University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2001

A tool for building distributed transactions system with XML.

Jenane Hassib. Abouzeki
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Abouzeki, Jenane Hassib., "A tool for building distributed transactions system with XML." (2001).
Electronic Theses and Dissertations. 856.

https://scholar.uwindsor.ca/etd/856

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F856&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/856?utm_source=scholar.uwindsor.ca%2Fetd%2F856&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UM! a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

A Tool for building Distributed Transactions System with XML

by

Jenane Hassib Abouzeki

A Thesis
Submitted to the Faculty of Graduate Studies and Research
Through the School of Computer Science in Partial
fulfillment of the requirements for the
Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada
2000

il

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your fle Votre rétérence

Our file Notre référence

L’auteur a accordé une licence non
exclusive permettant i la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette these.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-62180-4

il

Canadi

N
(WA

qs17

Copyright ©2000 by Jenane Abouzeki

ABSTRACT
The evolution of distributed transaction system has taken the dramatic but positive path
towards secure atomic transactions. CORBA services plays an effective role in buiiding
distributed systems, especial service is the transactional service. CORBA Transactional
service was implemented by lead software companies, companies who are striving to
provide solutions to programmers, by providing developers with helping tools. Tools like
Jbuilder and C++Builder ease the programmer’s job with implementation by reading the
IDL and generating the foundation or so called the skeleton code for making it ready for
further implementation by the programmer. Providing such a foundation allows the
programmer to only focus on the logic. In this thesis we investigate an innovative way to
use XML, as specifications language, for configuring a distributed transactions system
based on existing/reusable components. We implement a tool as an interpreter for XML
specifications of the transactions system which will generate smart program code;i.e.
client/server programs. The generated code includes implementation code which
otherwise would be the programmer’s responsibility to implement manually. We then

test our tool in two application areas; the Bank Transfer and the Point of Sale.

To my parents, with all the respect and admiration.

To my sisters Iman, Aida, and Intisar,
and to my brothers Mouine, Ayman, Salim and Firas,
with love.

ACKNOWLEDGEMENTS

Many thanks to my supervisor Dr. Indra Tjandra for his guidance and support. My
deepest gratitude to my committee members Dr. Richard Frost and Dr. Sudhir Paul. My

heart felt thanks to my parents and to my brother Sal for their endless support and

motivation.

TABLE OF CONTENTS

ABSTRACT iv
DEDICATION v
ACKNOWLEDGEMENTS vi
LIST OF FIGURES viii
CHAPTER 1 INTRODUCTION 1
1.1 THE THESIS STATEMENT AND TOPICS TO BE INVESTIGATED 3
1.2 THESIS OVERVIEW 4
CHAPTER 2 REVIEW OF LITERATURE 5
2.1 DISTRIBUTED TRANSACTION SYSTEM 5
2.2 WHAT IS A TRANSACTION? 6
2.3 TYPES OF TRANSACTIONS 6
2.4 TWO-PHASE COMMIT PROTOCOL 7
2.5 INTEROPERABLE TRANSACTIONS 8
2.6 OMG CORBA 10
2.7 CORBA SERVICES 12
2.8 WHY OTS? 13
2.9 OBJECT TRANSACTION SERVICE (OTS) 13
2.10 CORBA OTS SPECIFICATIONS SCENARIO 14

2.11 COMPONENTS OF THE OTS 15

iv

2.12 OTS FUNCTIONALITY 16

2.13 INTEROPERABILITY IN OTS SYSTEMS 16
2.14 COSTRANSACTIONS MODULE 16
CHAPTER 3 XML TECHNOLOGY 17
3.1 WHAT IS XML? 17
3.2 USES OF XML 17
3.3 XML & MODELING TOOLS 18
3.4 XML & CORBA 19
3.5 XML VS JAVA CUP 21
CHAPTER 4 OUR APPROACH 24
4.1 OVERVIEW 24

4.2 CHOICE OF CORBA TRANSACTION SERVICE IMPLEMENTATION 25

4.3 SPECIFICATIONS LANGUAGE 26
4.4 XML AS SPECIFICATIONS LANGUAGE MEDIA 28
4.5 XML DTD 28
4.6 THE INTERPRETER 30
4.7 XML PARSER 30
4.8 THE SPECS TRANSLATOR / EVENTS HANDLER 31
4.9 SEVERWRITER CLASS AND CLIENTWRITER CLASS 37

4.9.1 SEVERWRITER CLASS 38

4.9.2 CLIENTWRITER CLASS 39

CHAPTER 5 PROTOTYPE 40
5.1 CASE STUDY: BANK TRANSFER EXAMPLE . 40
5.2 CASE STUDY: POINT OF SALE EXAMPLE 44
CHAPTER 6 TOOL EVALUATION 46
6.1 ADVANTAGES OF OUR TOOL 46
6.2 LIMITATIONS OF OUR TOOL 47
6.3 FUTURE WORK 48
6.4 CONCLUSION 49

APPENDIX A LISTING OF PROGRAM CODE

TRANSLATOR 51
XMLPARSER 52
SERVERWRITER 58
CLIENTWRITER 60

APPENDIX B LISTING OF PROGRAM GENERATED CODE FOR THE BANK
APPLICATION

CLIENT.JAVA 64
SERVER.JAVA 66

APPENDIX C LISTING OF PROGRAM GENERATED CODE FOR POINT OF
SALE APPLICATION

CLIENT.JAVA 67

SERVER.JAVA 69

vi

APPENDIX D LISTING OF COSTRANSACTIONS.IDL INTERFACE 70

BIBLIOGRAPHY 74

VITA AUCTORIS 85

vii

List of figures

Figure 1 steps for building distributed transactions SYSEEIM e 2
Figure 2 Flat TranSaCtioncoeveveuiucuiveeeeeeeeeeeeeee e 7
Figure 3 Nested Trasnaction......coceueiuiueiuiuioeeeeeeeeeeeee oo 7
Figure 4 Request passing from the client to the Object through ORB............ccoooil 11
Figure 5 ITS in ACtOM.c..ciiuiuioieieeeeeie e 14
Figure 6 XML-ITS t0ol, thebig PICUTeeeeeeeeeeeeeeeeeeeeeeeeeoeeoooooo 25
Figure 7 Rational Rose class diagram of the system/Logical view................cccocoeveei... 38

viii

Chapter 1 Introduction

Owing to the rapid increase in the demand for reliable distributed transaction

systems, OMG CORBA Transaction Service specifications came to light for efficient and
reliable construction of transaction systems that preserve the ACID' properties of its
transactions.
Different implementations of OMG CORBA specifications have been presented to the
public. The most popular implementations are IONA ORBIX package. Inprise VBroker,
and HITACHI TPBroker. As they compete on how to provide complete OMG compliant
CORBA services, these companies are trying to provide the best tools that automate some
of the work thereby lessening the work for develpers.

Using the Interface definition language (IDL) and CORBA Transaction Service
developers find it more convenient to build and monitor transactions of a complicated
system. Borland provides C++Builder and Jbuilder for Inprise Visigenic as tools to ease
the job of the programmer by automatically generating skeletonized code according to the
specified IDL. Such tools are helpful if the developer is intending to implement the
entire system by him or herself. The development of such a system would include the
following steps:

« Generate the IDL specifications written in the Interface Definition Language specific
to the CORBA implementation.

« Compile the IDL to generate Stubs and Skeletons for Objects and classes we'’re
dealing with.

« Implement classes for each interface as necessary.

' ACID properites defined in section 2.2 of Chapter 2

« Implement server classes to initiate, and register Objects and listen for request.
« Implement a client class that normally would locate Objects on the ORB and invoke
requests on those Objects.

« Compile all implemented classes for a full system ready to be run.

With the increase use and advantages of the Internet Orfali [Orfali98] anticipated that
system components pre-implemented and made CORBA compliant wouid be made
available to public where one could download the component and integrate it with one’s
existing system. Knowing that we are presenting this thesis to provide easy integration of

CORBA compliant components with transactions systems.

Figure 1 steps for building distributed transactions system

IDL

« T
Programmer
\ DL
Compiler

Server
Code

Client
Code Skeleton

Obj Imp Code
Code

Tools like Jbuilder and C++Builder ease the programmer’s job with implementation
by reading the IDL and generating the foundation or so-called skeleton code for the
interfaces’ implementations. Providing such a foundation allows the programmer to only
focus on the logic. Figure -3 illustrates sample generated code by JBuilder. Although the
tools are very convenient, it still requires the programmer to do a lot of coding

him/herself, which could be eliminated with our tool. The aim of this thesis is to improve

on the above tools -specifically JBuilder, as we will be using Java and Visigenic CORBA

implementations.

1.1 The Thesis Statement and topics to be investigated

The major motivation of this study concerns an innovative way using XML to
configure a distributed transactions system based on available/reusable components. A
new system specifications-language is presented in this thesis. Our approach employs
XML technology as a means of representing data in a well-formed structure, and Java
language to interpret that structure and automatically generate components necessary for
building a transaction system. The objectives of our study are the following: to develop
partial high-level specification language from core elements of a transactions system.
Also to show whether XML usefulness can be extended as a specifications-language in
terms of its flexibility, availability and ease of use.

In order to establish that our approach is beneficial we have attempted to study the
following questions:
e What are the basic elements that are the essential building blocks in every

transactions system?
e How XML is useful in our solution?
To answer this question we have implemented a prototype of a tool that reads XML
document and uses a Java Servlet to perform action based on the interpretation of XML

data structure provided.

1.2 Thesis Overview

In chapter two the basic concepts of distributed transaction systems are discussed.
We also review CORBA technology and specifically CORBA Transaction Service and its
functionality. Chapter three discusses the XML technology and its advantages and
current uses in the World Wide Web. Chapter four discusses our XML -ITS tool as well
as its design and implementation details. Chapter five presents two case studies of
transactional systems, and chapter six evaluates the tool and gives the advantages,
limitations, and potential future improvement of the tool. Chapter seven holds the

conclusion.

Chapter 2 Review of literature

2.1 Distributed Transaction System

Before the evolution of the Internet, transactions were known as operations for

commercial applications such as in banking systems. A client accesses an ATM machine
to withdraw and deposit some amount of money. The bank transaction of withdraw
consists of operations such as subtracting the withdrawn amount from the account
balance and displaying the new balance to the client.
Recently the term ‘transaction’ has been extended to suit the widely used and
continuously developing distributed systems. Clients are able to access their bank
accounts from anywhere in the world in a matter of seconds. More than one server is
being involved. The client can access accounts at more than one bank branch at the same
time. All this increased complexity introduced new requirements of transactions;
transactions that should be reliable, preserve data consistency and should account for
failure. Moreover, transactions should either fully commit the changes or effects of
operations on saved data or should rollback and undo any changes. Such transactions are
called Afomic. Atomic transactions provide a mean of ensuring the consistency of data in
the presence of concurrency and failure. The ACID properties [section 2.2] add the
atomicity property to distributed systems. In addition, transactions can be nested which
extend the transaction paradigm by providing for independent failure of subtransactions
and supporting the modularity of applications.

Transactions are considered vital for the reliability of distributed applications. In

conjunction with the advantages of object-orientation mechanisms, transactions are

thought of as a significant aspect of distributed applications’ productivity and quality of
performance.

One of the systems that achieved success in introducing a reliable distributed application
to the world is described in Arjuna [Shrivistava95]. The concern of recent studies is
concentrated on object-oriented transaction systems that support nested transactions to

deal with the rapid increase in distributed applications over heterogeneous distributed

environments.

2.2 Whatis a Transaction?

A transaction as defined by Gray [Gray81] and Mullendar [Mullendar85] a unit of
work that has the following ACID properties:
® Aromic: either a transaction commits as a whole or not at all (aborts) to preserve
consistency of data.

® Consistent: the result of a transaction should preserve the consistency of the affected

IESOUrces.

Isolation: a transaction is expected to have no effects on other transactions.

Durable: effects of a transaction are to be permanent if it completes.

2.3 Types of Transactions

[Coulouris et al. 96] describes two types of distributed transactions; i.e.; a flat
transaction, also called a traditional transaction, that accesses one or more servers directly
to complete it’s purpose. The second type is the nested transaction that accesses one or
more servers that need to access other servers via subtransaction(s) to complete its job. A

subtransaction is defined in [NGU93] as:

“... a logical unit of work of the interoperable transaction. Each subtransction
consists of one or more logical unit of operations. An operation is a logical unit of

work (atomic) at a particular autonomous agent. “

S KO alel=te
%0 © 15

X

O

Figure 2 Flat Transaction Figure 3 Nested Trasnaction

The coordination between transactions can be modeled as a communication process that

has been defined in a two-phase commit protocol [Gray92].

2.4 Two-phase commit protocol

The two-phase commit protocol has been the most commonly used in applications.
[Coulouris et al. 96] describes how it works and this description is summarized as
follows:
The first server contacted by a client’s request is called the coordinator. The coordinator
is responsible for committing or rolling back the transaction. It also has the privileges to
add and delete servers for the process as needed, and call them workers (referred to as
slaves in other papers like [Zhou92]).
The coordinator server keeps track of the involved workers using a Transaction Identifier
(TID) besides a server identifier. In a typical transaction-processing scheme the
coordinator adds the servers that are interested in processing the transaction. Then it
informs those workers that the transaction has begun while asking each of them whether

it can commit or not. Each worker then sends back its vote to the coordinator with “yes”

|

vote if it can commit or a “No” vote if it is unable to commit it’s part. This is called the
voting phase of the two-phase commit protocol and it ends when the coordinator collects
the votes from all the workers involved.
In the second phase, called the commitment phase, the coordinator decides on an action
to be taken. That is, if the all workers send a vote in favor to commit, the coordinator
sends them an order to commit the transaction. However, if at least one of the workers
has voted against the commitment of the transaction the coordinator has to send an order
to all workers to abort.

The two-phase commit protocol is effective and fault tolerant under the worst cases

where it might face a successive number of failures and still guarantee transaction

completion.

2.5 Interoperable Transactions

A transaction could span more than one server accessing multi database systems
[Ngu93]. Such a transaction should be an interoperable transaction also called a
distributed transaction.

A distributed transaction on heterogeneous distributed systems needs to preserve its
ACID properties and specifically its atomicity.

Portability and interoperability among heterogeneous distributed systems are of recent
concern in industry, hence application-independent semantics are being subject for
standardization to enhance application development and productivity [Wong97].

Tarr and Sutton addressed the problem of interoperability in transaction models, and the

role of the programming languages in providing the necessary features that facilitates

transaction processing interoperability. They introduce two approaches for
interoperability; the centralized and the decentralized approaches.

The centralized approach tends to rely on either standardized representations or
shared central interfaces or services, i.e.; the use of a central transaction manager
facilitating interoperability. This approach has many drawbacks. An observation made
by Tarr and Sutton is:

“none of the centralized approaches are themselves sufficient to support atomicity of

heterogeneous transactions....... Standardizing on a single transaction model for
individual languages and/or heterogeneous transactions limits the extent to which
heterogeneity can be accommodated, both among the individual and the heterogeneous
transaction model. Accommodating existing languages and applications also becomes
difficult.”
For the above disadvantages, the authors redirected their research to the decentralized
approach. The decentralized approach eliminates the limitations of the centralized
approach since it requires transaction models to provide flexible control over the ACID
properties that they support. It therefore provides the flexibility required to define
multiple heterogeneous transactions.

Three main communication styles exist to facilitate distributed transactions;
dialogue, RPC calls and messages. The most popular and the most commonly used is
the RPC calls on which most of distributed applications and transaction services are

based.

2.6 OMG CORBA
Object Management Group which is a consortium of about 600 computing-

companies has suggested the Common Object request Broker (CORBA) architecture and
specifications in an attempt to solve the rapidly growing networks and the Internet.
CORBA'’s main purpose is to provide interoperability among different software in a
distributed environment. Objects from different worlds speaking different languages
would be able to communicate in a common language or media, which is the Object
Request Broker ORB. Using Interface Definition Language (IDL), the object can
advertise its services in a contract of an interface to the entire system it is participating in.
Each object would present an interface, which is isolated from the object’s
implementation. Basic Object Adapter (BOA) resides on top of the ORB'’s
communication services instantiating server objects/classes, passing request to them and
assigning Object Ids — called object references. The BOA also registers the classes and
their run-time instances with an Interface Repository IR in the ORB exposing them to all
components of the system, (which is an ideal solution for distributed systems). In other
words, Inter-ORB communication is the key feature that gives CORBA its unparalleled
flexibility. A client and object implementation may:

e Reside on different vendor’s ORBs;

¢ on different platforms;

¢ on different operating system;

® and be written in different programming languages by programmers who never

met.

10

And yet they still interoperate perfectly as long as client and object use the same IDL

syntax and underlying semantics.
All the programmers need is a copy of the IDL file, the description of each operation
and an object reference. Then integrating the third party software components with

locally implement objects, programmer’s job becomes easier if they provide IDL

interfaces.
) Object
Client Implementa
ticx
DL IDIL
Stub Skal
Y >

Request

Object Request Broker ORB

Figure 4 Request passing from the client to the Object through ORB

OMG’s CORBA services (Trading, Naming, Lifecycle, Persistence, Event, Timing, and
Transaction Service) provide system-level services needed by almost any object-based
system discussed in section (2.7).

The major CORBA vendors are Inprise, Hitachi, Iona, and BEA. Each of these vendors
were given the freedom to provide their independent implementation of CORBA services
as long as it is compliant with OMG CORBA services specifications. The following
section describes CORBA services, while section (2.8) discusses the Object Transaction

Service OTS of CORBA services on which this thesis is focused.

11

2.7 CORBA Services

CORBA is a communication infrastructure between distributed objects, however, it is
available from over 20 vendors, and it also supports Microsoft operating systems.
CORBA provides a set of services such as:

e Concurrency Control that protects the integrity of data.

Event Service that supports the notification of interested parties when program-

defined events occur.

* Naming service that associates objects with references.

e Transaction service that protects the ACID? property of transactions; atomicity,
consistency, isolation and durability.

° Persistence

Trading
e Timing
OrbixOTS and OrbixOTM, HitachiTPBroker, BEA M3 are Vendor products that support

CORBA services and specifications.

OMG CORBA specification [CORBAOTS 97] describes a communication
infrastructure for distributed applications in an object-oriented manner. The client/server
structure of this architecture is nearly transparent to the applications. The call for an
object is passed through an environment that facilitates the communication between
different remote systems. Currently companies are looking for a reliable intelligent pipe

that provides communication between their distributed different business objects,

2 Refer to section 1.1 of this paper for more on ACID properties of a transaction

12

especially when remote transactions are involved and are very critical to the success of

the company. The most promising in the current days is the OMG CORBA OTS.

2.8 Why OTS?
CORBA separates the Transaction Service from other services. The main goal for

separating the Transaction service from other services as in [OMGCORBA 97]:

(33

® To allow transactions to include multiple separately defined ACID objects.
e To allow objects from the object world communicating with objects from a non-

object world. *

The following is a brief on the transaction service called Object Transaction Service

OTS.

2.9 Object Transaction Service (OTS)

The purpose of the CORBA OTS is to support the synchronization between
distributed applications such as Client/Server applications. It defines interfaces that
allow distributed objects to communicate and preserve atomicity. Allowing multiple
object to be involved in multiple requests. OTS functionality also involves operations to
control the context and the duration of a transaction, combine internal changes of object
states within a transaction as well as operations for the coordination of the two-phase

protocol at the end of a transaction.

13

2.10 CORBA OTS Specifications scenario

A client registers with the OTS if it desires to begin a transaction. The OTS returns
a Transaction Context. This Transaction Context is associated with each client’s request
and shared by other client requests associated with the same transaction, it is also
propagated to all transaction objects participating in the transaction.
The transaction can be completed in either one of the following ways:
¢ The transaction originator —(here this is the same as the client), issues a commit
command and the OTS takes care of committing the entire transaction if all
participants agree; otherwise, the transaction is rolled back,
e Any component in the application can commit the transaction, if it has the authority
to do so.
e The transaction times out.
OTS supports both flat and nested transactions. Figure 5 shows the role of OTS in a
transaction between a client, a server and a Database. The following section describes the

ITS components in detail.

Transaction Server T .
Originator / Program mns.actlon
Client al Obiects
= >
Transactional
Context Database
CORBA OTS

ORB N

Figure S ITS in action

14

2.11 Components of the OTS

[OMGCORBA 97] classifies OTS components as objects, protocols and servers:
Transaction Client: a program that can invoke operations of many transactional objects in
a single transaction.
Transactional Object: an object whose behavior, invoked within the scope of its state, is
affected by the invoked transaction, it is also called persistent data. A non-transactional
object; however, is one whose state is not affected by any invoked transaction.
Since the object has the choice to support transactional behavior, to implement such
behavior the object must participate in certain protoceils defined by OTS. These
protocols are necessary to ensure that all participants in a transaction speak the same
language and thus, agree on the same outcome; i.e. to commit or abort and to recover
from failures. An object whose data is affected by either decision is called a Recoverable
Object. Object participating in a transaction must register as resources in the transaction
service.
Transaction Servers: a collection of one or more objects whose behavior is affected by a
transactions but have no recoverable state of their own. Such objects implement the
transaction changes using other recoverable objects. The transaction servers do not
participate in the commit request however they do in the abort request.
Recoverable Servers: a collection of objects of which at least one is a recoverable object,

they participate in the protocols by registering resource objects in the ORB.

15

2.12 OTS functionality

[OMGCORBA 97] outlines OTS functionality as providing operations to:

o Control the scope and duration of a transaction
e Allow multiple objects to be involved in a single, atomic transaction
* Allow objects to associate changes in their internal state with a transaction

e Coordinate the completion of transactions. “

2.13 Interoperability in OTS Systems

The interoperability of the OTS is influenced by the interoperability of the ORB
systems. ORB domains cooperate via protocols such as Interoperable Internet ORB
protocol IIOP, or Environment Specific Inter-ORB Protocol ESIOP. A transaction
manager in one of these domains can control the resource objects beyond its ORB

domain [Kunkelmann et al. 97] [Grasso97] [Siegel 96].

2.14 CosTransactions Module

CosTransactions Module defines OMG specifications for CORBA Transaction
Service functionality. It was implemented by CORBA third party such as Inprise
Visigenic who added extra methods to the Interface to make even more flexible and
usable to the programmer. Appendix D is a list of CosTransactions Module and its

interfaces.

16

Chapter 3 XML Technology
3.1 Whatis XML?

Extensible Markup Language XML was developed by W>C the (World Wide Web
Consortium) is an ideal data format for storing structured and semi-structured text
intended for dissemination and ultimate publication on a variety of media. It was
developed to overcome the limitations of HTML and its strict tags [Bradely 2000].

With XML developer can create his/her own tags, structure documents and data, using
user named tags, in other words, self-describing tags. Such tags can be located,
extracted, manipulated as desired.

An XML document has a logical structure in which information is divided into
named units and sub-units called Elements. The document syntax can be validated by an
XML parser. Also, the document structure can be validated, against a Document Type
Definition DTD. The DTD defines elements that are allowed in the document. It defines
elements, their type, sub-elements, and how the elements should be logically structured in
the document. A well-formed XML document must conform to the specifications set in

the DTD without syntax or logical errors [Floyd 98].

3.2 Uses of XML

XML has the potential to be a suitable format for exchanging data between two
programs, such as Electronic Data Interchange EDI and general meta-data applications.
Netscape Meta-Content Framework MCF is a proposal for an XML-based standard to
describe information about information (meta-data). Microsoft XML-data is a proposed

XML schema for defining and documenting object classes. Resource Description

17

Framework by W3C for better search engines capabilities and cataloguing the content of
a web site.

XML can be used to exchange data with relational database systems. Data can be
collected from different database tables and presented in any desired structure. XML tags
may be a representation of columns, records and fields of tables in the database.

XML is also used to identifying complex data structures that may never be viewed or
printed. Such task for XML is utilized by SMIL the Synchronized Multimedia
Integration Language. SMIL employs XML to identify and mange presentation of files
containing text, images, sound and video, to create multi-media presentation [Brad2000].
XML can is used to mark up semi-structured documents, such as refrences works,
training guides, technical manuals, catalogues, journals, and reports. Documents can
include hypertext links with XLink® and XPointer*, also formatting output with XSL and

XSLT or CSS. Two popular programming APIs: SAX and DOM.

3.3 XML & Modeling tools

Modeling tools like Rational Rose has added to its suite of products the XML
technology. Rational Rose provides visualization, modeling and tools for XML
documents that use document type definition (DTD). To support mapping XML to
UML, Rose extends UML with stereotypes for XML elements, attribute lists, entities and
notations. An example follows:

Rose <<DTDElement>> maps a <!ELEMENT> from the DTD.

* An adjunct standard to XML that defines specifications to hypertext linking.
* A standard that complements XLink to allow links to objects with significant contextual location.

18

Forward-Engineering can generate XML DTD from a Rose ‘logic view’ design model
after assigning a stereotype to the class and setting its type and multiplicity property.

The visual model of the XML DTD can help the developer view the structure of the XML
document as a class diagram in Rose XML DTD. Element definition can be added, or
removed. The XML DTD model created can also be checked for syntax errors by Rose
syntax checker. The tool supports reverse-engineering as well. A DTD document can be

reversed into a Rose class diagram via reverse-engineering.

3.4 XML & CORBA

OMG started incorporating XML into several proposed CORBA specification. XML
is the core for another standard XMI or XML Metadata Interchange which is a way of
interchanging meta data between modeling tools and meta data repositories based on
Meta Object Facility MOF standard [OMG 2000].
The two technologies XML and CORBA were developed separately to serve distributed
systems however, they can work together as described in [Simha & Russell 99]
summarized as follows:
Simha and Russell introduce three approaches to make XML serve CORBA. First they
mention a simple approach which is passing an XML document to a CORBA Object
which involves converting the whole XML document into a string. This approach was
found to be inefficient in use of space and time and of being not type safe.
The second approach is mapping XML to IDL using value types. This approach seems to
be a better one as it aims at using CORBA to implement value types that represent as

much types of the DOM API as possible.

19

The third approach aims at mapping XML to CORBA IDL. This approach takes
advantage of the IDL types existing. It involves mapping XML document into CORBA
types before any operation is invoked, and convert CORBA types back to XML
document when received by the receiving object. With this approach the semantics of the
XML document are preserved as they are translated into CORBA structures. In brief , an
XML element is mapped to CORBA struct, while an attribute is mapped to a string as
member of the structure. Simha and Russel [Simha & Russell 99] provide examples of
which is the following: Mapping XML to IDL

<element color = ‘green’> // Start tag with an attribute color
</element> // End tag
The above would be mapped into CORBA code as foliows:

struct element

{

string color;
!
An object that takes an XML document as input is defined in IDL as follows:

Interface MyObject
{

void invoke(Any xmidocument)

}
Mapping IDL to XML DTDwould be as in the following example:

Struct Quantity
{

float _value;
K
Mapped to a DTD as:
<IELEMENT Quantity>

And an XML document as:
<Quantity>1000</Quantity>

This approach is type-safe and network efficient.

The latter approach inspired our attempt to integrate XML with CORBA beyond
the above mentioned approaches to assist in building distributed systems and specifically
distributed transaction systems. Our approach aims at using XML as a specifications

language for transaction systems translated to generate CORBA code. The following

Chapter explains.

3.5 XML Parser vs JAVA CUP Parser

Since we are working with JAVA and system specifications formed as grammar we
came across JAVA CUP and its ability to generate JAVA parsers for a BNF grammar.
JAVA CUP is Java Based Constructor of Useful Parsers. CUP is a system for generating
LALR(1)’ parsers from simple specifications. It serves the same role as the widely used
program YACC? and in fact offers most of the features of YACC, however, CUP is
written in Java. It uses specifications including embedded Java code, and produces
parsers, which are implemented in Java.
Using CUP involves creating a simple specification based on the grammar for which a
parser is needed, along with construction of a scanner capable of breaking characters up

into meaningful tokens (such as keywords, numbers, and special symbols).

S Look Ahead Left Recursive, the (1) indicates that this approach is limited to a single token.
A program that takes a concise description of a grammar and produces a C routine that can parse the

grammar, a parser.

21

For our use a parser generated using JAVA CUP would be for our specific grammar

(system specifications grammar). However, XML was found to have its own parsers.
Using XML gives the opportunity to reuse its pre-implemented parser(s), and

manipulate its language and tags to form a grammar. XML parsers have been

implemented by multiple vendors, each providing a rich library for the parser, it gives us

the flexibility to implement our tool using any XML Parser desired. Some of the

available well-known parsers are listed below:

- Xerces the Apache XML Project,

« XMIAJ the IBM’s XML Parser for Java ,

e JavaProject X Sun’s JavaSoft's XML Parser,

e Oracle XML Parser,

« XMLBooster by XMI Booster,

« SXP the Silfide XML Parser

« MSXML by Microsoft

- DXP DataChannel XML Parser (DXP) by DataChannel and Microsoft ebmedded in

Explorer5.0

Also, Writing XML grammar doesn’t require special expertise with BNF grammar like
Java Cup grammar would. The use of tag based language such as XML was found
sufficient to express the core elements of transactions system in a partial system
specifications. XML introduces wild cards like “*”, “+” and “?” which adds to its power

compared to a BNF grammar. Wild cards eliminate the need for the grammar writer to

N
9

think of each and every scenario and try avoid ambiguity, providing also a more concise
grammar.

XML'’s interoperability was also a motivation to use XML for our thesis. As
mentioned in section (3.3 - XML & Modeling tools) Rational Rose is one of the
applications that support XML. An XML DTD created for our tool can be reverse-
engineered with Rational Rose to view the classes/objects visually. As well as, a forward
engineering of a class diagram can generate an XML DTD document for our tool.
Overall XML language is easy to read and to construct, and many tools are available for
that purpose; such as, full suites like Visual XML by Bluestone software, includes a
parser, and a graphical editor [xml.com]. Other XML editors such as Microsoft XML
Notepad, which offers an intuitive and simple user interface that graphically represents

the tree structure of XML data [msdn.microsoft.com].

23

Chapter 4 Our approach

In our approach we take the development of a transactions system to a higher level
by introducing a high-level specifications for the core elements of the system. The aim
is to automatically generate standard and common code to any transactions system in
addition to some of the implementation code knowing partial specifications of the
system. The high level specifications would be automatically translated into CORBA-
JAVA code, generating the Server and the Client, assuming the implementation is ready

made by a vendor. Having in mind that the vendor had tailored his/her products to be

CORBA compliant.

4.1 Overview

Providing a high-level specification-language that would allow the designer to define
the under developed system’s requirements. The specifications would be stated in an
XML document. Each Object would be tagged as an <Element>. The XML would then
be parsed and validated against an XML schema or Data Definition Document containing
production rules. Production rules are laws for the parser to follow when validating
specifications in XML documents.

In case the validation was successful a tree of the structure of the specifications would be
generated and displayed to the designer. A Java servlet using SUN’s XML parser is
used to access the parsed tree nodes determining each element’s name and value. The
Java servlet would then locate the Listener Objects so they can be registered with the
ORB in a Server Program. Likewise, the Java serviet would identify the Transactions to

be invoked from the Client Program. At the end of the process we will have generated

24

Client/Server Java programs which would require minimum modifications before they

can be compiled and run. See figure 6 below.

/ o \
XML ‘
Doc Programmer DL
Compiler
l Obj Imp
Code
XML
Parser/
Interpreter Skeleton
Code
Client Server
Code Code

Figure 6 XML tool, the big picture

4.2 Choice of CORBA Transaction Service Implementation

This thesis uses Visigenic ITS first, for its availability for the experiment and
second, for it is a reputable product for its ease of use and its reliability.
ITS is an implementation of the OMG CORBA Transactions Service. ITS version 3.0
unfortunately does not include the implementation for handling nested transactions,

which limits our research to flat transactions.

25

4.3 Specifications Language

We chose to define partial specifications of a transactional system capturing only its
core elements and structure. Partial specifications were sufficient to generate the
standard and common code for a transactions system. On the other hand, the complexity
of defining a full specification language contradicts the goal and purpose of this thesis.
Defining full specifications for a transactions system is cumbersome to designers as well
as to developers. It is more adequate instead to build the system manually and avoid

such complexity.

Defining the specifications of a transactions system is the first step to building such a
system. With the specifications language we define objects, such as listener objects, the
relationships between objects and transactions. According to Backus-Normal Form BNF
grammar, we define a set of terminals, a set of nonterminals and a series of production
rules. A nonterminal is defined in a production rule, while a terminal is a symbol in the
language being defined. In a production rule, a nonterminal on the left-hand side, known
as the left part, is defined in terms of sequence of nonterminals, and terminals on the
right-hand side known as the right part.

In the following set of production rules in BNF-form, Specs is a non-Terminal while
Method is a Terminal.

Terminal:= ObjectName, Method, ReturnType
Specs: PackageName, Propagation, CurrentRef, ListenerObject, ClientObject, Commit |
PackageName, ListenerObject |
PackageName, ListnerObject, Tx |
ListenerObject, Commit |
ListenerObject, Tx, Commit |

26

ListenerObject
Propagation: Implicit | Explicit | ExplicitTolmplicit | ImplicitToExplicit
CurrentRef: VITS | OMG
ListenerObject: ObjectName, Tx, BindwithObject |
ObjectName, Tx |
ObjectName, BindwithObject
BindwithObject: ObjectName, Tx |
ObjectName
ClientObject: ObjectName, Tx
Tx: ReturnType, Method |
Method | String
ReturnType: float | int | String | Object | void | any | boolean
Method: String
ObjectName: string

|: “‘OR’ for optional forms of specifications.

Method: indicates the Object’s method to be invoked by the client on the Object.

The same specification could be presented in the following form:

Specs: PackageName®, Propagation!, CurrentRefo'. ListenerObject ', Object0-*, Commite-t
ListenerObject: ObjectName!-, (Tx" | BindwithObjecto)

BindwithObject: ObjectName!-, Tx ¢

Object: ObjectName!-" Tx¢-

ObjectName: Tx

Tx: ReturnType, Method'* | String

ReturnType: float | int | string | ObjectName | void

Method: string

0-* : indicates that it is allowed to have zero or more instances of an element.

1-* : indicates that it is allowed to have at least one or more instances of an element.

| : indicates ‘OR’ for acceptable alternative forms of specifications.

Method: indicates the Object’s method to be invoked by the client on the Object.
Other specifications can be included, such as:

System property such as; ORBServices: OMG | Visigenic

Propagation: Using Current interface | Coordinatore / Terminator.

4.4 XML as specifications language media
We use XML as specifications language media for its ability to parse data structure

against production rules specified in a DTD document.

4.5 XML DTD

XML Document Type Definition DTD sets the production rules to be followed by an
XML parser. The BNF production rules, in other words, grammar presented in the earlier
section can be stated in a DTD document as follows starting with Specs as the root

element:

<IDOCTYPE Specs [
<IELEMENT Specs (package, Propagation, CurrentRef?, ListenerObject”, Object?, Commit*)>
<IENTITY Implicit ‘Implicit">

<IENTITY Explicit “Explicit">

<IENTITY OMG "OMG*">

<IENTITY VITS "VITS">

</ELEMENT Propagation (#PCDATA)>

<!ATTLIST Propagation type (Implicit | Explicit) “Implicit* >
<IELEMENT CurrentRef (#PCDATA)>

<!ATTLIST CurrentRef type (OMG [VITS) "OMG*>

<IELEMENT ListenerObject (#PCDATA | Tx | BindWithObject)*>

28

<IATTLIST ListenerObject name CDATA #IMPLIED>
</ELEMENT BindWithObject (#PCDATA | Tx)*>
<!ATTLIST BindWithObject name CDATA #IMPLIED>
</ELEMENT Object (#PCDATA [Tx)*>

<IATTLIST Object name CDATA #IMPLIED>
<!ELEMENT Tx (RetumType?, Method)>
<!IELEMENT RetumType (#PCDATA)>

<IATTLIST ReturnType type CDATA #IMPLIED>
<IELEMENT Method (#PCDATA)>

<!IELEMENT package (#PCDATA)>

</ELEMENT CommitRoutine (#PCDATA)>
<IELEMENT Commit (#PCDATA)>

<IELEMENT Rollback (#PCDATA)>

>

? : indicates that it is allowed to have zero or more instances of an element.

* . indicates that it is allowed to have at least one or more instances of an element.

#PCDATA: indicates a string or text.

The following shows a tree structure of an XML document, for a point of sale
application (POS), which adheres to the above DTD rules:

<Specs>

<package>POS</package>

<Propagation type = "Implicit*></Propagation>

<CurrentRef type = "OMG"></CurrentRef>
<ListenerObject name = "Store">store</ListenerObject>
<ListenerObject name ="StoreAccess ">storeaccess

<Tx>

<Method>FindPrice()

</Method>

</Tx>

29

<Tx>
<ReturnType type = "float">STotals</ReturnType>

<Method>GetStoreTotals()</Method>
</Tx>
</ListenerObject>

<ListenerObject name = "Tax">taxObj
<Tx>
<RetumType type ="float">tax</ReturnType>
<Method>calculateTax(Amt)</Method>
</Tx>
</ListenerObject>
<Object>Visa
<Tx>
<Method>GetBalance()</Method>
</Tx>
</Object>
<Commit>yes</Commit>

</Specs>

4.6 The Interpreter

The Interpreter is a Java servlet which consist of a Translator, an XM Parser,
ServerWriter class, and a ClientWriter class. The following sections will explain the

functionality of each.

4.7 XML Parser

A parser is required to validate the specifications and identify data elements
syntactically and semantically. Syntactically, by ensuring the XML tags are accurately

stated. And semantically, by parsing the XML document tags against the DTD

document. Making sure the specifications are well formed.

30

4.8 The Specs Translator / Events Handler

The Translator is the lexical scanner that reads the XML document and initiates an
instance of the XMLParser class. The XMLParser’s main functionality is to parse the
XML tags one by one and handle events accordingly. Each tag in the XML document
represents an important element of the system’s specification and should be handled
carefully. An instance of a ServerWriter is initiated besides a ClientWriter Object
instance.
Unlike BNF parsers like YACC the lack of look-ahead mechanism with XML was faced
in the implementation of the parser of the prototype. Look-ahead parsers are used to
evaluate an expressions while parsing. With our XML grammar evaluation of
expressions was unecessary since the grammer is used to to overcome the limitation and
to determine the element ahead of time we had to use a two-pass technique to parse the
specifications. In the first pass we locate system property tags and listener objects to
register them with the orb. In the second pass we locate the object’s methods to be
invoked and on which object to be invoked.

XML tags are translated into appropriate corba java code and printed to either
client.java or server.java files. Details of such translation is as follows:
The first tag encountered in the specifications would be <Specs>. It indicates the

beginning of the user specifications and the root element of the tree structure.

<Specs>

As stated in section (4.3) consists of several other elements (Package, Propagation,

CurrentRef, ListenerObject, Commit) each explained later in this section.

31

<Package>

A CORBA application usually has its source code located in a common directory as
a package. In other words, the Package is where the skeletons generated from the IDL
reside, as well as where the Objects’ implementations can be found. Therefore,

<Package> tag triggers the generation of code:

Import PackageName.*; into both the server and the client programs.

<Propagation>

ITS manages transactions by propagating transaction context to objects participating
in the transactions. Usually the transaction originator is provided a transaction context
immediately after transaction initiation on an object. The ITS provides the context and
associates it with the working thread. With <Propagation> tag the user is given the
freedom in our specifications to choose between implicit propagation and explicit
propagation of transaction context. It was challenging to decide on how to present the
avaiable choice to the user. Therefore, we chose to declare those choices as 'ENTITY.
An XML entity can hold a constant and can be referenced in the XML document/user

specifications with “&entityname;”.

<Implicit> propagation; Indirectly pass the transaction context via ITS to the

participating objects in the transaction using Current Object and its methods. As we

will see later in tag <CurrentRef>.

32

<Explicit> propagation; directly pass the transaction context as a parameter in the
method of the participating object using Coordinator / Terminator Objects and their
methods to control the transaction and its context. Basically it would look like this;

Control_Var control;

Terminator_var newTranTerminator;

Coordinator_var newTranCoordinator;

NewTranTerminator = control.get_terminator();

NewTranCoordinator = control.get_coordinator();

And control would be passed as transaction context in the method parameter of

the object that allows it as in:

Bank.get_account(accountname, control);

<ImplicitToExplicit> and <ExplicitToImplict>

The designer may choose to switch between Implicit and explicit propagation,
therefore, a new tag was provided for that purpose; <ImplicitToExplicit> and
<ExplicitTolmplict> tags. Implicit to Explicit obtains a control object reference by
suspending current and obtaining a control object with current.get_control() function. To
change from explicit propagation to implicit current.resume() would do the trick.
The reason sometimes the user would like to switch between the two types of propagating
the transaction context depends on the object’s implementation, some objects were built

to be passed transaction context as a parameter of their methods.

33

<CurrentRef>

In case user’s choice was to use implicit propagation to gain access to an ITS-
managed transaction we have to obtain an object reference to the Current Object. The
following describes the steps to obtain a Current Object reference:

1. Call the ORB resolve_initial_reference(“TransactionCurrent”);

2. Narrow the returned object to either;

Again to give the user options to choose from, !ENTITY type was used. OMG and VITS

are declared as entities in DTD and to be referenced in the user specifications as desired.

<OMG> A tag used to indicate user’s choice of using CosTransations::Current
specifying the intention to use the original set of methods of CosTransactions
Module which is OMG compliant.
org.omg.CORBA .Object
obj = orb.resolve_initial_reference(“TransactionCurrent”);
org.omg.CosTransactions.Current

current = org.omg.CosTransactions.CurrentHelper.narrow(obj);

<VITS> VISTransactions::Current specifying the intention to use the additional
set of methods Visigenic provides over the original CosTransctions module.
org.omg.CORBA.Object
obj = orb.resolve_initial_reference(‘“TransactionCurrent”);
org.visigenic. VISTransactoins.Current

current = org.visigenic.VISTransactoins.CurrentHelper.narrow(obj);

34

Therefore, we introduced an XML tag or element <CurrentRef> to allow designer

flexibility in implementation as mentioned earlier.

<ListenerObject>

If a ListenerObject tag is encountered we write it out to the server program in the
correct logic and syntax needed to register this Object in the ORB. To give the user the
choice of variable names and instance references an attribute list 'ATTLIST was used to
associate an attribute name to listener object indicating its class type, while the value set
between the start tag and end tag indicates the instance name/reference holder.
Create an instance of the object and register it in the ORB as follows:

Obj_A instance_LO_a = new Obj_A();

Boa.obj_is_ready(instance_LO_a);

<Bind WithObject>
When a ‘BindWithObject’ is encountered as a child of ‘ListenereObject’ we register
the ‘BindWithObject” with the ORB with a reference to the ‘ListenerObject’ to be
associated with it as follows:
Obj_A instance_LO_a = Obj_Ahelper.bind(orb, b_ref);
Obj_B i instance_LO _b = new Obj_Bimpl(b_ref);

Boa.is_ready(instance_b);

Where b_ref is the object name specified by the user.

35

<Tx>

A Tx could be a method to be invoked on the Listener Object instance and
associated with its parent ListenerObject tag, or it could be a child of the BindWithObject
tag. Either case the generated code should use the correct instance of either objects.

<Tx> may consists of the following tags:

<ReturnType> determines if the method/function has a return type if the tag exists,

otherwise the method doesn’t return any value.

<Method> a string of the operation/method to be invoked.

<Object> If the parent of <Tx> is the tag <Specs> it indicates that the transactions

to be invoked are not directly on a listening objects but probably on a delegated

object or an object in the instantiated in the client program as we will see in the Bank

prototype section (5.1).

<ReturnType>

An operation could return a value of a certain type, a string, float, boolean, the return
value could also be a reference to an instance of an object.
ReturnType has an attribute type in which to specify the type of the return value. It also
holds a value, which is a variable to declare the data type with.

Ex: <ReturnType type = “String”>str </ReturnType>

<Method>
Method a tag to represent the object method to be invoked as a string. The
interpreter writes the method out as a string, to the client program as specified in the

<Tx> subtag <Method> as follows:

36

ReturnType var = instance_LO _a.Tx();
The declaration of a method was a challenge as it would open a whole new door on the
implementation, it tends to shift the focus from the ITS specifications into java language

interpretation and variable declaration which was decided to be left for future work.

<Object>

Some objects methods can be invoked from the client program they either need not
be registered with the orb on the server, or they belong to other objects who are
responsible to register them with the orb. The difficulty here lies in the question of how
to specify these non-listening objects in the specification and handle it in the interpreter.
We use <Object> to associate the method with its object and avoid the interpreter from
confusing it with the listener object.
<Tx>

<Object>acc1</Object>

<Method>Debit(Amt)</Method>

</Tx>

4.9 SeverWriter Class and ClientWriter Class

The ServerWriter and the ClientWriter classes are special classes that write out
code for each event or element in the XML document. An instance of each of the classes
is created in the XML Parser to be able to access their functions and methods. Each code
segment that should be included in the Server or Client programs is represented by a

method of a class as listed in the following subsections. Figure 7 is a logical view created

by Rational Rose modeling tool.

37

Translator

=¥main()

-Parser

XmiParser

BSRegFlag : boolean = false
invokeOnLO : boolean = false
PinvokeONBWO : boolean = false
fBregistered : boolean = false

E®GetData()

¥ xmiParser()

Z8ParseXml()

&P¥secondPass()

client \server
' N

ClientWriter SenerWriter
EClientWiriter() E®SenerWriter()
&includePackage() E®PincludePackage()
E®initOrb() E9initOrb()
EPlocateObject() E¥RegisterObject()
EstartTx() E®RegisterObject()
EwriteTx() E®getReady()
E®writeTx() EPboaisReady()
EPcommitTx()

EBVITSCurrent()
ZPOMGCurrent()
E¥Coordinator()

Figure 7 Rational Rose class diagram of the system/Logical view

4.9.1 SeverWriter Class

InitOrb() generates code necessary to:
 set ORBServices to include CosTransactions service, and
e initialize the ORB, and

e activates the BOA’.

RegisterObject(ObjectName) generates code necessary to:

7 Basic Object Adapter BOA is defined in section 2.6

38

¢ Create an object instance, and

e register an Object’s instance with the ORB

4.9.2 CilientWriter Class

InitOrb generates code necessary to:
e Set ORBServices to include CosTransactions service, and
e initialize the ORB, and

e Activate the BOA.

LocateObject(ObjectName) generates code necessary to:
* Locate the Object that’s been listening and waiting for requests on the ORB.

OMGCurrent()generates code necessary to:

e get Current Object reference of OMG Current interface without Visigenic

additional methods.

VITSCurrent() generates code necessary to:

e get Current Object reference of Visigenic Current Interface with its new

methods.

Coordinator() function generates code necessary to propagate explicitly the
transaction context to the participating Object, which involves the following steps:
e get a control Object reference
e get Coordinator Object Reference

e get Terminator Object Reference

Appendix ‘A’ lists the program code for all classes presented earlier, i.e; Translator.java,

XML Parser.java, ClientWriter.java and ServerWriter.java.

39

Chapter 5 Prototype
5.1 Case study: Bank Transfer example

To identify the Listener Objects that are to be registered with the Orb on the Server
side and the transactions and objects to be on the Client side we thought of a specification
language and a program that interprets those specifications.

In our example Storage and Bank are Listener Object and for us to invoke transactions on
these objects they have to be listening on the server side.

Analyzing the application we’ve identified Storage as the database object that could
handle more than one Bank provided that it is a distributed system we are dealing with.
Therefore, the Storage Object should be first initialized and the Bank Object(s) is to bind
with the storage on the same ORB, also to allow Bank Object to use Storage Object

functions to access the database. All that would be handled by the Bank and Storage

implementations.

As stated earlier <Specs> is the root element with sub elements defined in a tree
structure. A Listener Object is defined as an element with its own subelements defined in
sublevels. The name of the element is referred to as ‘TagName’ and is in this case
<Specs>, <Listener Object>, <BindwithObject>, <Tx>, etc.

User’s specifications language of a system typically would be like the following example

as an XML document:

<Specs>
<package>quickstart</package>
<Propagation type = “Implicit®></Propagation>
<CurrentRef type = “OMG"></CurrentRef>
<ListenerObject name = "Storage">myStorage

40

<BindWithObject name = "Bank">myBank
<Tx>
<RetumValue type = "Account">acc1</ReturnValue>
<Method>Get_Account()</Method>
</Tx>
</BindWithObject>
</ListenerObject>
<Tx>
<Object>acc1</Object>
<Method>Debit(Amt)</Method>
</Tx>
<Commit>yes</Commit>
</Specs>

Such specifications can easily be included in the DTD document, the tool interpreter

would have to have the logic to handle them as well.

A Bank can handle more than one account and each account could handle more than one

banking transaction.

According to the user’s specifications above Quickstart is the package name where the
skeletons and stubs for the application are located.

Propagation type specified is Implicit indicated the use of Current Interface to manage
the transactions.

To get a Current Object Reference the user has specified VITS tag which indicates the
user’s choice of Visigenic Current Interface as mentioned in section (4.8) of Chapter 4.
org.omg.CORBA.Object Obj = orb.resolve_initial_reference("TransactionCurrent");
org.visigenic.VISTransactoins.Current current

= org.visigenic.VISTransactoins.CurrentHelper.narrow(obj);

current.begin();

Listener Object to register in the ORB would be Storage, and Bank Objects.

41

Storage is an object that handles the connection with the database as well as the access to
records in the database. StorageServer was assumed to have been given since it requires
special handling of code depending on the database type.

Bank Object is implemented to get a reference to stored accounts by name upon request
by the client. Bank object has to be registered with the ORB to be made available to the
clients for transaction invocations.

<ListenerObject name = "Storage">myStorage

<BindWithObject name = "Bank">myBank

The generated code would be in Server.java file as:

Storage myStorage = StorageHelper.bind(orb,"myBank”);

Bank myBank= new Bankimpl("myBank" orb);

As Bank Object creates an instance of Account Object to which the client should have a

reference to be able to access its methods such as debit() and credit().

<Tx>
<ReturnValue type = "Account>acc1</ReturnValue>
<Method>Get_Account()</Method>
</Tx>
</BindWithObject>
</ListenerObject>

The generated code would be in the Client java file as follows:

try{

Account acc1 = myBank.Get_Account();

Jcatch (org.omg.CORBA.SystemException e2){}

42

Since there is an Account Object that Bank instantiates in the Client program, the specifications
should include the operations to be invoked on Account object Debit or Credit. The operation is
enclosed in <Tx> tag with child tag <Object> indicates the instance or reference name of the
responsible object on which the transaction to be invoked. In the following, accl is an Account
instance created by the Bank’s operation Get_account as mentioned above. <Object> tag to
identify accl as the object for which Debit() function is a member function.
<Tx>
<Object>acc1</Object>
<Method>Debit(Amt)</Method>
</Tx>
<Tx>
<Object>acc2></Object>
<Method>Credit(Amt);</Method>
<[Tx>
the generated code would be the following:
try{
acc1.Debit(Amt);
Jcatch (org.omg.CORBA.SystemException e2){}
try{
acc2.Credit(Amt) ;

jcatch (org.omg.CORBA.SystemException e2){}

At the end of specs the user specified the command to commit the transactions performed earlier.

<Commit>yes<Commit>
The code generated is:

commit = true;

43

if (commit) {
System.out.printin(" *Transactoin Commited* *);

current.commit(false);

else

System.out.printin(" Rolling Back Tx *);

current.rollback();

}

Appendix ‘B’ a listing of the generated code in Client.java and Server.java files.

5.2 Case Study 2 - Point of Sale Application (POS)

The tool was tested on several other application of which was Point of Sale application.
The following shows a tree structure of an XML document, for a point of sale application
POS, which adheres to the above DTD rules:

<Specs>
<package>POS</package>
<Propagation type = "Implicit"></Propagation>
<CurrentRef type = "OMG"></CurrentRef>
<ListenerObject name = "Store">store</ListenerObject>
<ListenerObject name ="StoreAccess ">storeaccess
<Tx>
<Method>FindPrice()
</Method>
<Tx>
<Tx>
<ReturnType type = "float">STotals</ReturnType>
<Method>GetStoreTotals()</Method>
<Tx>

</ListenerObject>

<ListenerObject name = "Tax">taxObj
<Tx>
<ReturnType type ="float">tax</ReturnType>
<Method>calculateTax(Amt)</Method>
</Tx>
</ListenerObject>
<Object>Visa
<Tx>
<Method>GetBalance()</Method>
</Tx>
</Object>
<Commit>yes</Commit>

</Specs>

Appendix ‘C’ is a listing of the system classes and generated code for this application.

45

CHAPTER 6 Tool Evaluation

6.1 Advantages of our tool

Both client and server programs for a Transactions system can be generated from
partial system specifications. The implementation code generated is a step ahead of
what a tool like Jbuilder can generate as it generates smart code in addition to the
skeleton code of the Client and Server programs. . Saving a little effort and time in the
building of client and server programs. The code generated also counts for fault-
tolerance as try-catch wrap automatically around known fault-tolerance points predefined
in normal transactions system.

Knowledge of only core elements of the system is required by the
programmer/designer to build the DTD production rules, providing easy to use tool to
developers.

The tool also shows to be very flexible as new XML elements can be added to or
removed from a DTD document, provided it can be handled in the event handler /
interpreter program.

XML is very popular and freely available technology as well as Java. The ease of
access to elements and their values using XML — Java rich libraries makes it easy and
flexible to modify the tool and enhance it.

The tool’s interpreter can be implemented in any other language, for example; C++ is
a possible candidate. On the other hand, we’ve tried to implement it with Java script
however, we faced the limitation of not being able to write out to a file from a browser

due to security issues with the Internet browser.

46

The concept of our approach seems broad enough that any application can be
described using XML specifications.

From another point of view, using our Object-Transaction relationships the tool can

be replaced with any specification language, such as; Java cup, lex and yacc, etc.
In relation to modeling tools like Rational Rose, there is potential that Rose can be used
to generate an XML DTD from a class diagram where classes/objects can be mapped into
XML elements forming a DTD document,(an add-in feature in Rose). The DTD
document then can be used as a model DTD for an XML document, which can then be
fed to our tool for processing. In other words, Rational Rose Modeling tool can play the
role of an interface to our tool.

The major advantage of our approach is error free syntax since the code is
automatically generated, provided the user input was syntax error free, in other words,
our tool automates the standard coding for ITS programming. It is also worth mentioning
that from a programmer’s point of view it allows the user to work at higher level and
focus on the logic of system rather than having to spend time and effort on coding
repetitive and common code to all systems. Relying on a tool to read centralized data and
generate related code in two separate programs is a breakthrough to a programmer and

the aim of software developing enterprises that try to build such tools.

6.2 Limitations of our tool
The tool seems to have some limitations that are summed as follows:
The order of tags is very important to define the relationship between objects and their

methods. However, it may not be the exact order in which the user would like to see it,

47

thus, the user will have to manually reorder the events or transactions by simply cut and
paste segments of code.

Knowledge of XML technology is necessary although is easy to learn and practice.
The Interpreter / code generator needs to be updated if new XML elements where to be
added to the tool especially if these new elements require special event handling.
The use of tags for elements of the system could be a long process and could create a
huge XML document and endless XML elements and tags.
Dependability on other products; new releases of Visigenic ITS may force a new release

of our tool.

6.3 Future work

The research material presented in this document doesn’t stop at this stage, however, the
tool’s expansion and enhancement are definitely in the road ahead. Some of possible
enhancement on the implemented tool in this thesis is in brief listed below:

Getting transaction context from a transaction factory can be added to the tool’s
capability to interpret the user’s desires to use a transaction factory in the system.

The opportunity for implementing a handle for synchronization object ® is also open,

as well as implementing coordinator/terminator events, and CORBA Exception Handling.

Incorporating ITS session manager is also envisioned.

¥ Includes methods that are made available for user’s implementation such as pre_commit() and
post_commit()

48

6.4 Conclusion

This thesis has shown that specifications of a transaction system can be described
with a high level language knowing core elements of a system, such as the listener
objects on the server and the their methods to be invoked from the client side. The
approach used introduced the Object-Transaction relationship as a parent-child
relationship and used XML technology as a specifications-language to such relationships.
The approach tested whether XML is sufficient to be used as a specifications language to
describe partial system specifications. As a result of testing our approach with a couple
of applications, the Bank application and the Point of Sale application, our XML JAVA
parser showed success in generating code for the server and client programs. The
generated server code registers listener objects with a CORBA ORB, while the generated
client code is the standard code required in a client program to locates the objects on the
orb and invoke transactions on them as required.
Unlike BNF parsers like YACC the lack of look ahead mechanism with XML was faced
in the implementation of the parser of the prototype. To overcome the limitation and to
determine the element ahead of time we had to use a two-pass technique to parse the

specifications and find specific elements and entities.

Our tool is a prototype of an interpreter for the specifications and a code generator,
which would be able to successfully generate JAVA code that is CORBA compliant.
The tool could be enhanced and made more general to handle more complex transactions

system. In addition, the tool could be extended to generate code in different languages

49

other than JAVA. It also can be implemented in different language other than JAVA if
desired since XML is programming language independent.

The client program generated would need further modifications by the user if extra
logic is required, i.e.; loops, if statements, etc., and that was expected since we used only
partial system specifications. Again we clarify that partial system specifications language
was sufficient to generate standard and common code to any transactions system like
initialization of the ORB and BOA, in addition to smart code such as registering objects
on the server side and invoking transactions on the client side. On the other hand, full
system specifications would have been cumbersome and the complexity generating the
specifications language would defeat the purpose of this thesis.

We believe that the idea and approach presented in this thesis have potential to ease
programmer’s job to a certain degree and to be of good use to distributed transactions

system developers with CORBA and JAVA technologies.

50

Appendix A
Listing of Translator, XML Parser, ServerWriter and ClientWriter Code

Translator.java : Parser Initiator

import java.io.*;

class Translator({
public static void main (String[] args) throws IOException(

BufferedReader stdin = new BufferedReader (new
InputStreamReader (System.in)) ;

String filename;

boolean stop = false;

String string = new String();

// instantiate the parser

XmlParser Xparser = new XmlParser():

while (!stop) {

System.out.println ("Please enter xml document or ‘exit’ to
quit.");
filename = stdin.readLine(); //get tasks.txt from a keyboard
if (filename.equals("exit")) { //stop the translator program
stop = true;
System.out.println("The end!'") ;
System.exit (1) ;
}
else(
try({
File file = new File(filename) ;
RandomAccessFile r = new RandomAccessFile(file, "r"):
xparser.ParseXml (filename) ;
}catch(IOException e2) (}
}
}//while
}// main

}// translator

51

XMLParser.java: Parser / Event Handler

import java.
import java.

io.*;
io.File;

import com.sun.xml.tree.*;
import org.w3c.dom.*;

import java.

lang. *;

import com.sun.xml.parser.Resolver;

import com.s

un.xml.tree.XmlDocument;

import org.xml.sax.InputSource;
import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

public class

static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static

Clien

//crea
Server
String
nonListenObj

XmlParser({

final String PACKAGE = "package";
final String VITS = "VITS";
final String OMG = "OMG";

final String PROPAGATION = "Propagation®;

final String CURRENTREF = "CurrentRef";

final String LISTENEROBJECT = "ListenerObject";
final String BINDWITHOBJECT = "BindWithObject"

final String OBJECT = “Object";
final String IMPLICIT "Implicit";
final String EXPLICIT "Explicit";
final String TX= “Tx";

final String METHOD = "Method";
final String COMMIT = "Commit";

final String COMMITROUTINE = *"CommitRoutine";

final String RETURNTYPE = "ReturnType";
final String STR = "String";

final String FLT = "float";

final String BOOL = "boolean";

final String ANY = "Any";

final String EMPLICITTOEXPLICIT = "EmplicitToExplicit”;
final String EXPLICITTOEMPLICIT = "ExplicitToEmplicit";

final String INSTANCE = "Instance';

tWriter client = new ClientWriter();
te an object of class ServerWriter
Writer server = new ServerWriter () ;

LO, BWObj, temptype, tempEvalue, LOName,

'

String Pvalue, Gvalue;

boolea
registered =
public
void P

{

n RegFlag = false, InvokeOnLO = false, InvokeOnBWO

false;
XmlParser(){ }; //constructor
arseXml (String FileName)

InputSource input;
XmlDocument doc, doc2;
Element root, OrigRoot;

//create an object of class ClientWriter

52

BWObjName,

false,

try

from here.

{
// turn the filename into an input source
input = Resolver.createlInputSource (new File (FileName)) ;

// turn it into an in-memory object

// ... the "false" flag says not to validate

doc = XmlDocument.createxXmlDocument (input, false);
// normalize text representation

// doc.getDocumentElement () .normalize();

// access the elements here write server and client programs

// prettyprint

// doc.write (System.out);
root = (ElementNode)doc.getDocumentElement{) :
System.out.println(root.getTagName()) ;
GetData(root}) ;
secondPass (root) ;
server.boaisReady () ;

} catch (SAXParseException err) ({

System.out.println ("** Parsing error"

+ ", line " + err.getLineNumber ()
+ ", uri " + err.getSystemId ());
System.out.println(" " + err.getMessage ());

// print stack trace as below

} catch (SAXException e) {

Exception X = e.getException ();

({x == null) ? e : x).printStackTrace ();

} catch (Throwable t) {

}

}

t.printStackTrace () ;

void GetData(Element elem)
{ Node first, last;
NodeList cnodes, templist;
String Evalue, tagName, proptype, curtype;
boolean done = false;
cnodes = elem.getChildNodes() ;

int

end space

leng = cnodes.getLength();
first = cnodes.item(0);
last = cnodes.item(leng-1);
tagName = elem.getTagName () ;

Evalue = first.getNodevValue(); //substring value as it adds
if (Evalue != null)

Evalue = Evalue.trim{();
i1f (tagName == PACKAGE)

{
server.includePackage (Evalue) ;

server.initOrb() ;

53

client.includePackage (Evalue) ;
client.initOrb() ;
//client.startTx() ;

}

if(tagName == CURRENTREF)
{ curtype = elem.getAttribute("type");
if (curtype == OMG)
{ // use additional methods of Visigenic ITS

client.OMGCurrent () ;
}
if (curtype == VITS)
{
client .VITSCurrent () ;
}
}

if (tagName == PROPAGATION)

{
proptype = elem.getAttribute("type");
if (proptype == IMPLICIT)
{

// Use Current Interface
// event handled by either OMG or VITS in CURRENTREF

tag
}
if (proptype== EXPLICIT)
{
client.Coordinator () ;
}
}
/*
if (tagName == EMPLICITTOEXPLICIT)
if (tagName == EXPLICITTOIMPLICIT")
if (tagName == STR)
if (tagName == FL)
if (tagName == BQOL)
*/
1f (tagName== LISTENEROBJECT)
{
LO = Evalue;
LOName = elem.getAttribute({"name") ;
if (Evalue != null)
{
server .RegisterObject (LOName, LO):;
server.getReady (LO) ;
client.locateObject (LOName, LO) ;
}
}
if (tagName == BINDWITHOBJECT)

{
BWObj = Evalue;

54

BWObjName = elem.getAttribute("name");

if (Evalue != null)

{
server.RegisterObject (LOName, LO, BWObJ);
server.getReady (BWObj) ;
client.locateObject (BWObjName, BWObJ) ;

while (first!= last)

{
// there might be more children here.. go through the
list
if (first.hasChildNodes(})
{
GetData((ElementNode) first) ;
}
first = first.getNextSibling() :
}// while

}//GetData

void secondPass(Element elem)
{ Node firstElem, lastElem,GrandP,parent, next, pnode, method;
NodeList cnodes, templist;
String Evalue,Pname,Gname,tagName,proptype, curtype;
boolean done = false:
cnnodes = elem.getChildNodes() ;
int leng = cnodes.getLength() ;
firstElem = cnodes.item(0) ;
lastElem = cnodes.item(leng-1);
tagName = elem.getTagName () ;
Evalue = firstElem.getNodeValue() ;
if (Evalue != null)
Evalue = Evalue.trim();

parent = firstElem.getParentNode() ;
Pname = parent.getNodeName () ;
GrandP= parent.getParentNode() ;
Gname = GrandP.getNodeName () ;

if (tagName== LISTENEROBJECT)
{
LO = Evalue;
LOName = elem.getAttribute("name"):;
}
if (tagName == BINDWITHOBJECT)
{
BWObj = Evalue;
BWObjName = elem.getAttribute("name"):;
}
if (tagName== TX)
{

if (Gname == LISTENEROBJECT)

55

{
InvokeOnLO = true;

}
if (Gname== BINDWITHOBJECT)

{
InvokeOnBWO = true;

}

if (tagName == RETURNTYPE)
{ tempEvalue = Evalue;
temptype = elem.getAttribute("type®);

}

if (tagName == METHOD)
{
if (InvokeOnLO)
{
if (tempEvalue !=null && temptype !=null)

{
client.writeTx(temptype, tempEvalue, LO,

Evalue) ;
InvokeOnLO = false;
}else
client.writeTx(LC, Evalue);
}
else if (InvokeOnBWO)
{
if (tempEvalue !=null && temptype !=null)
{
client.writeTx(temptype, tempEvalue, BWOb7J,
Evalue) ;

InvokeOnBWO = false;
}else
client.writeTx (BWObj, Evalue);
}
else if (nonListenObj !=null)
{
if (tempEvalue !=null && temptype !=null)

{
client.writeTx(temptype, tempEvalue,

nonListenObj, Evalue) ;
lelse
{
client.writeTx(nonListenObj, Evalue);

}

}
nonListenObj = null;
tempEvalue = null;
temptype = null;

}

if (tagName == OBJECT)

{

nonListenObj = Evalue;

56

}

if ((tagName == COMMIT) || (tagName == COMMITROUTINE))
{
client.commit™x() ;
} // else (just declare the element as a variable with the
element tag as type

/*else { khEkhkhkhkhkhkhkhkhkhkhhhkrhrhhkhhkhdrhrhhohkhhhdt®ddkh

declareElement (in the client)at the begining of

main ()
*/
while (firstElem!= lastElem)
{
// there might be more children here.. go through the
list
if (firstElem.hasChildNodes())
{
secondPass ((ElementNode) firstElem) :
}
firstElem = firstElem.getNextSibling() ;
}1// while

}

}// XmlParser

57

ServerWriter.java
import java.io.*;
class ServerWriter/(

String str;
File f;
RandomAccessFile sw;

private String bwo, lo, historyObj= "orb";

public void ServerWriter() (
}
void includePackage (String tang)
{
try{ £ = new File("Server.java");
Sw = new RandomAccessFile(f, "rw"):;
str ="//This is a Server Program automatically generated
\n"+
"//the Server performs the following according to
user specifications\n"+
"//1) import required libraries and packages\n"+
"//2) Initialize an ORB\n"+
"//3) register Objects in the ORB\n"+
"//4) wait for requests \n\n" +
"import "+ tang+ ".*;" +"\n" +" import java.io.*;\n import
java.util.*;\n";
sw.writeBytes(str);
} catch(IOException e2) {}

}
void initOrb{()
{
try({
str = "public class Server { \n" +
"\t public static void main (String[] args) throws
Exception®" + "\n" +
"\t{ Properties props = System.getProperties():\n"+

"\t" +"String services = \"\" ;\n"+
"\t"+ "services = (String) props.get(\"
ORBservices \");\n"+
"\NE"+ "if (services == null ||
services.length() ==0)\n"+
"\Ne\t"+ "{\n" +
“\Ne\Nt"+ "props.put (\"ORBservices \",
\"com.visigenic.services.CosTransactions \");" +
"\Ne\E"+ "} else { }\n " +

"\t"+ "org.omg.CORBA.ORB orb =
org.omg.CORBA.ORB.init (args, props);\n"+
"\t"+ "org.omg.CORBA.BOA boa =
orb.BOA_init();\n" +
"\Ne\t"+ "if (args.length t= 1)\n" +
"{ System.out.println (\"Usage:\"); }\n"

58

sw.writeBytes(str) ;
} catch(IOException e2) {}

}
void RegisterObject (String LObjClass, String LoInstance, String

bindwithObj)
{
if (LoInstance != null)
bwo = bindwithObj;
if (bindwithObj !'= null)
{
historyObj = lo;
str = LObjClass + " "+LoInstance + " =
"+LObjClass+"Helper.bind(orb," + "\""+bwo+"\""+") :;\n":
try{

sw.writeBytes (str) ;
} catch(IOException e2) {}

}
}
void RegisterObject (String LObjClass, String LolInstance)
{ 1f (LoInstance != null)
historyObj = "orb";
str = LObjClass +" "+ LoInstance+ "= new " +
LObjClass+"Impl("+"\""+LoInstance+"\""+",6 « + historyObj+");\n";
try(

sw.writeBytes(str) ;
} catch(IOException e2) {}

}
void getReady(String Lo)
{
if (Lo!= null)
{
Str = "boa.obj_is_ready ("+Lo+");\n" ;
}
try{
sSw.writeBytes(str);
} catch(IOException e2) {}

}
void boaisReady ()
{ str = "boa.impl_is_ready(); \n} \n}";
try{
sw.writeBytes(str);

} catch(IOException e2) {}

59

ClientWriter.java

import java.io.*;

class ClientWriter(
String str = "";
File £;
RandomAccessFile sw;

public void ClientWriter () {}

void includePackage (String pack)
{
try{ £ = new File("Client.java");
sw = new RandomAccessFile(f, "rw");
str ="// This Client Program is automatically generated
\n" +
"// according to user specs in XML doc. \n"+
"// 1) imports required libraries and packages \n"+
"// 2) set System properties \n"+
"// 3) locate Object on the ORB\n"+
"// 4) invoke transactions\n"+
"// 5) Commit if all above return normal\n"+
"// 6) Rollback in case of failure \n\n"
+"import "+ pack+ ".*;" fv\p" &= import java.io.*;\n
import java.util.*;\n"
+ "import org.omg.CosTransactions.*;\n import
java.lang.*;\n";
sw.writeBytes(str) ;
} catch(IOException e2){}

}

void initOrb()

{ System.out.println(*"client!");
try{
str = "public class Client{ \n" +

"\t public static void main (String[] args) throws
Exception" + "\n" +

"\t{ \n\t\t boolean commit= false;"+

“\n\t\tProperties props =

System.getProperties();\n"+

"\t\t" +"String services = \"\" :\n"+

"\e\t"+ "services = (String) props.get (\"
ORBservices \");\n"+

"\t\t"+ "if (services == null ||
services.length() ==0)\n"+

"\e\t"+ "{\n" +
"\NE\NE\NC"+ "props.put (\"ORBservices\",

\"com.visigenic.services.CosTransactions\");" +

"\n\t\c\t"+ "} else { }\n " +
"\E\t"+ "org.omg.CORBA.ORB orb

org.omg.CORBA.ORB.init(args, props);\n"+
"\t\t"+ "org.omg.CORBA.BOA boa

orb.BOA_init () ;\n" +

60

"\t\t"+ "if (args.length != 3)\n" +
"\e\t\t{ System.out.println (\"Usage:\"):

I\n\n*
+ "\NE\t"+ "// todo: customize the above check

and Usage msg: \n\n" ;

sw.writeBytes(str) ;
} catch(IOException e2){}

}
void locateObject(String LObjClass, String LObjInstance)

{

try{ str ="";
str = "\n\t\t"+LObjClass + " " + LObjInstance + " = " +
LObjClass+"Helper.bind(orb," + "\""+LObjInstance+"\"" + * y:\n";

sw.writeBytes(str) ;
} catch(IOException e2) {}
}
void startTx()
{

try
{ // instance of Current interface
str = "\tCurrent current;\n" +
" \t{ org.omg.CORBA.Qkject initRef =
orb.resolve_initial_references(\" TransactionCurrent A"yt o+
“;\n" + "\t\tcurrent = CurrentHelper.narrow(initRef) :\n\t
I\n" + "\tcurrent.begin();\n";

sw.writeBytes(str) ;
} catch(IOException e2) {}
}

void writeTx(String ReturnType, String Returnvar, String Obj, String
method)
{

try

{
if (ReturnType != null)
{

str = "\t\t// Tx goes here. Do: set return values and
parameters as appropriate \n\n"
+ "\t try{ \n\t\t" +
ReturnType + " " + ReturnVar+ " = " + Obj + "." +
method + ";\n\n \t\t// other transactions go here\n" =+
“\t\tl}catch (org.omg.CORBA.SystemException e2){} \n";
}
sw.writeBytes (str);
}catch (IOException e2){}

str = "";
}
void writeTx(String Obj, String method)
{

try

{

61

str = "\t\t// Tx goes here. Do: set return values and
parameters as appropriate \n\n®
+ "\t try{ \n\t\t" +
Obj +"." + method + ";\n\n \t\t"+
"}catch (org.omg.CORBA.SystemException e2){} \n";
sw.writeBytes(str) ;
}catch (IOException e2){}

str = ""%;
}
void commitTx()
{
try
{
str = "\t\t// if no exception raised then commit otherwise

rollback \n" +
"\n\n\t\t //Commit or RoleBack the transaction\n" =+

"\n\t\t commit = true; \n\n"+
"\n\tif (commit)" +
"A\n\t {\n\t\tSystem.out.println(\" *Transactoin

Commited* \");" +

"\n\t\t current.commit(false);" +

"\n\t }" +

"\n\t else" +

"\n\t{\n\t\t\t System.out.println(\" Rolling Back Tx
A IR

"\n\t\t current.rollback({j; \n \t} \n\t\n} \n}";
sw.writeBytes(str);
}catch (IOException e2)(}
}

void VITSCurrent ()

{
try
{
str = "\norg.omg.CORBA.Object Obj =
orb.resolve_initial_reference(\"TransactionCurrent\");"+
"\norg.visigenic.VISTransactoins.Current current "+
"\n = org.visigenic. VISTransactoins.CurrentHelper.narrow(obj);"+
"\n current.begin();\n";

sw.writeBytes(str) ;
}catch (IOException e2)(}

}

void OMGCurrent ()

{
try {
str = "\norg.omg.CORBA.QObject\n"+
" obj = orb.resolve_initial_reference(\"TransactionCurrent\"); "+
"\norg.omg.CosTransactions.Current "+
"\n current =
org.omg.CosTransactions.CurrentHelper.narrow(obj) ; "+
"\n current.begin();\n";
sw.writeBytes(str) ;
}catch (IOException e2) {}
}

void Coordinator ()

{
try
{
str = "\nControl_Var control; "+
“\nTerminator_var newTranTerminator; "+
"\nCoordinator_var newTranCoordinator;"+
"\nNewTranTerminator = control.get_terminator():"+
"\nNewTranCoordinator = control.get_coordinator();":
sw.writeBytes(str);
}catch (IOException e2) {}

63

Appendix B
Listing of Generated Code; Client.java and Server.java for the Bank application

Client.java

// This Client Program is automatically generated
// according to user specs in XML doc.

// 1) imports required libraries and packages

// 2) set System properties

// 3) locate Object on the ORB

// 4) invoke transactions

// 5) Commit if all above return normal

// 6) Rollback in case of failure

import quickstart.*;
import java.io.*;
import java.util.*;
import org.omg.CosTransactions. *;
import java.lang.*;
public class Client({
public static void main (String[] args) throws Exception
{
boolean commit= false;
Properties props = System.getProperties();
String services = "¢
services = (String) props.get(" ORBservices "):
if (services == null || services.length() ==0)
{
props.put ("ORBservices",
"com.visigenic.services.CosTransactions") ;
} else { }
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,

props) ;
org.omg.CORBA.BOA boa = orb.BOA_init () ;
if (args.length '= 3)
{ System.out.println ("Usage:"); }

// todo: customize the above check and Usage msg:

org.omg.CORBA.Object Obj =
orb.resolve_initial_reference("TransactionCurrent") ;
org.visigenic.VISTransactoins.Current current

= org.visigenic. VISTransactoins.CurrentHelper.narrow(obj);
current.begin() ;

Bank myBank = BankHelper.bind(orb, "“myBank"):
// Tx goes here. Do: set return values and parameters as

appropriate

try({
Account accl = myBank.Get_Account (accountname) ;

// other transactions go here

64

}catch (org.omg.CORBA.SystemException e2) {}

// Tx goes here. Do: set return values and parameters as

appropriate
try{
Account acc2 = myBank.Get_Account (accountname) ;
// other transactions go here
}catch (org.omg.CORBA.SystemException e2) {}
// Tx goes here. Do: set return values and parameters as
appropriate
try({
accl.Debit (amt) ;
// other transactions go here
}catch (org.omg.CORBA.SystemException e2) {}
// Tx goes here. Do: set return values and parameters as
appropriate
try(

acc2.Credit (amt) ;

// other transactions go here
}catch (org.omg.CORBA.SystemException e2) {}

// if no exception raised then commit otherwise rollback

//Commit or RoleBack the transaction

commit = true;

if (commit)

{

System.out.println(" *Transactoin Commited=* ") ;
current.commit (false) ;

System.out.println(" Rolling Back Tx ");
current.rollback() ;

65

Server.java

//This i1s a Server Program automatically generated

//the Server performs the following according to user specifications
//1) import required libraries and packages

//2) Initialize an ORB

//3) register Objects in the ORB

//4) wait for requests

import quickstart.*;
import java.lo.*;
import java.util.*;
public class Server {
public static void main (Stringl] args) throws Exception

{ Properties props = System.getProperties();
String services = "" ;

services = (String) props.get(" ORBservices ");
if (services == null || services.length() ==0)

{

props.put ("ORBservices ",
"com.visigenic.services.CosTransactions "} ; } else { }
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, props);
org.omg.CORBA.BOA boa = orb.BOA_init();
if (args.length != 1)
{ System.out.println ("Usage:"); }
Storage myStorage = StorageHelper.bind(orb, "myBank") ;
Bank myBank= new BankImpl ("myBank®,orb);
boa.obj_is_ready (myBank) ;
boa.impl_is_ready!():
1
}

66

Appendix C
Listing of Generated files; Client.java and Server.java for Point of Sale application

Client.java

// This Client Program is automatically generated
// according to user specs in XML doc.

// 1) imports required libraries and packages

// 2) set System properties

// 3) locate Object on the ORB

// 4) invoke transactions

// 5) Commit if all above return normal

// 6) Rollback in case of failure

import POS.*;
import java.io.*;
import java.util.*;
import org.omg.CosTransactions. *;
import java.lang.*;
public class Client({
public static void main (String(] args) throws Exception
{
boolean commit= false;
Properties props = System.getProperties();
String services = "' ;
services = (String) props.get(" ORBservices ") ;
if (services == null || services.length() ==0)
{
props.put ("ORBservices",
"com.visigenic.services.CosTransactions") ;
} else { }
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init (args,

props) ;
org.omg.CORBA.BOA boa = orb.BOA_init{():
if (args.length != 3)
{ System.out.println ("Usage:"); }

// todo: customize the above check and Usage msg:

Store store = StoreHelper.bind(orb, "store");

StoreAccess storeaccess = StoreAccess
Helper .bind(orb, "storeaccess");

Tax taxObj = TaxHelper.bind(orb, "taxObj") ;
// Tx goes here. Do: set return values and parameters as

appropriate
try(
storeaccess.FindPrice() ;
}catch (org.omg.CORBA.SystemException e2) {}
// Tx goes here. Do: set return values and parameters as
appropriate

67

try{
float STotals = storeaccess.GetStoreTotals():

// other transactions go here

}catch (org.omg.CORBA.SystemException e2) {}

// Tx goes here. Do: set return values and parameters as
appropriate

try{
float tax = taxObj.calculateTax(Amt) :
// other transactions go here
}catch (org.omg.CORBA.SystemException e2) {}
// Tx goes here. Do: set return values and parameters as
appropriate
try{

Visa.GetBalance() ;
}catch (org.omg.CORBA.SystemException e2) {}
// if no exception raised then commit otherwise rollback
//Commit or RoleBack the transaction
commit = true;
if (commit)
{

System.out.println(" *Transactoin Commited* ") ;
current.commit(false) ;

System.out.println(" Rolling Back Tx ");
current.rollback () ;

68

Server.java

//This is a Server Program automatically generated

//the Server performs the following according to user specifications
//1) import required libraries and packages

//2) Initialize an ORB

//3) register Objects in the ORB

//4) wait for requests

import POS.*;
import java.io.*;
import java.util.=*;
public class Server [

public static void main (String[] args) throws Exception

{ Properties props = System.getProperties|() ;

String services = "" ;

services = (String) props.get(" ORBservices "):

if (services == null || services.length() ==0)
{

props.put ("ORBservices ",
"com.visigenic.services.CosTransactions "): } else { }
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, props);
org.omg.CORBA.BOA boca = orb.BOA_init();
if (args.length != 1)
{ System.out.println ("Usage:"); }
Store store= new StoreImpl ("store",orb);

boa.obj_is_ready(store) ;
StoreAccess storeaccess= new StoreAccess Impl ("storeaccess",orb);

boa.obj_is_ready(storeaccess) ;

Tax taxObj= new TaxImpl("taxObj",orb);
boa.obj_is_ready(taxObj) ;
boa.impl_is_ready{) ;

}

}

69

Appendix D
Listing of CosTransactions.idl interface

// From OMG

#ifndef _costransactions_idl_
#define _costransactions_idl_

#pragma prefix "omg.org"

module CosTransactions

{

// Forward references for interfaces defined later in module

// In Java we will generate pseudo classes for Current
interface Current;

interface TransactionFactory;
interface Control;

interface Terminator;

interface Coordinator;

interface RecoveryCoordinator;
interface Resource;

interface Synchronization;

interface SubtransactionAwareResource;
interface TransactionalObject;

// DATATYPES

enum Status

{
StatusActive,
StatusMarkedRollback,
StatusPrepared,
StatusCommitted,
StatusRolledBack,
StatusUnknown,
StatusNoTransaction,
StatusPreparing,
StatusCommitting,
StatusRollingBack

}:

enum Vote

{
VoteCommit,
VoteRollback,
VoteReadOnly

}s

// Structure definitions
struct otid_t

{
long formatID; /*format identifier. 0 is OSI TP */

long bqual_length;
sequence <octet> tid;

70

struct TransIdentity
{
Coordinator coordinator:
Terminator terminator:
otid_t otid;
1;
struct PropagationContext
{
unsigned long timeout;
TransIdentity current;
sequence <TransIdentity> parents;
any implementation_specific_data;
};

// Heuristic exceptions

exception HeuristicRollback (};
exception HeuristicCommit {};

exception HeuristicMixed (};

exception HeuristicHazard (}:

// Other transaction-specific exceptions
exception SubtransactionsUnavailable ({};
exception NotSubtransaction (};
exception Inactive ({};

exception NotPrepared (};

exception NoTransaction (};

exception InvalidControl {};:

exception Unavailable (};

exception SynchronizationUnavailable {};

// Current transaction
//interface Current : CORBA::0RB::Current

// In Java we will generate pseudo classes for Current
interface Current
{
void begin()
raises(SubtransactionsUnavailable) ;
void commit(in boolean report_heuristics)
raises(
NoTransaction,
HeuristicMixed,
HeuristicHazard
)
void rollback()
raises (NoTransaction) ;
void rollback_only()
raises (NoTransaction) ;
Status get_status{();
string get_transaction _name();
void set_timeout (in unsigned long seconds) ;
Control get_control():
Control suspend();
void resume(in Control which)
raises(InvalidControl) ;

71

r)

interface TransactionFactory

{

};

Control create(in unsigned long time_out);
Control recreate(in PropagationContext ctx);

interface Control

{

};

Terminator get_terminator()
raises(Unavailable) ;

Coordinator get_coordinator ()
raises(Unavailable) ;

interface Terminator

{

}i

void commit(in boolean report_heuristics)
raises(
HeuristicMixed,
HeuristicHazard
)
void rollback();

interface Coordinator

{

}:

Status get_status();

Status get_parent_status/() ;

Status get_top_level_status () ;

boolean is_same_transaction(in Coordinator tc);

boolean is_related_transaction(in Coordinator tc):

boolean is_ancestor_transaction(in Coordinator tc);

boolean is_descendant_transaction(in Coordinator tc):

boolean is_top_level_transaction();

unsigned long hash_transaction() ;

unsigned long hash_top_level_tran();

RecoveryCoordinator register_resource(in Resource r)
raises(Inactive);

void register_synchronization (in Synchronization sync)
raises({Inactive, SynchronizationUnavailable);

void register_ subtran_aware(in SubtransactionAwareResource

raises(Inactive, NotSubtransaction);
void rollback_only ()
raises(Inactive);
string get_transaction_name () ;
Control create_subtransaction()
raises(SubtransactionsUnavailable, Inactive);
PropagationContext get_txcontext ()
raises(Unavailable);

interface RecoveryCoordinator

{

}:

Status replay_completion(in Resource r)
raises (NotPrepared) ;

72

interface Resource
{
Vote prepare()
raises(
HeuristicMixed,
HeuristicHazard
):
void rollback()
raises(
HeuristicCommit,
HeuristicMixed,
HeuristicHazard
)
void commit ()
raises/(
NotPrepared,
HeuristicRollback,
HeuristicMixed,
HeuristicHazard
}i
void commit_one_phase ()
raises(
HeuristicHazard
)
void forget();
Y

interface TransactionalObject

{
}:

interface Synchronization : TransactionalObject
{

void before_completion() ;
void after_completion(in Status status) ;

interface SubtransactionAwareResource : Resource

{
void commit_subtransaction(in Coordinator parent) ;

void rollback_subtransaction():;
Y

}; // End of CosTransactions Module

#pragma prefix "
#endif

73

BIBLIOGRAPHY

[Abbadi et al. 94]

[Anceaume 93]

[Andry 94}

[Ansari et al. 92]

[Aslam-Mir98]

[Bala98]

[BEA98_a]

{BEA98_b]

(BEA98_c]

[(BEA98_d]

[BEA98_e]

[BEA98_{]

[BEA98_g]

Gustavo Alonso, Radek Vingralek, Divyakant Agrawal, Yuri Breitbart, Amr
El Abbadi, Hans-J. Schek and Gerhard Weikum. Unifying concurrency
control and recovery of transactions. Information systems vol. 19, No. I, p
101-119, 1994.

Emmanuelle Anceaume, A comparison of Fault-Tolerant Atomic Broadcast
Protocols. IEEE, p 166- 171, 1993.

Rakotonirainy Andry. Exploiting transction and Object semantics to
increase concurrency. Applications in Parallel and distributed computing,
IFIP, p 155- 164, 1994.

Mansoor Ansari, Linda Ness, Marek Rusinkiewicz, and Amit Sheth, Using
flexible transactions to support multi-system telecommunication
applications.

Shahzad Aslam-Mir. Writing transactional CORBA applications, part 2.
Corba Development. P.11-18. Vol. 4, Issue 6. October 1998.

Raghuram Bala. MedLinx Interactive Browser. The portal for healthcare
professionals. Corba Development. P. 7-10. Vol. 4, Issue 6. October 1998

BEA Systems. BEA M3 below the Water-line. www.beasvs.com/

BEA Systems. BEA M3 frequently asked questions. www.beasvs.com/faq/
BEA Systems. Intruducing BEA M3, the world’s first component

middleware that scales for enterprise. www.beasys.com/

BEA Systems. BEA builder for TUXEDO. www.beasys.com/

BEA Systems. BEA TUXEDO datasheet. www.beasys.com/

BEA Systems. Introduction to the BEA M3 System. Ed. 2.1. June 1998.

www.beasys.com/

BEA Systems. How the BEA M3 System Works. Ed. 2.1. June 1998.

www.beasys.com/

74

[Beeri 86]

[Bharg et al. 94]

[Birrell&Nelson 84]

[Blaustein et al. 93]

[Boutros 94]

[Bracha&Toueg 87]

[Bradley 2000]

[Chappell 97]

[Chen 95]

[Chen&Dayal 96]

[Chung&Mah 97]

[CORBA98]

[CORBAOTS 97]

[Coulouris et al. 96]

C. Beeri, P.A.Bernstein, N. Goodman. A model for concorrency in Nested
transaction systems. TR TR-86-03, Wang Institute, 1986.

Bharat Bhargava, Yongguang Zhang, Shalab Goel, A Study of Distributed
Transaction Processing in an Internetwork. Raid Laboratory, Department of
Computer Sciences, Purdue University, IN, USA, 1994.

Birrell, A.D. and Nelson, B.J., Implementing rmote procedure calls. ACM
Trans. Computer systems, Vol 2, pp. 39-59.

Barbara T. Blaustein, Sushil Jajobia, Catherine D. mcCollum and Louanna
Notargiacomo, A Model of Atomicity for Multilevel Transactions. IEEE, P
120- 134, 1993.

Boutros S. Boutros. Performance Evaluation of a Prudent Two-Phase
Commit Protocol. Theses. Concordia University 1994.

G. Bracha and S.Toueg. Distributed deadlock detection. Distributed
computing, 2:127-138, 1987.

Neil Bradley, The XML companion. Addison-Wesley 2000.

David Chappell & Patricia Seybold, The MTS Distributed Computing

Monitor, June 1997. http:/www.microsoft.com/com/wpaper/mtscomp.htm

Graham Chen, Distributed Transaction processing standards and their
applications. Computer Standards and Interfaces, 1995.

Qiming Chen and Umesh Dayal, A Transactional Nested Process
Management System. IEEE, p 566- 573, 1996.

Soon M. Chung and Pyeong S. Mah, Multidatabase Transaction
Management Scheme Supporting Multiple Subtransactions of Global
Transaction at a Site. Informatics and Computer Science, p 242- 266, 1997.
CORBA Development, for CORBA Developers, by CORBA Developers.
Volume 4, Issue 6 October, 1998.

CORBA specifications OTS service.

George Coulouris, Jean Dollimore and tim Kindberg, “Distributed Systems,

75

[DCOMDesc 97]

[Deacon et al. 94]

[Dogac et al. 98]

[Dynes&Gruber 93]

[Elmagarmid et al. 90]

(Elmg 86]

[Encina]

[Farrag& Abawajy 94]

[Floyd 98]

[Francesco et al. 94]

[GartnerGroup98]

{Geppert&Dittrich 94]

[Gligor&Shattuck 80]

concepts and design”. Second Edition, Addison-Wesley 1996
DCOM Description

http://diana.ecs.soton.ac.uk/~dem97r/dcom/dcdescription.html

Andrew Deacon, Hans-Jorg Check and Gerhard Weikum, Semantics-based
Multilevel Transaction Management in Federal Systems. [EEE software. p
452-461, 1994.

Asuman Dogac, Cevedet Dengi, and M. Tamer Oszu. Distributed object
xomputing platforms. Communications of the ACM. p 95-103, Vol. 41. No.
9, Sept. 1998.

Laurent Daynes and Olivier Gruber, Nested Actions in Eos. IEEE, p 145-
163, 1993.

A. Elmagarmid, y.Leu, W. Litwin, and M. Rusinkiewicz. A multidabase
trasnaction Model for interbase. Proceedings of the 16" VLDB, August
1990.

A K.Elmagarmid. A survey of distributed deadlock detection algorithms.
SIGMOD Record, 15(3), 1986.

www.transarc.com/News/press/bmc-9806.html

Abdel Aziz Farrag and Jemal Abawajy, Formal Model for Verifying
Compatibility among Transactions. IEEE p 76- 81, 1993.

Micheal Floyd, Buidling Web Sites with XM1.. PH PTR.

Nicoletta De Francesco, Ugo Montanari and Gioia Ristori, Modelling
Concurrent Accesses to Shared Data via Petri Nets. Programming
Concepts, Methods and Calculi, IFIP, p. 403- 422, 1994.

BEA M3 will put components to an enterprise test. InSide GartnerGroup
This Week 24, June 1998.

Andeas Geppert and Klaus R. Dittrich, Rule-Based Implementation of
Transaction Model Specifications. 1994.

V. Gligor and S. Shattuck. On deadlock detection in distibuted systems.

76

[Goldfarb&Prescod

2000]

[Grasso 97}

[Gray&Reuter 92]

[Gray81]

[Grimes 97]

[Guerraoui 93]

[Gupta 96]

[Haque&Wong 94]

[Harder 84]

[Harman98]

[Harmon 98]

[Hitachi98]

[Hitachi98_a]

[Hitachi98_b]

[EEE transactions on Software Engineering, SE-6(5), Sept. 1980.

Charles F. Goldfarb and Paul Prescod, The XML Handbook. Prentice Hall
PTR.

Ennio Grasso, Implementing Interposition in CORBA Object Transaction
Service. CSELT, Italy, 1997.

J. Gray and A. Reuter. Transaction processing, cocepts and techniques.
Morgan Kaufmann Edition, 1992.

Gray, Jim. The transaction concept: Virtues and Limitations. IEEE
transactions on Software engineering Vol 2. P144-154 1981.

Richard Grimes, Professional DCOM, WROX Press 1997.

Rachid Guerraoui, Toward Modular Concurrency Control for Object-
Oriented Distributed Systems. IEEE, p 240-246, 1993.

Samir Gupta. Essay in real-time distributed transaction processing and
graphical decision. Ph.D. University of Ann Arbor, MI. 1995.

Waqar Haque and Johnny Wong, Distributed ReadI-Time Nested
Transactions. Systems Software, p 85-95,1994..

Theo Harder, Observations on Optimistc Concurrency Control Schemes.
Information Systems, vol. 9, No. 2, p. 111-120, 1984.

Paul Harman. Distributed component systems. Component development
strategies. p 1-16, Vol. 8, No. 8. August 1998.

Paul Harmon. Component development strategies Newsletter. Vol. VII, No.

8, August 1998. www.cutter.com/itgroup/

TPBroker white paper

www.tpbroker.com/tpbroker/product_info/tpwpaper.html

TP Monitors for electronic commerce, Hitachi’s TPBroker a first look.

www.tpbroker.com/tpbroker/product _info/

Hitachi Software. Object Monitors Defined.

www.tpbroker.com/tpbroker/pruduct_info/objmon.htm

77

[Hopkins&Tilden98]

[Humm 93]

[I/S 94]

[IBM98_a]

[(IBM98_b]

[IBMCICS97]

[IBMT]
[infoworld 97]
[internetworld 97]
[IONA97 _a]

[IONA97_b]

[IONA98_a]

[IONA98_b]

(ISG97]

[Kaciste 94]

Scott. Hopkins and Mark Tilden. Developing a CORBA-Based online
reservation system. Corba Development. P2-6. Vol. 4, Issue 6. October
1998.

Benhard G. Humm. An extended Scheduling Mechanism for Nested
Transactions. IEEE, p 125- 134, 1993.

How middleware can be used to create enterprise and inter-enterprise
applications. I/S Analyzer, Vol. 33, No. 7, P 1-15, July 1994.

IBM. IBM transactions, Benefits of TXSeries.

www.software.ibm.com/ts/txseries/about/

IBM. IBM CICS. www.software.ibm.com/ts/cics/about/eim/dfhe2ch .html

What is CICS?, www.software.ibm.com/is/sw-

servers/transaction/whatisCICS .htm!

Transaction Series, www.software.ibm.com/is/sw-servers/transaction/

Test Results http://www.infoworld.com/

CORBA and DCOM, How they work with the web
[IONA Technologies. OrbixOTM Guide. December 1997.
IONA Technologies. OrbixOTS white papers.

www.iona.com/support/whitepapers/ots

IONA Technologies. Transactions. www.iona.com/products/transactions/

IONA Technologies. OrbixOTM.

www.iona.com/products/transactions/QTM/*

International ~ systems Group, Inc. Middleware White Paper. 1997.

WWW.isg-inc.com

Gerard Lacoste, Distributed Transaction processing in IBC. IBM, France.
Lecture notes in Computer Science, Towards a Pan-European
Telecommunication Service infrastructure — IS&N’94, Second International
Conference on Intelligence in Broadband Services and networks, Germany,

September 1994.

78

[Kindel 98]}

[Kohler&Hsu 90}

[Korth 83]

[Kunkelmann et al. 97]

[Lia95]

[Liangkuan et al. 93]

[Litwin et al. 92]

[Manola et al. 94]

[Marz 84]

[Menasce&Muntz 79]

[Microsoft97_a]

[Microsoft97_b]

[Microsoft97_c]

Charlie Kindel, DCOM protocol.

hitp://premium.microsoft.com/msdn/library/echart/msdn_dcomprot.htm

Walter H. Kohler and Yun-Ping Hsu, A Benchmark for the Performance
Evaluation of Centralized and Distributed Transaction Processing Systems.
[EEE, p 488-493, 1993.

H. Korth. Locking primitives in database system. Journal of ACM, 30(1),
Jan. 1983.

Thomas Kunkelmann, Hartmut Vgler, Technische Hochschule Dermstads.
and Susan Thomas, Interoperability of Distributed Transaction Processing
Systems. Digital Equipment GmbH, CEC Karlsruhe., 1997.

R.Lia. A simulation of the ISO trasnction processing protocol. IEEE, p 26-
30, 1995.

Chen Liangkuan, Chen dequing and Zhang Ho, The Object Oriented
Distributed transaction. IEEE TENCON, 287-290 1993.

Witold Litwin, Dimitrios Georgakopoulos and Marek Rusinkiewicz,
Chronological Scheduling of Transactions with Temporal Dependecies.
1992.

Dimitrios Georgakopoulus, Mark Hornik, Piotr Krychniak, and Frank
Manola. Specification and management of of extended trasnactions in a
programmable trasnaction environment. [EEE, p 462-473, 1994.

Marzullo, K. (1984) Maintaining the time in a distributed system. Tech.
Report OSD-T8401, Xerox Corporation.

D.Menasce and R.Muntz. Locking and deadlock detection in distributed
data bases. IEEE Tranactions on software Engineering, SE-5(3), May 1979.
Microsoft. The COM+ programming model makes it easy to write
components in any language.

Microsoft. Windows NT server, DCOM technical overview. 1997.

Microsoft. Windows NT server, DCOM solution in act. 1997.

79

[Microsoft97_d]

[Moss81]

[Mowbray 94]

[MSOLE 96]

[Nett&Weiler 94]

[Nygard 94]

[Ober 82}

[OLE 98]
[OMG CORBA’95]

[OMG RFP99]

[OMG 2000]

[ORBIX OTM Notes
98]

[Orfali9g]

[Pafford 96]

Microsoft. =~ Comparing Microsoft Transaction Server to Enterprise

JavaBeans. www.microsoft.com. July, 1998.

Moss, Eliot J., Nested transactions: An approach to reliable distributed
computing. PHD Thesis, M.LT. Department of electrical engineering and
computer science, April 1981. Available as M.L.T. laboratory for Computer
Science Technical Report 260.

Thomas J Mowbray, choosing between OLE/COM and CORBA. Distribute
Object Computing. P 39-45. Nov.- Dec. 1994.

Kraig Brockschmidt, OLE Team, What OLE is really about. Microsoft

Corporation, July 1996. http://www.microsoft.com/aboutole.html

Edgar Nett and Beatrice Weiler, Nested Dynamic Actions- how to solve the
fault containment problem in cooperative action model. IEEE, p 106- 115,
1994.

Mads Nygard. Partial recoverability with distributed transactions. IEEE, p
68-76, 1994.

R. Obermarck. Distributed deadlock detection algorithm. ACM
Transactions on Database Systems, 7:187-208, June 1982.

OLE automation, http://www.inforamp.net/~kjvallil/t/oleauto.html

OMG CORBA Specifications, Section 10 on OTS, 1995.

Draft Request For Proposal by OMG url:\www.omg.org\RFP\xots99rev

Mark Elenko and Mike Reinertsen. XML and CORBA
www.omg.org/library/adt.html

ORBIX OTM Seminar, IONA Tech. Montreal —ON, June 1998.

Orfali J. “CORBA and OLE business Objects. . Second Edition, Addison-
Wesley 1996.
Michael Pafford. A survey of distributed transaction processing standards

and a proposal for Mobile x/open XA,Thesis. University of Texas at

80

[Palo 96]

[Panagos et al. 96]

[Pu et al. 93}

[Ranganathan 94]

[Ravoor&Wong 97]

[Raymond 94]

[Raymond&Berry 94]

[Resendes&Laukien
98]

[Roes&Burk 88]

[Rusinkiewicz et al.

92}

[Rusinkiewicz et al.

95]

Arlington.

Palo Alto, New version of HP Encina/9000 Transaction processing Monitor
Enhances HP’s Middleware Engineering Initiative. HP Press release,

E. Panagos, A. Biliris, H.V. Jagadish and R. Rastogi, Client-Based Logging
for High Perfomance Distributed Architectures, [EEE, p 344- 351,1996.
Calton Pu, Wenwey Hseush, Gail E. Kaiser, Kun-Lung Wu and Philiph S.
Yu, Distributed Divergence Control for Epsilon Serializability. I[EEE, p
449- 456, 1993.

Aravindan Ranganathan. Techniques and models for rollback recovery in
computer systems. Ph.D. Thesis. University of New York at Buffalo. 1994
Suresh B. Ravoor and Johnny S. K. Wong, Multithreaded transaction
processing in distributed systems. Systems Software:38, p 107-117, 1997.
Kerry Raymond, Reference Model of Open distributed processing (ODP-
RM): Introduction. CRC of Distributed Systems Technology, Centre of
Information Technology Research, University of Queensland, Australia.

http://www.dstc.edu.au/AU/research-news/odp/ret-model/papers.html

Andrew Berry and Kerry Raymond, An improved model for transactional
operations in RM-ODP, CRC for distributed systems technology. [FIP 1994.
Robert Resendes and Marc Laukien, Introduction to Corba Distributed
Objects. C/C++ Users Journal, www.cuj.com, p 55- 66, April 1998.

Marina Roesler and Walter A. Burkhard. Deadlock Resolution and
Semantic Lock Models in Object —Oriented Distributed Systems. ACM
SIGMOD 17(3), 361-370. 1988.

Marek Rusinkiewicz, Dimitrios Georgakopoulos and Raj Kumar Batra, A
Method for

Control

Deadlock-free Concurrency

Decentralized
Multidatabase Transactions. 1992.
M. Rusinkiewicz, W. Klas, T. Tesch, J. Wasch and P. Muth, Twards a

Cooperative transaction model- The Cooperative Activity Model-.

81

[Schurmann 95}

[Schuster et al. 94]

[Schwarz 84]

[Shrivastava et al. 93]

[Shrivistava 95]

[Siegel 96]

[Siemens98)

[Skarra 93]

[Stachnik 93]

[Stok&thijssen 94]

[Strigini et al. 1997]

Preceedings of the 21th VLDB Conerence Zurich, Switzerland, p 194-204,
1995.

Gerd Schurmann The evolution from open systems interconnection (OSI) to
open distributed processing (ODP). Computer Standards and Interfaces
1995.

Hans Shuster, Stefan Jablonski, Thomas Kirsche, Christoph Bussler, A
Client/Server architecture for distributed workflow management systems.
IEEE, p 253-256, 1994.

P.M. Schwarz. Transactions on Typed Objects. Thesis, CMU, Dec. 1984.
S.K. Shrivastava, M. C. Little and D. L. McCue, Maintaining Information
about Persistent Replicated Objects in a Distributed Systems. I[EEE
software, P 491-498, 1993.

Santosh K. Shrivastava, “Lessons Learned from Building and Using the
Arjuna Distributed Programming System”, Department of Computer
Science University of Newcastle upon Tyne, UK

Jon Siegel. CORBA fundamentals and programming. Wiley publishers.
1996.

Siemens. OpenUTM, new funtions, enhancements and changes in Version

5 of the OpenUTM family products. www.OpenUTM.com/

Andrea H. Skarra, SLEVE: Semantic Locking for Event Synchronization.
[EEE software, p 495-502, 1993.

George Stachnik, Distributed Transaction Processing CICS, Encina and
DCE on HP. Proceeding of the 1993 HP Computer Users’ European
Conference.

P.D.V. van der Stok and P.T.A. Thijssen. Simulation of distributed Real-
Time transactions. IEEE, p 82-87, 1994.

L. Strigini, F. Di Giandomenico and A. Romanovsky, Coordinated

backward recovery between client processes and data servers. IEE software

82

[SunRCard 97]

[Tada et al. 97]

[Tarr & Sutton 93]

[Tekinerdogan 94]

[Thilmany 98]

[Tjandra et al. 97]

[Ulusoy 95]

[Veijalainen 94]

[Weihl 84]

[Weihl 90]

[Wong&Ravoor 97]

engineering, Vol 144, No. 2, April 1997.
Sun report card protocol

http://premium.microsoft.com/msdn/library/orbfireport.gif

Harumasas Tada, Kazuyuki Uchida, Masahiro Higuchi, Mamoru Fujii. A
model of Nested transaction with fine granularity of concorrency control.
IEEE, p 911-920. 1997.

Peri Tarr and Stanley M. Sutton, Programming Heterogeneous Transactions
for Software Development Environments. [EEE, p 358- 369, 1993

Bedir Tekinerdogan, “Design of an object-oriented framework for atomic
transactions”, M.Sc. Thesis at the Department of Computer Science,
University of Twente — Netherlands

Christian J.Thilmany, Using MTS components on your Web Server with
Java. Interactive Magazine Feb. 1998.

http://www.microsoft.com/mind/0298/mts.htm

[.A.Tjandra, G. Butler, P. Grogono and R. Shinghal, Modeling
Serializability of Distributed Tranactions. 1997.

Ozgur Ulusoy, A Study of Two Transaction-Processing Architectures for
Distributed Real-Time Data Base Systems. System Software, Vol. 31, p 97-
108, 1995.

Jari Veijalaninen, Hetergeneous Multilevel Transaction Management with
multiple subtransactions. 1994

W.Weihl. Specification and implementation of Atomic data types. PHD
thesis, MIT, Mar. 1984.

William E. Weihl. Using trasnactions in distributed applications. [EEE, p
366-371, 1990.

Johnny S. K. Wong and Suresh B. Ravoor. Multithreaded transaction
processing in distributed systems. Department of Computer Science, lowa

State University, Ames, lowa. Systems Software, Issue 38, p 107-117, 1997

83

{Xiao&Campbell 93] Lun Xiao and Roy H. Campbell, Object-Oriented Transactions in Choices.
[EEE software, p 50-59, 1993.
[Zhou92] Wanlei Zhou. A decentralized remote procedure call transaction manager.

IEEE Region 10 Conference Tencon 92. Australia. November 1992.

84

VITA AUCTORIS
Jenane Abouzeki was born in 1973 in Lebanon. She received an IDPM Diploma from
the Institute of Data Processing Management in London, UK In 1991. She obtained a
B.Sc. in Computer Science from the University of Windsor in 1997. She was awarded
an honorable mention prize by ACM for JAVA Contest97. She is currently a candidate
for the Master’s degree of Science at the University of Windsor and hope to graduate in

the Spring of 2000.

85

	A tool for building distributed transactions system with XML.
	Recommended Citation

	tmp.1363370417.pdf.WR5fZ

