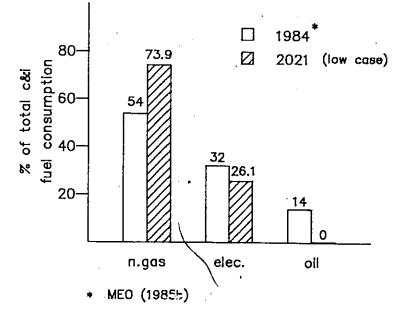
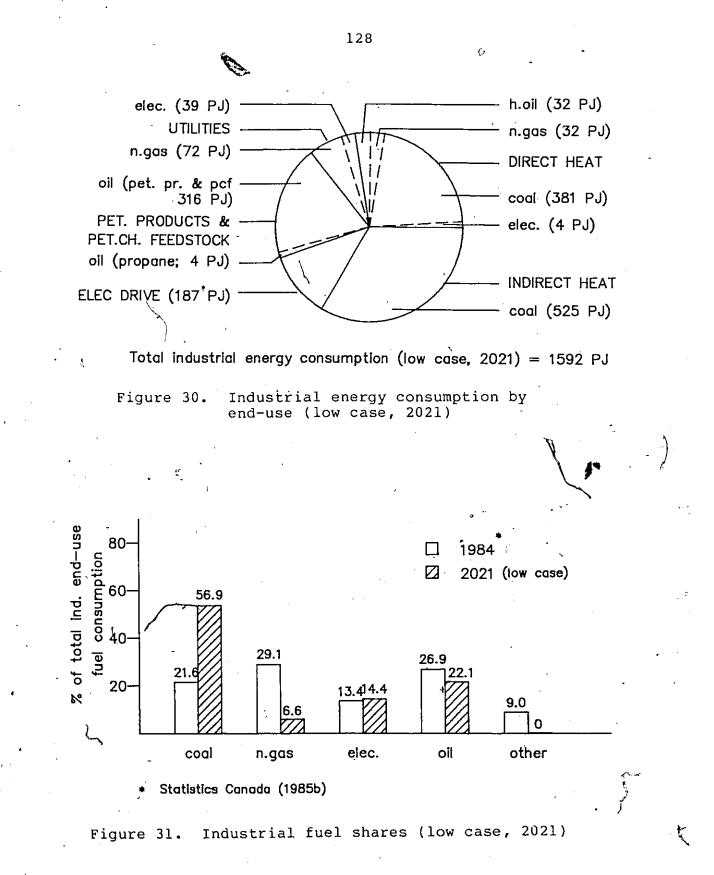
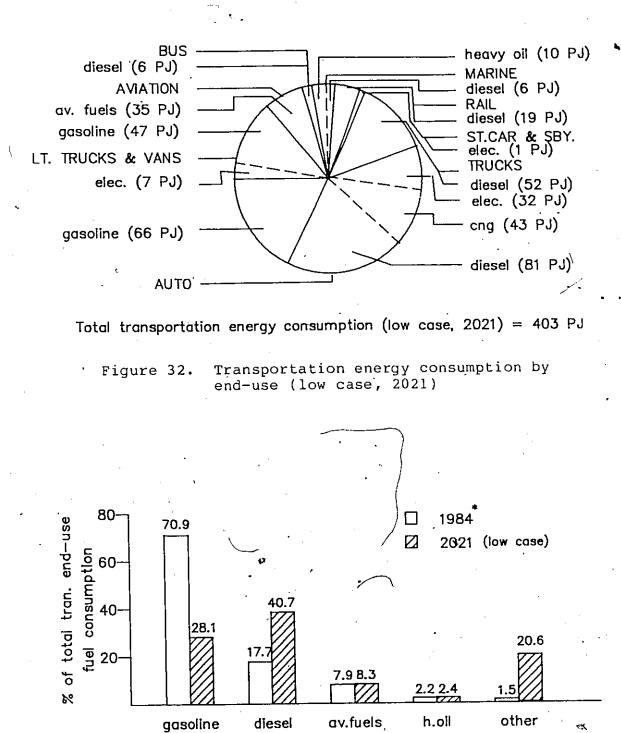
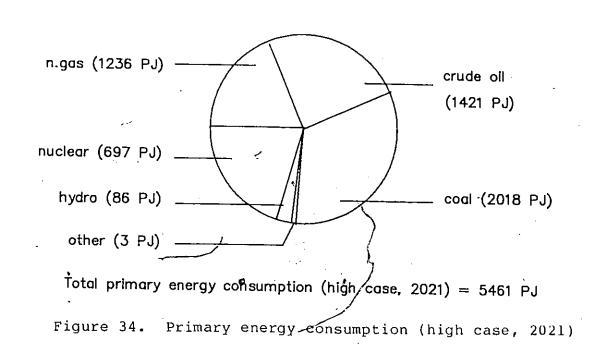




Figure 29.

Comm. & Inst. fuel shares (low case, 2021)

• Statistics Canada (1985b)

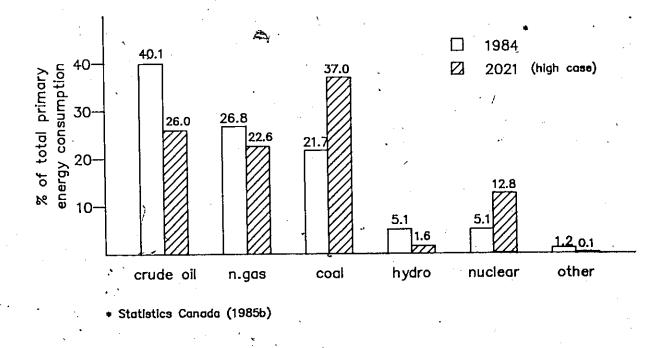
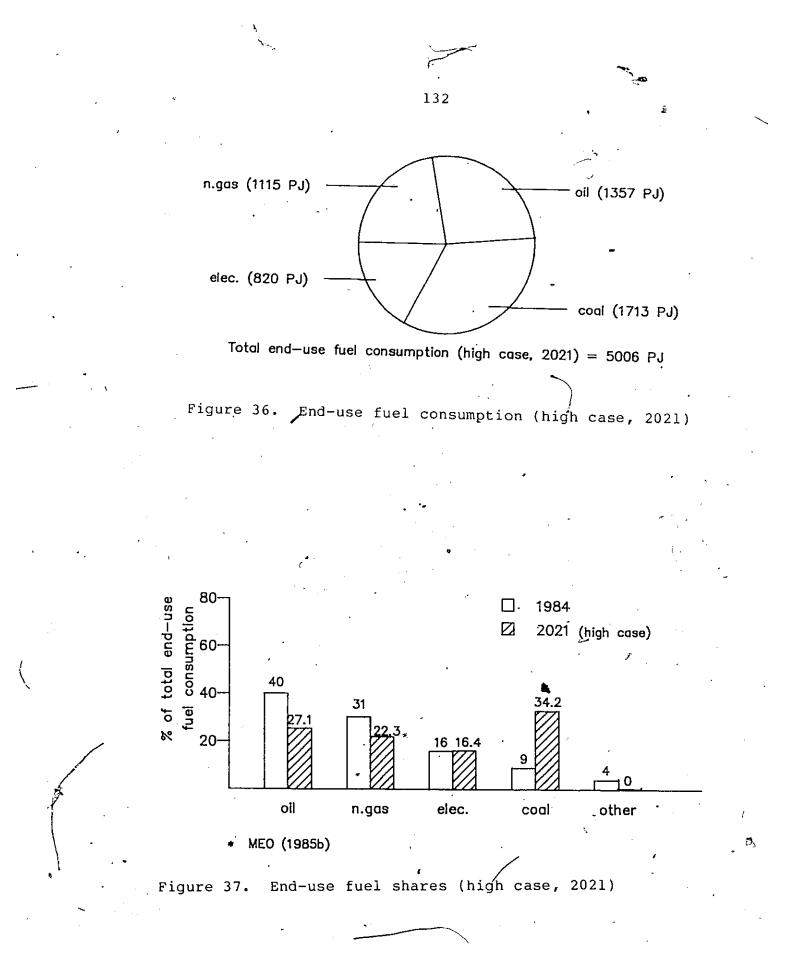

Figure 33. Tr

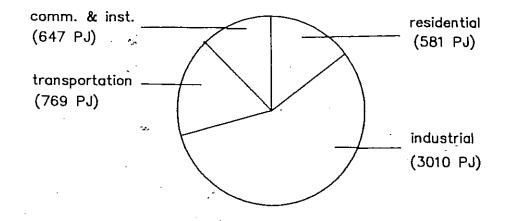
Transportation fuel shares (low case, 2021)

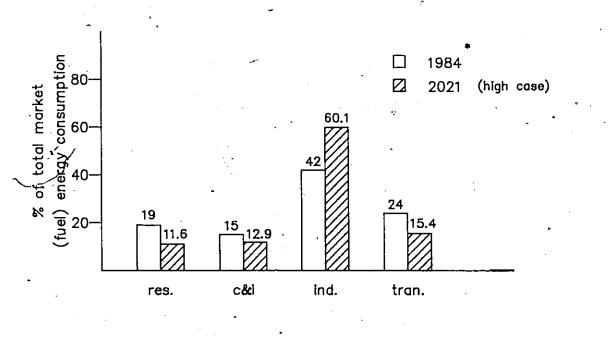
129

gasoline and diesel from lower complexity refineries and the slack left over by CNG fuelled cars. In the high case, the above pattern of electric, and gasoline and diesel from lower complexity refineries remains the same, however the slack is met by gasoline and diesel from higher complexity refineries rather than CNG. The mix of low and high complexity refineries in the solution does not necessarily imply the existence of just the low and high complexity refineries but perhaps a range of refineries with in between degrees of complexity. This in turn implies a range of refineries with varying degrees of catalytic cracking and hydro cracking facilities. The mean complexity in this case was 7.136 in comparison to 6.665 (low complexity refinery) for the low and base cases. All other patterns of energy consumption remain the same as in the base case except with higher consumption patterns.

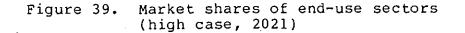
With increasing electrical energy demand there is an increase in coal, gas and nuclear generation. However, there is a decrease in hydro energy, with no new hydro (greater than 10 MW and 2-10 MW) appearing in the solution. This can be understood in light of the fact that this scenario was associated with lower primary energy resource prices that applied to coal, gas and nuclear, thus making these options more cost effective. Peak power demanded is approximately 53 GW. The results for the high energy demand scenario are shown in Figures 34 to 48.

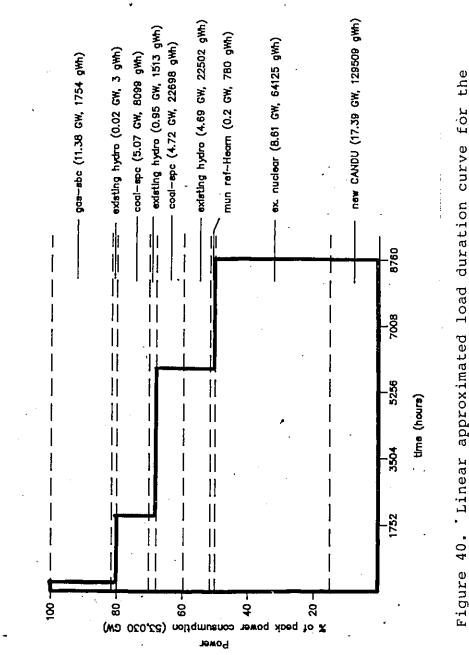




Figure 35. Primary energy shares (high case, 2021)


١.

ł


-



Total market energy (fuel) consumption (high case, 2021) = 5006 PJ Figure 38. Market energy consumption (high case, 2021)

* * MEO (1985b)

Linear approximated load duration curve for the high case (2021) showing electrical energy generation and mode of operation for supply sources.

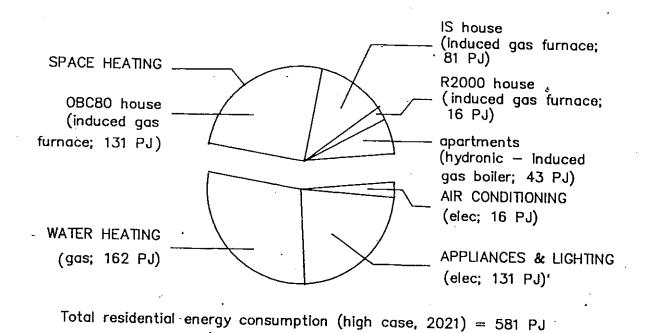


Figure 41. Residential energy consumption by

end-use (high case, 2021)

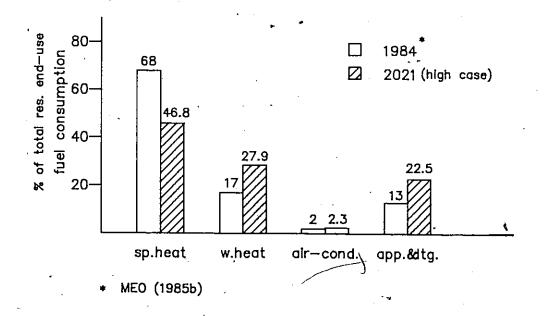


Figure 42. Shares of residential end-use sectors (high case, 2021)

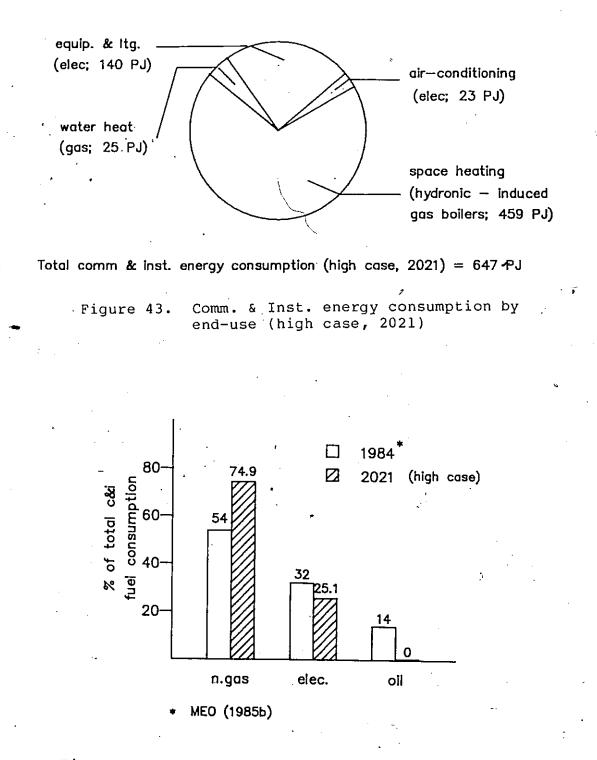
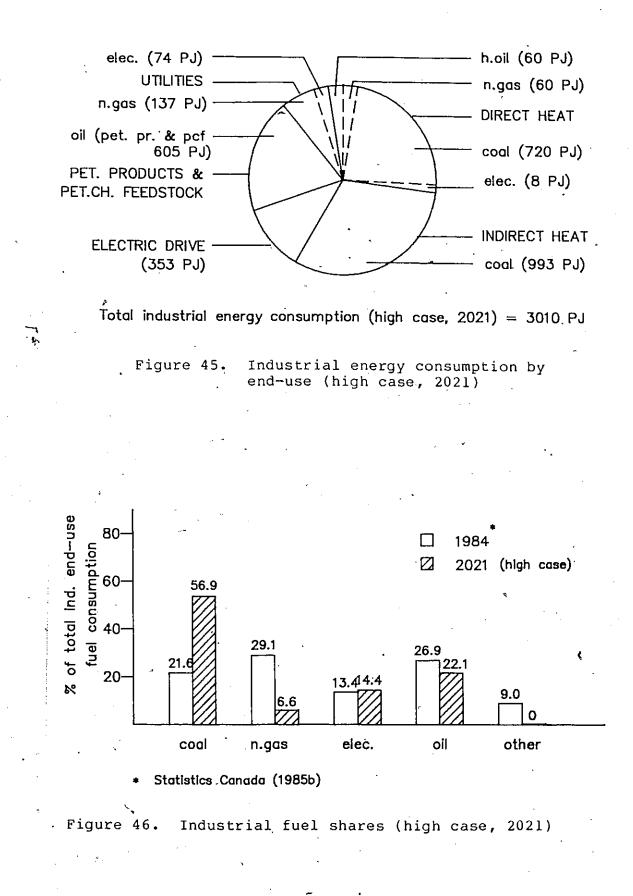



Figure 44. Comm. & Inst. fuel shares (high case, 2021)

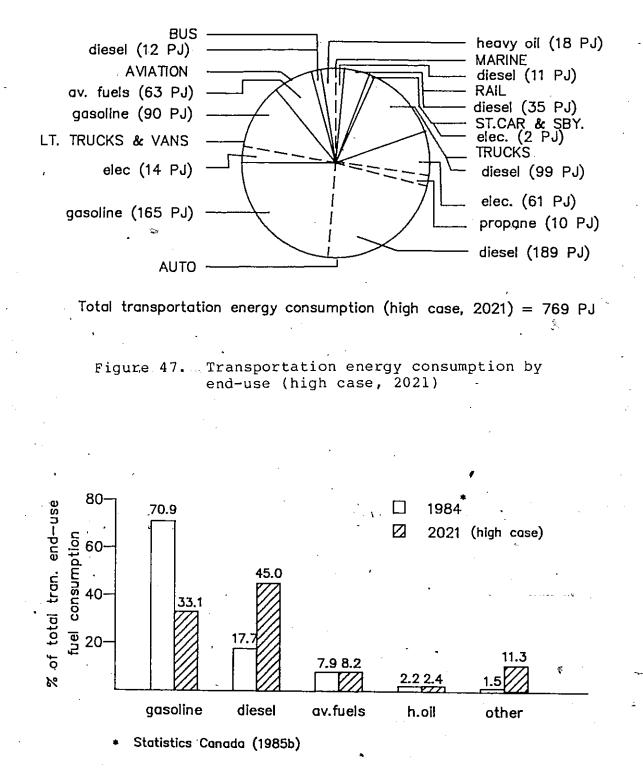


Figure 48. Transportation fuel shares (high case, 2021)

The results of the low, base and high scenarios provide a range of possible solutions in response to changes in population, trends in economic growth, etc. A study of the end-use energy consumption pattern for the three scenarios leads to the following conclusions. For the R2000 house, two technologies emerge as the most cost effective, namely, electric resistance heating for the low energy demand scenario and the induced gas furnace for the base and high energy demand scenarios. Looking at it from an overall point of view the induced gas furnace can be considered as an optimal technology for this catgory. This conclusion can be described as fairly robust. For the IS house, the induced gas furnace is the optimal technology under all the three scenarios, therefore this result is robust. For the OBC80 house category, the condensing gas furnace is the optimal technology under the low and base case, with the induced gas furnace for the high scenario. The conclusion that the condensing gas furnace is the optimal technology for this category can be considered as fairly robust. On similar lines, gas water heating (flueless) and electric air-conditioning for houses are robust conclusions. For apartments and commercial and institutional buildings, space heating by gas (hydronic), water heating by gas and electric airconditioning are again In the transportation sector, medium robust conclusions. and heavy trucks are diesel fuelled, a major percentage of

light trucks and vans are gasoline fuelled and a small percentage being electric are robust conclusions. For the Auto category, a robust conclusion is that the major share of cars would largely consist of gasoline and diesel fuelled vehicles with a small but significant share of electric vehicles. The gasoline and diesel are produced from low complexity refineries. The debate then centres about the left over share of approximately 20%, which in the base and the low energy demand scenarios is satisfied by CNG, while in the high scenario is met by gasoline and diesel produced from higher complexity refineries. Based on the above, the use of CNG vehicles for the above 20% can be considered as a fairly robust conclusion.

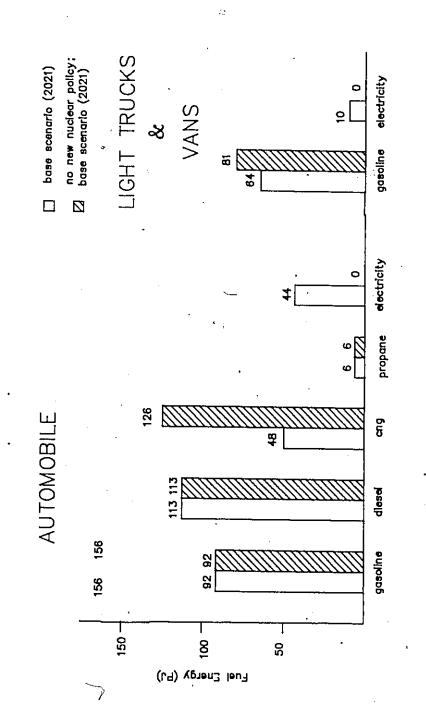
Electric generation shares are fairly consistent under all three scenarios. In addition, the shares of primary energy and end-use energy are also fairly consistent for the three scenarios. These shares can be considered as robust.

These three scenarios therefore provide an environment from which one can draw reasonably robust conclusions. The next chapter demonstrates the use of the model in examining policy issues.

CHAPTER VIII

SOME ENERGY POLICY QUESTIONS ADDRESSED BY THE MODEL

8.1 No new nuclear generation

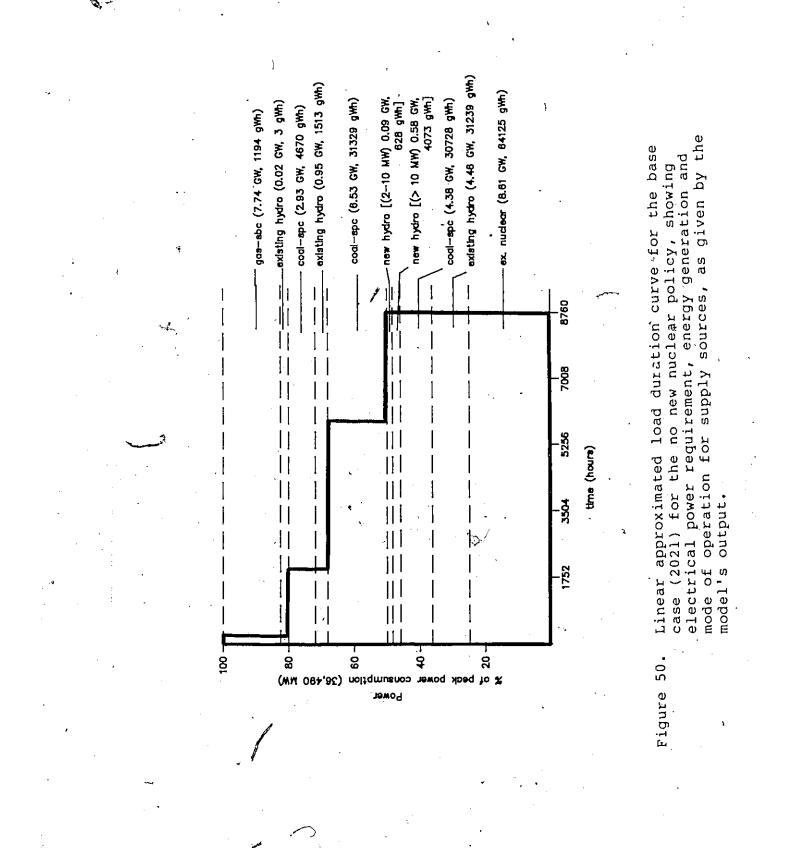

The model has been used to study the impact of a no new nuclear policy. The existing nuclear facilities were permitted to operate. However, no further expansion of new nuclear plants was permitted. The simplest way to achieve this in the model was to assign a very high cost to electrical production by new nuclear generation, thus ensuring that it would not enter the optimal solution. All other conditions were similar to the base case. All dollar values are in terms of 1985 dollars.

The objective function value increases from 33.65974 billion dollars to 34.94242 billion dollars, an increase of approximately 1.28 billion dollars. This figure represents an increase that is spread over all sectors. Dividing this total to the various sectors in proportion to the energy consumed by each sector, produces the following. In the residential sector, an increase of \$2.55 per month per household for utilities. In the commercial and institutional sector, an increase of 4 cents per square metre per month for utilities. In the industrial and

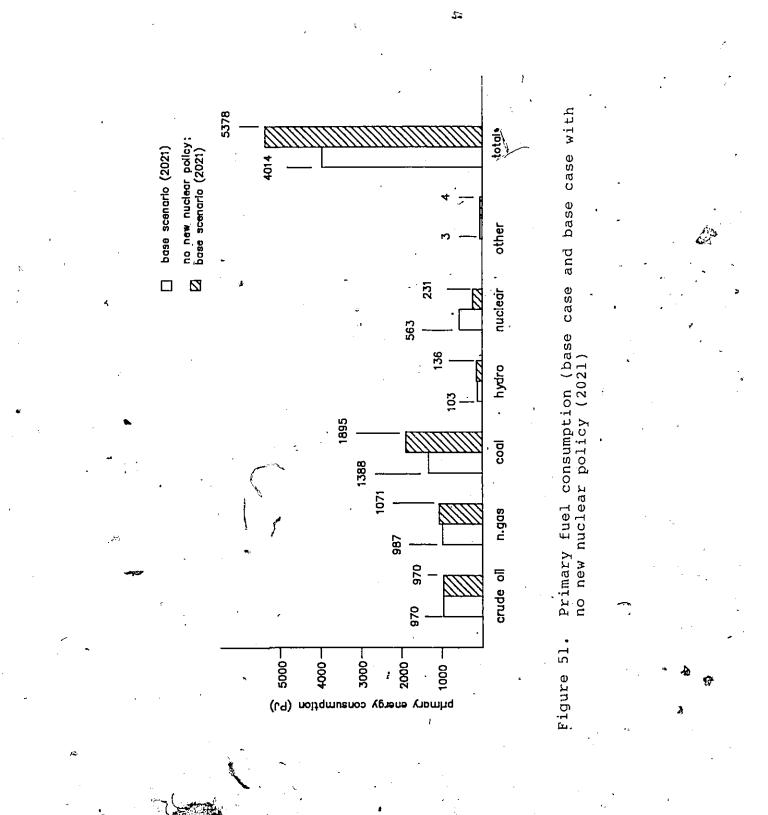
transportation sectors there is an increase of 35 cents per GJ of input fuel energy used. These figures represent an increase of 3.81% over the base case. They also can be looked upon as a "cost of insurance" against (new) nuclear hazards since the existing nuclear facilities are permitted to operate (which is also why the percentage cost increase is low).

Because of the increased cost in the generation \mathbf{v} of \langle electricity, the results indicated a change in the end-use utilisation pattern. In the transportation sector, electric autos as well as electric vans price themselves out of the optimal solution, producing the following changes. There is an increase in gasoline fuelled light trucks and vans, the entire category now being met by gasoline, and a corresponding decrease in gasoline fuelled This decrease, in addition to the demand that was, cars. earlier serviced by electric autos, is made up by CNG fuelled cars. Diesel consumption remains at the same level. Worth noting is the fact that there is no increase in overall crude oil consumption, the refinery with a lower complexity remaining in the optimal solution. Details are shown in Figure 49.

The substitution of electricity from end-use sectors results in a lower demand for electricity. The total peak power demanded reduces by approximately 5 GW. The place of new nuclear generation is largely replaced by coal based



power plants. All new capacity of hydro in both the large and small capacity, is exploited to its maximum. There is a shift in the mode of operation. Base load is met by all categories of hydro, refuse generation, the existing nuclear facilities and coal generation. The cyclic load is met by coal. The daily peak load is met by coal and existing hydro and the seasonal peak load by gas generation and existing hydro. Details are shown in Figure 50.


Figure 51 shows the change in primary energy consumption. There are significant increases for coal and natural gas. The former increase is entirely for electricity generation while the latter is for substitution for electricity in end-use demands. The increase in total primary energy is essentially a reflection of the way it is measured. Nuclear energy is measured in terms of electric energy, while any substitution of it by fossil fired electricity is measured by fossil fuel energy. Thus substitution of one unit of primary nuclear-energy by fossil fired electricity would mean an approximate increase of three units of primary fossil energy.

From an environmental viewpoint the no new nuclear policy is a tradeoff between less nuclear and more air pollution, the latter due to the increase in coal based electricity generation.

The no new nuclear case was also run for the low and high demand scenarios. In all cases, electric autos and

į

vans price themselves out of the optimal solution. The additional costs were approximately 0.93 and 1.43 billion dollars when comparing the objective functions for the low and high energy demand scenarios. The results are shown in Tables 23 and 24.

8.2 Increasing Electrical exports to the U.S.A.

Increasing electricity exports increases revenues. However an increase in generation requires additional investment for building more power plants. When the return on this additional investment depends solely on a foreign market coupled with the fact that power plants have lifetimes upwards of 30 years, there is an element of "vulnerability" on the investment. Therefore although increasing exports increases revenues, it also increases the risk.

The model was used to address this issue. Exports were bounded at 0, 100, 200, 300, 400 and 500 PJ which represents 0, 16, 33, 49, 66 and 82 percent of domestic consumption respectively. The export price was 4.533 cents/kWh, the price arrived at by escalating the 1985 price by 1%. The solution, for each of the cases went to the bounds. For each case, the additional power requirement by each of the power plant types was determined from the output results of the export and no-export base case, along with the additional revenues. The additional power requirement was translated further into additional

Table	23.	Primary energy consumption for the low,
	-	base and high scenarios (2021) for the no
		new nuclear policy

.

ENERGY SOURCES	CONSUMPTION (PJ)			
	low	base	high	
Natural Gas	856.31	1071.09	1234.31	
Crude Oil	703.28	970.42	1539.46	
Coal	1186.27	1895.00	2933.83	
Hydro ·	136.16	136,16	136.16	
Nuclear	230.85	230.85	230.85	
Other .	4.10	4.10	4.10	
TOTAL	3116.97	4307.62	6078.71	

Table 24. End-use fuel consumption for the low, base and high scenarios (2021) for the no new nuclear policy

ζ

FUELS .	CONSUMPTION (PJ)			
• 	low	base	high-	
Natural Gas	772.77	966.20	1115.17	
Oil	671.73	926.89	1469.65	
Coal	906.21	1235.25	1713.20	
Electricity	432.62	~ 557.38	745,72	
TOTAL	2782.73	3685.72	5043.74	

The vulnerability of the additional investment. tment. can be looked at the following way. At low export levels, the additional investment has low vulnerability in the sense that in case the export market collapses, the surplus capacity has a good probability that it could be used within the future domestic supply framework as domestic demand is increasing every year. However, with higher export levels this flexibility is lost, and in case of a collapsed export market, the investment then is aloss. Therefore, vulnerability of additional investment increases with increased export levels. The aim here was not to define explicitly a measure for vulnerability but to . identify the possible loss of investment funds in relation with the possible gain in revenues. Details obtained are shown in Tables 25, 26 and 27.

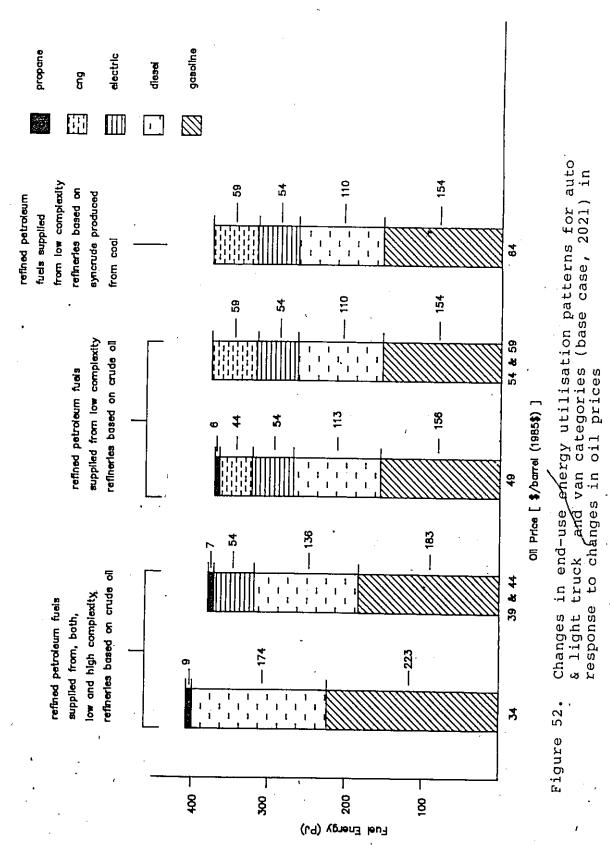
Additional investment ranges from 7.5 billion dollars to 37.4 billion dollars for export levels of 100 PJ (approximately 16% of domestic consumption) to 500 PJ (82% of domestic consumption) with annualised system wide savings (decrease in the objective function value) ranging from 0.06 billion dollars to 0.31 billion dollars respectively (dollars are defined in 1985 dollars). The vulnerability can be described as ranging from low to very high for the above range of exports.

Table 25.	Additional capacity required for different types
	of power plants for increasing electrical exports for the base case (2021)

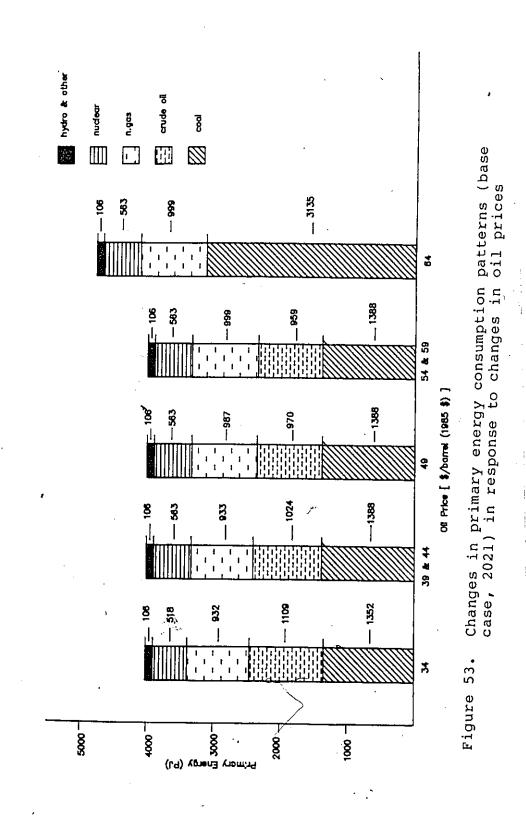
EXPORTS (PJ)	GAS Increme	COAL ental Capad	CANDU city (GW)	TOTAL
		<u> </u>		
0	0	0	0	0
100 .	1.39	1.90	3.18	6.47
200	2.79	3.81	6.37	12.97
300	4.19	5.72	9.55	19.46
400	5.58	7.63	12.73	25.94
500	6.98	9.54	15.92	32.44

Table 26. Incremental investment required for different types of power plants for increasing electrical exports for the base case (2021)

EXPORTS (PJ)	GAS Incremental	COAL Investment	CANDU [million do]	TOTAL
• 0	0	. /0	0	0
100	690.83	1708.10	5068.92	7467.85
200	1386.63	3425.19	10153.78	14965.60
300	2082.43	5142.28	15222.70	22447.41
400	2773.26	6859.37	20291.62	29924.25
500	3469.06	8576.46	25376.49	37422.01
	•			
	9	•	-	
able 27.			revenues (19	
-1	dollars) as	ssociated wi	ith increasir	ng
	electrical	exports for	c base case ((2021)
PORTS	TOTAL INCREME	ENTAL ANNU	JAL SAVINGS	VULNERABILI'
J)	INVESTMEN	, TI		
•	. Bi	llion Dolla	ars (1985)	•


·/			
	Bil	lion Dollars (1985)	
0	. 0	. 0	
100	7.47	0.061	LOW
200	14.97	0.122	
300	22.45	0.183	
400	29.92	0.244	ŧ
500	37.42	0:305	HIGH
		.s · ·	

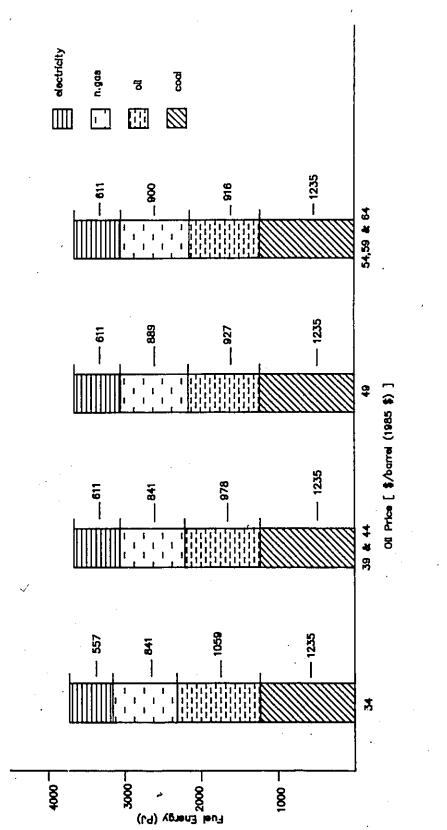
.


8.3 Sensitivity to Oil Prices

This study is of much interest since in the last five years MEO has actively been promoting alternative fuels for transportation. Obviously, the key feature governing the substitution of petroleum based fuels for vehicles is oil price. The model was run for different oil prices ranging from ±30% of the base price of \$49 per barrel in steps of approximately 10%, i.e., starting with \$34 per barrel to \$64 per barrel in steps of \$5 per barrel.

For the above range of oil prices, the end-use consumption pattern did not change for the residential, commercial and institutional, and the industrial sectors. These results were the same as in the base case. It is worth noting that even when oil prices are low, space heating by natural gas is still cost effective. However, in the transportation sector, in particular the auto and light trucks and vans category, there were significant changes in end-use consumption patterns. Figure 52 shows the details on end-use energy consumption for cars and light trucks and vans. At \$34 per barrel, the abovecategories were entirely met by refined petroleum fuels, i.e. gasoline, diesel and propane (produced from the refinery). The supply was from both the low and high complexity refineries (mean complexity being 7.915), with gasoline having the largest share, followed by diesel and a small fraction of propane., At \$39 per barrel, electric

vehicles become cost effective, and satisfy the allowable 20% of demand. The subsequent decrease in refined fuels decreases the share from the high complexity refineries. This is understandable since the high complexity refinery has a higher cost of production than the low complexity refinery. Still, the supply is from both the types of refineries, with the mean refinery complexity reducing to 7.127. At \$44 per barrel the consumption pattern remains the same as in the previous \$39 per barrel case. At \$49 per barrel, the high complexity refinery is priced out; its share of refined fuels is replaced by CNG. Thus, at this stage there is a further decline in the share of refinery fuelled vehicles. With just the low refineries operating, the mean complexity further reduces to 6.665. At \$54 per barrel, the small share of propane based vehicles also price themselves out (the propane was refinery produced), its share being taken by an increasing share of CNG vehicles. This pattern remains the same at \$59 per barrel. However, at \$64 per barrel, although the end-use pattern remains the same, the refined fuels are based on syncrude produced from coal, the syncrude being more cost effective than crude oil. Figure 53 shows the corresponding primary energy consumption associated with the above range of oil prices. The slight increases in consumption of gas, coal, and nuclear at an oil price of \$39 per barrel, reflect the increase for electricity


لى ا

generation, the demand created by electric cars. Note the decrease in crude oil consumption as oil prices increase. The sharp increase in coal consumption at an oil price of \$64 per barrel reflects the coal demand for syncrude production. Figure 54 shows the corresponding end-use consumption.

Worth noting is the fact that vehicles based on alcohols, propane [as an imported primary resource (natural gas liquids)], liquid hydrogen, LNG, gasoline from MOBIL, Zinc Chloride, SASOL, and diesel from SASOL are not in the solution even for a high price of \$64 per barrel. Further, even at this price, the low complexity refinery is in the solution, thus suggesting that alternative fuels should only penetrate a small portion of the automobile and light trucks and vans market, the other sectors being serviced by the traditional refined fuels.

8.4 Soft energy strategies

With increasing industrialisation, energy demands have grown year after year. However, conventional energy resources are finite and depleting, and coupled with a growing awareness of increasing environmental problems, in recent years "soft energy paths" have been advocated by many, such as Lovins (1977), and Brooks, Robinson and Torrie (1983). Briefly, soft energy paths stress reducing energy demand through conservation, and meeting these

demands by diverse, small-scale, renewable energy supplies with a high efficiency of energy use. In comparison, the more traditional "hard energy paths" emphasise increasing energy supplies by exploiting non-renewable sources by increasing scale and centralization of energy production. Energy policy in Ontario, athough predominantly leaning towards the "hard" path, has some elements of the "soft" approach, such as the reduction of space heating demands by energy conservation.

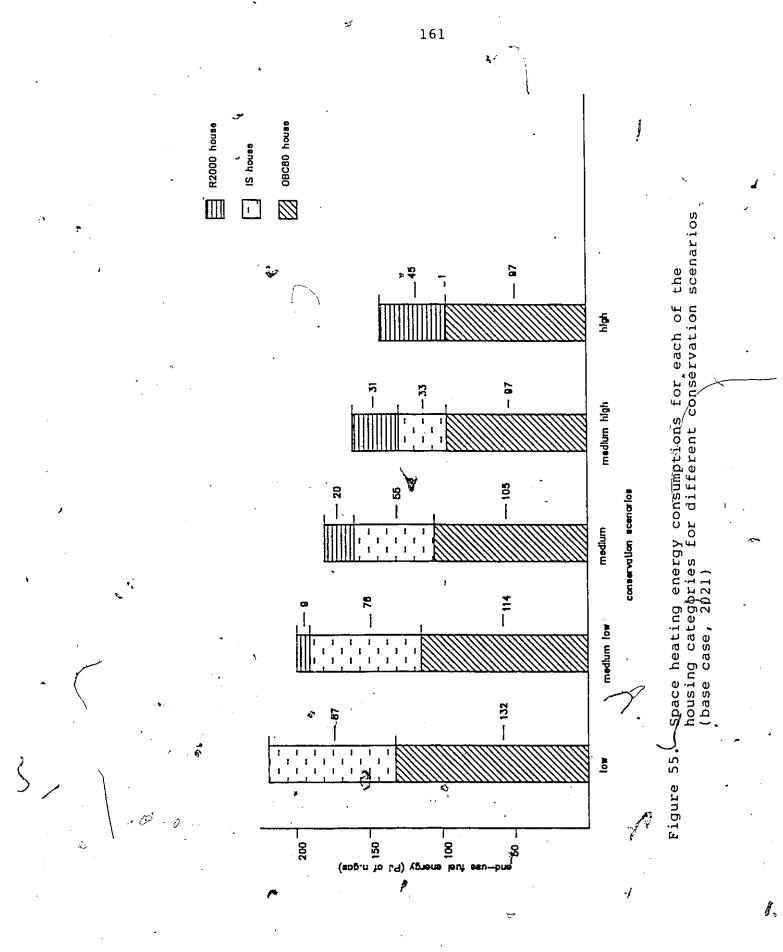
The study here examined two soft strategies for space heating in houses. The first soft strategy for the residential sector was to study the economics of energy conservation in houses. In the model houses have been categorised as three types, the R2000, the IS, and the OBC80. To study energy conservation, five energy conservation scenarios have been described as low, medium low, medium, medium high and high, depending upon the number and type of houses existing in 2021. For example, the high conservation scenario is categorised by all new stock of houses are of the R2000 type, thus representing the highest overall level of insulated houses, while in the low conservation scenario, none of the new houses built are of the R2000 type, 80% of them being the Intermediate Solar type and 20% are of the OBC80 type, representing the lowest level of overall insulation. The other conservation scenarios are between the two above mentioned insulation

ranges (the base case insulation levels correspond to the medium conservation scenario). The existing stock of houses is assumed to be made up of 99% OBC80 and 1% IS (same as in the base case). The fractional makeup of houses for each energy conservation scenario is shown in This range of insulation levels or the scale of Table 28. conservation has been based on current trends in conservation. The model was run for each of the conservation scenarios with all other data being the same as the base case data. Based on base case incremental construction costs of 5% and 2.5% (\$5250 and \$2625), for the R2000 house and IS house over the OBC80 house, there was a decreasing trend in the objective function as the average level of conservation increased. As this decrease was solery due to changes in the overall level of insulation, the incremental decrease from the lowest insulation level divided by the total number of houses,~ gives the average annual savings in space conditioning (mainly heating, as energy for cooling is a very small fraction of energy for heating) for a house in the corresponding scenario. The average incremental savings (shown in Table 28) over the lowest conservation scenario ranged from approximately \$34 for the medium low to \$202 for the highest conservation scenario. Based on these results one can conclude that conservation is economically cost effective with R2000 houses providing the most savings

Table 28. Description of energy conservation scenarios and corresponding annual savings in space conditioning costs as determined by the model results.

(h					~15
	÷				average ' annual savings
conservation scenario description		on of ho new stoc		objective function value (billion \$)	in space conditioning costs per house) (\$)
low	0	0.80	0.20	33.94672	0
medium low	0.20	0.70	0.10	33.83225	33.53
medium (base)	0.45	0.50-	0.05	33.65974	84.05
medium high	0.70	0.30	0	33.48745	134.52
high	1	0	0	33.25794	201.72

All monetary figures are in 1985\$.


٦ſ

159

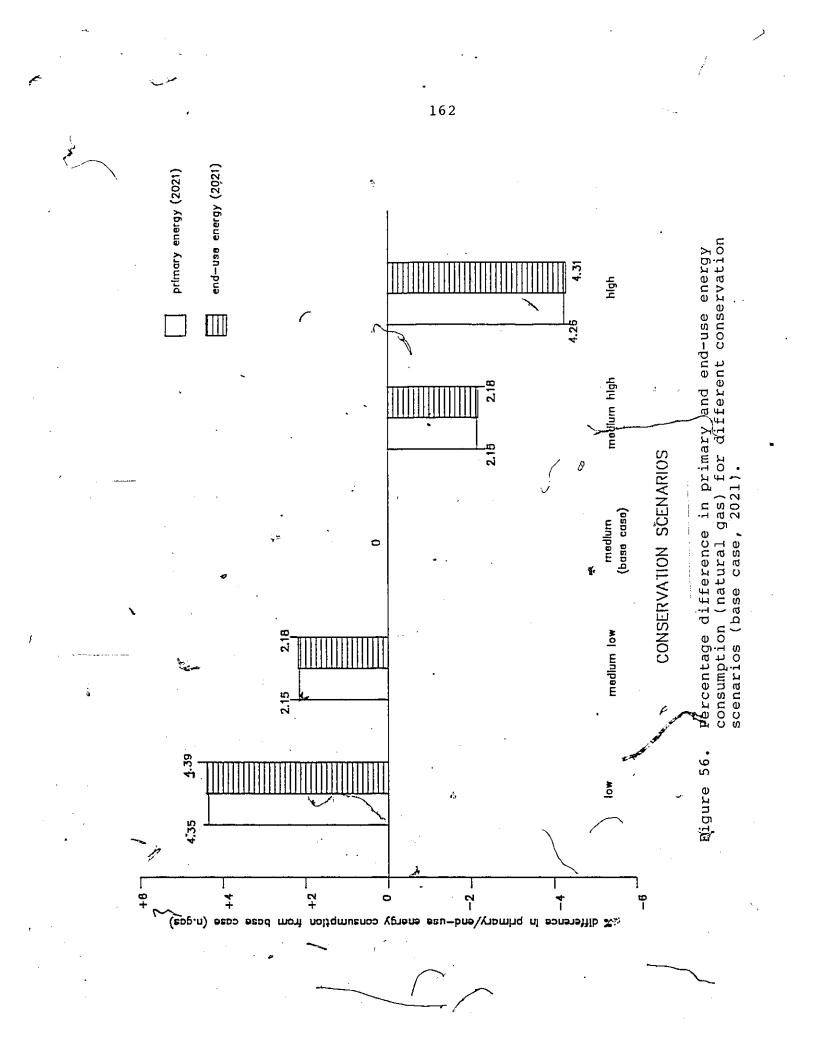

in costs of heating and cooling.

Figure 55 shows the space heating energy consumption for houses for each of the conservation scenarios. For every conservation scenario, the induced gas furnace for the R2000 and IS house was the best technology, while the condensing gas furnace was the optimal technology for the OBC80 house. For the high conservation scenario there is a decrease of approximately 36% in end-use consumption for houses, over the low conservation scenario. The primary energy consumption remains the same for all energy sources as in the base case apart from natural/gas. Figure 56 shows the details. There is a change of approximately + 4.3% in primary consumption of natural gas over the base case (also corresponding to the medium conservation scenario).

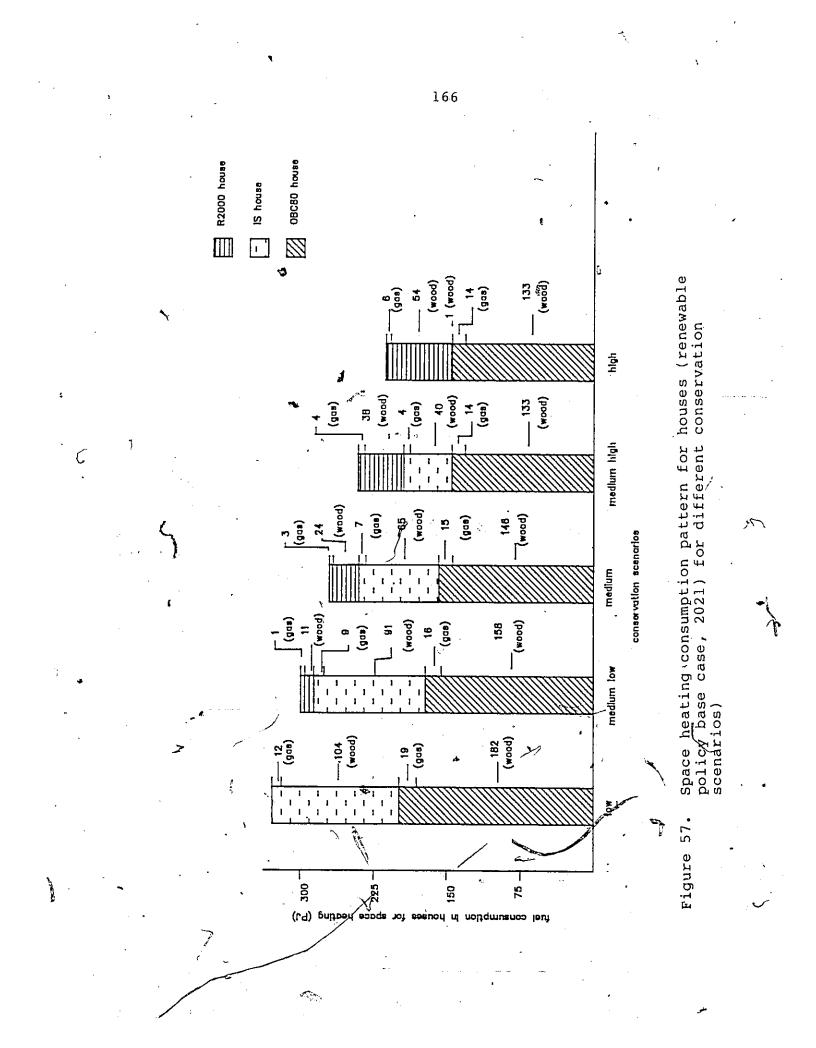
The above study had no restrictions on the supply side. Looking on the supply side, a soft approach for space heating would allow only renewable energy based technologies. The second soft strategy therefore permitted only wood and solar technologies to satisfy the space heating demand. However, both these technologies require backups. For these there were no restrictions, i.e. the backups could be based on any technology. The above policy was implemented by placing input share constraints with a value of 0 at the appropriate space heating node for all technologies that were not permitted. The model was run

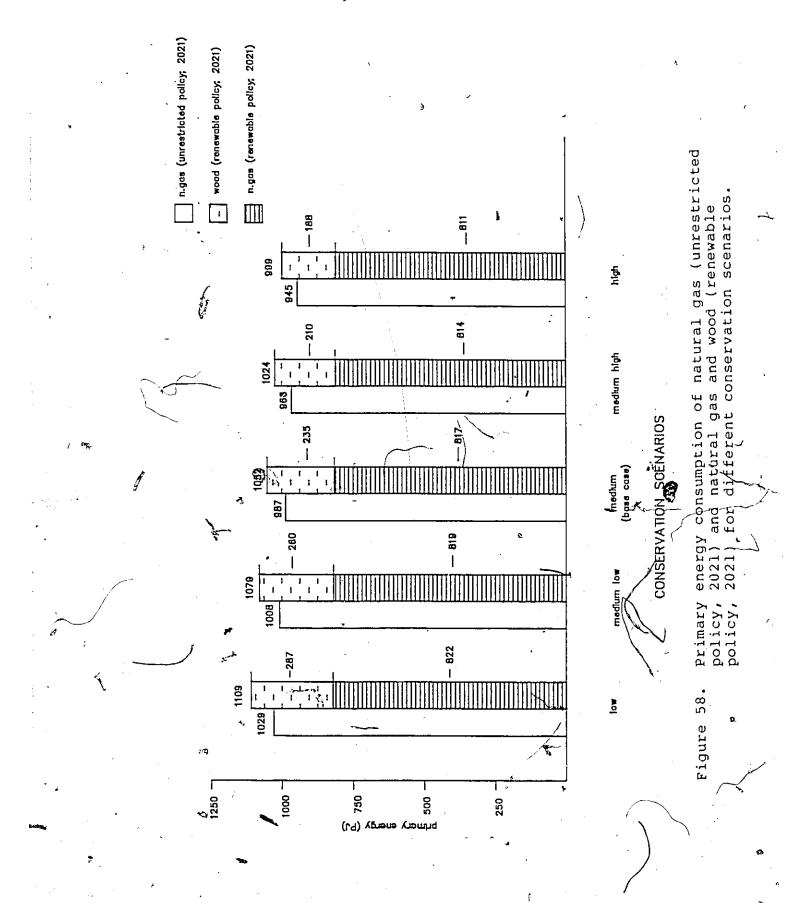
Δ

for the same conditions as for the unrestricted supply case, i.e. for all five energy conservation scenarios.

The results indicated wood combination furnace with gas backup to be the optimal technology for all conservation Table 29 shows the additional cost for space scenarios. heating by wood combination furnace for all energy conservation scenarios over the unrestricted supply case. The costs range from approximately \$105 for the high energy conservation scenario to/\$110 for the low conservation scenario. The slight increase in the additional annual costs can be explained in the following way. The additional annual costs for each conservation scenario is the additional annualised capital cost for wood combination furnace and the additional cost of supply of gas and wood over the unrestricted supply case. In the latter case, as the percentage increase of end-use consumption is dependent only upon the efficiency of the wood combination furnace, this increase is the same for all conservation scenarios. However, there is slight difference in the total annualised capital cost for the wood combination furnace for each scenario due to the difference in requirements for the total number of furnaces required of different capacities. For example, the high conservation scenario, with the largest number of R2000 houses require the largest number of the relatively smaller furnaces, while the low conservation scenario requires the largest number of the ,

ĊS


Table 29. Additional annual costs for space heating in houses using optimal renewable energy based technology (wood combination furnace with gas backup) for energy conservation scenarios, as determined by the model results.


	conservation scenario description	objective sp function us	ditional costs for ace heating per hous ing wood combination rnace with gas backu (\$)
		······	1
	low	34.32195	0
	medium low	34.20022	109.89
,	medium/(base)	34.02330	107.76
· · · /	medium high	33.84662	106.47
(high	33.61562	104.75
'All r	nonetary figures a	are in 1985\$	1
	`	K /	

164 .

<u>(</u>

relatively larger size furnaces. Hence the slightly increasing costs from the highest to the fowest conservation level. A point to note here is that these figures are based on a base case price of wood of \$82 per oven dried tonne, which is a very low price in relation to the enormous amount of wood that would be needed. To get an idea of the magnitude of wood involved, in 1980 approximately 3% of the total residential energy consumption was supplied by wood, in comparison to approximately 40% for the year 2021 (base case), an increase of approximately 13 times over the 1980 level (MEO has a target of 8% of residential energy consumption to be supplied by wood for the year 1995). The relevant results showing residential space heating consumption in houses and the primary consumption of wood and natural gas (all other primary resource consumptions remain the same as in the base case) are shown in Figures 57 and 58 respectively. The above studies demonstrates the use of the model for policy analysis. The model can be used to study a wide range of policy studies.

CHAPTER IX

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

This dissertation describes an energy planning model for the province of Ontario. The model is a single period model with a target year of 2021 and uses linear programming to minimise the total discounted annual costs of meeting a set of exogenous end-use demands subject to techno-economic constraints that describe the energy system of the province of Ontario. The model is detailed. It includes a comprehensive description of fuels and technologies of secondary conversion and end-use. The process approach used to model the energy system extends up to the end-use stage. As space heating and transportation sectors have been the target of policy debates and actions ∻ in Ontario, both these sectors have a high level of detail. Other features include modelling of the petroleum refinery sector and the electric sector. A major practical advantage is the creation of the model using WATEMS, which provides a very simple and user-friendly environment for data entry, changes to the structure and in running different scenarios.

Obviously, this detail in structure is supported by an extensive data base. Irrespective of any modelling technique, an energy model is only as good as the data base it supports. Most of the data for this model can be described as "solid", most of it being obtained from Ontario Hydro and from federal and provincial energy related government departments. Naturally, a major portion of the time has been spent on data collection and structural development. Also, being a large model, a fair amount of time was spent in debugging and checking model responses to a wide range of varying inputs.

Three scenarios, namely, base, low and high energy demand were developed. The results of the three scenarios provide a basis to draw robust conclusions. Also to demonstrate the use of the model in addressing policy issues, the model was used to address four policy questions. These were, no new nuclear power plants, increasing electric exports to the U.S., sensitivity to oil prices, and "soft" strategies for space heating in houses.

Some important conclusions drawn from the results are the following. Energy conservation brought about by better designed houses is definitely cost effective. This holds true for all categories of better designed houses, the better the insulation capability, the more savings in cost that can be realised. Space heating by natural gas is the

169

Le.

most cost effective, with the induced gas furnace for better designed (high insulation) houses and the condensing gas furnace for houses of low insulation capability, such as those with the 1980 building code standards. Worth noting is the fact that electric resistance heating is not cost effective (only cost effective for the low energy demand scenario and that too only for the R2000 house), nor are electric heat pumps, wood furnaces or active solar. Water heating by natural gas is also more cost effective than electricity, despite the fact that the initial cost of an electric water heater is nearly half that of the flueless gas water heater. For apartment and commercial and institutional buildings, natural gas is again the most optimal fuel for space and water heating, out of the options considered. Solar air-conditioners are not cost effective.

There is an increase in coal demand in the industrial sector. This is due to coal being the most cost effective boiler fuel.

For cars and light trucks and vans it is definitely cost effective to reduce the current dominance by gasoline. This reduces the demand for "top of the barrel" oil products, thereby permitting refineries of lower complexity to operate. This reduction is substituted by electric cars and CNG cars. Worth noting is that the initial cost of an electric and a CNG vehicle is approximately \$1700 and \$600 (1985 dollars) respectively more than a gasoline-vehicle.

Also, increasing gasoline production by more complex refineries, any of the MOBIL processes, the Zinc Chloride process or the SASOL process, is not cost effective. Alcohol-run vehicles are not cost effective. Cars run on propane are only cost effective when the propane is a by-product of refineries. / Propane imported from other regions (natural gas liquids) is not cost effective. Cars run on liquid hydrogen are definitely not cost effective. All other forms of transportation remain the same. Worth pointing out is the fact that heavy trucks run on alcohols or any other alternative fuels are not cost effective. For electrical production, nuclear power is the optimal technology for base load. The cyclic load is met by coal and hydro. So is the daily peak load. Seasonal peak is met by natural gas and hydro. In the absence of new nuclear plants, coal appears to be the next optimal technology.

It is virtually impossible to exactly compare the model response with existing models, since no model exists with this type of detail and for the year 2021. However, certain comparisons can be made with existing trends and with certain studies that have been conducted in Ontario, not for the year 2021, but for the nearer future. For example, the current drive for better built buildings is in accordance with the model results. In the transportation sector, current incentives exist to reduce gasoline

consumption for cars. Both propane and CNG are actively being promoted. As mentioned above, nearly the same trend is observed from the model results. The increase in the share of nuclear power plants is again in accordance with Ontario Hydro, as is the increase in coal use [recent discussions with Ontario Hydro and MEO personnel (Duda et al., 1987)]. Also, results from the sensitivity to oil price study shows that the modelling of the refinery seems to be responding well, i.e., with lower oil prices, there is a mix of lower and higher complexity refineries supplying the entire auto demand. As oil prices increase, the higher complexity refinery is no more cost effective, its share being replaced with alternative fuels. Overall, the model appears to be performing well.

Future research can be in several directions. The modelling of the industrial sector was limited because of the data base available. Ideally, the industrial sector should be described by major industries, such as iron and steel, pulp and paper, cement, aluminum, etc., each industry being represented in detail with alternative technologies for processes that are under consideration. Although, this would be a task that would involve a large amount of resources, this is essential since the industrial sector has the largest share of energy consumption. Work has started on one industry. Currently, Ontario Hydro is involved in the development of a process model for the pulp

and paper sindustry.

The model can be extended to a multiperiod dynamic model that would encompass a time horizon of about 40 years in the future in steps of five years or so. This would permit the study of the evolution of the energy system for the above mentioned time span.

The model can also be extended to include the accounting of total environmental emissions associated with the energy system. This would be useful as an accounting tool as well as a measure in comparing alternative production as well as end-use technologies. This would also add to the capability of the model to include certain environmental aspects in addressing energy issues.

A major area of future work could involve the linking of this model with MEO's energy demand models and a model of Ontario's economy. This would provide a comprehensive framework for energy planning for Ontario.

Another very major area could involve the development of a multiregional model for Canada. This model, together with the model developed for Quebec, provide a major step in this direction. Not only would the multiregional model vbe useful from a national point of view, but would also be an excellent tool for regional energy planning, since it would represent inter-regional energy flows endogenously.

APPENDIX A

DATA ENTRY INTO SPREADSHEETS

Data entry for the model is in two spreadsheets, namely, the main spreadsheet, that contains the major data description of the model, and the scenario spreadsheet that contains information related with the creation of scenarios. The descriptions and the spreadsheets follow below.

A.l Main spreadsheet

The description here is in two segments. The first section describes data entry into that portion of the spreadsheet that is read by the WATEMS processor along with a few other details such as variable names etc. The second segment describes data entry in the "unused" portion of the spreadsheet. This data is not directly reads by the WATEMS processor, but is used for determining values that are entered in the first segment.

A.1.1 First Segment

This segment consists of three sections, namely, general information of the model, node information and variable information. In general, WATEMS, has an area of the spreadsheet allocated for this information. The major portion of this area which has numerical information is

uploaded to the main frame. In this area all cells must contain numerical information. The technique in WATEMS is to insert zeros in all unused cells. As mentioned in Chapter 3, certain features of WATEMS have not been used, or were not applicable in the context of the model developed here. In some cases, the WATEMS processor has been modified thereby eliminating the need of inserting zeros in their respective cells. However, in other cases zeros have to be inserted.

The first four rows contain no data. In row 5, columns A and B refer to the number of nodes and variables respectively. Columns C and D give the number of time periods and the period length. Columns E and F refer to the annual discount rate and the year zero, both of which are not applicable here.

Node information is described from rows 6 to 159. Column A gives the names of the nodes. Column B is a switch, that is either 0 or 1; 0 means $\beta_{mt} = 0$, and 1 means it is a constant given in column C. Columns D,E,F contain zeros. Columns G and H refer to the description of units. For the model here nodal information (marginal costs) are in basic energy units, i.e. β/PJ , the conversion factor, described in column G is therefore 1.

Variable information is decribed in rows 160 to 578. The bulk of the information is entered here.

Column A contains the names of the variables.

Columns B and C describe model structure. For each variable, the source node and the destination node are entered in columns B and C.* The number 0 describes primary sources (e.g. crude oil), that do not come from any node. The number 1000-is used for variables that have no destination node (e.g. demand variables). The numbering of the nodes are in the same order as they are listed.

Columns D to G describe share limit constraints. Column D contains an integer. If it is O it means there is no share constraint associated with the variable. If the share constraint exists, column D is described by a four digit integer, KLMN, where Kis either I of 2, L is 1, M is 1,2 or 3, and N is 1. If K is 1 then the share constraint is on the incoming supply at the node; and if K is 2, then the share constraint is on the outgoing supply from the node. If M is 1, there are upper share limits; if M is 2 there are lower share limits; and if M is 3, there are equality shares. The share itself is specified in column E. Columns F and G are exactly similar so one can describe another set of share constraints on the same variable.

Columns H to K describe bounds on the variable. In a similar manner as above, if a bound exists, column H is described by an integer L,M and N. The description is identical to the shares except here they are bounds.

Columns L and M describe per unit costs (natural units). If a cost exists column L is 1; or else if no costs

exist it is 0. The cost is entered in column M (or the formula for calculating the cost, based on data given in the same row in the "unused" portion of the spreadsheet, which then gives the cost).

Columns N,O and P are zeros. Columns Q and R describe conversion efficiency. Column Q is a switch; if it is 0 the conversion efficiency is 1; if it is 1, the conversion efficiency is a constant and is specified in column R. Columns S,T and U are zeros.

Column W describes a conversion factor that gives the number of Basic units per natural unit of energy for the ariable. Column V gives the natural unit used to describe the variable.

A.1.2 Second segment

This segment contains data that calculates costs or share parameters, etc., described in the previous section. This data is linked with formulae that calculate the above mentioned parameters.

Starting with row 5, columns X to AA contain various consumer price indices. These are used for cost calculations. Columns AD to AG describe fractional time of the year for each electrical supply mode of the load duration curve.

In column X, row 10 to 21, consists of supply cost data that is mapped on from the scenario spreadsheet. Rows 26 to 52 contain end-use demands that are again mapped on from the scenario spreadsheet. So is the information described in rows 60 to 73. These cells describe parameters that were used to generate the end-use demands. Rows 78 to 93 again provide costs of export and import of various fuels. These also are mapped from the scenario spreadsheet. These figures are mapped to the appropriate cells described in the first segment.

Rows 206 to 208, and 247 to 266, starting with column X to column AN, contain costing data for the processes. These are, in sequential order, starting with column X, capital cost, operating cost, operating credits, pilot plant size, equal capacity plant size, equal capacity factor, uncertainty factor, lead time during construction, fraction of lead time when half expenditures are made, interest rate during construction, modified capital cost (formulae based on above data), modified operating cost (formulae based on above data), consumer price indices associated with the processes (two columns) interest rate, project lifetime and service factor.

Rows 283 to 310, starting with column X to AF contain costing data for fossil and nuclear generation plants. Starting with column X, these are, capital cost per kW, operating cost per kW, fraction of lead time when half expenditures occur, interest rate during construction, modified capital cost (formulae), modified operating cost (formulae), plant lifetime, sevice factor and discount

rate.

2

Rows 316 to 321, 331 to 334 and 349 to 354 has the same description for hydro options.

179

In rows 395 to 511, wherever applicable, contain costing data for end-use device options, starting with column X to AB. These are capital costs, operating costs, lifetime, capacity and discount rate.

In rows 512 to 514, starting with column X, are capital costs, operating costs, lifetime and discount rates for industrial boilers.

From rows 529 to 578, wherever applicable, contain costing data for transportation sector. Starting with column X, these are capital cost, lifetime, discount rate and consumer price index.

The following pages show the actual spreadsheet.

2 :: r---== :: H :: Ð :: **L** == w :: Q :: o == 8 ==

1 \$/PJ 1 \$/PJ 1 \$/PJ

1985 ŧ

Pd/\$

[d/\$

rd/\$

Į

£4/\$ ۲P.J [d/\$ ľď/\$ ſď/\$

1/61

3

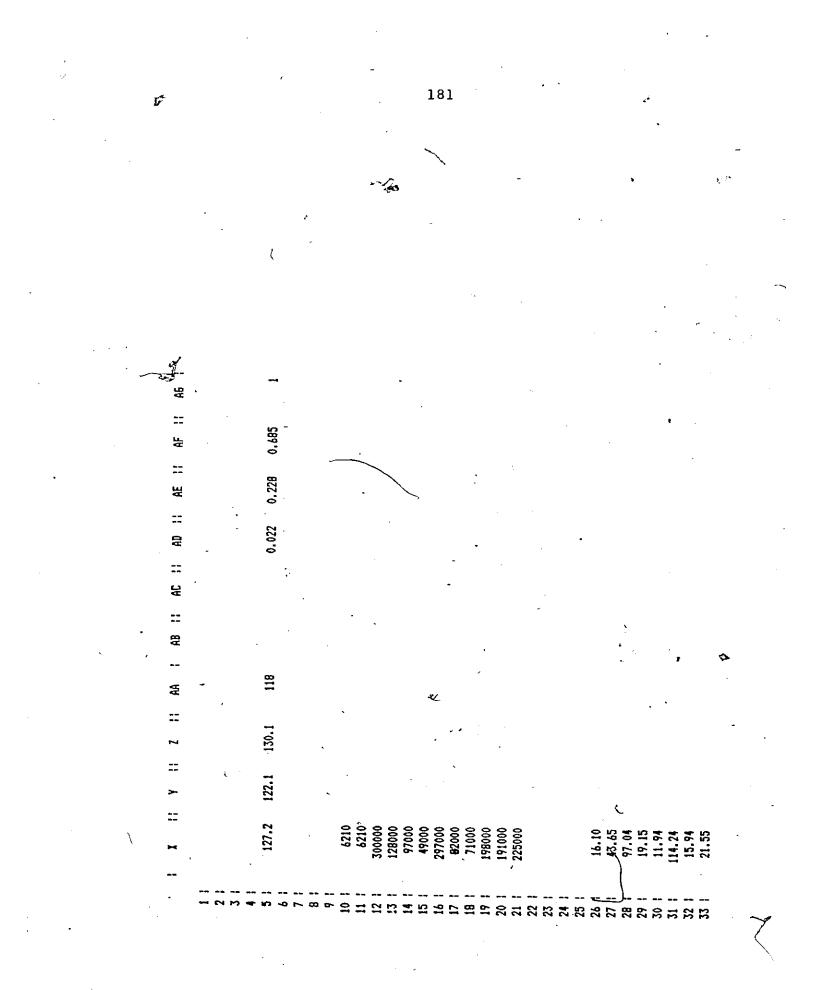
7

Ş

æ

≥ }

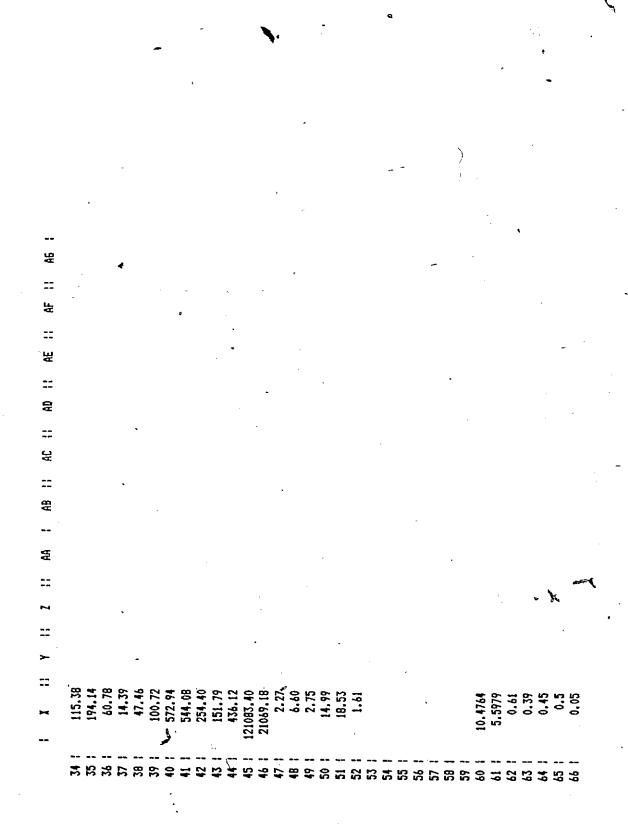
Ontario Energy Optimisation Model	1 1 0.1	0 0	0 0	0 0 0	0.00	0 0 0	0 0 0	0 0 0	0 0	0000	0 0 0	0 0	0 0, 0	0 0 0	0 0 0	0 0	0 0	000	0 0 0	0 0	0 0	0 0 0	0 0	0 0	0 0	ð 0 0	0	0 0	0 0
Untario Energy	419 0	0	0	0	0 . 0	0 0	0	0	1 0.0132	1 0.0097	1' 0.0467	1 0.23	0	1 0.0484	1 0.0011	0	1 0.1842	1 0.223	0	1 0.1583	1 0.3586	1 0.386	1 0.3774	•	•	·1 0.026	1 0.0571	0	0 0
	154			,	an An	T											¢	•										-	
Ш													_									,							
MODEL NAME: Do Not Delete		6as Supply	Propane Supply	Coal Supply	Uranium Supply	Wood Supply	Syncrude	Refineries Dist.	Gas-Gasoline, (Mobil)	Gas-Methanol	6as-ethanol	<u> </u>	~	Coal-Easoline (InCl2)	Coal-Gasoline (Mobil)	Coal-Methanol	Coal-Ethanol	Coal-Liquid Hydrogen	Wood-Nethanol	Wood-Ethanol)	Corn-Ethanol ³²	Barley-Ethanol	Wheat-Ethanol ·	Nethanol	Ethanol	CN6		Sasoline 🔶	Diesel


ł

fd/**s** fd/**s**

Cq/s Cq/s Cq/s

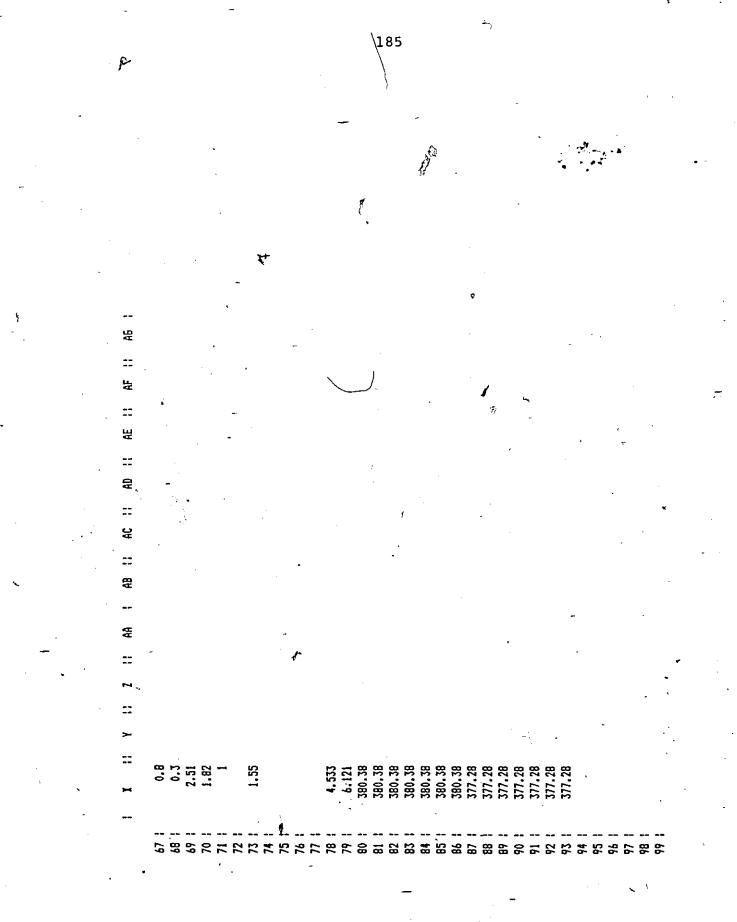
₽**//\$** fd/\$ £4/\$


\$/PJ

ı	,							•	•		`				1	82	•										a	,		•		L	7
•	•							-	-								ł		-														
																					*				2								
Ŧ				1																	•												
							ł																					١	١				-
Ж																													1	-			
· ==					•											-																	
*>			-										-																				
. ==	e.																	:															
-					•		•									•	-																
==	51	51	2	2	2	2	2	2	/P.3	2	2	2	2	2	2	2	2	è	r.	2	2	5	2	-	5	-	5:	2	2	~	2		₽d/
= `	1 \$/PJ	1 \$/P	1 \$/	1 \$/	1, \$ /P	1 \$/P	1 \$/P.	1 \$/P.	1.1	1 \$/b	1.5/	1 \$	1 \$1	1.8/1	1.81	1 \$	1 \$/	1 \$/	1 1/1	1 \$1	1 \$/	[1 /5]	2		2	*	3	1.5	1 \$/	1.5	1 1	I 1/P	\$ 1
, в		<u> </u>																															
==	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	¢	0	•	0	0	0	0	0	0	0	0	0	ó	¢	0	0	0	ο,
LL.																									6	*							
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	۲ 0	0	0	0	ő	•	•	5	2
ш																																	
· ==	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	~ o	0	¢	0	•	0
а 													•	r-																			
 ن	0	0	0	0	0	0.0011	•	, ,	0	0	0	•	•	•	0	0	0	•	Ō	0	0	0	•	•	•	0	° .	0	0	o	•	0.0909	0
:: 8	0	0	o	0	o	-	0	•	0	0	•	0	0	0	0	o	0	¢	0	0	0	0	0	0	•	0	•	¢	0	•	0	•1	•
Ξ																															盂		
•	l Aviation Gasoline	: Turbo Jet Fuèl	l Light Fuel Oil	l Heavy Fuel Dil	! PCF+Petroleum Products	l Methanol-5gsoline (MCBIL)	<pre>/ Methanol Gasoline</pre>	l Ethanol Gasoline	I Elec / Gas-SBC)	-	~	: Elec / HF Oil-SBC	<pre>: Elec / Coal-PFC1</pre>	1 Elec / Coal-PFC2	<pre>l Elec / Coal-AFBC</pre>	¦ Elec / Lignite-	: Elec / Uran-New Darl	l Eleć / Uran-Existing Darl	l Elec / New Hydro (Large)	1 Elec / Existing Hydro	l Elec / Hun. Refuse	: Seasonal Peak	: Daily Peak	¦ Cycling	f Base	: Electricity	: Electricity-Liquid Hydrogen	l /Liquid Hydrogen	(Heat-Puep / R2000 SH	1 Heat Pump + Backups / R2000 SH	1 Nood Furnace + Backups / R2000 5H	1 Active Solar / R2000 SH	: Heating Devices / R2000 SH
	ħ	35	ጽ	37	38	39	Ŷ	14	24	2	\$	¥	46	47	₽ ∕		20	55	22	23	₹2	55	52	57	83	59	60	61	62	3	5	3	6 6

.

.



ير.

	r																										•								•		
	111								-							0																					
	¥	Гţ														•		• .	Ð											•							
	==																																				
	5									•					`																						
	==		•		·												٠														Ę		15		_		
														•	,																Ϋ́	, N					
	21 H 11 9	1 \$/PJ	14/\$ I -	1 \$/PJ	1 \$/PJ	[d/\$]	1 \$/PJ	[d/\$]	1 \$/PJ	1 \$/PJ	1 \$/PJ	1 \$/PJ	1 \$/PJ	1 \$/PJ	[d/\$]	1 \$/PJ	, 1 \$/PJ	1 \$/PJ	1 \$/PJ	1 \$/PJ	1 \$/PJ	1 \$/PJ	1 \$/PJ	1 \$/PJ	1 1 1 1	rd/sa i	[d/\$]	1 \$/PJ	14/\$ 1	1 \$/PJ	1 \$/PJ .	1 \$/PJ	1 \$/P]	[\$/PJ			
	== L	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	o	•	0	0	0	•	¢	•	0	•		
	 ,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	o	0	•	0	0	0	0	0	0	0	•	•	•	0	o	0	0	-		
	ш								,																•		÷									•	
	:: 0	0	0	6	0	0	0	0	¢	0	0	0	0	0	¢	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	۰_	0	ç	-		
	==	0	0	0	5	\$	0	0	0	⁄ 0	\$	0	0	•	0	0	0	0	0	0	0	0	0	r	0	0	0	0	0	0	0	0	0	0			
	မ				0.0909		5				0.0909						,																				
		0	0	0		0	0	0	0	0	1	0	0	o	•	٠	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
-	-	67 Heat-Pump / ISH	68 ¦ Heat Pump +∞Backups / ISH		1 Active Solar	71 Active Solar + Backups / ISH	Heating Davic			t Wood Furnace + Ba	l Active Solar / OBC80H	77 : Active Solar + Backups / OBCBOH		79': Heating Devices / Apts		81 : Apartment / Types	82 Residential Space Heating	83 ¦ Active Solar - WH / Houses	84 † Active Solar + WH Backups / House	85 ¦ Mater Heating Devices / Houses			88 % Heat Pump - Çóoling / Houses	89 : Active Solar - Cooling / Houses	90 : Centrat Air-Conditioning	91 : Residential Air-Conditioning	<pre>! Heating Devices / C&I</pre>		94 ; C&I Water Heating	95 : C&I Air-Condioning	96 i Ind. Indirect Heat	97 : Ind. Direct Heat	98 Ind. Utilities		~	J	
																																					•

C

S 184

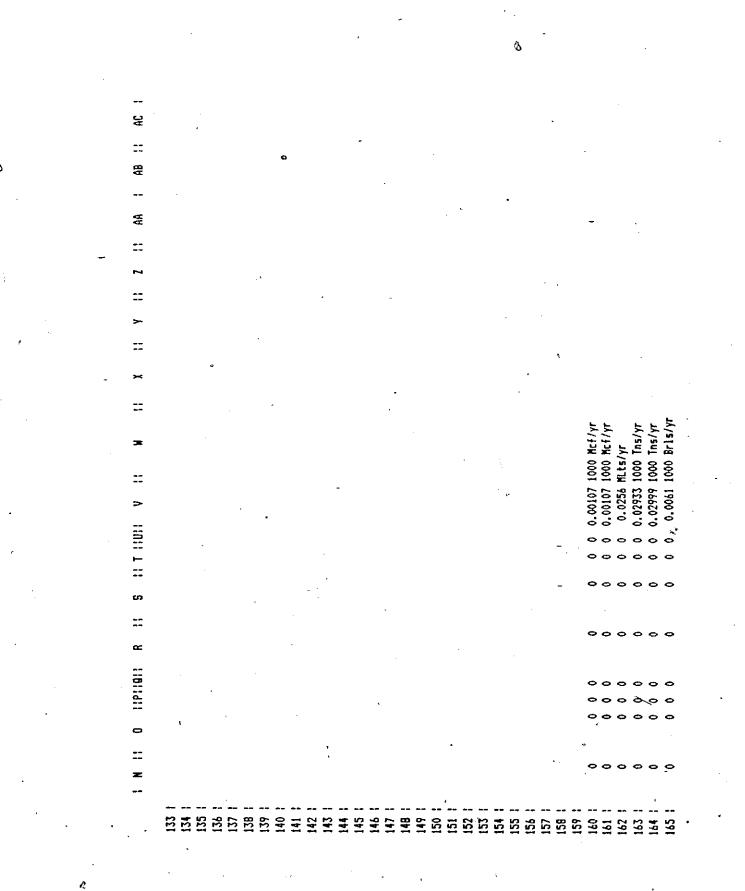
÷

• 1	1	~	• . •
	- 186		
•	·	-	
	· ,	-	~
			1 a.
· _	· _ ,	\$≹77 	
			-
· · · ·			•
	₩ ¹		
	·••	2	
-	۰ ۲۰۰۰ ۲۰۰۰		
4 3)		ſ	, r <i>r</i>
	H :: H :	۲۵/۵ ۲۵/۵ ۲۵/۵ ۲۵/۵ ۲۵/۵ ۲۵/۵ ۲۵/۵ ۲۵/۵	[d/\$ [d/\$
		• • • • • • • • • • • • • • • • • • •	000
、		9°.	
<u> </u>	00000000000000000000000000000000000	> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	000
	=		•
	-	> • • • • • • • • • • • • • • • • • • •	° ° °
		0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.045 0.003 0.045	0 0 946
	=		0 0.096
	m 000000000000000000000000000000000000		00-
) -	· · ·		55100
		Dist t antDis antDis exity	- Transaission
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Trank t ankDis ankDis ankDist st st st st f coeple t	
	Á Ref 2 Ref 2 Ref vans vans ti tůDist nict nict	ditue ditue di Tra featra trankbir trankbir (High (High Ref (Com	Ref 1 mp/Ex xport
A	Htt Htt Htt Htt Htt Htt Htt Htt Htt Htt	in 6as in 6as urel 0 urel 0 cuel 0 cuel 0 cuel 0 cuel 0 cuel 0 r = 1 r cul 1 r cuel 0 r = 1 r cuel 1 r cuel 1 r = 1 r	ils - city i city f
•	<pre>4 Automobiles Automobiles Aircraft Buses Marine Marine Marine Rail Trucks H.Oil&PCF&PP - Ref 2 H.Oil&PCF&PP - Ref 2 Distillates - Ref 2 H.Oil&PCF&PP - Ref 2 Lt.Trucks & Vans Seall Hydro Gas Tran&Dist Propane Tran&Dist Methanol Tran&Dist Ethanol Tran&Dist Diseel Tran&Dist Diseel Tran&Dist Diseel Tran&Dist</pre>	Aviation Gasofithe TrankDist Jet fuel TrankDist Light Fuel Dil TrankDist Heavy Fuel Dil TrankDist PCF & Petrochemicals TrankDist Electrical TrankDist Wood TrankDist Wood TrankDist Lig. Hydrogen TrankDist Lig. Hydrogen TrankDist LNG TrankDist Nefinery - 1 (Low Complexity) Refinery - 1 (Low Complexity) Bistillates - Ref 1	Weavy Oils - Ref 1 Electricity læj/Exp Electricity Exports
•			
·0·	100 100 100 100 100 100 100 100 100 100		121
	·	к	
-	· · ·		
		₩	

															•																		
, 																												91	510	00	80	80	8
T.																												-2	3	300	128(97000	49(
۰																														_	_	-	~
=										i F																		0	0	0	o	0	0
¥										م	\sim																						
==									•													-						ර්	0	•	<u>°</u>	0	•
-											,																						
12												•					2											5514	0	0	0	0	0
-																				•								ы.					
:: *	6/PJ	6/PJ	876N	۲d/	\$/PJ	[b]	۲P.J	\$/6N	/P.3	۲D)	/P.]	ľ	/EN	5	۲P،	ľď/	/P.]	/GN	۲P،	'n	/PJ	\$/6H	/P.J	Pd/	Ŀ4/	/6H	PJ	111	0	0	0	0	•
#~ ***	1	\$	\$ 1	1	\$ 1	1 \$	1 \$	1	1 \$	1.5	-	-	1 \$	1 \$	1	1 \$	1 \$	1	1	1 \$	1 \$	1	1	1	1 \$	1	1	0	0	0	0	0	•
ø																																	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o	ó	0	0	0	0	0	0	0	0
1 4.											•																						
<u> </u>	o	•	0	0	•	0	0	0	0	0	0	o	0	%	0	0	0	0	0	0	0	0	¢	0	0	0	0	0	0	o	0.3	ø	•
ш										;			a an	ð																	0		
=	0	P	0	0	•	0	0	0	0	6	0	÷	0	0	0	0	0	0	0	0	0	0	ò	0	0	•	¢	0	0	0	131	0	¢
==																														`	=		
പ	7	7	0	7	٦	ī	7	0	7	7	7	7	0	ī	7	۲	1	0	Ċ	ī	7	0	0	7	1	0	0	-	-	2	ю	р	-
· ==	١																									_		_	_		_	_	
æ	-	-	0	-	-		-	0	-		-	-	0	-	-	-	-	0	0	-	-	°	0	-	-	°	Ŷ	0	0	Ŷ	0	0	0
					•															SР	占	Power		Sp	PP	Рожег			Ľ				
	•							e. Ei					lER.					ŝ	붋	at -	اللہ اللہ	1	ak	at -	اللہ اللہ	ارد الح			IC ISI				HI -
				ς,	-0-	ζ	-85	SIO NN -PONE	-55	dq-	<u>ک</u>	5 <u>8</u> -	2-10 NN -POW	ទុ	6-	۰C	-BS	-PONER	- Peak	- Peal	- Peal	- Peal	- Peal	- Peal	- Peal	- Peal	(ARCTI				IONAL
Æ	5	ss	- Ромег	>10 HN	>10 NN	>10 MM -CY	NN 01 <	R O	2-10 NH -5P	2-10 KH -DP	2-10 NN -CY	2-10 NN -BS	IN OI	EXIST.	EXIST.	EXIST.	EXIST.	EXIST.	>10 HK	>10 NM	>10 MM	E	EXIST.	EXIST.	EXIST.	EXIST.	orts		OPF/				4/REG
_	ζ. - γ					₹ -	Ξ	Ξ			1	2	4	- 12	- 52	13 -	- 5	EX.	1	Ξ-	1	- >10	Ц Ц	- 52	- EX	Ш	Imp	•	/EAS	F			REIG
	f Elec	f Ele	f Ele	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec			icity				<u>51</u>	60	613
	Mun.Ref	Mun.Ref Elec	Mun.Ref Elec	Hydro Elec -	Hydro Elec	Hydro I	Hydro (Hydra 6	Hydro 1	Hydro I	Hydro 1	Hydro 8	Hydro E	Hydro E	Hydro E	Hydro B	Hydro Elec	Hydro 8	Hydro E	Hydra 8	Hydro 8	Hydra 8	Hydro E	Hydro E	Hydro Elec	Hydro Elec	Electricity Imports	GAS ONT	6AS-MAC-BFT/EAS.OPF/ARCTI	PROPANE-NEST	COAL-NEST	COAL-US	CRUDEOIL-FOREIGN/REGIONAL
**	n M	Z	昱	H H	`₹ 	÷ È	`≩` 	`£` 	` ₹ 	`£` 	Ĥ.	₩ -	`₹ 	H H	÷ Ĥ	. H	` <u>₹</u> `	. H	· · · ·	Ē.	÷ ÷	÷ ÷	۲. H	H,	÷.	÷ Ĥ	ם [.]	1 .6A	: 6A	- BR	8	8	წ
	13	134	135	136	131	138	139	9	141	142		144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165
																_																	٠

.

/


187

Ϊ

di.

ł

J

		_	_		~	_	_	_							_				•															
	Ľ	7000	82000	.515		0	0	0	0	154	908	.356	0	o	Ô	0	0	0	0	0	0	0	0	¢	0	0	Ô	0	0	0	0	0	0	0
	F .	29	60	្ល						309859.15	350265.908	389273.																						
		-		1 21	0	¢	0	0	0	2	- m 	2	0	0	0	0	0	0	ó	0	0	•	0	0	0	0	0	0	ò	0	0	0	0	0
-	<u> </u>	-0	0	0	o	0	•	ŏ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	ē	-
	¥														'																			
			4	Ð																		•												
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	-								۰,															,										
																															٠			
		0	1000	0	5.3	2.2	5.1	4	372	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	-		-	•	1516.3	1962.2	31605.1	4073.44	628.07															٦										
	1 7 ·	_		_				-	-0	_	_		_	_			_	_	_															
	×	Ô	Ξ	Ŭ	Ξ	111	111	Ξ	11	0	0	0	0	0	0	0	0	0	0	¢	0	0	0	0	0	0	0	0	0	0	0	¢	0	0
		0	o	0	0	0	o	0	0	0	0	0	0	0	o	0	0	0		0	0	0	¢	0	0	0	0	0	0	0	0	°.	0	0
	u .	•	-																											•				
								٠																				١						
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ò	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	L																														•			
																																	·	•
		è	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	33	11	0	0	0	19	0	Ξ	0	0	0	36	8	4	5	29
	цці ,																		0.0132	0.0011				0.0097		0.0011				0.3586	0.386	0.3774	0.0467	0.1526
								•											0	0				0		0				0	_	0	0	0
	 0	0	0	¢	0	0	0	0	0	0	•	0	õ	0	0	0	0	0	1131	1131	¢	0	0	1131	0	E	0	0	0	1131	1131	Ē	12	吕
																			1	Ξ	۲			11		1131				Π	Ξ	1131	1131	1131
5		-	ŝ	\$	150	146	8	5	05	20	=	2	0	9	œ	n	-	2	œ		•	S	œ	5	ŧ	ħ	2	16	19	ន		22	10	16
1	പ				=	-		-	2	1.4		14	-			-	-	-		-	큰.	-	-		М	ы	-	-	-	C.	21	2		
																							•											
	 @	0	0	¢	0	0	0	0	0	0	0	0	o	m		r	m	р	~	-	-	n	n	~	23	~	-	р	ŝ	3	ы	р	~	
	==					_													Ξ	117		;.		117	2	117							Ξ	
						INA		.5	CATE6.														,											
					115	PEAKING		. CATEG.	CAI																									
					ING UNITS	¥.	÷	3	ALL																									
					ING	<u>ح</u>	CATE6.	ÅĽĽ	ī																							1		
					EAK	~	Ξ.	ا منہ	ŝ											<u>.</u>						~				_	J			
	4				1	Ē	4	3	10			-						£	Ĩ	IE										•				
		A1		AT.	8	5	2	210	5	. 1	봂	Ļ	ខ្ល		2	ត	3	SAS(Ë.					G	8					E	Ħ		_
		ASK		Š	HYD	-	DXH	-	2	E	Ě	Ē	ਛੋ	ŝ	I	BS	108	57	ដ្ឋ	ទេ				Ē	80	ទីទ				Ē	ž	ų.	Z	E
		5-5	H	5	19	DRO	별	28	IdAH	Ę	ā	Ż	ŝ	E.	Ē.	2	20	č	15	Ē	긑	Ħ	₹		5	÷	<u>_</u>	긢	H		2	EAT	μ Π	监
		URANIUM-SASKAT	LNO-QDOM	LIGNITE-SASKAT.	EXISTING HYDRO - PEAK	NEW HYDRO ()10 MW)	11S	ΗY	-	<u>9</u>	BARLEY-ONT-ETH	HHE&T-ONT-ETHI		ហ៊ុ	53	Ψ	Ψ,	Ψ̈́	<u>نة</u>	Ц Ц	Ę	Ŧ	F	ц,	ĕ	F	Ē	Ψ	μ	ដុ	H	Ŧ	ų.	S
		URA	뎛	LI6	EII	Ē	EXISTING HYDRO - ALL	NEW HYDRO () LONN).	SHALL HYDRO (2-10 MM)	CORN-ONT-ETHL	BAR	Ĩ	MUNREFUSE-ELEC	COAL -SYNCRUDE	6AS-6SL (MOBIL)	COAL-6SL (ZNCL2	COAL-6SL (NOBIL)	COAL-65LDSL (SASOL	ELEC-6AS-6SL (MOBIL)	ELEC-COAL-6SL (MOBIL)	GAS-NTHL	COAL-NTHL	NODD-NTHL	ELEC-6AS-MTHL	NTHL-6SL (NOB1L)	ELEC-NTHL-6SL (MOBIL)	GAS-ETHL	COAL-ETHL	N00D-ETH	COAL-CORN-ETHL	COAL-BARLEY-ETH	COAL-WHEAT-ETHL	ELEC-6AS-ETHL	6AS-COAL-ETHI
																									<u> </u>			ت 		ت 	<u>د</u>			ت
		166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	82	183	18	82	186	[87	88	189	8	161	192	5	194	195	196	197	198
			₹.	<u></u>			-			-	-		-	-		-		-	-	-	-	=	=	=	ī	1	-	=	-	-	-	-	-	ž

λ.

189

Ģ

Λ

100

5

						-		,					•																		
										~																					
																_	-								•						
						-																									
																					•			-			•		-	_/	n
			•																												
																		١													
					,																										
											3			-							3	•									
								•				-	-																		
			L						1																						
,	-	TNS	1000 Tns/yr	н	L	Ľ	L	L	TNS	THS	TNS	ŗ																			
	JY 201 PCUBL O	0.02 1000 TNS	000	6Mh/yr	6Wh/yr	6Wh/yr	6Wh/yr	6Wh/yr	1000 TNS	1000 THS	1000 THS	6Nh/yr	PJ/yr	PJ/yr	PJ/yr	PJ/yr	PJ/yr	PJ/yr	PJ/yr	PJ/yr	PJ/yr	PJ/yr	PJ/yr	PJ/yr	PJ/yr	PJ/yr	PJ/yr	PJ/yr	PJ/Yr	PJ/yr	P.1/ur
ļ	ň	8	12	36	36	336 (0.0036 1				0.0142	36	-	-		-	-	_	-	_	-	_	-	-	-	-	-		-	_	-
). IB(Ö	0.01534	0.0036	0.0036	0.0036	0.0	0.0036	0.0142	0.0142	0.0	0.0036																			
	5	0	0	ø	0	0	¢	¢	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	¢	0	0	0	0	0	•
•	S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	୍	0	¢	0	0	ò	0	0	¢	0	0	0	0	0	0	¢
•	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	o	0	0	0	0	0	<
		3																													
	-	0	2	0	0	0	0	0	c -	M	8	0	œ	-	•	c -	ы	0	0	2	ŝ	~	0	-	0		2	-	0	0	•
	_	_	0.33	_	_	_	_	_	0.639	0.5453	0.578	-	0.5488	0.4994	0.5659	0.3079	0.2593			0.6222	0.3835	0.4189	* -	0.8027	-	0.4171	0.3352	0.3351			
	-	_		_	_	0	-	_	•	0		-	Ô	0	٩	0	<u> </u>	_	_	0	Ô	Ĉ	_	0	_	Õ	0	0	_	_	~
	0 0			0		_	_		0	0	-	0	0	0	0	-	-	0	0	-	-	5	0	2	0 0	-	0	5	0	0	0
								-	0			-																	ø	0	<
			-									-									•				9						
													•					,													
•	¢	0	0	0	0	0	0	.°	0	0	0		0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	<
																							٠								
. •									174		 -0			 o-			2			 101			 000	 0~			 2	 177		 57	-
					_					_	_	- in (\sim	m	- m	m.	õõ	œ	iΩΩ.	άō.	ā	Ű.	5	0	0-	o-	0	•

÷

3212 89939 393.809067 689.110509 10064408.7 ::.... == -22 0.01 Ξ 0.373 0.1347 0.2654 0.0207 0.5269 * 0.1313 0.2071 0.0064 ഫ == 00 2121 2121 2121 2121 2121 2121 2121 2121 -:: 0.0316 0.1583 0.223 0.23 0.4267 0.1374 0.2931 0.5318 0.0065 0.5232 0.212 0.0281 ш --1131 1131 2111 2111 2111 2111 2111 2111 2111 2111 弪 E 6 22 16 5 នេ 2 5 ے 117 117 117 117 CRUDE-REF 2 (HIGH COMPLEX.) CRUDE-REF I (LON COMPLEX.) PCFEPP L-H-AILEPCFEPP PCF&PP 2-H. OIL&PCF&PP HFO 2-H. OIL&PCF&PP 2-H. OIL &PCF&PP 2-DISTILLATES 2-DISTILLATES REF 1-H.OIL&PCF&PP FO 1-H.OIL&PCF&PP **IJF 2-DISTILLATES** LFO 2-DISTILLATES 1-DISTILLATES **ISL 1-DISTILLATES UF 1-DISTILLATES** IGSL 2-GASOLINES LFO 1-DISTILLATES REF 2-GASDLINES A6SL 1-6ASOLINES ELEC-COAL-LHY6N 2-6ASOLINES REF 1-GASOLINES **6SL 1-6ASOLINES** ELEC-COAL-ETHL ELEC-WOOD-ETHL ELEC-6AS-LHY6N **2-PROPAKE** REF 1-PROPANE SYNCRUDE-REF COAL-LHY6N ELEC-LHYGN **5SL-INPORTS EAS-LHYEN** REF 1 Ē Ľ Ш S ត្ត -200 1 205 205 205 205 205 205 199 209 215. 216 | 217 | 208 211 213 213 218 219 228 230

Q

191

<u>م</u> خ

AB --AA --~ == ~ --22 == > 11 11 11 11 11 S :: œ 11P11011 æ

> == z

- 1																					•				-								
							-	98.32	13.89	24.34								١		-													
								1418.7	135.49	236.79		_							•														
	1 PJ/yr	. 1 PJ/yr			•	0.001 TJ/yr		0.001 TJ/yr										0.001 TJ/yr				0.001 TJ/yr	-		•	•	•		1 PJ/yr				
	•	•	0	0	0	0	0	0	0	•	•	0	0	0	00	0	•	0	0	0	0	0	•	0	0	0	•	•	•	0	•	0	0
	•	•	0	•	0	• •	•	•	•	•	0	0	Ģ	0	0	0	•	•	0	0	•	0	•	0	•	0	•	0	0	0	•	•	0
	Ō	•	0.4646	0.6326	0.6008	0	0	/ 0	•	O	0	0	•	•	0	` •	•	0	0	0	0	0	•	o	0	•	0	•	0	0	0	0	0
	õ	0			-	0	0	0	0	0	0	0	•	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0	0	o	0	0
	0	0	0	0	0	0	0	•	¢	0	0	0	0	0	è	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o	0
	0	0	¢	0	¢	0	0	0	0	0	0	0	¢	0	9	0	0	0	¢	0	0	0	0	•	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	•	0	Ð		0	0	•	•	0	0	0	0	•	0	0
			-	Æ	· .) 									
	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	727	223	224	225	226	727	228	229	230	231

Ŀ

--

11 AC

0.83 --

250000

326760

48.21 0 0

192

١

C.N

<u>s</u>	· ·	· · · · · · · · · · · · · · · · · · ·	
		12 ×	•
·	0.9		
HA HA	8 8 8 8	- 1-	
¥	0.08 0.08 0.08	•	
¥~ .	47.6 47.6 47.6	-	•
		•	
B	112.8 42 42	<i>بو</i> ر -	
AI 11	33853 13.89 24.34		
н	. 794 38. 8516 8611		
=	0.08 1994.794 38.33853 0.08 161.8516 13.89 0.08 282.8611 24.34		-
99 4	- -		
북 주 (1)	0.6 0.6		
:: · ·) വസവ (· · · ·	
/₩	Ì)	
==	24		
AD AD	-		X
••			j

	0 1 10064408.7	0 1 10064408.7	0- 0 1 10064408.7	0 1 10064408.7	0 1 10064408.7	0 1 10064408.7	0 0 1 -9982386.3	0 1 -9982386.3	0 0 19982386.3	0 0 1 -9982386.3	0 0 1 -9982386.3		C.00C2877-1 U U	0 0 0	0 0 0 0	0 1 3226.58469	0 1 6700.27525	0 0 1 6184,54862	0 0 1 9420-13372	0 1 8638.64531	0 0 1 906.323053	0. 0 1 9545.71633	0 1 9545.71633	0 0 1 4125.34983	.	+	-	0 0 1, 1, 4867, 8121	0 0 1 10151.7970			0 1 3668.77677	0 0 1 2634.26412
, L 1	0.01	0.01	0.01	0.01	0.01	0.01	0	0	0	o	0	0 0	0	0	0	0	0	o	0	o	•	0 r	, O	0	0	0	0	0	0	0	0	0	0
. == 	0-111	0 111	0 111	0 111	0 111	0 111	0 111	0 111	0 111	0 111	0 111	0 111	0 111	0	0 0	0 0	0 0	0	0 0	010	0	0 10	0	0	Ó	0 0	0	0 ::0	0	0 0	0 0	0	0_0
== L	0	•	0	•	0	0	•	0 . 0	•	•	0	•	0	•	0	°0	0	•	•	0	0	0	•	0	0 0	•	•	م	•	0	0	0	
D :: E	0	7	0	0	0	0	0	0	0	0	0	0	0	0	õ	0		•	• •	•	0	2131 0.9139	۔ ۱	, , 0	0	0	0	•	0	0	. 0	0	-
:: 2 ::	28	29	30	15	32	3	1000		-		1000		1000	25				27	27	27	27		28	23		23	54		C	·	7	24	iũ
8	•	0	0		0		. 27	28	29	30	31	32	33	· 117	117	106		8	13	1	* E	12	.12	6	15	18,	10	91	9	20	1 2	. "	: =
A.		ŝ	•			RTS			, co				RTS			-		6AS	COAL	COAL	MTHL	SOL)	50L)										

AGSL-IMPORTS AGSL-IMPORTS LFD-IMPORTS LFD-IMPORTS HFO-IMPORTS PCF&PP INPORTI 6SL-EXPORTS 651 (TWCL2) -CC 651 (M0B1L) -CC 651 (M0B1L) -MT 651 -COAL (SASO 951 -COAL (SASO 951 -COAL (SASO TJF-EXPORTS LFO-EXPORTS HFD-EXPORTS PCF&PP-EXPORT NTHL-COAL **IGSL-EXPORTS** 65L (NOB1L) -6 DSL-IMPORTS SL-EXPORTS ETHL-BARLEY ethl-wheat Lhygn-gas ETHL-NOOD ETHL-COAL ETHL-CORN NTHL-6AS ELEC-CN6 ELEC-LN6 ETHL-GAS 務 LKG 232 | 233 | 235 | 235 | 235 | 237 | 238 | 239 | 239 | 239 | 239 | 239 |

AC			~	~												-	•	0.85	0.82	0.81	0.85	0.8	0.8	0.79	0.85	0.79	0.76	0.78	0.74	0.83	0.83	0.83	0.68
																_	_	_		_		_	_	_	_	_	_	_	_	_	_	_	_
AB					<u>.</u> .											40000	10000	50000	50000	20000	00000	50000	20000	250000	50000	50000	50000	50000	50000	50000	0000	0000	00001
										•					·.	-	•.	5	1 24	1	Ĩ	2	24	3	23	2	24	Ň	3	3	3	3	
ЧŅ														D		156	1000	70199	507227	70199	70199	26503	26503	22717	08933	22696	32105	32105	1591	13558	13558	13558	31848
==																_	_																
1																0	. 0	37.53	28.35	39.76	37.53	149.57	149.57	0	2.18	0	15.34	13.77	2.54	7.47	13.71	6.6	12.56
::							ø	L								-	-0		ിറ	0 ~	8	8	œ	ŝ	œ	-0	b	-	\$				2
~																0.1072		214.0	197.4	194.8	20.1	296.8	296.8	17.5	187,8	19.4	64.7	76.7	6. 0	16.4	a 13.7	17.0	11.8
- 22															·	5		5	2	8/	Ξ	z	5	2	5	2	5	2	5	5	15.4	°.2	-
*																0.5		1988.(2635.	3280.7	625.	3911.4	3911.4	171.2	2816.4	270.8	410.4	692.1	37	116.2	135.5	124.7	267.0
`==																																	
-															,									<u>^</u>									
	/yr	/	PJ/yr	/γr	7	¥.	. 5	. ,	. Ŀ	J/yr	. . .	/yr	. <u>.</u> .	PJ/yr	JK/P	/ \	۲. ۱	Υ.	U/yr	J/yr	EJ/yr	IJ/yr	LJ/YF	J/yr	۲ŗ	۲r	×	,λr	۲	ž	۲	۲	Y
	L P.	L P I	2	Ы	Ы	2	2	L L	L.	2	2	2	Z	Ы	L L	-	•	1	• -	1	Ē	Ê	Ē	Ê	Ē	Ē	Ē	1J/yr	2	Ē	11	ĺΩ	12
° •		-	-	-			-	-	-	-	-		{		-	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
=	0	0	0	0	0	0	0	~	~	~	~	~	è.	~	~	~	~	~	~	_	_	_	_	_	_	_	_	_	÷	_	_	_	
=	•	0	0	0	.0	0	0	0	0	.0	ō	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	ő	0	0	0	0	0		0	0	0	Q	0	0	0	0	~	~	ź	_	~	_	_	~	_	_	_	_	_	_
S																		-	-	Ū	-	-	Ŭ	Ŭ	Ŭ	Ŭ	Ÿ	-	Č	<u> </u>	<u> </u>	~	0
	0	0	0	0	0	0	0	0	0	,	0	0	0	0	0	0	0	0	0	0	0	0	0		_	0	~	5	` ~	Å	~	ć	, .
œ: '		1																			-	-	-	-	-		-		Ĩ	Ť	Ŭ	Ū	- -
	_	_	_		_																												
1011d11	0	2	0																					0									0
=	•	0	ò																					0				- 27	-A				0
Ð									_	-			-	-	_	-	-	-	-	Ī	-	Ū	Ŭ	Ŭ	<u> </u>	Ŭ.	<u> </u>		<u> </u>		0	0	U
																															-		
×	Õ	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					•																												
	232	233	234 1	235	236 :	237	238 1	239 :	240 7	241	242	243 1	244 :	245 1	246 1	247 1	248	249 :	250 1	251 :	252	253 1	254 :	255	256	227	258 1	259	260 1	261	262 1	263	264

Ø

22 32 > 11 T 11011 ഗ

	<i>\$</i> ;							·								ð.		
 		-	-		0.95	0.95 . 0.85	8.0	0.8 0.8	0.85 0.85	0.9	0.85	0.8 0.9	0.8	0.9	6.0	0.9	0.9	
AN 11			,		30	8 8	8 8 1	88	88	8 8	ខ	ន ន	8	8	88	38	30	
н Т					0.08	80°0	0.08	0°08	0.08	0.08	0.08	0.08 0.08	0.08	0.08	0°08	0.08	0.08	
¥					114.1	114.1	114.1	114.1 114.1	114.1	1.4.1	114.1	114.1 114.1	114.1	114.1	114.1	114.1	114.1	
	,	•			112.8	112.8	112.8	112.8 112.8	112.8	112.8	112.8	112.8 112.8	112.8	112.8	112.8	112.8	112.8	
H IN					27.49743	62.4 117 2070	137.6018	143.5330 -16.0529	162.5916	192.5870	150.2753	214, 3549 385, 0444	490.1105	557.8252	164.8473 2	1.1034	-0.92941	
AH T	-				146.6263 27			4894.477 14 874.2255 -1		1290.637 19		2906.679 21. XATR 597 78				1/60.134 U	370.7747 -0	
A5 11					0.08 14	0.08 24		0.08 48' 0.08 87'		0.08 129		0.08 29(0.08 20				0.08 1/4		
AF					0.6	0.6	0°9	0.6 0.6	0.6	0.6 0.6	0.6	0.6 1 4	0.6	0.6	0.6	0.6 0.6	0.6	
АЕ 				•	0.5	u	сы с	na na	ורא	0 m	5	10 P	.	m	ю і	~ ~	, m	
AD				r		1.01	2.09	1.33	1.13	ci.1 1.02	1.17		1.47	1.25	5	1.04	1.07	
 	232 233 234	236	240 241 242	245 245 245	245 i 247 i	248 1	249 : 250 :	251 237	223	- 1927 729	256 1~	257		260 :	261 1	262	264	

١

ł

ė

f

æ	7755.29733	1916.02374	0	•	0	0	0	•	0	•	0	0	•	0	0	•	¢	0	207370.012	20009.3871	232757.729	22459.0791	291856.271	28161.5700	391959.429	37820.6466	12588.4780	8623.10743	378724.765	36543.6177	2163.4231	8331,94484	64322, 189
	E	79			•														207	200	232	224	291	281	391	378	125	862	31	35	121	833	36
1111	-	-	0	0	0	-	0	°	0	°	0	0	0	°	2	0	0	.0	-	-	-	-		_		-			-	-	-	-	-
×	Ŭ	~	Ŭ	Ŭ	0	~	0		0	Č	0	0	÷,	, U	0	Č	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	_	_	_	_		[_	_		_	_	_	_	_	_	_	_	_		_	_	_	_	_	_		_	_	_		_	_		•
-	Ŭ	0	0	0	ن لام	90	0	0	0	0	0	Ģ	0	0	0	ç	0	0	0			õ	0	0	0	Ģ	0	0	0	0	0	G	0
::	~	~	~	4	· ~	_	_	_	_	_	_	_		_	_		_		_	_	_	_	_	_	_	_		_	_	_	_	-	
⊷.	Ŭ	0	Ö	0	1	0	0	0	0	0	0	Ģ	0	0	0	0	0	230, 85	0	0	0	Õ	0	0	0	Ô	0	0	0	0	0	0	0
==	0	0	0	0	0		0	0	0	0	0	0		0	0	_			~	~	~	~	~	Ċ	~	~	~	~	~	_	_	~	~
#	0	ō	0	0	0	0	0	0	- -	- 0	0	0	0		- -	- -	- -	0 11	ŏ	õ	Š	č	ē	õ	č	ŏ	Š	Š	Š	Š	Š	Š	Ĭ
ص							-	_			_	_		_	-	_	-	_	-	-	-	-		-	Ū	-	Ū	Ū	Ū	-	Ū.	Ĩ	-
==	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		-	0	0	0	0	-0	0	0	0	0	0
64.																					-	-	_	-	-		-	-	-	-	-	-	-
	0	0	5	IJ	0	0	ы	ы	m	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~	0	0
ш			0.945	0.931			0.0543	0.0543	0.0543				-	~	-	-	. –	-	-	-		•		-	-	-			2	-	-	-	Ū
~ 2 2 `	0	0		-	0	0		-		0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9			113	1131			2131	2131	2131								ł																
==	32	-0	В	3	ß	-92	2	2	2		œ	Ξ	¥	13	9	39	، يور	46	ß	5	22	E	9	51	0	=	2	2	0	51	2	12	0
പ			•••									-		-			-							#1			"		83		6.9		43
	17	55	110	110	108	109	80	14	5		-	ņ	ы	ы	32	31	+	-	3	37	38	38	39	39	0#	01	9	0 1	14	Ħ	14	14	42
		•			ĸ													*															
•																		٤	•														
					Ċ		S)	AL)	물																	•	പ	ы	۵.	م	ç	ASE	a.
4			9	3	BLD.	ц Ц	PROPANE-MOBIL (GAS)	PROPANE-MOBIL (COAL	PROPANE-NOBIL (NTHL)	•••	.7	ដ	ដ	ដ្ឋ	с	6.3	ដ	ដ	с.	ġ.	ŝ	Ą	5-2	ELEC-LOIL-CTU-DP		ት	ELEC-HOIL-SBC-CYC	ELEC-HOTL-SBC-BASE	ELEC-COAL-PFC1-SP	ELEC-CORL-PFC1-DP	ELEC-COAL-PFCI-CYC	ELEC-COAL-PFC1-BASE	ELEC-COAL-PFC2-SP
	닕	ပ္ပ	ESL-MTHLESLBLD	6SL-ETHL6SLBLD	KTHL-NTRLESLBLD	ETHL-ETHL6SLBLD	IOBI	1901	10BII	JEC	64S-SPC-ELEC	COAL-PFC1-ELEC	COAL-PFC2-ELEC	COAL-AFBC-ELEC	HOIL-SBC-ELEC	LOIL-CTU-ELEC	URAN-NWDL-ELEC	URAN-EXDL-ELEC	ELEC-6AS-SBC-S	ELEC-6AS-SBC-DF	ELEC-GAS-SPC-SF	ELEC-6AS-SPC-DP	ELEC-LOIL-CTV-SI	-61	ELEC-HOIL-SBC-SP	ELEC-HOIL-SBC-DP	-580	-580	H-	F	-PF	H-	5
	LHY6N-COAL	LHY6N-ELEC	THE	H	Ē	ETH	늪	느	Ť	EAS-SBC-ELEC	ž	PFCI	PFC7	AFBC	SBC	ġ	E	EXD	EAS-	EAS-	EAS-	EAS-	E	5	НÖН	HOIL	FOR	H	COAL	B	COAL	COAL	COAL
	HYGN	HYGN	1-10	님	닅	E	RUPA	20PA	ROPA	S-S	5-5	H-	JAL-	JR-	Ę	E	-NB	-	监	÷	-13	끏	끏	닖	끏	ц.	盅	님	닖	ដ្ឋ	Ē	<u>-</u>	
	=		ف ۔۔		22	iui	ā	<u>d</u>	ā	ä		ರ 	ដ 	<u>с</u>	Ŧ	1	5	3	Щ	뻡	ದ	1	ш	. च	Ш	ш	냅	ш	ដ	ш	ದ	Ш	ᆸ
	265	266	267	268	269	270	271	272	273	274	13	275	11	278	279	280 1	81	282	283 1	284	285	286 1	287	88	289, 1	8	291	292	293	294 1	295 1	296]	297
				.4				**	24		-	1	сч (54		24	54	64	2	7	~	2	2	2	24	2	2	7	2	2	2	2
												5		١																			
-														1																			

•

																			;	>															
	HC F	0.72	0.85				\$												r	- 1	~ •		1 0 4	v .	7.	21	2	13	11	D **	0 ~	6-	e.	11	,
	AB !!	4000	40000		۵		$\left \right $,	1010 113	1, 21VU	577.2100	c0/c.449	644.5705	842./64/	842.7647	1096.350	1096 \$ 350	1096.350	1096.350	1141.644	1141.644	1141.644	1141.644	1044.088	
•	 He /	31848	32562			,	U														0.03 57	0.05 64										0.03 11		0.03 10	
	Z	1.05	13.09				Ð			•			•		-				-	• • •	0 ,6	0 .6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	
	== 	26.29	26.35				42					-	8	-					:	Π	1	=	11	ŝ	רט. ריט	Ξ	11	. 11	Ξ	11	11	11	11	11	
·	11 X	448.02	648.53																ļ	L64 ·	197	555	555	788	788	116	944	944	944	983	286	983	£86 ·	899	
	=	-																										Ņ							
	386	L	L	۲	L	-	۰.,	L	L	⊾.	J	_	Ļ	F	F	r	F	F	ب	ž	۲Ľ	۲	۲r	۲r	۲۲	۲۲	۲۲	۲.	. 1	F	۲.	. 5	5		
	==	0.001 TJ/yr	01 ·TJ/yr	1 PJ/yr	1 PJ/yr	1 PJ/yr				0.001 TJ/yr	1 PJ/Y	1 PJ/yr	1 PJ/yr	1 PJ/yr	1 PJ/yr	1 PJ/yr	1 PJ/yr	1 PJ/yr	1 PJ/yr	0.0036 GWh/yr	0.0036 GWh/yr	0.0036 5Mh/yr	0.0036 SWh/yr	0.0036 6Wh/yr	0.0036 6Wh/yr	0.0036 EWh/yr	036 EWh/yr	0.0036 6Wh/yr							
	~	0.0	0.001					0		°.										õ	0.0	õ	ŏ	ō 0	а. 0	0.0	0.0	0.0	0	0	0.0	0.0	0		,
	1 11011	0	0	¢	•	0	0	0	•	•	0	•	0	•	•	0	•	0	•	0	0	0	•	•	0	0	0	0	0	0	0		0		, ,
		¢	0	0	0	0	0	•	Ģ	0	0	¢	0	0		Ŭ	Ŭ	Č	Č	č	Ŭ	-	Ŭ	č		č	_	_	_	-					
	S	0	0	0	•	0	•	0	0	0	¢	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0		. 0					
	יר איי ג'א	0	0	0	0	0	0	0	0	¢	0.34	0.3504	0.3545	0.3641	0.35	0.3494	0.2435	0	0	0	0	0	0	0	0	0	0	• •	• •		• •		, o	• •	>
	1181	0	¢	0	0	0	0	0	0	0	-		-1		-	-	-	0	0	0	0	0	0	0	0	0	C		• •		• •	• c	• c	> <	>
	1181 I di 1		0																														> 0 > 0	> <	> >
	٥	0	Ô	0	0	Ŷ	0	0	Ģ	0	0	0	0	Û	Č	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ		Ŭ	Ŭ										-
	. :: N	0	0	0	0	¢	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c		> c	• c	• c	, c	> <	, A > <	>
ı		265 1	266	267 1	268	269 1	270 1	271	272	273 1	274 :	275	276 :	277 1	278	279 :	280 1	281	282 1	283	284 1	285	286	287	288	289	1000	100	1 606	1 100	1 706		1 717		1 112

59

ţ

í

c

r:

J

·	199 - ۲	
١		
	6 6 NU 0 NU 0 NU 0 NU 0 NU 0 NU 0 NU 0 NU 0	
-	HW 20 20 7	
١.		
	AJ 112.8 112.8	
•	ner de la constante de la const	
-		v
-	A5 11 AH - 0.08 692.2908 0.08 892.8019	
	AF 0.0 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.05 0.0	
	аваавававава обобобобобо Ф	
		Ň
	265 265 266 266 267 268 271 2	
·		

11700.8586 8015.08815 12344.3140 35153.8954 561105.183 54141.7282 18020.8964 720107.822 15842.3720 2954.60650 146983.972 1200706.16 115857.612 38562.8258 23127.5504 1523288.44 69484.0881 14171.438 26415.535 x 0 0 \mathbf{C} 0 Ċ 0 × == 2 ___ 90 :: H :: H :: 9 0 œ == 0 \sim \circ 0 0 0 0 \circ 0 o ò 0 0 0 0 0 \circ 0 0 0 0 ы., Ξ 0.5 0.5 0.5 0.5 0.5 0.5 ш == ¢ c 2131 2131 2131 2131 2131 0 2131 :: 888 147 148 149 149 1000 133 ŝ 23 5 5 132 80 2 2 2 2 2 131 ں == 8 == 5 5 5 16 146 ELEC-NNHY()10 MN)-PEAK U.-SP-E.T.P 147 ELEC-NWHY()10 MW)-PEAK U.-DP-E.T.P 148 149 8 H1 4 132 135 22 E 22 4 ₽ 31 Ы) MW)-DP-ENGY TO PUR) MW)-CY-ENGY TO PUR) MW)-BS-ENGY TO PUR TO PUR ELEC-NWHY (>10MM) -PEAK UL-PGHER YOU-SP-ENGY ELEC-NWHY (>10 NW) -BS-ENGY ELEC-WHY (>10 NV)-PDNER NN)-BASE NW)-BASE ELEC-NHHY (>10 HH) -CYC TLEC-HANNY () IO NU) -CYC 90-(MM ELEC-NWHY (>10 NN)-SP ELEC-NWHY (>10 NN)-DP CLEC-WRY()10 NU)-SP ELEC-NWHY () 10MW) -DP ELEC-COAL-PFC2-BASE ELEC-LGTE-ELEC-BASE ELEC-URAN-NWDL-BASE ELEC-URAN-EXDL-BASE ELEC-NWHY () 10MN) -SP ELEC-NHHY ()10NW) -SP ELEC-COAL-AFBC-DASE ELEC-NWHY (>10MW) -DP ELEC-COAL-PFC2-CYC ELEC-COAL-AFBC-SP { ELEC-COAL-AFBC-CYC ELEC-LÖTE-ELEC-CYC ELEC-COAL-PFC2-DP ELEC-LGTE-ELEC-SP ELEC-LETE-ELEC-DP ELEC-COAL-AFBC-DP ELEC-NNHY (>10 ELEC-NMHY (>10 ELEC-NWHY ()10 ELEC-NWHY (>10 ELEC-NWHY (>10 ELEC-NHHY ()10 299 298 300 305 306 308 309 310 3H, 312 313 11 315 316 318 319 301 304 307 317 2 326 327 328 223 22 323 22 22 č

)

١.

200

Ì

																						,		٢	-									
AC !	11/	11	Ξ	23	23	23	23	24	24	24	24	22	22				•		70	70	70	70	70	70										
AA : AB !!	0.03 1044.088		0.03 1044.088		0.03 1467.994		0.03 1467.994		0.03 2011.524		0.03 2011.524	0.03 1930.557	0.03 0						0.03 1827.327	0.03 1827.327	0.03 2939.322			0.03 2939.322								فر		
11 1	0.6	. 0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6 45			-			0.6	0.6	. 0.6	0.6	0.6	0.6			٣		-	· .				
∷ ≻	н	=	11	=	11	11	11	11	Ξ.	П	11,	14	*						œ	œ	œ	œ	80	8			Ŕ							
II X	899	899	899	1264	1264	1264	1264	1732	1732	1732	1732	^ي 1594	0						1640	1640	2638	2638	2638	2638								1		Å.
==																											Ð)
H :: A	0.0036 6Wh/yr	0.0036 5Wh/yr	0.0036 6Mh/yr	0.0036 6Wh/yr	0.0036 EMh/yr	0.0036 GWh/yr	0.0036 5Wh/yr	0.0036 EWh/yr	0.0036 6Wh/yr	0.0036 EWh/yr	0.0036 EWh/yr	0.0036 GWh/yr	0.0036 EWh/yr	0.0036 GNh/yr	0.0036 5Wh/yr	1.PJ/yr	1 PJ/yr	1 6H	0.0036 GWh/yr	0.0036 GWh/yr	0.0036 6Wh/yr	0.0036 ENh/yr	0.0036 5Mh/yr	0.0036 GWh/yr	1 PJ/yr	1 PJ/Yr	1 PJ/yr	1 PJ/yr	1 6N	0.0036 6Wh/yr	0.0036 6Wh/yr	0.0036 6Wh/yr	0.0036 GWh/yr	,
11111	0 0	0	0	000	0	0	000	· 0 0	0	000	0	0	0	000	0	000	0	0	0	0	000	000	0	000	0	0	000	0	0	0 0	0	0	0 °0	
 دى	0	•	0	0	•	0	•	0	•	•	0	•	ò	•	0	0	0	0	•	0	0	•	0	0	0	0	0	0	•	0	0	0	0	
== œ	0	0	0	0	0	0	0		0	0	0	o	0	0	0	1.80175	0.17385	0	0	0	0	0	Ģ	0	1.80175	0.17385	0.05786	0.03964	0	•	0	0	•	
1011d11	0	0	0	0	•	•	0	•	0	•										0	0	•	•	•	-		-		0	0 0	0	0	•	
4	0	00	0	0 0	0	0	0	0	000	0		0 0								0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0																														<i></i>				
	o	•	0	0	Q	Ð	.0	0	0	ō	0	0	0	0	0 ,	0	0	0	•	0	0	0	0 ,	0	0	0	0	4	0	0	Q	0	0	
	298	299	300	301	302 :	303 1	304 1	305 1	306 1	307	308 1	309 1	310 1	311	312	313	314 1	315 1	316 1	317 1	318 7	319 1	320 1	321 1	322	323	324 1	325	326	327 1	328	329 1	330 1	r.

201

١.

л

-

AJ						•																											
==																										÷	2						
AI																																	
											•								រុះ្ម :	12	46	4	<u>-</u>	ŧ			•						
Æ																			1962.	1962.	4073.4	4073.	1073	4073.									
													,						751	751	164	161	161	191									
A6				•													ı	1.	1.7		2	2	~	2					•				,
==	03	5	'n	2	2	Ľ.	ñ	ы. ,	2	2	2	n	2						261	5	20	38	186	22									
AF	0.0	0.03	0.0	0.0	0.0	0	0.03	0	°.	0.03	0.03	0.03	0.03						1.2	1.2	3.11	3.186	3.11	3.1									
==	æ	ĥ	œ	8	8	8	ω	œ	8	8	œ	ю	ŝ						ŧ.	÷	+	-	-	-									
Æ	0	0	0	ਂ	õ	0	0.8	•	0.8	0.8	0.8	0.85	0.8						62.74424	62.74424	100.9264	100.926	.926	100.926						•		~	
~~																			62.	62.	100	50	<u>8</u>	<u>10</u>									
	Ŷ	9	Ŷ	Ŷ	\$	9	9	ę	Ŷ	9	2	ç	Ŷ									0.03	8	3									
AD		_																	0	ŏ	Ö	õ	Ö	Ō									
																													2	~		~	
-	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312	313	31	315	316	317	318	319	320	321	32.	3	32	325	22	327	328	Ř	ដ

ę

5

s/

AH :: . W :: AL :: ¥ == AJ == AI == H == 99 ---ч == щ

--

۵۰ شد

D

*-	8.63	938	1678	4040	¢	0	0	•	0	0	0	0	0	0	0	0	0	•	668	1855	121	932	1206	(251	0	•	0	0	0	•	0	0	0	
36	1323518.63	127707.938	12507.1678	29117.															90293.1668	8712.49855	4331.86457	417.986932	308.413506	1.263251										
	1 13	1 12	1 42	1 29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1 90	1 87	1 13	1 41	1 30	1 21	0	0	0	0	0	0	.0	0	0	
	0	0	0	•	0	с) J	ξO	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
¥													,																					
==	0	0	0	•	0	ọ.	ø	0	0	0	0	•	0	0	0	•	Ð	0	9	0	0	0	0	0	0	0	0	0	0	•	0	0	0	
ç																																		
==	0	0	0	0	0	0	0	0	Ť	0	0	0	0	0	¢	0	•	67	0	0	0	0	0	0	0	0	0	0	687	0	0	o	0	•
									1.2									0.967											1.6					
:: #	0	0	0	0	0	0	0	0	11	•	0	0	0	0	0	0	0	11	0	0	0	0	0	0	0	Q	ዮ	0	Ξ	o	0	0	0	0
==	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	0	0	0	0	ô	0	0	0	0	0	0	0	¢	0	-	0	0	0	0	
. ص				•																														
==	0	0	0	0	0	0	0	0	0	0	0	Q	0	0	0	` 0	0	2	0	0	0	0	0	0	0		0	ġ	~	~		~	~	
u.	•		•															1			-		-	-	7	-	-	-	-	Ī	Ξ.		-	
==	0	0	0	0	ŝ		Ś	ы	, o	0	0	0	~	0	~	6	ю	~	~	~	~	~	~	~	<u>_</u>				~	~	_	_	_	
ш					0	0.5	0.5	0.5	-	-	-	Ī	Ĩ	Ī	Ī	3	Ŵ	9	Ŭ	Ū	Ŭ	Č	Ŭ	Ŭ	3	0.5	0.5	0.5	0	Ŭ	Ç	φ	0	
::	0	0	0	0	_	_	_		~	_	~	~	_	~	~			~	-	_	_	·	_	_			rn,	×.	_	_	_			
0			-	-	2131	2131	2131	213	Ť	Ū	Ť	Ŭ	Ŭ	~	Ŭ	2131	2131	Ű	~	Ŭ	Ő	0	0	0	2131	2131	2134	213]	0.	0	,O	0	ç	
==	136	3	138	139	9 9	0	140	140	000	20	51	23	ដ	151	22	153	ដ	1000	S S	21	141	142	143	144	145	145	145	145	000	20	5	52	ន	
പ	-			_	_	_	-		9					_	-		-	¢.			-						-	_	\sim					
									_									-		٠		-	-						×					
	5	05	05	05	36	37	38	39	40	36	37	38	39	20	50				51	52 .	48	8	~ `			42					12	2	**	
==	105	105	105	105	-	IR 137	-	IR 139	140	136	137	138	139	150	150	151	152		151	152 .	48	8	~ · ·			142				141	142	143	144	
==	105	105	105	105	TO PWR 136	TO PHR 137	TO PWR 138	TO PHR 139	140	136	137	138	139	150	150	151	152		151	152	81	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			142	143	144		141	142	143	144	
	105	105	105		TO PWR 1	TO PUR	TO PKR 1	TO PWR 1	-	136	137	-	-	_ _		P-E.T.PNR 151	-E.T.PHR 152	ONER 153		0	8 †	81	- ' 87	81	KER 141	iER 1	MER 143				£ 142	143) - 144	
==					TO PWR 1	TO PUR	TO PKR 1	TO PWR 1	NER 1	Ŧ	-	-	-	_ _		USP-E.T.PWR 151	UDP-E.T.PWR 152	ONER 153		0	81	84	- 	8	KER 141	iER 1	MER 143	PONER 144				143	144	
			NN)-CYC	HW)-BASE	NH)-SP-ENGY TO PWR 1	MW)-DP-ENGY TO PUR	NW)-CY-ENGY TO PAR 1	MW)-BS-ENGY TO PUR 1	NER 1	Ŧ	-	-	-	_ _		USP-E.T.PWR 151	UDP-E.T.PWR 152	ONER 153		UDP	48	84	~ 8 8 ,	8	KER 141	iER 1	MER 143	PONER 144	145 1			143	144	
==			NN)-CYC	HW)-BASE	NH)-SP-ENGY TO PWR 1	MW)-DP-ENGY TO PUR	NW)-CY-ENGY TO PAR 1	MW)-BS-ENGY TO PUR 1	NER 1	Ŧ	-	-	-	_ _		USP-E.T.PWR 151	UDP-E.T.PWR 152	ONER 153		UDP	SP 48		, 4 8 '	81	KER 141	iER 1	MER 143	PONER 144	NER 145 1	ł	is a			
==			NN)-CYC	HW)-BASE	NH)-SP-ENGY TO PWR 1	MW)-DP-ENGY TO PUR	NW)-CY-ENGY TO PAR 1	MW)-BS-ENGY TO PUR 1	NER 1	Ŧ	-	-	-	_ _		USP-E.T.PWR 151	UDP-E.T.PWR 152	ONER 153		UDP	XKY-SP 48		, 4 8 '	81	KER 141	iER 1	MER 143	PONER 144	NER 145 1	ł	is a			
==			NN)-CYC	HW)-BASE	NH)-SP-ENGY TO PWR 1	MW)-DP-ENGY TO PUR	NW)-CY-ENGY TO PAR 1	MW)-BS-ENGY TO PUR 1	NER 1	Ŧ	-	-	-	_ _		USP-E.T.PWR 151	UDP-E.T.PWR 152	ONER 153		UDP	.EC-EXHY-SP 48		, 4 8 '	81	KER 141	iER 1	MER 143	PONER 144	NER 145 1	ł	is a			
==	I ELEC-WHYY (2-10 NN)-SP 105	: ELEC-HWHY(2-10 MM)-DP 105		HW)-BASE	TO PWR 1	MW)-DP-ENGY TO PUR	NW)-CY-ENGY TO PAR 1	MW)-BS-ENGY TO PUR 1	NER 1	Ŧ	-	-	-	_ _	- -	USP-E.T.PWR 151	UDP-E.T.PWR 152	ONER 153	uSP	O-PEAK UDP	I ELEC-EXHY-SP 48		, 4 8 '	81	NER 141	iER 1	PONER 143	ENGY TO PONER 144	NER 145 1	4	is a	I ELEC-EXHY-CYC 143	: ELEC-EXHY-BASE } - 144	
==			I ELEC-KNHY (2-10 NN)-CYC	HW)-BASE	LELEC-NWHY (2-10 KW) -SP-EH6Y TO PWR 1	I ELEC-WHY(2-10 MW)-DP-ENGY TO PWR	I ELEC-WHY (2-10 MW) -CY-ENGY TO PAR 1	: ELEC-NUHY(2-10 MU)-BS-ENGY TO PHR 1	: ELEC-NWHY (2-10 MW) -POWER	I ELEC-NNHY(2-IO NN)-SP	: ELEC-NNRY (2-10 MM)-DP	-	I ELEC-NKHY (2-10 NN)-BASE	I ELEC-EX.HYDRO-PEAK USP	I ELEC-EX.HYDRO-PEAK UDP	I ELEC-EX.HYDRO-PEAK USP-E.T.PHR 151	I ELEC-EX.HYDRO-PEAK UDP-E.T.PWR 152	I ELEC-EX.HYDRD-PEAK UPONER 153	I ELEC-EX.HYDRO-PEAK USP	I ELEC-EX.HYDRO-PEAK UDP		ELEC-EXHY-DP	ELEC-EXHY-CYC , 48 '	8	I ELEC-EXHY-SP-ENGY TO POWER 141	I ELEC-EXHY-DP-ENGY TO POWER	I ELEC-EXHY-CYC-ENGY TO POWER 143	PONER 144	I ELEC-EXHY-PONER 145 1	I ELEC-EXHY-SP	I ELEC-EXHY-DP			

÷

÷

\$

203

						ş	i																										
AC :	70	2	20	70															70	70	70	76	20	70			•						
48 1	0.03 457.4244	157.4244	157.4244	0.03 457.4244											·		-		0	•	-	0.	, , ,	0	£			• .					
AA C	000	0.03	0.03	0.03		·	•			5 *									0.03	0.03	0.03	0.03	0.03	0.03	ì	Ĩ			-				
<u>ک</u> بیچ ۳	0.6	مر کر	0.6	0.6						P	1							`	9.0	0.6 1	0.6	0.6	0.6	0.6		Ţ			٦				
::	ŝ	с Л	c.,	5							6								œ	œ	œ	8	ω	8				•	l				
:: X	427.7	427.7	427.7	427.7			-					•			•				°		0	0	0	0			K	2	7		Į	I	
22							,											ζ		•				•						æ			
38	lh/yr	6Wh/yr	6lih/yr	6Nh/yr	PJ/yr	PJ/yr	PJ/yr	PJ/yr		h/yr	ħ/yr	6Wh/yr	h/yr	6Kh/yr	6Wh/yr	PJ/yr	PJ/yr		6Wh/yr	6Nh/yr	6Wh/yr	6Wh/yr	6¥h/yr	6Kh/yr	PJ/yr	PJ/yr	PJ/yr	PJ/yr		6Mh/yr	6Kh/yr ,	60h/yr	6Wh/vr
۲ ۲	0.0036 5Wh/yr	0.0036 61	0.0036 61	0.0036 61	1 PJ	1 P.	1 F3	I PJ	1 64	0.0036 GNh/y	0.0036 ENh/y	0.0036 EN	0.0036 EWh/yr	0.0036 GN	0.0036 GN	[b]	1 PJ	1 GK	0.0036 GH	0.0036 EN	0.0036 6H	0.0036 68	0.0036 6¥	0.0036 EV	1 23	1 23	1 PJ	I PJ	1 61	0.0036 EN	0.0036 EK	0.0036 600	0.0036 EN
	0 0	0 0	0	0	0	0	0	0	0	0 0	0	0 0	0	0 0	0 0	0	0	•	0	0 0	0	0	o o	0 0	0	0	0	0	•	。 。	0	0	0.0
⊢ ``\	°	0	0	0	0	0	0	0	0	0	0	0	0	0	¢	0	0	0	0	0	¢	0	•	0	<mark>،</mark>	0	0	0	0	0	0	0	0
ш бо	jo	0	•	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	•	•	0	0	0	0	0	•	0	0	0	0	0	, O
== œ	0	0	0	0	1.80175	17385 -	05786	03964	0	0	0	0	0	0	0	1.80175	0.17385	0	0	0	o	0	0	0	80175	17385	0.05786	03964	0	0	•	0	0
22					ij	o	ਂ	°.			•						<u>.</u>									0	ਂ	6					
: 16: 16: 1	0	0	0	°	-	-	-		•	0	•	<u> </u>		_	0	-	-	-	0	0	0	0	0	0	-					0	•	0	C
	0	о с	о с	о С	0	0	ç	0	~	2	ĉ	0	0	0	°	°	°	0	0	0	•	о. -	_0_	•		_	•			0	0	0	Ĉ
0	-	-	Ĵ	0			9		5		Ç	5		3	<u>ی</u>	ð		0	0	0	Ô	0	0	0	•	0	0	0	0	0	Ô	0	C
= ['] z	0	0	0	o	0	0	0	0	0	•	0	0	0	0	0	0 ,	0	0	Ð	0	0	0	0	0	0	0	0	0	o	0	Ģ	0	0
																	•																

ŋ

ζ,

J

٤

		-	
		۰. ۴	
		,	
			¢ ~ ~
		1 .	\sim
AN	-	(La)	1
	-		
	-Rij		
ar and a second s			
:: ×			
		•	ŝ
S.	•		
	-		
AH 7 8.092 8.092 8.092 8.092		5, 273 5, 273 5, 273 5, 11 05, 11	
	•		. }
	-	,	
	• •	3.16	
AE 11 70641 70641 70641 -70641	22 ,	000000	ι.
AD 11 0.03 15 0.03 15 0.03 15 0.03 15		0.03 0.03 0.03 0.03	
•	•	·	
	AD II AE II AF II AE II AH II AI II AJ II AK II AL II AM II 0.03 15.70641 2.032 0.55 628.092 0.03 15.70641 2.032 0.55 628.092 0.03 15.70641 2.032 0.55 628.092 0.03 15.70641 2.032 0.55 628.092	AD II AE II AF II AG II AH II AI II AI II AK II AL II AK II	10 11 4E 11 4F 11 4H 11 AH 11 11 11 <td< td=""></td<>

Ç

 E	17000	8000	•	0	0	0	0	• •	0	•	, ,	0	2835600	2591666.	1.17	2835600	1890000	3785000	5354000	4176000	2520000	2495000	2890000	2697000	2495000	2324000	2287000	5671200	2350000	57632000	4746000	9921	2642
									د بر	÷.			283	12591	1002777.	283	189	378	533	417	252	249	289	269	249	232	228	567	235	5763	474	68706.9921	39343. 2642
			Ģ	0	0	0	0	0	0	۱ O	0	0	-	Ξ	1 17		_	-						-	_		-		_	_	_	1 68	1 39
	0	0	0	0	0	0	0	0	0	6	0	¢	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
¥																																	
==	0	0	0	0	0	0	0	0	_	0	~	~	~	~	~	~	~	~	~	~	~	_	_	_	_	_	_	_	_		_	_	_
÷							-		-	-	-4		Ŭ	-	Ŭ	Ţ	Ū	Č	0	0	Ŭ	Č	0	Ŭ	0	0	0	Ç	0	9	0	0	0
==																																	
_	0	0	0	°.	0.7	0	0	0	9	0	0	0	0	ន	0.01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-									ſ			•			0																		
:: =	0	0	0	0	11	0	0	0	0	•	0	0	0	Ξ	11	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	5	0
	_	~	_	_		•	_	_	-	_	_	-	_	=	Ξ	_							/					·					
æ	0	Ű	0	Č	0	-	0	0	0	Ģ	Q	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0	0	0	0
=	~	_	~	~	~	_	~	~	-	_	_	_	_		_	_	_	_	_	_													
LA.	Ŭ	Č	Č	Ŭ	Č	Ŭ	Ç	0	0	Ő	0	0	0	0	Ģ	0	0	0	0	o	¢	0	0	0	0	0	Ô	0	0	0	0	0	0
::	,	•			_	_	_	_	•																								
ш	0	Ö	0	0.5	0	0	0	.007	0.0383	.1832	0	0	0	0	0	0 0	0	0	°,	Ô	0	0	0	0	0	0	0	•	0	0	0	0	о 4
· - ==						_		-	ō	Ö																							
A	0	0	131	2131	0	0	0	131	1131	131	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٩,	9	0	ĉ	0	Ô	ó	0	ົ
::			-	~					-	*****														•									
ى	128	129	130	130	1000	22	2	5	۲,	,	5	126	127	1000	154	126	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	57	28
==	, 	~	~		~	m	~	~		~					_			.		_	_	_		_							_		_
æ :::	-	6	128	129	13(12	129	š	51	5	6	ŝ	126	127	Ö	154	-		23	2	27	28	29	ñ	31	32	8	126	n	50	26	117	106
			to poner	TO PONER	ŕ				ţ										•														
A	CYC	BASE .	CYC-EN6Y	BASE-ENGY	PONER	, CYC	BASE						N.			w.		11	151	31	151	•	L .	IST				,				ILAC	폾
•	ELEC-MUNREFUSE-CYC	ELEC-NUNREFUSE-BASE	ELEC-MUNREFUSE-CYC-EN	ELEC-MUNREFUSE-BASE-E	ELEC-MUNREFUSE-PONER	ELEC-NUNREFUSE-CYC	ELEC-MUNREFUSE-BASE	ALSP	ALDP	ALCYC	RLBASE	'AL	ELEC-EXPORTS-TRAN.	'ORT	'ORT	ELEC-INPORTS-TRAN.	FDIST	PROPANE-TRAN&DIS	NETHANOL-TRAN&DIS'	ETHANOL-TRANLDISI	GASOLINE-TRANLDIS	DIESEL-TRANLDIST	RANEDIST	JET FUEL-TRANADIST	TSIQ.	TSI04	PCF&PP-TRAN&DIST	NEDIST	NEDIST	ANADIST	1SI01	ELEC-HTP-R2SH-SHLAC	6AS-FCE+HTP-R2SH-SH
	ELEC-NUI	ELEC-NU	ELEC-MU	ELEC-NU	ELEC-YU	ELEC-NU)	ELEC-NU)	ELEC-TOTALSP	ELEC-TOTALDP	ELEC-TOTALCYC	ELEC-TOTALBASE	ELEC-TOTAL	ELEC-EXF	ELEC-EXPORT	ELEC-INPORT	ELEC-1115	6AS-TRANEDIS1	PROPANE-	METHANOL	ETHANOL-	EASOLINE	DIESEL-1	AV. 6AS-TRANEDISI	JET FUEL	LFO-TRANADIS1	HFD-TRAN&DIST	PCFLPP-1	ELEC-TRANEDIS1	WOOD-TRANEDIST	LHY6N-TRANADIST	LNG-TRANEDIS1	ELEC-HTP	GAS-FCE+
•	364	365 1	366 1	367 1	368]	369 :	370	371	372	373 -	374	375	376 :	377 :	378 :	379 :	380 1	381	382 1	383 :	384	385 1	386 :	387 :	388	389	390 -	391	392	393 1	394	395	396 :

j,

و

_

7

194 **.**

۴

•

-

.

Ŷ

53

.

•.

-

.

,

....

																															ŧ.		
		-	4																														
AC .			1			;																											
<																																	
22																		L											•			8	œ
AB																												-				0.08	0.0
																												·					
		1	١		÷	ġ.					•																					-	-
AA																																	
==										-																							
																	-															2	30
2																																	
22									-																							~	6
~																															-	2	~
-																																	
==																			,													2	5
~								•																								3100	Ħ
																												Q					
II				•															•												_		
											·																				7		
-	L	-					L			•																							
	6Wh/y	6Mh/yi	PJ/yr	PJ/yr	_	6Wh/yr	6Nh/yr	PJ/yr	PJ/yr	PJ/yr	PJ/yr	1/1	/yr	1/1	/yr	PJ/yr	PJ/yr	PJ/yr	PJ/yr	PJ/yr	1J/yr	TJ/yr											
22	5	3	2	2	Ng 1	39	30	2	5	E	2	2	6	2	2	2	2	2	2	2	2	2	2	2	2	R	L P.	2	2	2	2		
>	0.0036 (0.0036			- •	0.0036	0.0036					-				- •	- •											-			-	0.001	8
-	0	0				0	0						•																			0	0
1011	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٥	0	0	0	0	0	0	0	0	0	0	0	0
==	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	¢
::	_	_		_		_	·		_			_	_	_	_	_	_	_	_		e,												_
ഗ	0	0	0	o	0	0	0	0	0	0	0	0	0	0	0	0	Ô	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,																														*			
==	0	0	3	8	0	0	0	0	ò	0	Q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	œ
00			0.07122	0.04878																													0.8
			<u>°</u>	<u>°</u>																•							•						
. 8	•	0		7	0	0	0	0	0	0	0	0	0	¢	0	0	0	0	0	0	0	0	0	0	¢	0	0	0	0	0	0	0	
BHAH	0	0	0	•	0	0	¢	0	0	0	0	0	0	0	¢	0	0	0	¢	0	0	0	0	0	0	0	•	0	0	0	0	•	0
	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	¢	0	Ó	0	0	0	¢	0	0	0	0	0	0	0	0	0
0																																	
	_	-		_	-	-	-		_		_				-		-	_															_
** \	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0 -	0	0	0	0	0	0	0	0	0	0	0	0	0	۰,
							<u>.</u>																		*-	*							,
	364	365	366	367	368	369	370	31	372	273	374	375	376	37	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	304	395	396
		-	-																					• •	- •	•••							

ł	== 89 ===	ະະ ບ	n		 LL	9	=======================================		 7	×	•••	<u>ه</u>	
LOIL-FCE+HTP-R2SH-SH	114	85	0	0	0	0	0	0	0		•	1 41142.	2988
ELEC-RES+HTP-R25H-SH	117	58	0	0	0	0	0	0	0		0	1 25438.595	5951
HT-ENERGY-HTP-R2SH-SH	57	89	1131	0.7	2131	0.8448	0	0	0		0	~	0
ENERGY-OPTS+HTP-R2SH-SH	58	61	•	0	0	•	.0	0	0		ò	_	0
GAS-NCBFCE-R2SH-SH	106	59	0	0	0	0	0	0	0		0	_	0
LOIL-WCBFCE-R2SH-SH	114	53	0	0	0	ō	0	0	•		0	~	0
ELEC-NDFCE+RES-R2SH-SH	117	59	0	0	•	0	0	0	0!		0	~	o
NOOD-OPTS+NDFCE-R2SH-SH	118	59	1131	0.9	C	0	0	0	0		0	19352.4	1735
ENERGY-OPTS+NDFCE-R2SH-SH	59	61	•	0	•	•	0	0.	•		0	~	0
ELEC-ASR-R2SH-SH&WH&AC	117	99	1131	0,0909	0	0	0	0	0		0	~	0
ASR-R2SH-SH&WH&AC	0.	99	0	0	0	0	0	0	0		0	~	0
HT ENERGY-ASR-R2SH-SH	09	61	Q	o ,	0	0	0	0	•		0	1 37654.4	1399
6AS-C6F-R2SH-SH	106	61	0	0	0	0	0	0	0		0	16817.081	118
GAS-FCE-R2SH-SH	106	61	Ċ	0	•	0	0	0	0		0	11802 979	192
LOIL-FCE-R2SH-SH	114	61	م ج	0	0	0	0	Q	0	·	0	12342.689	896
ELEC-RES-R2SH-SH	117	61	0	0	o	•	0	0	0		0	1 7631.5785	1853
ELEC-HTP-ISH-SH&AC	117	62	0	0	Ô	0	0	0	0		0	30734 073	1736
6AS-FCE+HTP-ISH-SH	106	63	0	0	0	0	0	•	0		•	18550.721	'212
LOIL-FCE+HTP-ISH-SH	114	63	0	0	0	0	0	o	•		0	18934.647	111
ELEC-RES+HTP-ISH-SH	117	63	0	•	0	0	0	0	0		0	12427.588	188
HT-ENERGY-ISH-SH	62	63	1131	0.7	2131	0.8448	0	0	•		0	_	q
ENERGY-OPTS+HTP-ISH-SH	63	67	0	0	0	0 ,	0	Ģ	0		0	_	0
EAS-MCBFCE-ISH-SH	106	4 9	0	0	0	<u>ک</u>	•	0	0		0	_	0
LOIL-HCBFCE-1SH-SH	114	64	0	0	0		0	0	0		0	_	0
ELEC-NDFCE+RES-ISH-SH	117	5	0	0	0	0	¢	o	0		0	_	0
HS-HSI-5140+30360H-000H	118	64	1131	0.9	0	0	0	0	0		•	8527.38	209
ENERGY-NCBFCE+OPTS-ISH-SH	64	67	0	0	0	0	0	0	0		0	_	0
GAS-FCE+ASR-ISH-SH	106	6 6	0	0	•	0	0	0	Q		0	5565.2163	636
LOIL-FCE+ASR-ISH-SH	114	99	•	0	¢	•	0	0	•		0	5680.3943	121
ELEC-RES+ASR-ISH-SH	117	99	0	0	0	0	0	0	•		•	3728.2764	944
ELEC-ASR-ISH-SHAWARC	117	65	1131	0.0909	0	0	0	0	0		0	_	0
ASR-ISH-SHARRAC	ò	55	0	0	0	o	•	•	0		0	_	ο,
HT ENERGY-ASR-ISH-SH	65	99	1131	0.92	0	0	, 0	•	0		0	18642.0	348

 397

 398

 398

 398

 398

 398

 400

 400

 400

 400

 400

 400

 400

 400

 400

 400

 400

 400

 400

 400

 400

 400

 400

 400

 400

 400

 400

 400

 400

 400

 400

 400

 400

 400

 400

 400

 400

 400

 410

 411

 411

 411

 411

 411

 411

 411

 411

 411

 412

 413

 414

 414

 414

 4

÷.

<u> 97 - 9</u>

				•																										'				
AC															1														-				c	
AB !!	0.08	0.08			0.08	0.08	0.08	0.08				B0.0	0.08	0.08	0.08	0.08	0.08	0,08	0.08	0.08			0.08	0.08	0.08	0.08		0.08	0.08	0.08		•	0.08	
AA :		-			4	-	-	-				27	-		-	4	4	9	9	-9			-0	-0	9	-0		9	-0	;• ;•			21	
1: 7	20	20			20	20	20	20				20	20	20	20	20	20	20	20	20			20	20	20	20		20	20	20			20	
۲ ۲	60	0			0	0	0	85				09	35	3	60	0	70	33	69	•			•	•	0	85		35	60	0			60	
<u>, </u>	933	226			a	0	0	1550				5400	1720	1107	526	526	3400	1306	1100	1100		•	0	0	0	1700		1306	1100	1100			0009	
==					,								(-												
2 8	TJ/yr	13/45	PJ/yr	PJ/yr	PJ/yr	PJ/yr	PJ/yr	13/yr	PJ/yr	P3/yr	PJ/yr	11/yr,	11/yr 2	TJ/yr	TJ/yr	1J/yr	1J/yr	1J/yr	1J/yr	1J/yr	PJ/yr	PJ/yr	PJ/yr	PJ/yr	PJ/yr	1J/yr	PJ/yr	TJ/yr	1J/yr	1J/yr	PJ/yr	PJ/yr	TJ/yr	
>	0.001	0.001	-			-		0,010	Ţ			0.001	0.001	0.001	0,001	0,001	0.001	0.001	0.001	0.001	4	-				0.001	-	0.001	0.001	0.001			0.001	
10	0	0	0	•	0	0	0	0	0	0	0	0"	•	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ř,	0	0	0	0	0	°.	¢	0	0	0	0	0	•	0	0	0	•	ô	0	0	0	0.	0	•	0	0	O,	Ö	0	•	•	0	•	
A-	•	0	0	¢	0	0	0	0	0	0	0	0	¢	0	0	0	0	¢	0	0	•	0	0	0	0	•	ó	ò	0	0	0	0	0	
ŝ		, 1												•							-													
 0x:	0,75	0	1.9	0	0.65	0.65	•	0.6	0	ò	0	0	0.92	0.8	0.75	0	0	0.8	0.75	•	1.9	o	0.65	0.65	0	0.6	0	0.8	0.75	•	0	•	0	
8		0	-	•	-		0	-	0	0	0	0			-	0	0	_	1	ò	-	0	-		0		0	Ŧ		0	O,	•	0	
Ę.	¢	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	o	0	0	¢	o,	9	0	0	0	0	
*-	0	o	0	0	•	0	0	0	0	0	0	0	0	0	0	0	•	0	0	¢	0	0	0	0	0	0	•	0	0	0	•	0	0	
Ξ.																										,								
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	•	o	0	•	0	0	0	0	•	。 。	
N	ŧ								•												•								•					
	1 1		 5-									 m		~	-														***					
	39	39	ĥ	Ŷ	Ş	ę.	Ş	<u>ê</u>	Ş	Ş	4	Ę,	Ş	ŧ	41	Ŧ	Ŧ	Ŧ	Ŧ	ŧ	Ŧ	Ĩ	Ŧ	ž	121	12:	124	424	42	426	42)	426	429	

2

8

ę

E -	0	7849.63302	5565.21636	5680.39431	3728.27644	17337.3302	3189.29269	3207.06890	2181.42788	0	•	0	¢	0	4884.51106	0	3189.29269	3207.06890	2181.42788	0	0	18642.0348	•	4471.43806	3189.29269	3207.06890	2181.42788	8450.50782	6428.99666	5609.79326	5083.25731	6523.86697	28997451.9
	0	-	-	_		Ξ				0	0	0	o	°.		0	5	2	1 2	0	0	11	0	1	13	13	1 2	1 30	-9	5	5	-0	1 2
	0	0	0	0	0	0	0	•	0	0	0	¢	0	0	0	0	0	0	0	0	0	0	ő	0	0	0	0	0	0	0	0	~	0
×																			-	-	Ī	Ī	•	-	Ŭ	Ť	Ĩ	-	Ŭ	<u> </u>	Č	Ū	Ŷ
==	0	0	0	0	0	0	0	0	~	0	~	~		_	~	~	~	~	~	~	_	_	_	_	_	_	_	_	_	_	-	_	_
5							-	_			-	-	-	-	Ī	-	-	Ī	Ŭ	Ū	Ŭ	Ŭ	Ũ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ.		Č	,U	Ŭ
Ξ	~	_	_	_	_	_	_	_	_		_		_		_	_		_															
•	Ŭ	Ŭ	Ŭ	Ŭ	Ģ	0	0	0	0	0	0	0	0	Õ	0	0	0	0	0	0	0	0	0	0	Ŷ	0	¢	0	0	0	0	0	10394
	È	~	~	_	_	_	_	_	_	_	_	_	_	_		_			•														16
Ŧ	Ŭ	Ŭ	Ŭ	~	Č	Ö	0	0	0	0	0	Ó	0	0	0	0	Ô	.0	0	0	0	0	0	0	0	¢	0	0	0	0	0	0	121
,	0	0	0	0	0	0	0	0	0	œ	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	e
و						•			4	0.8448						'					÷		-		-		-	-	-	-	-	-	-
==	0	0	0	0	0	0	_	~	~		~	~	ć	~	~	~	~	~	_	_	_	_	_	-	_		_	_	-	_	_	_	_
¥4.,	-		-		-	-	Ĩ	Ť	Č	213	Ū	Ū	Ŭ	Ŭ	<u> </u>	Č	Ŭ	Ŭ	Ŭ	Č	Ŭ	Ĵ	Ź	Č	0	Ö	Ģ	Ŭ	0	Ö	Ö	0	0
		•													•																		-
LLI .	•	0	0	0	0	0	0	0	Õ	0.7	ð	0	0	0	0.9	0	0	0	0	.0909	0	0.48	0	0	0	0	0	0	0	0	0	0	¢
::	~	~	~	_	_	_	_	_	_		_	_	_			-	_	_		Ŭ			-	_				_					•
Q	-	Ŭ	Ŭ	č	~	Č	Ç	Ç	0	131	0	0		0	131	0	0	0	0	1131	0	1131	0	Ŷ	2	0	•	¢	0	¢	0	0	0
										-					-					-		-											
	57	67	67	67	67	68	69	69	69	69	R	2	2	20	2	R	72	22	22	11	1	72	で	2	23	R	R	1	2	*	1	1	R
ц.																																	
 @	99	106	106	114	1117	117	106	114	117	89	69	106	114	117	118	10	106	114	117	117	0	11	72	901	106	114	117	106	106	114	117	117	61
	-St		•					Ŧ	Ŧ	-SH	180-5H			80-SH		BC80-SH	GAS-FCE+ASR-0BC80-SH	Ŧ	Ŧ	HLAC		-SH ·	, 편2-0										
	士					I&AC	HS는	5-0	<u>15</u> -0		BCB	똜	ЧЧ.	ĝ	듉	2	쟢	9-51	5-0		പ	읊	ğ										
A	5	_	_	Æ	표	#S	80	828	BC8	080	2	늞	680	8-08	580	Ы	680	828	쯢	뜕	H&A	280	5-0-5	문	₹	ž	풍			ж	Ŧ	· 	
	Į.	5-	풍-	S-#	÷S-	580	8-	2	P-0	4	Ŧ	ğ	8	RES	ę	÷	8-	2	2-2	8	HEN	-45	DP1	8-	8	8	8	문-	유	S-L	1-S	5-1-	रु
	SR4	-13L	ISH	<u>1</u>	51-1	-0 	НTР	IH	Ŧ	H-7	PTS	Ë	띮	B	끮	B	ASR	+AS	+AS	ę	<u>8-0</u>	Y-A	ŝ	080	080	帶	8	APT	APT	å	ş	₽	2SH
	ENERGY-ASR+DPTS-IS	GAS-CGF-ISH-SH	6AS-FCE-ISH-SH	LOIL-FCE-ISH-SH	ELEC-RES-ISH-SH	ELEC-HTP-OBC80-SH&	6AS-FCE+HTP-OBC80-!	LOIL-FCE+HTP-OBC80-	ELEC-RES+HTP-OBC80-	HT ENERGY-HTP-OBC8(ENERGY-OPTS+HTP-OBC	GAS-NCBFCE-OBC80-SH	LOIL-NCBFCE-OBC80-5	ELEC-NDFCE+RES-OBCE	NOOD-NCBFCE-OBC80-9	T-X	÷	쎮	ELEC-RES+ASR-OBC80-	ELEC-ASR-OBC80-SHE	ASR-OBC80-SHEWHEAC	HT ENERGY-ASR-OBC80	ENERGY-ASR+OPTS-OB(EAS-CEF-DBC80-SH	6AS-FCE-OBC80-SH	LOIL-FCE-OBC80-SH	ELEC-RES-OBC80-SH	6AS-C6B-APT-SH	6AS-16B-APT-SH	LOIL-BLR-APT-SH	ELEC-BLR-APT-SH	ELEC-BSD-APT-SH	ENERGY-R2SH-SH
	ERE	3-5	j-Si	Ē	监	ដូ	<u>5</u> -5	=	ដ្ឋ	ដ	ERG	5-1	닅	ដ្ឋ	8	ERG	5	<u>_</u>	ដ	ដ្ឋ	P-0	Ē.	52	ဌှင်	S-F	÷	닖	2-5 5	S-1	H	Ľ	ួង	ä
	لي 	6	39	3	ದ 	ᇳ	64	3	ᆸ	H	6	5	2	ਜ਼ -	9	ũ	69	3	ದ	냅	AS AS	Η	H	6A	6A	3	ದ	6Å	99	3	त्व	러	B
	130	131	132	<u>1</u>	134	135	436	121	138	439	140	111	442	143	ŧ	115	146	117	118	149	150	4 51 1	452 :	† 23	121	1 22	156	1 51	458	4 29 :	460 1	461	462 1

 \sim

ı

m o

۵

																											-							
	0													(21	1																	
				ર											١																			
					-																													
AC)								·							\																		
	1	8	œ	œ	œ.	-00	8	60	. 00			C C	. 00	8	8		æ	8	~					8		÷	8	ĊD)	œ			÷	80	
₽Ð		0.0	°.	0.0	0.0	0.0	0.08	0.0	0.0			0.0	0.08	6	0.0		0.08	0.0	0.0			0.08		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.08	0.0	
		ç	·-0	9	-9	9	ŝ	'n	ŝ			Leg.	, ri	ŝ	7.5		ŝ	7,5	ы.			27	1	ŝ	ŝ	7.5	ŝ	\$	-9	9	-9			
AA							7	1	2			~	~	2	7		7	2	~			• •	•	7	~	~	~							
==		20	20	20	30	20	20	8	20			20	ន	20	20		3	20	20			20	ł	20	20	20	20 /	20	20	20	20	20	2	
1																																		
		35	55	99	0	20	35	69	0			0	0	0	8		33	90	0			60		35	35	99	0	89	66	76	38	0	0	
×							-																										•	
•		1980	1306	1100	1100	3700 -	1455	1225	1225			0	0	0	1927		1455	1225	1225			0009		2175	(455	225	1225	505	1683	107	1107	980	5250	
×							ŗ																	•••		-	-	~	1	1				
==													~																					
1									_				-	_	_														•					
	PJ/yr	TJ/yr	TJ/yr	T J/yr	13/yr	TJ / yr	1,1/77	T 3/yr	1J/yr	PJ/yr	PJ/yr	PJ/yr	Palyr	PJ/yr	1J/yr	PJ/yr	TJ/yr	TJ/yr	TJ/yr	PJ/yr	PJ/yr	TJ/yr	PJ/yr	TJ/yr	TU/yr	IJ/yr	IJ/yr	13/yr	TJ/yr	TJ/yr	IJ/yr	TJ/yr	PJ/yr	
	-	0.001	8	100.	100.	100.	.001	100.	.001	-	-	Ţ		5	0.001	-	0.001	0,001	00	-		0.001	-	100	001	100	50	100	100	0.001	8	100	-	
==		0	0	0	0	0	0	0	0					•	0		0	0	o			Ö		Ó	Ö	ö	Ö	õ	Ö	ŏ	ō	ō		
	0	0 0	0 0	0, 0	0 0	0 0	0	0 0	0	0 0	0	00	0 0	00	0	0 0	0 0	0 0	0	0 0	0	00	000	0 0	00	0 0	0	0 0	00	0 0	0 0	0 0	0 0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	.0	0	0	0	0	0	0	0	0	0	0	
ຜ່				:	-														,							-		-	-	-	-	-	-	
==	0	92	æ	ĸ	0	0	œ,	75	0	6	¢	ß	5	•	, 9	0	8	Ľ	0	0	0	0	•	2	æ	цń	0	2	œ	'n	0	o	•	
œ		6	0	0			0	õ		-	•	0.6	3	•	ŏ		Ö	0						°.	õ	0.7		0.8	ċ	0.7		0		
1. P B 1	0			-	0	0	****	-	0	Ţ	0	-		0		0	-		Ģ	ò	•	0	0		-		0		-		0	0	0	
, E	0 0	0	0 0	00	0	0	0 0	0	0 0	0	000	0 0	0	0 0	0 0	0 0	0 0	0	0	0	•	0	0	0	0	•	0	•	0	•	0 2	•	0	
Þ									-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	~	-	
==	0	0	0	0	0	0	0	0	0	0	•	0	0	•	0	0	0	0	0	, 0	0	0	0	0	•	0	0	0	0	0	õ	ç	0	
x	•																. '																	
								7 :	 80										 CD				•••										~	
	4	4	¥	¥	Ŷ	¥	¥	¥	2	1	ŧ	Ŧ	7	4	ŧ	Ŧ	4		1	1	ų,	Ŷ	÷,	ŝ	\$	Ŷ	5	Ŷ	Ŷ	Ŷ	46(161	462	a'

-

1111	
¥	
==	
•	
μ	
==	
Ξ	
ц,	
=	
Ľ	
::	
ш	
==	
0	
ω	
=	
æ	
=	

14498725.9

463 1	ENERGY-ISH-SH	67 \	75	0	0	0	0	121	43.65379	ر	0
1 191	ENERGY-08C80-SH	73	75	0	0	0	¢	121	97.03837		0
♣ 465 ;	ENERGY-NNA-SH	74	76	0	0	0	0	121	19.14687		0
466	ENERSY-DDA-SH	7	76	•	- 0	0	0	121	11.94457	•	0
167	ENERGY-H-SH	75	11	0	¢	0	•	0	0	,	0
468	ENERGY-A-SH	76	77 ~	0	0	0	•	0	0		0
199 1	ENERGY-RES-SH	77	1000	0	0	0	0	0	0		0
1 0/1	ENERGY-SR (WH) -R25H	99	78	0	o	0	0	0	0		0
1/1	ENERGY-SR (NH)-ISH	65	78	0	0	0	0	0	0		0
472	ENERGY-SR (NH) -OBC80H	71	78	0	0	0	0	¢	0		0
111	ENERGY-SR (NH) -HOUSES	78	11 61	31	0.32	o	0	0	0		0
174	ENERGY-ASR+BKP-H-NH	79	. 80	0	0	0	•	0	•		ò
475 1	6AS-WHR+ASR-H-NH	106	79	0	0	0	0	0	0		0
476	ELEC-WHR+ASR-H-WH	117	79	•	0	0	0	0	0		0
177	6AS-WHR-H-WH	106	80	0	0	0	0	0	•		0
478	ELEC-NHR-H-WH	117	80	0	0	0	0	0	0		0
479	GAS-BLR-A-NH	106	81	0	0	6	0	¢	0		0
480 1	ELEC-BLR-A-WH	117	81	0	0	0	0	¢	0		ọ
18	ENERGY-H-WH	80	82 1131	31	0.61	0	0	¢	0	-	0
482 1	ENERGY-A-NH	81	82	0	0	0		•	0		0
483 1	ENERGY-RES-NH	82	1000	0	0	0	0	121	114.2383		0
181	ELEC-INAC-AC	117	8 6	- 0	0	0	•	121	5.312729		0
485 -	ENERGY-HTR(CAC)-R2SH	51	83 1131	31	0.13	0	0 	0	0		0
486	ENERGY-HTP (CAC) – I SH	62	83 113	31	0.3	0	0	0	0		0
487 1	ENERGY-HTP (CAC)-DBC80	68	83	ġ	0	0	0	0	0		0
188	ENERGY-HTP (CAC)-HDUSES	83	85	0	0	0	•	0	0		0
486	ENERGY-ASR (CAC) -R2SH	09	84 1131	. 12	0.13	0	0	•	0		0
190	ENERSY-ASR (CAC) - ISH	65	84 1131	21	0.3	0	0	0	0		0
191	ENERGY-ASR (CAC) - OBC80	71	84	0	0	0	0	0	0		0
492 :	ENERGY-ASR (CAC) -HOUSES	84	5	0	o	0	0	•	0		o
1 261	ELEC-CAC-AC-HOUSES	117	8	0	0	0	0	0	0		0
464	ELEC-CAC-AC (APT)	117	85 1131	51 0.	3137	0	•	•	0		0
195	ENERGY-CAC-RES	85	86	0	0	0	ò	121	21.54525		0
	· ·		•					•			

212

1 4554891.64 1 2053043.40 1 3097326.31 1 1396069.51 1 1720736.84 1 1720736.84

0

00

00

0

0

C

841081 634

 \sim

o

189243356.7 189243356.7

0000000

18924336.7

10250682.

o

7

¢

94459076.6

C

~

000

1 94459076.6 1 94459076.6

00

Ċ

	H	== en ==	:: ఆ	:: 0	ш	ы. ==	== ,	9	 # ::		5			11	 X
496 ENERGY-RES-AC		86	1000	0	0		0	Ÿ	0	0	0	_	0	0	0
497 1 ELEC-RES-APP<G	LTG	117	1000	•	Õ		0	Ţ	121	115.3790	0	_	0	0	0
498 645-C68-C41-SH	Ŧ	106	87	0	0		0	Ŭ	0	0	0		0	1 8450	8450.50782
499 : 6AS-16B-C&1-SH		106	87	0	0		0		•	0	0	_	0	1 6428	. 99666
	E.	114	87	0	•		0	Ŭ	•	0	0	_	0	1 5609	5609.79326
	5	117	87	Ô	0		0	Ŭ	•	0	0	_	٩,	1 5083	5083.25731
	SK	117	87	0	0		0	Ŭ	0	•	0		°	1 6523	6523.86697
503 ENERGY-NUBDGS-C&I-SH	-Cti-SH	87	88	0	0		0	Ŭ	121	194.1356	0	_	0	0	0
	-C&I-SH	87	88	¢	•		0	Č	121	60.7804	0		0	0	0
SO5 ENERGY-C&I-SH	-	88	1000	0	0		0	<u> </u>	•	0	¢	_	Ö	0	0
506 1 GAS-BLR-C&I-WH	н	106	89	o	0		•	Ŭ	•	0	0	_	0	1 1720	736.84
507 : ELEC-BLR-C&I-NH	÷.	117	68	0	•		0	Č	•	°	0		0	1 1396	396069.51
		89	1000	•	0.		0	Č	121	14.38795	0		0	0	0
509 : ELEC-CAI-AC	•	117	6	0	0		0	Ű	•	•	0	_	•	0	0
		90	1000	0	0		0	~	121	17.45777	0		0	0	0
	LL T6	117	1000	0	Ō		0	Ű	121	100.7157	0		0	0	0
512 GAS-BLR-I-IH	-	106	16	0	•		0	Č	0	0	0	_	0	1 749763.4	63.628
11-1-BLR-I-IH		115	91	Ö	•		0	Ö	0	0	0		0	1 1025	1025364.52
		ы	16	0	0		0	0	0	0	0		0	1 2265237	237.36
		16	1000	0	0		0	9	121	572.9435	0	_	0	0	0
516 1 6AS-BR-1-DH		106	92	1131	0.08		0	0	o	0	0		0	0	0
		115	52	1131	0.08		0	0	•	0	0		0	0	•
518 ELEC-HD-1-DH		117	72	0	~		ò	0	•	0	0		0	0	0
		ы	5	1131	0.83		0	0	0	0			•	0	0
520 ENERGY-1-DH	Ø.	22	1000	0	0		0	0	121	544.0825	0		0	<u> </u>	•
521 ; ELEC-ENLEL.CHMLS-	M.S-I	117	1000	•	•		0	0	121	24.4040	0		0	0	0
522 6AS-I-UTL	-	101	56	•	0		0	0	•	0	0		0	0	0
523 1 ELEC-1-UT		111	, 9 3	1131	0.35		0	0	0	0	0		•	0	0
		114	56	0	Ô		0	0	•	0	0		0	o	0
525 ENERGY-1-UTL		56	1000	0	0		0	Ö	121	151.7872	0		0	0	0
526 1 PROPANE-I-PPC		107	16	0	-		0	0	0	0	0		0	0	0 0
527 08PPCF-1-REF		116	16	0	0		0		•	•	- -		0	0	
		46	1000	•	•		•	0.	121	136, 1212	° \		•	Q	Ģ

ź

AB :: --AA 22 ~ ,== 22 :: :: > :: T ::U:: ഗ :: oc; 8

> ii X

F

AC :-

	0		-	o (0 0	0 0	00	1 PJ/yr	ų	·	ŗ				
0	-	õ	_	•	¢	0	0		,		ş	4	-	~	
0	-	-	Ö	.87	0	0	0		•	C0C9	84	2	ø	0.08	•
ð	-	0		0.8	0	0	0			4683	63	2	-9	0.08	
•	_	0		0.75	0	0	0	0.001 TJ/yr) Z	4107	76	20	9	0.08	
0	-	0	~	0	0	0		· · ·		4107	` BE	20	\$	0.08	
0	_	0	~	0	0	0	0	0.001 TJ/yr		980	0	20	-	0.08	
0	_	0	_	0	0	0	ò	1 PJ/yr					ر		
0		0	Ċ.	0	0	?	0	1 PJ/yr							
0	_	0	•	o	0	•	0	1 PJ/yr)					
0		.0	_	0.8	0	0	0	* 1 PJ/yr	¢.	265	•	20		0.08	
0	-		~	0	0	0	0	1 PJ/yr		215	0	20		0.08	
0		0	0	0	0	0	0	1 PJ/yr							
0	_	0	_	r	0	0	0	1 PJ/yr							
0		o	~	0	0	0	 0	1 PJ/yr		•					
0		ō	~	0	0 ,	0	0	1 PJ/yr							
•		0	-	0.8 (0	•	0	1 PJ/yr		2260	235	20	0,08		
0		0	0	0. 75	0	0	0	1 PJ/yr		3200	310	20	0.08		
0		0	_	0. B	0	0	0	1 PJ/ÿr		7500	640	20	0.08		
0		0	0	0	0	0	0	i PJ/yr							
0		0	0	0	0	0	0	1 PJ/yr							
0		0	0	0	0	0	0	1 PJ/yr		-					
0		0	•	0	0	0	0	1 PJ/yr		-					
0		0	0	.87	0	¢	0	1 PJ/yr							
0		0	0	0	0	0	•	1 PJ/yr							
0		0	0	0	0	0	0	1 PJ/yr				-			
0		0	0	Ģ	0	0	Ģ	1_BUTYr							
0		0	0	0	O	0	0	1 PAVYr							
0		0	0	0	0	•	0	1 Púl/yr							
¢		0	0	0	0	0	¢	1-43/yr		<					
0		0	0	0	0	0	0	1 PJ/yr		ت ^					
0		0	0	0	0	•	0	1 PJ/yr							
0		0	0	0	0	0	0	1 PJ/yr	_						

ſġ

 \mathbf{A}

215

ς.

 T	0.00348778	0.00348778	0.00348778	0.00348778	0.00348778	0	0	0.00092077	0.00092077	0.03836580	0.01028011	•	0.00487407	0.00487407	0.00487407	0.0487407	0.00487407	0	0	C/982100.0	0.00128675	0.05361498	0.01436107	0	0 (0	0	0	27749105	27749106	27749105	27749106	
	0 1 0.(0 1 0.0	0 1 0.0	0 1 0.0	0 1 0.0	0	000	0 1 0.0	0 1 0.0	0 1 0.0	0 1 0.0	0	0 1 0 0	0.0	0 1 0 0	0 1 0.0	0 1 0.0	0		G 1 0.0	0 1 0 0	0 1 0.0	0 1 0.0	0	0	0	0	0	0 1 1.2	0 1 1.2	0 1 1.2	0 1 1.2	
×	,	-		-	_	_	_	-	_	_	<u>.</u>	_	_	_	_		_	_	_	_	_	_	_	_	_	_			_	_			
~	Ô	0	0	0	0	0	0	0	0_	0	0	•	°.	0	¢	0	0	0	•	•	0	•	0	0	•	0	0	0	¢	¢	0	0	•
	0	0	0	0	0	•	0	0	0	0	0	121083.4	0	0	0	•	0	0	0	0	0	0	0	21069.18	o`	0	99348	0	0	0	0	0	
H H	0	0	0	0	0	۱ 0	0	0	0	0	0	121 12	•	0	0	0	0	0	0	0	0	Ón n	0	121 21	•	0	121 14.	0	0	¢	0	0	
· ص	0	0	0	0	•	0	0	0	0	0	0	•	•	0	0	0	0	0	0	0	0	0	0	0	•	•	0	0	0	•	0	0	
<u>۳۳</u> بعد	•	0	ò	0	0	0	0	0	0	0	0	•	0	•	•	0	0	•	•	0	0	0	•	0	•	0	•	0	•	0	0	0	
 	0	0	0	0	0	0	0	ó	0	0	0.2	0	•	0	0	0	0	•	0	0	0	0	0.2	0	0.004	0	•	•	0	0	•	0	
:: 0	¢	0	0	0	0	0	0	•	0	0	1111	0	0	0	0	0	0	Ģ	0	, 0	o	¢	1111	0	1131	0	0	0	0	0	0	0	
::: ట	95	95	95	95	ጜ	95	22	95	. 95	95	ዮ	1000	104	104	104	104	101	104	104	104	104	104	104	1000		96	1000	47	67	16	16	79	
21 69 21	107	108	109	25	120	110	111	35	36	119	117	32	107	108	109	22	120	110	111	35	36	119	117	104	112	113	96	111	107	25	120	108	
	•																	·										•		•			
Ą	PROPANE-TRN-AUTO	MTHL - TRN-AUTO	ETHL-TRN-AUTO	CN6-TRN-AUTO	LNG-TRN-AUTO	6ASOL INE-TRN-AUTO	DIESEL-TRN-AUTO	NETHESL-TRN-AUTO	ETH6SL-TRN-AUTO	LHYGN-TRN-AUTO	ELEC-TRN-AUTO	ENERGY-TRN-AUTO	PROPANE-TRN-LT. TKS&VAMS	NTHL-TRN-LT, TKSEVANS	ETHL-TRN-LT.TKS&VANS	CNG-TRN-LT. TKS&VANS	.NG-TRN-LT. TKS&VANS	GASOL INE-TRN-LT. TKS&VANS	DIESEL-TRN-LT. TKS&VANS	NETHESL-TRN-LT. TKS&VANS	ETH6SL-TRN-LT, TKS&VANS	LHYGN-TRN-LT. TXS&VANS	ELEC-TRN-LT, TRKSEVANS	ENERGY-TRN-LT. TKS&VANS	AV6AS-TRN-ACRAFT	LIFUEL-TRN-ACRAFT	ENERGY-TRN-ACRAFT	X-BUS	PROPANE-TRN-BUS	· SUB-M	N-BUS	RTHL)-TRN-BUS	
	PROPAN	- MTHL-T	ETHE-1	CN6-TR	LNG-TR	EASOLI	DIESEL	NETHES	ETHESL	LHY6N-	ELEC-T	ENERGY	PROPAN	NTHL-T	ETHL-T	CN6-TR	LN6-TR	6ASOL I	DIESEL	. NETHES	ETHESL	LHYGN-	ELEC-T	ENERGY	AV6AS-	TJFUEL	ENERGY	· DSL-TRN-BUS	PROPAN	CK6-TRN-BUS	LN6-TRN-BUS	RTHC-T	
\mathbf{x}	529	230 4	531	532	533 1	534	535 1	536	537	538 1	539.1	540	241	542 1	543 1	544	545	546 1	547 1	548 :	\$	550 ¦	551 1	22	553	554	555	556	221	558	529	5.50	?

¢

AC										ı.																							
==																																	
AB	'									~																							
											Y																						
AA	114.1	114.1	114.1	114.1	114.1	114.1	114.1	114.1	114.1	114.1	80.7		114.1	114.1	114.1	114.1	114.1	114.1	114.1	114.1	114.1	114.1	80.7					114.1	114.1	114.1	114.1	114.1	114.1
	_	_	~	_		_	~	_	_	_	_	•	_				_	_	_	_		_						_	_				_
1	0.08	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0 8	0.0	0.0	0.0	0.0	0.08	0.0	0.0					0.0	0	0.0 8	0.0	0.08	0.0
==	~	~	~	~	~	~	~	_	_	_	_			_	_	_		_	_	_	_	_	_					`	-			-	_
7	×	H	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ä	¥		ĭ	₽	¥	≌	Ľ	Ξ	Ξ	¥	10	2	Ξ								~		~
==	0	0	ŝ	0	0	0	0	0	0	2	0		g	õ	0	0	0	0	¢	0	0	Q	9					ő	o	ç	0	Q	õ
×	ŭ	ស	ŭ	ž	ž			120	1	20	150		50	ñ	ñ	20	• 50			5	120	500	150		·				150	150	150	1500	150
::	•.					•																								••			
_																																	
1	۲۲	γr	γr	/yr	ΥT γ	γr	'yr	'yr	'yr	γr	۲.	IS/YF	Υŗ	۲,	۲, ۲	۲۲	'YT	'γr	۲۲	۲ŗ	λr	۲r	7	IS/yr	'yr	۲r	۲r	ž	<u>بر</u>	,ΎΓ	۲	PJ/yr	Y
==	1 PJ.	I PJ	L PJ	I PJ	I PJ	I PJ	1 PJ	1 PJ	1 P3.	I PJ	1 PJ.	1 Mki	I PJ	1 PJ/	1 PJ	1 PJ	I PJ	1 PJ/	1 PJ	I PJ	I PJ	I PJ	L PJ	1 Re	L PJ	I PJ/	I PJ/	1 PJ/	I.L.	1 PJ/	I PJ/	I PJ/	1 PJ/
>																													ł				
110	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ó	0	ام	0	0	0
н Н	0	0	0	0	0	0	Q	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	o	0	0	•	0	0	ŕ	•	0	0
==	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	c	0	0
Ś		•							•																	•				`			
=	0 B	80	80	80	80	<u> 38</u>	80	9 8	98	<u>98</u>	~ ?	0	86	86	86	86	86	69	86	69	69	63	-	0	22	B	0	26	51	2 f	54	24	5
œ	386.	386.	386.	386.	386.	350.	386.	350.	350.	350.	555		287.	287	287.	287.	287.	261.	287.	261.	261.	261.	414		0	6		6	0	0	0	0.24	0
181	-	-		-			-1	-				0		-			-	-		-				0			ò	-	-	-	-		-
<u>a.</u>	0	0	0	0	0	0	<u>o</u>	0	0	٦	0	0	0	0	0	0	0	0	0	0	0	¢	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0
																			·														,
	0	0	0	0	0	0	0	0	0	0	0	¢	0	0	0	0	0	0	0	0	¢	0	0	0	0	ò	0	Ô	•	•	0	0	¢
										*-																							
	23	530	531	532	53	23	555	536	23	538	523	540	541	542	543	HS.	545	246	547	248	549	550	551	552	553	254	555	556	557	558	559	560	561

خت

217

ø ١ יושוויכ וו ס וו ב וו ד וו 6 וו א וו ט וו ט וו א וונו ד

1 12.7749106 0

0

0

0

0.47 0.47

0 0 1131

121 2.267036

0

0 753185

00

2

4

00

E

0 0

LHYGN-TRN-BUS	ENERGY-TRN-BUS	DIESEL-TRN-MRN	. HOIL-TRN-MRN	ENERGY-TRN-MRN	DSL-TRN-RAIL	ELEC-TRN-RAIL	ENER6Y-TRN-RAIL	DIESEL-TRN-TRUCK	PROPANE-TRN-TRUCK	CNG-TRN-TRUCK	LNG-TRN-TRUCK	NTHL-TRN-TRUCK	ETHL-TRN-TRUCK	LHYGN-TRN-TRUCK	ENERGY-TRN-TRUCK	ELEC-TRH-STC&SBY	
											~-						
562	563	564	565	566	567	568	569	570	27	572	573	27	513	576	277	578	

218

0

0

121 18.52843 121 1.609729

0

Q

ij

8

4

3

3

26.6143971

1 2.66143971 1 2.66143971 1 2.66143971

00000

0

0

00

000

6.596791

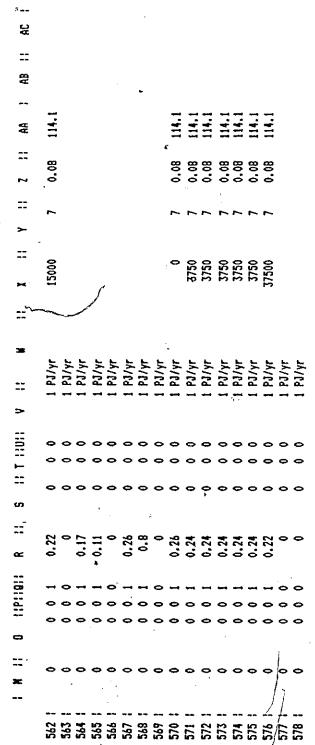
000

000

0

2.66143971 2.66143971

7


Q

Q

o

00

~

F.

ģ

A.2 Scenario spreadsheet

The scenario spreadsheet contains supply price data and parameters that generate end-use demands. The latter are used by formulae entered in this spreadsheet. The spreadsheet entries are self explanatory. Data entry is in column D from row 3 to row 45. The end-use demand formulae are entered in column C from row 49 to 75. The following pages display this spreadsheet.

220

11 1 11 A R D SCENARIO SPECIFICATIONS (All data entry in column D) 1 : 2 1 Supply Resources Cost Data for the year 2021 (1985 Dollars) Natural Gas Southern Ontario \$/1000's of Mcf 6210 3 : \$/1000's of Hcf 4 1 Mck.-Bft/East/Arc 6210 Propane , 5 ł Western Canada \$/Nillions of Lts 300000 6 1 Coal \$/1000's of Ths 128000 Western Canadian 7 1 North-Eastern US \$/1000's of Ths 97000 8 1 Crude Oil Frgn/Reg. Imp. \$/1000's of Brls 49000 91 \$/Tonne Uranium Saskat/Ont. 297000 10 1 Nood Ontario \$/1000's of Ths 82000 11 1 Saskatchewan Lignite \$/1000's of Tns 71000 12 1 Corn Untario \$/1900's of Ths 198000 13 1 Barley Ontario \$/1000's of Tns 191000 14 | Wheat \$/1000's of Ths Ontario. 225000 .15 1 Electricity Exports c/kWh 4.533 16 1 Electricity Imports c/kWh 6.121 17 1 Gasoline - Imports \$/Cubic Metres 380.38 18 1 Diesel - Imports \$/Cubic Hetres 👎 380.38 19 1 Aviation Gasoline - Imports \$/Cubic Metres 380.38 Turbo Jet Fuel - Imports \$/Cubic Hetres 380.38 20 | 21 | Light Fuel Oil - Imports \$/Cubic Netres 380.38 22 | Heavy Fuel Oil - Imports \$/Cubic Metres 380.38 23 | Petroleum Pr. & PCF - Imports \$/Cubic Metres 380.38 24 | Gasoline - Exports \$/Cubic Netres 377.28 25 1 Diesel - Exports \$/Cubic Metres 377.28 26 1 Aviation Gasoline - Exports \$/Cubic Hetres 377.28 27 1 Turbo Jet Fuel - Exports \$/Cubic Metres · 377.28 28 | Light Fuel Oil - Exports \$/Cubic Metres 377.28 29 | Heavy Fuel Oil - Exports \$/Cubic Hetres 377.28 30 1 Petroleum Pr. & PCF - Exports \$/Cubic Metres 377.28 31 1 End-use Demand Estimation (Data entry in column D) Population in 2021 (Millions) 32 1 10.4764 33 : # of households in 2021 (Millions) 5.5979 34 | Fraction of Houses 0.61 35 | Fraction of Apartments 0.39 36 1 Fraction of new R2000SH 0.45 37 | Fraction of new ISH 0.5 38 1 Fraction of new CBCH 0.05 39 1 Fraction of housing units with a/c 0.8 40 1 C&I(new buildings) fr. improvement in heating load 0.3 41 1 C&I Floor-space trend 2.51 Industrial production trend 42 1 1.82 43 1 Transportation trend (all categories t. 44 1 excepto passenger cars) 45 1 Passenger cars and Light trucks&Vans trend 1.55 46 1 47 1

٦

221

48 1

							``	
	1	:	A	11	B	11	C	ł
49	1	ENERG	Y-R2	000SH-SH			1	6.10
50	ł	ENERS	Y-IS	H-SH			4	3.65
51	ləş	ENERS	Y-CB	CH-SH			9	7.04
52	ł	⁴ ENER8	Y-NN	APTS-SH			1	9.15
53	Ł	ENERE	iY-OD	APTS-SH			1	1.94
54	1	ENERE	iY-NH				11	4.24
55	ł	ENERG	Y-NU	i-ac	l.		1	15,94
56	ł	ENER	iy-Ca	C-AC			:	21.55
57	ł	ENER	iY-AP	P<G			11	15.38
58	ł	ENERE	Y-NK	C&I-SH			19	74.14
59	ŀ	ENER	6Y-00	C&I-SH			l	50.78
60	ţ	ENERG	SY-C&	I-WK			1	14.39
61	1	ENER	5Y-C8	I-AC			1	47.46
62	1	ENERE	iY-C8	I-EQ&LG			10	00.72
63	ł	ENER	iY-I-	·IH		• •	53	72.94
64	ł	ENER	iY-I-	DH			Si	44.08
65	ł	ENERE	iY-1-	EL.DR&P			2	54.40
66	ł	ENER	iY-I-	UTLS	•		15	51.79
67	ł	ENER	iY-PC	F&PP	n		4	36.12
68	ł	DIST-	TRN-	AUTO			1210	83.40
69	ł	DIST-	TRN-	L.TS&VS			210/	69.18
70		THEO						

64 1 8 65 I E E ÷Ę 68 i I 69 I I 70 | ENERGY-TRN-BUSES 71 : ENERGY-TRN-RAIL 72 | ENERGY-TRN-MRN 73 | ENERGY-TRN-AIRCRAFT

ン

ð

-3

٢

74 I ENERGY-TRN-TRKS 75 1 ENERGY-TRN-SWAY 222

۲

11 Ð 1

2.27

6.60

2.75

14,99 18.53

1.61

ſ

Å Appendix b

MODEL RESULTS FOR THE LOW, BASE AND HIGH ENERGY

DEMAND SCENARIOS

The following pages show detailed results for the low, base and high energy demand scenarios.

 \hat{T}

NODEL NAME:		Optimisation Model
SOLUTION	Low Energy Dem	•
OBJECTIVE FUNCTION VALUE	Dollars	2.862756000E+10
MARGINAL COST		
Node Name	Units	Value
Gas Supply	\$/PJ	<u>∿</u> 6808000
Propane Supply	\$/PJ	9568283
Coal Supply	\$/PJ	4253200
Uranium Supply	\$/PJ	1959000
Wood Supply	\$/PJ '	. 3654249
Syncrude	\$/PJ	6628000
Refineries Dist.	\$/PJ	9691000
Gas-Gasoline (Mobil)	\$/PJ	13836400
6as-Methanol	\$/PJ	11091220
6as-ethanol	\$/PJ	412160.8
Gas-Liquid Hydrogen	€́/PJ	0
Coal-6sl+Dsl (FT-SASOL)	\$/PJ	16402620
Coal-Gasoline (ZnCl2)	\$/PJ	7898089
Coal-Gasoline (Mobil)	\$/PJ	1436107
Coal-Methanol	\$/PJ	11090480
Coal-Ethanol	\$/PJ	0
Coal-Liquid Hydrogen	\$/PJ "	0
Nood-Nethanol	\$/PJ	894160.8
Hood-Ethanol	\$/PJ	0
Corn-Ethanol	\$/PJ	4970161
Barley-Ethanol	\$/PJ	6823161
Wheat-Ethanol	\$/PJ	, 5290161
Methanol	\$/PJ	7665161
Ethanol	\$/PJ	8788161
CNG	\$/PJ	12808590
LNG	\$/PJ	13995120
Gasoline	\$/PJ	9206175
Diesel	\$/PJ	10391160
Aviation Gasoline	\$/PJ	9206175
Turbo Jet Fuel	\$/PJ	. 10391160
Light Fuel Oil	\$/PJ	10391160
Heavy Fuel Oil -	, \$/PJ	10996280
PCF+Petroleum Products	\\$/PJ	10996280
Methanol-Gasoline (MOBIL)	€KPJ	B408658
Nethanol Gasgline	\$/PJ	11644110
Ethanol Gasoline	\$/PJ \	11724460
Elec / Gas-SBC	\$/PJ -	20023530
Elec / Gas-SPC	\$/PJ	19429230
Elec / LF Oil-CTU	\$/PJ	13533410
. Elec / HF Oil-SBC	\$/PJ	11446410
Elec / Coal-PFC1	\$/PJ	11559410
<pre>> Elec / Coal-PFC2</pre>	\$/PJ	11681410

224

.

X

LDN SCENARIO

Node Name	Units
	`
Elec / Coal-AFBC	\$/PJ
Elec / Lignite-	\$/PJ
Elec / Uran-New Darl	\$/PJ
Elec / Uran-Existing Darl	\$/PJ
Elec / New Hydro (Large)	\$/PJ
Elec / Existing Hydro	\$/PJ
Elec / Mun. Refuse	\$/PJ
Seasonal Peak	\$/PJ
Daily Peak	\$/PJ
Cycling	\$/PJ · · · ·
Base	\$/PJ
Electricity	\$/PJ
Electricity-Liquid Hydrogen	\$/PJ
Liquid Hydrogen	\$/PJ
Heat-Pump / R2000 SH	\$/PJ
Heat Pump + Backups / R2000'SH	\$/PJ
Wood Furnace + Backups / R2000 SH	
Active Solar / R2000 SH	\$/PJ
Heating Devices / R2000 SH	\$/PJ
· · · · · · · · · · · · · · · · · · ·	\$/PJ
· · · · · · · · · · · · · · · · · · ·	\$/PJ
	\$/PJ
· · · · · · · · · · · ·	\$/PJ
•••• ••• •	
	\$/PJ */DT
· · · · ·	\$/PJ
	\$/PJ
	\$/PJ
• • • • • •	\$/P3
	\$/PJ
	\$/PJ
	\$/PJ
	\$/PJ
• •	\$/PJ
	\$/PJ
	\$/PJ
Active Solar - WH / Houses	\$/PJ
Active Solar + WH Backups / Houses	
Water Heating Devices / Houses	\$/PJ
Water Heating Devices / Apts	\$/PJ
	\$/PJ
Heating Devices / C&I	\$/P3
C&I Space Heating	\$/PJ
C&I Water Heating	\$/PJ
-	\$/PJ
· · · · · · · · · · · · · · · · · · ·	

Value[®]

· •

LOW SCENARIO

Units

Node Name

Ind. Indirect Heat \$/PJ \$/PJ Ind. Direct Heat Ind. Utilities \$/PJ Ind. PCF + PP \$/PJ Automobiles \$/PJ Aircraft \$/PJ **Buses** \$/PJ Harine \$/PJ Rail \$/PJ Trucks \$/PJ **Gasolines - Ref 2** \$/PJ Distillates - Ref 2 \$/PJ H.Oil&PCF&PP - Ref 2 \$/PJ Lt.Trucks & Vans \$/PJ Small Hydro \$/PJ **Gas TrankDist** \$/PJ Propane Tran&Dist \$/PJ Methanol Tran&Dist \$/PJ Ethanol Tran&Dist \$/PJ Gasoline Tran&Dist \$/PJ Diesel Tran&Dist \$/PJ Aviation Gasoline Tran&Dist \$/PJ Jet fuel Tran&Dist \$/PJ Light Fuel Oil Tran&Dist \$/PJ Heavy Fuel Oil Tran&Dist \$/PJ PCF & Petrochemicals Tran&Dist \$/PJ Electrical Tran&Dist \$/PJ Wood Tran&Dist \$/PJ Liq. Hydrogen Tran&Dist \$/PJ LNG Tran&Dist \$/PJ Refinery - 2 (High Cosplexity) \$/PJ Refinery - 1 (Low Complexity) \$/PJ Gasolines - Ref 1 \$/PJ Distillates - Ref 1 \$/PJ Heavy Dils - Ref 1 \$/PJ Electricity Imp/Exp \$/PJ Electricity Exports - Transmission\$/PJ Mun.Ref Elec - CY \$/PJ-Mun.Ref Elec - BS \$/PJ Mun.Ref Elec - Power \$/6W Hydro Elec - >10 NW -SP \$/PJ Hydro Elec - >10 MW -DP \$/PJ Hydro Elec - >10 HW -CY \$/PJ Hydro Elec - >10 MW -BS \$/PJ Hydro Elec - >10 MW -POWER \$/6₩ Hydro Elec - 2-10 MW -SP \$/PJ Hydro Elec - 2-10 MW -DP \$/PJ Hydro Elec - 2-10 MW -CY \$/PJ

Value

E.

SCENARIO LOW

Node Name	Units	Value	
Hydro Elec - 2-10 MW -BS	\$/PJ	2856000	
Hydro Elec - 2-10 MW -POWER	\$/6W	0	
Hydro Elec - EXISTSP	\$/PJ	-191386000	
Hydro Elec - EXIST, -DP	\$/PJ	-11586180	
Hydro Elec - EXISTCY	\$/PJ	40840	
Hydro Elec - EXISTBS	\$/PJ	-2179063	
Hydro Elec - EXISTPOWER	\$/6N_	-254039500	
Hydro Elec - ≻10 MW - Peak	\$/PJ	0	•
Hydro Elec - >10 MW - Peak - SP		0	•
Hydro Elec - >10 MW - Peak - DP		0	-
Hydro Elec - >10 MW - Peak - Po	xer\$/6W	0	
Hydro Elec - EXIST Peak	\$/PJ	15229710	
Hydro Elec - EXIST Peak - SP		7614857	
Hydro Elec - EXIST Peak - DP		7614857	
Hydro Elec - EXIST Peak - Po	rer\$/6W *	-19871690	
Electricity Imports VARIABLES	\$/PJ	5739193	
Variable Name	Units	Value	Reduced Cost
GAS ONT	1000 Hcf/yr	5514.015	0
GAS-MAC-BFT/EAS.OFF/ARCTIC ISL.	1000 Hcf/yr	713608.8	0
PROPANE-WEST	KLts/yr	• 0	· 4581717
COAL-NEST	1000 Tns/yr	9994.066	0
COAL-US	1000 Ths/yr	22806.27	. 0
CRUDEOIL-FOREIGN/REGIONAL INP.	1000 Brls/yr	115291.6	0
URANIUM-SASKAT	Tns/yr	2546.469	- O
NOOD-ONT	1000 TNS	0	1255751
LIGNITE-SASKAT.	}1000 Tns/yr	0	2675716
EXISTING HYDRD - PEAKING UNITS	6Wh/yr	1516.388	-15229710
NEW HYDRO (>10 MW) - PEAKING (JNIGWh/yr	0	0
EXISTING HYDRD - ALL CATEG.	6Wh/yr	22501.62	0
NEW HYDRD (>10NW) - ALL CATES.		4073.333	-4570407
SMALL HYDRD (2-10 HW) - ALL CATE	,	628.0554	-3520407
CORN-ONT-ETHL	1000 TNS	0	14993560
BARLEY-ONT-ETHL	1000 TNS	0	13787370
WHEAT-ONT-ETHL	1000 TNS	0	17302460
NUNREFUSE-ELEC	6Wh/yr	780.0556	0
COAL-SYNCRUDE	PJ/yr	0	615753.6
GAS-6SL(NDBIL)	PJ/yr	0	0
COAL-GSL (ZNCL2)	PJ/yr	0	0
COAL-6SL (MOBIL)	PJ/yr	0	3816195
COAL-GSLDSL (SASOL)	PJ/yr		. D
ELEC-GAS-GSL(NOBIL)	PJ/yr	0	0.
ELEC-COAL-6SL(NOBIL)	PJ/yr	0	0
6AS-MTHL	PJ/yr	0	0
COAL-NTHL	PJ/yr	0	0
NOOD-NTHL	PJ/yr	0	3279685
ELEC-GAS-NTHL	PJ/yr	0	0
NTHL-6SL (NOBIL)	PJ/yr	0	929014.1
•	•		

ţ

٠.

LON SCENARIO

Variable Name	Units		Value	Reduced Cost
ELEC-MTHL-6SL(KOBIL)	PJ/yr		0	0
GAS-ETHL	PJ/yr		0	6947760
COAL-ETHL	PJ/yr		0	0
WOOD-ETHL	PJ/yr		0	0
COAL-CORN-ETHL	PJ/yr		0	0
COAL-BARLEY-ETHL	PJ/yr		0	0
COAL-WHEAT-ETHL	PJ/yr		0	0
ELEC-GAS-ETHL	PJ/yr		0	0
GAS-COAL-ETHL	PJ/yr		0	77799640
ELEC-COAL-ETHL	PJ/yr	n de la companya de la compan	0	0
ELEC-WOOD-ETHL	PJ/yr		0	73236440
COAL-LHYGN	PJ/yr	. /	0	. 0
GAS-LHYGN	PJ/yr	.)	. 0	. 0
ELEC-LHYGN	PJ/yr	1	0	0
ELEC-COAL-LHY6N	PJ/yr	• /	0	47150720
ELEC-GAS-LHYGN	PJ/yr		0	51282590
SYNCRUDE-REF	TJ/yr		Ó	0
CRUDE-REF 1 (LOW COMPLEX,)	TJ/yr		703278.8	0
CRUDE-REF 2 (HIGH COMPLEX.)	TJ/yr		. 0	783415.5
REF 2-GASOLINES	TJ/yr		Ō	0
REF 2-DISTILLATES	TJ/yr	-	ŏ	ů 0
REF 2-H.OIL&PCF&PP	TJ/yr		Ŏ	. 0
REF 2-PROPANE	TJ/yr s		ŏ	ů O
6SL 2-GASOLINES	TJ/yr	*	Ŭ.	. 0
DSL 2-DISTILLATES	TJ/yr		0	. 0.
AGSL 2-GASOLINES	TJ/yr		. 0	0
TJF 2-DISTILLATES	TJ/yr	L	ŏ	Ő
LFO 2-DISTILLATES	TJ/yr	•	ů.	ů
HFO 2-H.OIL&PCF&PP	TJ/yr		. 0	Ő
PCF&PP 2-H.OIL&PCF&PP	TJ/yr		ů	Ŭ
REF 1-GASOLINES	TJ/yr		113592.5	0
REF 1-DISTILLATES	TJ/yr		197473.5	0
REF 1-H.OIL&PCF&PP	TJ/yr		358295.8	. 0
REF 1-PROPANE	TJ/yr		4379.316	. 0
6SL 1-6ASOLINES	TJ/yr 🕾		113392.5	
DSL 1-DISTILLATES	TJ/yr		164267.5	0
AGSL 1-GASOLINES	TJ/yr	•4	200.0365	0
TJF I-DISFILLATES	TJ/yr		33206.05	0
LFO 1-DISTILLATES	TJ/yr	•	0	0
HFO, 1-H.OIL&PCF&PP	TJ/yr		41761.41	· 0 ·
PCF&PP 1-H.OIL&PCF&PP	TJ/yr		316534.4	0
6SL-INPORTS	PJ/yr		0	2783825
DSL-IMPORTS	PJ/yr		- U	1598838
AGSL-INPORTS	PJ/yr		0	2783825
TJF-INPORTS	PJ/yr		0	1598938
LFO-IMPORTS	PJ/yr	٥.	0	1578838
HFO-INPORTS	PJ/yr		0	
PCF&PP IMPORTS	PJ/yr		0	993716.5 007714 5
	FU/ YT		V	993716.5

LON SCENARIO

÷

			1
Variable Name	Units	Value	Reduced Cost
GSL-EXPORTS	PJ/yr	. 0	-2693825
DSL-EXPORTS	PJ/yr	0	1508838
A5SL-EXPORTS	PJ/yr	. 0	-2693825
TJF-EXPORTS	PJ/yr	0	-1508838
LFO-EXPORTS	PJ/yr	0	-1508838
HFO-EXPORTS	PJ/yr	0	-903716.5
PCF&PP-EXPORTS	PJ/yr	0	-903716.5
ELEC-CNG	PJ/yr	0	2777954
ELEC-LNG	PJ/yr	0.	2057517
CNG	TJ/yr	43634.85	0.
LNG	TJ/yr	. 0	.0
6SL (NOBIL) -6AS	TJ/yr	<u> </u>	10772290
GSL (ZNCL2)-COAL	TJ/yr		\$7873914
6SL (NOBIL) -COAL	TJ/yr	0	0
GSL (NDBIL) - NTHL	TJ/yr	. 0	0
6SL-COAL (SASOL)	TJ/yr	0	16297450
DSL-COAL (SASOL)	TJ/yr	0	15112460
NTHL-GAS	TJ/yr	0.	7359061
NTHL-COAL	TJ/yr	0	9371322
NTHL-WOOD	TJ/yr	Ŭ .	0
ETHL-GAS	.TJ/yr	0	0
ETHL-COAL	TJ/yr	0	5391839
ETHL-WODD	TJ/yr	0	890839.1
ETHL-CORN	TJ/yr		0
ETHL-BARLEY	TJ/y r	. V • O	0
ETHL-WHEAT	TJ/yr	0	- 0
LHYGN-GAS	TJ/yr	ŏ	- 2512000
LHY6N-COAL	TJ/yr	0	7394000
LHY6N-ELEC	TJ/yr	· 0	32936680
GSL-MTHL6SLBLD	PJ/yr	Ŭ 🖿	0
GSL-ETHL6SLBLD	PJ/yr	0	. 0
NTHL-NTHL6SLBLD	PJ/yr	ŏ	1164479
ETHL-ETHLGSLBLD	DT/um	ů	0
PROPANE-MOBIL (GAS)	TJ/yr	ů.	Ő
PROPANE-MOBIL (COAL)	TJ/yr	, 0	. Ç
PROPANE-NOBIL (MTHL)	TJ/yr	ŏ	õ
GAS-SBC-ELEC	PJ/yr	12.23618	ŏ
GAS-SPC-ELEC	PJ/yr	0	0
COAL-PFC1-ELEC	PJ/yr	ů	155390.3
COAL-PFC2-ELEC	PJ/yr	70.87518	< 1007/10 A
COAL-AFBC-ELEC	PJ/yr		· 0 *
HOIL-SBC-ELEC	PJ/yr '	0	, •
LOIL-CTU-ELEC	PJ/yr	e 0	6996909 7085770
URAN-NWDL-ELEC		•	7095778
URAN-EXDL-ELEC	PJ/yr D1/um	228,8996	0
ELEC-GAS-SBC-SP	PJ/yr	230.85	-2970500
ELEC-GAS-SBC-DP	- 6Wh/yr	1155.638	01.
ELEC-GAS-SPC-SP	5Wh/yr SWh/um	0	4331124
CLCU-0H3-376-37	6Wh/yr	0	6135694

, the

ł

229

٤

Ð,

LON SCENARIO

đ

ŕ

J

ELEC-GAS-SPC-DP GKh/yr 0 4384818 ELEC-LOIL-CTU-SP SMh/yr 0 1589880 ELEC-LOIL-SC-DP GMh/yr 0 40302880 ELEC-HOIL-SBC-SP GMh/yr 0 474000 ELEC-HOIL-SBC-DP GMh/yr 0 8018407 ELEC-HOIL-SBC-DP GMh/yr 0 3018407 ELEC-HOIL-SBC-DP GMh/yr 0 245000 ELEC-COAL-FFCI-SP GMh/yr 0 245000 ELEC-COAL-FFCI-SP GMh/yr 0 0 ELEC-COAL-FFCI-SP GMh/yr 0 33227880 ELEC-COAL-FFC2-SP GMh/yr 0 8024407 ELEC-COAL-FFC2-NP GMh/yr 0 8024407 ELEC-COAL-FFC2-SP GMh/yr 0 8024407 ELEC-COAL-FFC2-NP GMh/yr 0 8024407 ELEC-COAL-FFC2-SP GMh/yr 0 8024417 ELEC-COAL-FFC2-SP GMh/yr 0 1244572 ELEC-COAL-FFC2-SP GMh/yr 0 1244572 </th <th>Variable Name</th> <th></th> <th>Units</th> <th>, · · ·</th> <th>Value</th> <th>Reduced Cost</th>	Variable Name		Units	, · · ·	Value	Reduced Cost
ELEC-LOIL-CTU-SP GNh/yr 0 15887880 ELEC-LOIL-CTU-DP GNh/yr 0 0 ELEC-HOIL-SBC-DP GNh/yr 0 474000 ELEC-HOIL-SBC-DP GNh/yr 0 0 ELEC-HOIL-SBC-DP GNh/yr 0 0 ELEC-HOIL-SBC-DP GNh/yr 0 0 ELEC-HOIL-SBC-DP GNh/yr 0 0 ELEC-HOIL-SBC-DP GNh/yr 0 24000 ELEC-COAL-FFCI-SP GNh/yr 0 24000 ELEC-COAL-FFCI-SP GNh/yr 0 805407 ELEC-COAL-FFCI-SP GNh/yr 0 805407 ELEC-COAL-FFCI-SP GNh/yr 0 805407 ELEC-COAL-FFCI-SP GNh/yr 0 8508460 ELEC-COAL-FFCI-SP GNh/yr 0 8508460 ELEC-COAL-FFCI-SP GNh/yr 0 2444572 ELEC-COAL-FFCI-SP GNh/yr 0 124411900 ELEC-COAL-FFCI-SP GNh/yr 0 124411900	FI FC-FAS-SPC-DP		5Mh/vr		. 0	4384818
ELEC-LOIL-ETU-DP GNN/yr 0 4030280 ELEC-HOIL-SBC-SP GNN/yr 0 474000 ELEC-HOIL-SBC-BP GNN/yr 0 0 ELEC-HOIL-SBC-BY GNN/yr 0 0 ELEC-HOIL-SBC-BYC GNN/yr 0 0 ELEC-HOIL-SBC-BASE GNN/yr 0 0 ELEC-COL-PFCI-DP GNN/yr 0 246000 ELEC-COL-PFCI-DP GNN/yr 0 0 ELEC-COL-PFCI-DP GNN/yr 0 8054407 ELEC-COAL-PFCI-SP GNN/yr 0 8054407 ELEC-COAL-PFCI-SP GNN/yr 0 8092407 ELEC-COAL-PFC2-PP GNN/yr 0 8092407 ELEC-COAL-AFBC-SP GNN/yr 0 2449752 ELEC-COAL-AFBC-SP GNN/yr 0 2441900 ELEC-COAL-AFBC-SP GNN/yr 0 2441900 ELEC-COAL-AFBC-SP GNN/yr 0 2441900 ELEC-COAL-AFBC-SP GNN/yr 0 2441900					Ö	
ELEC-HOIL-SBC-SP GNN/yr 0 40302880 ELEC-HOIL-SBC-DP GNN/yr 0 0 ELEC-HOIL-SBC-DP GNN/yr 0 0 ELEC-HOIL-SBC-DP GNN/yr 0 8018407 ELEC-HOIL-SBC-BASE GNN/yr 0 246000 ELEC-COAL-PFC1-SP GNN/yr 0 0 ELEC-COAL-PFC1-BASE GNN/yr 0 3527880 ELEC-COAL-FFC1-BASE GNN/yr 0 35227880 ELEC-COAL-FFC2-DP GNN/yr 0 8058407 ELEC-COAL-FFC2-SP GNN/yr 0 8058430 ELEC-COAL-FFC2-ASE GNN/yr 0 8508460 ELEC-COAL-FFC2-ASE GNN/yr 0 21445797 ELEC-COAL-AFBC-BASE GNN/yr 0 21445979 ELEC-COAL-AFBC-DP GNN/yr 0 124411900 ELEC-LGTE-ELEC-CYC GNN/yr 0 124411900 ELEC-LGTE-ELEC-DP GNN/yr 0 0 0 ELEC-HMHY(10MN)-DP GNN/yr 0 </td <td></td> <td></td> <td>•</td> <td></td> <td>0</td> <td>0</td>			•		0	0
ELEC-HOIL-SBC-DP 5Nh/yr 0 474000 ELEC-HOIL-SBC-DYC 6Nh/yr 0 0 ELEC-HOIL-SBC-BSE GNh/yr 0 B01807 ELEC-COAL-PFC1-SP SNh/yr 0 35915880 ELEC-COAL-PFC1-DP GNh/yr 0 0 ELEC-COAL-PFC1-DP GNh/yr 0 8054407 ELEC-COAL-PFC1-BASE GNh/yr 0 8054407 ELEC-COAL-PFC1-BASE GNh/yr 0 8054407 ELEC-COAL-PFC2-SP GNh/yr 0 8054407 ELEC-COAL-PFC2-SP GNh/yr 0 8054407 ELEC-COAL-FFC2-SP GNh/yr 0 8054407 ELEC-COAL-FFC2-SP GNh/yr 0 807407 ELEC-COAL-FFC2-SP GNh/yr 0 5497952 ELEC-COAL-FFC2-CVC GNh/yr 0 12441592 ELEC-COAL-FFC-CVC GNh/yr 0 12441900 ELEC-COAL-FFC-ELEC-SP GNh/yr 0 1244190 ELEC-COAL-FFC-ELEC-SP GNh/yr 0				•	0	40302880
ELEC-HOIL-SBC-BASE GNN/yr 0 0 ELEC-HOIL-SBC-BASE GNN/yr 0 369(5880) ELEC-COAL-PFC1-DP GNN/yr 0 246000 ELEC-COAL-PFC1-DP GNN/yr 0 8054407 ELEC-COAL-PFC1-BASE GNN/yr 0 8054407 ELEC-COAL-PFC1-BASE GNN/yr 0 8054407 ELEC-COAL-PFC2-SP GNN/yr 4826.4533 0 ELEC-COAL-PFC2-DP GNN/yr 2341.802 0 ELEC-COAL-PFC2-ASE GNN/yr 0 8092407 ELEC-COAL-AFBC-SP GNN/yr 0 849592 ELEC-COAL-AFBC-DP GNN/yr 0 244592 ELEC-COAL-AFBC-DP GNN/yr 0 2144592 ELEC-COAL-AFBC-DP GNN/yr 0 2144592 ELEC-LOAL-AFBC-DP GNN/yr 0 124411900 ELEC-LOTE-ELEC-SP GNN/yr 0 0 ELEC-LOTE-ELEC-DP GNN/yr 0 0 ELEC-LOTE-ELEC-CVC GNN/yr 0 <td< td=""><td>,</td><td>-2,</td><td>•</td><td></td><td>0</td><td>474000</td></td<>	,	-2,	•		0	474000
ELEC-H01L-SBC-BASE 5Nh/yr 0 8018407 ELEC-C0AL-PFC1-SP GNh/yr 0 246000 ELEC-C0AL-PFC1-SP GNh/yr 0 0 ELEC-C0AL-PFC1-DP GNh/yr 0 0 ELEC-C0AL-PFC1-BASE GNh/yr 0 0 ELEC-C0AL-PFC1-BASE GNh/yr 0 0 ELEC-C0AL-PFC2-SP GNh/yr 0 0 ELEC-C0AL-PFC2-SP GNh/yr 0 0 ELEC-C0AL-PFC2-BASE GNh/yr 0 8028460 ELEC-C0AL-AFBC-SP GNh/yr 0 8028470 ELEC-C0AL-AFBC-SP GNh/yr 0 8092407 ELEC-C0AL-AFBC-SP GNh/yr 0 12441900 ELEC-C0AL-AFBC-SP GNh/yr 0 12441900 ELEC-CAL-AFBC-ASE GNh/yr 0 12441900 ELEC-CAL-AFBC-ASE GNh/yr 0 12441900 ELEC-LGTE-ELEC-DP GNh/yr 0 12441900 ELEC-LGTE-ELEC-CVC GNh/yr 0 0			•		0	0
ELEC-CDAL-PFC1-DP GML/yr 0 246000 ELEC-CDAL-PFC1-BASE GML/yr 0 0 0 ELEC-CDAL-PFC1-BASE GML/yr 0 33227880 ELEC-CDAL-PFC2-BP GML/yr 0 33227880 ELEC-CDAL-PFC2-DP GML/yr 4826.433 0 ELEC-CDAL-PFC2-BASE GML/yr 0 8092407 ELEC-CDAL-PFC2-BASE GML/yr 0 8598460 ELEC-CDAL-AFBC-DP GML/yr 0 8598460 ELEC-CDAL-AFBC-DP GML/yr 0 9708992 ELEC-CDAL-AFBC-DASE GML/yr 0 124492 ELEC-CDAL-AFBC-DASE GML/yr 0 9708992 ELEC-CDAL-AFBC-DASE GML/yr 0 124492 ELEC-CDAL-AFBC-DASE GML/yr 0 124492 ELEC-CDAL-AFBC-DASE GML/yr 0 0 ELEC-CDAL-AFBC-DASE GML/yr 0 0 ELEC-CDAL-AFBC-DASE GML/yr 0 0 ELEC-LGTE-ELEC-DP GML/yr	ELEC-HOIL-SBC-BASE				0	B01B407
ELEC-COAL-PFC1-EYC BWh/yr 0 0 ELEC-COAL-PFC1-BASE GWh/yr 0 8054407 ELEC-COAL-PFC2-SP GWh/yr 0 33227880 ELEC-COAL-PFC2-DP SWh/yr 4826.433 0 ELEC-COAL-PFC2-DP SWh/yr 2341.802 0 ELEC-COAL-FFC2-BASE GWh/yr 0 5499592 ELEC-COAL-AFBC-SP GWh/yr 0 5499592 ELEC-COAL-AFBC-BASE GWh/yr 0 2144592 ELEC-COAL-AFBC-BASE GWh/yr 0 124411900 ELEC-COAL-AFBC-BASE GWh/yr 0 0 0 ELEC-LGTE-ELEC-SP GWh/yr 0 0 0 ELEC-LGTE-ELEC-SP GWh/yr 0 0 0 ELEC-LGTE-ELEC-CYC GWh/yr 0 0 0 ELEC-LGTE-ELEC-CYC GWh/yr 64125 0 0 ELEC-LATE-ELEC-CYC GWh/yr 0 0 0 0 ELEC-LGTE-ELEC-DP GWh/yr 0 0	ELEC-COAL-PFC1-SP	1	•		0	36915880
ELEC-COAL-PFC1-BASE GNN/yr 0 8054407 ELEC-COAL-PFC2-SP GNN/yr 4826.433 0 ELEC-COAL-PFC2-DP GNN/yr 4826.433 0 ELEC-COAL-PFC2-DP GNN/yr 2341.802 0 ELEC-COAL-PFC2-BASE GNN/yr 0 8092407 ELEC-COAL-AFBC-DP GNN/yr 0 2508460 ELEC-COAL-AFBC-DP GNN/yr 0 214492 ELEC-COAL-AFBC-DP GNN/yr 0 214492 ELEC-COAL-AFBC-DP GNN/yr 0 214492 ELEC-COAL-AFBC-DASE GNN/yr 0 708999 ELEC-COAL-AFBC-DASE GNN/yr 0 0 ELEC-LGTE-ELEC-DP GNN/yr 0 0 ELEC-LGTE-ELEC-DASE GNN/yr 0 0 ELEC-URAN-NUDL-BASE GNN/yr 0 0 ELEC-MARY(100N)-DP GNN/yr 0 0 ELEC-MARY(100N)-DP GNN/yr 0 0 ELEC-MARY(100N)-DP GNN/yr 0 0 <td>ELEC-COAL-PFC1-DP</td> <td>-</td> <td>6Wh/yr</td> <td></td> <td>0</td> <td>246000</td>	ELEC-COAL-PFC1-DP	-	6Wh/yr		0	246000
ELEC-COAL-PFC2-SP GWh/yr 0 33227880 ELEC-COAL-PFC2-DP GWh/yr 4826.433 0 ELEC-COAL-PFC2-DP GWh/yr 2341.802 0 ELEC-COAL-PFC2-BASE GWh/yr 0 8092407 ELEC-COAL-FFC2-BASE GWh/yr 0 8192807 ELEC-COAL-AFBC-SP GWh/yr 0 2144952 ELEC-COAL-AFBC-DP GWh/yr 0 2144952 ELEC-COAL-AFBC-BASE GWh/yr 0 124411900 ELEC-LGTE-ELEC-DP GWh/yr 0 0 0 ELEC-LGTE-ELEC-DP GWh/yr 0 0 0 0 ELEC-LGTE-ELEC-DP GWh/yr 63580.46 0 0 0 0 ELEC-LGTE-ELEC-BASE GWh/yr 63580.46 0 0 0 0 0 0 ELEC-NWHY (X10MW)-SP GWh/yr 63580.46 0 0 0 0 0 0 ELEC-NWHY (X10MW)-PEAK USP-E.T.PP3/yr 0 0 0 0	ELEC-COAL-PFC1-CYC		6Wh/yr		0	. 0
ELEC-CDAL-PFC2-DP GMh/yr 4826.433 0 ELEC-CDAL-PFC2-CVC GMh/yr 2341.802 0 ELEC-CDAL-PFC2-CVC GMh/yr 0 B092407 ELEC-CDAL-AFBC-SP GMh/yr 0 G5808460 ELEC-CDAL-AFBC-SP GMh/yr 0 2144592 ELEC-CDAL-AFBC-SP GMh/yr 0 2144592 ELEC-CDAL-AFBC-CYC GMh/yr 0 124411900 ELEC-CDAL-AFBC-BASE GMh/yr 0 0 ELEC-LGTE-ELEC-SP GMh/yr 0 0 0 ELEC-LGTE-ELEC-SP GMh/yr 0 0 0 0 ELEC-LGTE-ELEC-SP GMh/yr 0 0 0 0 ELEC-LGTE-ELEC-SP GMh/yr 0 0 0 0 0 ELEC-LGTE-ELEC-SP GMh/yr 0 0 0 0 0 ELEC-MMY (>10M)-BASE GMh/yr 0 0 0 0 ELEC-NMY (>10MM)-DP GMh/yr 0 0 <t< td=""><td>ELEC-COAL-PFC1-BASE</td><td></td><td>6Wh/yr</td><td></td><td>0</td><td>8054407</td></t<>	ELEC-COAL-PFC1-BASE		6Wh/yr		0	8054407
ELEC-COAL-PFC2-CYC GMh/yr 2341.802 0 ELEC-COAL-PFC2-BASE GWh/yr 0 B092407 ELEC-COAL-AFBC-SP GWh/yr 0 B5808460 ELEC-COAL-AFBC-DP GWh/yr 0 2144592 ELEC-COAL-AFBC-DP GWh/yr 0 2144592 ELEC-COAL-AFBC-BASE GWh/yr 0 124411900 ELEC-COAL-AFBC-BASE GWh/yr 0 0 ELEC-LGTE-ELEC-CYC GWh/yr 0 0 ELEC-LGTE-ELEC-CYC GWh/yr 0 0 0 ELEC-LGTE-ELEC-CYC GWh/yr 64125 0 0 ELEC-URAN-EXDL-BASE GWh/yr 0 0 0 ELEC-URAN-EXDL-BASE GWh/yr 0 0 0 ELEC-NWHY (>10MW)-SP GWh/yr 0 0 0 ELEC-NWHY (>10MW)-PEAK USP-E.T.PPJ/yr 0 0 0 ELEC-NWHY (>10MW)-PEAK UPD-E.T.PPJ/yr 0 0 0 ELEC-NWHY (>10MW)-PEAK UPD-E.T.PPJ/yr <td>ELEC-COAL-PFC2-SP</td> <td></td> <td>6Wh/yr</td> <td></td> <td>0</td> <td>, 33227880 -</td>	ELEC-COAL-PFC2-SP		6Wh/yr		0	, 33227880 -
ELEC-C0AL-PFC2-BASE GWh/yr 0 B092407 ELEC-C0AL-AFBC-SP GWh/yr 0 B5808460 ELEC-C0AL-AFBC-SP GWh/yr 0 2144592 ELEC-C0AL-AFBC-BASE GWh/yr 0 2144592 ELEC-C0AL-AFBC-BASE GWh/yr 0 2144592 ELEC-C0AL-AFBC-BASE GWh/yr 0 6063000 ELEC-COTE-ELEC-SP GWh/yr 0 6063000 ELEC-LGTE-ELEC-DP GWh/yr 0 7139407 ELEC-URAN-MDL-BASE GWh/yr 0 0 ELEC-URAN-MDL-BASE GWh/yr 64125 0 ELEC-NRAN-MDL-BASE GWh/yr 0 0 ELEC-NWHY(S10NW)-SP GWh/yr 0 0 ELEC-NWHY(S10NW)-PEAK UPDWER GW 0 0 ELEC-NWHY(S10NW)-PEAK UPDWER GW 0 0 ELEC-NWHY(S10NW)-SP GWh/yr 0 0 ELEC-NWHY(S10NW)-SP GWh/yr 0 0 ELEC-NWHY(S10NW)-SP GWh/yr 0 <td< td=""><td>ELEC-COAL-PFC2-DP</td><td></td><td>5Wh/yr</td><td></td><td>4826.433</td><td>0</td></td<>	ELEC-COAL-PFC2-DP		5Wh/yr		4826.433	0
ELEC-CDAL-AFBC-SP GMh/yr 0 B5808460 ELEC-CDAL-AFBC-DP GMh/yr 0 2495592 ELEC-CDAL-AFBC-DP GMh/yr 0 2144592 ELEC-CDAL-AFBC-BASE GMh/yr 0 9708999 ELEC-LGTE-ELEC-SP GMh/yr 0 124411900 ELEC-LGTE-ELEC-SP GMh/yr 0 0 ELEC-LGTE-ELEC-CYC GMh/yr 0 0 ELEC-LGTE-ELEC-CYC GMh/yr 643580.46 0 ELEC-LGTE-ELEC-BASE GMh/yr 643580.46 0 ELEC-URAN-HNDL-BASE GMh/yr 64125 0 ELEC-NHNY()10MN)-SP GMh/yr 0 0 ELEC-NHNY()10MN)-SP GMh/yr 0 0 ELEC-NHNY()10MN)-PEAK UPD-E,T.PPJ/yr 0 0 0 ELEC-NHNY()10MN)-PEAK UPD-E,T.PPJ/yr 0 0 0 ELEC-NHNY()10MN)-SP GMh/yr 0 0 0 ELEC-NHNY()10MN)-SP GMh/yr 0 0 0 ELEC-NHNY()10MN)-SP	ELEC-COAL-PFC2-CYC		5Wh/yr		2341.802	<u> </u>
ELEC-COAL-AFBC-DP GWh/yr 0 5499592 ELEC-COAL-AFBC-CYC GWh/yr 0 2144392 ELEC-COAL-AFBC-BASE GWh/yr 0 7008999 ELEC-LGTE-ELEC-SP GWh/yr 0 124411900 ELEC-LGTE-ELEC-SP GWh/yr 0 6063000 ELEC-LGTE-ELEC-DP GWh/yr 0 0 GLEC-LGTE-ELEC-SYC GWh/yr 0 0 ELEC-LGTE-ELEC-BASE GWh/yr 64125 0 CLEC-NAM-WDL-BASE GWh/yr 0 0 ELEC-NAM-Y(>10 MN)-SP GWh/yr 0 0 ELEC-NWHY(>10 MN)-PEAK USP-E.T.PPJ/yr 0 0 ELEC-NWHY(>10 MN)-PEAK UPO-E.T.PPJ/yr 0 0 ELEC-NWHY(>10 MN)-SP GWh/yr 0 0 0 ELE	ELEC-COAL-PFC2-BASE		6Wh/yr		0	B092407
ELEC-COAL-AFBC-CYC GMh/yr 0 2144592 ELEC-COAL-AFBC-BASE GMh/yr 0 9708999 ELEC-LGTE-ELEC-SP GMh/yr 0 124411900 ELEC-LGTE-ELEC-SP GMh/yr 0 6683000 ELEC-LGTE-ELEC-DP GMh/yr 0 0 GLEC-LGTE-ELEC-BASE GMh/yr 0 7139407 ELEC-URAN-MUDL-BASE GMh/yr 63580.46 0 ELEC-URAN-HNDL-BASE GMh/yr 64125 0 ELEC-URAN-EXDL-BASE GMh/yr 0 0 ELEC-URAN-EXDL-BASE GMh/yr 0 0 ELEC-URAN-HNDL-PASE GMh/yr 0 0 ELEC-URAN-EXDL-BASE GMh/yr 0 0 ELEC-NHY (>10NM)-PEAK USP-E.T.PPJ/yr 0 0 0 ELEC-NHY (>10NM)-PEAK USP-E.T.PPJ/yr 0 17937580 0 ELEC-NHY (>10NM)-PEAK UPOWER GM 0 0 0 ELEC-NHY (>10 NN)-PEAK UPOWER GMh/yr 0 0 0 ELEC-NH	ELEC-COAL-AFBC-SP		6Wh/yr		0	85808460
ELEC-COAL-AFBC-BASE 6Wh/yr 0 9708999 ELEC-LGTE-ELEC-SP 6Wh/yr 0 124411900 ELEC-LGTE-ELEC-DP 6Wh/yr 0 6063000 ELEC-LGTE-ELEC-CYC 6Wh/yr 0 7139407 ELEC-LGTE-ELEC-BASE 6Wh/yr 63580.46 0 FLEC-URAN-NNDL-BASE 6Wh/yr 64125 0 ELEC-URAN-NNDJ-BASE 6Wh/yr 0 0 ELEC-UNAN-Y)10MN-SP 6Wh/yr 0 0 ELEC-NWHY(>10MN)-DP 6Wh/yr 0 0 ELEC-NWHY(>10MN)-PEAK USP-E.T.PPJ/yr 0 0 0 ELEC-NWHY(>10MN)-PEAK UDP-E.T.PPJ/yr 0 0 0 ELEC-NWHY(>10MN)-PEAK UDP-E.T.PPJ/yr 0 128456400 0 ELEC-NWHY(>10MN)-PEAK UDPWER 6Wh/yr 0 17937580 ELEC-NWHY(>10MN)-PEAK UPOWER 6Wh/yr 0 0 ELEC-NWHY(>10 MN)-DP 6Wh/yr 0 0 ELEC-NWHY(>10 MN)-PEAK UPOWER 6Wh/yr 0 0 ELEC-NWHY(>	ELEC-COAL-AFBC-DP		6Wh/yr	*	· 0	5499592
ELEC-LGTE-ELEC-SP ENh/yr 0 124411900 ELEC-LGTE-ELEC-DP GWh/yr 0 6063000 ELEC-LGTE-ELEC-DP GWh/yr 0 7139407 ELEC-LGTE-ELEC-BASE GWh/yr 0 7139407 ELEC-URAN-NWDL-BASE GWh/yr 63580.46 0 ELEC-URAN-EXDL-BASE GWh/yr 64125 0 CLEC-WHY(>10NN)-SP GWh/yr 0 0 ELEC-NWHY(>10NN)-SP GWh/yr 0 0 ELEC-NWHY(>10NN)-SP GWh/yr 0 0 ELEC-NWHY(>10NN)-PEAK USP-E.T.PPJ/yr 0 0 0 ELEC-NWHY(>10NN)-PEAK UPOWER GWh/yr 0 17937580 ELEC-NWHY(>10NN)-SP GWh/yr 0 17937580 ELEC-NWHY(>10NN)-DP GWh/yr 0 0 ELEC-NWHY(>10NN)-SP GWh/yr 0 0 ELEC-NWHY(>10NN)-CVC GWh/yr 0 0 ELEC-NWHY(>10NN)-CVC GWh/yr 0 14258000 ELEC-NWHY(>10NN)-SP-ENGY TO PWR PJ/yr <td>ELEC-COAL-AFBC-CYC</td> <td></td> <td>6Wh/yr</td> <td>•</td> <td>. 0</td> <td>2144592</td>	ELEC-COAL-AFBC-CYC		6Wh/yr	•	. 0	2144592
ELEC-LGTE-ELEC-DP GWh/yr 0 6063000 ELEC-LGTE-ELEC-CYC GWh/yr 0 0 ELEC-LGTE-ELEC-BASE GWh/yr 0 7139407 ELEC-LGTE-ELEC-BASE GWh/yr 63580.46 0 ELEC-URAN-ENDL-BASE GWh/yr 64125 0 ELEC-NWHY(S10MN)-SP GWh/yr 0 0 ELEC-NWHY(S10MN)-PEAK USP-E.T.PPJ/yr 0 0 ELEC-NWHY(S10MN)-PEAK UPD-E.T.PPJ/yr 0 0 ELEC-NWHY(S10MN)-PEAK UPD-E.T.PPJ/yr 0 0 ELEC-NWHY(S10MN)-PEAK UPDWER GW 0 0 ELEC-NWHY(S10MN)-PEAK UPDWER GW 0 0 ELEC-NWHY(S10MN)-SP GWh/yr 0 17937580 ELEC-NWHY(S10MN)-SP GWh/yr 0 0 0 ELEC-NWHY(S10MN)-SP GWh/yr 0 0 0 ELEC-NWHY(S10MN)-SP GWh/yr 0 0 0 ELEC-NWHY(S10MN)-SP GWh/yr 0 0 <td>ELEC-COAL-AFBC-BASE</td> <td></td> <td>6Wh/yr</td> <td></td> <td>0</td> <td>9708999</td>	ELEC-COAL-AFBC-BASE		6Wh/yr		0	9708999
ELEL-LDITE-ELELD BMN/yr 0 B083000 ELEC-LGTE-ELEC-CYC GMN/yr 0 0 ELEC-LGTE-ELEC-BASE GMN/yr 0 7139407 ELEC-URAN-NWDL-BASE GMN/yr 64125 0 ELEC-URAN-NWDL-BASE GMN/yr 64125 0 ELEC-UNAN-EXDL-BASE GMN/yr 0 0 ELEC-UNAN-EXDL-BASE GMN/yr 0 0 ELEC-NMHY(>10MN)-SP GMN/yr 0 0 ELEC-NMHY(>10MN)-PEAK USP-E.T.PPJ/yr 0 0 0 ELEC-NMHY(>10MN)-PEAK UDP-E.T.PPJ/yr 0 0 0 ELEC-NMHY(>10MN)-PEAK UDPWER GM 0 0 0 ELEC-NMHY(>10MN)-PEAK UDPWER GM 0 0 0 ELEC-NMHY(>10MN)-SP GMh/yr 0 17937580 0 ELEC-NMHY(>10MN)-DP GMh/yr 0 0 0 ELEC-NMHY(>10MN)-SP GMh/yr 0 0 0 ELEC-NMHY(>10MN)-SP GMh/yr 0 0	ELEC-L6TE-ELEC-SP		6Wh/yr		0	
ELEC-LGTE-ELEC-BASE GWh/yr 0 7139407 ELEC-URAN-NWDL-BASE GWh/yr 63580.46 0 ELEC-URAN-EXDL-BASE GWh/yr 64125 0 ELEC-NHHY()10HW)-SP GWh/yr 0 0 ELEC-NHHY()10HW)-SP GWh/yr 0 0 ELEC-NHHY()10HW)-PEAK USP-E.T.PPJ/yr 0 0 ELEC-NHY()10HW)-PEAK USP-E.T.PPJ/yr 0 0 ELEC-NHY()10HW)-PEAK UDP-E.T.PPJ/yr 0 0 ELEC-NHY()10HW)-PEAK UPDWER GW 0 0 ELEC-NHY()10HW)-PEAK UPDWER GW 0 17937580 ELEC-NHY()10HW)-SP GWh/yr 0 17937580 0 ELEC-NWHY()10HW)-SP GWh/yr 0 0 0 ELEC-NWHY()10HW)-SP GWh/yr	ELEC-LGTE-ELEC-DP	•	6Wh/yr	~	0	6063000
ELEC-URAN-NWDL-BASE GNN/yr 63580.46 0 ELEC-URAN-EXDL-BASE GMN/yr 64125 0 ELEC-NWHY()10MN)-SP GNN/yr 0 0 ELEC-NWHY()10MN)-DP GNN/yr 0 0 ELEC-NWHY()10MN)-DP GNN/yr 0 0 ELEC-NWHY()10MN)-PEAK USP-E.T.PPJ/yr 0 0 ELEC-NWHY()10MN)-PEAK UDP-E.T.PPJ/yr 0 0 ELEC-NWHY()10MN)-PEAK UPD-E.T.PPJ/yr 0 0 ELEC-NWHY()10MN)-PEAK UPONER GN 0 0 ELEC-NWHY()10MN)-PEAK UPONER GN 0 17937580 ELEC-NWHY()10MN)-DP GNN/yr 0 17937580 0 ELEC-NWHY()10MN)-DP GNN/yr 0 0 0 ELEC-NWHY()10MN)-DP GNN/yr 0 0 0 ELEC-NWHY()10MN)-SP=ENGY TO PMR GN/yr 0 0 0 ELEC-NWHY()10MN)-DP=ENGY TO PMR GN/yr 0 247627000 0 ELEC-NWHY()10MN)-DP	ELEC-LGTE-ELEC-CYC		6Wh/yr		0	· 0
ELEC-URAN-EXDL-BASE GWh/yr 64125 0 ELEC-NMHY()10MN)-SP GWh/yr 0 0 ELEC-NWHY()10MN)-DP GWh/yr 0 0 ELEC-NWHY()10MN)-DP GWh/yr 0 0 ELEC-NWHY()10MN)-PEAK USP-E.T.PPJ/yr 0 0 0 ELEC-NWHY()10MN)-PEAK UDP-E.T.PPJ/yr 0 0 0 ELEC-NWHY()10MN)-PEAK UDPWER GW 0 0 ELEC-NWHY()10MN)-SP GWh/yr 0 328456400 ELEC-NWHY()10MN)-SP GWh/yr 0 17937580 ELEC-NWHY()10MN)-SP GWh/yr 0 0 ELEC-NWHY()10MN)-DP GWh/yr 0 0 ELEC-NWHY()10MN)-SP GWh/yr 0 0 ELEC-NWHY()10MN)-DP GWh/yr 0 0 ELEC-NWHY()10MN)-SP GWh/yr 0 0 ELEC-NWHY()10MN)-SP-ENEY TO PWR PJ/yr 0 247627000 ELEC-NWHY()10MN)-DP-ENEY TO PWR PJ/yr 0 14258000 247627000 ELEC-NWHY()10MN)-SP-ENEY TO PWR PJ	ELEC-LGTE-ELEC-BASE		6Wh/yr		0	7139407
ELEC-NMHY()10MN)-SP GWh/yr 0 0 ELEC-NWHY()10MN)-DP GWh/yr 0 0 ELEC-NWHY()10MN)-PEAK USP-E.T.PPJ/yr 0 0 0 ELEC-NWHY()10MN)-PEAK UDP-E.T.PPJ/yr 0 0 0 ELEC-NWHY()10MN)-PEAK UDP-E.T.PPJ/yr 0 0 0 ELEC-NWHY()10MN)-PEAK UDPWER GW 0 0 ELEC-NWHY()10MN)-SP GWh/yr 0 328456400 ELEC-NWHY()10MN)-SP GWh/yr 0 17937580 ELEC-NWHY()10MN)-SP GWh/yr 0 0 ELEC-NWHY()10MN)-DP GWh/yr 0 0 ELEC-NWHY()10MN)-SP GWh/yr 0 0 ELEC-NWHY()10MN)-DP GWh/yr 0 0 ELEC-NWHY()10MN)-SPEENEY GWh/yr 0 0 ELEC-NWHY()10MN)-SPEENEY GWh/yr 0 0 ELEC-NWHY()10MN)-SPEENEY GWh/yr 0 14258000 ELEC-NWHY()10MN)-SPEENEY GWM PJ/yr 0 5783203 ELEC-NWHY()10MN)-SPEENEY	ELEC-URAN-NWDL-BASE		6Wh/yr	· · · · ·	63580.46	0
ELEC-NWHY()10NN)-DP GWh/yr 0 0 ELEC-NWHY()10 NW)-PEAK USP-E.T.PPJ/yr 0 0 0 ELEC-NWHY()10 NW)-PEAK UDP-E.T.PPJ/yr 0 0 0 ELEC-NWHY()10 NW)-PEAK UDP-E.T.PPJ/yr 0 0 0 ELEC-NWHY()10 NW)-PEAK UDPWER GW 0 0 ELEC-NWHY()10 NW)-PEAK UPOWER GW 0 0 ELEC-NWHY()10 NW)-PEAK UPOWER GW 0 0 ELEC-NWHY()10 NW)-SP GWh/yr 0 17937580 ELEC-NWHY()10 NW)-DP GWh/yr 0 0 0 ELEC-NWHY()10 NW)-DP GWh/yr 0 0 0 ELEC-NWHY()10 NW)-DP GWh/yr 0 0 0 ELEC-NWHY()10 NW)-SP-ENGY TO PWR PJ/yr 0 247627000 0 ELEC-NWHY()10 NW)-SP-ENGY TO PWR PJ/yr 0 14258000 0 ELEC-NWHY()10 NW)-DP-ENGY TO PWR PJ/yr 0 5783203 0 ELEC-NWHY()10 NW)-SP GWh/yr 0 0 0 ELEC-NWHY()10 NW)-SP			6Wh/yr	- · · ·	_ 64125	0
ELEC-NWHY(>10 MW)-PEAK USP-E.T.PPJ/yr 0 0 ELEC-NWHY(>10 MW)-PEAK UDP-E.T.PPJ/yr 0 0 ELEC-NWHY(>10 MW)-PEAK UPDWER GW 0 0 ELEC-NWHY(>10 MW)-PEAK UPDWER GW 0 328456400 ELEC-NWHY(>10 MW)-SP GWh/yr 0 17937580 ELEC-NWHY(>10 MW)-SP GWh/yr 0 0 ELEC-NWHY(>10 MW)-SP-ENGY TO PWR PJ/yr 0 247627000 ELEC-NWHY(>10 MW)-SP-ENGY TO PWR PJ/yr 0 14258000 ELEC-NWHY(>10 MW)-SP-ENGY TO PWR PJ/yr 0 5783203 ELEC-NWHY(>10 MW)-SP-ENGY TO PWR PJ/yr 0 5783203 ELEC-NWHY(>10 MW)-SP-ENGY TO PWR PJ/yr 0 0 ELEC-NWHY(>10 MW)-SP GWh/yr 0 0 ELEC-NWHY(>10 MW)-SP GWh/yr	ELEC-NWHY (>10MW)-SP		6Wh/yr		0	0
ELEC-NWHY(>10 NW)-PEAK UDP-E.T.PPJ/yr 0 0 ELEC-NWHY(>10NW)-PEAK UPOWER GW 0 0 ELEC-NWHY(>10NW)-PEAK UPOWER GW 0 328456400 ELEC-NWHY(>10NW)-SP GWh/yr 0 17937580 ELEC-NWHY(>10NW)-DP GWh/yr 0 0 ELEC-NWHY(>10 MW)-SP GWh/yr 0 0 ELEC-NWHY(>10 MW)-SP-ENEY TO PWR FJ/yr 0 247627000 ELEC-NWHY(>10 MW)-SP-ENEY TO PWR PJ/yr 0 14258000 14258000 ELEC-NWHY(>10 MW)-DP-ENEY TO PWR PJ/yr 0 14258000 14258000 ELEC-NWHY(>10 MW)-SP-ENEY TO PWR PJ/yr 0 5783203 14258000 ELEC-NWHY(>10 MW)-SP-ENEY TO PWR PJ/yr 0 0 0 ELEC-NWHY(>10 MW)-SP-ENEY TO PWR PJ/yr 0 0 0 <	ELEC-NWHY(>10NW)-DP		6Wh/yr			0
ELEC-NWHY(>10NW)-PEAK UPOWER GN 0 0 ELEC-NWHY(>10NW)-SP GWh/yr 0 328456400 ELEC-NWHY(>10NW)-DP GWh/yr 0 17937580 ELEC-NWHY(>10NW)-DP GWh/yr 0 0 ELEC-NWHY(>10NW)-DP GWh/yr 0 0 ELEC-NWHY(>10NW)-SP GWh/yr 0 0 ELEC-NWHY(>10NW)-SP GWh/yr 0 0 ELEC-NWHY(>10NW)-SP GWh/yr 4073.333 0 ELEC-NWHY(>10NW)-SP-ENGY TO PWR PJ/yr 0 247627000 ELEC-NWHY(>10NW)-SP-ENGY TO PWR PJ/yr 0 14258000 ELEC-NWHY(>10NW)-SP-ENGY TO PWR PJ/yr 0 14258000 ELEC-NWHY(>10NW)-CY-ENGY TO PWR PJ/yr 0 5783203 ELEC-NWHY(>10NW)-DP-ENGY TO PWR PJ/yr 0 0 ELEC-NWHY(>10NW)-SP GWh/yr 0 0 ELEC-NWHY(>10NW)-DP-ENGY TO PWR PJ/yr 0 0 ELEC-NWHY(>10NW)-SP GWh/yr 0 0 ELEC-NWHY(>1				•	Ô	SET 0
ELEC-NWHY(>10NN)-SP GWh/yr 0 328456400 ELEC=NWHY(>10NW)-DP GWh/yr 0 17937580 ELEC=NWHY(>10NW)-DP GWh/yr 0 0 ELEC=NWHY(>10NW)-DP GWh/yr 0 0 ELEC=NWHY(>10NW)-DP GWh/yr 0 0 ELEC=NWHY(>10NW)-DP GWh/yr 0 0 ELEC=NWHY(>10NW)-DP GWh/yr 4073.333 0 ELEC=NWHY(>10NW)-DP GWh/yr 0 247627000 ELEC=NWHY(>10NW)-SP-ENGY TO PWR PJ/yr 0 14258000 ELEC=NWHY(>10NW)-DP-ENGY TO PWR PJ/yr 0 14258000 ELEC=NWHY(>10NW)-DP-ENGY TO PWR PJ/yr 0 5783203 ELEC=NWHY(>10NW)-DP-ENGY TO PWR PJ/yr 0 5783203 ELEC=NWHY(>10NW)-POWER GW 0 0 0 ELEC=NWHY(>10NW)-SP GWh/yr 0 0 0 ELEC=NWHY(>10NW)-SP GWh/yr 0 0 0 ELEC=NWHY(>10NW)-SP GWh/yr 0 0 <t< td=""><td></td><td></td><td></td><td>•</td><td>0</td><td>0</td></t<>				•	0	0
ELEC=NWHY(>10NW)-DP GWh/yr 0 17937580 ELEC=NWHY(>10 MW)-SP GWh/yr 0 0 ELEC=NWHY(>10 MW)-DP GWh/yr 0 0 ELEC=NWHY(>10 MW)-DP GWh/yr 0 0 ELEC=NWHY(>10 MW)-DP GWh/yr 4073.333 0 ELEC=NWHY(>10 MW)-BASE GWh/yr 0 247627000 ELEC=NWHY(>10 MW)-SP-ENGY TO PWR PJ/yr 0 14258000 ELEC=NWHY(>10 MW)-BP-ENGY TO PWR PJ/yr 0 14258000 ELEC=NWHY(>10 MW)-BS-ENGY TO PWR PJ/yr 0 5783203 ELEC=NWHY(>10 MW)-BS-ENGY TO PWR FJ/yr 0 5783203 ELEC=NWHY(>10 MW)-SP GWh/yr 0 0 ELEC=NWHY(>10 MW)-SP GWh/yr 0 71203.53 ELEC=NWHY(>10 MW)-S		-POWER		<u> </u>	0	•
ELEC-NWHY(>10 MW)-SP GWh/yr 0 0 ELEC-NWHY(>10 MW)-DP GWh/yr 0 0 ELEC-NWHY(>10 MW)-DP GWh/yr 4073.333 0 ELEC-NWHY(>10 MW)-DP GWh/yr 4073.333 0 ELEC-NWHY(>10 MW)-BASE GWh/yr 0 0 ELEC-NWHY(>10 MW)-SP-ENGY TO PWR PJ/yr 0 247627000 ELEC-NWHY(>10 MW)-SP-ENGY TO PWR PJ/yr 0 14258000 ELEC-NWHY(>10 MW)-BP-ENGY TO PWR PJ/yr 0 14258000 ELEC-NWHY(>10 MW)-BS-ENGY TO PWR PJ/yr 0 5783203 ELEC-NWHY(>10 MW)-BS-ENGY TO PWR GW 0.848459 0 ELEC-NWHY(>10 MW)-SP GWh/yr 0 0 0 ELEC-NWHY(>10 MW)-SP GWh/yr 0 0 0 ELEC-NWHY(>10 MW)-SP GWh/yr 0 0 0 ELEC-NWHY(>10 MW)-BASE GWh/yr 0 71203.53 0 ELEC-NWHY(>10 MW)-BASE GWh/yr 0 71203.5 0 ELEC-NWHY(>10 MW)-SP <td></td> <td></td> <td>6Wh/yr</td> <td></td> <td>0</td> <td>328456400</td>			6Wh/yr		0	328456400
ELEC-NWHY(>10 MW)-DP GWh/yr 0 0 ELEC-NWHY(>10 MW)-CYC GWh/yr 4073.333 0 ELEC-NWHY(>10 MW)-BASE GWh/yr 0 0 ELEC-NWHY(>10 MW)-BASE GWh/yr 0 247627000 ELEC-NWHY(>10 MW)-SP-ENGY TO PWR PJ/yr 0 14258000 ELEC-NWHY(>10 MW)-DP-ENGY TO PWR PJ/yr 0 14258000 ELEC-NWHY(>10 MW)-DP-ENGY TO PWR PJ/yr 0 14258000 ELEC-NWHY(>10 MW)-DP-ENGY TO PWR PJ/yr 0 5783203 ELEC-NWHY(>10 MW)-BS-ENGY TO PWR PJ/yr 0 5783203 ELEC-NWHY(>10 MW)-PDWER GW 0.848459 0 ELEC-NWHY(>10 MW)-DP GWh/yr 0 0 ELEC-NWHY(>10 MW)-DP GWh/yr 0 0 ELEC-NWHY(>10 MW)-DP GWh/yr 0 71203.53 ELEC-NWHY(>10 MW)-DASE GWh/yr 0 71203.55 ELEC-NWHY(>10 MW)-SP GWh/yr 0 279077100 ELEC-NWHY(2-10 MW)-DP GWh/yr 0 16348000	<u>~</u>				0	17937580
ELEC-NWHY(>10 MW)-CYC GWh/yr 4073.333 0 ELEC-NWHY(>10 MW)-BASE GWh/yr 0 0 ELEC-NWHY(>10 MW)-BASE GWh/yr 0 247627000 ELEC-NWHY(>10 MW)-DP-ENGY TO PWR PJ/yr 0 14258000 ELEC-NWHY(>10 MW)-DP-ENGY TO PWR PJ/yr 0 14258000 ELEC-NWHY(>10 MW)-DP-ENGY TO PWR PJ/yr 0 5783203 ELEC-NWHY(>10 MW)-BS-ENGY TO PWR PJ/yr 0 5783203 ELEC-NWHY(>10 MW)-DDWER GW 0.8484559 0 ELEC-NWHY(>10 MW)-SP GWh/yr 0 71203.5 ELEC-NWHY(>10 MW)-SP GWh/yr 0 71203.5 ELEC-NWHY(>10 MW)-SP GWh/yr 0 279077100 ELEC-NWHY(2-10 MW)-SP GWh/yr 0 16348000			6Wh/yr		0	0
ELEC-NWHY(>10 NW)-BASE. GWh/yr 0 0 ELEC-NWHY(>10 NW)-SP-ENGY TO PWR PJ/yr 0 247627000 ELEC-NWHY(>10 NW)-SP-ENGY TO PWR PJ/yr 0 14258000 ELEC-NWHY(>10 NW)-DP-ENGY TO PWR PJ/yr 0 14258000 ELEC-NWHY(>10 NW)-CY-ENGY TO PWR PJ/yr 14.66399 0 ELEC-NWHY(>10 NW)-BS-ENGY TO PWR PJ/yr 0 5783203 ELEC-NWHY(>10 NW)-BS-ENGY TO PWR GW 0.8484559 0 ELEC-NWHY(>10 NW)-PDWER GW 0.848459 0 ELEC-NWHY(>10 NW)-SP GWh/yr 0 0 ELEC-NWHY(>10 NW)-SP GWh/yr 0 0 ELEC-NWHY(>10 NW)-DP GWh/yr 0 71203.53 ELEC-NWHY(>10 NW)-BASE GWM/yr 0 71203.5 ELEC-NWHY(>10 NW)-SP GWh/yr 0 279077100 ELEC-NWHY(2-10 NW)-SP GWh/yr 0 16348000			6Wh/yr		0	0
ELEC-NNHY(>10 MN)-SP-ENGY TO PWR PJ/yr 0 247627000 ELEC-NNHY(>10 MN)-DP-ENGY TO PWR PJ/yr 0 14258000 ELEC-NNHY(>10 MN)-DP-ENGY TO PWR PJ/yr 14.66399 0 ELEC-NNHY(>10 MN)-DP-ENGY TO PWR PJ/yr 14.66399 0 ELEC-NNHY(>10 MN)-BS-ENGY TO PWR PJ/yr 0 5783203 ELEC-NNHY(>10 MN)-DDWER EN 0.8484559 0 ELEC-NNHY(>10 MN)-SP GWh/yr 0 0 ELEC-NNHY(>10 MN)-DP GWh/yr 0 0 ELEC-NNHY(>10 MN)-BS GWh/yr 0 0 ELEC-NNHY(>10 MN)-DP GWh/yr 0 71203.53 ELEC-NNHY(>10 MN)-SP GWh/yr 0 71203.5 ELEC-NNHY(>10 MN)-SP GWh/yr 0 279077100 ELEC-NNHY(2-10 MN)-SP GWh/yr 0 16348000				× .	4073.333	0
ELEC-NWHY(>10 NW)-DP-ENGY TO PWR PJ/yr 0 14258000 ELEC-NWHY(>10 NW)-CY-ENGY TO PWR PJ/yr 14.66399 0 ELEC-NWHY(>10 NW)-CY-ENGY TO PWR PJ/yr 0 5783203 ELEC-NWHY(>10 NW)-BS-ENGY TO PWR FJ/yr 0 0 ELEC-NWHY(>10 NW)-PDWER GN 0.848459 0 ELEC-NWHY(>10 NW)-SP GWh/yr 0 0 ELEC-NWHY(>10 NW)-DP GWh/yr 0 0 ELEC-NWHY(>10 NW)-BASE GWh/yr 0 71203.5 ELEC-NWHY(>10 NW)-BASE GWh/yr 0 71203.5 ELEC-NWHY(>10 NW)-SP GWh/yr 0 279077100 ELEC-NWHY(2-10 NW)-SP GWh/yr 0 16348000			6Wh/yr		0	0
ELEC-NWHY(>10 NW)-CY-ENGY TO PWR PJ/yr 14.66399 0 ELEC-NWHY(>10 NW)-BS-ENGY TO PWR PJ/yr 0 5783203 ELEC-NWHY(>10 NW)-BS-ENGY TO PWR GW 0.848459 0 ELEC-NWHY(>10 NW)-POWER GW 0.848459 0 ELEC-NWHY(>10 NW)-SP GWh/yr 0 0 ELEC-NWHY(>10 NW)-DP GWh/yr 0 0 ELEC-NWHY(>10 NW)-DP GWh/yr 0 71203.53 ELEC-NWHY(>10 NW)-BASE GWH/yr 0 71203.53 ELEC-NWHY(>10 NW)-SP GWh/yr 0 279077100 ELEC-NWHY(2-10 NW)-SP GWh/yr 0 16348000					0	247627000
ELEC-NWHY(>10 NW)-BS-ENGY TO PWR PJ/yr 0 5783203 ELEC-NWHY(>10 NW)-POWER GW 0.848459 0 ELEC-NWHY(>10 NW)-POWER GW 0.848459 0 ELEC-NWHY(>10 NW)-SP GWh/yr 0 0 ELEC-NWHY(>10 NW)-DP GWh/yr 0 0 ELEC-NWHY(>10 NW)-DP GWh/yr 4073.333 0 ELEC-NWHY(>10 NW)-BASE GWh/yr 0 71203.5 ELEC-NWHY(>10 NW)-SP GWh/yr 0 279077100 ELEC-NWHY(2-10 NW)-SP GWh/yr 0 16348000					•	14258000
ELEC-NWHY(>10 MW)-PDWER EN 0.848459 0 ELEC-NWHY(>10 MW)-SP GWh/yr 0 0 ELEC-NWHY(>10 MW)-SP GWh/yr 0 0 ELEC-NWHY(>10 MW)-DP GWh/yr 0 0 ELEC-NWHY(>10 MW)-CYC GWh/yr 4073.333 0 ELEC-NWHY(>10 MW)-BASE GWh/yr 0 71203.5 ELEC-NWHY(2-10 MW)-SP GWh/yr 0 279077100 ELEC-NWHY(2-10 MW)-DP GWh/yr 0 16348000			PJ/yr		14.66399	0
ELEC-NWHY()10 MW)-SP GWh/yr 0 0 ELEC-NWHY()10 MW)-DP GWh/yr 0 0 ELEC-NWHY()10 MW)-DP GWh/yr 4073.333 0 ELEC-NWHY()10 MW)-CYC GWh/yr 4073.333 0 ELEC-NWHY()10 MW)-BASE GWh/yr 0 71203.5 ELEC-NWHY(2-10 MW)-SP GWh/yr 0 279077100 ELEC-NWHY(2-10 MW)-DP GWh/yr 0 16348000		IY TO PWR	-		- 0	5783203
ELEC-NWHY(>10 HW)-DP GWh/yr 0 0 ELEC-NWHY(>10 HW)-CYC GWh/yr 4073.333 0 ELEC-NWHY(>10 HW)-BASE GWh/yr 0 71203.5 ELEC-NWHY(>2-10 HW)-SP GWh/yr 0 279077100 ELEC-NWHY(2-10 HW)-DP GWh/yr 0 16348000			-		0,848459	0
ELEC-NWHY(>10 NW)-CYC GWh/yr 4073.333 0 ELEC-NWHY(>10 NW)-BASE GWh/yr 0 71203.5 ELEC-NWHY(>10 NW)-SP GWh/yr 0 279077100 ELEC-NWHY(2-10 NW)-DP GWh/yr 0 16348000			6Wh/yr	•	0	O
ELEC-NWHY(>10 KW)-BASE GWN/yr 0 71203.5 ELEC-NWHY(2-10 MW)-SP GWh/yr 0 279077100 ELEC-NWHY(2-10 MW)-DP GWh/yr 0 16348000			6Wh/yr	•	0	. 0
ELEC-NWRY(2-10 MW)-SP GWh/yr 0 279077100 ELEC-XWRY(2-10 MW)-DP GWh/yr 0 16348000			•		4073.333	-
ELEC-NWHY (2-10 NW)-DP 6Wh/yr 0 16348000					0	
			•	`	· 0	
ELEC-NWHY (2-10 NW)-CYC 6Wh/yr 628.0554 0		,	•		•	16348000
	ELEC-NWHY (2-10 NW)-CYC		6Wh/yr		628,0554	0

...

\$

LOW SCENARID

·_ ·

Variable Name	Units	Value	Reduced Cost
, ELEC-NWHY(2-10 MW)-BASE	6Wh/yr	0	5520407
ELEC-NWHY (2-10 MW) -SP-ENGY TO PWR		ů.	0
ELEC-NWHY (2-10 NW)-DP-ENGY TO PNR		Õ	0
ELEC-NWHY (2-10 NW)-CY-ENGY TO PWR		2.261	. 0
ELEC-NWHY (2-10 NW)-BS-ENGY TO PWR		2.201	0
ELEC-NWRY (2-10 KW) -POWER	6W	0.130821	0
ELEC-NWHY (2-10 MW) -SP	GWh/yr	0.130621	0
ELEC-NWHY(2-10 MW)-DP	GWh/yr	ů O	. 0
ELEC-NWHY (2-10 MW)-CYC	6Wh/yr	628.0554	0
ELEC-NWHY (2-10 NW)-BASE	6Wh/yr	0	0
ELEC-EX.HYDRO-PEAK USP	6¥h/yr	3.063408	0
ELEC-EX.HYDRO-PEAK UDP	GWh/yr	1513.325	· · ·
ELEC-EX.HYDRO-PEAK USP-E.T.PWR	PJ/yr	0.011028	0
ELEC-EX.HYDRO-PEAK UDP-E.T.PWR	PJ/yr	5.447971	
ELEC-EX.HYDRO-PEAK UPOWER	6W	0.967	-0 -19871690
ELEC-EX.HYDRO-PEAK USP	6Wh/yr	3.063408	
ELEC-EX.HYDRO-PEAK UDP	5Wh/yr		0
ELEC-EXHY-SP		1513.325	0.
ELEC-EXHY-DP	6Wh/yr SWb/yr	0	383919100
ELEC-EXHY-CYC	6Wh/yr CWh/yr	0	23283070
ELEC-EXHY-BASE	6Wh/yr	22501.62	0
· · · · · · · · · · · ·	6Wh/yr	0	4414077
ELEC-EXHY-SP-ENEY TO POWER	PJ/yr	0	0
ELEC-EXHY-DP-ENGY TO POWER	PJ/yr	0	0
ELEC-EXHY-CYC-ENGY TO POWER	PJ/yr	81.00587	0
ELEC-EXHY-BASE-ENGY TO POWER	PJ/yr	0	0
ELEC-EXHY-POWER	6W	4.687	-254039500
ELEC-EXHY-SP	6Wh/yr	0	0
ELEC-EXHY-DP	6Wh/yr	0	0.
ELEC-EXHY-CYC	6Wh/yr	22501.62	· 0
ELEC-EXHY-BASE	6Wh/yr	0	0
ELEC-MUNREFUSE-CYC	GWh/yr	780.0556	0
ELEC-NUNREFUSE-BASE	6Wh/yr	0	3446888
ELEC-MUNREFUSE-CYC-ENGY TO POWER	PJ/yr	2.808201	• 0
ELEC-MUNREFUSE-BASE-ENGY TO POWER	•	0	0
ELEC-MUNREFUSE-POWER	5W	0.2	-144319100
ELEC-MUNREFUSE-CYC	6Wh/yr	780.0556	0
ELEC-MUNREFUSE-BASE	6Wh/yr	0	0
ELEC-TOTALSP	PJ/yr	4.171328	0
ELEC-TOTALDP	PJ/yr		Q
ELEC-TOTALCYC	PJ/yr	109.1696	0
ELEC-TOTALBASE	PJ/yr	459.7397	0
ELEC-TOTAL	PJ/yr ,	595.9038	0
ELEC-EXPORTS-TRAN.	PJ/y r	55.30973	0
ELEC-EXPORT	PJ/yr	s 50	-2679034
ELEC-INPORT	PJ/yr	Ó	14520810
ELEC-IMPORTS-TRAN.	PJ/yr	0	0
GAS-TRAN&DIST	PJ/yr	757.2253	. 0
PROPANE-TRAN&DIST	PJ/yr	4.379319	0
		,	

LON SCENARID

Variable Name	Units -	Value	Reduced Cost
METHANOL-TRANADIST	PJ/yr	0	ۍ چ
ETHANOL-TRANEDIST	PJ/yr	0	. 0
GASOLINE-TRAN&DIST	PJ/yr	113.3925	0
DIESEL-TRAN&DIST	PJ/yr	164.2675	0
AV. GAS-TRAN&DIST	PJ/yr	0.200037	0
JET_FUEL-TRAN&DIST	PJ/yr	33.20605	0
LFO-TRAN&DIST	PJ/yr	0	3398798
HFO-TRAN&DIST	₽J/yr	41.76141	0
PCF&PP-TRAN&DIST	PJ/yr	316.5344	0
ELEC-TRANEDIST	PJ/yr	540.5939	0
NOOD-TRAN&DIST	PJ/yr	. 0	0
LHY6N-TRAN&DIST	PJ/yr	0	43340840
LNG-TRAN&DIST	PJ/yr	0	5749961
ELEC-HTP-R2SH-SH&AC	TJ/yr	0	0
6AS-FCE+HTP-R2SH-SH	TJ/yr	0	7806749
LOIL-FCE+HTP-R2SH-SH	TJ/yr	.0	9191926
ELEC-RES+HTP-R2SH-SH	TJ/yr	0	0
HT-ENERGY-HTP-R2SH-SH	· PJ/yr	0	0
ENERGY-OPTS+HTP-R2SH-SH	PJ/yr	0	0
GAS-WCBFCE-R2SH-SH	PJ/yr	0	- 0
LOIL-WCBFCE-R2SH-SH	PJ/yr	· 0	- 0
ELEC-WDFCE+RES-R2SH-SH	PJ∕yr	0	792649.8
WOOD-OPTS+WDFCE-R2SH-SH	TJ∕yr	0	2909634
ENERGY-OPTS+HDFCE-R2SH-SH	PJ/yr	. 0	0
ELEC-ASR-R2SH-SH&WH&AC	PJ/yr	0	- 0
ASR-R2SH-SH&#X&AC</td><td>JPJ/yr _</td><td>. 0 .</td><td>0</td></tr><tr><td>HT ENERGY-ASR-R2SK-SH</td><td>TJ/yr</td><td>0</td><td>14895670</td></tr><tr><td>GAS-CGF-R2SH-SH</td><td>TJ/yr</td><td>0</td><td>3422407</td></tr><tr><td>SAS-FCE-R2SH-SH</td><td>, TJ/yr</td><td><u>`</u>0</td><td>378949.3</td></tr><tr><td>LOIL-FCE-R2SH-SH</td><td>TJ/yr</td><td>0</td><td>1328426</td></tr><tr><td>ELEC-RES-R25H-SH</td><td>TJ/yr</td><td>18953.99</td><td>0</td></tr><tr><td>ELEC-HTP-ISH-SH&AC</td><td>ŤJ/yr</td><td>0</td><td>0 -</td></tr><tr><td>6AS-FCE+HTP-ISH-SH</td><td>TJ/yr</td><td>- 0</td><td>1866749</td></tr><tr><td>LOIL-FCE+KTP-ISH-SH</td><td>TJ/yr</td><td>0</td><td>2611926</td></tr><tr><td>ELEC-RES+HTP-ISH-SH</td><td>TJ/yr</td><td>0</td><td>0 ୍</td></tr><tr><td>HT-ENERGY-ISH-SH</td><td>PJ/yr</td><td>0</td><td>0</td></tr><tr><td>ENERGY-OPTS+HTP-ISH-SH</td><td>PJ/yr</td><td>0</td><td>. 0</td></tr><tr><td>6AS-WCBFCE-ISH-SH</td><td>PJ/yr</td><td>. 0</td><td>0</td></tr><tr><td>LOIL-WCBFCE-ISH-SH</td><td>PJ/yr</td><td>0</td><td>0</td></tr><tr><td>ELEC-WOFCE+RES-ISH-SH</td><td>PJ/yr</td><td>· 0</td><td>792649.8</td></tr><tr><td>WOOD-WC8FCE+OPTS-ISH-SH 🦣</td><td>TJ/yr</td><td>\ 0</td><td>Ó</td></tr><tr><td>ENERGY-WCBFCE+OPTS-ISH-SH</td><td>PJ/yr</td><td>) 0</td><td>550259</td></tr><tr><td>GAS-FCE+ASR-ISH-SH</td><td>, TJ/yr</td><td>0</td><td>0</td></tr><tr><td>LOIL-FCE+ASR-ISH-SH</td><td>TJ/yr</td><td>0</td><td>669785.3</td></tr><tr><td>ELEC-RES+ASR-ISH-SH</td><td>TJ/yr</td><td>0</td><td>1752813</td></tr><tr><td>ELEC-ASR-ISH-SH&WH&AC</td><td>PJ/yr</td><td>0</td><td>0</td></tr><tr><td>ASR-ISH-SHLWHLAC</td><td>PJ/yr</td><td>0</td><td>0</td></tr><tr><td>HT ENERGY-ASR-1SH-SH</td><td>TJ/yr</td><td>0</td><td>. 0</td></tr><tr><td></td><td></td><td></td><td></td></tr></tbody></table>			

. لا 7

.

Variable Name	Units	Value	Reduced Cost
ENERGY-ASR+OPTS-ISH-SH	PJ/yr	0	2060324
GAS-CGF-ISH-SH	TJ/yr	0	594315.5
GAS-FCE-ISH-SH	- TJ/yr	36801.23	0
LOIL-FCE-ISH-SH	TJ/yr	0	669785.3
ELEC-RES-ISH-SH	TJ/yr	0	1752813
ELEC-HTP-OBC80-SH&AC	TJ/yr	0	0
GAS-FCE+HTP-OBCBO-SH	TJ/yr 🏾 🎽	0	0
LOIL-FCE+HTP-OBC80-SH	TJ/yr	0	599535.3
ELEC-RES+HTP-OBCBO-SH	TJ/yr 🗉	0	2542813
HT ENERGY-HTP-OBC80-SH	PJ/yr	0	0
ENERGY-OPTS+HTP-OBC80-5	iH PJ/yr	0	9652034
GAS-WCBFCE-OBCBO-SH	PJ/y r	. 0	0
LDIL-WCBFCE-OBC80-SH	PJ/yr	° 0	0
ELEC-WDFCE+RES-OBC80-SH	l PJ/yr	0	792649.8
WOOD-WCBFCE-OBCBO-SH	TJ/yr	0	0
ENERGY-WCBFCE+OPTS-OBCB	10-SH PJ/y r	0	Ô
GAS-FCE+ASR-DBC80-SH	TJ/yr	0	0
LOIL-FCE+ASR-OBC80-SH	TJ/yr	0	599535.3
ELEC-RES+ASR-D8C80-SH	TJ/yr	0	2542813
ELEC-ASR-OBCBO-SH&WH&AC	PJ/yr	- 10	0 .
ASR-OBC80-SHAWHAC	PJ/yr	0	0
HT ENERGY-ASR-OBC80-SH	TJ/yr	. (0	0
ENERGY-ASR+DPTS-OBC80-S		20	2472895
GAS-CGF-DBC80-SH	. TJ/yr	99696.68	0.
GAS-FCE-OBCBO-SH	TJ/yr	0	248595.1
LOIL-FCE-DBCBO-SH	TJ/yr	0	832593.3
ELEC-RES-DBCBO-SH	TJ/yr	. 0	2853557
GAS-CGB-APT-SH	TJ/yr	0	854438.3
GAS-IEB-APT-SH	TJ/yr f	36256.25	0
LOIL-BLR-APT-SH	TJ/yr	0	1972.902
ELEC-BLR-APT-SH	TJ/ýr	0	- 2221063
ELEC-BSD-APT-SH	TJ/yr -	0	3594063
ENERGY-R2SH-SH	PJ/yr	18.95399	20179220
ENERGY-ISH-SH	PJ/yr	27.44099	30875690
ENERGY-OBCBO-SH	PJ/yr .	91.72099	14479960
ENERGY-NNA-SH	PJ/yr	17.05999	17879450
ENERGY-ODA-SH	PJ/yr	11,94499	17879450
ENERSY-H-SH	PJ/yr	140.1159	0,
ENERGY-A-SH	PJ/yr	29.005	. 0
ENERGY-RES-SH	PJ/yr	169.121	0
ENERGY-SR (WH)-R2SH	PJ/yr	0	Ô
ENERGY-SR (WH) -15H	PJ/yr .	· 0	0
ENERGY-SR (WH) -DBCBOH	PJ/yr	0	0
ENERGY-SR (WH) -HOUSES	PJ/yr .	0	0
ENERGY-ASR+BKP-H-WH GAS-WHR+ASR-H-WH	PJ/yr	0	25546570
	PJ/yr	0	0
ELEC-WHR+ASR-H-WH GAS-WHR-H-WH	PJ/yr	0	1119563
049-804-0-60	PJ/yr	80.49789	0

-

. .

LON SCENARIO

Variable Name	Units	Value	Reduced Cost
ELEC-WHR-H-WH	P J/yr	. 0	1881313
6AS-BLR-A-WH	`PJ/yr	51.46585	0
ELEC-BLR-A-WH	PJ/yr	0	3193813
ENERGY-H-NH	L PJ/yr	64.39831	0
ENERGY-A-WH	≻ PJ/yr	41, 17268	0
ENERGY-RES-WH	PJ/yr	105.5709	14191330
ELEC-INAC-AC	PJ/yr	4.296	17659520
ENERGY-HTP (CAC) -R2SH	PJ/yr	20	0
ENERGY-HTP (CAC) - ISH	PJ/yr	. 0	0
ENERGY-HTP (CAC) -DBC80	PJ/yr	0	^ _ 0
ENERGY-HTP (CAC) -HOUSES	PJ/yr	~ 0	0
ENERGY-ASR (CAC) - R2SH	PJ/yr.	0	4068914
ENERGY-ASR (CAC)-ISH	PJ/yr	\ ` 0	4068914
ENERGY-ASR (CAC)-08C80	PJ/yr	0	4068914
ENERGY-ASR (CAC) -HOUSES	PJ/yr	0	0
ELEC-CAC-AC-HOUSES	PJ/yr	3.985572	0
ELEC-CAC-AC (APT)	PJ/yr	1.82176	0
ENERGY-CAC-RES	·PJ/yr	17.42199	11791940
ENERGY-RES-AC	PJ/yr	30.30999	. 0
ELEC-RES-APP<5	PJ/yr	106.625	15253520
GAS-C6B-C&I-SH	TJ/yr	0	854438.3
6as-16b-C&1-Sh	TJ/yr	227781.2	0
LOIL-BLR-C&I-SH	TJ/yr	~ 0	1972.902
ELEC-BLR-C&I-SH	1J/yr	- 0	2221063
ELEC-BSD-C&I-SH	TJ/yr	. 0	3594063
ENERGY-NWBDGS-C&I-SH	PJ/yr	- 121.445	17879450
ENERGY-ODBDGS-C&I-SH	PJ/yr	60.77999	17879450
ENERGY-C&I-SH	PJ/yr	182.225	. 0
GAS-BLR-C&I-WH	PJ/yr	13.17125	Ũ
ELEC-BLR-C&I-WH	PJ/yr	· 0	3193813
ENERGY-C&I-WH	PJ/yr	10.53699	13390700
ELEC-C&I-AC	PJ/yr	11.30832	۹ 0
ENERGY-C&I-AC	PJ/yr	33.925	5084506
ELEC-C&I-EOPT<G	PJ/yr	73.759	15253520
GAS-BLR-I-IH	PJ/yr	0	3990263
HOIL-BLR-I-IH	PJ/yr	. 0	8377865 ≮
COAL-BLR-I-IH	PJ/yr	525,4086	0
ENERGY-1-1H	PJ/yr	420.3269	7476500
GAS-BR-I-DH	PJ/yr	-31.93232	0
HOIL-BR-I-DH	PJ/yr	31.93232	0
ELEC-HD-I-DH	PJ/yr	- 3.991303	0
COAL-BF-I-DH	PJ/yr	380,8024	0
ENERGY-I-DH	PJ/yr	399.154	6022308
ELEC-EN&EL.CHMLS-I	PJ/yr	186.638	15253520
6AS-I-UTL	PJ/yr 、	72.38073	0
ELEC-I-UTL	PJ/yr	38.97424	0
LOIL-I-UTL	PJ/yr	0	0
ENERGY-I-UTL	PJ/yr	111.3549	11448450
<u>د</u> .	•		

LOW SCENARIO

Variable Name

.

1

Units

			value
PROPANE-I-PPCF	PJ/yr		4.366181
DBPPCF-I-REF	PJ/yr		315.5847
ENERGY-I-PPCF	PJ/yr		319.9509
PROPANE-TRN-AUTO	PJ/yr		0
MTHL-TRN-AUTO	PJ/yr		0
ETHL-TRN-AUTO	PJ/yr		0
CNG-TRN-AUTO	PJ/yr		42.50033
LN5-TRN-AUTO	PJ/yr		. 0
GASOLINE-TRN-AUTO	PJ/yr		65.9291
DIESEL-TRN-AUTO	PJ/yr	ı	81.12582
KETHGSL-TRN-AUTO	PJ/yr		0
ETHGSL-TRN-AUTO	PJ/yr		0
LHY6N-TRN-AUTO	PJ/yr		0
ELEC-TRN-AUTO	PJ/yr		31.88868
ENERGY-TRN-AUTO	<u> 11kes/yr</u>		88586.75
PROPANE-TRN-LT.TKS&VANS	PJ/yr		0
NTHL-TRN-LT.TKS&VANS	PJ/yr		0
ETHL-TRN-LT. TKS&VANS	PJ/yr		0
CNG-TRN-LT, TKS&VANS	PJ/yr		0
LNG-TRN-LT. TKS&VANS	PJ/yr		0.
GASOLINE-TRN-LT. TKS&VANS	PJ/yr		47.12318
DIESEL-TRN-LT.TKS&VANS	PJ/yr		0
METH6SL-TRN-LT.TKS&VANS	PJ/yr		Ō
ETHESL-TRN-LT.TKS&VANS	PJ/yr	•	Ō
LHYGN-TRN-LT.TKS&VANS	PJ/yr		Ó
ELEC-TRN-LT. TRKS&VANS	PJ/yr		7.439472
ENERGY-TRN+LT.TKS&VANS	Nkms/yr		15414.57
, AVGAS-TRN-ACRAFT	PJ/yr	• •	0.199436
TJFUEL-TRN-ACRAFT	PJ/yr		33.10644
ENER6Y-TRN-ACRAFT	PJ/yr		10,96899
DSL-TRN-BUS	PJ/yr	•	6.380771
PROPANE-TRN-BUS	PJ/yr		· 0
CNG-TRN-BUS	PJ/yr		0
LN5-TRN-BUS	PJ/yr		0
NTHL-TRN-BUS	PJ/yr		0
ETHL-TRN-BUS	PJ/yr	-	- 0
LHYGN-TRN-BUS	PJ/yr		~ 0
ENERGY-TRN-BUS	PJ/yr		1.659
DIESEL-TRN-MRN	PJ/yr		5.568119
HOIL-TRN-NRN	PJ/yr		9.703813
ENERGY-TRN-MRN	PJ/yr		2.014
DSL-TRN-RAIL	PJ/yr		18.56153
ELEC-TRN-RAIL	PJ/yr		0
ENERGY-TRN-RAIL	PJ/yr	*	4.826
DIESEL-TRN-TRUCK	PJ/yr		4.020 52.13845
PROPANE-TRN-TRUCK	PJ/yr		0
CN5-TRN-TRUCK	PJ/yr		0
LNG-TRN-TRUCK	PJ/yr		0
	1 07 91		v

235

Value

Reduced Cost

0

0

Û

Û

0

0

0

0

0

0.3081

80349.56

32031.62

408365.3

17.56707

17.56707

17.56707

17.56707

17.51307 0.3211

80349.56

42958.39

39458030

1393622

985274.1

985274.1

985274.1

985274.1

806059.6

49263800

99262700

49263800

1393622 98527**4.**3

985274.3

0

0

0

0

0

1

0.54

0

0

0

0

0

13216930

408347.8

SCENARIO 100

Variable Name	Units	Value	Reduced Cost
NTHL-TRN-TRUCK ETHL-TRN-TRUCK LHYGN-TRN-TRUCK ENERGY-TRN-TRUCK ELEC-TRN-STC&SBY	PJ/yr PJ/yr PJ/yr PJ/yr PJ/yr PJ/yr	0 0 13.55599 1.178	985274.3 985274.3 806062.5 49263800 15253520

	gy'Optimisation Model
Dollars	3.365974000E+10
Units	Value
\$/PJ	5534000
	7737488
\$/PJ	3407100
\$/PJ	1569000
\$/PJ	2789050
\$/PJ	4596000
\$/PJ	7659000
\$/PJ	11272930
\$/PJ	9034569
\$/PJ	0
\$/PJ	0
\$/PJ	13139610
\$/PJ	6326902
\$/PJ	112731.3
\$/PJ	8884225
\$/PJ	0
\$/PJ	0
\$/PJ .	0
\$/PJ	` 0
\$/PJ	3546488
\$/PJ	539948B
\$/PJ	3866488
\$/PJ	6241488
\$/PJ	7364488
\$/PJ	11380630
\$/PJ	12643970
\$/PJ	7911934
\$/PJ	8967489
\$/PJ	7911934
\$/PJ	8967489
\$/PJ	5690406
	Base Energy I Dollars Vnits \$/PJ \$/PJ \$/PJ \$/PJ \$/PJ \$/PJ \$/PJ \$/PJ

- .

1

Node Name		
Abde Name	Units	Value
Norw Fuel Oil	A/D7	
Heavy Fuel Oil PCF+Petroleum Products	\$/PJ	8225101
Methanol-Gasoline (NOBIL)	\$/PJ	8225101
Nethanol Gasoline	\$/PJ \$/PJ	7791394
Ethanol Gasoline	\$/PJ	10345970
Elec / Gas-SBC	\$/PJ	10417360 16276470
Elec / Gas-SPC	\$/PJ	15793380
Elec / LF 011-CTU	\$/PJ	11209590
Elec / HF Oil-SBC	\$/PJ	9122595
Elec / Coal-PFC1	\$/PJ	9235595
Elec / Coal-PFC2	\$/PJ	9357595
Elec / Coal-AFBC	\$/PJ	9734571
Elec / Lignite-	\$/PJ	6331595
Elec / Uran-New Darl	\$/PJ ~	1569000
Elec / Uran-Existing Darl	\$/PJ	4539500
Elec / New Hydro (Large)	\$/PJ	2246595
Elec / Existing Hydro	\$/PJ	0
Elec / Mun. Refuse	\$/PJ	Ŏ
Seasonal Peak	\$/PJ	71196460
Daily Peak	\$/PJ	18668590
Cycling	\$/PJ	12456590
Base	\$/P]	5322000
Electricity	\$/PJ	7601354
Electricity-Liquid Hydrogen	\$/PJ	23845500
Liquid Hydrogen	\$/PJ	. 0
Heat-Puep / R2000 SH	\$/PJ	77836380
Heat Pump + Backups / R2000 SH	\$/PJ	21264670
Wood Furnace + Backups / R2000 SH	\$/PJ	21264670
Active Solar / R2000 SH	\$/PJ	1432482
Heating Devices / R2000 SH	\$/PJ	21264670
Héat-Pump / ISH	\$/PJ	43626380
Heat Pump + Backups / ISH	\$/PJ	15317170
Nood Furnace + Backups / ISH	\$/2J	15317170
Active Solar / ISH	\$/PJ S	1432482
Active Solar + Backups / ISH	\$/PJ	18891660
Heating Devices / ISH	\$/PJ	15317170
Heat-Pump / OBC80H	\$/PJ	30856380
Heat Pump + Backups / BBC80H	\$/PJ	24004B40
Nood Furnace + Backups / OBC80H	\$/PJ	12968190
Active Solar / OBCBOH	\$/PJ	1432482
Active Solar + Backups / OBC80H	\$/PJ	12968190
Heating Devices / OBC80H	\$/PJ -	12968190
Heating Devices / Apts	\$/PJ	16140920
Housing Types	\$/PJ	0
Apartment / Types	\$/PJ	0
Residential Space Heating	\$/PJ	0
Active Solar - WH / Houses	\$/PJ	91492480
Active Solar + WH Backups / Houses	18/PJ	39037920

• جند

۰.

H H

,

1	- 1	-	M	-
	uu	e.	Na∎	e

Units

Water Heating Devices / Houses \$/PJ Water Heating Devices / Apts \$/PJ Residential Water Heating \$/PJ Heat Pump - Cooling / Houses \$/PJ Active Solar - Cooling / Houses \$/PJ Central Air-Conditioning \$/PJ Residential Air-Conditioning \$/PJ Heating Devices / C&I \$/PJ C&I Space Heating \$/PJ **C&I Water Heating** \$/PJ C&I Air-Condioning \$/PJ Ind. Indirect Heat \$/PJ Ind. Direct Heat \$/PJ Ind. Utilities \$/PJ Ind. PCF + PP \$/PJ Automobiles \$/PJ Aircraft \$/PJ Buses \$/PJ Harine \$/PJ Rail \$/PJ Trucks \$/PJ Gasolines - Ref 2 \$/PJ Distillates - Ref 2 \$/PJ H.Dil&PCF&PP ~ Ref 2 \$/PJ Lt.Trucks & Vans \$/PJ Small Hydro \$/PJ 6as Tran&Dist \$/PJ Propane Tran&Dist \$/PJ Methanol TrankDist \$/PJ Ethanol Tran&Dist \$/PJ Gasoline Tran&Dist \$/PJ Diesel Tran&Dist \$/PJ Aviation Gasoline Tran&Dist \$/PJ Jet fuel TrantDist \$/PJ Light Fuel Oil Tran&Dist \$/PJ Heavy Fuel Oil Tran&Dist \$/PJ PCF & Petrochemicals Tran&Dist \$/PJ Electrical Tran&Dist \$/PJ Wood Tran&Dist \$/PJ Lig. Hydrogen Tran&Dist \$/PJ LNG Tran&Dist \$/PJ Refinery - 2 (High Complexity) \$/PJ Refinery - 1 (Low Complexity) \$/PJ Gasolines - Ref 1 \$/PJ Distillates - Ref 1 \$/PJ Heavy Dils - Ref 1 \$/PJ Electricity Imp/Exp \$/PJ Electricity Exports - Transmission\$/PJ

238

Value

12964670

11652170

12452790

14548790

14548790

11482900

16140920

11652170

4775461

6418875

4872210

10219910

10437410

28738.98

35124600

43771660

81922570

43771660

43771660

7911934

8967489

8225101

38542.46

1196595

8008734

11380630

11380630

11380630

10345970

11380630

10700030

11573210

8093688

10472520

10437410

14326380

5030050

10345960

11380630

8448306

8386743

.7911934

8967489

8225101

7601354

11399730

0

Node Name	Units	Vatue
Mun.Ref Elec - CY	\$/PJ	2251000
Mun.Ref Elec - BS	\$/PJ	-63131.19
Mun.Ref Elec - Power	\$/6¥	-111690400
Hydro Elec - >10 MW -SP	\$/PJ	160123400
Hydro Elec - >10 MW -DP	\$/PJ	16463300
Hydro Elec - >10 MW -CY	\$/PJ ·	6228297
Hydro Elec - >10 MW -BS	\$/PJ	4621297
Hydro Elec - >10 MW -POWER	\$761	0
Kydro Elec - 2-10 MW -SP	\$/PJ	35598240
Hydro Elec - 2-10 MW -DP	\$/PJ	9334297
Hydro Elec - 2-10 MW -CY	\$/83	6228297
Hydro Elec - 2-10 MW -BS	\$/PĴ	2661000
Hydro Elec - 2-10 MW -POWER	\$75₩	0
Hydro Elec - EXISTSP	\$/PJ	-157078000
, Hydro Elec - EXISTDP	\$/PJ	-9256949
Hýdro Elec - EXISTCY	\$7PJ	40840
Hydro Elec - EXISTBS	\$/PJ	-1578039
Hydro Elec - EXISTPOWER	\$/6N	-213876800
Hydro Elec - >10 HW - Peak	\$/PJ_	0 4
Hydro Elec - >10 MW - Peak - SP		0
Hydro Elec - >10 NW - Peak - DP		O
Hydro Elec - >10 NW Peak - Pow	er\$/6W	0
Hydro Elec - EXIST Peak	. \$/PJ	13057900
Hydro Elec - EXIST Peak - SP	\$/PJ	652894B
Hydro Elec - EXIST Peak - DP		652B94B
Hydro Elec - EXIST Peak - Pow	er\$/6W	-16997400
Electricity Imports VARIABLES	\$/PJ	4897354
Variable name	Units	Value
GAS ONT	1000 Mcf/yr	5514.015
GAS-MAC-BFT/EAS.OFF/ARCTIC ISL.	1000 Mcf/yr	916668.3
PROPANE~WEST	MLts/yr	0
COAL-WEST	1000 Tns/yr	14194.86
COAL-US	1000 Tns/yr	32392.43
CRUDEOIL-FOREIGN/REGIONAL IMP.	1000 Brls/yr	159085.4
uraniun-saskat	Tns/yr	3120.092
NCOD-ONT	1000 TNS	0
LIGNITE-SASKAT.	1000 Tns/yr	× 0
EXISTING HYDRO - PEAKING UNITS		1516.388
NEW HYDRO (>10 MW) ~ PEAKING U	NI6Wh/yr	0
EXISTING HYDRO - ALL CATEG.	6Wh/yr	22501.62
NEW HYDRO ()10HW) - ALL CATEG.	GWh/yr	4073.333
SMALL HYDRD (2-10 NW) - ALL CATER		628.0554
CORN-ONT-ETHL	1000 TNS	0
BARLEY-ONT-ETHL	1000 TNS	0
WHEAT-ONT-ETHL	1000 YNS	0
NUNREFUSE-ELEC	6Wh/yr	780.0556
COAL-SYNCRUDE	PJ/yr	/ _ O

Reduced Cost

j.

Variable Name	Units	Value	Reduced Cost
			4
GAS-GSL(NOBIL)	PJ/yr	0	0
COAL-6SL (ZNCL2)	PJ/yr	- 0	0
COAL-ESL (MOBIL)	PJ ₄ yr	0	3377248
COAL-GSLDSL (SASOL)	.⇒PJ/yr	0	0
ELEC-GAS-GSL(MDBIL)	PJ/yr	0	0
ELEC-COAL+6SL(NOBIL)	PJ/yr	0	0
GAS-NTHL	PJ/yr	0	- 0
COAL-MTHL	PJ/yr	0	0
NOOD-HTHL	PJ/yr	0	2789050
ELEC-GAS-NTHL	PJ/yr	0	0
NTHL-6SL(NOBIL)	PJ/yr	0	0
ELEC-NTHL-6SL(MOBIL)	PJ/yr	0	0.00001
6AS-ETHL	PJ/yr	Ó	5826728
COAL-ETHL	PJ/yr	0	.0
WOOD-ETHL	PJ/yr	0	. 0
COAL-CORN-ETHL	PJ/yr	0	0
CDAL-BARLEY-ETHL	PJ/yr	, O	0
CBAL-WHEAT-ETHL	· PJ/yr	0	. 0
ELEC-GAS-ETHL	PJ∕yr	0	0
6AS-COAL-ETHL	PJ/yr	0	62839450
ELEC-COAL-ETHL	PJ/yr	0	· 0
ELEC-WOOD-ETHL	PJ/yr '	. 0	58580970
COAL-LHYEN	PJ/yr	s 1 0	0
GAS-LHYGN	PJ/yr	0	Û
ELEC-LHYEN	PJ/yr	0	0
ELEC-COAL-LHYGN	PJ/yr	0	39878200
ELEC-GAS-LHYGN	PJ/yr	0	43613240
SYNCRUDE-REF	TJ/yr	0	
CRUDE-REF 1 (LOW COMPLEX.)	TJ/yr	970421.1	0
CRUDE-REF 2 (HIGH COMPLEX.)	TJ/yr	0	247867.5
REF 2-6ASOLINES	TJ/yr	. 0	0
REF 2-DISTILLATES	TJ/yr _g	. 0	0
REF 2-H.OIL&PCF&PP	TJ/yr	0	0
REF 2-PROPANE	TJ/yr	0	. 0
6SL 2-6ASOLINES	TJ/yr	0	0
DSL 2-DISTILLATES	TJ/yr	0	0
AGSL 2-GASOLINES	TJ/yr	0	0
TJF 2-DISTILLATES	TJ/yr	0	0
LFO 2-DISTILLATES	TJ/yr	0.	3277083
HFO 2-H.OIL&PCF&PP	TJ/yr 🕤	0	0
PCF&PP 2-H.OIL&PCF&PP	TJ/yr	0.	0
REF 1-GASOLINEŞ	TJ/yr	156833.8	0
REF 1-DISTILLATES	TJ/yr	272484.3	0
REF 1-H.OIL&PCF&PP	TJ/yr	494395,5	0
REF 1-PROPANE	TJ/yr	5949.847	0
6SL 1-6ASOLINES	TJ/yr	156560.5	0
DSL 1-DISTILLATES	TJ/yr	227096.6	0
AGSL 1-GASOLINES	TJ/yr	273.4201	0
	•		

Variable Name	Units	Value	Reduced Cost
TJF 1-DISTILLATES	TJ/yr	• 45387.77	٥
LFO 1-DISTILLATES	TJ/yr	- 0	3277083
HFO 1-H.OIL&PCF&PP	TJ/yr	56961.97	. 0
PCF&PP 1-H.OIL&PCF&PP	TJ/yr	437433.3	,
6SL-INPORTS	PJ/ýr.	0	1684066
DSL-INPORTS (PJ/yr	0	628510.6
_ AGSL-IMPORTS)	✓ PJ/yr	0	1684066
TJF-INPORTS /	PJ/yr	0	628510.6
LFO-IMPORTS	PJ/yr	0	3905594
HFO-IMPORTS	PJ/yr	. 0	1370899
PCF&PP IMPORTS	PJ/yr	. 0	1370899
6SL-EXPORTS	PJ/yr	0	-1606066
DSL-EXPORTS	PJ/yr	0	-550510.6
A6SL-EXPORTS	PJ/yr	0	-1606066
TJF-EXPORTS	PJ/yr	0	-550510.6
LFO-EXPORTS	PJ/yr	0	-3827594
HFO-EXPORTS	PJ/yr	0	-1292899
PCF&PP-EXPORTS	/ PJ/yr	0	-1292899
ELEC-CN6	PJ/yr	, 0	3241648
ELEC-LNG	PJ/yr	0	2404382
CNG · ·	TJ/yr	49455.27	0
LNG	TJ/yr	0	0
65L(MOBIL)-6AS	TJ/yr	0	9460997
GSL (ZNCL2)-COAL	TJ/yr	0	7396968
6SL(NOBIL)-COAL	TJ/yr	0	0
SSL (NOBIL) - NTHL	TJ/yr	0	746655
SSL-COAL (SASOL)	TJ/yr	Q	14328670
DSL-COAL (SASOL)	TJ/yr	0	13273120
NTHL-GAS	TJ/yr a see	0	6726081
NTHL-COAL	TJ/yr	0	8588737
NTHL-WOOD	TJ/yr	0	529511.8
ETHL-GAS Ethl-Coal	TJ/yr	0	1011512
ETHL-NOOD	TJ/yr	0	6815512
ETHL-CORN	TJ/yr	< <u>0</u>	2314512
ETHL-BARLEY.	TJ/yr	<u>`</u> 0	0
ETHL-WHEAT	TJ/yr	• 0	0
LHY6K-6AS	TJ/yr	0	0
LHY6N-COAL	TJ/yr	. 0	2512000
	TJ/yr	0	7394000
LHYGN-ELEC GSL-NTHLGSLBLD	TJ/yr '	0	31393500
GSL-ETHLGSLBLD	PJ/yr	0	. 0.
NTHL-NTKLGSLBLD	PJ/yr v		0
ETHL-ETHLGSLBLD	< PJ/yr B1/yr	0	1034658
PROPANE-MOBIL (GAS)	PJ/yr	0	0.
PROPANE-NOBIL (COAL)	TJ/yr TJ/yr	0	0
PROPANE-NOBIL (NTHL)	TJ/yr	. 0	. 0
GAS-SBC-ELEC	PJ/yr	14.99981	0
070 VV0 LLLD	1 V Z Y 1	17.7701	U

Variable Name	Units	•	Value	Reduced Cost
SAS-SPC-ELEC	PJ/yr	:	0	0 .
CDAL-PFC1-ELEC	PJ/yr		0	133081.8
COAL-PFC2-ELEC	PJ/yr	· .	152.5364	0
COAL-AFBC-ELEC	PJ/yr		0	0
HOIL-SBC-ELEC	PJ/yr		0	5037666
LOIL-CTU-ELEC	PJ/yr		0	2960870
URAN-NWDL-ELEC	PJ/yr		332.4514	0
URAN-EXDL-ELEC 🔬	PJ/yr		230.85	-2970500
ELEC-6AS-SBC-SP	6Nh/yr		1416.649	0
ELEC-5AS-SBC-DP	6Wh/yr		0	2907877
ELEC-GAS-SPC-SP	6Wh/yr	· .	. 0	6246908
ELEC-GAS-SPC-DP	6Wh/yr		0	3072786
ELEC-LOIL-CTU-SP	6Wh/yr		0	17313120
ELEC-LOIL-CTU-DP	6Wh/yr		0	0
ELEC-HOIL-SBC-SP	6Wh/yr		ช	41726120
ELEC-HOIL-SBC-DP	6Wh/yr		0	474000
ELEC-HOIL-SBC-CYC	6Wh/yr		0	- 0
ELEC-HOIL-SBC-BASE	6Wh/yr		0	6084595
ELEC-COAL-PFC1-SP	6Wh/yr		0	3B339120
ELEC-COAL-PFC1-DP	6Wh/yr		0	246000
ELEC-CBAL-PFC1-CYC	6Wh/yr	•	0	0
ELEC-COAL-PFC1-BASE	6Wh/yr	•	0	6120595
ELEC-COAL-PFC2-SP	6₩h/yr		0	34651120
ELEC-COAL-PFC2-DP	6Wh/yr		6254.539	0
ELEC-COAL-PFC2-CYC	6Wh/yr	· ·	9172.828	0
ELEC-COAL-PFC2-BASE	6Wh/yr		0,	6158595
ELEC-COAL-AFBC-SP	6Wh/yr		0	87138090
ELEC-COAL-AFBC-DP	6Wh/yr		0	5405976
ELEC-COAL-AFBC-CYC	6Wh/yr	•	· · 0	2050976
ELEC-COAL-AFBC-BASE	6Wh/yr	Sol -	0	7681571
ELEC-LGTE-ELEC-SP	6Wh/yr		0	125835100
ELEC-LGTE-ELEC-DP	8Wh/yr		0	6063000
ELEC-LGTE-ELEC-CYC	6Wh/yr		0	. 0
ELEC-LGTE-ELEC-BASE	5Wh/yr		0	5205595
ELEC-URAN-NWDL-BASE	6¥h/yr		92347.56	· 0
ELEC-URAN-EXDL-BASE	6Wh/yr		64125	0
ELEC-NWHY(>10MW)-SP	6Wh/yr		0	· 0
ELEC-NWHY (>10HW)-DP	6Wh/yr		0	0
ELEC-NWHY()10 NW)-PEAK USP-E.T.	.PPJ/yr	•	0	0
ELEC-NWHY(>10 NW)-PEAK UDP-E.T.	.PPJ/yr		0	0
ELEC-NWHY(>10WW)-PEAK UPOWER	5W	,	0	0
ELEC-NWHY (>10NW)-SP	6Wh/yr		0	332203500
ELEC-NWHY(>10HN)-DP	6Wh/yr		0	20261400
ELEC-NWHY(>10 NW)-SP	6¥h/yr		0	0
ELEC-NWHY(>10 NW)-DP	6Wh/yr		Û	0
ELEC-NWHY(>10 NW)-CYC	6Wh/yr		4073.333	. 0
ELEC-NUHY(>10 NW)-BASE	6Wh/yr		· 0	0
ELEC-NWHY(>10 MW)-SP-ENGY TO PWR	· PJ/yr		0	249050300

. Þ

đ

Ο.

3

, М

Ì

	Variable Name	Units ,	Value	Reduced Cost
	ELEC-NWHY(>10 MW)-DP-ENGY TO PWR	PJ/yr	. 0	14258000
	ELEC-NWHY(>10 MW)-CY-ENGY TO PWR	PJ/yr	14.66399	0
	ELEC-NWHY(>10 MW)-BS-ENGY TO PWR	PJ/yr	510	3920595
	ELEC-NWHY(()10 KW)-POWER	6W (0.848459	0
	ELEC-NWHY (>10 NW)-SP	6Wh/yr ·	Ō	· 0
	ELEC-NHHY(>10 MW)-DP	6Wh/yr -	0	0
	ELEC-NWHY(>10 NW)-CYC	5Wh/yr	4073.333	0
	ELEC-NWHY(>10 NN)-BASE	6Wh/yr	0	0
	ELEC-NHHY(2-10 KW)-SP	6Wh/yr	0	280500200
	ELEC-NWHY (2-10 MW)-DP	6Wh/yr	0	16348000
	ELEC-NWHY (2-10 NW)-CYC	6Wh/yr	628:0554	0
	ELEC-NWHY (2-10 NW)-BASE	6Wh/yr	0	-3586595
	ELEC-NWHY (2-10 HW)-SP-ENGY TO PWR	•	ů.	0
	ELEC-NWHY(2-10 MW)-DP-ENGY TO PWR	•		. Õ
	ELEC-NWHY(2-10 NW)-CY-ENGY TO PWR	•	2.261	0
	ELEC-NWHY (2-10 NW)-BS-ENGY TO PWR		^ 0	0 0
	ELEC-NWHY (2-10 MN)-POWER	5W	0.130821	ů 0
	ELEC-NWHY(2-10 MW)-SP	6Wh/yr	0.130021	÷ 0
	ELEC-NWHY (2-10 MW)-DP	6Wh/yr	-	-
	•ELEC-NWHY(2-10 HW)-CYC	•	0 ·	0
	ELEC-NWHY(2-10 MW)-BASE	6Wh/yr	628.0554 ~	
		GWh/yr	0	- 0
	ELEC-EX.HYDRO-PEAK USP	6Wh/yr	3.063408	0
	ELEC-EX.HYDRO-PEAK UDP	5Wh/yr	1513.325	0
		PJ/yr	0.011028	. 0
•	ELEC-EX. HYDRO-PEAK UDP-E. T. PWR	PJ/yr	5.447971	0
	ELEC-EX.HYDRO-PEAK UPOWER	5W	0.967	-18997400
	ELEC-EX.HYDRO-PEAK USP	6Wh/yr	3.063408	0
	ELEC-EX.HYDRO-PEAK UDP	6Wh/yr	1513.325	0
-5	ELEC-EXHY-SP	6Wh/yr	0	315303100
	ELEC-EXHY-DP	6Wh/yr S	0	18624600
	ELEC-EXHY-CYC	6Wh/yr	22501.62	0
	ELEC-EXHY-BASE	6Wh/yr	0	- 3212028
	ELEC-EXHY-SP-ENGY TO POWER	PJ/yr	. 0	. 0
	ELEC-EXHY-DP-ENGY TO POWER	PJ/yr	0	0
	ELEC-EXHY-CYC-ENGY TO POWER	PJ/yr	81.00587	0
	ELEC-EXHY-BASE-ENGY TO POWER	PJ/yr z .	Q	0 .
	ELEC-EXHY-POWER	6W	4.687	-213876800
	ELEC-EXHY-SP	6Wh/yr	0	0
	ELEC-EXHY-DP	6Wh/yr I	0	
	ELEC-EXHY-CYC	6Wh/yr	22501.62	0
	ELEC-EXHY-BASE	6Wh/yr	0.	Û
	ELEC-MUNREFUSE-CYC	6Wh/yr	780.0556	· 0
	ELEC-NUNREFUSE-BASE	6Wh/yr -	. 0	2245262
	ELEC-MURREEUSE-CYC-ENGY TO POWER	PJ/yr	2.808201	. 0
	ELECTIONRE FISE-BASE-ENSY TO POWER	PJ/yr	0	0
	ELECTION	6N ·	0.2	-111690400
1	ELET CHERRENCYC	6Wh/yr	780.0556	· 0
	ELEC-MUNICEUSE BASE	6Wh/yr	0	0
•	CET .	•		

ъ.

4

15

243

,

· ·	BRSE SC	ENAKIU	
Seriable Name	Units	Value	Reduced Cost
ELEC-TOTALSP	PJ/yr	5.110967	0
ELEC-TOTALDP	PJ/yr	27.9643	Ů
ELEC-TOTALCYC	PJ/yr	- 133,7613	0
ELEC-TOTALBASE	PJ/yr	563,3015	0
ELEC-TOTAL	PJ/yr	730.1379	0
ELEC-EXPORTS-TRAN.	PJ/yr	55.30973	0
ELEC-EXPORT	PJ/yr	50	-610271.6
ELEC-IMPORT	PJ/yr	Q.	11312650
ELEC-IMPORTS-TRAN.	PJ/yr	· 0	0
GAS-TRAN&DIST	PJ/yr	971.7353	0
PROPANE-TRAN&DIST	PJ/yr	5.949851	0
METHANOL-TRAN&DIST	PJ/yr .	0	0
ETHANGL-TRAN&DIST	PJ/yr	0	0
GASOLINE-TRAN&DIST	PJ/yr	156.5605	0
DIESEL-TRAN&DIST	PJ/yr	. 227.0966	0
AV. GAS-TRAN&DIST	PJ/yr	0.27342	0
JET FUEL-TRAN&DIST	PJ/yr	45.38777	. 0
LFO-TRAN&DIST	° PJ/yr	0	0
HFD-TRAN&DIST	✓ PJ/yr	56.96197	0
PCF&PP-TRANADIST	PJ/yr	437.4333	· 0
ELEC-TRAN&DIST	PJ/yr	674,8281	U
WOOD-TRAN&DIST	PJ/yr D1/w	0	J. ALLEROOD
LHYGN-TRAN&DIST LNG-TRAN&DIST	PJ/yr	0	44635080
ELEC-HTP-R2SH-SH&AC	PJ/yr TT/wr	0	5822483 0 [°]
6AS-FCE+HTP-R2SH-SH	TJ/yr TJ/wr	0	7157628
LOIL-FCE+HTP-R2SH-SH	∝ TJ/yr TJ/yr /	. 0	8581401
ELEC-RES+HTP-R2SH-SH	TJ/yr	- 0	0
HT-ENERGY-HTP-R2SH-SH	PJ/yr	0	0
ENERGY-OPTS+HTP-R2SH-SH	PJ/yr	. 0.	Û
GAS-WCBFCE-R2SH-SH	PJ/yr	· 0	0 Q
LOIL-WCBFCE-R2SH-SH	PJ/yr	0	84954
ELEC-WOFCE+RES-R2SH-SH	PJ/yr	ů 0	2005253
WOOD-OPTS+WDFCE-R2SH-SH	TJ/yr	ů	2745020
ENERGY-OPTS+NDFCE-R2SH-SH	PJ/yr	Ŭ.	2743020
+ ELEC-ASR-R2SH-SH&WH&AC	PJ/yr	0	Ŏ
ASR-R2SH-SH&WH&AC	PJ/yr	. 0	Ŏ
HT ENERGY-ASR-R2SH-SH	TJ/vr	0	16067820
6AS-C6F-R2SH-SH	TJ/yr	•	3195240
6AS-FCE-R2SH-SH	TJ/yr	20130	A.
LOIL-FCE-R2SH-SH	` TJ∕yr	0	971187.6
ELEC-RES-R2SH-SH	TJ/yr	0	337714.8
ELEC-HTP-ISH-SH&AC	₹J/yr) 0	0
6AS-FCE+HTP-ISH-SH	TJ/yr	0	
LOIL-FCE+XTP-ISH-SH	TJ/yr	, 0	2001401
ELEC-RES+HTP-ISH-SH	TJ/yr	0	0
HT-ENERGY-ISH-SH	PJ/yr	0	0
ENERGY-OPTS+HTP-ISH-SH	PJ/yr	0	0
			ł -

244

11

ŝ,

5

ŕ

	۰ ² ۲		
Variable Name	Units	. Value	Reduced Cost
GAS-WCBFCE-ISH-SH	PJ/yr	0	- 0
LOIL-WCBFCE-ISH-SH -	PJ/yr	0	A 84954
ELEC-NDFCE+RES-ISH-SH	PJ/yr	ů	2005253
WOOD-WCBFCE+OPTS-ISH-SH	TJ/yr	. 0	518016
ENERGY-NCBFCE+OPTS-ISH-SH	PJ/yr	ů	* 0
6AS-FCE+ASR-ISH-SH	TJ/yr	Ŏ	Ő
LOIL-FCE+ASR-ISK-SH	TJ/yr	ů 0	667812.5
ELEC-RES+ASR-ISK-SH	TJ/yr	Ŭ	2564215
ELEC-ASR-ISH-SH&WH&AC	PJ/yr	. 0	2301213
ASR-ISH-SHEWHEAC	PJ/yr	Ŏ	0
HT ENERGY-ASR-ISH-SH	TJ/yr	` Õ	0
ENERGY-ASR+OPTS-ISH-SH	PJ/yr -	0.	3574492
GAS-CGF-ISH-SH	TJ/yr	0	
GAS-FCE-ISH-SH	TJ/yr	54567.5	802939 . 8. 0
LOIL-FCE-ISH-SH	TJ/yr	. 6.100+0	-
ELEC-RES-ISH-SH		0`	667812.5
ELEC-HTP-OBCBO-SH&AC	TJ/yr	•	2564215
	TJ/yr	0	0
6AS-FCE+HTP-OBC80-SH LOIL-FCE+HTP-OBC80-SH	TJ/yr (0	. 0
	TJ/yr	0	597562.5
ELEC-RES+HTP-OBCBO-SH	TJ/yr	0	3354215
HT ENERGY-HTP-DBCBO-SH	PJ/yr	. 0	- 0
ENERGY-OPTS+HTP-OBCBO-SH	₽J/yr '	0.	11036660
GAS-WCBFCE-OBC80-SH	PJ/yr _	· 0	. 0
LOIL-WCBFCE-OBCBO-SH	PJ/yr	•0	star 84954
ELEC-WDFCE+RES-D8C80-SH	PJ/yr	0	2005253
NOOD-NCBFCE-OBC80-SH	TJ/yr	0	0
ENERGY-WCBFCE+OPTS-OBC80-SH	PJ/yr	0	0
GAS-FCE+ASR-DBC80-SH	TJ/yr	O	67182.68
LOIL-FCE+ASR-OBC80-SH	TJ/yr j	. 0	r 6605 4 6.1
ELEC-RES+ASR-OBC80-SH	TJ/yr	0	3438193
ELEC-ASR-DBC80-SH&WH&AC	PJ/yr	· · · O	. 0
ASR-DBC80-SHLWHLAC	PJ/yr 1	0	ŕ 0
HT ENERGY-ASR-OBC80-SH	TJ/yr	0	62342 93
ENERGY-ASR+OPTS-OBC80-SH	PJ/yr 🚬	0	. 0
GAS-CGF-DBC80-SH -	TJ/yr	105476	.0
GAS-FCE-OBCBO-SH	TJ/yr	0	67182.68
LOIL-FCE-OBC80-SH	TJ/yr	0	660546.1
ELEC-RES-OBC80-SH	TJ/yr	0	3438193
6AS-C6B-APT-SH	TJ/yr	0 *	976135.8
GAS-IGD-APT-SH]J/yr	38865 -	0
LOIL-BLR-APT-SH	TJ/yr	`~ ^	0
ELEC-BLR-APT-SH	TJ/yr	0 U	3032465
ELEC-BSD-APT-SH	TJ/yr	- 0	4405465
ENERGY-R2SH-SH	PJ/yr	16.104	48914670
ENERGY-ISH-SH	PJ/yr	43.654	29137160
ENERGY-DBCBO-SH	PJ/yr	97.03799	
ENERGY-NWA-SH	PJ/yr	19.147	12968190
ENERGY-ODA-SH	PJ/yr	11.94499	16140920
FUEI/01_0100	ruzyr -	11.79977	16140920

· •

).

f

ų

246

BASE SCENARIO

ariable Name	Units	Value	Reduced Cost
•			
ENERGY-H-SH	PJ/yr	156.796	Ó
ENERGY-A-SH	PJ/yr	31.09199	0
ENERGY-RES-SH	PJ/yr	187.888	0
ENERGY-SR (NH) -R2SH	· PJ/yr	. 0	0
ENERGY-SR (NH) -1SH	PJ/yr	0	0
ENERGY-SR (NH)-OBC80H	PJ/yr	0	0
ENERGY-SR (NH) -HOUSES	PJ/yr	· 0	0
ENERGY-ASR+BKP-H-NH	PJ/yr	, 0	26073240
GAS-NHR+ASR-H-NH	• PJ/yr	۰ O	0
ELEC-WHR+ASR-H-WH	PJ/yr	. 0	1930965
5AS-WHR-H-WH	PJ/yr	87.10649	0
ELEC-WHR-H-WH	PJ/yr	0	~ 2692715
GAS-BLR-A-NH	PJ/yr	55.691	. 0
ELEC-BLR-A-WH	PJ/yr	0	4005215
ENERGY-R-WH	PJ/yr	69.68519	ົ໐
ENERGY-A-WH	PJ/yr	44.55281	· 0
ENERGY-RES-WH	PJ/yr	114.238	12452790
ELEC-IWAC-AC	PJ/yr	5.313	16732380
ENERGY-HTP (CAC) -R25H	PJ/yr	0	0
ENERGY-HTP (CAC) - ISH	PJ/yr	0	0
ENERGY-HTP (CAC)-DBCBO	PJ/yr [°]	0	0
ENERGY-HTP (CAC) -HOUSES	PJ/yr	0	0
ENERGY-ASR (CAC)-R2SH	PJ/yr	0	4223447
ENERGY-ASR (CAC) - I SH	PJ/yr	0	4223447
ENERGY-ASR (CAC) -OBC80	PJ/yr	0	4223447
ENERGY-ASR (CAC) -HOUSES	PJ/yr	0	0
ELEC-CAC-AC-HOUSES	PJ/yr	4.928777	0
ELEC-CAC-AC (APT)	PJ/yr	2.252889	0
ENERGY-CAC-RES	PJ/yr	21.54499	114B2900
ENERGY-RES-AC	PJ/yr	37.48399	0
ELEC-RES-APP<6	PJ/yr	115.3789	14326380
SAS-C6B-C&I-SH	TJ/yr	. 0	976135.8
SAS-16B-C&I-SH	TJ/yr	318645	. 0
OIL-BLR-C&I-SH	TJ/yr	0	Ŏ
ELEC-BLR-C&I-SH	TJ/yr	ů O	3032465
ELEC-BSD-C&I-SH	· TJ/yr	. 0	4405465
ENERGY-NWBD6S-CLI-SH	PJ/yr	194.136	16140920
ENERGY-DDBDGS-C&I-SH	PJ/yr	60.77999	16140920
ENERGY-C&I-SH	PJ/yr	254.916	0
SAS-BLR-C&I-WH	PJ/yr	17.985	. •
ELEC-BLR-C&I-NH	PJ/yr	0	4005215
ENERGY-C&I-V%	PJ/yr	14.38799	11652170
ELEC-C&I-AC	PJ/yr	15.81933	0
ENERGY-C&I-AC	PJ/yr	47.45799	4775461
ELEC-C&I-EQPT<G	PJ/yr	100.716	14326380
SAS-BLR-I-IH	PJ/yr	00.718	3445534
HOIL-BLR-I-IH	PJ/yr	0	6391562
COAL-BLR-I-IH	PJ/yr	716.1801	0371302

4

۴,

Variable Hame	• Units	Value	Reduced Cost
ENERGY-I-IH	PJ/yr	572,944	6418875
6AS-BR-I-DH	PJ/yr	43.52664	0
HOIL-BR-I-DH	PJ/yr	43.52664	(0
ELEC-HD-I-DH	PJ/yr	5.440506	Ò
COAL-BF-I-DH	PJ/yr	519.06B1	` 0
ENERGY-I-DH	PJ/yr	544.083	4872210
ELEC-EN&EL.CHMLS-I	PJ/yr	254.404	14326380
6AS-I-UTL	PJ/yr	98,66154	. 0
ELEC-1-UTL	PJ/yr	53, 12545	0
LOIL-I-UTL	PJ/yr	0	84954
ENERGY-I-UTL	PJ/yr	151.787	10219910
PROPANE-1-PPCF	PJ/yr	· 0	943216.8
DBPPCF-I-REF	PJ/yr	436.121	0
ENERGY-1-PPCF	PJ/yr	436.121	10437410
PROPANE-TRN-AUTO	PJ/yr	5.932001	0,
MTHL-TRN-AUTO	PJ/yr	0	Ō
ETHL-TRN-AUTO	PJ/yr	0	0
CNG-TRN-AUTO	PJ/yr	48.16943	Ő
LNS-TRN-AUTO	PJ/yr	0	0.
GASOLINE-TRN-AUTO	PJ/yr	91.68118	ŏ
DIESEL-TRN-AUTO	PJ/yr	113.4503	0
NETH6SL-TRN-AUTO	PJ/yr	0	0.3081
ETH6SL-TRN-AUTO	PJ/yr	. 0	71391.87
LHYGN-TRN-AUTO	PJ/yr	0 · ·	0
ELEC-TRN-AUTO	PJ/yr	43,58651	- · .
ENERGY-TRN-AUTO	Hkas/yr	121083.3	28738.98
PROPANE-TRN-LT.TKS&VANS	PJ/yr	0	15.61464
MTHL-TRN-LT. TKS&VANS	PJ/yr	· Õ	15.61464
ETHL-TRN-LT.TKS&VANS	PJ/yr	<u>́ 0</u>	15.61464
CNG-TRN-LT.TKS&VANS	PJ/yr	···· 0	15.61464
LNG-TRN-LT.TKS&VANS	PJ/yr	· 0	15.61464
GASOLINE-TRN-LT.TKS&VANS	PJ/yr	64.40759	0
DIESEL-TRN-LT.TKS&VANS	PJ/yr	1 0	15.56064
METHGSL-TRN-LT.TKS&VANS	* PJ/yr	. 0	0.3211
ETH6SL-TRN-LT. TKS&VANS	PJ/yr	· 0 .	71391.97
LHYEN-TRN-LT. TKS&VANS	PJ/yr	0	0.54
ELEC-TRN-LT. TRKS&VANS	PJ/yr	10.16853	0
ENER5Y-TRN-LT. TKS&VANS	Nkas/yr	21069.17	38542.46
AVEAS-TRN-ACRAFT	PJ/yr	0.2726	0
TJFUEL-TRN-ACRAFT	PJ/yr	45.2516	0
ENERGY-TRN-ACRAFT	PJ/yr		-
DSL-TRN-BUS	PJ/yr	14.993 8.719232	35124600
PROPANE-TRN-BUS	PJ/yr	,	0
CNG-TRN-BUS	•	0	875431.3
LNG-TRN-BUS	PJ/yr P3/yr	0	875431.3
MTHL-TRN-BUS	PJ/yr P1/yr	· · · · · · · · · · · · · · · · · · ·	875431.3
ETHL-TRN-BUS	PJ/yr 1917/wr	0	875431.3
	PJ/yr	0	875431.3
LHY6N-TRN-BUS	'_/PJ/yr	÷ 0	716195.5

\$

Variable Name Units Value Reduced Cost ENERGY-TRN-BUS PJ/yr 43771660 2.267 PJ/yr DIESEL-TRN-MRN 7.611238 0 HOIL-TRN-MRN PJ/yr > 13.26445 0 ENERGY-TRN-MRN PJ/yr 2,753 81922570 DSL-TRN-RAIL PJ/yr 25.37307 Ô ELEC-TRN-RAIL PJ/yr 0 0 ENERGY-TRN-RAIL 6.597 43771660 PJ/yr DIESEL-TRN-TRUCK 71.26153 PJ/yr Q PROPANE-TRN-TRUCK 0 875431.6 PJ/yr CNG-TRN-TRUCK PJ/yr 0 875431.6 LNG-TRN-TRUCK PJ/yr 0 875431.6 MTHL-TRN-TRUCK PJ/yr 0 875431.6 ETHL-TRN-TRUCK PJ/yr 0 875431.6 LHY5N-TRN-TRUCK 0 716198.3 PJ/yr ENERGY-TRN-TRUCK PJ/yr 18.52799 43771660 ELEC-TRN-STC&SBY 14326380 PJ/yr 1.61

NODEL NAME:	-	y Optimisation Model
SOLUTION	• •	lemand Scenario
OBJECTIVE FUNCTION VALUE	Dollars	3.953736000E+10
MARGINAL COST		•
Nođe Name	Units	Value
Gas Supply	\$/PJ	4135000
Propane Supply	\$/PJ	5937150
Coal Supply	\$/PJ	2561000
Uranium Supply	\$/PJ	1231000
Wood Supply	\$/PJ	1728937
Syncrude	\$/PJ	2564000
Refineries Dist.	\$/PJ	5627000
Gas-Gasoline (Kobil)	\$/PJ	8459724
Gas+Nethanol	\$/PJ	6777420
6as-ethanol	\$/PJ	0
G as-Liquid Hydrogen	\$/PJ	0
Coal-6sl+Dsl (FT-SASOL)	\$/PJ	N 9876591
Coal-Gasoline (InCl2)	\$/PJ	4755715
Coal-Gasoline (Mobil)	\$/PJ	-1532818
Coal-Methanol	≥ \$/PJ	6677967
Coal-Ethanol ·	\$/PJ	0
Coal-Liquid Hydrogen	\$/PJ	· 0
Nood-Methanol	, \$/PJ	0
Wood-Ethanol	\$/PJ	Ō

BASE SCENARIO

1

.

HIGH SCENARIO

Hode Name	Units	Value
Corn-Ethanol	\$/PJ	1746150
Barley-Ethanol	\$/PJ	3599150
Wheat-Ethanol	\$/PJ	2066150
Methanol	\$/PJ	4441150
Ethanol	\$/PJ	5564150
CN6	\$/PJ	9574875
LNG	\$/PJ	11160250
Gasoline .	\$/PJ	6275272
Diesel	\$/PJ	7167151
Aviation Gasoline	\$/PJ	6275272
Turbo Jet Fuel	\$/P3	7167151
Light Fuel Oil	\$/PJ	7167151
Heavy Fuel Oil	\$/PJ	5765004
PCF+Petroleum Products	\$/PJ 6	5765004
Methanol-Gasoline (MOBIL)	\$/PJ	5547566
Methanol Gasoline	\$/PJ /	8704386
Ethanol Gasoline	\$/PJ -	8764450
Elec / Gas-SBC	\$/PJ	12161770
Elec / Gas-SPC	\$/PJ	11800800
Elec / LF Oil-CTU	\$/PJ	8885782
Elec / HF Dil-SBC	\$/PJ	6798782
Elec / Coal-PFC1	\$/PJ	6911782
Elec / Coal-PFC2	\$/PJ	7033782
Elec / Coal-AFBC ,	\$/PJ	7317142
Elec / Lignite-	\$/PJ	4007782
Elec / Uran-New Darl	\$/PJ	1231000
Elec / Uran-Existing Darl	\$/PJ	4201500
Elec / New Hydro (Large)	\$/PJ	0
Elec / Existing Hydro	\$/PJ	0
Elec / Mun. Refuse	\$/PJ	0
Seasonal Peak	\$/PJ	67081770
Dailý Peak	\$/PJ	16344780
Cycling	\$/PJ	10132780
Base	\$/PJ	4984000
Electricity	\$/PJ	6797060
	\$/PJ	22371160
Liquid Hydrogen	\$/PJ	0
Heat-Pump / R2000 SH	\$/PJ	78950590
Heat Pump + Backups / R2000 SH	\$/PJ	19355550
Wood Furnace + Backups / R2000 SH		19355550
Activé Solar / R2000 SH	\$/PJ	1343913
Heating Devices / R2000 SH	\$/PJ	19355550
Heat-Puep / ISH	\$/PJ	42740590
Heat Pump + Backups / ISH	\$/PJ	13408050
Wood Furnace + Backups / ISH	\$/PJ	13408050
Active Solar / ISH	\$/PJ	1343913
Active Solar + Backups / ISH	\$/PJ ,	18657450
Heating Devices / ISH	\$/PJ	13408050

1

3

^}

HIGH SCENARIO

Node Name	Units ,	Value
Heat-Pump / OBC80H	\$/PJ	29970590
Heat Pump + Backups / OBC80H	\$/PJ	24099320
Wood Furnace + Backups / OBCBOH	\$/PJ	11143050
Active Solar / OBC80H	\$/PJ	1343913
Active Solar + Backups / OBCBOH	\$/PJ	14969070
Heating Devices / OBC80H	\$/P3	11143050
Reating Devices / Apts	\$/PJ	14231800
Housing Types	\$/PJ	. 0
Apartment / Types	\$/PJ	. 0
Residential Space Heating	\$/PJ	0
Active Solar - WH / Houses	\$/PJ	91403900
Active Solar + WH Backups / House		37711370
Water Heating Devices / Houses	\$/PJ	11055550
Water Heating Devices / Apts	\$/PJ	9743051
Residential Water Heating	\$/PJ	10543680
Heat Pump - Cooling / Houses	\$/PJ	14253530
Active Solar - Cooling / Houses	\$/PJ	14253530
Central Air-Conditioning	\$/PJ	11187640
Residential Air-Conditioning	\$/PJ -	1110/040
Heating Devices / C&I	\$/PJ	. 14231800
C&I Space Heating	\$/PJ	0
C&I Water Heating	\$/PJ	9743051
C&I Air-Condioning	\$/PJ	4480198
Ind. Indirect Heat •	\$/PJ	5361250
Ind. Direct Heat	\$/PJ	3736569
Ind. Utilities	\$/PJ	B917145
Ind. PCF + PP	\$/PJ	7969914
Automobiles	\$/PJ	24678.42
Aircraft	\$/PJ	29644650
Buses	\$/PJ	36826440
Narine	\$/PJ	65041340
D-11	\$/PJ	36826440
Trucks	\$/PJ	
Gasolines - Ref 2	\$/PJ	36826440 6275272
Distillates - Ref 2	•	
· · · · · · · · · · · · · · · · · · ·	\$/PJ	7167151
H.Oil&PCF&PP - Ref 2	\$/PJ	5765004
Lt.Trucks & Vans	\$/PJ	33096.55
Small Hydro Gas Tran≵Dist	\$/PJ	~ 0
	\$/PJ	6481441
Propane Tran&Dist Methanol Tran&Dist	\$/PJ	9574875
	\$/PJ	9574875
Ethanol Tran&Dist	\$/PJ	9574875
Gasoline Tran&Dist	\$/PJ	8704386
Diesel TrankDist	\$/PJ	9574876
Aviation Gasoline Tran&Dist	\$/PJ	9058448
Jet fuel Tran&Dist	\$/PJ	9767454
Light Fuel Oil Tran&Dist	\$/PJ	6661851
Heavy Fuel Oil Tran&Dist	\$/PJ	8005019

_

i

251

2

HIGH SCENARIO

Node Name	Units	Value
PCF & Petrochemicals Tran&Dist	\$/PJ	7969914
Electrical Tran&Dist	\$/PJ	13440590
Wood Tran&Dist	\$/PJ	3969937
Lig. Hydrogen Tran&Dist	\$/PJ	B704373
LNG Tran&Dist	\$/PJ	9574875
Refinery - 2 (High Complexity)	\$/PJ	6580105
Refinery - 1 (Low Complexity)	\$/PJ	6265658
6asolines - Ref 1	\$/PJ	6275272
Distillates - Ref 1	\$/PJ	7167151
Heavy Oils - Ref 1	\$/PJ	5765004
Electricity Imp/Exp	\$/PJ	6797060
Electricity Exports - Transmissi	on\$/PJ	9603000
Mun.Ref Elec - CY	•\$/PJ	2251000
Mun.Ref Elec - 85	\$/PJ	563681.8
Nun.Ref Elec - Power	\$/6₩	-79061840
Hydro Elec - >10 MW -SP	\$/PJ	157000000
Hydro Elec - >10 MW -DP	\$/PJ	15340000
Hydro Elec - >10 MW -CY	\$/PJ	5066391
Hydro Elec - >10 MW -BS	\$/PJ	3498000
Hydro Elec - >10 MW -POWER	\$/6W	0
Hydro Elec - 2-10 HW -SP	\$/PJ	33540880
Hydro Elec - 2-10 MW -DP	\$/PJ	8172391
Hydro Elec - 2-10 MW -CY	\$/PJ	5066391
Hydro Elec - 2-10 NW -BS	\$/PJ	2492000
Hydro Elec - 2-10 NW -POWER	\$/6W	0
Hydro Elec - EXIST, -SP	\$/PJ	-122953900
Hydro Elec - EXISTDP	\$/PJ	-6927714
Hydro Elec - EXISTCY	\$/PJ	40840
Hydro Elec - EXISTBS	\$/PJ	-951015
Hydro Elec - EXISTPOWER	\$/61	-173714200
Hydro Elec - >10 NW - Peak	\$/PJ	0
Hydro Elec - >10 MW - Peak - SP	\$/PJ	0
Hydro Elec - >10 MW - Peak - DP	\$/PJ	0
- Hydro Elec - >10 HW - Peak - Powe	er\$/6W	0
Hydro Elec - EXIST Peak	\$/PJ	10925340
Hydro Elec - EXIST, - Peak - SP	\$/PJ	5462670
Kydro Elec - EXIST Peak - DP	\$/PJ	5462670
Hydro Elec - EXIST Peak - Powe	er\$/6W	-17897280
Electricity Imports	\$/PJ	4093060
VARIABLES	2	
Variable name	Units (Value
GAS ONT	1000 Mcf/yr	5514.015
GAS-NAC-BFT/EAS.OFF/ARCTIC ISL.	1000 Mcf/yr	1149628
PROPANE-WEST	HLts/yr	0
COAL-WEST	1000 Tns/yr	20638.05~
COAL-US	1000 Ins/yr	47095.69
CRUDEOIL-FOREIGN/REGIONAL IMP.	1000 Brls/yr	232957.8
URANIUM-SASKAT	Tns/yr	3861.085

Reduced Cost 0

0 2256850 , 0 Ő 0 Ũ

13

٢

HIGH SCENARIO

a,

	Variable Name	Units	Value	Reduced Cost	
	NOOD-ONT	1000 TNS	0	1227063	•.
	LIGNITE-SASKAT.	1000 Tns/yr	Ō	1971432	
	EXISTING HYDRO - PEAKING UNITS		1516.388	-10925340	
	NEW HYDRG ()10 NW) - PEAKING		0	0	
	EXISTING HYDRO - ALL CATEG.	6Wh/yr	22501.62	0	
	NEW HYDRO (>10MW) - ALL CATE	6. 6Wh/yr	0	. 0	
	SMALL HYDRO (2-10 MW) - ALL CA	TE6.6Wh/yr	0	0	
	CORN-ONT-ETHL	1000 TNS	0	9799148	
	BARLEY-DNT-ETHL	1000 TNS	0	8517322	
	WHEAT-ONT-ETHL	1000 TNS	0	11053050	
	MUNREFUSE-ELEC	6Wh/yr	780.0556	0	
	COAL-SYNCRUDE	PJ/yr	0	1153977	
	GAS-GSL(MOBIL)	PJ/yr	0	. 0	
	COAL-6SL (ZNCL2)	PJ/yr í	0	0	
	COAL-6SL(NOBIL)	PJ/yr	0	3037511	
	COAL-GSLDSL (SASDL)	PJ/yr	0	0	
	ELEC-6AS-6SL(MOBIL)	PJ/yr	0	0	
	ELEC-COAL-6SL(MOBIL)	PJ/yr	0	0	
•	GAS-NTHL	PJ/yr	0	0	
	COAL-MTHL	PJ/yr	0	0	
	WOOD-NTHL	PJ/yr	0	1728937	
	ELEC-GAS-NTHL	PJ/yr	0	- O	
	HTHL-6SL (MOBIL)	PJ/yr	0	0	
	ELEC-NTHL-6SL(MOBIL)	PJ/yr	0	0:000002	
	6AS-ETHL	PJ/yr i	0	4409829	
	COAL-ETHL	PJ/yr	0	0.4	
	WOOD-ETHL	PJ/yr	0	0 5	,
	COAL-CORN-ETHL	PJ/yr	. 0	0	
	COAL-BARLEY-ETHL	PJ/yr	0	0	
	COAL-WHEAT-ETHL	PJ/yr	0	0	
	ELEC-GAS-ETHL	PJ/yr	- 0	0	
	GAS-COAL-ETHL	PJ/yr	0	47762840	
	ELEC-COAL-ETHL	PJ/yr	0	0	•
	ELEC-WOOD-ETHL	PJ/yr	0	40874090	
	COAL-LHY6N	PJ/yr	0	0	
	GAS-LHYGN	PJ/yr	0	0	
	ELEC-LHY6N	PJ/yr	0	0	
	ELEC-COAL-LHYGN	PJ/yr	0	32647020	
	ELEC-GAS-LHYGN	PJ/yr	0	35323710	
	SYNCRUDE-REF	TJ/yr	0	0	
	CRUDE-REF 1 (LOW COMPLEX.)	TJ/yr	1337099	0	•
	CRUDE-REF 2 (HIGH COMPLEX.)	TJ/yr	83943.31	0	
	REF 2-6ASOLINES	—TJ/yr	33501.32	. 0	
	REF 2-DISTILLATES	TJ/yr	34206.78	0	•
	REF 2-H.OIL&PCF&PP	TJ/yr	10798.33	0	
	REF 2-PROPANE	TJ/yr	1659.434	0	
	6SL 2-6ASOLINES	TJ/yr	33501.32	0	
	DSL 2-DISTILLATES	TJ/yr	34206.78	0	

•

.

· ,

HISH SCENARIO

Variable Name	Units	Value	Reduced Cost
ASSL 2-SASOLINES	TJ/yr	0	0
TJF 2-DISTILLATES	TJ/yr	Ō	ŏ
LFO 2-DISTILLATES	TJ/yr	0	. 0
HFO 2-H.OIL&PCF&PP	TJ/yr	10798.33	Ō
PCF&PP 2-H.OIL&PCF&PP	TJ/yr	0	0
REF 1-GASOLINES	TJ/yr	222371.1	Ō
REF 1-DISTILLATES	TJ/yr	375443.8	0
REF 1-H.OIL&PCF&PP	TJ/yr	674928	Ō
REF 1-PROPANE	TJ/yr	8198.027	0
65L 1-6ASOLINES	TJ/yr	221991.3	Ō
DSL I-DISTILLATES	TJ/yr	312376.9	0
AGSL 1-GASOLINES	TJ/yr	379.9216	Ū
TJF 1-DISTILLATES	TJ/yr	63066.95	· 0
LFO 1-DISTILLATES	TJ/yr	0	Ō
HFO 1-H.OIL&PCF&PP	TJ/yr	68236.75	0
PCF&PP 1-H.OIL&PCF&PP	TJ/yr	606691.1	0
6SL-IMPORTS	PJ/yr	0	1401728
DSL-INPORTS	PJ/yr	ů o	507848.6
AGSL-IMPORTS	PJ/yr	, Õ	1401728
TJF-INPORTS	PJ/yr)	509848.6
LFO-IMPORTS	PJ/yr	· 0	509848.6
HFG-IMPORTS	PJ/yr	0	1911996
PCF&PP INPORTS	PJ/yr	Ő	1911996
6SL-EXPORTS	PJ/yr	0	-1338728
DSL-EXPORTS	PJ/yr	0	-446848.6
AGSL-EXPORTS	PJ/yr	. 0	-1338728
TJF-EXPORTS	PJ/yr	ů O	-446848.6
LFO-EXPORTS	PJ/yr	0	-446848.6
HFO-EXPORTS	PJ/yr	· 0	-1848996
PCF&PP-EXPORTS	PJ/yr	ů	-1848996
ELEC-CN6	PJ/yr	ů	4114667
ELEC-LNG	PJ/yr	ů O	2917595
CN5	TJ/yr	. 0	231513
LNG	TJ/yr	· 0	0
GSL(HOBIL)-6AS	TJ/yr	0	8226292
6SL (ZNCL2)-COAL	TJ/yr	0	7462442
GSL (NOBIL) -COAL	TJ/yr	Ŏ	0
6SL (KOBIL) - MTHL	TJ/yr	∖ o	114024.3
6SL-COAL (SASOL)	TJ/yr	, o	12702320
DSL-COAL (SASOL)	TJ/yr	0	11810440
NTHL-GAS	TJ/yr	0	
NTHL-COAL	· TJ/yr		6269270 8182816
NTHL-WOOD	TJ/yr	0	
ETHL-GAS	TJ/yr	0	2329850
ETHL-COAL	TJ/yr	0	2811850
ETHL-WOOD	TJ/yr	` 0	8615850
ETHL-CORN	TJ/yr	. 0	4114850
ETHL-BARLEY	TJ/yr	0	0
LINE DALLI	13/91	U	0

,

HIGH SCENARIO

Variable Name

2

ł

1

Value	f

A

~

Variable Name	Units	Value	Reduced Cost
ETHL-WHEAT	TJ/yr	× 0	. 0
LHYGN-GAS	TJ/yr	Ŏ	2512000
LHYSN-COAL	TJ/yr	Ŏ	7394000
LHYGN-ELEC	TJ/yr	0	29919160
6SL-NTHL6SLBLD	PJ/yr	0	0
GSL-ETHLGSLBLD	PJ/yr	0	0
NTHL-NTHL6SLBLD	PJ/yr	Ő	870489.3
ETHL-ETHL6SLBLD	PJ/yr	0	0
PROPANE-MOBIL (GAS)	TJ/yr	0	0
PROPANE-NOBIL (COAL)	TJ/yr	0	0
PROPANE-MOBIL (NTHL)	TJ/yr	0	0
GAS-SBC-ELEC	PJ/yr	18.56985	0 0
6AS-SPC-ELEC	PJ/yr	0	ů.
COAL-PFC1-ELEC	PJ/yr	0	110773.1
COAL-PFC2-ELEC	PJ/yr	304.5097	0
COAL-AFBC-ELEC	PJ/yr	· · · · · ·	0
HOIL-SBC-ELEC	PJ/yr	0	3389509
LOIL-CTU-ELEC	PJ/yr	0	5003463
URAN-NWDL-ELEC	PJ/yr	466.2307	0
URAN-EXDL-ELEC	PJ/yr	230.85	-2970500
ELEC-6AS-SBC-SP	6Wh/yr	1753.819	0
ELEC-GAS-SBC-DP	6Wh/yr	0	1116983
ELEC-6AS-SPC-SP	6Wh/yr		6369034
ELEC-GAS-SPC-DP	6Wh/yr	Ŏ	1404018
ELEC-LOIL-CTU-SP	GWh/yr	. 0	19104010
ELEC-LOIL-CTU-DP	6Wh/yr	0	0
ELEC-HOIL-SBC-SP	6Wh/yr	0	43517020
ELEC-HOIL-SBC-DP	6Wh/yr	Ů	474000
ELEC-HOIL-SBC-CYC	6Wh/yr	0	0
ELEC-HOIL-SBC-BASE	6Wh/yr	0	4098782
ELEC-COAL-PFC1-SP	6Wh/yr	Ŭ Ŭ	40130010
ELEC-COAL-PFC1-DP	6Wh/yr	Ő	246000
ELEC-COAL-PFC1-CYC	6Wh/yr	, O	1,0000
ELEC-COAL-PFCI-BASE	6Wh/yr	· 0	4134782
ELEC-COAL-PFC2-SP	6Wh/yr	· O	36442010
ELEC-COAL-PFC2-DP	6Wh/yr	8099.339	0
ELEC-COAL-PFC2-CYC	6Wh/yr	22698.42	. Ö
ELEC-COAL-PFC2-BASE	6Wh/yr	. 0	4172782
ELEC-CDAL-AFBC-SP	6Wh/yr	0	88835370
ELEC-COAL-AFBC-DP	6Wh/yr	. 0	5312360
ELEC-CDAL-AFBC-CYC	6Wh/yr		
ELEC-COAL-AFBC-BASE	5Wh/yr	·, 0 0	1957360
ELEC-LOTE-ELEC-SP			5602142
ELEC-LOTE-ELEC-DP	6Wh/yr	0	127626000
ELEC-LOTE-ELEC-CYC	6Wh/yr	0	2022000
=	6Wh/yr	0	0
ELEC-LETE-ELEC-BASE	6Wh/yr	() 100540 5	3219782
ELEC-URAN-NWDL-BASE	5Wh/yr	129508.5	0
ELEC-URAN-EXOL-BASE	6Wh/yr	64125	. 0

HIGH SCENARID

Variable Name	Units			Value	Reduced Cost	
ELEC-NWHY(>10MN)-SP	6Wh/yr			0		
ELEC-NWHY (>10NW)-DP	6Wh/yr			· 0	0	
ELEC-NWHY(>10 KW)-PEAK USP-E.T				. 0	0	
ELEC-NWHY(>10 MW)-PEAK U:-DP-E.T				0	0	
ELEC-NNHY()10NW)-PEAK UPOWER	6W			Ŏ	0	
ELEC-NWHY (>10MW)-SP	6Wh/yr			Ŭ	336318200	
ELEC-NWHY(>10HW)-DP	5Wh/yr			Ő	22585210	
ELEC-NWHY (>10 MW)-SP	6Wh/yr			0	U V1769777	
ELEC-NWHY(>10 NW)-DP	6Wh/yr			· 0	0	
ELEC-NWHY()10 MW)-CYC	6Wh/yr			0	•	
ELEC-NWHY(>IO MW)-BASE	5Wh/yr			0	77217.62	
ELEC-NWHY(>10 HW)-BHSE ELEC-NWHY(>10 HW)-SP-ENGY TO PWR				0	0	
ELEC-NWHY()10 MW)-DP-ENGY TO PWR	•			0	250918400	
ELEC-NWHY(>10 HW)-CY-ENGY TO PWR				0	14335220	
ELEC-NUHY()10 MW)-BS-ENGY TO PWR				-	0	
ELEC-NURY(>10 NW)-BS-ERBY 10 PWR	eazyr GW			0	2012000	
ELEC-NWHY()10 MW)-SP				0	.0	
ELEC-NWHY()10 HW)-DP	6Wh/yr			0	0	~
,	6Wh/yr			-0-	0	
ELEC-NWHY(>10 MW)-CYC	6Wh/yr	•		0	0	
ELEC-NWHY(>10 NN)-BASE	5Wh/yr			0	0 4	7
ELEC-NWHY (2-10 MW)-SP	SWh/yr	•		0	283418300	
ELEC-NWHY (2-10 MW) -DP	6Wh/yr		• • • •	0	17475210	
ELEC-NWHY(2-10 MW)-CYC	6Wh/yr	1		0	1127218	
ELEC-NWHY (2-10 MW) -BASE	6Wh/yr			0	2728000	
ELEC-NWHY (2-10 NN)-SP-ENGY TO PH	R PJ/yr			0	, 0	
ELEC-NNHY (2-10 MW)-DP-ENGY TO PW	R PJ/yr		P	0	0	
ELEC-NWHY (2-10 MW) -CY-ENGY TO PW	R PJ/yr			. 0	0	
ELEC-NWHY (2-10 HW) -BS-ENGY TO PW	•	- '		0	. 0	
ELEC-NWHY (2-10 NW)-POWER	GW		t	0	/ `0	
ELEC-NWHY (2-10 NW)-SP	6Wh/yr			0	0	
ELEC-NHHY (2-10 MW) -DP	6Wh/yr			0	0	
ELEC-NWHY(2-10 MW)-CYC	6¥h/yr			0	0	
ELEC-NWHY(2-10 HW)-BASE	6Wh/yr			0	0	
ELEC-EX.HYDRO-PEAK VSP	6Wh/yr			3.063408	0	
ELEC-EX.HYDRO-PEAK UDP	6Wh/yr		•••	1513,325	0	
ELEC-EX.HYDRO-PEAK USP-E.T.PWR				0.011028	0	
ELEC-EX.HYDRO-PEAK UDP-E.T.PWR	PJ/yr			5.447971	. 0	
ELEC-EX.HYDRO-PEAK UPOWER	6W			0.967	-17897280	
ELEC-EX.HYDRO-PEAK USP	6Wh/yr	•		3.063408	0	
ELEC-EX.HYDRO-PEAK UDP	6Wh/yr		-	1513.325	0	
ELEC-EXHY-SP	6Wh/yr			· 0	247054800	
ELEC-EXHY-DP	5Wh/yr			Ō	13966130	
ELEC-EXHY-CYC	6Nh/yr			22501.62	0	
ELEC-EXHY-BASE	6Wh/yr			0	/ 1957980	
ELEC-EXHY-SP-ENGY TO POWER	PJ/yr			0-	0	
ELEC-BHHY-DP-ENGY TO POWER	PJ/yr		••••••	6	a 0	
ELEC-EXHY-CYC-ENGY-TO POWER	PJ/yr			81.00587		
ELEC-EXHY-BASE-ENGY TO POWER	PJ/yr			0		
,				. •	. V	

255

2

ð.

دم.

RIGH SCENARIO

256

Ż

Variable Name	Units	Value	Deduced Cont
		varue) Reduced Cost
ELEC-EXHY-POWER	6W	4.687	-173714200
ELEC-EXHY-SP	5Wh/yr	0	- 0
ELEC-EXHY-DP	5Nh/yr	°0	0
ELEC-EXHY-CYC	6Wh/yr	22501.62	Ō
ELEC-EXHY-BASE	6Wh/yr	. 0	· · · · · · · · · · · · · · · · · · ·
ELEC-MUNREFUSE-CYC	6Nh/yr	780.0556	0
ELEC-NUNREFUSE-BASE	6Wh/yr	ž 0	1991636.5
ELEC-MUNREFUSE-CYC-ENGY TO POWER	PJ/yr	2.808201	0
ELEC-MUNREFUSE-BASE-ENGY TO POWER	PJ/yr	· · 0	y · 0
ELEC-NUNREFUSE-POWER	6W 👘 🔨 😽 👘	0.2	-79061840
ELEC-HUNREFUSE-CYC	6Wh/yr	780.0556	
ELEC-NUNGEFUSE-BASE	6Wh/yr 🔍	. 0	Õ
ELEC-TOTALSP	PJ/yr	6.324778	0
ELEC-TOTALDP	PJ/yr	34.60559	0
ELEC-TOTALCYC	PJ/yr	165.5283	0
ELEC-TOTALBASE	PJ/yr	697.0805	0
ELEC-TOTAL	PJ/yr	903.5393	· 0
ELEC-EXPORTS-TRAN.	PJ/yr	0	· 81994B
ELEC-EXPORT	PJ/yr	. 0	0
ELEC-IMPORT	PJ/yr	0	8876940
ELEC-IMPORTS-TRAN.	PJ/yr	0	0
GAS-TRAN&DIST	PJ/yr	1217.433	0 0
PROPANE-TRAN&DIST	PJ/yr	9,857462	0
NETHANOL-TRAN&DIST	PJ/yr	0	0
ETHANOL-TRAN&DIST	PJ/yr	0	0
GASOLINE-TRAN&DIST	PJ/yr '	255.4925	0
DIESEL-TRAN&DIST	PJ/yr	346.5837	<i>i</i> 0
AV.GAS-TRANEDIST	PJ/yr	0.379922	
JET FUEL-TRAN&DIST	PJ/yr	63.06695	. / 0
LFO-TRAN&DIST	PJ/yr	0	2904286
HFO-TRAN&DIST	PJ/yr	79.03512	0
PCF&PP-TRAN&DIST	PJ/yr	606.6911	-0
ELEC-TRAN&DIST	PJ/yr	903.5393	0
NOOD-TRANEDIST	PJ/yr	0	· 0
LHYGN-TRAN&DIST	PJ/yr	0	46271740
LNG-TRAN&DIST	PJ/yr	0	6139100
ELEC-HTP-R2SH-SH&AC	TJ/yr	Ő	0
GAS-FCE+HTP-R2SH-SH	TJ/yr	Ŏ	
LOH-FCE+HTP-R2SH-SH	TJ/yr	Ő	7813905
ELEC-RES+HTP-R2SH-SH	TJ/yr	, o	0
HT-ENERGY-HTP-R25H-SH	PJ/yr	· 0	0
ENERGY-OPTS+HTP-R2SH-SH	PJ/yr	0	.0
6AS-NCBFCE-R2SH-SH	PJ/yr	0	. `0
LOIL-WCBFCE-R2SH-SH	PJ/yr	0	180409.8
ELEC-WDFCE+RES-R2SH-SH	PJ/yr	-	
WOOD-OPTS+WDFCE-R2SH-SH	TJ/yr	· 0	3469147 2801005
ENERGY-OPTS+WDFCE-R2SH-SH	PJ/yr	.0	
ELEC-ASR-R2SH-SH&NH&AC	PJ/yr	0	. 0
HAN NEALIGUR		. V	. V

/1

-£

ار

7

257

Variable Name	Units		Value	Reduced Cost	
ASR-R2SH-SH&WH&AC	PJ/yr		0	0	
HT ENERGY-ASR-R2SH-SH	TJ/yr		Ő	17888360	
6AS-C6F-R2SH-SH	TJ/yr		0	3424334	
GAS-FCE-R25H-SH	TJ/yr		16198.74	0121004	
LOIL-FCE-R2SH-SH	TJ/yr		0	971187.6	ý
ELEC-RES-R25H-SH	TJ/yr	•	Ō	1361044	
ELEC-HTP-ISH-SH&AC	TJ/yr		0	0	
GAS-FCE+HTP-ISH-SH	TJ/yr		- 0	398965	
LOIL-FCE+HTP-ISH-SH	TJ/yr		0	£233905	
ELEC-RES+HTP-ISH-SH	TJ/yr	\$	Ō	0	
HT-ENERGY-ISH-SH	PJ/yr		0	, O	
ENERGY-OPTS+HTP-ISH-SH	PJ/yr		- 0	0	للقر يبعه
6AS-WCBFCE-ISH-SH	PJ/yr		· · · · · · · · · · · · · · · · · · ·	0	
LOIL-WCBFCE-ISH-SH	PJ/yr		Ō	180409.8	
ELEC-WDFCE+RES-ISH-SH		٥	Ö	3469147	
KOOD-WCBFCE+OPTS-ISK-SH	TJ/yr		Ser 0	574001.5	
ENERGY-WCBFCE+OPTS-ISH-SH	PJ/yr		f o	A.	
GAS-FCE+ASR-ISH-SH	TJ/yr		0	0	`
LOIL-FCE+ASR-ISH-SH	T3/yr	· .	J Ó	667812.5	•
ELEC-RES+ASR-ISH-SH	T3/yr	4-	0	3587544	
ELEC-ASR-ISH-SH&WH&AC	PJ/yr		0	. 0	
ASR-ISH-SH&WH&AC	PJ/yr		Ō	0	
HT ENERGY-ASR-ISH-SH	TJ/yr	· ·)	0	- 0	
ENERGY-ASR+OPTS-ISH-SH	PJ/yr		Ō	5249395	· · · ·
GAS-CGF-ISH-SH	TJ/yr		0	1032034	
GAS-FCE-ISH-SH	TJ/yr		81382.5	/ 0	
LOIL-FCE-ISH-SH	TJ/yr		0	667812.5	
ELEC-RES-ISH-SH	TJ/yr		-0	3587544	
ELEC-HTP-OBC80-SH&AC	TJ/yr		. 0	0	
GAS-FCE+HTP-OBC80-SH	TJ/yr	-	0	0	
LOIL-FCE+HTP-OBC80-SH	TJ/yr	•	0	597562.5	
ELEC-RES+HTP-OBCBO-SH	TJ/yr	•	. 0	4377544	
HT ENERGY-HTP-OBC80-SH	PJ/yr		0	0	
ENER6Y-OPTS+HTP-OBCBO-SH	PJ/yr		0	12956270	
GAS-WCBFCE-OBCBO-SH	PJ/yr		0	0	
LOIL-WCBFCE-OBC80-SH	PJ/yr	-	0	180409.8	
ELEC-WDFCE+RES-OBC80-SH	PJ/yr		0	3469147	
NOOD-NCBFCE-OBCBO-SH	TJ/yr		· 0	· 0	
ENERGY-WCBFCE+OPTS-DBCBO-SH	₽J/yr	٩	0	0	
GAS-FCE+ASR-DBCBO-SH	TJ/yr		0	0	
LOIL-FCE+ASR-OBCBO-SH	` TJ/yr		0, <u>,</u>	597562.5	
ELEC-RES+ASR-OBC80-SH	TJ/yr		0	4377544	
ELEC-ASR-OBC80-SH&WH&AC	PJ/yr	. .	. 0	0	
ASR-OBCBO-SHEWHEAC	PJ/yr	· ·	0	0	,
HT ENERGY-ASR-DBCBO-SH	TJ/yr		0	0	
ENERGY-ASR+OPTS-OBC80-SH	PJ/yr	-	· 7 · 0	3826014	
GAS-CGF-OBC80-SH	TJ/yr	- · ·	0	151833.8	
6AS-FCE-OBC80-SH	TJ/yr		130866.1	· 0	0
				,	•

đ

Ŷ

H I 6 H SCENARIO

258

ı

ર

C.

s25

д.

Variable Name	Units	Value	Reduced Cost	
LOIL-FCE-OBC80-SH	** /	•		
	TJ/yr	0	597562.5	
ELEC-RES-OBC80-SH	TJ/yr	0	4377544	•
6AS-C6B-APT-SH	TJ/yr	0	1109774	-
GAS-IGB-APT-SH	IJ/yr	43471.25	0	
LOIL-BLR-APT-SH	TJ/yr	· \0	0	
ELEC-BLR-APT-SH	TJ/yr	Ŷ.	4055794	
ELEC-BSD-APT-SH	ĭJ/yr	0	5428794	
ENERGY-R2SH-SH	PJ/yr PJ/yr €	12.95899	47005550	
ENERGY-ISH-SH	10771	65.106	27228040	
ENERGY-OBCBO-SH	PJ/yr	104.6929	11143050-	
ENERGY-NWA-SH	PJ/yr	22.832	14231800	
ENERGY-DDA-SH	PJ/yr	11.94499	14231800	-
ENERGY-H-SH	PJ/yr	182.7579	0	
ENERSY-A-SH	PJ/yr	34.77699	0	
ENERGY-RES-SH	PJ/yr	217.535	0	
ENERGY-SR (WH) -R2SH	PJ/yr	. 0	0	
ENERGY-SR (NH) -ISH	PJ/yr	0	. 0	
ENERGY-SR (WH) -OBCBOH	PJ/yr	0	e	
ENERGY-SR (WH) -HOUSES	PJ/yr	0	. 0	
ENERGY-ASR+BKP-H-WH	PJ/yr	0	26655820	
GAS-WHR+ASR-H-WH	PJ/yr 🖤	• 0	0	
ELEC-WHR+ASR-H-WH	PJ/yr	· · O	2954294	
6AS-WHR-H-WH	PJ/yr	98.7758	0	
ELEC-WHR-H-WH	PJ/yr	0	3716044	٩.
GAS-BLR-A-WH	PJ/yr	63.1517	0	ч.
ELEC-BLR-A-WH	PJ/yr	0	502B544	
ENERGY-H-WH	PJ/yr	79.02064	0	
ENERGY-A-WH	PJ/yr	50.52137	l-	
ENERGY-RES-WH	PJ/yr	129.542	10543680	
ELEC-IWAC-AC	PJ/yr	6.777	15846590	
ENERGY-HTP (CAC)-R2SH	PJ/yr	0	0	
ENERGY-HTP(CAC)-ISH	PJ/yr	0	· · · O	
ENERGY-HTP (CAC)-OBC80	PJ/yr	0	2	
ENERGY-HTP(CAC)-HOUSES	· PJ/yr	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
ENERGY-ASR (CAC) -R2SH	PJ/yr	Q	4371087	,
ENERGY-ASR(CAC)-ISH	PJ/yr	0	4371087	
ENERGY-ASR (CAC)-OBCBO	PJ/yr	0	4371087	~
ENERGY-ASR (CAC) -HOUSES	PJ/yr	_ 、 0 ~	0	
ELEC-CAC-AC-HOUSES	PJ/yr	6.287651	0	
ELEC-CAC-AC (APT)	👌 PJ/yr 🚽	2.874015	0	•
ENERGY-CAC-RES	P3/yr	27.485	11187640	
ENERGY-RES-AC	PJ/yr	47.81599	e 0	
ELEC-RES-APP<G	PJ/yr	130.835	13440590	
GAS-C6B-C&I-SH	TJ/yr	0 150147 E	^g _1109774	
6AS-16B-C&1-SH	TJ/yr	459143.5	0	
LOIL-BLR-C&I-SH	T <u></u> ≱/yr	. 0	· 0	
ELEC-BLR-CWT-SH	TJ/yr	0	-/ 4055794	
ELEC-BSD-C&I-SH	TJ/yr	<i>-</i> ¢ 0	5428794	
,				

}

1 6

8.

)

259

لأنب

) س

ŝ

وكمر

HIGH SCENARIO

-

3

Γ

Variable Name	Units	Value	Reduced Cost
ENERGY-NWBD65-C&I	-SH PJ/yr	306.5349	14231800
ENERGY-ODBD65-C&I		60.77999	14231800
ENERGY-C&I-SH	PJ/yr	367.3149	0
GAS-BLR-C&I-WH	PJ/yr	24.9725	0
ELEC-BLR-C&I-WH	PJ/yr	0	5028544
ENERGY-C&I-WH	- PJ/yr	19.97799	9743051
ELEC-C&I-AC	Potyr	22.79432	0
ENERGY-C&I-AC	PJ/yr	68.38299	4480198
ELEC-C&I-EQPT<G	PJ/yr	139.8489	13440590
GAS-BLR-I-IH	PJ/yr	0 .	2764341
HOIL-BLR-I-IH	PJ/yr	0	4717281
& COAL-BLR-I-IH	- PJ/yr	993.2924	0
ENERGY-I-IH	PJ/yr	794.634	5361250
5AS-BR-I-DH	PJ/yr	60.36848	0001200
HOIL-BR-I-DH	PJ/yr	60.3684B	· 0
ELEC-HD-I-DH	•	7.54561	0
COAL-BF-I-DH	PJ/yr		•
	PJ/yr	719.9118	0
ENERGY-I-DH	°PJ/yr	754.6059	3736569
ELEC-ENAEL.CHNLS-		352.B41	13440590
GAS-I-UTL	· PJ/yr	136.8372	0
ELEC-I-UTL	PJ/yr	73.68165	0
LOIL-I-UTL	PJ/yr -	· 0,	180409.8
ENERGY-I-UTL	PJ/yr	210.5189	8917145
PROPANE-I-PPCF /	PJ/yr	0	1604961
OBPPCF-1-REF	PJ/yr	604.871	0
ENERGY-I-PPCF	、 PJ/yr	604.871	7969914
PROPANE-TRN-AUTO	PJ/yr	9.02789	0
NTHL-TRN-AUTO	PJ/yr	0	0
🚛 ETHL-TRN-AUTO	PJ/yr	0	0
CNG-TRN-AUTO	PJ/yr	0	. 0
LNG-TRN-AUTO	r PJ/yr	0	0
GASOLINE-TRN-AUTO	PJ/yr	165.2303	~
DIESEL-TRN-AUTD	PJ/yr	188,5805	di angla i
METH6SL-TRN-AUTO	PJ/yr	. 0	. 3081
FTHESI -TRN-AUTO	PJ/yr	Û	60064.19
LHYGN-TRN-AUTO	PJ/yr	0 -	0
ELEC-TRN-AUTO	PJ/yr T	60.5625	÷ 0
ENERGY-TRN-AUTO	Mkns/yr	168242.6	24678.42
PROPANE-TRN-LT.TK		100242.0	13.14564
MTHL-TRN-LT.TKS&V	Jar Lait An Lait		13,14564
ETHL-TRN-LT.TKS&V	1919 (<u> </u>	0	
		V.	13.14564
CNG-TRN-LT. TKS&VAI	4	Ű	13.14564
LNG-TRN-LT. TKS&VAL	•		13.14564
- GASOLINE-TRN-LT.TI	*	89.49566) ۲۳. ۵۵۰ (۲
DIESEL-TRN-LT.TKS	,	U	12*04193
METH6SL-TRN-LT.TK	`	/ 0	0.3211
ETHESL-TRN-LT.TKS		0	60064.21
LHYEN-TRN-LT.TKS&	/ANS PJ/yr/	0	0.54

HIGH SCENARIO

Variable Name

ELEC-TRN-LT. TRKS&VANS ENERGY-TRN-LT. TKS&VANS AV6AS-TRN-ACRAFT TJFUEL-TRN-ACRAFT ENERGY-TRN-ACRAFT DSL-TRN-BUS PROPANE-TRN-BUS CNG-TRN-BUS LNG-TRN-BUS MTHL-TRN-BUS ETHL-TRN-BUS LHYGN-TRN-BUS ENERGY-TRN-BUS DIESEL-TRN-HRN -KOIL-TRN-MRN ENERGY-TRN-MRN DSL-TRN-RAIL ELEC-TRN-RAIL ENERSY-TRN-RAIL DIESEL-TRN-TRUCK PROPANE-TRN-TRUCK CNG-TRN-TRUCK LN5-TRN-TRUCK MTHL-TRN-TRUCK ETHL-TRN-TRUCK LHYGN-TRN-TRUCK ENERGY-TRN-TRUCK ELEC-TRN-STC&SBY

Units	Value	Reduced Cost
PJ/yr	14.12893	0
Kkas/yr	29275,14	33096.55
PJ/yr ⁱ	0.378782	0
PJ/yr	62.87776	0
PJ/yr	20.83299	29644650
PJ/yr	12.11538	0
PJ/yr	0	736527.3
PJ/yr	0	736527.3
PJ/yr	2	736527.3
PJ/yr 🔪	0.0	736527.3
∖PJ/yr / [™]	0 /	736527.3
)PJ/yr	0	602555.6
/ PJ/yr	3.15	36826440
/ PJ/yr	- 10.57499	- 0
PJ/yr	18.42953	0
PJ/yr	3.025	65041340
PJ/yr	35.25384	0
PJ/yr	0	0
PJ/yr	9.166	36826440
PJ/yr	99.01922	Ó
PJ/yr	ہ تے ا	736527.6
PJ/yr) 0	736527.6
* PJ/yr	0	736527.6
PJ/yr	0	736527.6
PJ/yr	0	736527.6
PJ/yr	0	602558.6
PJ/yr	25.74499	36826440
PJ/yr	2.237	13440590

Ô

3

REFERENCES

۵ (

Andrews, P.L. and Wilkins, S.G., "Hydro Solar Domestic Water Heating Project", Conference Proceedings of the Solar Energy Society of Canada Inc., Windsor, 1983.

Behling, D.J. Jr., Marcuse, W. and Lukaschinski, J., "The Long Term Economic and Environmental Consequences of Phasing Out Nuclear Electricity", in <u>Modelling Energy</u> <u>Economy Interactions: Five approaches</u>, ed. C.J. Hitch, Resources for the Future, Washington D.C., 1977.

Brooks, D.B., Robinson, J.B. and Torrie, R.D., "Soft Energy Futures for Canada", National Report Volume I, EMR Ottawa, 1983.

- Canadian Energy Research Institute, "Potential Markets for Thermal Coal in Canada, 1978-2000, Working Paper No. 79-2, 1979.
- Daniel, T.E. and Goldberg, H.M., "Dynamic Equilibrium Energy modelling: The Canadian BALANCE model", Operations Research, 29, 5, 829-852, 1981.
 - Debanne, J.G., "Network Based Regional Energy Pl'anning Models: An Evolutionary Expose", in <u>Energy Policy</u> <u>Modelling: United States and Canadian Expériences</u>, <u>Volume II</u>, eds. W.T. Ziemba and S.L. Schwartz, Martinus Nijhoff Publishing, Boston, 1980.
 - Duda et al., Private Discussions with Ontario Hydro and Ministry of Energy Ontario personnel (Presentation of The Technoeconomic Energy Model for Ontario followed by discussions on the model and ongoing work), Toronto, 1987.

Economic Council of Canada, "An Assessment of the Competitiveness of Selected energy Conservation and Alternative Energy technologies", Discussion Paper No. 262, Ottawa, 1984.

Egberts, G., Heckler, R., Schewefel, H.P. and Voss, A., Integration of Optimisation and Simulation Models", in "<u>Mathematical Modelling of Energy Systems</u>", Sijthoff and Noordhoff International Publishers, B.V., The Netherlands, 1981.

Energy, Mines and Resources Canada. "Alternative Fuels Production Costs", Report TE 82-7, Ottawa, 1983a. Energy, Mines and Resources Canada. "Uranium in Canada -1982 Assessment of Supply and Requirements", Report EP 83-3, Ottawa, 1983b.

Energy Mines and Resources Canada. "Super Energy Efficient Housing and Solar Orientation", Research Report, Ottawa, 1983c.

Fishbone, L.G. and H. Abilock , "MARKAL, a Linear Programming Model for Energy System Analysis:

 Technical Description of the BNL version", Energy <u>Research</u>, 5, 353-375, 1981.

Fuller, J.B., "A Long Term Energy Policy Model For Canada", / Unpublished Doctoral Dissertation, The University of British Columbia, Vancouver, 1980.

- Fuller, J.D. and Ziemba, W.T., "A survey of Some Energy Models", in Energy Policy Modelling: United States and <u>Canadian Experiences</u>, Volume II, eds. W.T. Ziemba and S.L. Schwartz, Martinus Nijhoff Publishing, Boston, 1980.
- Fuller, J.D., "A System for Construction and Maintainence of Energy Planning Models", in <u>Strategic Planning in</u> <u>Energy and Natural Resources</u>, eds. B. Lev et al., Elsivier Science Publishers B.V.(North Holland), 1987.

Goettle IV, R.J., Cherniavsky E.A. and Tessmer Jr., G., "An Integrated Multiregional Energy and Interindustry Model of the United States", Report BNL 22728, National Center for the Analysis of Energy systems, Brookhaven National Laboratory, Upton, Long Island, New York, 1977.

Haddock, J. and F.T. Sparrow, "Energy Planning for Puerto Rico: A Systems Modelling approach", IIE Transactions, 17, 1, 1985.

Haurie, A and R. Loulou, "MARKAL QUEBEC : A report on the Model and Data Base Improvements", Report G-85-23, GERAD, Ecole des Hautes_Etudes Commerciales, Montreal, 1985.

Hedley, T.B., Mo, C.Y. and Swinton M.C., "The Conservation of Oil Through the Use of electric Automobiles", Energy Research Group, Carleton University, 1976.

Hoffman, K.C., "The United States Energy system -- A Unified Planning Framework", Unpublished Doctoral Dissertation, Polytechnic Institute of Brooklyn, New York, 1972. Hoffman, K.C., "A Unified Framework For Energy System Planning", <u>Energy Modelling</u>, ed. M.Searle, Resources for the Future, Washington D.C., 1973.

Hoffman, K.C. and Jorgenson, D.W., "Economic and Technological Models For evaluation of Energy Policy", <u>The Bell Journal of Economics</u>, 88, 444-466, 1977.

Hudson, E.A. and Jorgenson, D.W., "U.S. Energy Policy and Economic Growth", 1975-2000", <u>The Bell Journal of</u> Economic and Management Sciences, 5, 461-514, 1974.

Jutlah, C.B., "Integrated Economic and Energy Demand Forecasting", presented at The International Association of Energy Economists, Bonn Conference, 1985.

Leontief, W., "Theoretical Assumptions and Nonobserved Facts", The American Economic Review, 61, 1-7, 1971.

С.

Macal, C.M., "Overview of IDES: An Integrated Demand and Energy Supply Equilibrium Model", in <u>Strategic</u> <u>Planning in Energy and Natural Resources</u>, eds. B. Lev et al., Elsivier Science Publishers B.V. (North Holland), 1987.

Manne A.S., "ETA: A Model for Energy Policy Assessment", <u>The Bell Journal of Economics and Management Sciences</u>, 7, 379-406, 1976.

Manne A.S., "ETA-MACRO: A Model of Energy Economy Interactions", <u>Modelling Energy Economy Interactions</u>: <u>Five Approaches</u>, ed. C.J. Hitch, Resources for the Future, Washington, D.C., 1977.

Manne, A.S., Richels, R.G. and J.P. Weyant, "Energy Policy Modelling: A Survey", Operations Research, 27, 1, 1-36, 1979.

McConaghy, D.J. and Quon, D., "The Alberta Energy Resources Allocation model", in <u>Energy Policy ModellEng: United</u> <u>States and Canadian Experiences, volume II</u>, eds. W.T. Ziemba and S.L. Schwartz, Martinus Nijhoff Publishing, Boston, 1980.

T

Middleton Associates, "Canada's Renewable Energy Resources" an Assessment of Potential", Toronto, 1976.

Ministry of Energy Ontario. "Assessment of Four Solar Domestic Hot Water Systems", Toronto, 1980. Ministry of Energy Ontario. "Wood Production and Conversion in Eastern Ontario, Phase II, Toronto, 1981.

Ministry of Energy Ontario. "The Home Owners Off Oil Heating Conversion Decision - The Costs and Benefits", Toronto 1983.

Ministry of Energy Ontario. "Energy 2000; Fuelling Ontario's Future", Toronto, 1985a.

Ministry of Energy Ontario. "Energy 2000; The Shape of Ontario's Energy Demand", Toronto, 1985b.

Ministry of Energy Ontario. "Energy Trends in Ontario - A Five Part Series", Toronto, 1986.

Murtagh, B.A. and M.A. Saunders, "MINOS 5.0 User's Guide", Technical Report SOL 83-20, Systems Optimisation laboratory, Stanford University, Palo Alto, 1983.

Nelson, W.L., "Cost of Refineries - Part 1: Off-site facilities", <u>The Oil and Gas Journal</u>, 72, 27, 114-115, 1974a.

Nelson, W.L., "Cost of Refineries - Part 2: Process-Unit Costs", The Oil and Gas Journal, 72, 28, 87, 1974b Nelson, W.L., "Cost of Refineries - Part 3: Off-Sites

_____Breakup", <u>The Oil and Gas Journal</u>, 72, 29, 60-61, 1974c.

Nelson, W.L., "Cost of Refineries - Part 4: Storage, Environment, Land", The Oil and Gas Journal, 72, 30, 161-162, 1974d.

Nelson, W.L., "Detailed Refinery Operating Costs - 1: Manpower and Labour Costs", <u>The Oil and Gas Journal</u>, 72, 50, 70-72, 1974e.

Nelson, W.L., "Detailed Refinery Operating Costs - 2: Energy Requirements", <u>The Oil and Gas Journal</u>, 72, 52, 154-156, 1974f.

[®]Nelson, W.L., "Detailed Refinery Operating Costs - 3: Maintainence Material and Labour",<u>The Oil and Gas</u> Journal, 73, 2, 57-59, 1975a.

Nelson, W.L., Detailed Refinery Operating Costs 74: "Chemical and Catalyst Costs", <u>The Oil and Gas</u> Journal, 73, 4, 165-166, 1975b.

- Nelson, W.L., Detailed Refinery Operating Costs 5: "Investment Related Overhead", <u>The Oil and Gas</u> <u>Journal</u>, 73, 6, 65-72, 1975c.
- Nelson, W.L., Detailed Refinery Operating Costs 6: "Total Costs Versus Capacity and Complexity", <u>The Oil</u> and <u>Gas</u> Journal, 73, 8, 1975d.
- Nelson, W.L., "Complexity 1: The Concept of Refinery Complexity", <u>The Oil and Gas Journal</u>, 74, 37, 55-57, 1976.
- O'Leary, D.E., "Expert Systems in Mathematical Programming", in <u>Artificial Intelligence for Military</u> <u>Applications</u>, eds. B.G. Silverman and W.P. Hutzler, ORSA publishers, 1986.
- Ontario Hydro, "Statistical Yearbook ", Toronto, 1984.
- Ontario Hydro, "Review of Generation Options", Report No. 86045, Toronto, 1985.
- Seymour, A.V., "Residential Solar Retrofit in Canada", Proceedings of the National Conference of Solar Energy Society of Canada, 1979.
- Samouilidis, J.E., and Berahas, S.A., "GREPOM: An Energy Policy Model", <u>OMEGA International Journal of</u> <u>Management Sciences</u>, 12, 2, 141-152, 1984.
- Sherali, H.D., Soyster, A.L., Murphy, F.H. and Sen, S., "Linear Programming Based Analysis of Marginal Cost Pricing in Electric Utility Capacity Expansion", European Journal of Operations Research, 11, 349-360, 1982.
- Soyster, A.L., and Eynon, R.T., "The Conceptual Basis of the Electric Utility Sub-Model of the Project Independence Evaluation System", <u>Applied Mathematical</u> <u>Modelling</u>, 3, 242-248, August 1979.
- Systems Control Inc., "Applicability of Brookhaven National Laboratory's Energy Models to Electric Utility R&D Planning", prepared for EPRI, EPRI EA-807, Palo Alto, California, 1978.

Statistics Canada. 91-522. "Household and Family Projections 1976 - 2001", Ottawa, 1981.

È

Statistics Canada. 91-520. "Population Projections for Canada Provinces and Territories 1984-2001", Ottawa, 9985a. Statistics Canada. 57-003. "Quarterly Report on Energy Supply-Demand in Canada", 9, 4, Ottawa, 1985b.

Statistics Canada. 53-007. "Fuel Consumption Survey -Light Trucks and Vans, Ottawa, 1986.

Statistics Canada. 64-002. "Housing Starts and Completions", 39,10, Ottawa, 1987.

Sullivan, H.F., Faskem L.J. and Golem P.J., "Study of Canadian Energy System Efficiencies by Province", Thermal Engineering Group, Mechanical Engineering

Department, University of Waterloo, Waterloo, 1980.

Texaco Canada Inc., "The Refining and Marketing of

Petroleum Products in Canada", submitted to The Restrictive Trade Practices Commission on the State of Competition in the canadian Petroleum Industry, 1983.

آ

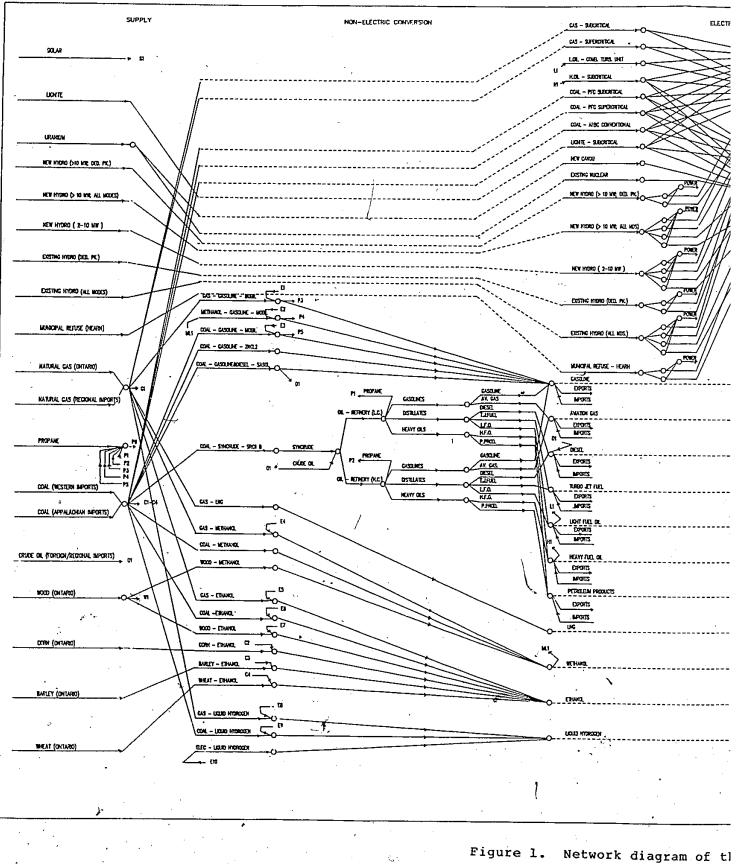
U.S. Department of Energy, "A Guide For The Assessment of Technologies for Generating Technologies For Generating Electricity", DOE/EIA-0344, Washington D.C., 1982.

VITA AUCTORIS

1957 Born in calcutta, India on the 27th of December.

1973 Completed the Indian School Certificate examination from Sherwood College, Nainital.

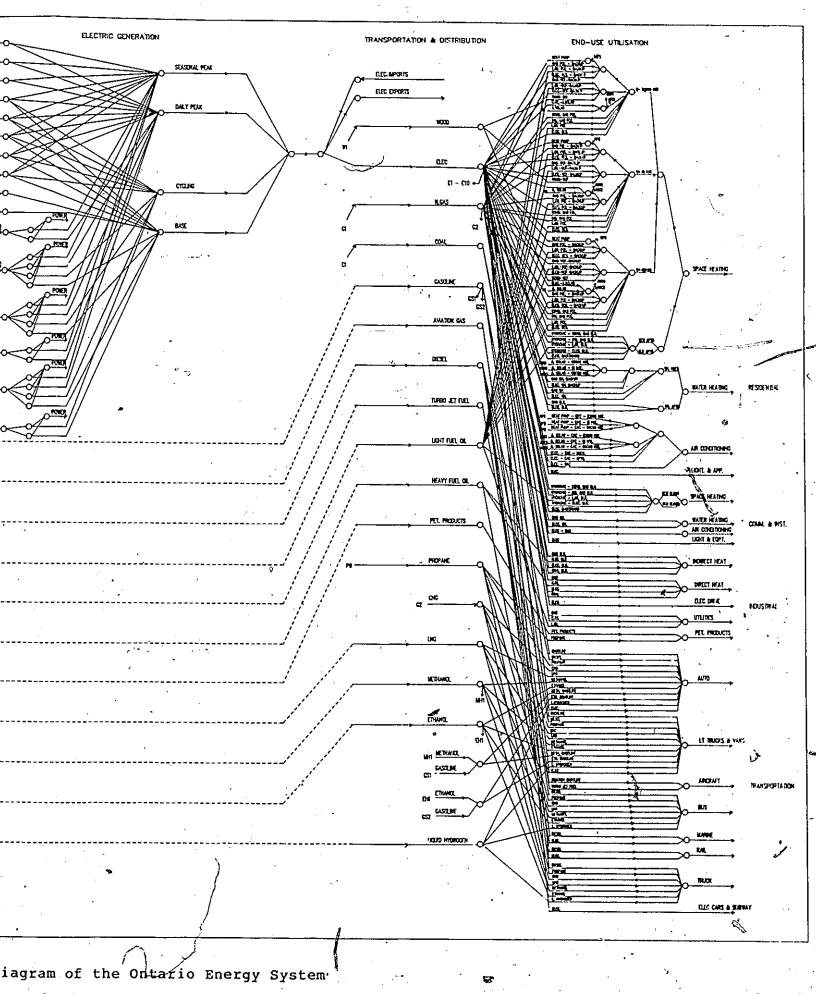
Graduated from Visvesvaraya Regional College of Engineering, Nagpur with a Bachelor of Engineering degree in Electrical Engineering.


1981

贰

1979

Graduated from Indian Institute of Technology, Bombay with a Master of Technology degree in Systems and Control Engineering.


1988 Currently a candidate for the degree of Doctor of Philosophy in Industrial Engineering at the University of Windsor, Windsor, Canada.

L

.

.

