University of Windsor

Scholarship at UWindsor
Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1988

A Unix based VLSI design workstation.

Alger W. K. Yeung
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Yeung, Alger W. K., "A Unix based VLSI design workstation." (1988). Electronic Theses and Dissertations.
858.

https://scholar.uwindsor.ca/etd/858

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F858&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/858?utm_source=scholar.uwindsor.ca%2Fetd%2F858&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

<

-

The quality of this microform is heavily dependentupon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

If pages are miséing, contact the university which granted
the degree. ‘ .

Some pages may have indistinct pri[jt especially if the

original pages were typed wilh a poor typewriterTibbon or
if the university sent us an inferior photocopy.

Previously copyrighted rnaterigis {journal articles, pub-
lished tests, etc.) are not filmed. -

f
Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30.

. se‘

3,0

NL-339 {r, Ba/04)

‘&E‘ National Lib?ary Bibliothéque nationale - '
of Canada du Canada
Canadian Theses Service Service des théses canadiennes 4
Ottawa, Canada
K1A ON4
NOTICE AVIS

La qualite de cetle microlorme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fail powr-assurer une qualité supérieure de reproduc-
tion.) L+

Sl manque des pages, veuillez communiquer avec
Funiversite qui a contéré le grade. ~

La qualité d'impression de certaines pages peut laisser i
desirer, surtout si les pages originales onl él¢ daclylogra-
phiées & I'aide d'un ruban usé,ou si l'université nous a it
parvenir une photocopie de qualité inlérieure.

- Les documents qui font déja l'objet d'un droit d'auteur

(anicles de revue, lests publiés, elc.}) ne sont pas
microfilmes.

La reproduction, méme particlle, de cette microiorme sl

soumise a la Loi canadienne sur le droit d'auteur, SIRC
2970, ¢c. C-30. . :

Canada

L5

P

-

_ ' by

Alger W.K. Yeung
4

»

r ‘ A Thesis
Submitted "to the Faculty of Graduate Studies through the
Department of Electrical Engineering in Partial Fulfillment
- of the-Requirements for the Degree of
Master of Applied Science at the
University of Windsor

7

Windsor, Ontario
January, 1988

~

ul
AN

—

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.-

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it

-may be printed or etherwise
, reproduced without his/her
‘written permission. ¥

. d'anteur) de

L'autorisation a é&té accordée
a la Bibliothéque nationale
dqu * Canada de microfilmer
cette thése et de préter ou
de vendre des exemplaires du
film.

L'alteur (titulaire du droit
réserve les
autres droits de publication;
ni la thése ni de longs
extraits de celle-ci ne
doivent @&tre imprimés ou
autrement reproduits sans son
autorisation écrite.

. ISBN 0-315-43783-9

ES

»

)

|®

Abstract

2

As VLSI technology evolves fhe complexity of the dcsign.
process is contantly increasing. The existence of a powerful, casy-1o-
use, and flexible WVLSI de.sign‘, wérkstation is essential if onc is to
successfully deéign a complex VLSI circuit. This thesis déu!E with the
design of a VLSI workstation based on the DEC VAXstation 1/GPX
miniepmputer op_erziting in an Ult,g\ix (Unix) and X-Window

environment.

A special silicon compiler called Memory Oriented Silicon
Compiler (MOSC) has been developed by the author and _is available
on the workstation together with a number of utility programs and
two public domain programs. The public domain programs, Electric -
and -Relax2, have been meodified and gailbred to interact with MOSC in
the Ultrix and X-Window environment. A full-custom hierarchical
VLSI design methodology has also been identified in order to ensure
that the VLSI design tools can be used effectively. A number of
circuit designs have begn carried out to illustrate the capab'ilitic:s of
the workstation. The MOSC silicon compiler .is an application spc'cil'ig
CAD‘tool.‘ It was developed in order to afford the designer a\simrzlc
manner for exploiting Residue Numt;er System concepts and -
impleimenting pipelined memory oriented structurés for digital signal
processing applications. The MOSC program is capable'-of synthesizing
5-bit modular adders, subtractors, multipliers and éonstzint operators
in an integrated manner with the Electric design system. The utility

programs developed include plotting routines, drivers for graphic

!

iii

devices, and a file format translator that allows the exchange- of files

with other VLSI design software available in the VLSI Research

Laboratory,

The software "d€veloped and - subsequently 1mp1emented on the

VLSI design workstation }as proven to be powerful and easy-to-use -

tool for designing V]_):)SI circuits.

-

iv

-
A

13

Acknowledgments

!

The author would like to acknowledge the guidance and
suppc.. provided by Dr. W.C. Miller and Dr.-G.A. Jullien. The ideas
and sugge‘s‘tions by other member of the VLSI Research Group' were

also- greatly appreciated.-

-

l

5

Table of Contents

Abstract) ii

Abknowledgmengé . \ v

" Table of Contents vi

List of Figures vii
List of Tables viii

I. Introduction 1

1. A Complete VILSI Design Environment 9

A. Morphology of VLSI Design - 10

B. Role of Silicon Compiler - _ 29

[II. A Special Class of Silicon Compiler i 32

A. General Survey of Silicon Compilers 32

B. Residue Number System and RNS Arithmetic Operanons 36

C. Memory Oriented Structure-for RNS Operations 40

. D. Hardware Realization of RNS Adder and Multiplier 44

E. Implementation of the Silicon Compiler . 51

F. Software Development Environment) 59

G. Design Examples of MOSC 62

IV. Results and Discussion i 70

V. Conclusion 80

References 84

Bibliography .86
Appendix I Ultrix, windowing, and communication facilities 87 °
Appendix II: Electric design environment 109
Appendix III: Circuit designs and simulations . 124
Appendix IV: Graphic SPICE manual 145
Appendix V: Macro functions ‘ ' 179
Appendix VI: Plotting facilities ' 187
Appendix VII: ECIFIN/DCIFIN translator - 208
Appendix VIII: Program listing of MOSC 216
Appendix IX: Design examples of MOSC . 263

vi , R

Figure
Figure
Figure

Figure

Figure
Figure

Figure
Figure
‘Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

1.1:
1.2:
2.1:
2.2:
2.3:
2.4

2.5:

2.6:
2.7:

2.8:
3.1:
3.2:
3.3:
3.4:
3.5:

3.6:
3.7:
3.8:
3.0:
3.10:

3.11:
3.12:
3.13:
3.14:
3.15:
3:16:
3.17:

4.1:
4.2:

. List of Figures
VLSI Design facilities in the VLSI Research Laboratory
Research activities involved in the project -
Full-custom hierarchical VLSI design methodology
The 4-bit adder at block level
The 4-bit adder at sub-block Ilevel
(a) Gate-level schematic capture of 1-bit adder
(b) Transistor-level schematic capture of 1-bit adder
Mask layout of the 1-bit adder
Complete mask layout of ripple carry adder
Relationship between the mcthodology and the
workstation .
Schematic diagram for transmission gate XOR circuit
Major components in closed RNS operatlonq
A typical ROM structure
Memory oriented structure for RNS operations
Modular 5-bit RNS adder:
Modular multiplier structure using quarter squarc
method
MOSC process structure
Detail structure of the first memory cell
"1" bit transistor -
Flow chart of the MOSC silicon compller
Hierarchical structure .of an adder
Command file for creating a RNS multiplier .
Input example of a 4-adder to MOSC
Mask layout of the 4-adder
Input example of a modular, multiplier to MOSC
Mask layout of the multiplier
Input example of constant operator
Mask layout of the constant operator
Capabilities of the Unix based VLSI design workstation
VLSI design facilities with the Unix based VLSI design

_ workstation

vii

11
13
13
16

26

28

41
42
45
45

50
53
54
55
57
60
62
63

64

65
66
67

68.

78

79

Table 2.1:
Table 2.2:
Table 3.1:
Table 3.2:

List of Tables

Truth table t?g/a 1-bit adder
Truth table 6f an XOR gate

Memory content for 5-bit modulo-31 adder
Memory content for 5-bit modulo-31 subtractor
Memory contgnt of quarter square operator

~
-yt
vy

14
28.

46 -

48
51.

&

Ce CHAPTER ONE
Introduction . | 3

| As .the 'design and fabrication techngl assoc_:iate‘d with *Vgry—
Large Scale Integration (VLSI) circuits advances, the corhplcxity of
VLSI circuit design is constantly increasing. ‘Each year more.complcx
architectures involving a larger number of transistors can be
implemented in a sma‘-ller‘ silicon .‘area.: Accordingly circuit designers
must -then rely more and meore on computer-aided désigm(CAD) tools.
~Many CAD tools have been developed to simplify the design tasks
.;during the past‘decade and consequéntly the design time required
for a successful désign has been reduced from years to months\o’r
weeks. Howevel, as the- complexity of VLSI circuits increases viable
C{XD tools must be much more sophisticated. In some cases, the tools
are difficult and inflexible t? use. - .
For successful VLSI circuit design, the actual design
rﬁorpholdgy is only half the battle, and the other half is learning how
to use the CAD tools effectively and fn a straight forward manncr.
Therefore, a powerful, easy-to-use and flexible CAD tool for VLSI
design is needed to aid in the solution of complex design tasks. .
The objeciives of tilis research are to create # fully functional
. Un'ix based VLSIo design workétation,. to identify a full-custom
hierarchical VLSI design methodology, and to develop a 'spccial‘-class
of silicon compiler for high speed digi‘tal signal " processing (DSP)

applications. The workstation is based on the DEC VAXstation II/GPX

1

—— —_

minicomputer located in the VLSI Research Laboratory at the

»

University of Windsor. _
The development of the fully functional VLSI design

- workstation has been influenced by a number of reasons. First of all,

s) .
Ultrix, the Digital version of the Unix operating. system, is selected to

run on the workstation because the VLSI research community in

most other umversmes uses Unix as -the most popular operating

system. In order to communicate with. and be compatible with otherg

universities a Unix based fdcility for VLSI\ design must be installed in

our research laboratory—In addition, we wish to be able to use the
i

large number of public domain VLSI design software programs e

developed in a Unix environment that are available. \f’

Wy »

" - As shown in Figure 1.1 the present VLSI de51gn facilities at the
University of Windsor are centered around hoen‘ix 'Data System

software running on a VAX—]:L/?SO a standaISHe Daisy ChipMaster

workstation and the Applreon VLSI design system operating on ‘a'

VAX- 11/785 Presently most of circuit mask layouts are done using
the Daisy's MAX la)/out ‘editor, and then the design verification is
performed uslng/the "‘Phoenix Data’ System software. Hence, a lot of

time is typically spent on converting data form‘ats and transferring

files between the two machines. A completely 1ntegrated workstatlon '

‘with a layout system and-a circuit verification capabrhty is needed to
-
improve the VLSI designer's . productivity and use the computing

resources ‘'more effectively.

.

L)

e

y - i R -

VLSITest || RPN
/ ' Station \ o : B ‘ o
o o I'System (VMS)

| ais ChipMustr
LMAX 0N

Tektronix
GED (VMS)

VT241/Tektronix

- GSPICE & GRAPHIC

) _ : | (VMS)
- | :

v Figure 1.1: VLSI design facilities in the VLS! Research Laboratory

\ It was also desired that the VLSI. workstation M a special
| ..silic,on_ compiler that allows one to synthesis Residue Number System
. (RNS)‘arithmctic operators directly from design spedification. A large

portion of the research efforts carried out by members in the Signal
and System Gr’bup has been concentrate\d on high-spce.d \I_)SP
applications based on RNS structures. As part of_ this research a
number of basic memory 'Eélls_ bas-éd on the RNS concepts h:ivc been

designed and fabricated successfully. In ‘order to ckpand_ this

i

A

research orientation it is very useful to carry out the design of RNS
arithmetic opg‘rators with the aid of a silicon compiler and to
intcgrate the s,ililcon compiler with the VLSI design workstation”
software.’ _

The research plan was divided into three paths, as shown in
Fi'gure 1.2. The percentage shown beside each box represents the
relative amount of effo,r\t' expended in that afea. The first path is
mainly concerhed with ‘the Ultrix operating system, ‘the windowing
. facility, and public domain software programs. The second path
concentrates on . the creation of a silicon compiler for the RNS
operators. The third path leﬁdé to the identification of a VLSI désign
methodology and to aétermination of which CAD tools are required at
each design stage. We‘ must know the problems or difficulties
involving the interrelations between design procedures, and the
availability of and need for CAD tools must be determined before we
- ‘can provide a viable VLSI design workstation. In additionl'to the
methodology and tools™ problem, a— data format translator must be
developed in order to allow the nglgstation to communicate with
other VLSI design tools. |

Now let us look at the hardware elements of VLSI design
workstation first - followed by software details. The design
workstation is‘phyéiqally based on the DEC VAXstation II/GPX
.workstation which supports a wide range of applications. The GPX
-workstation gains its performance advantage f;om a powerful .
graphics coprocessor that offloads text and grai)hics compuﬂtation

fron‘m the CPU. It also offers a double-buffered video memory closely

T

~ ' RESEARCH PLAN
Estimated percentage of total research effort

{

=~ /- '

A Hardware o ' - E\}Il custom
Acquisition;[= .. ROM sarchitecture Vlfsr?r; hl'Cal
Vax II/GPX, Sop . for DSP 5o b Cel:mgn .
Ultrix OS % | applications g:iax:go aﬁl?gy ;
installation _ - e &

hardware
. resources
Ax:_tigate multi- Do \available ,
window
environment - =
Special silicon
compilation | 35%

Search public technique ‘

domain softwares;| 13%

modify Electric &

Relax . _

Upgrade

GPX grephic 5% .

interface

-~ . | Create data o

file translator

Create meacro 5o .

function .

library

Create |
special

\31as o
atilities | 10% Fully functional
VLSI design

workstation

Qntegr&tion 5%
|

CIF out
for febrication

Figure 1.2: Reseerch activities involved in the project.

10%

\

coupled to the coprocessor, which translates into faster text and
graphics drawing spee’ds. The COprocessor can iﬁdependently access
display list instructions to manipulate graphical objects, further
freeing .the. CPU to run the f.pp_lication' software. The resolution (or
pixels) of the 19-inch colour monitor is 1024 * 864. 256 coIoufs
selected -(')ut of a possible 16 million colours can be displayed
simultaneously. ‘The GPX workstation is currertly equipped with 9
Mbytes of main memory, 216 Mbytes of disk storage and a 95-
Mbyte tape drive. |

A Unix based computing environment has beeri implemented

on the GPX workstation. Ultrix, Digital's Unix operating system, is

.compatible with /})T&T's system V while maintaining all Berkeley 4.2

BSD commands, system calls and library functions. Ultrix version2.0

has been successfully installed in the GPX workstation. Ultrix also -

features the X-Window system which is emerging "as a windowing

standard for the Unix workstation community. The X-Window system
has also been loaded in the workstation. A._startup command file has
been written to initialize the windowing environment, and to define
various combinations of keys on the keyboz;;d and mouse buttons to
invoke a number of window commands. The X-Window system
allows one. to resize, restack, 'move, and iconify windows. It also
provides pop-up menus for credting new windows, changing window
colours, or starting applications. It can be easily customized, giving
users complete control over their own window environment. A more
detail description on how to usé the operating system a_nd the X-
Window facility is included in Appendix 1. Besides the windowing

environment, -a communication system is also provided. The

> 6

workstation is linked to other main frame computers by un‘Elhcrnci
realization of a local area networks. A mail facility and remote file
manipulation across heterogeneous \Qacruting systems ~are sctup
properly for mail alr;d file transfer. A manual has been written for
users to use the facility effectively and is also included in Appendix
[-

One of th% research goals was to investigate the pcrform:mcc of
-public domain software and determine which software could bc
useful to t?e project. After a number of available software packages
were evaluated and Electric, a complete electrical design system
developed at the Fairchild Laboratory was chosen as having the
potential to run on the GPX workstation effectively. Since Electric was
primarily developedto run on a Sun workstation and an AED framc\\
_buffer terminal operating under the Berkeley BSD 4.2 system, a lot of
modifications had to be made. A dis;:;;_ssion on how to modify .zu:d
compile programs is presented in Appendix II. After a long process
of devélopmcnt Electric design system has been suc.ccsg;fully
integrated as part of the application software running on the GPX
workstation.

In summary, the software developed for the GPX workstation
Vf\alls into three areas. The first and major software project is the
realization of a silicon compiler for RNS oriented .applications. The
second. major project is the modification of the public domain Electric
package and its integration ‘into‘ the workstation environment. The
third major project area was concerned with the dcvclopmcnt of a
number of special utility programs, such.as file conversion programs,

plot routines, and graphic drivers for a number of output devices. All
; .

57

|
these programs were impleménted on the GPX workstation and then

fine-tuned to provide a powerful productivity tool for VLSI design.

CHAPTER TWO

Full-Custom Hierarchical VLSI Design Methodology

A typical VLSI design methodology described in the literature
[WeEs85] consists of a behavioral description, a structural description
and a physical description. Each of these descriptions is further
subdivided into a number of design options that may be ‘selectcd for
_a particular design. These three levels of description are adequate
for a general integrated circuit des_ign-envi;i'onment. However, in
order to take full advantages of a given process technology and to
simplify the steps associated with complex circuit design, a full-
custom hierarchical VLSI design methodology has to be adopted.

An effective design methodology alone is not enough for
designing complex VLSI circuitry. A mumber of VLSI computer-aided
design (CAD) tools is also required to reduce the complexity of the
design process. A VLSI circuit is a complex maze of polygons and
lines that form paths that in turn combine to effect an overall
function. .For successful circuit design CAD tools are nccdc_::i to
analyze these paths and to ensure that they are correct. In reality, a
circuit design method is influenced by the CAD tools available to an
IC designer. A full-custom VLSI design methodology will be
presented in detail in this chapter. The functions of various CAD tools
in different design phases are also explained. In addition, a silicon_g

compiler, which ultimately generates the physical~mask layout

-

description directly from behavioral description of a design, will also
be described to show where it fits into the design methodology.
A. Morphology of VLSI Design

. A VLSI design process can be largely simplified by employing
the use of a hierarchical structure. The use of hierarchy involves
dividing a circuit (module) into simpler subcircuits (subﬁodules) and -
then repeating this operation on, the submodules- until the complexity
of the submodulps is at a comprehensible level of detail. This concept
is similar to the one used in developing a complex software program
where large programs are split into smaller and smaller sections
until simple subrdutine, with well-defined functions and. interfaces,
such as passing parameters, can be written. In other words, the
major'reasoﬁ of using hierarchical description is to keep the amount
of detailed information the designér must work at each stage in the
!VLSI design process at a minimurr_l._ '

Once the submodules have been iden\tifiedl, modularity for the
submiodules can then be considered. If the modularity of submodules
is well formed, the interaction with ot'her submodules can be easily
achieved. For instance, the physical interface of each submodule that
indicates name, position, layer type, size and. signal type of external
interconnections must be well defined so that no extra connections
are needed to connect the submodules when’ the cells are placed
together.

The use of hierarchy and modularity simplifies the problem
complexity and enhances the design strategy. The hierarchy, .and
modularity are parts of the hierarchical VLSI design methodology

which is identified in Figure 2.1,
10 .

(Problem Speciﬁca'tiorg
(Logical /Functional Level Simulati@—J
Il

(Cixstom MOS Reaslization of Logicsl Equations)—

&
@chematic Capture of the Equationg _ %
-

(Switch Level Simulation)-
l

(Initial Circuit Simulation}

4 .

(Mask Generation of Module Cells)————
N

(Compection of Mask Layout) A

" (Design Rule Check (DRC))

(Net~List Comparison)—

(Mask Circuit Data Extractic’@

(Complete Circuit Simulation) - A
] ; J; s

(Modify the Mesk Design)

(Hierarchical System Layout & Cell Plecement)

(IC 1/0 Considerations & Placement)

(Complete Mask Layout Veriﬁcatio@——}

' @IF Uut\ﬁ)r Fabrication)

r(Nl

Figure 2.1: Full —custom hiererchicel VLSI design methodology

®

The VLSI design is a continuous trade-off process to achieve

11

prooor “results through a number -of iteration processes as shown in
the Figure 2.1. Different VLSI design tools are used in each design
pAhase to reduce the complexit); of the desigri and assure the designer
of a working product so that a diversity of VLSI design tools can be
vital to the success of a VLSI circuit design project. -

In order to explain the des1gn methodology effectively, a
slmple 4-bit ripple carry adder circuit is used to illustrate the design
procedurcs "and the function of the various available on the VLSI
design workstatlon

In the first step of the design process, the problem
s_pecificatioohs' mus.t. be clearly stated and divided into smaller
problems. This sktep is usually done by a designer. The hierarchy of
VLSI design is employed in this step. For example, when designing a
4-bit combinational adder we have two 4-bit inputs, labeled A and B
rcspcctive\ly, one 4-bit output labeled SUM, and 1-bit output labeled
CARRY. The adder can represented as a black box with two inputs
and tévo ou_tplits, as shown in Figure 2.2, Now we have to simplify the
black box so that the problem specifications can resolved into smaller
problems. Since we are 'designing a 4-bit adder, we can divide the
black box into four smaller black boxes as shown in Figure 2.3. Each
of these subdivisions has three 1-bit inputs and two 1-bit outputs,
The simplified design problem is now how to design a 1-bit adder.

HOnce the problem has been clearly identified, an initial logical
or functional level simulator is built to simulate whether the initial
desi‘gn concept will meet desién specificatioos. ‘In logical level
simulation, circuit elements are modeled as simple“ Swifo';lés' or gates

connected by wires. The logical level simulator ﬁsually Psim111a°tes the

12 | J

SUM CARRY

4t combinational Adder

A _ B

sum, | sum., o sum,, sum._
1-bit L-bit
0 — Adder

, z Adder

7
.
b

Figure 2.3: The 4-bit adder at sub-block level
. —_

13

)
/

AN
circuit at the device level or at the gate level. In most ‘complex cases,

the IogicaIA simulator is dependent upon the problem .sorthat it is
usually crea&ed by the designer. If the{ results of logical simulation
are not satisfactory the designer may have to make some trade-off
decisions with the prob}e;l{w specifications in order to achieve
adequate fesults. For the simple example of the 4-bit adder, a logidal
level simulation is not neces'sary. A truth table or functional

description of the adder canm be easily obfained and is shown in Table

2.1.

C A B SUM CARRY . .
00 0 0 O "

00 1 1 0

01 0 1 0 ~
01 1 0 1

1 0 0 1 0

1 0 <1 0 1]

1 1 0 0 1

1 1 1 1 1

‘Table 2.1: Truth Table of a 1-bit Adder

In most cases, Boolean equations can be derived from the
results of the logical level simulation. In the _case of the adder
example, the Boolean equations derived from the Table 2.1 are
shown as follows: ~

SUM = ABC + A(BC) + C(AB)' + B(AC)
CARRY = AB + C(A+B)

The next task to be 'pﬁrformed by the designer is a custom
CMOS realization of the logical equations. The CMOS realization is
initially captured in a schematic form which is usually created using
a schematic editor. The schematic form is used to store the major

logical components or MOS transistors and their connectivity. The
14

-

process of creating ‘a schematic is sometimes called schematic

—

capture.

The designer may use the schematic information to ensurc that
theﬂ mask layout to’ be created correctly corresponds to the desired
circuit in the latcr design phases. The designer may schcm‘mc.llly
capture the logical equations at the device or gate level and the MOS
reallzatlon. at the transistor level. In the case of the 4-bit adder, _IIK

gate level and transistor level schematic captures shdwn in Figure N\

M ‘-

2.4 are created by the schematic edltor available on the VLSI dcugn \

workstation. The schematlc editor in the workstation is invokgd by

using the technology use Ioglc command. This editor can driw all

. major logical devices, including gates, flip-flops, user-defined black

box, all types of MOS tzansistor and various metbrs. The conncctivi[y

of the logical components is stored ‘in a circuit netlfst. b
Once the netlist has been captured, switch level [Brya81] and

initial circuit simulations can be performed to ensure the correct

correspondence betweeﬁ the custém MOS realization and simulation

tesults. These simulators mainly use a transistor ds the primitive or

switch element. In the VLSI design workstation, five switch level

simulation interfaces for ESIM, RSIM, RNL, CADAT and MOSSIM-

simulators are supported. These simulators use only the (0, 1, X)

stat.es. For each set of input vectors, the circuit is simulated to

determine a steady-state level at the output nodes.

| On the other hand, the initial circuit level si?nulation [Nage75]

detérmines the analog waveforms at particular nodes without

considering any capacitance or resistance. The circuit clemgfnts are

modelled as transistors- with a number of parameters. The values of
' ‘ 15

W >
¢ .‘} .

e

r

Vdd

S @ | |
v N s
vdd ©F }

vad -

(b)

. Figure 2.4: {a)Gate-level Schematic Capture of 1-bit Adder _
(b)Transistor-level Schematic Capture of 1-bit Adder

the parameters are cietermined by the technology process and the
geometrical properties of the tramsistors. The initial- circuit icvcl
' simulation combines the information from the netlist and the user- -
defined device model to provide more detail ﬁbout the waveforms at
the nods:s:’. One of the most widely used circuit level simulators in
'_‘VLiI design is SPICE and this package is ,alsoéb"_upportcd on the VLSI
)%gn workstation. The SPICE deck -infoimation for the circuit can be
extracted from “'t‘he ‘circuit schematic which wa; created “in the
" previous design phase.,_'If- the simulation. results turn out to -be
unsatisfactory, the designer rr;ay have to go.back and'mpdify the
MOS realization. This. pfoccss,is_ repeate\d until satisfied results ure
obtained. O)

.For the example of the adder, a SPICE input file is creagd by
the SPICE\[Deck Extractor, and a circuit simulation has becnj
p\}erformed'énd the simulation results are shown in Appendix [II. Thc\’
updated CMOS transistor “model information- is also fautomuticuilly.
included in the input file. If a ﬁower source, groundl node, input
signals and‘ output signals are completely specified in the schematic
capture, a complete "SPICE input file-can be created directly without
'any human interaction. Two programs, GSPICE and GRAPI—IIC,' have,
been written to enhance the SPICE graphic capabilities. These two -
_pfograms can significantly speed up the whole simulation process. A
detailed description on. how to use the prggrams together with a
program listing of GRAPHIC are included in Appendix IV.

Once the initial simulation results are within a s?itisl'facto,ry
range the mask layout generation of each module cell can be
undertaken. The modularity of the modules shall be considered here

17

-)

in order to simp'lify‘t'he hierarchical system layout in a later design
phase. For example, the I:i?wcr (VDD) line may be located at the top
of the module cell and the ground (VSS) line at the botton} of the
module. The inputs may come fro-m the left side of the module and
the outputs from the right side of the module. If the layout of the -
circuit mask is done in this fashion there is no néed to create extra
connection wires .between modules when the module is replicated to
form a chain.

There are two types of layout approaches in manually creating
a mask —lﬂ%)ut namg:ly icon type and polygon type. For the icon type

layout, th¢ designer is concerned with the mask layout mostly at the

" transistor and. transistor interconnection level since a MOS transistor

L

is a primitive~element and has its own symbolic representation or
icon. In contrast, for a polygon type layout system the designer has
to create every single f)olygon. Hence, the use of icon oriented layout
is a much faster approach in, creatmg a mask layout. The connectivity

of a mask layout created by an icon layout method is also easier to

be established and mamtamed. However, one of the major

advantages of using a polygon based layout method is that a VLSI

" circuit can be realized in a minimum area of silicon.

-

Both mask layout types are supported on the workstation. The
native mask layout method on the workstatlon is the icon oriented
one because connectivity information can be extracted quickly and

this is important to the other CAD tools, of the workstation. The

'polygon type layout, cap.@g%@ is also enhanced: with the -aid of

powerful macro functions that are descrlbed in Appendix V. For the

18

t—\-—_-_’ > 5
adder example a mask layout for a 1-bit adder is shown in Figure

2.5. The mask represents 28‘ transistors and their interconnections.

Once the initial mask layout has been created, the designer
may optimize the size of the mask by using a compactor. The
~ function of a compactor is to remove ﬁnne‘cessarﬂ; space from a
design by moving every layer of the mask to its closest permissiblc
distance. A two-dimensional compactor is available on the
workstation used to compact a mask layout in both the horizontal
and vertical directions. -‘ -

The compatted mask layout of a design must then be chcckcdj
thoroughly to guarantee that there are no design-rule violations. This
process is usually called the Design Rule Check (DRC) and is generally
concerned with the physical placement of the layout. The DRC works
in accordance with a number of layout restrictions which are in turn
dependent on the fabrication process. The layout restrictions ensurc
that the manufactured circuit will connect as desired with no short-
circuits or open paths. On the workstation, the DRC can t?c operated in
an incremental and batch mode. If the DRC is operated incrementally,
it checks each change as it is made t‘6 the circuit mask. If any design-
rule violations are found, the DRC will point out exactly where and
what the violations are. All the design-rule errors must be corrected
completely before going on to the next design step.

After all design rule violations have been corrected, a net I‘ist
comparison can be 'performed to check the correctness of the
interconnection of the- mask layout. In contrast to the DRC that is
usually concerned with the geometrical design rules the -net list

kS

comparison eXamines the -electrical connection rules set out by the
' 19

A\

— - —
— —d 'g — —
L= 1IN A4 LKL il g
— - X — =
MRS = N S
] | i [TICIRH 4
T — WAL
- M
Al -
\
B]
r—g— h — t T =
s, s | et ! T —
IS RS SR R ot =n Rl =S =
R TR iz it i
= Bl 21| =in § (W13 i I = 1M 0 = W1 =
—‘_'— o = Jg)1 re - I_—
| = B =H-HE
Sis [s Bi Nimfz=z
= LIS X I
] ﬁ‘\ et —— (11 = e
|__ FA VSS —

\
Figure 2.5: Mask layout of the 1-bit adder

4

20

k)

designer. For the purpose of comparison, a circuit network must be
derived from the compacted mask layout by a node extractor. In
most cases, it is beneficial to know whether the circuit network is the
desired network. Although simulation and other analysis can tell
much about circuit corrécmess, only the designer knows the truc
topology, and hence would benefit from knowing whether the
derived network is the same.

The mask layout is usually "done in a way to correspond to the
schematic description of the desired circuit. Since the mask layout is
usually done manually an error in the interconnection of \Tﬁe mask
circuit is unavoidable. It is much easier to understand and check the
schematic network. Generally, the schematic- network has known and
correct topology while the network derived from the IC layout is less
certain. The goal is; therefore, to compare these networks by
associating the individual componeﬁts aﬁd connections, If all of the
‘parts associate the networks aré the same, however, if there arc
unassociated parts this indicat):s how_ the networks differ. The
Electric network software monitors all database activities and
updates the connectivity information automatically. This software
also provides connectivity information to the design-rule checker
and various circuit simulators. In addition to maintaining correct
network information, this network tool is also able to compare the
schematic network and the mask level network.

Although the designer can determine that the mask level
network is the desired circuit with the aid of DRC and netlist
comparisons the performance of the mask circuit, such as, speed and

. power dissipation is not known yet. Therefore, a full analog

21 .

s—i-mulatiop must be performed. The transistof connectivity with all
parasific capacitances and Tesistances are extracted'-‘ from the mask
layout by a circuit extractor that is similar to the one Tused in
capturing ar netlist from a schematic description. In the workstation,
the SPICE%Deck Extractor can extract all the transistors and ﬂrei_r
.connectivity with associated porasitic components and convert the
extracted information into a SPICE input format file wlriqh can “be
read into the GSPICE program. |

A complete analog simulation of the module cell at the mask
level 1s then performed to ‘provide fine-grain detail about the
waveforms at nodes. The SPICE program is‘the best simulator
available "to perform the detail simulation. Generally, an analog
simulator such as SPICE is used to check the performance and the
critical path of a design. In the workstation, another circuit simulator,
Relax2 [LeRu82], is also provided. ‘It does not generate the simulation
results as accurate as SPICE does, but it takes much less time to
compute. The -Relax2 package in the workstation ser;/es as an
alternative simulator for to the designer. The Relax2 simulator is
based on the Waveform Relaxation method [LeRu82] and is an
iterative method for analyzing nonlinear circuit systems in the time
domain. The method, at each iteration, decomposes the system into
several' subsystems. Each of the subsystems is then analyzed for the
entire given time interval. One of ‘the limitations of ‘Relax2 is that it
cannot efficiently simulate a circuit with feedback. The simulation
results generated by SPICE and Relax2 can be graphically displayed
in the workstation by using a plotting program called PLOT. The

PLOT program offers a number of options for users to select, such as,
' 22

r

multiple windows, window size and plottin‘f':r_arige.. ‘A discussion on
the operation of the program and the program listing are included in
Appendix VI. Other programs fdf hardcopy devices are also .
discussed in this appendix. ‘ '

If the simulated performance does’ not meet the design
requirements,” the de‘signer\may have to optimize the mask layout
further. : For ;—xample, the designer may modify the size of . the
transistors along the critical path to increase the throughput rate.

The design procedures, as mentioned above, are repeated for
each submodule circuit. After all submodule cells have been corréclly
created and optimized the designer can use the mask editor 1o place
the submodule cells together to form the complete circuit. In the
workstation, the cell placemg¢nt can be effectivc]ay handled because
the connectivity between module cells is always maintained. The
mask layout of the complete the 4-bit adder is shown in Figure 2.6.
The modularity of the module cell can be; examined. The CARﬁY input
is cdming from the left side and the CARRY output is leaving from the
right side. Therefore, when the module cell is replicated to form an
array of four, the CARRY “output of one cell is overlaed with the

CARRY input of next module cell so that no -extra connections are

needed. o -

A hierarchical verification for the complete mask circuit may
be performed to ensure that no geometrical design rules or electrical
design rules are violated. The néxt design step deals with input and
output (I/JO) considerations. For‘example, how many power pads and
ground pads are needed. These I/O pads are usually stored in a

standard cell library and the designer can take them from the library
3
23

J
.
LI
i _ [}
- ?_i |IE ! |00 | H
imas B) I ' [T
T | (f :~ i:j H ::: ::_ L _':—'
i T (e
| || L 5 tel
1 L i)
:=¥ 1”” it I _"r[l T E:
: | e
Eias:

Figure 2.6:Complete mask layout of ripple carry adder

24

af'tel;> the complete system layout has been completed. When all the
mask modules and I/O pads are placed at their proper locations a
final mask layout verificatioq, usually a D._RC check, can be performed.
The last design step is to convert the complete mask 's internal
representation into a data format that is suppogtgd by the silicon
foundry. For example, the Canadian Microelectronics Corporation
(CMC) supports Caltech Intermediate Format ((CIF) as a mask
representation. In the workstation, a data file translator program is
used to translate between the internal data format file and CIF file.
The translator programs called ECIFIN/DCIFIN are explained in morc
‘de{agil in Appendix VII and the source codes are also included. Since
, GMC has some restrictions on the CIF file, the internal data fi‘lc has to
be carefully converted into a proper CIF file. The translated CIF file
can also be read directly and understood by other VLS! tools
available in the VLSI Research Laboratofy; S
To summarize thé hierarchical design methodology and the- CAD
tools available in the design workstation to assist the designer in
various design phases, a diagram representing the relationship
between the design steps and the VLSI design workS§tation is shown
in Figure 2.7. As illustrated in this diagram, various CAD tools are
provided to simplify the design tasks. For instance, a solid line
linking thf; DRC desig‘n step and the work’station meaﬁs that a design-
rule checker (DRC) is available to check the geometric for design rule
violation. As a whole, all the VLSI CAD tools implemented ?)n the
workstation form a fully interactive and functional VLSI design
workstation tailored f;)r _ the full-custom hierarchical design

re

methodology.
25

£y

1. Problem
specification.

5 Logic 1 : - 17. CIF out for
) pglc e_ve fabrication.
- simulation. .

3. MOS realization of
logical equations.

16. Complete layout
verification.

[4. Schematic capture

of the equations. 15.1C I/0
: e consideration
A : & placement.

UNIX BASED

f. Switch Ievei} ’ PR hical
simulation.) —-—T |+ hierarchica
VLSIDESIGN system layout
6. Initial circuit]___A\ WORKSTATION _2nd placement.
simulation. . -
- T [13. Modify the
design & repeat
7. Mask generation of
basic cells.
12. Complete circuit
simulation.
[8. Compaction of the 11. Mask circuit data
mask layout. : extraction.
9. Design rule check (DRC) : 10. Net list
8 mOd]fg the maSk 8s Comnarison.
hecessary.

Figure 2.7: Relationship bewteen the Metho~ Jlogy and the Workstation -

26

~

In order fo illustrate the capability of the workstation in more
detail two combinﬁtional circuit designs have been carried out. The
circuit designs include a four-by-four shift register and a
transmission gate adder. The mask layout of the shift register was
completed in less than two days. Four days were spent fof’ the
transmisgion gate adder. These designs also follow the full-custom
- hierarchical design method. All’ circﬁits_ have been divided into
smaller circuits. -' |

° The shift register is based upon a simple latch or D flip-flop
circuit. This latrchx\\r?quires two non-overlaing clock signals and their
complements. The operation of the latch is relatively simple. Hence, it
will not be discussed here but rather interested readers are referred
to [WeEsSS]. The four—by-i;our shift register is formed by repliciting
the latch two—dimension\ally. ‘The schematic diagram, simulation
results, and mask layouts are shown in Appendix IIl. The sizes of the
D flip-flop and the shift register are 99.6x70.8 micron? and
394.8x286.8 micronZ, respectively. A 8-by-8 or 16-by-16 shifl
register can also be created in this way.

As described previously in this chapter, a 4-bit ripple carry
addef was designed. Another adder based on a different approach is
given as. another design exarhple. This new adder uses the exclusive-"
or (XOR) gate. The truth table of a XOR gate is tabulated in Table 2.2.

The schematic for the XOR circuit is shown in Figure 2.8.

<

27

Poweg

AxorB

.,|”

Figure 2.8: Schematic diagram for transmisson gate XOR circuit

A B AxorB

0 0 0
01 1
1 0 1
11 0

H

Table 2.2: Truth table of an XOR gate
28

The operation of this circuit is.explained as follows:

1 When signal A is logically low, A'ViS' high. The transmission gate is
thus closed and tranéis’tor pair 1 and 2 is disabled. The output is
therefore B. ‘

2 When signal A 1‘§ logically high, A’ is low. Transistor .puir 1 and 2
thus act as an inverter and tﬁe transmission gate is now open. The
%’?Jtput is therefore B'.

With this configuration, a six-transistor XOR gate is formed. iBy
~using four transmission gates, four inverters, and tWo XOR gates, a |-
bit transmission gate adder can be constructed as dcsc}ibcd in
[WeEs85]. The .-resulting adder has 24 transistors, the Yame as the
ripple carry adder. The new adder offers the advantage of having
equal SUM and CARRY delay times. ,In contrast to the ripple- carry
adder where the SUM and CARRY/ sugnals are not inverted. The
complete schematic, simulation results, and mask layout of a 1-bit
transmission gate adder are Shb’\{;l in Appéndix III. The simulation
results indic‘ata that the performance of the traﬁsmission gate adder
is better than the ripple carry adder. A 4-bit adder is again created
by replicating the 1-bit adder to form a linear array of foxir. The
mask layout of the 4-bit adder is also shown in Appendix IIl. The
siiq of the 1-bit adder and the 4-bit adder are 159x153.6 micron?
andﬂ 581.85x153.6 micron2, respectively.. This transmission gate
adder can also be used in constructing a parallel multiplier.

B. The Role of the Silicon Compiler

As illustrated in the previous section, the’ mask la out of all the

circuit designs is created manually. Although the mask layout editor -

available in the workstation is easy to use, it still takes several days

] 29 | / A

Y
or weéks to complete a mask layout. One of the ymost powerful CAD
tools used to produce a desired mask layout representation directly
from the behavioral descrigtion of a circuit is a silicon compiler. The
- meaning of the term "silicon compiler” has changed over the years as
advances in CAD tools have been made. Initially it impIied'the
concept of specifyiﬁg' some extra switch.es to a normal programming
language compiler so ,for example, it would translate a FORTRAN
program into the lowest level mask layout description, rather than
into object code. Soon, however, this concept was limited to 'the use of
regular methods for convertmg logic descrlptlons into” a physical
mask layout, such as, those discussed in the last section.

Today's. silicon co;ﬁpiler is generally defined as a highly
intelligent CAD tool that translates a behavioral description of a
;:ircuit design directly into the lowest level description or physical
mask layout. Modern silicon compilers still use many of the same

steps as do traditional language compilers. Generally, a front-end

parser ea@ the input description and converts it to a structural’
represe:l{ti/on, such as, the IC floor-plan. ‘Thc back-end then.
produces the mask layout in two phases. First, a set of pre-defincd
basic module cells is selected from a cell library. Second, an auto-
router is invoked to make the necessary connections between the
selected module cells\ in order to form the desired circuit.

Most contemporary silicon compilers, however, are " specialized
to i)roduée orie type of design. For example, the FIRST silicon
compiler, [DeMu84], developed at the University of Ebinburgh, used -

only bit-serial architectures arnd was designed for signal processing

alications. In highly specialized silicon compilers as in the case of the
' 30

-

o;e described in the next ch‘apt-er,“ the input lan_guage can be a very
high level one, ‘allowing nonprogrammers to specify chips for their
own particular needs. Therefore, a silicon compiler has the potcnti:}l\)
to replace all the design steps associated with the full-custom MOS

realization of -I'E)gical equations to industrial fabrication specifications.

a4

~a rapid manner.

{1

CHAPTER THREE

A Specialized Silicon Compiler

As was stated in the Introduction, besides creating a fully
functional VLSI design workstation, it was desirable to extend the
éapalﬁilitires. of the workst‘ati'on by developing a silicon compiler for a
special class of high speed digital signal processing (DSP) applications.

There are several approaches to the design of a VLSI circuit.

One may employ a full-custom design effort, such as the one

described in the previous chapter, where no existing standard cell

libraries are used. In this case the design effort is considerable, but

there is an opportunity to create an optimum architecture. Another

~approach is to simplify a VLSI de*sign. by using standard cells and

gate-arrays reduce the problem to one of cell selection and
interconnectic‘)n. needs. Alternately, a silicon compiler can be used
when the designer does not wish to consider the mény process
dependent steps associated withJVLSI design but instead wishes to
concentrate on a higher level description of the circuit. As mentioned-
in Chapter Two, most silicon compilers are designed For those™ types
of applications that use a fixed floor plan and a set of hand-optimized
étaﬂ!dard éells, s‘uc'h as, adders, merrfory cells and multipliers. The
major reason for developing the Memory Oriented Silicon Compiler |
(M O.SC), described in this chapter; is to provide-a tool that allows an
IC designer to create RNS orienté'd realizatibns of DSP architectures in

A. General Survey of Silicon Compilers

32

Since the Signals and Systems Group at the University of
Windsor 1s interesting in digital signal processing applications, a
survey of silicon compilers designed for DSP applications was carried
out in order to determine state-of-the-art silicon compilition
technology and to capture the techniques used in those compilcrs for

constructing the MOSC compiler. Many silicon compilers have: been

proposed and built during the past decade. A general discussion will

highlight three such CAD tools. -

1. FIRST: developed at the Umversnx of Edmburgh in 1982,

2. LAGER: dcvcloped at the Umverqlty of Callfornm in 1986,

and -

3. BSSC: develoﬁcd at the GI(EH(;orporate R&D Centre in 1987;
These CAD tools are chosen because of their focus on digital signai

processing applications as opposed. to general circuit design.

1
1. FIRST

FIRST (Fast Implementation of Real-Time Transforms

[D?MR84]) is generally a bit-serial assembly tool [Deny82]. The input
to this compiler is a ‘structural de'scription of a circuit, where cach
bit-serial opefator and its imerconnections must be Js’;pccifi‘cully
. given. FIRST users have to take care to specify the exact connecllons
between all basic cells. FIRST also requires users to determmc thc
details of synchronization and timing throughout the complete
circuitp and to insert d;fay cells where necessary in the circuit. This
. task can be quite tedious and difficult to accomplish, especially when
feedback mechanisms are involved. o

This compiler first finds the corresponding cells, and then

performs the placement of each cell and routes its signals. The floor

) 33

L i

'plan of circuits generated by this compiler is always fix;:;i, so that_tﬂe
layout scheme may not work efficiently for large circuits, since cells
‘are laid out in two horizontal rows only. The FIRST compiler also
provides an interface to ,a functional simulator that can be used to
generate test vectors‘;/The first version of FIRST was built based r0r1L
5-micron nMOS. tef:hnology. As'described_in [DeMR84], 2.5-micron
CMOS ‘téchnolggy is currently being investigated for the next version
of the FIRST silicon compiler.)

2. LAGER _

LAGER [RaPB85] was developed at Berkr%laey and is essentially a
datapath compiler with a pre-defined placement ~of the major
components. In other words, circuits generated by LAGER are
constructed in a fixed floor \blan. The . basic components of this
datapath cdmpiler _are several registers, v_ariablé-widfh shift
registers, a variable-width AL‘U, RAM, ROM and input/output pads.
Each circuit generated by LAGER contains the same basic elements,
but the sp;cified wordlength will cause the width of the data buses
and the number of bit-slices in the ALU and the shift registers to
vary.

The input to this compiler is very much like an assembly
language program. Data-code stored ih the ROM cells to control the
datapath is generated from .an assembly language-like input file.
Therefore, a LAGER user must write out detailed code for each non-
primitive operation, ‘and ' the code must be specific to a given
wordlength. The LAGER c;;m\k}r is particularly not suitable in some
applications involving the serial nature of communication between

‘the major components.

34 ' .

3. BSSC

BSSC stands for Bit-Serial Silicon Compiler {YJHN87] and is
again based upon bit-serial architecture {Denytﬁ] as the FIRST
compiler was. Basically, BSSC is a two-pass co"m/pil r> A "C" language
type input file is first read into a behavioral-to-structural translator,
and then a list, of all the necegsary cell instances and their
interconnections are produced. Inei\\lger words, a net-list which
describes the interconnections of all necessary circuit components is
generated. A gate level simulation can also be performed by a low-
level simulator. A layout generation system is then invokeéd to place
all the instantianted cells on the chip and route their
interconnections.

The structure of all basic cells used in BSSC is well defined. In
each cell, every input is 1-bit wide. The power bus and the clock
signals are placed along the top of a cell. The ground bus and the
complemented clock signals -appear along the bottom of the cell. The
port locations, .for connection purpose, are standardized for ‘all cells.
All basic; cells for arithmetic operators, rclationwerators and
logical operators are laid out manually based on a 1'.25-micron two-
level metal CMQOS pro‘ccss.'One interesting feature of BSSC is- that
interfaces are provided to various verification tools, such as, a 'd;sign
rule checker and a connectivity checker.

As mentioned above, all of these compilers generate circuits in
a fixed floor plan, and use hand-crafted standard cells. The MOSC

silicon compiler also follows this trend. However, the MOSC compiler

is not ‘a‘ complete circuit mask layout generator but instead it allows

35

circuit designers to generate basic RNS arithmetic operators in a~
rapid and cfficiemanner.]
B. Residue. Number System and RNS/\Agithmetic Operations

The MOSC compiler has been de\;eloped based upon the
- concepts of Residue Number System (RNS) [Garn59] and capitalizes
on the extensive research conducted by members of the Signals and
Systems ‘Group. Before delving into the details of this specialized
silicon compiler, let us.look at the residue number system. The
mathematical advantages and disadvantages of RNS have been
known for decades. This mathematically mature topic, however, has
not enjoyed the popularity of the weighted magnitude nﬁmbering
systems, such as, thé binary number system. Therefore, .a review of
RNS will be presented.

Let (mj, mp,..., my) be a Set of relatively prime integers
(moduli}, ie, no common factor, and let X be an integer in the range of

[0,M-1] which is the dynamic range provided by the moduli.
L

where M= T (m) | (1)

i=1

Then by a simple operation, there éxists integers k;, x; such that

X = k*m; + x; for 1 =1, 2,....,L (2)
The quantity x; is called the ith residue of X, and is usually denoted
as

x; = X mod my - | (3)
For example, we have a number, X =‘1462, and a set of moduli (32,
31, 29, 27) is selected. The dynamic range is hence equal to
M = 32%31*29*27 = 776736
M = 219.57

36

It requires almost 20 bits to represent the same number in the
binary system. Then, _

xy = 1462 mod 32 = 22

Xy = 1462 mod 31 = 5

x3 = 1462 mod 29 = 12

X4 = 1462 mod 27 = 4

Hence, K= (22,5, 12 4) " |

Obviously X and (M + X) have the same residue representation,
Only if X is within the dynamic range [0,." M-1], can X then be
uniquely determined by the L-tuple (x, X9, ..., xL.). In this case,
denoted as |

X =(xy, XZ’I----;KL)

Inversion of a residue L-tuple can be performed through the

use of the so-called Chinese Remainder Theorem (CRT) [Garn59].
Consider the residue. number system with moduli (mj, m,, .., mp)
wheI:e the corresponding digits are labeled (xi, x5, ..., x.). The
following equations define the conversion process.

a A (M/mp) + a,Ap(M/my) + ..t ag A (M/m;) = X mod M (4)
where) o |

- A{M/m,;) = 1 mod m, , (5)

For instance, a set' of -moduli (32, 31, 29, 27} is chosen, and the
residue numbers are (22, 5; 12, 4). ' |
Now, m;= 32, my="31, my= 29, m,= 27

M = 32%31*29%27

M = 776736

and 24273 A;= 1 mod 32
T 17A=1mod32==>A,=17

37

25056 A, = 1 mod 31
8 Ay =1 mod 31 ==> A, = 4
26784 A; = 1 mod 29

17 Az =1 mod 29 ==> Ag = 12
28768 A, = 1 mod 27
13 Ay = 1 mod 27 ==> A, = 25

and X1 =22,Xp)=5,%x3=12,x4 =4

Then, ' 3
24273*17*22 + 25056*4*5 + 26784%12*12 + 28768%25%4=16312918
and 16312918 = X mod 776736 . "

Hc\ncc, X = 1462

is what was expected.

Let X, Y be within the dynamic ‘range with -respect_to a set of

moduli m;. :)
X=Xy, gy e X)

and Y =(¥1 Y20 -0 VL)

If 0<=XY<M, . ,

then | Z=X0Y =(z),2, ... 71) | (6)

whére z; = (x; 0 y;) mod mg,_ fori=1,2,.,L

and o denotes the operation of modular addition, subtraction

or multiplication.

Let us now -look at examples. gf RNS addition and multiplication
by considﬂering the numbers:' (32, 31 29, 27) as a set of moduli.
Suppose X =800 and Y = 662 |
then, for RNS addition, '

\Z=X+Y ’

Ll .

38

800 = (0, 25,17, 17)
+ 662 = (22, 11, 24, 14) |
1462 (22, 36, 41, 31) | (2)

and Z=(22, 5,12, 4) ' (b)

where the result in line (b) comes from the .remainder of the result
in line (z) with respect to the corresponding moduli.

For RN5 multiplication, such as,
Z=X*Y

800 = (0, 25, 17, 17)
* 662 = (22, 11, 24, 14)
529600 (0, 275, 408, 238) L
Z=(0, 27, 2, 22) .

it is clear that the suboperation with each modulus is independent of
the other. No carry information needs to be passed between the
moduli. The absence of any carry requiremént‘s means that the
concept of the-most and least significant digits is not valid. Thus,
parallel architectures can be designed to process all modular partial
sums and products concurrently. This parallelism can provide the
basis for a- speed-up of arithmetic opérations, as illustrated iln _
- [JeLe77].

| RNS. arithmetic is exact and therefore free of roundoff error.
However, it is thijs, exactness that is often considered as a RNS
limitation. The disadvantage of the RNS system is that division, sign
detection, and magnitude comparison are inherently difficult
operations. Even with these iimitations, the :Jsefulness of RNS in
digital signai processing applications cannot be denied. For ins‘g;ancc,

in finite impulse responmse (FIR) digital filter design, the pzirai«l‘cl

39

'realization of RNS addition and multiplication operations results in
high speed FIR filters. "

‘As described above, the RNS operations are divided into three’
major steps: RNS conversion, ‘RNS operations ano RNS decoding as
illustrated in Figure 3.1.

When interfacing with the binary number system the required
RNS co’nversion can be cartied out by a binary-to-residue conversion
cell, end the required RNS decoding by a residue-to-binary
conversion cell. A number 6f conversion algorithms [TaRa81] have
been-developed to perform the conversion process efficiently. Here
we shall - concentrate on. an effective hardware 1mplementat10n of

~RNS arithmetic operators. These arithmetic operators may be
_ required in a CRT-based decoder [RaTa86].
C. Memory Oriented Structure for RNS Operations
- A common implementation approach used in constructing RNS
modular arithmetic operators is based on the table look-uo method,
[BuJMS?]., [RaTa86], [BaCo82] and [Tayl82]. High-speed RNS arithmetic’
operations can be achieved not only because of the parallel nature of
- RNS, but also since. a high-speed residue memory structure is used
inten'sitfely to .' store information for the RNS functions. The residue
structure is basically a Read-Only-Memory (ROM) cell A ROM cell can
be constructed out of a decoder, a ROM table, and a selector as shown
/in Figure 3,2. The ROM cell in Figure 3.2 has a n-bit input and a m-bit
output. " . '

For example, a res1due multlpher for modulo-27 requires two

5- blt inputs (multiplicand and multiplier) and produces a 5-bit’

output. In this case, n=10 and m=5. The complete multiplication table

*

40

- X1 I| }
' RNS &
X2 "i Suboperation
X D RNS |
Conversion N
- RNS
: Suboperation
" -
| XL , : vA
z2
' Y/
: RNS)
. Decoder
Y1 !
Y2 .o
B RNS . —)
Conversion . 7L
) L.
| RNS Suboperation
Modulus L
~ . _’;
/7 YL <«
-~ .
" Figure 3.1: Major Components in Closed RNS
s

41

€
2d
Decoder H i ROM Array’
T :
m2
N d ‘
N
Selector
m
Output

~

Figure 3.2: A typical ROM structure

/ /

42

£

can be stored in 4 single (1024 or 210 X 5)-bit ROM. Since only 729 of
the possible 1024 input combinations are valid, the rest of mcmgr{'
‘cells are not used. On the other hand, the modular multipliér can be
implemented in seyera] smaller ROM cells. As described in the
previous section, the RNS is a special integer system. Si;;cc the
multiplication and -addition of integers. does not require carry
infdrmation, the (_)perations in each RNS modulus can be performed
independently. A curious feature of the RNS is Lthat instead of using a
single long wordlength, which pfovidcs ‘%large ciynz\imic range,
several short wordlength residue structures are parallelled to obtain
a sufficient dynamic range while maintai-rnin‘g a fast throughput data
flow. Heﬁce, most RNS operations can be formed by dividing the
whole operation into a number of suboperations. Each suboperation
is realized by”l' cascading a number of the memlory oriented cells
together to form an array. Each of memory cells has pre-defined
inemory content. A major ad@antage in using my cell arrays to
realize the RNS operators is the ease of pipelining for hlgh speed
‘throughput rate [BaJM87]

A memory oru_anted architecture which, is highly pipelined has"
been proposed by [TaJM87]-.. This architecture‘ basically consists of -a
"~ ROM cell, latches and switching circuitry as shown in Figure 3.3. As
illustrated in [TaJM87], ‘this memory oriented structure is/

appropriated for RNS operations stated in equation’ (6). As shown in

Figure 3.3, if A; is equal to 1, the output would be equal to the

content of a memory. cell which is uniquely determined by the input‘

B. On the other hand, if A; is equal/to 0, the output is the same as the
{

input B because the selection variable A; forces the input to bypass

43

/\\

—

the ROM cell. Pipelining is achieved by including a number of latches
in the structure and switching the signal lines of input A. Obviously,

this structure can only communicate with its closest neighbour. Based

on its highly pipelined structure and- memory content selection

mechanism, this memory orientedy structure is '9>hosen as the most
fundamental building block used in the MOSC{[silicon compiler for
constructing various RNS operators. If sF'iiEr'iii building.blocks’ are
connected, a linear systolic array or ROM énay is formed.
D. Hardware Realization of RNS Operators

Once a memory oriented stﬁ,tcture has been identified to be the
vilding block for Rl}TS operatio;ls:‘ we then wish to examine the
structure’ of modular adder in detail. For example, if we wish to use

modulo-m to add two 5-bit numbers, X and Y, we use equation (6).

Z=XoY
Z=(X+Y)mod m SR T
Z=02%,+23Y;+22Y, + 21Y3:’i 20Y, + X) mod m (7)

Now equation (7) can be further divided into five simpler steps:
sumy=(29Y5 + X Ymodm
sum; = (21Y + sumy) mod m
sums, = (22Y2 + su;nl') mod m T
sumz = (23Y;, + sufnz) mod m
Z=(2%,4 + sum;.) mod m
The output of each suboperation also has a 5-bit width and is
thé input of next suboperation, except for the last Sstep. Obv;ously,
five basic cells" are ‘required to construct a 5-bit modular adder and
they are' cascaded to form a l.inear-array, as shown in Figure 3.4. Each

cell stores pre-defined memory content.

44

o
+
AV
-
e
-
AP

"YYIFXYI¥XIYYrY Frr

Y by 3 N, Y
Ly) N

Output
:\.}\\\\“mﬂm\\\\‘-‘-\\i
3 : ~A 4
% o
Latch, = A
2 : N
2
SLEVENFRITTERY.
A =20
1 ¥
o g—
;; -
7
W§ Output

...................

Z=(X+Y)med m

_Figure 3.4: Modular 5-bit RNSadder

.

45

'

|

Tt e

N =t

The memory 'conte'l’n"' of each cell is equal to the input (X, sum
to sﬁm3) pllljsl the appropriate power‘of two and the input Y acts like
a memory content selector. For a modulo-31 adder, the memory
- content of the five c:alls is shown in Table 3.1. If we wish to add two
‘numbers: 11 and 25, We have

P celll) - celll cell2 cell3 celld QP

0-->1 0--> 2 0-> 4 0--> 8 0-->16
1--> 2. 1--> 3 1-> 5 1-> 9 1-->17
2--> 3 2-> 47 Z--> 6 2-->10 2-->18
3->4 . 3->5 > 7 3-->11 3-->19
4--> 5 4;> 6 4--> 8 4-->12 = 4-->20
5--> 6 5-> 7 5--> 9 5-->13 5-->21
T 6--> 7 6--> 8 6-->10 6-->14 6-->22
7--> 8 7--> 9 7-->11 7-->15 7-->23
8-> 9 8-->10 8-->12 8-->16 8-->24

9-->10 9-->11 9-->13 9-->17 91525
10-->11 10-->12 10-->14 - 10-->18 10-->26
I-> 11-->12 . 11-->13 11-->15 * 11-->19 11-->27
12-->13 12-->14 112-->16 2->12-->20 12-->28 ‘(
13-->14 13:->15 13-->17 13-->21 . 13-->29
14-->15 14-->16 14-->18 14-->22 14-:>30
15-5>16 15-->17 15-->19 15-->23 15--> 0
- 16-->17 . '16-->18" 16-->20 16-->24 16--> 1
17-->18 17-->19 17-->21 17-->25 17--> 2
18-->19 18-->20 18-->22 18-->26, 18->'3
S 19-->20 0 19-->21 19-->23 19-->27 19-> 4
20-->21 20-->22 20-->24 20-->28 3->20--> 5 >>>>>>5%
21-->22 21-->23 21-->25 21-->29 ~21--> 6
22-->23 22-->24 22-->26 22-->30 22--> 7

23-->24 23-->25 23-->27 23-> 0 23-> 8

- . 24-->25 24-->26 24-->28 24--> 1 24-> 9
o 25->260 25-->27 0 25-->29 25.> 2 25-->10
C26-->27 26-->28 26-->30 26--> 3 26-->11
27-->28 27-->29 -27->0 , 27->4 27-->12
28-->29 28-->30 28->1 28> 5 28-->13
29-->30 29-> 0 29-> 27 29--> 6 29-->14
30--> 0 30-> 1. 30--> 3 30--> 7 30-->15

S 31->1 31-> 2 31-> 4 31--> 8 31=->16

- Table 3.1: Memory 'contgznt for 5-bit mpfiular addition

: el
s VR S

46

Z=(X+Y)modm
= (11 + 25) mod 31

apd the number 25 can be represented in a 35-bit binary form as

11001. Since the number Y = 25 is the memory content sclector, .~

cellD, cell3 arﬁieff\lé are sel_eéted. As illustrated in the Table 3.1, in
.the first stsap,"fhg number 11 acts as an agldreés to the first memory
cell. The'output of 12 is ti;en used in the second step as an address to
cell3. The output ig 20. Again, the number 20 is the iriput to cell4.
The corresponding output is 5 sé that the final result is 5. Now, if we
_doubIe check Ehe fcsu_lt, we have /\
Z = (&b + 25) mod 31

= (36) mod 31

=5 , .

. As was obtained from the five cascaded memory cells.

Once the cuon~cept of the modular addition using the five

- cascaded memory cells % understood, the same memory cells, with

different memory content, can be used to construct a modular

-

subtractor. RNS subtraction is accomplished using the additive

«inverse of the positive residue representation [Garn59]. The additive

inverse of a residue number, n, is defined by the following equation,
n+n =0 ‘ (8)
For example; if we wish to subtr.act 25 from 11, we have
Z=(X-Y)modm -
~ =(11-25)mod3l
’ \\ = (-14)méd 31 (because (17 + 14) mod 31 = 0)
N =17 o 3 - (%)

-

~

47

The rﬁemory' contents of the five cells used for subtraction are
tabulated in Table 3.2. Usmg the same procedures as in the modular
addmon one would get 17 as is indicated in step 3 shown in Table
3.2. The result is also equal to the one in (9).

1P celll celll cell2. ' cell3 celld O/P

0-->30 0-->29 - 0-->27 0-->23 0-->15
1--> 0 1-->30 1-->28 1-->24 1-->16
2->1 2->0 2-->29 2-->25 3->2-->17 >>>>>17*
3--> 2 3-> 1 3-->30 3-->26 3-->18
4-> 3 4--> 2 4--> 0 4-->27 - 4-->19
54> 4 5--> 3 5-> 1 5-->28 5-->20
6--> 5 6--> 4 6--> 2 6-->29 6-->21
7--> 6 T--> 5 7--> 3 7-->30 7-->22
8-> 7 8--> 6 8-> 4 8-> 0 8-->23
9--> 8 9--> 7 9-> 5 9-> 1 9-->24
10--> 9 10--> 8 10--> 6 2->10-> 2 10-->25
1> 11-->10 11--> 9 11--> 7 11--> 3 11-->26
12-->11 12-->10 12--> 8 12--> 4 12-->27
13-->12 13-->11 13-> 9 13--> 5 13-->28
14-->13 14-->12 14-->10 14--> 6 14-->29
15-->14 15-->13 15-->11 15--> 7 15-->30
16-->15 16-->14 16-->12 16--> 8 16--> 0
17-->16 17-->15 17-->13 17--> 9 17-> 1
18-2>17 18-->16 18-->14 18-->10 18> 2
19-->18 19-->17 19-->15 19-->11 19--> 3
20-->19 20-->18 20-->16 20-->12 20--> 4
21-->20 21-->19 21-->17 21-->13 21--> 5
22-->21 22-->20 22-->18 22-->14 22--> 6
23-->22 23-->21 23-->19 23-->15 23-> 7
24-->23 24-->22 24-->20 24-->16 24-> 8
25-->24 25-->23 25-->21 25-<>17 25--> 9 y:

26-->25 26-->24 26-->22 26-->18° 26-->10
27-->26 27-->25 27-->23 27-->19 - 27-->11
28-->27 28-->26 28-->24 28-->20 28-->12
\ 20-->28 -+ 29-->27 29-->25 29--321 .29-->1%
. 30-->29 30-->28 30-->26 30-->22 30-->14
31--530 31-->29 31-->27 31-->23 31-->15

Table 3.2: Memory content for 5-bit modular subtraction

v
™~

48

With a pre-defined memory contént in the casczi&ed memory
cells, the savings in the number of memory locations is extremely
attractive. If a single regular ROM cell is used to store all possible
outputs of 5-bit modular addition or sﬁbtraction, it would take 210 or
1024 memory locations. However, only 160 merﬁory locations are
needed to perform the same operation in this linear memory array.

Based upon the RNS addition and subtraction operations, we
can construct a modular multiplier. A modulo-m multiplier can be
realized using the Quarter Square Multiplication method [BaJM87al;

Z=(X*Y)mod m

D= (((X+Y)?/4) mod m - ((X-Y)2/4) mod m) mod m (10)
where the quantity (((*)2/4) mod m) is also stored in a lookup
-table. According to the equation (10), one addition, two subtractions

and two quarter square operations are required. A conceptual block
q q p l\ q p

diagram of the modular multiplier is shown in Figure 3.5. The

memory content, C, of a quarter square operator is deterr-nined by

the following equation: .
C = (laddress?/4l) mod m | (11)

The content C fo‘r modulo-31 is shown in Table 3.3. For instance, if -

we wish to use modulo-31 to multiply two residue number; 11 and

25, we have R

Z=(X*Y)mod m .

Z=(11*25) mod 31

Z = (275) mod 31

Z =27 {

Now let us use the quarter square multiplication method.

Z=(11 *25) mod 31

49

o,

W

. 2 :
(Address) &3
4

2 5
2 2 '7‘&
(X+4Y) _ (X-;!) 3 (X*Y)mod m

2
i (Address) £
¢ & 4 >
: o
: -

Figure 3.5: Modular multiplier structure using quarter square method

Then, Z= ((11+25)%2/4 - (11-25)%2/4) mod 31

From the previous addition and; ’subtra[:tion examples, we have
(11 +25) mod 31 =3

and (11 -25) mod 31 = 17 T

0---> 0 11---> 30 22---> 28
1---> 0 12--> 5 23---> 8
2---> 1 © 13> 11 . 24---> 20
3--> 2 - 14---> 18 25---> 1
4--> 4 - 15---> 25 26---> 14 %
5---> 6* 16> 2 27---> 27
 6--> 9 17--> 10* 28---> 10
T--->12 18---> 19 29--> 24
© §--->16 19---> 28 30---> 8
9--->20 20---> 7 31--> 23
10--->25 21---> 17

Table 3.3: Memory content of quarter square opéralor
The numbers 5 and 17 are now the address to the quarter square
opefator and the outputs are 6 and 10 respectively, as shown i;1
Table 3.3. Next the numbers 6 and 10 are used as the inputs to the
modular subtractor as follows:

(6-10) mod 31 =27
Using the same procedures as in the pre;ridus subtraction example,
we would get the result, 27, by using the Table 3.2. Thus the modul;r
multiplier consisting of 17 basic memory cells, as shown in Figure
3.5, has been demonstrated to perform the modular muItiplicat'ion
successfully.) ' o "
E. Implementation of the MOSC Silicon Compiler

The MOSC (memory oriented silicon compiler) is developed
around . the memory oriented structure used to construct the RNS

adders,. RNS subtractors and RNS multipliers. The MOSC silicon

51

compiier is an ,application-;specific computer-aided design (ASCAD)
tool for producing very high speed RNS adders, | subtractors,
multipliers and constant operators in a rapid manner. The constant
operator ‘ nipulates a variable by a constant value. Since ‘the MOSC
is a highY:veI ASCAD tool, an IC designer only needs to specify 1)
RNS operator type, 2) modulo value, and/or 3) a constant. ’In order to -

be useful, the MOSC compiler should reduce costs such. as:

-

1) Design cost: The tool should be easy to use, reducing‘
substantially the human time required to specify the design.

2) Fabrication cost. The tool should produce a circuit whose
function is correct: by construction, whosé major component count is
‘lov:r and whose components are area-efficient .

3) Operation cost: The tool should produce a circuit that is
efficient witli'respect to its powér dissipation and operational speed.

For the-N{OéC ‘compiler the operation cost is basically -
'de.penc-ient of the complexity of the memoi‘y oriented cell. Since the
class of ci’rcuits' the MOSC compiler creates is sufficiently specific and
an effective memory oriefited structure is employeﬁ, these costs can
be largely reduced.

The MOSC based design process basically consists of a design
specification, a cell library and CIF files as shown in Figure 3.6. The
cell library presently, contains only two basic cells that were

I

manually created based on the residue architecture, as described in

the section C.

Cell
Library

Design

joesien 3| CIF Code
|Specifications]]

Figure 3.6: MOSC process structure

@ Let us look at the first cell that was designed by [Bird87[. This

rhemory cell was designed to accommodate a wordlength of five bits
so that the maximum mcl)dulo-number is 2° = 32, A more detailed
structure for the memory cell is shown in Figure 3.7: As illustrated in
Figure 3.7, there are 32X5 memory locatio\ns. for storing the pre-
defined memfc}r\y content. We will not describe the detailed aspects of
_.this memory cell design here but instead refer the reader to [Bird87|
which also provides detailed description of circuit pclffo‘rmancc. The
memory locations are configured as a 8X4 matrix in order to -obtain a
square shape layout. The size of thé cell is 421.2 * 377.4 micron?, The
clock period is 24ns and the power consumption from simulation
result is 3.2 mWatts at 20 MHz. [Bird87] as computed by the SPICE

simulation program. The cell was designed in such a way that all

53

AN

A e S e e e e

Pl

*m\g

‘LQQR.\
.8

=
=

Pl

L R R R A

|

P2

®)
]

e

Li

c2

e

P2

7 Cl
D -
¥
E— Cc2
CSE PRE

32 x b bit
ROM :

R N D N R T R R R R AR AR R s

Figure 3.7: Detall structure of the first memory cell

54

memory locations were left empty. In order to store "1" bit of
information in any particular location, a 9X13 diffusion layer (CF)

‘polygon is placed on top of the location as shown in Figure 3.8.

)

~
5 NN
T N AN ‘ . .
NAAALITAAN AN LAN AN RAN AN A NN 9 X1 3 d |ff usion

1

AR RN
- b S
S AR AN RARANR AN ()I ()r]
AR R AAANA R RN
e

Y
7
]
7]
t
]
7
7]
y
-
]
/]

MRSy
bR AR ARAAR LAY
PARRARRAASRARANLYY
PASSAAAARNARRAAAY
PARRRAR AN R R RNNRAN
A Y
AR LR
ARERRLLLLRLRLRRLY

A BARRAARARRAR RN
A%

~ ap
U RN N |
RAIRRNNNT : polysilicon

N .

hoaN AN
PR RRRRAA YRR RN
AR R R)
B RNV S LAY

metal-diffusion
contact

=N

Figure 3.8: "1" bit transistor '
The other ‘memory cell was designed by [Raja87]. In addition to
to. accomplish the fault

)

detection mechanism built into this memory cell. Hence, there are 7

the 5-bit wordlength, two extra bits are used

bits of information at each address. The 5!h bit represents the parity
of the address and the 61 bit represents the parity of the content.
An even parity scheme is used in the MOSC compiler. The fault
" detection mechanism is based on the fact that the content parity in a
cell is equal to the address parity in the ‘fc_).llowin.g cell [TaIJM87a). The

size of the memory cell is 842.4X867.6 micron?. The memory

55 ¢

£

~

locations are also configured as a 8X4 matrix. The 'r/nemor'y content
occupies an are;\ of 216.6X295.2 micron?. A detailed design
description of the memory cell can be found in [Raja87] so it Will not
be repeated here. In order to store a "0" bit of infor'mation in a
memory location, four polygons (1 diffusion CF, ! metal CM and 2
contact cuts CC) are needed. The mask lz_tybut of the cell has been
improved in such a way that when the cell is replicated to form a
liﬁeur array, the output signal lines of one cell overlap the inpat
_Signal lincs:of the next cell.

~Once the actual memory cells are identified, we can consider
_ the implementation of the MOSC compiler, a flow chart of which is
shown in Figure 3.9. As illustrated in the flow chart, the MOSC
compiler requires a minimum amount of human interaction. Once a
user has - supplied sufficient i_nf'ormation,‘ the MOSC gompiler will
produce a hierarchical CIF.file. The MOSC co‘mpiler produces four
types of RNS operators: adders, subtraétors, multipliers and constant
operators. In some casés, a designer may wish to add (or subtract) a
constant to (or from) a variable. The MOSC compiler, therefore,
includes this capability to allow the user to specify a constant value
to be stored in the memory content. In the user environment, a user
is onlx, required to supply the following information: | |
1) Op't;'rator type: Adder/Subtractor/Multiplier/Constant operator
2) Number of operators.
3) Modulo number of each operator.

4) Constant value..

56

¢ 9

USer

User Interface: .
Adder/Subtractor/Muitiplier/
Constant Operator

Compute ROM
Cell Cont::}l\ts J
el
Generate ROM
Cell Content
Mask Layout-
Fd ©

; . Create ROM ’
i MOSC |} - |\Cells Array

¢ 9

(Optimize the Size
L of the Circuit

Inter-cell Routin

(Generatethe = |
g
(Connections

Hierarchical
\CIF File

(Createa J /

, Invoke "Electric”
)F CAD Environment

pommmesannanen, '
3

Electric
e

e

¢

Figure 3.9: Flow chart of the MOSC silicon compiler

57

P

The, MOSC compiler then computes the memory content fgr
cach memory clell. The cortent is expressed in a binary form. For
example, the, content 10 at address 5 is expressed as 00 01010. The
two bits- "00" present the paritiés of ‘address and content,
respectively. Mask layoﬁt corresponding to the binary data is then_
generated. This mask gerleration iS'deperrdent on the basic memory
cell selected by the MOSC compiler. In .the first memo'ry’ cell, a subcell
is created to represent a 9X13 diffusion layer polygon that is
properly centered. The mask generator repéatedly uses the Call
command, one of the .CIF commands; to duplicate rhe subcell and to
plar:c it at proper locations in the memory cell. In the second
memory cell, since the mask layout of the memory content is not.
orgamzed in a regular structure four polygons must be generated for
each memory location. The mask generator can be easily changed to
adopt to a new memory cell, and a detailed explanation is included in
Appendix VIIL. All program listings of the MOSC silicon compiler. are
also included in this appendix. |

| After all the mask layouts have been generated, the Basic
memory cell is pulled out from the cell hbrary to map on-top of the
mask layout of the memory content, to form a complete RNS memory
oriented cell. Then, a linear memory array is created for the desired
RNS operator. The MOSC compiler will place all cells as close as

possible in order to obtain a minimum chip size. When creating a

frm——
=

number of adders or subtractors with different ‘modulo numbers, the
operdtors are properly flipped, and interconnection wires are created
to connect the operators together. Finally, hlerarchlcal CIF code 1s

generated and stored in a file specified by the user. For example, the |

58

("

.hierarchy of a modulo-32 adder de§'oribed in CIFH code is snown in
Figure 3.10. Five new cells, DATAC 150, DATAC _ 151 DATAC 152,
DATAC 153 and DATAC _ 154 whlch represent the memory content
_are created and mapped with the basic memory cell, NEWM ODZ.
form the complete RNS cells: ROM__FTRI,ROM_FTRE, ROM_FTR3,
ROM_F_‘TR4 and ROM_FTItS. These five RNS cells are cascaded 0 form
the adder. The top hierarchical level .of the desired. circuit is ztlwnys
specified by a cell called CHIP, |

The MOSC compller then invokes the Electrlc CAD facility to
. allow the user to view and modify the compl.ete mask layout of the
generated circuit.: This process is accomplished by ereating a cadre
file in the user's login directory. When Electric starts, it reads
comman\ds from Ihe .cadrc file. Only those commands on lines hthat
be“gi‘n with " the keyword electric will be executed. Therefore, if the
MOS(;_- compiler places proper commands in the .cadrc file and then
invokes. Electric, '\,the Electric j)élekage wall turn off the incrememtal
DRC. and read the specified CIF 'file/“into its internal database. The top
hiéra_rctlical level of the cilrcui.t is then"’displayed _ot] the sereen.

A circuit designer, sitting at the terminal can now overrule the
compiler ard. customize parts of the design. He can also let- the
- compiler generate only the memory content in his custom design.
The de51gner is only required to add I/O pads to complete the design,
K. Software Development Environment,

Most of MOSC® subprograrns were written in the highly-portable
"C" programtning,lan_guage. A program, systolic which produces mask
CIF codes for the second memory structure, was written in the

Berkeley PASCAL language. The purpose of writing, the program in

59

Structure of lib'rary adder.cif

e - T

ROM_FTR4

ROM_FTIRS5

ROM_FTR3

DATAC_150

DATAC._152 /”\

DATAC_154. DATAC_151
"
EWRONK, DRINV~.__ VERTIN DRIVER NEWRS
NEWRSZ - NSUBEO COLDECN

BUSTAP

b S
rarchical structure of an adder
60 : :

A,

S
PASCAL was to gain experience with alternative compiler available
in the Unix operating system. It proved to run slower than the onc
written in "C" and it was also more difficult to program.
:

The MOSC compiler consists of seven main -programs and a
number of command files which call the main programs in order to
perform certain task,_s and to construct the desired RNS arithmetic
operators. The programs were developed in such a way that a user

<an run the programs independently ;and keep the _interme&iiute files

so . that the user can have maximum control of thc%ddta In addition,

.command files were written to speed up the design procesq if the
" user is mterested only in.the end-product, CIF file. For example, if we .

" would like to write a command file for building a RNS multiplier, we

méy produce a file as shown in Figure 3.11. Lines (6-7) in the

.diagram produce an adder; lines (9-10) produce a subtractor: lines

(12-13) produce a quarter square operator; and line (16) finally
merges all files together to form a hierarchical CIF file of -the
multiplier. The rest of the linés are to remove all intermediate files.
If a user would like to update the MOSC compi]er}thcy do not
have to modify 'the whole compiler, but only change one or two
subprograms. For example, if the fault detection mechanism is
incorporated ‘into the first' memory structure, only the gen_mask
program ‘has to be modified in order to take care of the two extra
bits. The .MOSC compiler can also be expanded easily using the
existing prlograms.‘ Eventually, writing a command file is analogous to

writing a structural description of a design using the basgc

‘commands, such as, addition or multiplication.

\) S y

61

B

multiplier.com output-filer\ - B 91
create those adder.dat, subtractor.dat and modnumber.dat %2

for modulo number. . 5 %3
- \;;mdnum :) - %4
create adder bit data . ' %5
gen_data bit0l < adder.dat | a %6
masknew bit01 cl c2 ¢3 ¢4 c5 < cellnum2l %7
create substractor data %8
gen_data bit01 < subtractor.dat %9
masknew bit01 ccl cc2 cc3 ccd cc5 < cellnum26 %10
create addresscontent data %11
multaddss bit01 < modnumber.dat %12
masknew bitOl .cccl < cellnum3l %13
layout the floor planning for the multiplier . %14 .
create hierarchical CIF code %15
petermult $1 cif.cif cl ¢2 ¢3 ¢4 ¢5 cel cc2 cc3 ccd ceS ceel %16
remove the un-wanted files %17
rm cl ¢2 ¢3 ¢4 ¢5 ccl cc2 ce3 ccd cc5 cecl %18
rm bit01 : %19

Figure 3.11: A command file for creating a RNS multiplier

" The MOSC, siliconl compiler is currently running on the
VAXstation II/GPX .undér the Ultrix operating system. The MOSC
compiler can be easily trgmsﬁorted arl_d installed on the/ VAX-VMS
operating system so-that other layout facilities, ie Applicon and
VMS must be created in the Ser's .login file. The foreign commands
are used to allow a user to run a program! and specify the
input/output files on the same VMS. command li e..
G. Design Examples of MOSC

fIn this section, we will illustrate- the features of the MOSC

silicon compiler by using examples. The first*chip produced by this

| . compiler is a 4-adder with moduli (32, 31, 29, 27). The input to the

compiler is shown in Figure 3.12. As illustrated in the’Fi'gure. 3.12, a

kY

of

.« N . |

62 :

Daisy, can be incorporated with the compiler. Forgign commands in-

user invokes the compiler by typing mosc followed by an output file
name that is used to store the CIF file of the 4-ada’er circuit. The user
must prov1de information at each "==>" prompt. The top level of the
mask layout, for this adder is shown in Flgure 3.13. Approximately
1660 mask polygons have been generated by the compiler for this
circruit. The size of the chip is 2142 x 1506.6 niicronz.._ The actuil-
ﬁask Iayout.is shown in Appendix IX.

'% mosc 4adder.cif

**********#********************

* MOSC SILICON COMPILER *

sfeoke e e se e stekeoke she e e e e sheseske ke s ok shesfeske ke she sk st sk ok sk sk
Adder/Multiplier/Constant? (A/M/C)==> a

stk sk s ke s ot ke okl sk ket s ek ke ok skokesk ke ke

kk VLSI adders/subtractors *
shesk sl e ok sk ke ok 3k e she ok 2k o S e o sk st she e e ke 3 sfe e e e e ke sk sbe ofe s ke sk

Each adder/subtractor consists of 5 modulus.
Each module has specified ROM content.

Enter number of adderi==> 4
Enter the modulo number:==>32 -
Adder/subtractor? (A/S)==> a
Enter the modulo number:==>31
Adder/subtractor? (A/S)==> a

- Entgr the modulo number:==>29
Adder/subtractor? (A/S)==> a
Enter the modulo number: q—-=>27

~ Adder/subtractor? (A/S)==> a

*onk SIIIGOH compilation fl[llShCS)
Flgure 3. fz Input example of a 4-adder to MOSC. v
' The next example con51ders a RNS multlplrcr of modulo-32. The
input to the MOSC compiler is shown in Figure 3.14. As shome lhc

Figure 3.14, the user has to provide only two piecgs of data to

63

ECTZ

ECT?

—
o
L/
ROM_FTRIG | ROM_FTR17 | ROM_FTRI§ | ROM_FTR19 | ROM_FTR20
ROM_FTRI! | ROM_FTR12 | ROM_FTRI3 | ROM_FTR14 | ROM_FTRIS
EEF
ROM_FTR6 | ROM_FTR7 | ROM_FTRS | ROM_FTRO ROM_FTR10
€O
\BOM_FTR! | ROM_FTR2 | ROM_FTR3 | ROM_FTR4 | ROM FIRS

~

Figure 3.13: Mask layout of the 4-adder.

!

64

&

o

produce a modular multlpller The mask layout of the multiplier is
shown in Figure 3.15. The MOSC compiler creates approximately 920
mask polygons for this chip. The size of the chip is 2518.2 x 11322
micron?.

% mosc multiplier32.cif

sesdeoleskesfe e eokeateseoe st o skt sk skokeskeok s skeske ko ok ok ok

* MOSC SILICON COMPILER *

sesfeafeseate e s ke skeake oo sk st ek okok sk ste ke sk ek e s

- Adder/Multiplier/Constant? (A/M/C)==> m .
Enter the modulo number:==> 32
Enter the modulo number: »
"Adder/Subtractor?(A/S)
Enter the starting cell number DS#: .
Enter the starting cellname number CEL_#:
Enter the modulo number:
Adder/Subtractor?(A/S)
Enter the _starting cell number DS#:
Enter thé starting cellname number CEL _i#:
Enter the modulo number: :
Adder/Subtractor?(A/S)
Enter the starting cell number DS#:
Enter the starting cellname number CEL_#:

**%* Silicon. gompiiation finishes.

Figure 3.14: Input example to MOSC' for modular multiplier:

T‘he final example presented here is also a modular multiplier,
but it multiplies a 5-bit inpht value, X, by a constant C (C=12 in fhis
example). The input to the MOSC compiler is shown in Figure 3.16.
The user must supply modulo-value and a constant. As -illus'trated in
. Figure 3.16, the user can also add/subtract an input value to/from a
constant by‘fyping add or sub in the third prompt'. ’fhc size of lhcf

circuit is 421.2*377.4 \?;mic‘:ror_}z. In this example, * thé compiler

65

ROM_FTRI1

ROM_FTRS5

ROM_FTR4

ROM_FTR3

ROM_FTR2

ROM_FTRI1

ROM_FTR6

ROM_FTR7

ROM_FTRS

ROM_FTR9

ROM_FTR10

ROM_FTRI1

13

ROM_FTR10

ROM_FTR9

ROM_FTRS

ROM_FTR7

4

ROM_FTR6

Figure 3.15: Mask layout of a

= &

. 66

modulo-32 multiplier.

A
produces total of 53 CIF lines to describe the appropriate memory
Coe
content. The mask layout of the circuit is shown in Figure 3.17

% mosc const_mult_12.cif

sk st sk ke e sk ke shskolesteste ok ks sk feoksk s sk skok o

* MOSC SILICON COMPILER *

e e skesketesfe sk skeske e she ke sk sk e sk she sk ek sk skt oot ke sk stk

k
Adder/Multiplier/Constant? (A/M/C)==> ¢
sesfeskeok s sk okeokeak e e sk sk s sk ke ke etk skeakskokeskeskeste dkok ok

Hokok +/-f* Constant =~ *¥*_
sioksfeseseskokofeteskakotofolekokdekok otk sk ok feodekokok ok

Enter the modulo number:==> 32

Select Adder/Subtractor/Multiplier (add/sub/mul)==> mul
~ Enter the constant value:==> 12

Enter the starting cell number DS#:

Enter the starting cellname number CEL_#:

-ga . - 'ﬂ\ . -
k%% Silicon compilation finishes

Figure 3.16: Input e;xample to MOSC for constﬁnt multiplier

More examples f:ane be found in Appendix X that sﬁow_ various
modular operators with the second memory structure. If a designer
just ;vishes to build a modular operator, they only have to add
several I/O pads around the desired circuit. On the other hand, if a
finite impulsg response (FIR) digital filter is 'designed, only adders
and multipliers are needed in accordance with™ FIR equﬁtion (12). The
filter coefficients (H) are stored in the memory cells. The filter is
described iﬁ the tcrms(of the summation-conv?olution.

N-1 . .
y(n) =2 H(k)*u(n-k) | | (12)

k=0 ;
— 4 <

o

67 :

Lo
J

;

]
=
1

Fiil

Nl

U

—
il

i
5]

n =
l‘]lkb.

Rt

M

!

i

- HU

I

Dot

b L)

S
T A "
R

4

T e T

.

=

=

ﬂ : |
[
]

=

—%

—

=

68

STk

N L
-
Ha—tt-

AR

Ei i i : mJ \
= s = = val]
: Il —EH Ty Y) A — |3 -
p_ﬁ = ety T : i
P I "
ELLA L e
L |
it " 5

11
L

A

=1
Hi
L

¥
_.d —

y
e

118
)
]

I

Loy £ o [L
s
i

6
[
r

t

4
et
-

e oy e

3R

Wy

g

1

w1 _' vg}
it

=

-

fr
g
g .'¢
o Waf
1 BoRopgeit B
i3 [EH fm
—+
X
o
L
[M
oy
= 1

|yt
LA
U
r)

')
e s et
[|
oL |

et |
rull}

¢
i)

o
“‘h
il
Ll
=
I8y

i Ghe
H o —1.

where u(n) and y(n) are the filter input and output, respectively, the)
H(k)'s are the filter coefficients, and N is thc order of the filter. \(\Tl/
neces)sary adders and multipliers can be produced effectively by the
MOSC compiler. The designer is only ;equired to connect them to
form a FIR filter. The RNS converter and the RNS decoder mentioned

in Section B are also needed to perform the Binary/RNS number

conversion,

P
. L

69

CHAPTER FOUR
Results and Discussion

i As was stated in the Introduction, the objectives of this thesis
were to create a fully functional Unix based VLSI design workstation
for full-custom hierarchical VLSI design, and to develop a specialized
mhcon compiler to synthesm memory oriented cells for constructmg
RNS arithmetic operators in a rapid and efficient manner. The full-
custom hierarchical desigri methodology'has been identified and
illustrated with the design .e_xample of the 4-bit ripple carry adder in
Chapter Two. The,VLSI design workstation is primarily based on tf;e
Electric design system, the MOSC silicon compiler, and a number of
utility progfams. If one were to examine the usefulness of the VLSI
design workstation; the criteria would be stated as follows:

1) Time: time taken to complete a design. -

2) Ease of operation: easy to operate the CAD tools.
and

3) Flexibility: system can be expand_ed and modified for various
design environments. o |
Since the workstation can be used in the full-custom hierarchical
VLSI design, and can also offer “ﬁe capability of silicon compilation,
we would look at the three criteria for the workstation used in the
full-custom design and for the MOSC silicon- compller separately.

For the full-custom design, circuits in the workstation are

- - e
represented as networks that contain nodes and connecting arcs. The

70

R

nodes are electrical components such as transistors, logic gatés, and
electrical contacts. The arcs are simply wires that c;:)nnect the nodes
to create the eléctrical connectivity. In addition, each node h;}s a set
of ports which are the sites of arc connection. The g(—:‘ometrical
information of a circuit r‘na'sk layout is stored in the actual
coordinates of nodes' and arcs. Bach node and arc contain a set of
attributes, such as, masic layeré and layer dimensions. Hence, the
electrical and geometrical properties-are obtained once the circuit .
mask layout has been completed. Therefore, no time is spent on a
mask network ex‘traction process.

3Collections of nodes and arcs can also be aggregated into cells
which can be used higher in th¢ hierarchy to act as nodes. These
user-defined nodes have ports that come from internal nodesjwhose
ports are exported. With the identified VLSI design methodology, the
top-down design method can be achieved. The capability of
specifying layout in a top-down fashion encourages modularity in
circuit design. In additioh, any cha‘i{ges in any1 celfs can be made
without the need for redesign of the whole layout. Therefore, this
top-down design method and bottoxﬁ~up hierarchical update
capability largely reduce the time taken in the mask layout process. _

The design rule checker (DRC) wotks incrementally along with "
the layout editor system to provide immediate. feedback to “the
designer's modifications. Hcﬁ;:ga, the designer can make immediate
correction to the layout if an error is reported. In addition, Electric
currently has seven simulator interfaces that generate- netlists from

the electrical connectivity of a mask layput or a circuit schematic. As

mefitioned in Chapter Two, the most interesting simulation

71

environment in the workstation is the SPICE simulation package. A
complete SPICE deck input file can be automatically generated. In
contrast to the Phoenix Data System package, the SPICE input file can)
be created in a single step. The SPICE output. can also be displayed
graphically on the workstation by invoking the PLOT program. The
PLOT progfam allows users to select the window: size and an
unlimited number of curves to be displayed on the workstation. The
Relax2 circuit simulator has also been modified .iq run successfully on
the workstation. Since the DRC and various simulation interface tools
are integrated with the circuit layout system, the design time can
further be reduced. _

- The workstation provides a powerful and flexible user .
interface. Commands can be issued as single keystroke, single click
on thé mouse, menu selections, or full commands typed in with their
parameters. The first three forms are shorthand for the last form,
and dynamic binding can'attac!l any full command .to a single‘ key or
mouse button. Theréfore, the whole keyboard and mouse can . be
reprogrammed for various commands in different applications.
‘Powerful macro facility is also provided for faster design operations.
A user can create his own parameterized macro command for his
custom design ,operation , and access the database object variables -to
obtain information such as a node's attributes. ‘These variables can be
manipulated both arithmetically and conditionally to speed up the
mask layout process. Multiple wiqfi’dws, a powerful "undo"- capai)ility
and useful help facility further \s:implify‘- the design task. Combined

with all user interface facilities, the user interface can be tailored to

72

resemble any system that is familiar to or comfortable for the user.
- Hence, the workstation is very easy to operate.

All Electrlcs program files have been organized in such a waty
that it can be modified and upgraded effectively by “making use of a
Unix command, make For instance, if an /O interface subprogram
has been modified, the rﬁ'ak?a command will cdmpile the modificd
“file only and reflect the cha‘nges‘ to . the rest o.f the- design system.
Hence, there is no need to 'compile other suﬁprogrzlms.-- In addition,
the workstation contains a number of different design environments
which are specified by different technology files. Currently® it -
supports nMOS design, CMOS dééign, _bipolar design, schematic
capture, PCB design and general-purpose artwork environments.
Users can change “the design environment by issuing a smglb
command. Since:;;the workstation is capable of using different
technologies 1in a‘:‘si\ngle design, flexible layout schemes become
possible. For example, \‘a CMOS circuit can be treated as a component
-in a printed circuit board (PCB) design, enablmgD proper planning of
chip environment details such as pin requirements.

Users can also cre_ate__\new d¢31gn environments. Adding
environments simply requires tl.i;‘_t‘-\thc necessary tables and routines
desdribing the new environment be ;‘;‘ogied into a C'/ program lmodule,
and a 'technology tfable in the. main'\;ir.ggram must)‘ be updaged. The
-routines are for initialization, special c;in_grol, node description, arc
description and p.ort descri‘ption.r Tabular iﬁkfo_rmationi inclides design
ri\ll'es, simulation characteristics such as the CMC's SPICE data,
default size of various components, conne'qti{rify_ information, and

layer colors. Much of the .information handled"by fhé_ routines is also

73

coded tabularly. Therefore, new technology file is relatively eésy to
create so that. users are not réstrictéd to a limited number of design
environrﬁents.

One of the flexible features of the design system is X-Window's
nctwork-ing capability, that provides a multiple-terminal working
environment such that a user is able to have maximum layout area
on the screen. It was achieved By specifying a desired graphical
output terminal in thle graphic interface module, If Qa user invokes
the design system in a DEC-VT‘241 terminal, he can use the VT241
terminal 'forl textual I/O information, and use the entire graphical
monitor fof ‘the graphical editing purpose. Therefore, -users are not
iimited'to_ one working tefminal onlye

The most flexible aspéqt of the desigrn system is the use of
graphical constraints as a programming Ianguage._ThE attributes of
an ‘ar% provide a limited form of -control over mask layout. For
example, many designers need arcs at 45 degrees angles. Rather than * -
provide "45 degree angies as a possible - orthogonal orientation, the
constraint could bé changed to one of angle rigidity in which an arc¢ is
forced -.to rémain at its current orientation. Another useful constraint
w_ohld provide a flexibility limit that allows stretching within a
specified range. Beyond .that range, the arc ‘Vl‘)ecomeg rigid. Once the
arc conneciing a number of nodes has’be'c'ome rigid, the user can
lrea'f the connected nodes a\s,‘zi‘single rigid component. -

. ~Another fé(gture “of the pr‘égramming | language s the
conditioﬁal expression. Flexibility-limited wires pro,vi_i:le.’.:ene aspect of

r

‘this feature. Attachment of conditional expressions te~ components

and their characteristics. could also be usef Looping control would

74 . .. N N Lt
- - . (l) ‘ \' f
. . i

be helpful in the graphical layout system. This could be done by
extending the use of "array” in the mask layout process. It currently
supports indexed arrays of components.. If a desired component is
selected, the u.ser can create one dimensional or two dimensional
linear afrays'bf the component as illustra.}ted in design examples in
Chapter Two. Combined with a variable qssig:nment feature, these
arrays could be viewed as a form of loop construct. For example, the
width of a wire could be used as a loop parameter to determinc the
number of contacts to use in connecting the wire.

| In addition to all useful features of the workstation, a 4-by-4
shift register, a 4-bit transmission gate adder and a 4-bit ripple
carry ad&!er have been designed and simulated successfully in‘ less
than 10 days by an un-experienced mask layout desiéner. -
) Based on the selected criteria and the circuit design examples,
the VLSI design workstation has proved to be a functional, ‘casy-to-
operate, and flexible system for full-custom hierarchical VLSI design.
However, it is not perfect. Few limitations have been rexperienccd.
The most serie'us‘limitat'ion is relatively inaccurate SPICE deck
extraction which generatcsr scorrect netlist information but incorrect
pélrasitic capa'c'itance or ,resistar;\ce values. For 3-micron CMOS design,
the 0.6 factor is not incorporated in the mask extraction. In addition,
the "C" versions of SPICE 3A6 i currently not available. Hence, the
SPICE simulation must be performed by using .nthe GSPICE program in
the VAX-11/785 or 750 computers. 4 |
w Another‘limi-ta-.ti‘bn is the mésk layout I/O format. Th?: Caltech
Intermediate Format (CIF) is the only I/O format/supported by the

system. Since the CIF code does not provide any information of

- - .75

: oy

connéctivily, all electrical propertles are lost when the 1nterna1
representation of mask layout is converted lntOBCIF ‘code. If a user
would like to read a CIF file into the internal database of the system,
he must turn off the DRC analyzer first and use the "universal wixte_\"
to connect the appropriate polygons to build the cormectivity._ In
most cases, it is imposs\i-l;ré to obtain the correct connectivity
information from a CIF file. Fortunately, most of these limitations can
be removed by using the Phoenix Data 'System package available in
the VLSI Research Laboratory.

The MOSC silicon - compiler was primarily developed for
producing RNS arithmetic operators. The main goal of using a silicon

compiler is to obtain mask level description of- a desired circuit in a

rapid manner. The design fime and ease-of-use are hence the
, _

appropriate criteria in judg}}ng the usefulness of the MOSC silicoril

compiler. As illustrated in Chapter Three, the MOSC compiler based

N

on the fully jptpelined memory oriented cells, and the quarter square _

mu]tip‘lication methd. This compiler can pr_o,&uce 5-bit modular RNS

¥

.adders,}- subtractors, multipliers and constant operators in a simple
ke _

and efficient manner. It also incorporates the two extra bits in the .

memory cell for fauit detection purpose. MOSC's users do not need to
create a program-liké=inpur file in order td obtain various modulo-
nprﬂber\ arithmetic operators.since the user-interface in the MOSC is
question-driven. All memor; structure ceils are "placéd as close as
permissible by the design rules in order to achieve the minimum

size. In addition, the number of memory structure cell is kept as low

A possible. For example, it employs the quarter Square

multipliqétion method to construct modular multiplier. Therefore, it

\, . 76 o

can create the mask leve\I\ reﬁresenmtion of a 5-bit fodular RNS
- multiplier in seventeen memory cejlls and in less than one minute,
and it requires only {two user-input information such as operator's
type and modulo—num‘ger. It was henqéﬁkﬁroved to be able to reduce
tIic design time dramatically and to béhea!sy to use.

Since the MOSC is a highly application specific CAD tool, it is not
flexible in producing general circuits for various applications,
However, since the MOSC silicon compiler was dcvclopf;d in a
modular fashion as mentioned in the section of software
development environment in Chapter “Three, eXpansion can ecasily be
done to 1ncorporate FIR filter design capabihty and to create RNS-to-
Binary decoders based on the CRT method.

. To summarize. the capabilities of the VLSI design workstation, a

diagram presenting various CAD tools and the workstation's fcaturc

is shown in Figure 4.1. The workstation represents a dynamlc VLSI

design facility which can contmm\lly grow to simplify thc increasing
complexity of the VLSI circuit design. A

With the: Unix based VLSI design workstation, the VLSI design
facilities in the laboratory has been expanded as shd'w;n'in Figure 4.2.
The VLSI design workstatioii‘~-cai1 be a standalone s-ystcm, ‘and can
<S.g,lso be integrated with the Phoenix Data System package and the
.. Daisy workstation. The SPICE" deck input. file generated by the

workstation 2an be rtead directly by the GSPICE simulation packige.

17

h

J

. « [Silicon Compiler
' far High Speed [
DSP Applications

Top-devwn design &
Hieraxchical Update
in Electrical &

A Geometrical Information

DRC:
Interactive fx Batch
Modae
Q
Campaction:
Ensure Min.Avres

Tech.Process
Independent:
Nolimitsin

Tech, Process

Mask Layout:
Icon & Polygon
Layout Style

Simulation:
SFICE & Relax

Display of Stmulati

Colour Graphic :
on
output

UNIX BASED
- VLSIDESIGN
4 WORKSTATION

}
?

Schematic
Capture

A

Circzit Neﬁfr‘c*nk.
Logicalto Physical

Mapping,

erdwpyOu.tp\‘i
Laser & HP Cdou:r
Plots,

[Powerful Uszer Interface;]
e

Nacro Functions & Cnstomi
Design Environment

"
o
‘TP

Figure 4.1: Capebilities of the Unix based VLSI design workstation

Multiple
terminals

Unix (Ultrix)
Operating System

- Multi, Windows '
Worldng Envircument

Standalone or
Integrated with
Yax-785/750

1/0 System:
Communicate with Vo
Various VLS[Design : 2

Tools

78

—

/

[Applicon V.él_l)SI]

VLSI Test
_Station
(MS-DOC)

System (VMS)] . ,'\ ~

Phoenix

Daisy ChipMaélcr B

| Tektronix Is)agtlem "1 MAX (DNIX)
GED (VMS) y - '

y (VMS)

VLSI Design
“Workstation
(UNIX)

VT241/Tektronix
GSPICE & GRAPHIC
(VMS) '

Figure 4.2: VLSI design facilities with the Unix
based VLSI design workstation

e

79

5

1Y

CHAPTER FIVE
Concﬁl\sion
A Unix base@VLSI‘design worksfation has been successfully

(

developed op a DEC VAXstation II/GPX minicomputer. The VLSI

design workstation is developed around the Uitrix (Unix) operating

_ system, the X-Window facility, the MOSC silicon compiler, a mddified

Electric design system, and a number of utility programs. The -

capabilities ‘of the workstation are best summarized and illustrated

«in Figure 4.1 on page 78, which also shows what CAD tools are

currently available on the workstation. ‘ , .

’_i"he most polverful capability of the VLSI design workstation is
provided by the development of the Memory Oriented -Silicon
Compiler (MOSC). The MOSC' compiler utilizes the concepts of the

Residue Number- System to create very high-speed digital circuit

.compenents. The @IOSC compiler employs iwo fully pipelined

—_—
memory structure cells,.the quarter square multiplication method,

and a fault detection mechanism. Based on these techniques the

. MOSC compiler has successfully synthesized 5-bit RNS adder;,wz'
» -~

subtractors, multiplTers and constant operators. The existence . of
these RNS “arithmetic , operators allows onesto- rapidly design RNS
architectures for digital Signal processing applications, such as, FIR

filters. One of the mgmﬁcant advantages of the MOSC compiler is that

it allows 1nexper1enced designers to create RNS based VLSI c1rcu1

" a short time period. The nature of the mask layouts generated by the

-

80

<

)

>

b

MOSC c;')mpilqr compares favourably with thoe created manually by
an experienced desiéner. In addition, unlike the other silicon
'compilers_.r_nentioned in Chapter Three, the user-interface developed
for the MOSC compiler is question-driven so that users do not have to -

create a program-like input file. Hence, the MOSC compiler is a most

user-friendly .CAD t(::;D ' ' |
~ y .
_ Once the M compiler has’ acquired sufficignt circuit

information fro'pél{,l the user, it will create the appropriate memBry
conterit and then‘s map the content onto the basic meﬁory oriented
cell toj‘form a complete RNS based cell. A number of thé?se RNS cells
with different memory contents are placed” together to form a lincai
aifay realization of "the desired RNS arithmetic operator.. A
hierarchical CIF file rcpresenting the desired circuit is ' then
generated. The MOSC ‘cor‘npiler .CaI'] also display the 'gcncrate:d mask
layout on the screen by controlling the Electric design system. A user
- can also instruct the@M&C ;:ompiler to generate the mask
representation of the memorycontent only. With the ECIFIN/DCIFIN
7 translators, the generated CIF file can also be used by other VLSI
design tools available in the VLSI Research La 'cfr_atgry.

The MOSC compiler wa‘s developed lryﬁfi a way that it allows
for the _incorporatign of more'capabilities. For example, if an 'auto- _
router is develope'gi' and integrated. with the MOSC compiler a widc;
'range of applications, such as, FIR filter design could be handicd
directly. - _

Unlike FIRST, LAGER and BSSC which are complete IC silicon

compilers, the MOSC compiler generatés only major RNS arithmetic

components. Therefore, a user must manually.- create the mask layout

81

of the connections between the major components and the I/O pads
in order to complete the design.

The Electric design syétem has been modified and upgraded so

that it can run in a X-Window environment. A number of special

utilities in'cluding the plotting prqgrams for SPICE and Relax2
simulation outputs, drivers for hardcopy devices, the ECIFIN/DCIFIN
translator, and macro functions have als&%‘éﬁj developed. A VLSI
deSign methodology supported by the workstation has been

‘formulated to simplify the complexity of she VLSI circuit design

process. All the VLSI CAD tools implefnented,on the workstation

have been described along with their use in t%iéasign methodology.
A number of circuit designs, including, a four-By-four shift register
and two 4-bit combinational adders, lﬁve been executed on the
workstation to verify its capabilities. . .

The workstation sup;;orts a top-down design methodology ';:md
a'hierzlirchical bottdrﬁmp update capability. It is possible to develop

mask layouts by interacting at the transistor level as opposed. to the

basic mask -feyel. Both geometrical and electrical information

associated with t?l}gym_ask lqyout' are available once the mask layout
has been compléteﬁ/ln addition, g}\l sﬁ_imulator interfaces and design-
rule checks are integrated with the layout editor system. . Hence, VLSI
circuit design time can be significantly reducega. >

Since the user interface designed for the\ ‘workstation is ver.y

L] ih- - .
flexible, it can be re-defined for different design applications. A

powerful and parameterized macro facility is also provided to allow a

user to customize +his or her working environment. The combination

of multiple windows, a mﬁltiple terminal display capability and an

82

-

informative help facility provides for a workstation that is lligflly
user-friendly. | -
The workstation is quite flexible in that users can easily add a-

new design environment by creating a téchnology filg, in the "C"

o

pfogramming. llanguage. In other. words, the dési system

implemented omn the workstation is technology -independent. The

workstation also supports the usé of different technologies in a single

design. The constraint system in the layout editor further enhances

a.e;v‘flexibility by'restricting--wire properties so that a user can
manipulate a number of nodes and wires as a single object.

" Future development to make the workstation more powerful

might include the acquistion of morc/-s}nulation t /ols, such as, RSIM,

T ¢ MARS"and SPICES.--‘A versatile data ‘transl%or might also be

_// developed to convert the design information from Electric.:'s‘d‘alabusc

| . to the GDS II format or ‘the EDIF format in order to occupy 'lcss

memory space and maintain some useful information, such as,—' the

electrical connectivity.

:;Finallﬂ)?,} a last suggestion for further wofk is ta de{fcldp a

graphic . interface driver for the modified Electri;:' design system to

é s_uppor; the Tcktroni{s graphicn.tcrminals available in the VLSI

Research Labor\éitary since the’sé terminals offer higher Eesolution

. and lo¥al memory for)faster graphic operations, the perfovr#mancc of“

the VLSI design system driving a Tektronix terminal will definitely

-

increase.

——

References

[BaCo082) F. Barsi, A. Cola, "A VLSI Binary Multiplier using ‘Residue
Number System,” IEEE ICCC82, New York, pp.583-589, 1982.

[BaJM87] M. Bayoumi, G. Jullien, W. Miller, "A Look-Up Table VLSI
Design Methodology for RNS Structures Used in DSP Applications,"
IEEE Trans. on Circuits and Systems, vol.CAS-34, no.3, pp.604-615,
June 1987. o ' ,) _
[BaJM87a] M. Bayouml G. Jullien, W. Miller, "A VLSI Implementatlon
of Residue Adders," IEEE Trans. on Circuits and Systems, vol.CAS-34,
no.3, pp.284-288, March 1987. ™
[Bird87] P.D. Bird, "The Application of Multi-Valued Logic to the
Implementation of Residue Number System Hardware," Master
Degree Thesis, Dept. of Electrlcal Engmccrlng, University of Wmdsor
1987.

|
[Brya81] R. Bryan'iGMOSSIM A Switch-level Simulator’ for MOS LSI,"
Proceedings of the 18th Design Automation Conference, July 1871
pp-786-790. y

[DeMR84] P. Denyer, A.?Murray, D. Renshaw, "FIRST-Prospect and
Retrospect,” VLSI Signal Processing, IEEE Pressy pp.252-263, 1984.

[Deny82] P. Denyer,” "An Introduction to bit-serial architectures or
signal processing,” in VLSI Architecture, Prentice-Hall, 1982,

[Garn59] H. Garner "’Ehe Residue: Number System”, IRE' Transactions,
. June 1959, pp.140- 147

)
[JeLe77] W Jenkins, B. Leon, "The Use of Residue Number Systems in

the Design of Finite Impulse Response Digital Filters,”" IEEE Trans. on

Circuits and Systems, vol. CAS-24, 'no.4, pp191-201, April 1977. -

[LeRu82] E. Lelarasmee, A. Ruehli, "The Waveform Relaxation Meghod

for Time-domain Analysis of large Scale Integrated Circuits,", IEEE

Trans. on Computer-Aided Design of Integrated Circuits and Systems
vol: ‘CAD-1, No.3, July 1982; pp.131-145.

\

¢ 3

¢)

/

[Nage75] L Nagel "SPICE2: “4 Computer P{ogram to Slmulate

Semiconductor Clrcal\ts{ Memd ERE;M520, University of California,
Berkeley, 1975.

[RajaBY] PV Raja, Master Degree Thcs1s to be pubhshed Dept. of
Electrical Engineering, University of Windsor, 1987. .

[RaPB85] J.Rabaey, S.Pope, R.Brodersen, "'An Integrated automated
layout generation system for DSP circuits”, IEEE Trans. Computer-
Aided Design, vol.CAD-4,no0.3, pp.285-296_, 'July, 1985.

[RaTaSG] A. Ramrhnarayanari F. Taylor, "RNS Cellular Arrays," IEEE
Trans. on Circuits and Systems, vol.CAS-3, no. 5, pp.526-532, May
1986. : :

[Tayl82] F.J. Taylor, "A VLSI Residue Arithmetic Multiplier," IEEE
Trans. on Computers, vol.C-31, no.6, pp.540-546, June 1982.

[TaRa81] F. Taylor, A. Rammnarayanan, "An Efficient Residue-to-
Decifial Converter," IEEE Trans. on Circuits and Systcms vol. CAS 28,
no. 12, pp1164 1169, Dec. 1981.

[TaTM87] M.Tahen,AG.A.Julhen, W.C.Miller, "Systolic ROM Arrays for
Implementing RNS FIR Filters", Proceedings International Conference

. on Acoutics, Speech and Signal Processing”, 1987, pp.771-774.

[TaJM87a] M.Taheri, G.AJullien, W.C.Miller, "Fault detection in RNS

e

Systolic Arrays™; Electronic Letters, Vol.23, no.4, ‘pp.~165-166. Feb.
1987. ' : o

[WeEs85] N.Weste, KEshraghlan, "Prmcum of CMOS VLSI D<351gn
Addison Wesley, ‘Don Mllls 1985

[YJHN87] F. Yassa, J.Jasica, R.Hartley, S.Noujaim, "A Silicén Compiler

for Digital Signal Processing: Methodology, Implementauon and

Applications”, Proceedings of the IEEE, vol. 75, No.9, pp. 1272 1281
Sept. 1987, . ’

o —

[

{

\f
&

— | Bibliography

. Proceedings of the IEEE, vol.75, no.9, pp.1260-1271,, Sept

=

N.Weste, K.Eshraghian, "Principles of CMOS VLSI Design,” Addison
Wesley, Don Mills, 1985. :

L.A.Glasser, D.W.Dobberpuhl, "Design and Analysis of VLSI Circuits,”
Addison Wesley, Don Mills, 1985P. Cappello, "VLSI Sig rocessing,”
IEEE Press, New York, 1984,

D.A. Hodges, "Analysis and Design of Digital Integr éd Circuits,".

McGraw-Hill, 1983. E |
S.M. Rubin, "Computer Aids for VLSI Design," Addison-Wesldy, 1987.

Filters,"”
87.

P. Cappell-o, C. Wu, "Computes=Aided 'Des'ign'of VLSI FI

D. Gajski, "The Structure of a Silicon Compiler,” IEE 'iCCC82, New

York, pp.272-276, 1982.[HSCW82]

@.
-

T. Hedges, K. Slater, G. Clow, T. Whitney, "The Siclops Silicon

compiler,” IEEE ICCC82,'New York, pp.277-280, 1982 "

7~

o

3

¢

3

4

3

R

App‘endix I

Ultrix, *Windowing, and

-~

Communication Facilities

—

5

7

‘ UNIX Tutérial

,w a general-purpose,. multi-user, and interactive

operating system for most popular machines such as DEC machines,
SUN workstations, Apoilo machines and etc. Ultrix, {Digital's Unix
ope-rating system, provides compatibility with AT&T'S Sy_s;em \Y
while maintaining all Berkeley 4.2 BSD commands, sysiem calls,
library functions. The .Ultrix. operating system is currently installed
" on the VAXstati.on‘II/GPX Workstation in the CAD/CAM Centre.

This tutorial is written primarily for Unix tUltrix } beginners.
This tutorial will describé thé most handy commands, standard 1/O
- " redirection and pipeliné procesé. A Mail facility will ‘dlso be described
in detail in the Mail tutorial. . .

Before we learn anything about the Unix operating system, we
should. realize that Unix distinguishes between wupper- and lower-
case characters; so 'A' and 'a’ are not(the same.

First of, all, let us login the system. You must have a valid ‘login
name. When you get a login: message, type yogr login name m lower
case, follow it by a RETURN. >

login: username<RETURN> k
If a password is required, 'yoﬁ’"' will be asked for it, and printing will
be turned off while you type it. Don't forget the RETURN, |

When you see a prompt éhéracger % , you are in shell command
mode. Before we do anything, I\would like to show you héw to logoff

-

~ the system. To end a ‘working session, type

!
»

f':"‘

logout or ctrl-d
I. Basic Commands
When you are in the shell command mode that means you have
" the % prompt, you can.issue Unix commands. Try typing
o %rdate
you will get something like:
MON SEP 7 14:17:10 EST 1987 -
Another command you might type is |
. 9 _who N —
joe sam alger root—- —— .
which will tell ,yoﬁ everyone who is currently logged in. However, if
you type | : i

L%
% whom ™

-

you ‘will be told . .
: 7

whom: Command not found ’ .
If you know you have make-a sma,ll- mistake, use <DELETE> key to
correct it. ‘ |
énc of the most useful commands is ls (list) which will tell you
what file(s) you have in your current directory. |
% ls
a.ou}.P demo demo.c:
If you type _§omethingl like . ‘ /
%} Is -1

youwﬁ’il get something like

-rWxr----- 1 joe 20 Jul 22 2:56 a.out

N\ e

-rWXr----- 1 joe 120 Jul 20 3:46 demo-—-
-rW-r----- /I joe 201 Jul 18 8:40' demo.c

Y\oulwill be told more about your files in the director;z. The
datc; and time’ are of the change to the file. The 30, 120 and 201 are
othe number of characters in each file. And, joe is the. owlner of the
file.

Another useful command is cat. The cat displays the content of
- a specified file(s) on the screen. '

- % cat j‘unk temp
displays twho files, junk and temp, on thé screen.
Another similar command is more. |

% more junk - V .

The more command will display each full-page of the file junk
and stop until you hit SPACE iBAR or RETURN. This stop-and-go
proces§ continues until the whole file is completely displayed.

While you are in the middle of a process and you want to stop

the process, You can always send an interrupt signal by typing' ctrl-c

. on the keyboard. In most cases, it will work and return you with the.

. % prompt.

From now on I would like to show you more Ultrix commands
in a simple and straight forward manner.

"*Rename a file. Type

% myv old-filename new-filename
*Copy a file. Type) ~
% cp old-filename new-filename

*Remove or delete a file. Type

(:'.'_"
|

-~ - / ’ »
-

% mv filename
*Make or crea;te a’new ‘directory. Type
9% mkdir directory-name]
*Change your curfent directory. Type)2
% cd -new‘—direc‘tory-n,amc -
*Go back to previous ditectory. Type
% cd-..
!(/’ *Go to ;/oilr login‘dirgc;tory;} Type
“, %ed
*Remove or delete a directory. Type

% rm directory-pame/*
™ % rmdir directory-name

(‘a: *Report current Flireétory. Type
.‘ % pwd
*Show file type. Type -
% file filename o
There are many more. useful commands, To describe all of then:l
is out of the scope of | this tutorial'. However, with the commands
mcnﬁoned- above you should be. ablt:. to get around in- the Ultrix
operating system. _ | |
II. Standard I/O Redirection
- Most of the commands we ',have seen so far produce output on
the terminal screen. However, you can repiace the terminal screen by
a file for either input or output, or both. |
For ;xample,)) | Y

% Is > fileli'st

)

¢)

()

f}

9

" A'list of your files will be placed in the file called filel'is';.

Also,
% cat fl 2 f3 > temp - ,

The files™fI, f2 and f3 are copied into a file called remp with the

above command line. I

In addit{on,

% cat f4 f5 f6 >> temp &

The symiaol >> operates very much like > does, except that it

means " add to the end of ." so that files f4, f5,.f6 are added to the

end of the file temp.

1

In a similar way, the symbol < means to take the input for a
program from the following file, instead of, from the terminal. The
form is - o gl -

% command < data | B
For e)—cample, -

| "% vi file < script \

You can also‘ redirect both input and output in one command
line. For example, _

% vi file < script > lettér'
1. Pipes '

One of the advantages of using the .Unix operating system is the
idea of pipe. A pipe is simply a Way to connect the output of one-

program to the input of another program, so-the two, rup as a .

sequence of processes - a pipeline. .

For example,

%prflf2f3

-will print the files fI f2 and f3, beginning each on a new page.

Suppose you want them run together instead. You could say

"% cat fl f2 f3 >temp
| % pr < temp

%._rm terizp \

but it talies a/lot of work to finish a single task. However, we can use

pipe structure. Type

W catfl 2 f3] pr

The vertical bar | means to take the output from cat, which

would normally have gone to the terminal, and put it into pr to be

neatly formatted. For instance, if you wan? to count how many
people are logged on, you can use “

% who | wc -l o
If you want to count how many files);ou'have in yourw current
directory, you can type | _

% 1s | we -w

From thg power of the pipeline, you can build your own power

tools from the simpler commands. -

IV. The Shell ‘

So far, we hai/e seen the capabilities “of‘ <, > and |. These
commands or symbols are actually a subset of commands in'side‘the
shell (Sh)., The shell is an intelligent program that interprets what
3iou type as command. and arguments It also looks after translating *
and ? into lists of filename The shell has other capabihties too, you

can run two programs w1th one command line by separating the

commands with a semicolon (;). Thus,

-

LI .

)

¢

3

{

«

% date; who -

does both commands before returning with a promp‘i*charactcr. In

addition, you can also have more than one program running

»

simultaneously if you wish. For example, if you are doing-something
time-consuming, and you don't ‘want to wait around for the results

before starting something else, you can say .=
™~ - .
% command < input-file > output-file &

The ampersand at the end of the command line say " start this

1Y

' command running, then take further commands from—the terminal

imniedia;ely." For instance, if you want to run SPICE porgram as a
background or batch job, you can type - ; |
% spice < data.in > data.out &

. The last’ command structure I would like to show you is command

file. If you want to execute a command file, you can type

% sh < command-file

This says to run the shell\with the file command-file as input.
The effect is as if you have typ)d ‘the commands on’ the terminal._
The Ultrix operating system also provides many software’.tools
for document preparatioﬁ such as vi, ex and nroff, and for
programming. lC, Fortran-77 and Pascal cbmpilers are also available.
For det?il information of Ultrix commands, Ultrix user;s manual

should be referenced.

p

te

Mail ‘and DECnet-Ultrix Utilities

Mail facility provides a simple and user-friendly_ environment
for sendiﬁg and receiving 'fnail messages and files. It divides’,
-incoming mails into its constituent messages anc'l'allows' the user to
~ deal with them in any grder. In addition, it provides a set of ed-like
commands\swx/manipulating messages and sending ﬁail. Mail offers

the user simple cditing' capabilities to ease the composition of

s

. _
outgoing messages, as well as providing the abilities to define and
send to names which address groups. of users.

I. Common Usage on Mail Messages

~ ~-

The mail command has two distinct usages: send and receive
mail. Sending mail is simple: to send a message to a user whose login

name is, say joe, use the shell command: mail

% mail joe - .
q Subject: mail title ' ' ' /ﬁ
Your message is typed here.

+

...... ' | ‘
y '

Whén you reach the end 'of_ the message, type ctrl-d (end of file or
end of transmission) at the beginning of a line, which will cause mail
to echo- EOT and return you to the shell. | .

If you want to sel?d the same message to several other \people,
q’%ou can list their login names on the command .line. Thus :

% mail sam joe susan
Subject: mail title Q

¢)

¢

¢ 3

%
Your message goes here.
o ‘ ‘
will send the mesiage to "sam, jge and susan.
Receiving a mail is also simple:. just type
% mail " o
The mail will respond by typing its vergion number ard date, and
then listi'ng the message you have waiting. Each message has an
corresponding message number whi—cho‘will'allow a user -to handle his
maﬂ efficiently. To see the message, type
- t message-number
Then the message will be displayed on the screen. If you wé_m to see
next message, type ' ' . . : -
n {
After you have read the message and you may want to delete
it,“ you should type
d message-number L .
Finally, you want to exit the mail program, type
.. | _
or type K
X h 4 - 3 1
then you w‘ill be returned to the shell command.) -
II. Common Usage on Mail File-
Sending a file to éomeone is easier. If you want to send joe a
file called workfile, you sho%%;ld enter o \
% mail joe < workfile . \

e

Similarly, if you want to send. a file to someone at different machine
such as cadcam, you say -
- % mail cadcam::joe <workfile ™
‘ Morerer, if you want to send a file to a group of users, type
% mail joe sam susan < workfile | |
In addition; “you can “al,'sxor send both _mail message and file to
some¢one with the mail pfograt;n'. you say A
% mail a
To: username
Subject: title ,
” type your message here ,
:;.}ilename S - .
(ff - . EOT . - . -
then a file called fz'lename~ with your message will _be sent to a user \
called username. -~ ' -) .
‘ It ‘'would be very Pseful if we Can save the message i;nto a
- perma‘nent‘file for future reference. The mail program also offers
this capai)ility. Inside the mail program you can type
- S message-number f:l‘lename
Again you can save several messages into a file by typing
B $ messaée—numberl mes:s‘ages-numberZ filenanie
| \ Now you have seen the basic capabilities of the mail program-
! which enables you to communicate with other users in the DECnet
network, There are many other useful commands in mail program.
All_the 'cgrﬁmands mentioned above will help §ou to manipulate ther\\
({: mail messages and mail file;s efficiently.

)

¢

¢

SINE IR

) 4
¢ There are five more DECnet-ULTRIX utilities that allow you to

.work with files. across heterogeneous DECnet operating systems.

Basically, The utilities “allow you to: 3

1. View remote DECnet directories

Display remote DECnet files | . .
Transfér DECnet files - - %ﬁ' J
Delete remote Decnet files 3 > -

Remote login

When Working with “files across heterogeneous DEChnet

operating systems, you should enclose in single quotes (. ") any

information following the node name in a non-Ultrix file

specification. This prevents the ‘local shell from ~reading “and

interpreting the non-Ultrix file specifications. Examples are used to

illustrate—the—use of each utility.
Viewing, a Remote Directory
The{dls utility allows you to display the contents of a remote

rectory. The followi;lg command lists all of the files located

T
in ditéctory [users] on disk sysduser: on the cadcam node.

{

-

% dls cadcam.::'sys3user:[users]’

dls displays the output on your terminal scréen by default. You

can direct the output to a file by’using ‘i/O-(redirection method.
Displaying a Remote File | _ ,

" The dcat utility, displays a reinote DECnet file. Th-is commarﬁl :

can also concatenate the contents of more ;hah oné remote DECnet

file and direct the output to your terminal screen ‘by default. You can

direct the output to a separate file if you want to ‘copy the file.

% dcat cadcam::’§ys$user:[uSers]demo.dat’ ~
This command displays the contents of file demo.dat located in
directory [users] on disk sys$user: on the remote node cadcam.

Copying a Filé _ ‘
The dcp utility allows you to copy files to and from remote
- DECnet nodes. -

The following commaﬁd transfers the demo.dat from a Ultrix

opcraiing system to the ‘file ‘v-ms.dat on the remote DECnet-VAX node ¥
N cadcam. j
t % (_icp demo.dat cadcam/users/password::'dua‘I .'[users]v}ﬁs.dat'
N . A ' This commangi transfers a file vms.dét from VMS operation S
:%f system to a file on a remote DI?Cnet-Ultriic node. -
- % dcp cadcam/users/password::'dual :[users]vms.dat’ *
'”'_Deleting a' Remote File ‘ ‘ / N
AN The drm utility rémoves a file from“ a. remote ISECn,et node. For,
example, the following command removes the file paints.}- from
remote node cadcam. - _ 1 '
% drm cadcam/usern‘c;me/password.':’sys$user:[users]paints.3’
Logging on to a{ Remote DECnet Node -
- | The dlogin utility allows you to-log on to a remote DECnet node
and to communicate with all programs running under ?flat system.
Once connected to a. host, you -must specify the command$®for’ that i
system. T;) login on a remote system called cadcani, type
% dlogin' cadcam)
_ Username: users
(: " ~ Password: .

6

“?\{

_remote operating system.

To log out of a“remote session, enter the logout command for the

]

The dlogin utility also allows you to eié@e commands” on

‘your‘lbcal Ultrix operation system while you are engaged in a remote

session session. To temporarily return control to your local Ultrix
node, press

\
% ~ local command>

. Once ybu receive the local command> prompt,‘you can execute
commands on your local node. When you wish to resume your
dlogin session, press RETURN at the local command> prompt, and
your remote session prompt will return. | o

| The DECnet-Ultrix utility commands as described above are
sufficient .for most users to manipulate remote files across

heterogeneous operating systems. For further information about the

commands, refer to DECnet-Ultrix User's and Programming's Guide.

LS

=

L

' ULTRI’X\WINDOW MANAGER

- | _ ‘:,‘.‘ A Simple Tutorial
- Ultrix 'Winaow Manager (uwm) is a specialized application that
provides a flexible interface to the multitasking capabilities of the
Ultrix operating 'systen'l. Standard capabilities include resizing,
'restacking, moving, and iconifying windows and pop-up menus for

creating new windows and changing colour characteristics. Users

~have complete control over the windowing environment. A startup

\file can be edited easily té) change such characteﬁstics as backgrqund
and window colours. Command functions can be assigned directly to
mouse buttons and custom menus can also be created to invoke shell
programs. | | |

This tutorial will show you the basic capabilities of the window
manager, and how to activate and use the wiﬁdow manager

p—

effectively. -)
I. Running the Window Manager
To start the window manager, enter the uwm command in the

+

primary login window, as follows:

uwm & '
Always start the uwm command as a background process {shown by
the ampersand).- When the window manéger has been successfufly
initialized, the keyboard beeps lonc-e, You can-invoke thé window
manager automatically every time you log in by aElding the uwm

command apd.it-s obtions to your :login file. If you do not add this

€=

-

?

¢

uwm command to your Ultrix .login file, ~you must" enter the
command again every time yod log in.
II. Logging QOut

When you log out through the primary window, you terminate
your connection with the window server, and any windows you
created during your session instantly disappear.

To log out of windows individually, go in{o each window and
enter, ctrl-d on the beginning of a line. If a window is in an icon

state, remap it a window, place the cursor inside the window, and

" then log out using ctrl-d. (After logging out of individual windows,

log out of the primary window to disconnect from the’ window
Server.
I11. Using the Window Manager
et ¢ .

The uwm command activates the default window -manager.
This default manager provides an immediate interface to the window
server b3; invoking a subset of predefined winddw manager
functions. An example of the d;fault window - manager is stored in
the file, /usr/lib/uwm/'default.uwmrc. Once you become familiar
“with the default functions, you can customize it for your own unique
need. |
A. Creating Windows

The Window server lets you simultaneously interact with

multiple processes by allowing you to create multiple display

windows on the screen.

13

To generate a window, either select Create Window fﬁ'om the
Extended Window Operations Menu which will be described later in
section B or enter the xterm command in the primary login window:

xterm &

When you enter the xterm command, a small window appears at the °
mouse cursor, position. The upper left corner of the screen displays
the wipddw size in columns by rows. To move the mouse cursor to a
screen location wherke‘you want to begin sizing the window. Use the

mouse to size the window, as follows: ‘ :

* Press the left mouse button to create an 80-column by 24-row
window.

* Press—the right mouse button to create an 80- column by r65-row
window. a

* Press the centre mouse button to create a window that is the
height and width you choose. Move the mouse horizontally and -
vertically until the size indicator displays the desired
height and width in columns and rows. Release the mouse

button and the window appears on the screen.
' &
If the new window covers the primary window, use the

i
Window Operation Menu defined later to resize the window, convert
it to an icon, or move it. To display multiple applications, just create
more windows. Once the \;mdow is created, a virtual terminal llne 1§
allocated and anything that would normally display on the screen
displays in the window.
B. Selecting Menu Functions

The default environment provides two menus to allow you to
use the window manager functions.. These menus are:
* WINDOW OPS (Window Operations) - o A

* EXTENI?ED WINDOW OPS (Extended Wihdow Operations)

)

{

3

¢

After the window, manager is running in background as

mentionad above, you can display these Wus wuh the CTRL l\ey_

and ‘mouse buttons. Use the CTRL key and right mouse;

display the Window Operatlons Menu; use the CTRL Ley and nght
mouse button to dlsplay the Extended Window Operation Menu

The Window Operation Menu, shown in Figure 1, lets you
man'ipulate the windows that you generate on the display screen.
Using this menu, you can convert windows to icons or icons to
windows, .and you'can move, resize, lower, and raise windows.

WINDOW OPS _
(De)Iconify T
Move
Resize

Lower

Raise

‘Figure 1: Window Operation Menu

*% (De)Iconify | ®

This selection either converts a window to an icon or converts

an icon to a window. To convert a window to an icon as follows:
1. Move the mouse so the-menu cursor points to-(De)lconify.

2. While holding down the CTRL key, release the mouse button.
3. Move the mouse cursor into the window.

4. Press the right mouse button .

When you release the CTRL key and thé right button, the
window disappears and its corresponding icon appears in a default
location. To convert an icon to its corresponding window is the same
except picking the icon instead of picking the window.

** Move

&

This option. lets you move an existing window or icon to other
screen location. To move a window or icon as follows:
1. Move the mouse so the cursor points to Move. :
2. While holding down the CTRL key,\ release the button.

3. Move the cursor into the window or icon you wait to move ard
press the right button again.

4. Move the cursor to a new location and release the CTRL key
and right button.

** Resize

This option lets you resize an existing window. When resizing,
the location of the mouse cursor within the window determines its
“direction of e—xpansion. to resize a window as follows: y
1. Move the cursor to Resize. .
2. While holding down the CTRL key, release the button.

3. Move the cursor into the wind/ow., you want to resize and press
the right button again. &

4, While holding down both key and button, move the cursor. |
When the window has the desired size, release the CTRL key

and right button.)
** Lower

If an upper window obstructs the window below it, you can
move , the selected window to the bottom with the Lower menu
sclectioh. To lower a windo‘w as follows: |
1. Move the mouse 56 the cursor points to Lower.
2. While' holding dO\;m the CTRL key, release the button,

3. Move the cursor into_the window to be lowered and press the
right button again.

4. Release the CTRL key and right button, and the window drops;

€9

3

¢

)

¢

to the bottom.

** Raise

This selection raises a selected window that is obstructed by a
window above it. I@ is the converse of the lower function. To rilise.a
window, move the mouse so the menu cursor points to raise, and
then use the same procedure d?scribed for Lower.
The Extend?d Window Operations Menu, show'n in Figure 2, lets
yoii generate terminal emulator (xterm) lwindows. and - select other

window manager function.

; EXTENDED WINDOW OPS

Create Window
Iconify at New Position

- Focus Keyboard on Window
Freeze All Windows
Unfreeze All Windows
Circulate Windows Up
Circulate Windows Down

Figure 2; Extended Window Operation Menu

** Create Window

This option allows you to create a window by invoking the
xterm cdmmand. Hence, the procedure is the same as described in
section A.
** Iconify at New Position

This option changes a window into "&n icon and sets a new
default location for the‘icon. To select this option as follows:

1. Move the mouse so the cursor points to Iconify at New
Location.

2. While holding down the CTRL key, release the center button.

——
¥

3 Move the cursor into the window and press the center button.

4. Move the cursor to a new location.and release the CTRL key
and center button.

** Focus Keyboard on Window

This selection lets you direct all keyboard input to a single,

selected window. To change the focus as follows:

1. Move the mouse so the cursor points to Focus Keyboard on
Window.

2. While holding down the CTRL key,‘releasé the center button.

3. Movr the cursor into the window into which you want all
keyboard input to be directed, or into the root window to

~ convert focus back to all window, and press the center
button.

4. Release the CTRL key and the center button.

L
- ~ %% Freeze all Windows

- freeze all windows as follows:
\.]zMovc the mouse so the cursor points to Freeze All Windows.

2. Release the button, move the cursor out of the menu, and
press the center button again.

3. Release the CTRL key and the center button and all wmdow
action stops. -

ok Unfreeze - All Windows

) ' 1. Move the mouse so the cursor points to Unfreeze All' Windows.

2. Release the button, move the cursor out of the menu, and
press the center button again.

3. Release the CTRL key and the center button to update alle
. windows. i

** Circulate Windows Up

>

This menu selection halts all window input and output.

To

)

3

)

¢

3

¢

This - option causeg/obstructed windows to rotate from back to

@ntn To circulate windows as follows:

1. Move the mouse so'the cursor points to Circulate Windows w
Up. ‘

2. While holding down the CTRL key, release the center, button,
3. Move the cursor into the window and press the center button.

4. Release the CTRL key and the center button and the windows
circulate from the bottom the top. ¢

** (Circulate Wmdows Down] f

This selection causes windows to rotate from front to back. This

function is the converse of Circulate Windows Up. "l/‘,d select this -

\.
function, use the same procedure as described for Circulated

Windows Up. 7 - i -

After you have been fam%liar with the default window

~environment, you can modify the default window manager file, -

‘/uerib/uwm_/..default.uwmrc, to customize your needs A detail
Y, “

.. ;o =t A .
description of customizing the window manager can” be found in

Ultrix-32w manual.

Appehdi-x II

»

Electric VLSI Design: F-Invirqgmént

¢ 3

)

¢

¢)

Appendix II
Electric VLSI Design Environment
<. -

This- appendix describes how to modify and compile the Electric
software ;Jackag“e ‘for runnitig on X-Window environment. A genergl
description on Electric will also be given. For implementing the
Electric design system in the ‘DEC VAXstation II/GPX workstation the
big_gest pfoblem is to fully understand the complete Electric sys;em,
1ts degign philosdphy and software development __msthod, ‘and the
hardware and software features of the GPX -workstation must also be
determined. |

In the GPX workstation, three grabhic drivers ?fc available ~in
the Ultrix environment, such as, QIL:~X-Window and GKS. The QIL,'
QDSS Interface Library, has beefl'designe*d specifically for DEC QDSS
video™ system so. that programs based on this driver would have
higher graphic performance. However, it is hardware dependent, and
it is very dffficult .ﬁnd inflcxiblé to program. Most importantly_/, the
QIL does not handle system inputs as not monitoring the mouse and
the keyboard. ‘The X-Window, developed by the MIT, is a muéple
windows and networking graphic system. Programs based on the X-
Window are highly transportable in Unix workstation community.
Most major- graphic routines are supported, and it is re']atively Fcasy
to program. The GKS, Graphic Kernel System, is an industriél standard
for general graphic applications: Since it is hardware independént',_

the best graphic performance for a particular machine would not be

obtained. Therefore, the X-Window is selected as having higher _
potential, to configure the Electric' to operate in the GPX works?ation.

¢ The programming structure of Electric must be “understood
before we can modify the "Electric's source code. Files in Electric arg
divided into a number of category, namely main core programs,
database management programs, graphic-related programs, ' 1/0
programs, analysis aid programs, simulation interface pr.ograms,
technology programs and user interface programs. Each category has
a central program. For instance, there are twenty files in technology
category. tectable.c is the col'rresponding central program. The rest
are the various technology files such as PCB technology file, CMOS-3D
technology file and etc. Therefore, adding new technology is simple:
copy one of the technology Elescription files, update the new
technology, update the table in tectable.c, and'compile and<1ink the
Electric package.

Electric design system consists of approximate 344 files which _'
must be properly stored iﬁ a file structure for effective management.
It was also found that a number of. files must be stored in different
directories. Hence, all "C" programs have to be scanned to determine
what include files are needed, and where the files are supposed to
be. Beéidcs the include files, other special files_such as help and
macro files must also be placed at /users/locallelectric/help and
fuserstlocallelectric/lib directories. Once the file structure has been
created, the\config.h file must be modified to rteflect the file
structure, and the main program will use ;thc information stored in

the config.h to find the required files.

x 4

3

¢

g

¢

Another problem associated with the implementation is that
the "C" compiler in Ultrix environment is not 100% cdm{natible with

,the one -in Berkeley BSD4.2. Hence, the Electric's source code must be

. modified to correct the subtle differences. A noticeable compilation

error is related to the REGISTER variable declaration. After a long
and~ tedious process of correction all files havey been compiled

successfully.

Although no “error occurs in the compilation, the Electric still

s

cannot run on the GPX workstation. As the Electric was developed

primarily for the Sun workstation and the AED frame-buffer

terminal, an X-Window graphic interface driver must be create for
the GPX workstation. A major problem found in this creation process
is the severely limited documentation orff the X-Window |
programming, and it may be. due to-the fact that X-Window system i;
still under- development. The properties of most graphic routines
supported by X-Window are learned experimentally. The current
Qersion 10.0 of X-Window systern has severely limited capability in

manipulating text. However, a GPX graphic interface program for

Electric developed by TUNS was given with the aid of the CMC. Hence,

“all tequired files are ready$¥or compilation. All files are compiled and -

linked successfully using a Unixg' command make.--Aﬁakefile

.required by make must be created first to indicate the GPX graphic

terminal as the default graphical ou;tput terminal. Finally, an
operational Electric file is_generated, and Electric runs successfully on
the GPX workstation. Stjll a lot of modifiéation must be done to fine- A
tune the Electric system, especially the CMOS technology file éend the

graphic interface program.

—

N

A numbér of areas have been modified in the graphic interface
driver in or“der to obtain better graphic performance. For instance,
the pattern of grid and the shdpe of the mouse cursor have beefl
%hanged so that ';hey can be ‘easily r'ecognif,d. Since the grid must be
-drawn and erased in an extremely fast speed without destroying
other graphic objects @n the screen, a fast grid drawing routine must
be developed. For providing a maximum screen wbrking area a‘
multiple-terminal environment must be investigated and developed.
‘Since X-Window system also supports metworking applicaiions, an
attempt is made to have textual information displayed on a DEC
YT241 term’inal, and to have graphical information d.isplayed.. on the
*GPX graphical monitor. Th_is 'atte'mpt 4§ accomplished &using

XOpenDisplay(se(i%er) routine and specifying that the server is

) equal -to GPX server: unix:0. The routine takes the name of the

server, and opens a connection to the server for displaﬁﬁfhardware.
Once the connection has been established an XCreat"eWi.fn'dqﬁz
routine is used to createlvarious size of graphic displaying ﬁwindox_r-&;.-_

Another limitation associated with several X-Window routines
is unreliable o;cration in the GPX worksfation. _For instance, a’
pafterned line routine may crash the server connection. Hence, all
routines in the interfac’e dr@er are developed without using those
unrelidble X-Window commands. ‘- ‘

Since we are interested in CM(Qdesign,k the ’.-CMOS-3D
tecl:noiogy file, re‘cncmosj'.g, must be updéted for the proper design.
Each technology file describes both electrical and geometrical

properties, and defines properties of layers, arcs, nodes, variables,

and routines which store the information stated in arcs, nodes and

1

L t

-/
variables in the database. Nodes and arcs are the basic components

in Electric system, and the nodes represent transistors and contacts,

/ and arcs act like electrical wires.

Layers are composed of the real ‘mask layers and pseudo
layers Layers are\used to bu11d nodes asd arcs. The pseudo layers
are used by Electrlc for special purposes such as pin nodes and
tra%stor area.\ Only five layers may be tran;pafent and the rest
must ‘be opaque. The: five' layers correspondl the metal, polysilicon,
diffusion, p+ and well lz_lyers‘. Each layer has a unique colour and they

can combine to form up to 32 different colours.” For instance, a

transistor is built by combining these five layers, and a unique colour

pattern is formed to rtepresent this transistor. For the 8-plane GPX

workstation five planes- are used for the five layers, one for grid, one

for cursor and one for background. Two tables describing the design'

rules must be created for the DRC purbose. One table specifies the

" distance between electrically: connected layers .and other one statés

the dis“tar'lce between un-connected‘layers. These?' t_zlib]es are upper-
diagonal arrays that have one row and column for eve;y layer so
that specfying distance between various layers is eesy.w

The arcs aré based on the layers. The difference between these
two is that an arc can be composed of many layers. For example, the
é\MOS diffusion-well arc consists of a layer of diffusion and a layer of
well. Nodes include pins, transistors, contacts and pure mask layers.
Each node has one or more ports which ar‘e used for connection
purpose. For arc and riode we can specify the :geometrical
configuration ueing the their style p'reperti.es. For “€xample, we can

select filled box, closed box or crossed -box for each layer. Their

’

L _
- ' \)
colours are determined by the layer colours. After the layers, arcs,
and nodes have been defined, all of this information must be tied to

_the database using the routines which are standard and can be

copied from an existing technology file. A last seption in the

technology file is the variable which is primarily used fo\r simulation

.purpose. For example, an updated SPICE simulation data has been
stored in this “section fgr generating proper SPICE input.file. After all

files have been modified, an operational Electric program is

+

g.eneratty . §

Now let us look at the general features and operations of the

Electric desi'gn system. Elepiric is a fully interactive electrical design
aid thaF lfeaturcs multiple desjgn technologies, multiple analysis aids,
/2 powerful user-interface, and top-down design capability. The
‘technologies include MOS design, bipolar design, \schematic, printed

circuit board (PCB) design, and gerl_efal artwork environments. The

analysis aids handle simulation interfaces, incremental design-rule

checking, textual I/O data conversion, and a hierarchical constraint

‘system. Most importantly, the system implements a flexible model of

circuit representation that allows' hierarchical top-down design, This

‘is done by propagating the constraints in a bottom-up fashion so that
the entire circuit is always properly connected.

Circuits are reﬁresented as networks that contain nodes and
connecting arcs. The nodes aré electrical éomponents such as
_transistors, logic gates?.and electrical -contdcts. The arcs are simiply
wires that connect to n\odes?i“ln' addition, each node has a set ports

which are sitc_s of arc connection. Collections of nodes and arcs can

also be aggregated into cells which can be used higher in the

3

(

. TTr—— ’ *
hierarchy to act as nodes. These user\-defined nodes have ports that
come from internal nodeslwhose_ ports are exported. Cells are+
collected in libraries which contain a hierarchically consistent design.
Arcs have properties that help constrain the design. For example, an
arc can -be orthogonal to the axes (manhatfan) or rubber-band
flexible. Arcls can also be stretchable or rigid under mo.dification of
their connecting nodes. The constraints propagate hierarchically from
the bottom—ﬁp. .

;._-_;I‘he incremental design-rule checker is normally on and,

watches all c}\{ngcs made to the circuit. It does not correct but

. ‘&indicates the error in textual window and in graphic window when

design rules are violated. Hierarchy is not handled, so the contents of

sub-cells are not checked. Also, non-manhattan geometry is not
handled. There is an option in the design rule checker to find short
circuits on a global basis. This does not check all design rules: merely
the shorting together of layout on different electrical nets.

A" 2-D compactor attembts to reduce the size of a cell by

removing unnecessary space between elements. It can be invoked

_with tellaid. It does not do hierarchical compaction, does not

guarantee optimal compaction, nor can it handle non-manhattan

geometry .properly. The compactor will also spread out the cell to

guarantee no design-rule violations, if the spread option is set. This

I

option can also be over-ruled.
There are seven simulation interfaces: ESIM, RSIM, RNL,
MOSSIM, MARS, CADAT, and SPICE. The first six sifnulators are for

switch-level simulation. In preparation for most simulators, it is

necessary to export those ports that we wish to manipulate or

AN

i
L

£y

N

examine. Power and ground ports must be exported. Similarly, clock

r—t——g—

signals must be also exported. The most interesting simulation
inte;face is SPICE. In preparation for SPICE simulation, it is best to
invoke the command file spice.mac which provides all necessary
'commands for SPICE input specification. Suppose we have a complete
mask layout and we wish to create a SPICE deck. We rhust indicate
power source, input signal, circuit nodes which will be examined, and
type of circuit analysis. For example, to make a 5-volt supply, use:

-setsource v "DC 5" < .
and if an inpui signal source is to produce values—that are 5-volts
from 0 to 5NS and then 0-volt, use:

-setsource v "PULSE(0 5 ONS ONS ONS 5NS 20NS)
Next, all values that are being exarr;ined and plotted must be
cxported_érT&-_-_ﬁave meter nodes placed on them. If a meter is used to
watch voltage from 0 to 5 volts, use: | .

-setmeter "(0,5)" | |
Finally the type of circuit analysis to the SPICE- system must be
%pecified. For transient analysis an unconnected source ‘node must be
given. Use: |

-setsource t "0.2NS 20NS"
Now, to creaté-a SPICE deck, the deck command is issued to create a
sim.spi file which is ready to be read by SPICE simulation program.
For example, four cascaded inverters de.sign with the graphical SPICE
i;lpl.lt is shown in the following diagram. The SPICE input file of the
cascaded inverters and the simulation results are also "in the
following diagrams. |

L il

"'.{('

b

L

[

B

Al

LK

LK

4

ol

_1

<]

il

qijl

=il

f~]
}~1

™=
)

LY
LI

TRAN, ((ZNS 20NS

-

>

KT

i
=
s

s

]

SULSE(0 § ONS QN3 ONS 5NS INSTH= {E TR
=

2

s

[

as
1
H

I

| 5

1=

i
= T E——
ro

[

(u

HH

[

il

._]HI

—]

B

s aillll
]

()

¢ 3

Y

¢

11-JAN-88 22:12:11 invert4.in

Cascaded 4-inverter in Series £

kk% UC SPICE x&k , MIN_RESIST 50. 000000 HIN_CAPAC 0. OQSOOOPE
.OPTIONS NOMOD NOPAGE

% Northern Telecom 3 Micron CMOS PRGCESS
% Models Taken Erom CMC Document IC87-1
& Moditied by Alger Yeung on 9/4/87

.OPTIONS DEFL=3uM DEFW=3UM DEFAS=60PH"~2 DEFAD=60PM"2

+ LIMPTS=20000, ITL3=10 IIL4=30 ITL5=40000

+ LVLTIM=2 ITL6=30 METHOD=TRAP GMIN=1.E-10

+ DEFL=3U DEEW=3U ABSTOL=10PA UNIOL=10UV

.MODEL N NMOS (LEVEL=1 VI0=0.7 KP=4.0E-5 GAMMA=1.1 PHI=0.6

+ LAMBDA=1.0E-2 PB=0.7 CGS0=3.0E-10 CGD0=3.0E-10 CGBO=3.0E-10Q
+ . \RSH=25 CJ=4.4E-4 ¥1=0.5 CJSW=4.0E-10 MISW=0.3 JS=1.0E-5

+ T0X=5.0E-8 NSUB=1.7E+16 TPG=1 XJ=6.E-7 LD=3.5E-7 U0=775)
.MODEL P PMOS (LEVEL=1 VID=-0.8 KP=12E-6 GAHMA=0.6 PHI=0.6 .

+ . LAMBDA=3.0E-2 PB=0.6 CGS0=2.5E-10 CGPOD=2.5E-10 CGBO=3.0E-10
+ RSH=80 CJ=1.5E-4 KJ=0.56 CJISW=4.0E-10 MISW=0.6 JS=1.0E-5

+ 10X=5.0E-8 NSUB=5.0E+15 IPG=l XJ=5.E-7 LDB=2.5E-7 U0=230)

.SUBCKT HIGHER 4 2 1

%k PIN 4: POWER . i
*k PIN 21 OUT1 //)
k% PIN 12 INP]

Akkx COMPONENT N-Iransxstor.

M1 21 00N L=5.000 W=5.000 AS=222.00F AD=273.50F "

kxx COMPONENT P-Transistor:

M2 21 4 4 P L=5.00U Ws5,00U0 AS=222.00P AD=273.30P
.ENDS HIGHER '
* FOWER=4

‘% QUTPUT=2

% INPUT=3 ' o
% INTERMEDATE=S : -

X1 4 7 5 HIGHER

X2 4 2 6 HIGHER"

X3 4 6 7 HIGHER

X4 4 5 3 HIGHER

V240DCS

V1 3 0 PULSE(D S ONS ONS ONS SNS 20NS)

.TRAN .2NS 20NS _ . -
WIDTH CUT=124

JPRINT IRAN V(2) V(3) V(D)

JPRINT TRAN'V(2) W(7)

.END

£0-3 £0-3 £0-3 80-3 80-3 00+3
0002 0009T' 0002F' 0000B® 0000V _ 0000°

96°1

I'Illlllll
I 2 =)it

1AV

.-
['}
L
Mt

—
[=
H

-

:_“.'_.‘.'J“' :

-{_J‘—“':

gy
A

2Ty

Y
. .
:

- <'G
o (G)A = (D) @ (2)A W
A3Toe1Id Ry pagEeESa UT A3 A8AUT —+ PBSPRESS

= o , -

€

)

¢

¢

S

A last section about the Electric is the network comparison. A
network maintainer is able to compare tl‘le'networks in the célls
being displayed on the screen. Use window split to edit two cells at
once‘, then use tellaid network compare to compare them. Once
compared, nodes in. one cell can be equated with nodes in the other
simply by selecting one and using “ tellaid network compare
highlight-other: For example, if a schematic and .the corresponding
mask layout are compared, it would be very easily to éhltv:ck whether

the network of the mask layout is identical to the one in the

schematic.

-

For more information about Electric, use the help fécility.on the
Electric design system or refer to Electric reference manual and
Electric tutorial. Both can be obtained from the GPX workstation by
typing: |

tbl doc/electric.1 | troff -man T | 1

troff -ms doc/electutor.nr |
More information regarding the creation of technology file, database

variables and routines can also be found in the workstation,

Appendix III

Circuit Designs and Simulations

o

(3

t)

Appendix III

Circuit designs and simulations

This appen&i:g shows a number>of circuit designs and the circuit
simulaltion results. Thp design's include a 4-bit ripple carry adder, a
4-bit transmission gate adder, and a faur-by-four shift register. The
schematic diagrams, SPICE deck input files, mask layouts are shown '’

in the following.

e

11-JAN-88 22:10:30 ripadder.in ' Page?

1-BIT RIPPLE CARRY ADDER
kik UC SPICE kA% , MIN_RESIST 0.000000, MIN_CAPAC 0.000000PE
.OPTIONS NOMOD NOPAGE

% Northern Telecom 3 Micron .CMOS PROCESS
& Models Taken From CMC Document ICH7-1

% Modified by Alger Yeung on 9/4/87

.OPTIONS DEFL=3UM DEEW=3UM DEFAS=60PK™2 DEFAD=GOPN"2 -

+ LIMPTS=20000 ITL3=10" ITL4=30 ITL3=40000

+ LVLTIN=2 IIL6=30 METHOD=TRAP GMIN=1.E-10

+ DEFL=3U DEEW=3U ABSTOL=10PA VUNTOL=10UV

.MODEL N NMOS ¢ LEVEL=1 VI0=0.7 KP=4.0E- 5 GAMMA=1.1 PHI=0.6

+ LAMBDA=1.0E-2 PB=0.7 C650=3.0E-10 CGD0=3.0E~10 CGB0=3.0E-10
+ RSH=25 CJ=4.4E-4 MJ=0.5 CISW=4.0E-10 MJISW=0.3 JS=1.0E-5

+ T0X=5.0E-8 NSUB=1.7E+16 TPG=1 XJ=6.E-7 LD=3.35E-7 U0=775)
.MODEL P PMOS (LEVEL=1 VT0=-0.8 KP=12E-6 GAMMA=0.6 PHI=0.6 _

+ LAMBDA=3.0E~2 PB=0.6 CG50=2,.5E-10 CGD0=2.5E-10 CGBO=5.0E-10
+ RSH=80 CJ=1.5E-4 MJ=0.6 CJSW=4.0E-10 MISW=0.6 JS=1.0E-5 .
+ T0X=5.0E-8 NSUB=5.0E+15 IPG=1 XJ=5.E-7 LD=2.3E-7 U0=230)

.SUBCKT SCHEM 21 22 23 6 12 20 3 8
*% PIN 6: CARRY

Ak PIN 121 SUM

xk PIN 23: C 4

x% PIN 22: B

k% PIN 21: A

Ak PIN 20: POUER

kxx COMPONENT Iransistor:
Ml11212020°P

kkk COMPONENT Iransistor:

M2 1 22 20 20 P

kikk COMPONENT Iransistor: -
M3 222120 P

kkk COMPONENYT fransistor:

M4 3231 20°F -
kkk COMPONENT Transistor:

M5 321220 P

kkx COMPONENT Transistor:

M6 323 40N

kkx COMPONENT Iransistar:

H7 3321 SO N

kkkx COMPONENT Iransistor:

HB 421 OO N

kkx COMPONENT Iransistor:

M9 422 00N

Akk COMPONENT Transistor:
Ml0 5220 0N

kkkx COMPOMENY Transistor:
Mll1 923 2020°P

)

(

¢

ey

\

11-JAN-88 22110230 ripadder.in

Pagel

n

" kkx COMPONENT Iransistor:

M12 9 21 20 20 P

kkx COMPONENT Iransistor:

M13 922 20 20 P

*kx COMPOMENT Iransistor: 4
M14 10 21 9 20 P]
kkkx COMPOMENTY Iransistor: -
M13 11 22 10 20 P ~
#kx COMPONENT Transistor: g

Ml 839 20FP -

kkkx COMPONENT Transistor:

Ml17 8 23 11 20 P

~ ki&k COMPONENT Transistor:

418 837 0N

k&% COMPOMENT Iransistor:
MI9 721 0O N

4%k COMPONENI Iransistor:
M20 7 2200N

xkkx COMPONENT Transistor:
M21 723 00N

kx% COMPONENT Transistor:
22 823 13 O N

“hkk COMPONENI Iransistor:

M23 1321 140 N

xkx COMPONENI Transistor:

M24 14 22 0 O N

*kx COMPONENT Transistor:’
M25 6 3 20 20 P .
kxk COMPOMENT Transistor:

M26 6 300N

kx% COMPONENT Iransistor:

M27 12 8 20 20 P

*kk COMPONENT Transistor:

M28 12 B0 O N

.ENDS SCHENM

X121 2223 6 12 20 3 8 SCHEM

9
0
C3

PULSE(O 5 SNS ONS ONS 15NS 40NS)
.TRAN 0.2NS 40NS

PRINT TRAN V(12) V(6) V(22)

JWIDTH OUT=123
.END

-+

—

C C3AWIL
£0-3 ~£0-3 /0-3 £0-3
0000¥* 0002£' 000¥E' 0009}

.- ; i .:._

an ¢ J aud

— -) ! —1. 1

- % ! cen

- P

: P "

- o — 50'%

{ .

- N -

. U]

— f _ — 1

: b]

B . m

- _ ; ed * .

| ! _.] &Py

] H .\ ..ﬁ | “ | .

—e—a—a— i R
—p—o— i i 20g

| (DA T (DA @ (DA C
HIAAY AduYD Id4IY LI-T

%

SUM

I PR o

)

{

4

L

=3 ;[Ejlv e Dj

a
tamie

)

{

Schematic of 1-bit transmission gate adder

—CARRY

=y

£y

11-JAN-88 22:09:53 _ tgadder.in

;Page:

TRANSHISSION GATE ADDER K
#kk UC SPICE kxk , MIN_RESIST 0. oooooo HIN cnpnc 0.000000PE
.OPTIONS NOMOD NOPAGE

4 Northern Telecom 3 Micron CMOS PROCESS
% Models Taken Fros CMC Document IC87-1

x Hodified by Alger Yeung on 9/4/87

UPIIUNS DEFL=3UM DEFW=3UM DEEAS=60PM"2 DEEAD=60PH"2

+ LINPTS=20000 ITL3=10 ITL4=30 IIL3=40000 -
+ LVLTIN=2 ITL6=30 METHOD=TRAP GHIN=1.E-10
+ DEFL=3U DEEW=3U ABSTOL=10PA UNIOL=10UV

. ' ~
.MODEL N NMOS (LEVEL=1 V10=0.7 KP=4.0E-J GAHMA=1.l PHI=0.6

ot LAMBDA=1.0E-2 PB=0.7 CG6S0=3,0E-10 CGD0O=3.0E-10 CGBO=3.0E-10
+ T RSH=25 CJ=4.4E-4 HI=0.5 CISW=4.0E-10 MISW=0.3 JS=1.0E-5
+ © 70X=5.0E-8 NSUB=1.7E+16 IPG=1 XJ=6.E-7 LD=3.5E-7 UB=773)
.MODEL P PMOS (LEVEL=1 VT0=-0.8 KP=12E-& GAMMA=0.56 PHI=0.6
+ LAMBDA=3.0E-2 PB=0.6 CGS0=2.5E-10 CGD0=2.5E-10 CGBO=3.0E-10
+ RSH=80 CJ=1,5E-4 MI=0.6 CJSW=4.0E-10 MISU=0.6 JS=1.0E-3

+ T0X=5.0E-8 NSUB=3. 0E+15 TPG=1 XJ=5.E-7 LD= 2 SE~7 U0=230)

.SUBCKT SCHEMATIC 1312864 2
ik PIN 132 CARRY -
Ak PIN 123 SUM

ax FIN B2 €
% PIN 6: B ’ : -
xk PIN 4: A Fz
A% PIN 2: POMER - e
*Ahk COMPONENT Iransistor: ;)
. ML 010 120N
*A% COMPONENT Iransistor:
M2 0 11 130 N
Akk COMPONENT Irans1stor.
M346S5S 0N
kkx COMPONENT Transistor: !
M4 1463 0N
Akk COMPONENT Iffhnsistor:
M5 0414 0N
kkk COMPONENI Transistor:
M6OB7O0N
xk*% COMPONENT Transistor: , R ¢ ot
M7 5490N" . ‘
_ kkk COMPONENT Transistor: , v : .
"MBE 31490 N ' - N |

kkkx COMPONENT Iransistor:
M3 7311 0N

*xx COMPONENT Iransistor:
M10 14 5 11 O N

Akx COMPOMENT Iransistor:
M11 8 3 10 O N

)

.

11-JAN-88 22109134 tgadder.in

k% COMPONENT Transistor:
M12 73 100N

k%% COMPONENT Iransistor:
Ml3 14 422°P

%k COMPOMENT Iransistor:
Ml14 13112 2P

%% COMPONENT Iransistor:
MIS 12102 2P

k%% COMPONENT Transistor:
M6 5614 2P '
kxkx COMPONENT Iransistor:

. Ml73642°FP

#kx COMPONENT Transistor:
M8 7822FP

k% COMPONENI Iransistor:
Mi9 5149 2FP

kkxx COMPONENT Transistor:
M203492°P ’

- kkk COHPONENT Iransistor:

M21 73102 F

*kx COMPONENT Iransistor!

M22 7511 2°P

kkk COMPOMENT Transistor:

M23 14311 2P

k% COMPONENT Transistor:
M2485102°P .
.ENDS SCHEMATIC :
k& PIN 13: CARRY

%k PIN 12: SUM

*% PIN 8:
k% PIN 6:
k% PIN 4:
A% PIM 2: POWER

X1 13 128 6 4 2 SCHEMATIC

I 3 O

3
0
5
S

LSE(0 S SNS ONS ONS 1SNS 40NS)

.TRAN 0.2N3 4ONS

-PRINT TRAN V(12) V(13) ¥(6)
.WIDTH DUT=125

.END

e -~

e o e o T T T T

890°2

FAY)

9GT'¥

2'G
(A T (EHIA © (DA
H3IdaY TILYo ZDHmmHEmzq 1

~

Nz . oy . _ . : ke

Icil

jas

X

AnI
SN

H

u

l

l

|

N

—— 'Eg:= _-—E;EIE_'
=] H 2 - G = T B
= b R
=me= _ =i meE] R i
= ; i< HsSumIE sia e)y s = Beic
BN — === : ! =
] 1 md B4R
B : = =
= V5SS
X = = = ==
= | T
: l 3 —: fH- s:i=By =:= sin :_ S el A
A1) min = = :g_'_ == ’—:
= . duth 5

| ' vdd

- Mask la%ét of 1-bit transmission gate adder

LT

T

I

——

<
»
1
V
_ = _ -
[- =
] (o]
‘ - & 11
3+ -t i | | || raEi] | Ho e
EE et 15
— = l Fpet

Mask layout of a 4-bit transmission gate adder

TN

)

.

N -3

p b

Q.

N

4*

'4%_
-
T

Sm

Schematic of pseudo 2-phase latch

t)

QL_

11-JAN-88 22:11:12 shiftreq.in

-Page:

-

13

PSUEDD 2-

PHASE LATCH

Akk UC SPICE Ak , MIN_RESIST 50.000000, MIN_CAPAC 0.040000FF

.OPTIONS

NOMOD NOPAGE

4 Northern Telecom 3 Micron CMDS PROCESS
& Models Taken Erom CHKC Docusent IC87-1

k Modified by Alger Yeung on 9/4/87

.OPTIONS DEFL=3UM DEEU=§UH DEFAS=60PM"~2 DEEAD=GOPM™2

+
+

Y

+

LINPIS=20000 IIL3=10 IIL4=30 ITL5=40000
LVLTIM=2 ITL6=30 METHOD=IRAP GMIN=1.E-10
DEFL=3U DEEW=3U ABSTOL=10PA UNIOL=10UV

LMODEL N NMOS (LEVEL=1 V10=0.7 KP=4.0E-5 GAMMA=1.1 PHI=0.6

+ LAMBDA=1.0E-2 PB=0.7 CGS0=3,0E-10 CGDO=3.0E-10 CGBO=5.0E-10
+ RSH=25 CJ=4.4E-4 MI=0.5 CJSW=4.0E-10 MISW=0.3 18=1.0E-5

+ 10X=5.0E-8 NSUB=1.7E+16 IPG=1 XJ=6.E-7 LD=3.3E-7 U0=775)

.MODEL P
+

+\

-

PHOS (’LEUEL=1 YT0=-0.8 KP=12E-6 GAMMA=0.6 PHI=0.6
LANBDA=3.0E-2 PB=0.6 CGS0=2,5E-10 CGDO=2.5E-10 CGBO=5.0E-10
RSH=B80 CJ=1.5E-4 MJ=0.6 CJSW=4.0E-10 MISW=0.6 1S=1.0E-3

+ 10X=5.0E-8 NSUB=5.0E+15 TPG=1 XJ=5.3-7 LD=2.5E-7 U0=230)

.SUBCKT LATICH 39710821
%k PIN 3¢ PL1BAR
xx PIN 9: Pl
Ak PIN 7: P2BAR

xk PIN 10: P2

kx PIN 8: POWER

kk PIN 2: D

%% PIN 1:° @

Akk COMPOMENT P-Transistor:
Ml 2 3 48 P L=5.00U0 W=5.00U AS=217.00P AD=108.50P
kkk COMPONENT N-Transistor:

M2 29 40 N L=5.00U W=5.00U0 AS=2)7.00P AD=108.30P
kik COMPONENT P-TIransistor:

M3 5768 P L=5.00U W=5.00U0 AS=181.50P AD=1ll. OOP
k&% COMPONENYT N-Iransistor: .
M4 5 10 6 0 N L=5.00U W=5.00U AS=181.50P AD=111.00P
*k*x COMPONENT P-Iransistor:

M5 8 4 95 8 P L=5.00U W=15.000 AS=502. SOP AD=181.50P
kA% COMPONENT N-Transistor:

M6 0 450 N L=5,00U W=5.00U AS=477.50P AD=181.50P ' '
kA% COMPONENT P~Transistor:

M7 86 18 P L=5.00U W=15.00U0 AS=502.50P AD=227.00P

kxk COMPONENT N-Transistor:

MB 0610 NL=5.00U W=5.00U0 AS=477.50P AD=227.00P

.ENDS LAICH >

X1 397108 21 LATCH ’)
WIDTH OUI=125

*% PIN 3: P1BAR

A% PIN 9% P1

Xk PIN 7% P2BAR
k% PIN 10: P2

4

€4°

)

{

E

b

PN

11-JAN-88 22:11:12 shiftreq.in

k% PIN 8: PCHER

&k PIN 2: D

k% PIN 12 Q -

VPOWER 8 0 DC 3

VPl 9 0 PULSE(Q0 5 ONS ONS ONS SNS 20NS)
UPBARL 3 0 PULSE(Q 5 SNS ONS ONS 1SNS 20KS)
VP2 10 0 PULSE(0 5 1ONS ONS ONS SNS 20NS)
VPBARZ 7 O PULSE(S O 1ONS ONS ONS ODNS 20NS)
AVD 2 0 PULSE(O 5 ONS ONS ONS SNS 20NS)

VD 2 0 PULSE(Q 5 ONS ONS ONS 15NS 30NS)

*N’NﬂH#ﬂ”dﬂﬂﬂﬂﬂﬂ”””ﬂﬂ”"ﬂﬂﬂﬁﬂﬂ

* Start of Output Generation
*Uﬂ‘Nfl‘ﬂﬂ”ﬂd’#’ﬂdﬂﬂ”’lﬂﬂﬂN””HN”H
.TRAN 0.2NS 40NS

PRINT TRAN Y(2} V(1) V(9 V(10)

Page:

a

80-3 - 00+3
..m_oo%m . 0000°

=t

— 80'2

AN

21’y

_ 2'G
(OT)A + (B)A T (DA ©: (A O
HOL1¥"1 ISYH4L-—Z 0a3aNsd | _

o NN | | (o . e

= ~
N
-
\
- ! '
™ i » i
et — e
= =
e I
== =
I i X D %
1 N
B %
| =

¢}

Mask layout of pseudo 2-phase latch

¢

1]

]

il [10 EQi[ali
H Ea = Hid: L_l iRiD i=: iH _,WE
A)L @ || 1
o R ER S
E | R R
_m %Hw 1 = e .:.“] _
lm HE H . Rt P :mz u_H
| i Hisin dss : ErCH e T -H
N _
[el el)
It IM. =T i jiisie E M_
; fikii dilii:
=] || [= ¥ 1 E] | [} 1 [=
B T = [: = £

3

¢

¢)

¢)

Appendix IV

Graphic SPICE Mannal

Table of Contents

ZGRAPHIC SPICE SIMULATION TUTORIAL.........

L Preparation of Circuit Descripion............
IL ° Invoke GSPICE simulation ...
L. Plot the Siinulatiqn Resuit.... el
% -
-~

Graphic Spice Simulation Tutorial for the DEC VT241 Colour Terminal

. ™,
< \ u

Alger W. Yeung
CAD/CAM Centre | .
- University of Windsor
. : Windsor, Ontario

A

?

¢

)

¢

. .
\]

GRAPHIC SPICE SIMULATION TUTORIAL

SPICE is a general-purpose circuit simulation program for nonlinear dc, nonlinear
transient, and linear ac analyses. SPICE is capable of handling circuit with resistors,
capacitors, inductors, mutual inductors, voltage and current sources, and
semiconductor devices, namely diode, BJT, JFET AND MOSFET. SPICE has been
widely used in VLSI drcuit simulation because of it's built-in models for the.
semiconductor devices. In general, arcmt simulation is a 3-stage process:

1. Prepare dircuit description in. SPICE form.
2 Invoke GSPICE simulation program.
3. Interpret the s_imt'J.lation result.

In the first stage, we must prepare a circuit description file which shows the
connections between different electrical components in a netlist form and indicates
the desired circuit analysis to be performed by GSFICE. In the next stage, we invoke
the SPICE simulation program, and specify the circuit description file. The result of
the simulation is stored in specified files. In the last stage, the simulation result is
displayed in either tabular or graph form and judged whether, or not, it is
satisfactory. If not, the whole process must be performed again with a modified
circuit description file until the simulation result is satisfactory. |

}

.

&

4

f
'QGRAPHIC SPICE GUIDE

L Preparation of Clrcmt Descfiﬁﬁon

This tuio;ial is not intend to ShOV\;f you how to prepare the circuit description file in

' SPICE form. This tutorial, however, will concentrate on the second and last stages.

We will show you how to run the GSPICE program' in both interactive and batch
mode. The result will be displayed graphically by using.the GRAPHIC program
which allows the user to-see one, two or all curves on a single graph. A zoom
function is also incorporated into the display program so that the user can examine.
the result in more detail. The creation of circuit description file is completely
explained in the SPICE manuals available from the Department of Electrical

Engineeri'ng. oo ' ‘ | - _ /‘ -

4

. A simple circuit description file is prepared to analyze the performance of a CMOS

inverter. The file, shown below, defines a subcdrcuit of an inverter gate. Power and
ground are specified and the type of analysis is also indicated. All the nodes of the
circuit are numbered. A PRINT command is used to indicate that the result of the.
analysis at the specified nodes will be stored in a tabular form. The .PRINT
command serves two.puxposes: p : /

1. Store the data in a abular form. -

.2 Prepare a data file which is used ‘to obtain colour plots in a VT240
terminal. ‘

w

Since the .PRINT command will allow the plotting of graphs through the program.

' GRAPHIC, the .PLOT command is not necessary in order to obtain graphical output. |

'i'cst of Inverter CcL.
- [
* MOS TRANSISTOR MODELS

»*

* DRAIN GATE SOURCE SUBSTRATE MOD1 L=3U W=3U

* nmos enhancement -
OPTIONS DEFW=3U DEFL=3U DEFAD=81P DEFAS=81P NOMOD LL'MPI‘S:ZOOO
JTEMP 27

MODEL NMOSE NMOS LEVEL=3 KP=30.0E-6 VTO=0.7 TOX=3E-8GAMMA=1.1

Page2

]

e

GRAPHIC SPICE GUIDE

"* pmos enhancement ;

+PHI=0.6 LAMBDA=0.01 RD=40 RS=40 PB=0.7 CGSO=3E-10 CGBO=S5E-10
+CGDO=3E-10 RSH=25 CJ=44E-5 MI=0).5 CISW=4E-10 MJSW=0.3 JS=1E-5
+NSUB=1.7E16 XJ=6E-7 LD=3.5E-7 UO=T75 VMAX=1E5 THETA=0.11
+ETA=0.05 KAPPA=I

MODEL FMOSE PMOS 7\3:ij= 16.0E6 VTO=-0.8 TOX=5E-8 GAMMA=0.6

+PHI=0.6 LAMBDA=0.03 R=100 RS=100 PB=0.6 CGSO=2.5E-10 CGBO=SE-10
+CGDO=2.5E-10 RSH=80 &=15E-5 MI=0.6 CISW=4E-10 MISW=0.6 JS=1E-5
+NSUB=5E15 XJ=5E-7 LD=2.5E-7 U0=250 VMAX=0.7ES THETA=0.13

+ETA=03 KAPPA=1

»>

o

* Start of Subcircnits

. ’ —

* Simple Inverter

»

* 1=VCC 2=VSS 3=INPUT 4=0OUTPUT

 SUBCKTINVERT 1234 ~

Mt 4 3 1 1 PMOSE W=9.3U L=3U PD=42U PS=30U AD=71P AS=49P NRD=2.1 NRS=1.5
M2 4 3 22 NMOSE W=3U L=3U PD=24U P5=38U AD=37P AS=72P NRD=26 NRS=4.3
ENDS INVERT ﬁ ' '

- . oo

=

* Start of Main Circuits

vCC10DCS - "
X11023 INVERT

X210 34 INVERT

X3 1045 INVERT

V120 PULSE(S 0 10NS 0 0 10NS 20NS)

*\.\%\

* Start of Qutput Generation

-

'IRANB;UQIS 50NS

* PRINT TRAN V(3) V(4) V(5)

N ’

NG © Page3

T ————— ——— T i S Sl iy D el A T s e = T S T T A T T —— S — T — — —— T —

e

(4

" To run SPICE in an interactive mode, type

et ——] ——— o — s e e —— ————

IL Invoke GSPICE simulation

We can run GSPICE simulation in either interactive mode or batch mode. If your
circuit has more than ten transistors, it is recommend that you run SPI('_'E as a batch
job, because of the time r?qmred for simulation.

e

- RUN GSPICE
The GSPICE program will prompt you for the SPICE mput filename and two output
filenames. Type the filenames as follows: |

INPUT FILE: inverter.in
. OUTPUT FILE: inverter.out
GRAPHIC OUTPUT FILE: inverter.dat

The Italic font indicates the computer prompt. The simulation of this simple circuit
will take less than 1 minute to complete. After the complete of the simulation, two

“files, inverter.out and inverter.dat, are created in your current directory.

To run GSPICE as a batch job, we adopt the filename convention which assumes
that the GSPICE input file-has a file type of ".in", the output file to have a file type of

o ".out”, and graphic output file of ".dat". Once this convention is established,
.runmng SPICE as a batch job is very easy; just type

BSPICE

hY

s

The program will ask you to enter the input file name as follows:

1

Enter the input name: inverter

A batch job is then created and executed. After the batch job has finished, the
program will beep once to indicate the completion of the simulation. As with the
interactive progmﬁ\, two files, inverter.out and inverter.dat, are created in your
current directory. |

Page 4

¢ 3

GRAPHIC SPICE GUIDE -

s S —— —— — T Ty ol S S . TP S Ay — —————— T S s} e SN S S AL S S S Sk S S U el W A S S ——— — — —

Alternatively, you can create the batch job and specify the inpué filename all on one
command line as follsws:

BSPICE inverter

II. Plot the Simulation Resuit
. N

i

: . 7
Since the ".dat" is created, we are ready to plot the simulation result by using a

program called GBAPIﬂC. To run the GRAPHIC program, type
RUN GRAPHIC

The program will progtpt you for input file name as follows: |
Enter the input file name: inverter

The program will ask you to select a graphic setting or to take the default setting. We
will take the default setfing for the time being. We will show you how to change the
graph setting later to cu.f';tomize your graphic output. The program will tell you how
many different output plots, there are in the input file and will ask you which two
curves you want to plotf 1f 'you would like to see only one curve on the graph paper,
you can select the same curve twice. The program offers you three choices; you can
see one, two or all curves on the screen. |

. Page5

- ———— - — " — e S —— A —— —

7 In this example of the inverter circuit, we select V(3) and V(4) to be plotted, as
shown below. The screen will be cleared, and then the following dialog occurs.

~ Take the default graphic setting? (Y/N) Y
There are 3 curves in the input data.

1. V{(3)
2.V(4)
3.V(5)
4. All turves

Which two or all curves you want? (1-4)

1st curve: 1
2nd curve: 2
.
. A graph is plotted as illustrated in Fig 1.
‘Test of Inverter Circuit
-] g Ve
1.3 - T L I T T § | a-a
jorenn] e e o o B T T i
i =1 ! T F IR
4.3
e S £ o
' = T 1 T
. 2.4 L—-? i i \ [~ =t E4§-"?-"+--
" . i . :
- 1 H
>

Page 6

Fig 1 Graph of V(3) and V(4)

3.2

4, 144

2.da8

<¥+irah

f/

¢

GRAPHIC SPICE GUIDE

The graph consists of title, legend, title axes, markers and two curves which are
drawn in two different colours, namely red.and green on the colour monitor. The
program also offers grid and shade which are set in'the graphic output setting. The
GRAPHIC program also mcorporates a zoom allowing a more detail plot of the
graph to be obtained.

Let us look at the zoom feature. After the graph has been completely drawn, hit the
Z key to bring up the zoom function. A cross-hair cursor will be displayed at the
lower left-hand corner of the graph paper. You can move and position the cursor by

pressing the four ARROW keys, as shown in Fig 2.

Fig 2 Arrow keys for controlling the cursor

The speed of moving the cross-hair cursor can be charniged by pressing the PF3 or PF4
keys. Hitting the PF4 key causes the cursor to move faster whereas hitting the PF3
key makes the cursor slower. If you would like to see a portion of the graph in a full-
screen scale, you position the cursor at a corner of that portion of the graph and hit
any key except the Z key, C key or DELETE key. The cursor then disappears and a % /
symbol is drawn. Now you can define the zoom window by pressing the four
ARROW keys again. A ‘rubber-banding’ rectangle is displayed as shown in Fig 3.

The increment value for the chanéing the size of the zooming window can also be

adjusted by pressing the PF1, PF2, PF3 or PF4 keys. The increment value of PF4 is the
greatest and the value of PF1 is the smallest one. After the zoom window has been

. , Page7

-

¢

- . "

GRAPHIC SPICE GUIDE

———_—” " — oy T} — et B W S A L ks R W S T o T — T T . " TS _?. g T o e, W . AL S D A S S D B, ol S S e gt

defined, you hit the Z key to zoom in. However, if you want to change the zoom
#rindow or start at a new location, hit the C key and then you see the cross-hair
cursor again. You always use the cross-hair cursor to define the first corner of the
window. In some cases, if you decide not to zoom in any part of the graph, hit the
DELETE key to delete the zooming function.

, " Test of Inverter Cct. Rubber-Band

. _ rectangle ’/
a4 U o U4) /
8.9 o . s 5.2
I S s }é.ﬂ o =11 e R A
u s =+ il il Horfoneime
492 fm e] 4
......?.....'L..*_..... .1.....*—.1......[. 2 i e -1.—/{ T S
e i ¥ it T R D 10 N
q.14 """L'L' T + A} e e 2.048
-~ S T T T ey T ﬂ.;.i....a_..a......a..t_.s_..s_.. <
M (T N 9 - - FUBHE Y 0 1L HI .{ s fomes] ~
N U S S A ST 100 I Tt S L. e .
> 1.98 . 4 i [3 . : =. 33T w
. - I LI T 1] ¢ 1 i :
Qe et .
VA i s e e i e e o
I OO OO O YO O Y O A F % !
S5 NS R IS A BT TN L A N
-y R I i | H i i - N
B0 1060 20200 .3denp 4pedie .eod
E+em a7 E-37 E-u7 E-Z7 E~-B7
TILHE

Fig 3 ‘Rubber-Banding' rectangle

When' you have defined the zoom window, you hit the Z key. The content of the
window is plotted in full, as shown Fig 4.

When you decide to leave the graphic window, hit the RETURN key once. The
program will ask you whether you want to zoom out by ‘selecting Y/N. If Y is
entered, the graph of the Fig 1 is drawn again. If the N key is pressed, the program
will ask you whether you want you want to stay with the same set of data by
choosing Y/N. Entering Y will bring you back to Fig 1. If you hit the N key instead,
you exit the GRAPHIC program. Since you have seen what happens when you select
two different plots, we would like to show you now what will be drawn if you select
to draw all plots on one graph. Using the example of the inverter drcuit, we select 4
(All curves); you will see all three plots, as shown in Fig 5.

Page 8 _—\

I

S

— A S — ——— ————— T T e e S S T S S iS ey T W S S T T iy i S e S A S iy i f— T . S S . —— . — . ——— —

“ . M
g Test of Inverter Cct.. g
-
a W) o Ui4)
S.2 o — 4.8
oy U0 NSO SO JUU: WU DU J 0~ S eetr ety o]
1 ‘;,._ i { }7’ .:],...{:.:i......__i..-_x_...:?,.._
SO s s . I T SO N0 S S W M i PP
- i b (I T T R T T [
OO SO0 000 NN 0 T O O A O S O 0
A 2B p—_———— TR, DU Y O M O Y O NS [ttt
M .]] . .] 'y ~
» 0 S S Y . TGS G YA AL O O U0 (U S 0 >
b i e ".-'!—l i 'y e o—pe—t v
B T MU I ' s e s i O S SO RS SO
‘ _.L.KL._.E;('¥= U U 1N OSSO O S DU OO O O
1 T T T Y RS NN b St S R SR A T 098
. - - - - n\- - - [3 - - [.
B e e o T e e
I
IV U O S i d TR SO IO B o sp o st s e o
s i i i [
. 1500 .21p4q 22200+ 23529 .24762 26649
E-a1 E-B7 E-07 E-97 E-67 £-a7
‘fﬁ‘ TIME
A
. Fig4 Zoomed plot of window
= .
-
Test of Inverter Cct.
m U a Ve a3 WS
5.8 — —— —r T
e o e s i FIE T S s e e e fo { e
;:&:&:S::SL&W‘ LR AW T R S S R
. . + \ [. .lt Iy . 3 '.:_-_:_-3 Q,_%_%__
&.22 Pt B L il - y
) [N it Wt T L
. el . . -4 v " . . H
L T T T T e T
1.1 » .] L » 1 » I] J{u. T » H 1 3
: [Ty & & N t1s &} Y
. +] 'l; 1 » % -] FIL . -' ‘
R S
T 1 LE T
SR | SO 1 YOS U0 U N 3 0
.....’.....’_..5_...3. SUETU N OO W - Ly H—
B e, o /| A, I .0
S UMMM = R i
..".4 bl * + 4 a M - -
. pede . 19000 2BX0 , .JesER . 4400 .50000
Eved E-0? E-47 E-07 Ea7 E-g7?
TIME
.~
[

Fig 5 Complete graph with all 3 plots

Page9

FY

3

i
Nl

e

~ be stored in a file to be used for future reference.

GRAPHIC SPICE GUIDE . p

_____ —— — —— ——— ——————— — —"] S S ——— " r— T v — — ————— —

Before we end this tutorial, we would like to show how to change the graphic
‘setting for the graphical output. If you hit the N key, when you do not want to take
the default graphic setting. the following dialog will occur. If you save the graphic
setting, the graph will be drawn according to the new setting until you[/change the
setting again. '
Take default graphic setting? (Y/N) N " |
The following information will be required for the setting. .
Grid? (Y/N) Y -
Shade? (Y[N) N
- Enter the number of cell on X-axis 5
Enter the number of subcell on X-axis 4
- Enter the number of cell on Y-axis 5
Enter the number of subcell on Y-axis 4
Save the graphic setting? (Y/N) Y

i

" It.is much easier to quickly jucge the result of the simulation graphically. The zoom

feature allows close-up examination of portions of the resuit The .PLOT output can

'~ also be consulted to obtain exact numbers. If the simulation is not satisfactory, the |

circuit description fie has to te modified and the whole simtuiztion process must be
performed again untii the design specificacions are mex

Finally, the simulation process is completed, and the resuits or the simulaton can

i

/
™~

The GRAPHIC program has been used on a variety of grachical output, for example
to generate piots. for digital fiiter design. You can also prerare an input data e to

- generate your own drawings for.reports or seminars. A similar program called

TGRAPHIC has also been written to generate high quality graphic plots in many
different colours and forms.. The TGRAPHIC, program is currently working on the
Tektronix 4115 and Tektronix 4125 high resolution terminals in the VLSI design
room. For further information, contact the author. ,

Alger W. Yeung
CAD/CAM Centre
September 1987

st

Page 10

¢

¢)

¢)

Vi
F;IIS-JAN-BS 14:1@:06;F GRAEHIC.EGR

CP(NHNNN!HHNAIHNN‘N”HA’N‘)UNNNNHNNN””RNNN”*’H”ﬂHNHN”NHNNHNNN””HH&NNNH”H”N”””NN

C This program generates plot of the SPICE simulation results, *
C It works closely with the GSPICE program. Users can select a *
C number of options such 3s number of curves, zooming feature *
C hardcopy output. The graphic setting can be changed as ”
C desired. The setting includes grid, shade, number of division®
C , number of subdivision. ~
c The praogram can also work with other a3pplication programs, *
C like filter design programs. ¥
CNNNHNNNNN’NHNNNNNl‘(h’NNNNNNHHNHN’NHNHHHHﬂ'ﬂHNNN”NNNHNN”HNNNNNNNNNNHNNNNNNN

CCCCCCCCCCLCCCcoocoocococcoeecceccceccecocceccecee

C Author: Alger W.K. Yeunq ' - C
C Version: 2.01 - . C
C © Date: Janmuary 1987 C

CCCCCCCCCCCECCCCCCCCCCCCCCCCCCCECCCCCECCCCECCCCCC
character440 file_nane
character toggle, 5tr1n9k3)
common /data/ (1000),y(1000 8),small _value(8) blg value(B)
1 small_y,big_y,small_:x,biq_ A,numfun numpt
charactersB y_tltle(B)
common /niame/ p_title,x_title,y_title
characteri?72 p title
characteri8 _title
resl tempay(IOOO)
character#B temp_title,stringl
character40 a_title
logical so_or,soom
common /graphic/ix_cell,ix_scell,iy_cell,iy_scell,ifill_pattern
//* »1g_color,it_color,layout,num_curve,qrid,shade,marker_type,
/& icurve,icurvel

c common /mscel/ qrid,ix_cell,ix_scell,iy_cell,iy_scell,icurve,
c 1 icurvel,shade
' logical grid
data gqrid/.false./
logical shade _ :
Jats shade/.false./ }

call clesr_text
call move_to(l,1)

gqo0to 11

9 type 12 —

12 format(/,” File does not E/lSt)

11 type 10

10 format(‘ Enter the input file name: ’,$)
read 1,file_name

1 format (A)

¢ check the existence of the file name entered. .

c¢3ll clear_teut
open{unit=7,file=file_name,status=’old’,err=9)
closelunit=7,status="keep’)

-

L

15-1AN-88 14:16:21 ' "~ GRAPHIC.EOR ' ' Page: 2

e o Pk Bk P L (s B i B T A P A b o P R ey (ot o e e L B B B e o B S B o B 4 e o o o e o e o e e

apern{unit=7,file=file_name,status="0ld")
idefault=0

read(7,20) p_title
if (p_title.eq.’END’) then .
type %,/ No datz is in the file!!!..... Bye.
end if
if (p_title.eq.’END’) goto. 838
99 read(7,21) a_title
read(7,21) de_ac ' ' . '
read(7,30) numpt -
read(7,30) runfun
read(7,33) x_title,(y_title(j), j=1,numfun)

;

do i=1,numpt
read(7, 40) <(1) y(yliy 32, 3=1,numfun)
end do

20 format (A72) ' ’

21 format (A40)

.30 format (IB)

33 format{13,A8,T17,8(A8,4X))

40 format(12,E10.3,4X,8(E10.3,2X)) . ’

Qiﬁ c te find the min. and the max. values from the input data arrays.
g c3ll set_nodebug ' : :
call find minmax(numpt,:x,small_x blg #) /
TYPE & SHALL_X BIG X -
small_y=y(l,1) ' ‘ ‘ -
xigq_y=y(l,1)

do j=1,numfun
do i=1,numpt
temp_y(i)=y(i, 1)
end Jdo
call find_mirmax(numpt,temp_y,small_value(j),big_ value(J))'
if (small_value(j).1lt.small_y) then
small_y=small_value(j)
end if
. 1f (big_value()).gqt.big_y) then
big_y= blg value(j)
end if
end do
TYPE #,SMALL_Y,RIG_ Y

80 call text_scroll(l,24)
call move_tof(4,1)

C TO TAKE THE DEFAULY VALUE EQR THE GRAPRICAL SETTING.

_CALL DEFAULT_DATA

905 type *,* '

¢ 9

!

{

)

15-JAN-88 14116134 g\?PHIC EOR " Page: 3

/ {default=1 ¥
icyrve=]
icurvel=21
if (rumfun.qt.2) then
type 70,numfun

70 ¢ format(/,’ There are ‘,Il,’ curves in the input data.’,//)

do. k=1, numfun -
type 123,k,y_title(k)

123 format(10:x,11,’. ‘,AB} o
‘end do .
k=numfur+l ?{k
type 333,k ‘
333 - format(l0x,il,’. All curves’,/))
299 type 73,numfun+l
79 format(/ ‘ Which two or all curves you want? (1~ $11,7}°
393 type 330
330 format(/,’ lst curve: ,$)

call convert_real(sum,iof)
if {iok.eq. 1) gotc 35a
icurvessum

iall=numfun+l

if (icurve.eq.izll) goto 510

360 . type 365
365 format(/,’ 2nd curve: ’,%)
© 31l convert_real(sum,iok)

if {iok.eq.l) goto 360
icurvel=sunm

if (icurveZ.eg.iall) gnta 510

-

if ((icurve.lt.0).or.{icurve.qt.B8).or.(icurve2.1t.0).0r.

* {(icurve2.gt.8)) goto 299 .
if ((icurve, é;’k) ar. (1curve2.qt k)) goto 294
ol0 continye . //
o - end if : 3

\

if ((icurve.eq.0).or.{icurveZ.eq.0)) gots 199

.call imit_graphies() -
if ((icurve.eq.iall).or.{icurve2.eq.iall)) then
4561 izoom=0
call plot_alltizoom)
zoom=.false.
go_on=.false. 7
¢ to hit key Z to =zoom in any portion of the plotting area.

call get_key(j)
if ((j.eq.90),o0r.(j.eq.122)) then
e to get the coord. of the zooming area.

L.

.

v $)

15-1AN~88 14:16:48 GRAFHIC.FOR ' Page: i“

=)

)

call cuk?or(xl,yl,fﬂ,yﬂ,zoom)
erd if

if (zoom) then
call zoom_in_all{xl,yl,x2,y23,90_on)
end if

c if the usgf/:;;ts to draw the original gqraph.
///if (30_on) gqoto 4361 .

. end if
if ((icurve.eq.iall).or:(icurﬁez.eq.iall)) goto 580

436 izoom=0
call plot_curve(izoom) - e
zoom=,false.
g0_on=.false,

c to hit key Z to zoom in any portion af the plottlng area.
call get_key(j))
if ((j.eq.90).or.(j.eq.122)) then

“c to get the coord. of the zooming area.

call cursor(xl,yl,:2,y2,zoom)
end if

if (zoom) then
“call zoom_in(xl,yl,~2,y2,90_on)
end if

¢ if the user wants to draw the oriqinzl graph.
if (g9o_on} noto 456

a80 if ¢(pumfun.gt.2) THEN
call text scr011(°3,24)

istay_on=0
295 type 230
230 format(’ Stay? (Y/N) V)

call get_key(i) -
if ((i.ne.B9).and.(i.ne.121}.and. (1 ne.78).and. {i.ne.110))

& aoto 255

if ((i. eq.89).or.(i.eq.121)) then

T astay_on=1 .

call clear_text

call clear_screen
end 1if

end if * ;

if (istay_on.eq.l) goto 80 : Lo

199 read (7,20) string

¢)

¢)

)

¢

15-IAN-88 14117100 GRAPHIC.FOR ' Page:

838

“if (string.ne.’END‘) then

B -

call clear_text
call clear_screen
ernd if o
if (string.ne.’END‘) goto 99
call text_scroll{l,24) S
end . -

CCCCCCCCCCCCCCCCCCCcccceccccccccccccécccccccccccccccecccccccccccccccccc

c

. e
e to change the default value for qraphic paper setting., , ¢
o : c

30

32
31

[M o IR o B o

iCCCECCCCCCCCCCCCCCECCCC

*

subroutine default data

common /graphic/ix_ cell I scell yiy_cell,iy_ SCﬁ}l yifill pattern
yig9_color,it_color 1ayout num_curve,qrid,shade,/marker type,
icurve,icurvel

logical grid,shade

character g9,s

type 30

format(//,’ Take the default graphic settimg? (Y/N) 7,%)

1.

qo0to 31]
type #,char(?7)
c3all get_key(i) .

if ((i.ne.120).and.{i.re.B89).and.(i. .ne. 78).and.(1.ne.110))
qoto 32

. h1t x! : : o -

B
if ((1 eq.121).or. (1 eq 89)) then ¢ v

ppen(unit=20,file=’default.def’,status=’old’,err=70) '
read(20,100) g . .
read(20,100) s . - ‘ . B
read(204101) marker_type
read(20,101) ix_cell .
read(20,101) ix_scell”
read(20,101) iy_cell
read(20,101) iy _scell.
read(20,102) ifill_pattern
read(20,101) i9_coler

. read{(20,101) it_color
read(20,101) layout
read(20,101) num_curve

© elose{unit=20)

if. (g.eq.’Y’) then .
qrid=. true. ' .
else
qrid= false.
end if

1f (s.eq.’Y"}) then e

-_-L-—.-L.—. Ao rmr—— e

(...:§

_'.‘l‘.}

Jglat-ge. 14425 spec ﬁ.,}seﬁ__maeumnmri

C

‘—'(—Jnl_J_ﬁ(_)

SI13Ag " e Ll YT w

mar?er_type-—l -

ix_cell=5%

iy_cell=3

" iu_scell=4

iy _seell=4

ifill_pattern=8

ig_color=4.

it_color=7 ! -

layout=2

num_curve=1

cantinue.)
else ~ L

type 45 N -
format(/, /
7 The following information will be required for the setting.’/)

type 50

format(/,” Grid? (Y/N) s 3

call get_key(i)

if ((i.ne.BN.and.C1.ne.12D).and. (i.ne. 78) and.(i.ne.110))
qoto 59

if (ti.eq.89.or.(i.eq.121)) then /’fﬁ\

arid=.true.

LogEry

else
gqrid=.false.
3=|’NI- . . N

“erdd if

type 540

farmat(/, Shade? (Y/N} /,3%)

call get_key(i)

if ((i.ne.89).and.(i.ne.121).and.(i.ne.78).3nd. (i. ne.110))
qoto 3543

if ((i.eq. 89) or.(i.eq.121)) then
shade=.true.
s=Y’
else o
shade".ialse
5= N’
end if

C enter the number of- cells and subcells of the graph paper,

.

3

¢ 3

¢)

L

333

—

15-JAN-88 14:17:32 QFAPHIC.EGR
310 type 60 :]
6O _format(/,’ Enter the number of cell on X-axis ’,$)

» call convert _real{sum,iok)}

315
320

325
=

330

if (iok.eq.l) qoto 310
if (sum.1t.1.0) goto 310
ix_cell=sum

type 320

format{/,’ Enter the number
call corwert_real(sum,iok)
if (iok.eg.l) goto 315

if (sum.1lt.1.0) goto 315
is_scell=sum

type 63

~format(/,” Enter the" number

¢all convert_real(sum,iok)
if. (iok.eq. 1) qoto 325

if (sum.1t.1.0) aoto 325
iy_cell=sum

type 333

- format(/,’ Enter the number

call convert_real(sum tok)
if (iok.eq.1) goto 330

if {sum.1lt.1.0Q) qoto 330
iy _scell=sum

¥
type 395

format(/,” Enter the rumber
call convert real(sum,iok)
if (iok.eq.l) goto 390

of subcell on X-axis ‘,$)

L3

of cell on Y-axis ,%) Qh}

of subcell on Y-auis ‘., %)

of curve/qraph (1/2) 7,%)

if ((sum.1t.1.0).or.(sum.3t.2.0) goto 390

MLn_CuUrve=sun

type 201 -
format{/,’ Save the araphic

call get_key(l)

if ((l.re.121).and.(l.re.89).and.(l.ne.78).2nd.(1l.ne.110))

goto 202

setting? (Y/N) “y$)

if ((l.eq.l12l).or.(l.eq.89)) then
opent{unit=20,file='default.def’,status="new’)

write(20,100) g
write(20,100) s

write(20,101} marker_type

write(20,101) ix-cell
write(20,101) iu_scell
write(20,101) iy _cell
urite(20,101) iy_scell

write(20,102) ifill_patter;\

£y

15-JAN-88 14:17:45 GRAPHIC.EOK - Fage: 8%

write(20,101) ig_color

annn

write(20,101) it_color ‘ .
write(20,101) layout - - .
uwrite(20,101) num_curve
close(unit=20)
end if
end 1if
100 format (A)
101 format(I2)
102 format (13) N
return
end
¥ 3
subroutine plot _curve(izoom_in)
common /data/ :(1000),y(1000,8),small_value(B),bigq_value(8),
1 small_y,big_y,small_x,biq_x,numfun, nunpt
characteriB y_title(8)
conmon /name/ p_title,x_title,y_title
characteri72 p_title
. characteriB x_title
real temp_y(1000) _
© characteri8 temp_title,stringl
characterk40.a_title _
common /graphic/ix_cell,ix_scell,iy_cell,iy_scell,ifill _pattern
% ,1ig_color,it_color,layout,nun_curve,qrid,shade,marker_type,
& icurve,icurvel
c common /mscel/ qrid,ix_cell,ix_scell,iy_cell,iy_ scell icurve,
c 1 icurvel,shade

logical grid —
logical shade
.common /curve/ s_big 1,s_small_l,s_big_r,s_ small_r,s_big_x,
1 s_small_x . .
call set_nodebug %
call clear_screen
tall clear_text
c TYPE *,SMALL_X,RIG_X
¢ to draw the gqraph paper

if (qrid) then
call dpaper(‘GLIN‘,ix_cell,ix_scell, 'GLIN,iy_cell,iy_scell,

X ‘UHITE")
else
call dpaper (‘LIN‘,ix_cell,ix_scell,’LIN’,iy_cell 1y scell
x ‘WHITE") .
end if

c to label the axis

Yojer
.o i: 1"

)

15-JAN-88 14:17:358 GRAPHIC.FOK

do while(p_title(izi).eq.’” /)
i=i+]
end do
do while(p_title(j:j).eq.’” *)
Cj=iel -
end do

call Inaxis(’XT/,p_titleCiij),,,)

()

=g
=1

o while(x_title(i:i).eq.” *)
i=it+) '
end do .
do while(x_title(j:ij).eq.”) -~

=1 ' ()
end dao _

if (izoom_in.eq.l) then
call Inaxis(’/XB’/,x_title(i:j),s_small :,s_big_x,.false.)
else _
call lnaxis(/XB“, title(izj),small_x,big_,)
end 1f ’

oL =

c to label the left y-axis for the lst selected curve.

temp_title=y_title(icurve)

J=8

i=1

do while(temp_titlefi:i).eq.” *)
1=1+]

epnd 4o

do while{temp_title(j:j).eq.” *)
=il

end do

if {izoom_in.eq.l} then .
"call lnaxis(’YL’,temp_title(iij),s_small_l.s_big_l,.false.)
else . :
call lnaxis(’YL’,temp_title(i:j},small_value(icurve),
& big 'value(icurve),.false.)
end if - !

¢ call lnaxis(‘YL‘,temp title(i:j),,,.false.)) :
E legendxl=i : i : .
legendyl=j
§%rin91=temp_title.
) N

r to label the right y-axis for the 2nd curve.
if (rumfun.eq.2) then ’ l\;
temp_title=y_title(2) il o

j=8

i=1

15-JAN-88 14:18:11 GRAFHIC.FOR) Page: 10

do while(temp_title(iiid.eq.’ *)
i=i+l

end do :

do while(temp_title(j:j).eq.” ’) ‘ . -
=31 '

end do

if (izoom_in.eq.1) ther
call lnaxls(YR’ ,temp_title(iijd,s small _r,s_big_r,.false.)
else
call lnaxis(’YR’,temp_title(lzg),small_value(Z),
* big_value(2),.false.) -
end if '

c call lnaxis(‘YR’,temp_title(i:j),,,.false.)
legendu2s1 _
legendy2=) : /

erd if (o
: N
c to label the right y-axis for more than 2 curves.

if (numfun.gt.2) then
temp_title=y title(icurve2)
J':B ’

?‘ v i=1
(m» do while(temp_title(i:il. eq r)
i=i+1
end do
do while(temp_title(jrj).eq.” *)
J=i-1
ernd do

if (izoom_in.eq.l) then
call lnaxis(‘YR’ ytemp_ t1tle(1 3),s_small _r,s_big r,.false.)
else :
call lnawis('YR',temp_ t1t1e(1 j),small v:lue(lcurve7)
& hig_ value(ltﬂrve”),.false)

end if
c call lnaxis(’YR’,temp_title(ilj),,,.false.)
leqendu2=i
legendy2=)
end if o
c to ;%ot the curve against the left y-axis. -
v ’ .
i=icurve
k=100+i -
do j=1,numpt N
temp_yij)= y(;,l)
. end do
,({ . call pdatalnumpt,x,temp vy,‘L’, ’RED\.k, y ,Shade)
- k=k-100

call marker(k,-2.0,36.0)
call move(0.0,37.0)

¢)

¢

3

L

13-JAN-88 14:18:30 GRAPHIC.FOR

call set_textsize(li,)
call text(stringl{legend:lileqendyl))

c to plot the curves against the right y-axis the Ind curve.

if (rumfun.eq.2) then
i=2
k=100+i
do j=l,numpt '
temp_y(ji=ylj, 1)
erd do
call pdata{numpt,:,temp_y, R’,‘GREEN’,k, , ,shade,)
k=k-100
‘call marker(k,37.0,36.0) .
call move(39.0,37.0)
call sety textsize(l,)
call texf{temp_title(legend:2ilegendy2))
\

erd if ¢

c to plot the curve against the right y-axis for moré\than 2 curves,

if (numfun.st.2) then ' Y
i=icurve?
. k=100+1
‘ do “j=1,nunpt
temp_y(idep(j,1)

end do 7 -

call pdatalnumpt,x,temp_ vy, R, ‘GREEN’,k, , ,shade,)

k=k-100 '

call marker(k,37.0,36.0))
™~ call move(39.0,37.0) . .
call set_textsize(l,)
call text(temp_title(legend:2:ilegendy2)) - ’ -

E]

erd if

" return
end

subroutine plot_all{izoom_in)
common /data/ :(1000),y(1000,8),small_value(8),big_value(8),
1 small_y,big_y,small_x,big_ ",numfun numpt
characteriB y_ t1tle(8)
common /name/ p_title,x_ tltle,y title :
character472 p ¥itle B -
characterA8 «_title]
real temp_y(1000).
charactera8 temp_title,stringl
character#40 a_title
characterd color_var

Tt
.

3

)

G

15-JAN-88 14:18:45 GRAFHIC.EOR Page: 12

c&mmon /graphic/ix_cell,ix_scell,iy_cell,iy_scell,ifill_pattern
,ig_color,it_color,layout,num_curve,qrid,shade,marker_type,
1curve 1curve7

=

~

C - common /mscel/ qrid,ix_cell,ix_scell,iy_cell,iy_scell,icurve,
c 1 icurve2,shade
logical grid,color,shade
Comman /curve/ 5 b1g l,5_small_l,s_big_r,s_small_r,s b1g Ky
1 s_small_:
\ data color/ false./
© call set_nodebuy n
call clear_screen
call clear_teut

c to draw the graph paper

if (gqrid} then '
call dpaper(’ GLIN',lN cell,ix_scell,'GLIN’,iy_cell,iy_scell,

A ‘HHITE") X
elge)
call dpaper(‘LIN’,ix_cell,ix_scell,’LIN’,iy cell,iy_scell,
k WHITE")
end if

c to label the axis

=72
i=l N
do while(p_ t1t1e(1 i1).eq.’ ’)
i=i+l
“ernd do .
do while(p_title(jirj).eq.” *)
J=1-1
end o
call lnaxis¢/XT’,p_title(ilj),,,) i
JB ! .
1=l - .
do while(x_title(izid.eq.’”)
i=i+] :
erd do _ - -
do while(x_title(j:jd.eq.’ ')
i=j-1
end da:

if (izoom_in.eq.l) then
call lRaxis(’XB’,x_title(i:j),s_small_x,s_big_x,.false.) .

else
call lmaxis(’XB’,x_title(i:j},small_x,big_x,.false.)
end if
P - - . h
i

1f (izoom_in.eq.l} %hen

-£5'ﬂ

[

¢)

P

15-JAN-88 14:18:58 GRAPHIC.FDR

‘\

call lpaxis{‘YL‘, ‘,s_small 1,5 big_l,.fal
else .

call lnaxis(’YL’,’ ‘,small_y,big_y,.false.)
end if -

c to ﬁ&ét the curve against the left y-auis.

do i=l,numfun
k=100+1
do j=1,numpt

temp_y(jl=y{(j,1)
end do .
tolor=.not.color v N
if {colar) then)
color_var=‘RED

else , :
color _var='GREEN’
end if Y

e
se.)

call pdata(numpt,x,temp_y,’L’,color_var)v,i, yShade,)

end do A -
call set_linepattern(l,) - .

‘)
¢ to draw the legend of the curves.

call set_textsize(l,)
umarker=-8.0
smarker2=-6.0
k=2
do 1=1,rnumfun
stringl=y_title(l -
jj=8 .
ii=] ‘
do while(stringl{jjijjt.eq.” ")
Ji=ji-1
end do
do dhile(stringl(iiiii).eq.’”)

ii=ii-1 : -

end do

call set_color(’ ’,k)

b=kl -

if (k.eq.4) then - .
k=2

end if C:’f

call marker(l,xmarker,35.0)

call move{xmarker2,37.0).

call text(stringl(ii:jjl)}

smarker 2=umarker2+9.0

xmarker=xmarker+9.Q
end do ¢

return

!

_g..

15-JAN-88 14:19:11 GRAPHIC.FOR Page: 14

K

X
\ el 'j

subroutine zoom_in(xl,yl,x2,y2,next)

common /data/ :2(1000),y(1000,8),small_value(B),big_value(8},
1 small_y,big_y,small_x,biqg_:x,numfun,nunpt

character4B y_title(®)

common /name/ p_title,x_title,y_title

characteri72 p_title

characteriB x_title

common /qraphic/ix_cell,ix_scell,iy_cell,iy_scell,ifill_pattern
x ,igq_color,it_color,layoit,num_curve,qrid,shade,marker_type,
% icurve,icurvel

c comnon /mscel/ grid,ix_cell,ix_scell,iy_cell,iy_scell,icurve,
C 1 icurved
logieal grid,next
common /curve/ s_big_l,s_small_l,s_big_r,s_small_r,s_big_x,
1 s_small_x :

c use the ratio to find the value of y and % at different coord.
t_length_l=big_value(icurvel)-small _value(icurve)
yyl=t_length_1/33.04yl
yya=t_length_1/33.04y2

{y yyl=yyl+small _value(icurve)
N yy2=yy2+small_value(icurve)

t_length_r=bi%_value(icurve2)-small_value(icurve2)
yyd=t_length_r/33.04yl
yyd=t_lenath_r/33.04y2

Fyy3=yy3+small value(icurve2)
yyd=yyd+small_value(icurve?l)

L

Jlemgth_x=biq_x-small_x
al=t_length_w/61.0&x1
sx2=t_length_x/61.04x2

B sl+small _x
sx2=uxd+small _x

if (yyl.gt.yy2) then
s_big_l=yyl
s7small_l=yy2

else
s_big_l=yy2
s_small_l=yyl

-end if

a if (yy3.gt.yv4) then

g » - s_big_r=yy3 . _
i s.small_r=yy4 - :
g 7

else
TN
\\ s

15-JAN-8B 14119125 GRAPHIC.EOR -) ' Fage: 10

-

i . f
s_big_r=yy4 /
s_small_r=yy3

end if / "
if (axl.gt.xx2) then
5_big_x=uxl -
g_small_x=wx2
glse
5_big_x=uxd
5_small x=xul
end if
’ c to plot the curves within the range
izoom=1
call plot_curve(izoom)
call text_seroll(23,24)
accept %
c to’check whether the user wants to go back the original graph.
-
29 type 22
22 format(’ Zoom back? (Y/N) ‘e %)
e call get_key(jy
- if ((j.rne.89.and.{j.ne.l2l).and.(j.ne.110).and. (j.ne. '78))
* goto 25
if ((j.eq.89) .ar.(j.eq.121)) then
next=,true.
else
next=.false.
ernd if .
return
ernd .
| }9 ‘ //
subroutine zoam_in_all(ul,yl,u2,y2,next)
common /data/ x(1000),y(1000,8),small_value(B),biq_value(8),
-1 small_y,big_y,small_x,big_x,numfun,numpt
characterkB y_title(8)
commor /name/ p_title,x_title,y_title
characteri?72 p title
characteri8 »_title
conman lgraphlc/lﬂ cell,ix_scell,iy_ cell .1y_scell,1fill_pattern
% ,1ig_color,it_color layout num_curve,qrid,shade, marver type,
- % icurve,icurve?

— = common /mscel/ grid,ix_cell,ix_scell,iy_cell,iy_sd@ll,icurVEp

A C 1 icurve2

-~ logical grid, ne/t 3

common Jeurve/ s _big_l,s _small_l,s_big_r,s_small_r,s_big_x, h}\ "

1 s_small_x : e

)

}5-JAN-88 14:19:38 FRAPHIC EOR

¢ use the ratio to find the value of y.and % at differemnt coord.
t_lenqth_l=big_y-small_y
yyl=t_length_1/33.04yl
Cyyd=t_lenath_1/33. 04y

yyl=yyl+tsmall _y
yy2=yy2+small _y

t_length_x=big_-small_x
1=t length_x/61.04u]
.2=t _length_x/61.04&42

:él—v"1+small
12=uxd+small

if {yyl.qt.yy2) then
" s5_big_l=yyl
5_small_l=yy2
else
s_big_l=yy2
5 _small_l=yyl
grid if

if (Hxl.gt x%2) then
s_big:n 1
s_small x=w:
~else '
s_hig_x=wund
& small "'vwl
end if

c to plot the curves within the range

izoom=1
call plot_sall(izoom)

call text_scroll(23:24)

accept #
¢ to check whether the user wants to go bacP the or191nal graph
25 type 22 o =

a2 format(* Zoom back? (Y/N). ' $)
call get_key(j)
if ((j.ne.8P.and.(j.ne.l2).and. (j.ne.110).and. (j.ne.7B))
% qoto 25

if ((j.eq.8MN,or.(j.eq.121)) then
next=.true.

else
next=.false.

A

:

¢

)

¢

£

15-JAN-88 14:19:30 . GRAPFHIC.EOR * Page:

end if

return
end

- subpoutine cursor(x,y,xl,yl,zoom)

13
10
X
4
51
A

. e to the

byte key
loqical zoom

zaom=.false.

call set_writemode(‘CO’)
gqoto 10
call marker(4,x,y)

call locate(x,y,key)

if(key.eq."177} gqoto 200

if ((¢.1t.0.0).0r.(x.gt.6l.)ora(y 1t 00) cor. (yaqt 33000
goto 10 s

call marker(4,x,y)

if ({key.eq.’C’).or.(key.eqg.’c”)) goto 13

wl=y

yl=y
call box(x,y,xl,yl)
change=2.0

.call get_Rey(key _code)

call move_to(l,1)

tu=xl

ty=yl

if (key_code.eg.127) goto 200

if ((key_code.eq.67).or.(key_code.eq.99)) then ™
call boxix,y,ul,yl} iQ

ernd if

if ((key_code.eq.67).or.(key_code.eq.99)) goto 13

if ({key_code.eq.99).or.(key_code.eq.122)) then
i=key_code

end if

if ((key_code.eq.99).or.(key_code.eq.122)) gaota 87

if (key_code.eq.256) then
change=0.13
else if (key_code.eq.257) then
change=1.0 .
else if (key_tcode.eq.258) them -
change=2.5
else if (key code.eq.259) then
charge=35.0
end if .
if (.not.({x}.1t.0.0).or.(xi.qt.61.).ong(yl.1t.0.0.0r.
(yl.9t.33.))) then "L
ck the arrow cursor movenent.
if (key_code.eq.274) then

15-JAN-88 14520203 GRAPHIC.FOR ' . Page: 18

E .

30

yl=yl+change
else if (key_code.eq.275) then
yl=yl-change
else if (key_code.eq.2/76) then
#1=xl-change - (}T
else if (key_code.eq.2777 then
x1l=xl+change
end if
if ((x1.1t.0.0).or.(xl.9t.6l.).or.(yl.11.0.)0ra(yl.qt.33.))

~then

Hl=tx
yl=ty,
end if - :
call box(y,y,tu,ty)
call box(yx,y,xl,yl)
end if
i=key_code :
if (((i.ge,274).and.(i.1e.277)).0r.{i.2q.258).0r.
{i.eq.259).0or.(i.eq.256).0r.{i.eq.257)) goto 51

Y

call set_writeMode(’CO”)
call marker(4,x,y)
call boxGx,y,#l,yl)

tall get_key(1)
call move_to(l,1)

c to change the zooming ares.

87

if ({i.eq.67).or.(i.eq.99)) then
call boulx,y,xl,yl)
ern if

if ((i.eqg.67).or.(i.eq.99)) qoto 10

if (i.eq.127) then .

call bou(x,y.xl,yl)
call set_writemode(’'0OV’)
zoom=.false.

end if

if (i.eq.127) goto 200

if ((1.eq.90).or.(i.eq.122)) then
call bou{u,y,xl,yl)
call set_uritemode(‘GV’)
soom=.irue.

else 2
"type *,char(7)

zoom=,f3lse,

end if ’

if (.not.zoom) gotoc 30

¢

¢

ig

{

15-JAM-88 14:20:21 GRAPHIC.EOR Fage: 19

200 return
end

A e e R A A e e N Had d S R s a Y e e e el e el S e o
C e
c To corvert a text string to numeric value. ° -) ' c
o . - c
(Wl alaiaalaladd agadfalnnded afa niad sfaleladn afalat sdafatsqulandulod afud wlatatalafalalay sl adad sfala ind alalay adntadnf sl Wt W I ad
~subroutine convert_real(sum,icheck) L .

character4B80 string . .)

icheck=l : '

read 1,string
1 format (A}

if (string(l:1l).eq.’” ’) gota 2 T €

len=80 : '

do while(string(len:len).eq.” *)

len=len-1

end do

iicheck=0

do i=1,len .

ik=ichar{string(i:i)) K

if (Cik.1t.459).0r.(ik.qt.57).0or. (ik.eq.47)) then

iicheck=1 :

end if

end do

if (iicheck.eq.l) gota 2

11=1

sum=0.0

do i=len,2,-1

if (string{(i:i),eq.’.”} then

sum=sum/ii
ii=1
else ,
temp=iii{ichar(string(i:1))-48)
sum=sumn+temp

ii=1i410 'y
end if ~ .)/
‘ end do . T
if (string(l:l).eq.’~’) then -~ .
Sum=-suﬁ
else ' _ _
sum=sum+iii{ichar(string(1:1})-48) ~J
end 1f : : v
icheck=0
2 return

gnd

=

e

-

e

//4)i

-

15-JAN-88 14:20:35 .

"N nn

I3

D NN N Mo N

O n N MNm N
N

AARARARARKKARRAARARKKARKRARARARRRRARARARARAAERARKARKRARAKARARKARK KRS

GET_KEY

GRAPHIC.FOF

>

Returns the integer value of a keystroke.
Will accept shifted keys and 311 control keys

except backspace, which it will ignore.

k**i£#k*kk**k#k%*kkk#k***k*kk*k#kkkk**k*k**k*i*k**k**k*k**k**k*****i

INTERNAL:

text

term_set
data_str
enable T
statps

QUTFUT:

10.

¢ set cursor key to RESET

c

5

ii

rot used

terminator set mask for smg$read_string
dunmy variable for smgéread_string
.true. if virtusl keybosrd is erabled

error warning for smg%

routines

key press returned to calling program -

subroutine get _key(ii) : -

calling sequence

c3ll get_key(ii)

_implicit integerk4 (s)
“include ‘ ($trmdef)”’
include ‘($smgdef)’
characteril6b term_set
character2(data_str

logic3al enabled

. L L o
KRARARAKEAKKAAKRKAKAXAAARAAKAKKKARKRARKAKAAKAKXRAAKAAAKAAKRAKKAARKAAAK

43ta enabled/.false./ g .
data term set/"’/
/
smax=1
if(erabled). then ;
& status=smg$read_string(keyboardl,
1 . data_str, ,smax,trm$m_tm_noecho.or.tirm$m_tm_roedit,
13 + » ysterm_char) ..

i il
L

: {' if(,not.status) call libsstop

(Zval(status})

if (ichar(data_str).eq.32) ii=sterm_char

tf (sterm_char.eq.510) ii=ichar{data_str)

return
end i1f.

type %, .

-
~

¢)

¢ 3

Tt

S

OO OO, On Qo0 on

15-JAN-88 14:30:49 GRAPHIC.EOR

c create virtual keyboard

status = smg$create_virtual_keyboard(keyboardl)
if(.not.statud) call libdstop(ival(status))
enabled = .true.

70 to 10

end) 8

u

CCCCCCCCCCCCCoCeeoceeceLeccecoeceececeeeecocecoeccoecoccereccecceeceeecee
HENU CREATER PROGRAM-VERSION M2

DEPARTMENT OF ELECTKRICAL ENFINEERING

UNIVERSIIY OF WINDSOR ‘

WRITTEN IN FORTRAN-77

INDEPENDENT SUEROUTINES

new program which echaes the selection

SENT BY RAJA TO TEKALIKE ON DR.MILLER’S RERUEST

FOR THE EXCLUSIVE USE OF MR.ALGER YEUNG

EXTRACTED FROM U.OF.W. TIME SERIES ANALYSIS PACKAGE WITH
THE .FERMISSION OF RAJA AND DR.HILLEE

AUTHORIZED

subroutine print_at{iw,iy,text)
irteqger ix,iy

P characterx(X) text
character&3 bufy,bufy

write(bufi, (12)7)1ix

if(bufx(lill.eq.” ‘) bufx=bufx(2)
write(bufy, (12)/)iy o
if(bufy(l:il)y,eq.’ ‘) bufy=bufy(2:)

write(k,’(2)’) char(Q)//char(153)
1 //bufu(lrindex{bufy,”)=-1)//7'}"
I //7bufy(liindesx(bufy,”)-1%//"H'//text

return - . : >
end ’

subroutine tcom(text)

cnaracterili) text -

write(k, (a)’) char(0)//teut

return

end .
PR , 8

. subroutine move tD(l‘,ly)

“ characterx3d -buf:,biufy

write(bufn,’(iE)’)im 0
if(bufx(lil).eq.” /) bufxsbufu(2:) A

ite(buty,” (12)")iy
(H:;(bufy(IJI).eq.‘) bufy=bufy(2:)

nﬂnnnnnﬂnﬂn

-

15-JAN-88 14:21:04 GRAPHIC.EQR Fage: 22

write(k,’(2)7) char(0)//char(155)

-
1 //bufn(liindextbuty,”)-13//";" 5]
1 //bufy(liindex(bufy,” ")~1)//"H’
return
end
i
[/
B i s L} ~

=

1

¢)

)

¢

A
=~ LY
l/v
'
™ —~
— Fan .,
| ,

Appendix V

Macro Function Facility ¢

-

. o

=

- Appendix V |
Macro Functions

One of the interesting and useful features of Electric design.
system is the macro facility which allows users to customize the
user—mtcrface environment. [t 1nvolves creating new commands to
tailor the useféfcommands precisely. A macro is new, user;defined
command that contains a- collection of other Electric c¢ommands. 'l'.'his_r

. .
appendix will describe the" essential commands for defining macro
functions. The commands incl;x'de Iﬁacbegin,mac'end,var,echo,
terminal input and if,Jand these éommands can be combined to |
form /a;_»;p";(?werful user-iorqmand facility. A number of -macro
fu‘nction's have been written for speeding up the mask layout and
simulation proce'sses, and are listed at the end of this appendix.

The macbegin command starts the definition of a macro
function. If a name is given, a new macro 1s created. Otherwise, an
old macro is redefined. All commands issued after this command
until a macend command are remembered as part of the macro.
Examples can be found at the end of this'appendix. The) macro
command can be invoked by hitting a single chara % . Other
mMacros are Thvoked by simply typing the macro name. Tac:f are two
options to macbegin that may follovfz the macro name. If no-
execute option is used after the macro hame, the macro will not be
executed while the maz:ro is defined. This option is useful when the

.

macro is defined in a command file as the examples in this appendix,

/

()

?

¢

-

e

-~

The other option to macbegin is verbose, which requests that each
°y

command of the macro be displayed when the macro is inﬁfsked. |

One of powerful feature of macro facility is that macros can be

parameterized. The use of the construct %1 in any of the maiyz:.

commands means substitute the first parameter of the macro at this
point. Since macros have ho’paramcters when they are first being
defined, an initial and default value can be supplied for these
parameter constructs by'pla'cing the value in square brackets
following the parameter declaration.

The var command is used to create and to manipulate
variables, both witlﬁn the Electric internal database and locally for

use in macros. This command is very powerful as it is able to

examine any Electric internal variables. Hence ,this command should

be used wi cauntion. Three special characters}$, % and ~, are
normally associated with this command. If the $. appears in an

Electri§ command, it references to an internal: database variable.

Followiﬁ}f he $ comes a reference to an object, fdllowed by qualifie-skJ

of that object. The"~"sign‘ referenqésl the currently selected object. For
instance, the x\and y coordinates 01; the cursor can be accessed using
both “$ and ~ signs such as $~x and $~y. There are many poss.itgle
object refe}ences such as the ’technolog_y variables, node'attributgé,
and fiﬁﬁf']y information. To Ides‘c’ribe all the possible qualifiers
available in the database is beyond the scope of tl;ﬁﬁpe.dix. A
complete list is provided by Part I of the Electric internals /manual.
.On the other hand, users can define their own user-variables. To
address this need, there is a set of 52 command-intcrpr{eicr vari'aia-les

w

P

£
;

P

o

‘with a % in front.

for a node'g-name, typg

with single letters a through z and A through Z. Each is gerenced

!

-~ -

The function of var command is fo examine, set, and
manipulate ‘;ariz;tblefs. The var exal‘;l-li\ne takes a ‘single variable
specification and prints its value. The w}ar delgte-takes a variable
specification and remov&® it from the variable: list. The var set

creates and changes variables. For instance, to set variable a to 17,

type ' | P

¢ var set a 17
Besides setting variables, we’can performed_arithmetic by using +, -,

, /, and mod in place of the word set. Bit-wisg~Operations can also

.be "chieved with and and or.operators String 'concatenation can be

done with | operator. Fpr example, if we wish to append time to clock
¥
var set a clock , | T
var | a time
var | $~.node_name a redisplay
Some macros can %e structured to- communicate with _users. For
output purpose, there is an etho command, which simply repeats its
p’arameters on the status display window. For example, to dlsplay the
current the XY coordmates of the cursor, use the followings: .
¢ echo Cursgr at 3~x, $~y _ _ |
For input purpose, the terminal input cofimand takes two
parameters: a'variable letter and a prompt string. For instance,
:erinin'al (input ¢ Port name: _
prompts with the message Port name: and then places the typed”

response into the variable Y%c.

H

¢

KR

{

For more control of macro execution, there is the if command.
The if command iequires four parameters: a first value, a
com;ﬁaris‘on, a second value, and a command to execute if the
comparison succeeds. The two values can be integers or strings, and

the comparison is one of the "C" language conditions, ==, !=, >,>=,«,<=,

~ For example,

.if $~.proto == transistﬁ echo It is_a transistor

¥

-

If the selccted object gs a transistor, the message will be echoed.
Coml?med w1th all \commands discussed above powerful and
flexible macro functions can be created. For 51mp11fy1ng the mask
layout and the SPICE deck creation processes, a number of macro
functlc;’ns have been created and listed below: Functions includc
measuring a distance between two pomts reading file in'to databasc'
creating MOS transistors with various length and w1dth in IOgIC

technology, and setting up ‘the SPICE input file. A number of other

existing macro files are 'logt%in the /usersi/localielectricilib

directory in the workstation. // '
% Macro functions created for customizing user environment *
macbegin simplelayer no-execute e '
visiblelayers abdehiylmz . / P
macend . ¢

Z

macbegin showlayer no-execute
visiblelayers %1
macend

macbegin xy no-execute

. echo .Cursor at $(~x),$(~y) . _
"macend - ‘ i

macbegin printport no-execute
echo Port'name is $~p
macend

macbegin distance no-execute
var set ¢ $(~x)

var set d $(~y) - _
var set e $tech:~.deflambda v
var / ¢ %e '

var / d %e ~

“echo Cursor at' %c, %d

var - a %c

var - b %d : ,

echo deltaX is %a,deltaY is %b - A
var set a %c

var set b %d

macend

macbegin cifin no-execute
offaid drc

"library read %1 cif

library use 9%l

macend

macbegin spiceplot no-execute
tellaid simulation spice parse-output %l

macend -

~
) v‘, -

macbegin spiceresist” Rg‘execute -k

tellaid simulation spice resistance-toggle

macend '
i

macbegin usefile no-execute

library read %1

library use %l

show cell

macend

+

macbegin spicecom ¢
- command spice.mac
macend

A

¢)

63

E}

macbegin spicedc no-execute
var seta "DC " ;

var | a %1[5]

‘setsource v %a

macend

‘macbegin spicemeter no-execute
var set a "("

~var | a %1[0]
varla""
var | a %2[5]
var la™)"
setmeter %a
macend

macbegin spicepulse no-execute
var set a "PULSE("™ '

var | a %1

varol a""

var | a %2

varla""

var | a %3

var la "NS "

var | a %4

var | a "NS “

var | a %5

var |l a "NS " .

var | a %6 \)

var | a "NS "

var | a %7 [‘{_
var | a "NS)" Ce

setsource v %a

macend v~
» [>
macbegin spicetrans no-execute
var set a " " '
var<l a %l

var | a "NS "
var lfa %2
varla "N§'
setsource t
macend

Y

o A

i

.
o

oy
i
K

~
own
A

macbegin pmos no-execute
var set a "pmos”

var | a %1[3] -

var | a "/"

var | a %2[3]

echo %a

settrans %a

macend

macbegin nmos no-execute
var set a "nmos"

var | a %1[3]

var | a /"

var | a %2[3]

echo %a _
settrans %a L
macend

&

.

[N

¢.)

c-;‘f,_‘\'# -

Appendix VI

Plotting Facilities

-}““

=

The vt2x _converts the data format of regular SPICE output

..a format sdpported by the plot pr‘(.)gram..The;i splot 1

Appendix VI
Plotting Facilities

This appendix .describes how to use the plottin ams

developed in this researcb//project. The plotting facilify consists of
. ¥ R

four ‘programs: plot.c, vt2x.c, splot. c and con_post.c.

listings are attached at the end of this appendix. The plot

" used to dISplay the Relax simulation results on the GPX workstation.

iles into
used to

gencratc‘ hardcopy on the Apple LaserWriter Plus 'p I Iter, and the

HP-7585 colour plbtter'._The con_post s_irnplifies JPostScript files .

" generated by the splot 'p'r(,jgram ‘éin_ce_ some PostScript files involving

complicated graphic patterns require a large memory o be processed
and the Apple laser printer has hmlted memory.

The plot program allows users to select wmdow sizes for
display, plotting range, and number of ‘curves. The desired window
size is obtained by using the mouse, as follows:

* Press the left mouse button to create a 200 by 200 pixels window
at the cursor position. | ‘

* Press the right' mouse button .to create a 200 by 200 pixels window
at the centre of the screen. |

-

* Press the centre mouse button to create a window that we can

choose the height and width. Move the mouse horizontally and

. vertically until the . size indicator_ located at the upper left-hand

A

he program

gram is

7~

€9

)

¢

)

("

/

corner of the screen displays th:: desired height and width, Release
thé mouse ‘button_ and the window appears on the screen.

~ For exam‘ple three files, nodel, node2 and node3, are
gcncrated by the Relax2 sxmulator by typmg the command with a

Relax 1nput file, as follows:

% relax2 input-file

,Thes_é files representing the simulation results can be displayed en

the GPX workstation by invoking the plotting program as follows:
- .) ;‘ . .)
% plot nodel node2 node3 y

~t

The plot program determines the maximum and minimum values of

the curve, nodel, ‘and then the user can spemet_He plottmg range

Then, the user uses the mouse to create a graphic window. with

o

appropnate window size. This. process is repeated unul all curves -

have been displayed.
The vt2x converts a regular SPICE output file into a set of new

files which can be plotted by using the plot program. The vt2x

program is based on the fact that carriage control characters X and Y

are used to start and end a table created by the .'PR]NT command in
SPICE input file. For instance, if a SPICE output file tabulates three
curves: V(1), V(2) and V(3), the vt2x is then; invoked as shown in
the following to create three different files: VI, V2 and V3. Then, the
plot can be used to display the cuﬁes on the screen. T

9% vt2x spice—outputffilc

The splot program generaies hardcopy of mask layoui and’ﬁ
‘schematic of circuit design on a number of hardcopy devices: The

- pragram originally came with the Electric design .system. However,

one or more modu(es were missed so that a lot of modifications must

"?

ey

-

)

(

:

¢

3

o~

be done to the program in order to genBrate hardcopy on the Apple.

laser printer and the HP-7§5!5 colour piotter. Since most PostScript,

files gene@ted\b:/th_g_;-pk program are huge, the files cannot be
_handled‘ ¢fficien by the Apple LaserWriter Plus printer, especially

when graphic paiterns are used extensively for drawing mask layout.

‘Hence, a program called con_post, was written to simplify the files. -

More information about splot can be learned by simply typing splo@
on the terminal. The con_post is invoked by typing as follows: '
% con_post inpﬁt-file output-file i

All ploﬁing programs are written in C language and the lislinp:.s

are shown in the following.

£

._-_~‘\

11-JAN-88 20:50:56 - plot.c “ Page: 1

- - A

e
Ik === - - - - .
This plotting program is prisarily designed to display
Relax2 output file. The program can display more than one file
at a timey-All-the file names are specified on the command line.
Written bﬁ'ﬁlger.Yeung
Date: October 31, 1987 —
Usgd on X-window environment
> g */
#include <stdio.h>
$¢include <X/X1ib.h>
sunde? CURSOR /A to remove clash uiih X1ib.h &/
¥define GHINSIZE . 100 /% minimua display in pixels k/
" §define MAXENIRY 2000 /% max entry in the array &/
/% color constants A/ -
$define GMAXCOLORS 254 /% NOTE: this is 254, not 256 #/
#define GMAXPLANES g8 + /k device dependant . x/
. /% button identifiers %/
. §detine Grightbutton 0
$define Gmiddlebutton 1 . X o
#detine Gleftbutton 2 -
struct { .
Eont¥aforAfont; . »

char ifontnane,
- int width; .
} gra_fontl] = =
{ .
(FontInfo %)0, *6x10', 6, /% 0 &/
{(FontInfo %0, *6x13", 6, . /kx 1 &/
(FontInfo %)0, "8x13*, 8, /% 2 &/
(FontInfo %30, *9x15°, 9, /% 3 &/
(FontInto 4)0, 0, 0
b

/% array that associates GRAPHICS font sizesuithithe above fonts k/
static gra_fontussociatef9l =
{ : . N

0, . /k TXTVEIINY &/ //f
0, -~ - 7k IXITINY &/ E “
1, /% TXTVUSMALL &/
1, /% TXISHALL 4/ :
‘2y--- - /% IXTMEDIUM-*/ .- - e
2, /% TXILARGE /
3, /% TXIVLARGE */
3, /% TXTHUGE &/
3 © /k TXIVHUGE &/
¥
Window W}

— 11-JAN-88 20:51:05 plot.c ' Page: 2

-

J

)

(

int sc_width,sc_height;
. FontInfo kqra_curfont;

aaig(érgc, argv)

int argcy
char x3rgvl1;

{
- FILE kinfile, koutfile;
double time, voltage,
double maxx, minx, maxy, miny;
- int nuept;
int i3
short sx,syj
double originx; nr191ny, -
double gdistance, realxdist, realydist} -
double x[MAXENTRY], y[HAXENIRY], mapx[MAXENTRY], mapy[HAXENIRY],
char eof d1splay[1281'
short ox,0y,9ra_width, gra he1ght, nue_dividx, num_dividy;

f o

/% window variables X/ -
Vertex v1ist[HAXENIRY];
, OpagueFrame frame; ‘ [
- 7k .
- ,* rouﬁ)ne to initialize the device 1n *us_display"
-~ ki :
. /% default nueber, 0 1 2 3 4 3 6 7 &/
/ﬁ/,/”/’/" /% default colors ~ bla whi red grn blu yel aag cya &/
) static int normalrediB] { 0, 255, 255, o0, O, 233, 235, 0}
static int normalgreenf81 = { 0, 253, O, 235, 0, 255, 0, 253X
static int normalbluelBl = { 0, 255, 0, 0, 255, 0, 255, 209};
int plane, xpixels[GMAXCOLORS1; : :
int color, nurfile;
char default geonetrytazl norealletter(81;
char ch, filename(401;
WindowlInfo info;
-int qra_dev_no, gra_sdep;
int gra_maxcolors;
\

r

for (nuafile = 1; numfile < (arqc); nuofile++)
{ -

—

/% check the existence of the file &/
if ((infile = fopen(argvCnumtilel, * r*)} == HULL) &
{
fprintf(stderr, 'File Zs cannot be opended \n', argv[l])'
e fprintf(stderr, "Usage: plot filename(s)\n*); ¥
~— exit(1);
>
/k read in the data from the file and set up the array &/
nuapt = 0}

-JAN-88 20:51:23 plot.c ‘\

- ’ /

Page: 3

-_do {

- -

7

-

nuapt++, - ,/j
fscanf(infile, '%e’, ttine); ©
fscanf(infile,"¥e" , tvoltage);
xCnumptl = time; yCnumptl = voltage;

printf(*nunbr= Xd,time=Xe voltage=%e.\n®, nuopt, t1me, vgltage);. A/
} while (getc(intile) != EOE);’ — -af

numpt--;
paxmin(x, numpt, 3maxx, Eminx);
maxmin(y, numpt, tmaxy, iminy);

“printf('MaxY= X1f, MinY= Z1f \n*, mayy, miny);
printt('Enter the desired Y range: naxy--n1ny\n | H

scanf (*Xf', Emaxyl;
scéanf(*%f', lminy);

fclosetintile);

setup the window parameters &/

if (XOpenDisplay(argc 7 argvll]) ¢ ° ") == NULL) &/

it (XOpenDisplay("unix:0") == NULL)
fprzntf(stderr, 'Could not open Display!0®);.

frame,bdrwidth =

frame.border = Hh1tePixnap;

frame.background = BlackPixmaps;.

strcpy(default_geonetry, *=412x412+4200+200);

= XCreate(*PLOT®, argvl0] ,*", default_geometry,

tframe, 100, 100);

l XSelect Input(w, Eapusekegion);

sc_width = frame.width; g

. sc_height = frame.height;

XMapWindow(w)} K

set up the graph origin and it‘s length 4/

realxdist = (0.8) A (double) sec_width;

' realydist = (0.8) X (double} sc_heighty,

11
@
/k
{
Ik
/k
e
{4
A+
H
/&
/k
ﬂ‘—

originx = (double) sc_width - realxdist -30,
originy = realydist +30,

set up the color and dlsplay planes B L
gra_sdep = B,

~

»

it (nuafile == 1)
‘f* qet depth of screen %/
it (gqra_sdep > 1)
¢ it (gra.sdep >= GMAXPLANES)
¢ gra_sdep = GMAXPLANES;

if (XGetColorCells(0, GMAXCOLORS-2, O, iplane, xp1xels) = 0)

fprintf{stderr,'Can’t get colors\n'};

gra_maxcolors = GHAXCOLORS;
} else

.C‘

e

)

{

11-JAN-88 20:51:37

- 2 237 'plot.clz,,._g ;

{ . « .
. it (XGetColorCells(0, (1<<gra_sdep)-2, 0, %plane, xpixels} == Q)
gprintf(stderr, "8an’t/get colorsi\n®);
if (xpixels[01 != 2) print£("Color map in wrong place\n®);
gra_maxcolors .=-1 << gra_sdep; '
>
} else -] -
{ . ' '
gra_sdep = 13
gra_maxcolors = 23
3y
}

/% initialize the text &/ .
for (i=0; gra_fontiil. fontnane != 0, i++) -
9ra_font[1] font = XOpenFont(gra_fontlil.fontnane);
gra_curfont = gra_font[2].font;

/% initialize colors &/
us_loadmap(normalred, normalgreen, normalblue, norsalletter, 6,7);

/% set up the window env. for the plot. &/
b <

/% do the actual mapplng into the graph paper %/
mappxngh(napx, numpt ,maxx, ainx, realxdist, originx,x);
mappingv(mapy, numpt,maxy, miny, realydist, urzglny,y),

* /% CREATE THE array for plot rout1ne k/

color=5;
sx= {short) originx;
sy= &€ h919ht- (short) originy;
for (i=l; i<numpt; i+¥) - T -
<
vlistLi=11.x = {(short) mapxCil;
vlistfi-11.y = ((short) mapyfil)y
vlist{i~11.flags = 0;
>
vlistCnumpt-11.x = (short) mapxCnumptl;
vlistInumpt~1l.y = ({short) mapylnuaptl}; -
vlistCnumpt-11.flags = VertexDrawlastiPoint; =

n i

{short) uriginx}

ox = N S
oy = (short) originy;

qra_width = (short) realxdist+ 0.3%

gra_height = (short) realydist +0.5;

nus_dividx = nua_dividy =

colar = 25

f

11-JAN-88 20:51:51 4giot.c . / Page:

- v . _\

graphpaper{ox, oy, gra_width,gra_height,color,num_dividx, num_dividyl;
labelx{originx, originy, maxx, ainx, nua_dividx, realxdist);
labely(originx, originy, maxy, ainy, nua_dividy, realydist);
/ /% set the drawing color to yellow &/ : ‘

- ~color = 53 -
XDraw{w, viist, numpt, 1, 1, color ,GXcopy, AllPlanes);
text(argvCnuatilel, (int) (sc-width/2), 4, 23); ' .
XTextMaskPad(w, (int) (sc_width/2), oy+3igra_curfont->height, *Tige*,5,

¢ gra_curfont->id,0, i
. . gra_curfont->width,1, GXcopy, AllPlanes); ‘
~ ' XElush(Q); _ ‘ ¥ \

D /

A

printf(*Enter q to quit\n®); = -
while ((ch=qetchar()} = ‘q’); ' N

/% subroutine starts from here A/

. /k print a text at location x, y in color #/
N : text(string, x, y, color) .
char stringll;

short ®,¥y;

int color;

{ .

int sleny

slen = strlen(string); . ‘
XTextMaskPad(w, %, y, string, slen+l, gra_curfont->id, 0,
gra_curfont->width, colar, GXcopy, AllPlanes);

bl '

. maxmin(data, n, max, min)
_— double Aimax, kaminy
double datall; /
int ' n;
£ int i :
kpvax = amin = datallly
for (i=2; i <= n; i++)
{ : :
. kmax = (datalil > Amax)? datalil: Amax; ~ |
kmin = (datalil < imin) ? datalil I #ain;
€~ ¥

}
. mappingh{map,numpt, max, min,realxdist, oriqin, value)
double mapLl, valueLl; ™ '
double max, min, realxdist; /% max and min value of the input data &/

’.“_ ..l
\ Cor

R

(9

?

¢

9

¢

11-JAN-88 20:52:09 ‘ plot.c’

ke

int nuapt; /% number of input data &/ %
double origin; /k the location of the starting point &/ o
{ ‘ ' : . -~
double distance;
int i}
distance = max -nin;
for (i=1; i<=numpt; it++) .
maplil = ((valuelil-nin)4realxdist/distance)*+ origin;
> v ' ‘
wappingv(map,nuapt, max, min,realxdist, origin, value)
double mapll, valuell;
double max, min, realxdist; /4 max and min value of the input data 7
int numpt; /4 number of input data A/
double'nrig1n, /%-the location of the starting point */
{ "] -

double distance;-

‘int iy !

distance = max -min;

for {(i=l; i{=numpt; i++)
maplil = -({valuelil-min)Arealxdist/distance)+ origin;

'J‘
A

AN

us_loadmap(red, qreen, blue, letter, low, high)
int #red, kqreen, iblue,
char kletter;
int low, high; 4
{

int i;

Color def; .

for (i=lowj i<{=high; i#++) ~

{
it (i < 0 || i >= 254) continue;

i? (redCi~lowl < 0 || redli-lowl > 255) continue,
i# (greenfi-lowl < 0 || greenli-lowl > 233) continue
it (bluefi-lowl < 0 || bluelLi-lowl > 255) cont1nue, J

def.pixel = i} //
def.red = redli-lowl % 2563 :
def.green = greenli-lowl % 236;

def.blue = blueli-lowl 4 258'

XStoreColor (3det);

b

-

printgtringh(string, X, ¥, colaor)

\ R o \

- 11~JAN-88 20:52:22 “plot.c ' page: 7

ey

char stringfl; ~ r
double ®,y,

int color;

{ : :
int slen,i,k, slen2;
char stringlf101;
char string2[5];
_shart sx,8y,5%2,5Y2;

B /% tind the length of the string &/ ~ -
slen = strlen(string); \
if (slen > 100 ‘ .
/% make sure that the string consists of 10 character; &/
for (i=l} ic= 4; i++)
stringli+9] = stringlslen-3+il;
stringl101 = ‘\0‘;

if (slen > 10)
{ ~
0-
uh11e ((stringCil != ‘e’) && (stringlil != "\0’ })
{
stringllil = stringlil; .
i++y - e - -
> N
stringlfil = “\0’;
N
else
<
. i = 0;
Y while (stringCil != ’\0")
A
stringllil =,§trin9EiJ;
i++; S-D
- } ‘ -
" stringlCil = “\0‘;
. ¥
slen2 = strlen(stringl);
it (slen2 <= 6)
for (k=0; k<= 4} k++)
string2Ck] = stringli+kl;

£

('_".T}

sy2 = (short) y + gra_curfont->height}
sx2 = (short) x3
sx = (short) x - 2igra_curfont->width;
sy = (short) y;
slen = strlen(str1n91), -
XTextMaskPad(w, sx, sy, str1n91, slen+l,qra_curfont->id, 0,

. : gra_curfont->width, color, GXcopy, AllPlanes);
(r~ it (slen2 > 3) ,
L XTextMaskPad(w, sx2, sy2, string2, 5 ,qra_ curront ->id, 0,]é§
gra_curfont->width, color, J

GXcopy, AllPlanes);

L

g

¢

-

11-JAN-88 20352737 plot.c

printstringv(string, x,y, color)
char stringil;
double x,yy

-int color; ,

{
int slen,i,k,slen2;
char stringlC101;
char string2[53;
short SX,5Y,SX2,5y27

/k £ind the length of the string 4/
slen = strlen(string);
if (slen > 100

/% make sure that the string consists of 10 character;) &/

for (i=1l} il= 4} i++)

stringli+5] = stringfslen-S+il;
,/// stri

ngf101 = \0’; . -
if (slen > 10 '

{
i= 03 - N
while ((stringlil != ‘e’) %% (stringlil != “\0’})
{ .
stringlfil = stringlil;
i++} A -
} P
stringlfil = ‘\0‘y}
} & -
else .
{ i=20;
uﬁ}le (stringlil = '\0")
stringlfil = stringfil;
it+;
¥ ‘
stringlfil = ‘\0‘;
b
slen2 = strlen(stringl);
if (slen2 <= 6)
for (k=03 k<= 4; kt+)
string2fk] = stringLi+kl;
/% print text vertically &/]
sx = (short) x - (slen2+1)A(gra_curfont->widthl; y
sy = (short) y;

sy2 = sy - gra_curfont->height;

XTextMaskPad(w, sx, sy2, striqpl, slen2,9ra_curfont->id,0,

gra_curfont->width, color,
GXcopy, AllPlanes);
if (slen2 > 5) .

XTextMaskPad(w, sx, sy, string2, 5 ,gra_curfont->id, 0,9ra_curfaont->width,

~

11-JAN-88 20:52:51 plot.c -

Page:

colar,
GXcopy, AllPlanes);

labelx(ox, oy, maxx, minx, num_dividx, realxdist)
double maxx, minx, realxdist;

double ox, .oy} e

int num_dividx; \ ////

{
double wdistance, divid, x, value;
int i, color=3; . - Y
char stringC201; ' 1%

swdistance = maxx - minx; .
divid, = (xdistance) / ((double} num_dividx};

for (i=0; i <= num_dividx; i++)
{
x = ox + (double) ((iirealxdist) / ((double} num_dividx));
value = ninx + (i X divid);
gevt(value, 10, stringl;
printstringh(string, x, oy, color);
X ' : .

labely(ox, oy, maxy, miny, num_dividy, realyd1st)
double maxy, miny, realydist;
double ox, oyj
int nua_dividy,
{ , . . -
‘double ydistance, divid, y,value;
int i, color=6;
char stringl20]; -

ydistance = maxy - miny;
divid = (ydistance) / ({(double) num_dividy);

for (i=0; i <= num_dividy; i++) :

{ -

y = oy ~ (double) ((iirealldist) / ({(double) num_dividy));
. value = miny + (ik divid);

gevt(value, 10, string);.

printstringv(string, ox, y,color?;

}

(g -~ -
graphpaper (ox,0y, width, height, cclor, num_dividx, num_dividy)
short ox, oy, width, height, num_dividx, nua_dividy;
int color;

{ short x,y, cellx,celly,subcellx,subcelly, endx, endy;

”

s

11-JAN-88 20:53:04 plot.c

Page: 10

Pattern line_pattern;
_ Vertex viist[21;

int i, k;

3

short oxx, subx, subsubx;
line_pattern = XHakePattern(OxB8888, 16, 1)}

endx = .
endy = oy - height; : _ ' ‘

ox + width; . -

. /k the outer bound of the paper &/
XLine(w,ox ,oy, ox, endy, 1l,1,color,GXcopy, AllPlanes);

XLine(w,ox ,endy, endx, endy, 1,1,color,GXcopy, AllPlanes),

45y
XLine(w,endx ,endy, endx, oy, 1,1,cclor,GXcopy, AllPlanes); . Sk
XLine(w,endx ,oy, ox, oy, l,1,color,GXcopy, AllPlanes); -
/k draw the dotted line %/ % v
. : {
cellx = (short) (width/num_dividx +0.3); ,é?f .
celly = (short) (height/num_dividy. +0.3); _
/% draw the vertical dotted line &/ -
OXX = OXjy
for (i=1; i<= num_dividx; j++)
{
® = ox + iicellx; : ‘
v1ist[0J.x = vlistlll.x = ¥§
vlist[0l.y = oy; ' -
vlist[ll.y = endy; —— o \

vlistL01iflags = 0} :

viistfllaflags = VertexDrawlastPoint;

XDrauDaslig(u, vlist,2, 1,1,color, line pattern, ﬁXeopy, AllPlanes),
h

subx = oxX,
subsubx = (short) (dubx/4 + 0.5); é
for (k-l' kR <33 k++)

{ 1

X TOXX *‘k*subsubx,

XLine(w, %, oy, %, oy- 5 1,1,color,GXcopy, AllPlanes};
¥ -

oXx = ox + ikcellx;

¥
/% draw_the hori dotted line &/
aXX = oy} ¢ ' -
vlistL0l.x = oxj vlistlll.x = endx; S 4

{

for (i=1; i <= nun_dividy; i++)

y = oy - {(ikcelly);
v1ist[0l.y = vlistlll.y = y;

XDrauwDashed(w, vlist,2, 1,1,color, line pattern, GXcopy, AllPlanes)'
subx = oxXx - ¥, ,

subsubx = (short) (subx/4 + 0.5}~

" for (k=1j k <= 3j k++)

p ’ .

2

11-JAN-88 20:53:17 plat.c . : ’ " Page: 11

W h .-y =(short) {oxx - kisubsubx);)
) XLine(w, ox, vy, ox+5, y,1,1,color,GXcopy, AllPlanes);
— } . ' —_—
oxx = oy = (iicelly);
) by
/k draw the small subcell-dividson 4/
Y
P -
S 7}
1.\ =
T B -
i p
LT

aod

S8

11-JAN-88 20:46:52 vt2x.c

This program is used to convert the regqular SPICE data file

to plotsc input data format. That is to put the time axis

data afd ane of the Y-axis data into 3 single fje.

The output data file will read into plot.c program to display

the output in Unix_(X-Window) environment .

If a.tile has more than one set of data, the next data set, will be
appended with ®.x', where x will be 2, 3, 4, S..... to indicate
that which set of data is. ‘

Author! Alger W. K. Yeung ‘ -
Date: Noveamber 9. 1987 1:30 AM

oparating System: Ultrix

Graphic Driver: X-Window Ver. 10

‘ - %/
. AT

#include <stdio.h> - _ o ' S
#include <strirgs.h>
#include: <math.h>

8

‘main(argqe, arqv)
int argc;
char AarqvLl;

{ .
FILE kinfile, koutfile;
char stringC1321, stringll1321;
char filename[93[20], ext[103[101;
double array(91C15001;
W\\yuuble sharray[91%
- int i,j,k,1, index;
int numset=0}
” char chj -

if (arge < 2)
{ printf(*® Usage. viax 1nput file\n®)y
exit(l);
¥
- stropy(extf01,%.0%);
stropy(extfll,*.1');
strepy(ext(21,".2%); -
stropy(ext(3],°.3%);
strepy(ext(41,®.4%);
stropy(extf51,°.5%);
strepy(extL6],".6%);
stropy{ext[71,".7%);
_strepy(ext(8],*.8%)7 ~ i
stropy(ext[91,%.9%); ‘ -

-

infile =fopen(arqvCll,’r*); | C

while (fecf{infile) == NULL} .
L

11-JAN-88 20:47:00 vidx.c

Page:

2

r
. [-

{

nuaset+ty

{
strepy{stringl, string);

} . \ .
it (feof(intile))

{ T
< fcloselinfile);. _

exit(0};
¥ ' -

i= 0} :
= 0y ‘ -,
while(5tr1n91[1]‘l— \n’)
" q
it (stringlfil == * /)
{ i++; k =i}
else

{
jHt; index =0;
for (1=0; 1< (i-k); l++).

uhile ((fgets(string, 132, infile) != NULL) 84 (stringf01 != 'X’))

{ uhlle'({stringllil '% f7) &% (str1n91t1++] = ’\n Y 33

N if¢ str:ngl[k +11 1=)’ %8 str1n9[k+1] t= ()

{

' _fllename[31[1ndex] str1n9[k+1]' ' -

index++;
¥ |
tilenamel jlLindex] = ‘\0‘;
it (nuaset 1= 1)

strcat(filenamelj1, ext[numsetl); , | \

}
Y

printf(*They are as followsi\n®);.
Ik
for(l=2; 1<=j; 1++)
printf(*Xs\n*, filenamelll)};
x/ .

fqets(string, 132, infile);

i=0;

while ((fgets(string, 132, infile) !=
{ . - o+

Lk

pr1ntf(‘Nunber of function curves in the file = Xd\n*, j -1); ’

NULL) &% (string[01 != ‘Y’)")

TN

11-JAN-88 20:47:18 vt2x.e _ Page:

3

- —— -

, ~ string2double{string, j, sharray);
- 4 for (k=0; k < j; kt+)
arraylk1[i] = sharraylkl, ’ 4
i++; - ' ¢

} " \

for(l=1; I <{j; l++)
{
outfile = fopen{filenamell + 11,'w"};
for (k=03 k < i} kit)
fpr1ntf(outflle, *%e Ze\n', arrayl01Lk1, array[l][k]),

. felosefoutfile);
printf{*%s is created.\n*, tilenamell +11);
¥
}
} /% nain &/ P *

/% convert a string of 132 chars to a3 number of double-type value=array i/
.}..
string2double(string, nundata, sharray}
-~ ‘ int numdataj
char stringll;
double sharray[91; :'; o ¢
-
int i,k,jyly
int numchar, index;
char shortdatal401;
char shortdatalC40];7

~

i=0;

for (1=1; 1 <= numdata; l++) \ ,/>
{ - . .
i

while (string[i+;?¢i= / ‘)3 /& determine the beginning of a string &/
k=i : :

k..._

Ik deternxne ‘the position of the end of the string &/

while ((stringCil != 7 /) &% (stringEfi++] 1= ‘\n’));

nuachar = 1 - k;

/% convert the string fron index k to index i to a double value &/

for (index=0; index < numchar; index++)
shortdatalindexl = stringlk + indexl;

shartdatalnuncharl = ‘\0’; P

strepy(shortdatal, shortdata); -

N

&

11-JAN-88 20:47:30 vt2x.C ' Page: 4

sharrayl1-11 = (double) (atef(shortdatal));

\
>

b4

/k far debugging purpose. &/

tell(string) ’ B
double stringj ' :
{

printf(*Ze*, string);

¥ ' '

show(string)

. char stringll; -
{ .
printf(*%s’, string);
}

Q‘J

—

¥

11-JAN-88 22:06:34 con_post.c

Page:

1

)

¢

#include <stdio.t>
EILE xinfile,Akoutfile;

nain(aréc, arqv)
int arge} char kargeil; _ "
{
char string[901;
" int nuachar,j, dummy, spnun;
int kkj

it ((infile = fopen{argvlll,’r®}) ==

NULL) {

printf(*Usageicon_post infile outfile\n®);

exit(l); .
¥ _
outfile = fopen(argvi2]1,"w");

while (fgets(string, 90, infile) != NULL) {

dunmy = 03}

Y

N

if{stringf0l=="1" &% str1n9[2 ==’s’ &% 5tfin9[9] ==/pf)

{ fprintfi{outfile,'¥%s", stringl);

tprintf(outtile,"/cpoly { newpath moveto lineto lineto\n®);

fprintf(outfile,’
dunmy =1;
_— }

if (str1ng[03=='P‘ %% stringl1l)=="3’

stringl3l==‘t’ &% stringl4l==‘e’’

{
=l -
while(string(jl 1= ‘L’

j++
sphua = 0
Kk = j;
while(string[++kkl = ‘1‘)
it (stringlkk] == *.’)
spnumt+;
it {spnua == 7)
\ L ‘

) 2

(stringl++j3 != /1)
putic(stringljl, outfile);
fprintf{outfile, * cpoly\n'};
}
- dumay =1; . -
} ¥

if (stringl0l==‘E’
stringf3]==‘1".
{ dunmmy = 1;
>
if (stringl0l==‘/'
stringf3l=='t’
.{ dusmy = 1;
>
it (stringl0)==!d’-

N

)

{

b3 str1n9[4l=“’

-3% stringfll==‘e’

8% string{ll=="i’
$% stringf4l==’e’

%% stringfll=='P’

lineto closepath stroke } def\n');

\;
"
1

&& stringl2l=="%t’ 3%
‘%% stringfdl=='r")

“

3% stringl2]=='1‘ 1%
32 string[31==‘d")

£8 stringl21=='3‘ &

‘12 stringlS3==‘e")

£% stringl2]=='£’)

]

e

11-JAN-88 22:06:34 con_post.c Page: 2

@ S
{ dummy = 1,
b

it (dupmy == 0)
fprintf(outfile,'Xs®, string);.

)} .

fclose(infile); .
fclose(outtile);

- ¥ |

¢)l

)

{

{

. ’Appendix VII

EC\IFIN/DCIFIN Translator

=

z Appendix VII
ECIFIN/DCIFIN Programs

This appendix describes how to use the ECIFIN/DCIFIN
programé for translating files between different data formats so that -
files génerated by the Electric degign system can be used by the
Phoenix Data System software package and the Daisy workstation,
and vice versa. The programs dre written in C language and can be
run on both VAX-VMS and Ultrix operating systems. '

.To convert a CIF file generated by the Daisy's CIF_OUT program
into Electric's CIF format, type

% ecifin Daisy-CIF-file output-file

To convert a CIF file generated by the Electric design system
into the ljaisy's CIF format, type -

-% dcifin Electric-CIF-file output-file

If the programs are intended to run on the VMS operating.
system, two foreign commands must be created before invoking the
p¥ograms. Th;a foreign commands are created as follows. |

$ ecifin :==$ dual:[user.directoryJECIFIN.EXE

$ dcifin :==$ dual:[user.directory] DCIFIN.EXE
Then, use the commands, ecifin and dcifin, as the regular VMS
commands. The reason of creating ‘the foreign commands is that the
input and output files can be specified followed the command on the

same line.

}

¢

)

¢

The
'fusers/yeun

included in

programs arc

i/ifograms‘, n
t followi_ng.

currently located in the directory,

the workstation and the listings are

32

i

\

11-JAN-88 21:46:20 eeifin.c - Page:

1

<
+

/*dN'll”ﬂﬂ‘NH’N”HﬂﬂnﬂﬂﬂﬂﬂﬁﬂﬂﬂdﬂﬂdﬂﬂﬂﬂﬂﬂHHHNN#NNHHNNN'MHH”HNNMNRNUHHNHNRHN

This program is written for converting Daisy generated CIF file into
a new CIF file which can be understood by Electric. In fact, it is
CIE file translator. The program primarily changes the format of
stating the nawe of each cell, comment command and call commands used
in the tile. This prograsm, can run in VAX-VMS or Unix 0S environaent.
If used in VMS, a foreign command must be created first in the
following way:

‘t_ecifin :==% systuser: [usernane.subd1riec1f1n exe
To rup the projram, type

$ ecifin input-filé'uutput-file

IIHﬂ'ﬂﬂrﬂ”ﬂﬂﬂﬂﬂﬂﬂNH#H‘N‘HNM”NN”#N'HMNNﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ'#ﬂﬂﬂﬂﬂﬂ””ﬂﬂ”ﬂﬂﬂﬂﬂﬂdﬂ”n#*/

/*ﬂﬂdlﬂxﬂﬂﬂﬂﬂ"ﬂ"ﬂ”NNMNHM”H””NH”RII”MMNN’NHﬂﬂllh‘NNNHNMNHNHNNﬁﬂﬂ"ﬂﬂﬂﬂﬂﬂl’d”

Author: Alger Yeung

Version: 1.0

Date: November 1987

Purpose: a module program for HGSC silicon compiler

NNNNHHHKN“NU#‘NHNNNHH”"HNNNHNNNHHUNHNIIR"HHNN#NNNN””RHH#MHMNNNN#X”UHN”*/

#include <{stdio.h>

FILE kintile, Aoutfilel, koutfile;

main{argc, argv)

int arge; char kargqvll;

{ .
char stringl821;
int numichar;

 int checkcells, numcell=0; /4 number of define cell in the file &/

it ((infile = fopen{arqv[l],*r*)) == NULL) {
printf£('Usage: cifin infile outfile\n");
exit(l);

¥)

outfilel = fopen(argvi2l,'w");

outfile = fopen('templOl.dat®,"w");

while (fgets(string, 82, infile) != NULL) {
switch(stringql0l) {

LS

case ‘D { if (string(l] == ’5’) @
: AR
nuacell++; =
addones(string);
3
else -

fprintfiouttile,*is®, stfing);
break; ¥ .

3

¢

)

¢

)

11-JAN-88 21:46:29 ecifin.c Page: 2
- 3
case “(’: canmentname(str1n9), -
break; %

case ‘L’1 { if (string[23=='L" 2% strin9£33=='0’ %
fprintf(outtile,*(The name ot the port:-);Vn');

else
fprintf(outfile,’Zs*, string);
_ break;

- - P
"

case ‘17: { pute(’9’, outfile);
stringl0l = ‘4°;
fprintf{outtile,*%s", 5tr1ng),
break; *

default: fprintfloutfile,*¥%s', string);
3 :

fclose(infilel;

fcioseloutfile);

infile = fopen{"templOl. dat','r')'

checkcells = 0; -

while (fgets(string, 82, infile) != NULL) {
switch{stringf01) {

case ‘D'z { . -
fprintf(outfilel,*Is®,string); o
if (stringll] == ‘E)
{

checkcalls++t;

if { checkcells == numcell)

W fprintf(outfilel,*DS Zd 1 1;\n*, checkce115+1)'
] N }

break;

> .
case ‘E’} { fprintf(outfilel, 'DE;\n*); (\\
' fprintf(outtilel,'C Xd;\n", checkcells+l);
fprintf(outfilel,*Zs®,string);

break}
¥

default: fprintf(outfilel,*Zs", string); -

) |

fcloselinfile);

frclose(outfilel);

system{"rn templOl.dat®}; /4 used only in UNix envi &/ -
/k delete(infile); = used in VAX-11 C only &/

&

11-JAN-B8 21:46:47 ecitinc . ~ Page: 3

i
i

compentnane(string)
char stringll;
{ ‘ ¢
int i, k; : ‘
fprintf(outfile, *¥%s*, string);
if (string [21=='B‘ %% string[31==‘e’ &% stringl4]=="g’ §& stringf31=='i’
%% stringl6l=='n‘) !

{1=10;
while (stringlil != “:’)
i++;
it}
stringl01 = ‘973
=1;

while (stringlil != *)’)
{ stringCkl = stringlil;
i++) kt+; -
}
~ stringlk++] =
stringfk++] =
i=0;
whil= (stringCil 1= ‘\n’)
putc(stringli++], outfile),
pute(‘vn’, outfile};

L]

' 7 .

r I A
\n’; e -

b : : 2

addones(string) .
char stringil; ' ST
{ -

int 1=0;

while (stringfi++l 1= ;;' H

1-=

stringli++l = 7 73

stringfi++] = “1’;

stringli++]l = 7 /3

stringli++d = 7173

stringfi++] = 7'}

stringli++] = ‘\n’;}

stringfi++] = “\0‘; .‘i
stringCi++] = ‘\n’;

forintf(outfile, *%s", string); B

~,

= 4

)

¢

¢

I

11-JAN-88 21:53:04 deifin.c Page: 1

Yy
/*xﬂﬁﬂﬂ#ﬂﬂﬂ”ﬂﬂﬂdﬂNNNNHN#HU#”NN&HNNH’MJJ!NHNNN’HNNHNNHNIIHNNHH“HN’NNI;N’NNH‘N
This program is written for converting CIF file generated by
“Eleetric into a new CIE file for Phoenhix Data System and Daisy

system., This program looks at the cell name, call command and
comnent command used in CIE.

Nﬂﬁ”HHN’NN””HN””&?Nﬂﬁﬂﬂh‘dﬂﬂﬂﬂﬂ#dﬂﬂﬂﬂNNNHHN“’NNNNUI‘HNH”HNHHHRNN#NN*/
Cd

/*UMNNN#”N‘NN#"}I#”RNMNNN’HHNNHHNN#HNNNNHMHMNNNNNNNNNHNNH”HNNHNN‘HHHNHIIMH'
- Author: Alger Yeung

Version: 1.0

Date: November 1987 ' .-

Purpose: 3 module program for MOSC silicon compiler

ﬂuﬂﬂﬂndwnnnnﬂnnuunnn»n_wunnnnnnnxuﬂbundﬂnnnNnnnxnua{unnnnunnuNx#xuunnx*/
™,
™~

#include <stdio.h>
FILE Ainfile, ioutfilel, koutfile;

main{arge, arqv))
int arqe; char kargvil;
{
char string{821;
int k;

if (arqe < 3 || (infile = fopen{argvlll,"r*)) == NULL) {
printf(*Usage: deifin infile outfile\n®);
exit(l); +

by

outfile = fopenfarqvi2l,*w'};

while (fgets(string, 82, infile) != NULL) {
suiteh(stringf01) { y

case ‘D‘: { it (stringll] == ’§’)
{ (;
reuoveones(sﬂningfg/
- }. o
alse
fprintt(outfile, s, string);
break; ¥

case ‘93
{ if (stringlll == ‘4‘)
{ tprintflouttfile, L LO;\n*);

g stringf0l = ‘177

stringlll = 7 '3

gprintf(outtile,'¥s", stringl;

¥ ,
else if (stringlll ==.7)
{ -
‘ fprintf(outtile,*(Begin syabol: *)§ - \
- k = 2; . 1

11-JAN-88 21:53:17 . deifin.c) - Page: 2

” - N

- Vo

I -
while (stringlkl I= 73’} |
putc(stringCk++1, outfile);
tprintfioutfile, *)j\n’);
¥ : .

K; break; ,_
> .

-default: fprintf(outfile,’Xs®, string);
¥ i
¥ ™
fcloselinfile};
felose(outfile); \

¥) o«
commentname{string)
char stringll;] ' ' : \
{ v
Coint i, kj _
fprinti(autrile, *%5", string); _ i ,
it (string [21=s‘B’ %% stringl3Jd==‘e’ 8§ stringl4l==’g’ 3& stringl91=="1’
- %% stringlél==’n’) ' ' :
q Li=0; : .
while (stringCil] != ‘27)
i+4;
1++;
string(0l = ‘973
k = 1;
while (stringlil != 7}’)
{ stringlfkl = stringCil;
OO S
} . *
stringCk++] = *3’

' A ’
/P\\ stringlk++1 = ‘\n’;
i=0;

while (stringfil != ‘\n’)
pute(stringli++], outfile);
putc{’\n’, outfile);

b ‘ ' N
b .

L]

o~ -

removeones(string) ' .
char stringll;
{ -

@ T i=0;

‘while (stringfi++] != ’3/);

i__c

stringli-41 = *;‘;)

Ly

I

11-JAN-88 21:53:29 deifin.c

Pagel 3 :

stringli-31 = “\n’;
stringli-2] = ‘\0’;}
stringlfi-11 = ’\n"

fprintf(outtile, ‘Zs v strzng)'

%

.. /A]jPEH?lX VIII

Program Listing b_f' MOSC

t

Poale

P i

11-JAN-88 21106137 §osc.C Page:

'—\-_—_’ *

/*ﬂﬂﬂﬂﬂﬂﬂdﬂﬂﬂllﬂ”ﬂﬂdﬂﬂﬂN‘NUNNNﬂ#ﬂﬂﬂ'ﬂNHHRHNNNMNNHNNNNNNHN””NNH#N“NM LLL I

This is a main progranm of the MOSC cilicon compiler. It duty is ta

select the proper operator and invoke the appropriate subprograms.

This program is supposed to run on the Unix 03 environment because

it makes use of a Unix commandisystem. The comnnand string is formed
by using string commands.

This program handles the first wemory structure cell only but it can,
easily expanded to take care the second structure.

HllﬂﬂKHNﬂﬂﬂﬂ”d#ﬂﬁﬂﬂﬂ:ﬂﬂﬂ”'ﬂd”””ﬂ”ﬂﬂﬂﬂ#ﬂHHNN”N”””U#HH"NN’A’NNHNH”NHN‘”#NH&*/
L%
/*HNMNHNHIIHNNN’”NNHN#NHNHNN’NHNNNH’HHHNﬂ'lﬂﬂMMNHINNN”#HHHNN”#NHNN”IIHHHﬂ#ﬂ ’
Author: Alger Yeung
Version: 1.0
. Date: November 1987
Purpese: a module program for MOSC silicon compiler

NNNNNNNNNNNRNERNRREN RN NNN NNNNNNNNNRERRNNNNNENNN NN NN MJJNNN”NNN*/

#include {stdio=h>
#include.<strings.h>

pwain(arge, argv)
int arqc,
char %argvLl;
{
char ch;
char stringl60l;

if (argc < 2)
{
printf(*Usage: silicon output-filename\n*)y ¢
exit(l); . '
}

print 2 { " \n\n\n\nkirkkrkkkrkkhkhkihhkhhrhrrrik®)y
printf("\nk SILICON COMPILER ")
printe (*\nkkkkkikkkkkkikkiikkhrxrkrirk\rn\n®) ;
printf(*Adder/Multipler/Constant? {R/N/C) ==> "}; _
while ((ch=getechar()) i=‘3’ &% ch !=’A’ & ch I='g’ %& ch !='W ¥%
] ch !'=’t’ && ch != T’}
©printf(*\n\n\n*);

if (ch ==‘n’ {| ch == ‘M)
{ .
strepy(string,‘peternultipler.com *J;
streat(string, argvill};
systen(stringl;
>
¥ else
if (ch =='c’ || eh =='C") ~
{ .
strepy(string, *one_data.com °);
strcat{string, argv[l1); A

1

11-JAN-88 21:06:51 nosc.c

‘Page:

2

<1K system{string);

¥
_ else
o ¢ .

strepy{string, “multadder *);

1 streat(string, argvlll);
‘systea(string};
}

printf (*\n\nik% Silicon compilation finishes...\n'};

3

N

(3

o

VO WP L

I RIS SRV 4 Cimd kv

Ky N

' '!.:'i.r \I:"".-’ Yoo

Lle

1

dtaddl

i
o stk

i

¢

e

e L

L

11-JAN-88 21:02:54 ‘ pultadder.c - Page: 1

i i e i

-

/7 r——

This silicon compiler is designed to generate adder and substrator
by 3 VLSI desinger without cgncerning the actual layoul process.
The basic cell structure is defined by Mr. Peter Bird. This compiler
creates different ROM content for the arith. operations.
This coapiler generates CIE codes for the content. #; modulo number 1s
suﬁﬁfied by the user to specify what content will be mapped into the
ROM. | ' - .
The cell number 20 is basically a CE (diffusion} layer which contributes
the content of the ROM. '

The compiler packs all the created cells intoc a single CIF data files.
The CIE tile is created in heirch tashion. »
Created on November 4, 1987
By
Alger Yeung
University of Windsor.

- - e m e - &/

$include ¢stdio.h> ; -~
sinclude ¢strings.h>

#define BIT 5

tdefine MAXNUM 200

gdetine SIARIX -17750 :

$define STARTY 8350 /k starting location of the whole cell &/
$define BLK_DELIAX 9400

$define BLK_DELIAY 2200 /% size of 3 block 1X5 &/

FILE kinfile, xoutfile;

EILE kinfilenm, xoutfileuw) /* used in wmask subroutine */
int tnumcell;

int basiccellnum;

char argnaae[40][40];

char fileorderC61L215

int cellpum, cellnamenum;

wain{arge, argv)

int arach

char kargvll;

£ int i,iske15
int numsadder;

strcpy(fileorder[O], *0*)3
strcpy(tileqrder[l], 193
strcpy(fileordertZ], 2')%
strcpy(fileorder[31, 3"
5trcpy(fileorder£4]; '4%)3
strepy(fileordertSd, '5');
it (arge < 2)
{

11~

r"rf

(N
/%

1
< /4
n
/4
- X/
G 7

JAN-88 21:03:08 - aultadder.c

printf(*Usage: multadder filename\n®); N

exit{l);
By
if ((outfile = fopen(érggﬁl],'u')) == NULL) - ¢
{
printf(*Error in opening the file ¥s\n®, argv(ll);
exit(l); i
3 v

printf(* kkkkkkkkkkkkkkkhrhkkhihhkikkkhi\n®)3
printf(* xkk ULSI adders/substrators &kk\n®);
Printf(® kkAkkkkkkkkkikkhkkkkkiikhkArkhrk\nin®)3

printt%ﬂﬂach adder/substractor consists of 5 modules.\n®);
printf(*Each sodulo has specified ROM content.\n\n");

printf({*Enter number of adder:==> °); .
scanf(*%d’, $numadder);/* read in number of adder interested i/
printf(*\n\n*); -

tnumcell = 0,

transfer and count the number of cells in the basic ROM cell- %/
trans_count("'/users/yeung/programs/peter/cif.cif®);
basiccellnum = tnumcell;

need the starting cell number :ie=21 &/ ‘ !

cellnun = basiccellnum + 1
cellnamenunm = 501;

for (i=l] i<=numadder; i++)
{
strepy(argnanell],'bit01®); -
generate the bit data for adder or substractor %/

qen_data_bit(2);

=3

:t;cz;(argname[k],'éi'); streat{argnamelk++],fileorderfil);
strcpy(argnaﬁatkj,‘cZ'); . streat(argnamelk++1,fileorderfil);
strepy(argnamelkl, *c3"); strcat(argnane£k++l,fileorder[i]ﬁ;
stropy(argnamelkl, *cd*}; strcat(argnaieEk++i,fileorder[i]);'
strepy(argnamelkl, *ed®); strcat(argnane[k;+];filearder[i]);

for (1=2; 1<= 6; l++)
printf(*Zs\n", argnamelll);

create the mask and store it in a specify files &/

mask(6)} -

¢

)

¢

: “)-'.L;...'\'.\':.;-‘.Lt'.'..i.laa'u_.u;..., e

et A amc

11-JAN-88 21303722 nultadder.c \ Page:

, | 7.

- /% merge all mask data into a single file specified in argqvlll &/

conbine(nunadder);
— ‘ s -
\ -

/% remove all intermediate files */
strcpy(argnane[ll,'rn bit01");
systen(argnanetll);

for (i=l; i<=numadder; i++)

{
k = 2%
strcpy(argnane[k],‘rn cl*ly 5trcat(ar9nane[k++],rileorder[i]);
strepy(argnanetkl, ‘ra c2'); strcat(argnane[k++],fileorder[i]);
strcpy(argname[k],'rl c3'); strcat(argnametk++],fileorder[i]);
strcpy(argnanetkj,'rl.CA‘); -strcat(argnane£k++1,fileorderti]);
strcpy(argname[k],‘rn c5*)) strcat(argnane[k++],tileorder[i]);
for (1=2; 1¢= 67 1++) >
systen(argnane[ll);
}
¥
: D
Ik -

gen_data creates pinary data 1 or 0 ¢ar adder or substractor in tive
ditferent modules. Each modulo has 32 set of 5-bit data, two more bits

are used in parity check. However, Some programs requires only five
bits data . : o

gen_data_bit(avgc)
int arqcy
1 : -
- FILE koutfilel;)
unsigned short pod[BITI[HAXNUKI, nupber=1, adder, reset, check, modulo;
char chy '
register int i, iiy -
it (arge < 2)
£ printf(*Usage: Progran putfile-name’\n®);
exit(l);
P 4

/% determine the range of address O--number X/

11-

JAN-B8 21:03:34 nultadder.c |

Page:

/%

7k

Tk

/k

for (i=l; i<{=BIT; 1i++)
nugber A= 2;
number——;

-

printf("\nEnter the modulo numberi==> ')}
scanf(*%d"', imodulo};

printf (*\nAdder/Substractor? (A/5)==)> *);

while((ch=getchar()} != ‘A’ %% ch i='a’ &l ch!=’s’ &% ch!='S8');
addition parameter k/ -

adder = 1; . '

reset = 0,

check = modulo,;

substraction parameter &/
it (ch == ‘s’ || ch.== ’§")
{ adder = -1;
reset = modulo - 1; _
check = -1, -
} . .

determine the first number of each array &/

modL01{0d = 1;
for (i=l; i<= BIT-1; i++)
modCi100) = modli-1JC0] % 2;

for (i=0; i<= BII-1; i++)
{
for (ii=l; ii<=number; ii++) L
{ . modCillii] = wod[ilCii-1] + adder;
"if (modLilfiil == check)
modLiICiid = reset;
} -
}
outfilel = fopen{argnamefll,'w*);
write out the number of bit deal here %/
fprintf(outfilel, "Zd\n", BID);

/% least signi bit is taken care first &/

/%

therefore l.s.b is come first &/
for (i=0; i(=BIT~1; i++)
{
for (ii=0; ii<=number; ii+t)
{ register int j;
int ebitl, ebit2, temp;

S

/% check number of ‘1’ bit in the address number &/

)

¢

¢)

11-JAN-88 21:03:47 nultadder.c - Paget 3

Lebitl =03
for (j=0; j¢= BII-1j j++)
{ temp = ii}
if (temp & Ox01)
gbitl++;
temp >>= 1j
¥
/% check number of “1/ bit in the data (content) &/
ebit2 = 03 .
for (j=0; j<= BII-1j j++ -
{
if ¢(modCilL[iil & Ox01)
{ 4
forintf (outfilel,*l ")} *
ebit2++;
}
else

fprintf(outfilel,*0 "5
modLilLii) 3= 1,

>
_ /% use even parity scheme */ .
it (ehitl 2 0x01) /% take care the address lines &/
fprintf(outfilel,"l *);
else

‘fprintfoutfilel,"0 ")}

if (ebit2 % Ox01) /k take care the data lines e YA
fprintf{outfilel,’l *); ‘ '
else

fprintf(outtilel,*0 ");

pute(‘\n’, outfilel);

¥
3 -
fclose(outfilel);
}
/% - ’

Mask.c creates mask layer for the ROM implementation. The mask files
will be stored in arqvi2l, argv(3l,....argvl6]. The subroutine will
prompt for starting cell number and cell name number .

*/

/% mask.c is include in the following x/

mask (argc)
int argcy

i

11-JAN-88 21:04:00 sultadder.c

Page:

6

{ L4

int i,j,k,1;

int matrixCMAXNUMILBIT]; /k define the size of the 2D array for input data %/

int numset; /% number of set of data in the infilen %/
int numfile;
char ch;

if (argc < 3)
- {

printf(*Usage: Program infilem outfilem(s)\n*);
exit{l);

}

if ¢ (intilem = fopen{argnamell1,*r*)} == NULL)
B ¢
printf(*Failure in opén the file %s\n", argnamelll);
exit(1); -
>

fscanf(infilem,*%d", inumset); /% find how many set of data in the file %/

/k printf(*Zd\n", numset); &/
/% position the file pointer to next line &/

}

while (ch=getclinfilem) != ‘\n’);

{
readindatalmatrix)y . :
outfilem = fopen{argnameli+ll,"w")}
gen_data(matrix);
fclose(outtilem);
cellnum++; cellnamenup++;

"y
fclose(infilem);

/k main &/

readindatal(matrix)
int matrix[MAXNUMICBITI;

{

register int i,1;)
char siringl40];
for (i=0; i<=31; i++)

{
fgets(string, 40, infilem),

for (1=0; 1<=4; 1l++)
if (stringlli2} == ‘1°)

for (i=1} i¢=numset; i++) /% take care all cells ie. 5 cells &/

11-JAN-88 21304113 nultadder.c Page: 7

pmatrix[ilL1d = 15
else

matrix[ilC1] = 05

Ik _
printf(*Zd %d Zd vd 2d %d\n', i, watrixfilCod, matrixCilf1], matrixCidL21,
matrixfil[3], patrix(ilC41d;
*/
"}

Y

/% take care of one whole cell 174
gen_data(natrix) /% take care of BX4 rows &/
int Batrix[MAXNUKICBITI;

{

int i, ky 17

int %, ¥}

1=-13

fprintf(outfilen,‘ns %d 1 1;\n*, cellnum);
fprintf(outfilem,'9 DATAC_Xd;\n*, cellnamenus);

for (i=07 i<=3; it++)
{

¢

% = STARTX + ikBLK_DELIA_X;

for (k=03 k<=7; k++)
{ 1++; /% specty the index of the matrix &/
y = STARIY - k&BLK_DELIA_Y;
onerow{matrix, 1, %, ¥)3
}
3}
fprintf(outfilen,'ﬂ?;\n');

RN

onerow(matrix, 1, X,y /% take care of one row of 5 bit data &/ _
int matrixTMAXNUMILBITI;
int 1, X,¥7 ° -

it i Lo e Ao

{
int i, temp;
int smal_delta_x = 16005 /% 16 mpicron between diffusion CE &/

y = y—650; /4 shift 6.3 micron down R/
for (iz0; i<=4; i++) /%35 bit data cif &/
{ .
tepp = x ¥ iksmal_delta x + 4505 /% shift right 4.5 micron x/
if { matrixf13Cil ==1) /% it *1* ,put a CE layer &/
fprintf(outfilen,'c 20 R 100 0 T Zd Zd;\n', temp,y)y |

e it s b< _).Aﬂ i a ks
|

11~JAN-88 21:04:26 wultadder.c

% . .
Combine.c coebine all cif code in single file which is a hierch file
The basic cell is defined once, and the data cells are called

individually. The f£inal cell is in CHIP.

&/

/% combine.c file is included in the following &/

coabine{numadder)
int numadder;

{

char ch;

int i,j,k, 1, ii;
int cell_height;
int longl, lengy;

/% transfer all the data from argvlil cell to the new output file &/
thuacell =basiccellnun;

for {i=1; i<= numadder; i++)

! s:r;p:Zargnane[kJ,'cl'); strcat(argnamelk++],fileorderlil);
strcpy(argnaie[k],‘cZ'); strcat(argnane[k++],rilenrderti]i;'
strepy(argnanelkl,"e3"); strcat(argnamefk++],fileorderfil);
strepy(argnameli], ed"}; streat(argnamelk++],fileorder[id);

~ strepy(argnamelkl, cS5*); strcat(argnamelk++],fileorder[il);

= for (j=2; j(= 6} jt++)
trans_count{argnamel j1)

>

if (numadder > 1)

{ trans_count(*/users/yeung/programs/peter/connect2.cif");

tnuscell--; '

¥
if (numadder > 2)

{ trans_count("'/users/yeung/prograns/peter/connectl.cif®);

v

11~JAN-B8 21304139 " pultadder.c Page! "9

)

\
tnuncell~-}

>

¢

for.(ii=8; ii ¢ numadder) ii++)
{
/% group the rom cell and the data cell together */
for (i=zl; 1 <=3 j i++)
{ "int fir;
ftr = iik5 + i,
. j = 1iA0 + i+tnuncell; /% built more new cells &/
: 1 = iix 5 + i+basiccellnum} /% call froa the basic cell x/
fprintf{outtile, DS ¥d 1 13\n*, j)}
fprintf{outfile,'9 ROM_EIRZd;\n", fir);
fprintf(outfile,"C Zd R-1000HYTO 0;\n*, basiccellnua-1);
fprintf(outtile,*C %d R 100 0 T 14050 -21100 \n*,1};
fprintfioutfile, "DE;\n"};

k = tnumcell + 1+ numadderid;
/% make up the final call cell &/
fprintf(outfile,*DS 2d 1 1;\n", k)3
fprintf(outfile,"9 CHIP; \n | 5

¢

cell_height = 03

for. (1i=0; ii < nunadder, ii44)
1

for (i=0) 1 < 5; i++)
{
if ¢ ii & Ox01) /% do not £lip &/
fprintf(outtile,*C %d T %d %dj\n*, (tnumcell+l+i +iiAS), (1%69900),
cell_height);
else /% flip about X-axis %/

fprintf(outfile,’C %d H Y T Xd Zdj\n®, (tnumcell+1+1 +i143), (1A69900),
cell_height);
¥ ‘

if (ii & OxQ1)
cell_height += 63400; /% for odd row adder */
else

cell height += 624007 /4 for even row adder x/

—
¥
/k add the long connect between two row of adders &/

lengy = 03 '
for (longl= 2; longl <= numadder; longl++)
1t : I

g

. . - T
©

11-JAN-B8 21304353 ' eultadder.c Page: 10
(E; longl++;

tprintf(outfile,"C 900 T 316650 2d;\n*, (lengyx125800) + 31200 13

lengy += 13

/* add the’ short conhect between two row of adders x/

lengy = 1; /
for (longl= 3; longl <= numadder; longl++)
{ -
 longl++3
fprintfloutfile,'C 901 T -36550 Zd;\n", (lengyk94100))'
lengy += 1}
¥

fprzntt(outrlle,'DE \n*);
. fprintf(outtile,"C Zd;\n", k);
fprintf(outfile,*E\n®)'

telose{outfiled;

3

S

/% Count the number of cells in.the tile and transfer fros the old file

)

t0 new file %/

trans_count(filenaze)
" . char filenamel];
—-— A .
char stringl821;

fntile = topen{filename, 'r‘);

/% transter all the data froe filename cell to the new output file &/

{

while (fqets(string, 82, infile) != NULL) /4 not end of tile &/

it (stringl0)=='D’ 8§ stringlll =='F’) /% count how many cell k/--

thuncell+s;

fprintf(outtile,*Xs’, string);
}

o

felose(intile);
}

R

¢ 3

E

¢

. char %argvll;

| 11-JAN-88 21139124 gen_data.c

tinclude <stdio.h
$define BIT 5
ddefine MAXNUM 200

N main(aigc, argv)

int argcy

{ . & ’}
. FILE koutfile; [

unsigned short nod[BITICMAXNUM], number=1, adder, reset, check, modulo;

char ch;
register int i, iij

if (arqe < 2)
{ printf(*Usage: Prograa outfile-name\n*);
- exit(l);
¥

/% determine the range of address O--number #/
for (i=1; i<=BII; i++) - o
“number &= 2;
number--;

printf("\nEnter the wnodulc number: ®J);
scant('i1d*, Imodulo); '

printf(*\nAdder/Substractor? (A7S)\n"]);

while{{ch=getchar()) != ‘A4’ 8% ch !='3’ &% ch!=’s’

/% addition parameter %/

adder = 1;
reset = 0Oy
check = aodulo}

/% determine the first number of each array &/
modf01[01 = 13

for (i=lj i<= BII-1; i++) :
modLil[0] = mpdli-13001 % 25 ?

/% substraction parameter %/

if (ch == ‘s’ || ch == '§") R
{
pod[0JL0] = 31;
modf11L0) = 30; -
nod[21L03 = 28;
mod[31L0] = 24;
podE41L0] = 167

1L chi=’'S’);

o

&

13 :
C.

*‘)

/k write out the nusber of bit deal here &/

Page:

2’3;

11-JAN-8B 21:39:36 ~ \gen_data.c

for (i=0} i<= BIT-1} i++)
{ .
for (ii=l; ii<=number; ii++)
{ podlilLiil = modCillii-11 + adder;
it (modLilLiil == check)
modLilliil = reset;
/% tasting printf(*i=%d, ii=Xd, data=id\n*,i,ii, wodlil[iil}; &/
L Y - ‘ N
‘outtile = fopen(argvlll,*w®);

tprintf(outtile,*Zd\n*, BIT);
/% least signi Bit is taken care first x/
/% therefore l.s.b is come first &/
for (i=Q; i{=BIT-1} it+)
{
. for (ii=0; iid=number; ii++)
{ register int j;) .
int ebitl, ebit2, temp;

/% check nuasber of ‘1’ bit in the address number k/'

ebitl =0;
for (j=037 j<= BIT-1} j++)
{ telp = ii;
if (temp & Ox01) ‘
ebitl++; i
temp >>= 1% o
)
/% check .number of “1‘ bit in the data (content) %/
ebit2 = 03
for (j=0; j<(= BIT-1j j++)
{
it (modfilCiil & Ox01)

{ !
fprintf(outfile,*1 *); . ' :
ebit2++] ’

3

else .
fprintf(outtile,"0 *); :
modLiJLiid >>= 1; , . 5§
> ; -
. bl S
ft\?se even parity scheme X/ -]
o it (ebitl T Oxn0l) /% take care the address lines */

fprintf(outtile,’l *);
else
fprintf(outfile,*0 *);

3

¢

()

11-JAN-88 21:39:49 / gen_data.c

Page:
J
if (ebit2 & Ox01) /% take care the data lines #/
fprintfloutfile,*l ")j
else
fprintf(outfile,*0 *J;
o /—‘ g
pute(’\n’, outfileld; -
¥
by P
* frlose(outtilel;
¥

r

LRSS

2

£y

6

11-JaN-88 21:17:50 pasknew.c

Page:

1

$include <stdio.h>
$define MAXCOL 300
$define BIT &

#define STARIX -17750

“4define STARTY 8350 /k starting location of the whole cell &/

tdefine BLK_DELTA_X 9400 _
¢define BLK_DELTA_Y 2200 /% size of a block 1X5 &/

FILE kinfile, koutfile;

main(arge, argv)
int argcy

/char #arqvll;

{
char ch;
int 1,j.k,13

int matrix[MAXCOLI[BIT1; /4 define the size of the 2D array for input data
int numset; /% number of set of data in the infile %/

int nuntile, cellnum, cellnamenun;

i? (arge < 3)

{ .
printf(*Usage: Program infile outfile(s)\n®);
exit(l); :

)

it ((infile = fopen{argvLll,*r*)) == NULL)
{
printf(*Failure in open the file Xs\n®, argvlll);
exit(l); B
>

fscanf(infile,*%d*, Snumset); /% find how many set of data in the file #/

/% printf('id\n’, nuaset); X/

while((ch = getc(infiled) 1= “\n');

printf(*Enter the starting cell number DS &)}

scanf (*2d", Rcellpum);

printf(*\nEnter the starting cellname number CEL ¥I *);
scanf(*%d*, icellnanenun);

for (i=1; i<=numsetj i++) /& take care all cells ie. 5 cells %/

{
readindata(matrix),
outfile = fopenlargvli+l],*w');
gen_data(eatsix, cellnum, cellnamenum);
fclose(outfile)} -
cellnua++; cellnamenunt+;

11-JAN-88 21:18:03 nasknew.c | Page: 2

. }
felose(infile)y

¥ /% main &/

readindata(matrix).
int natrixIMAXCOLICBII];

{
register int i,1;
. char stringlf401;
for (i=0; i<=31; i++)

{ . - @
fgets{string, 40, infilel;

for (1=0} 1{=4; 1++)
if (stringlli2] == ’1’)

matr1x[1][1]
efse
matrixfildlll = 03
-~ : Ik . '
- printf(*%d %d %d %d Zd\n*, matrix[ilL0], matrixCilC1], matrixCilC21,
' matrix(ilf3], matrixCidC41);
&/
< T
¥

/% take care of one whole cell %/ - ,
gen_data(matrix, cellnum, cellnamenum) /% take care 0f"8X4 rows i/
int ‘cellnum, cellnanenum,

int matrix[MAXCOLILBITI;
{

int i, k, 13 s
int x, yy

1=0;

fprintf(outfile, DS Xd 1 1; \n', y cellnum);
fprintf(outfile,*9 DAIAC_Zd \n", cellparenun);

for (i=0; i(=3; i++)
{
= STARTX + ikBLK_DELTA_Xj

for (k=0; k<{=7; k++)

{ /% specfy the index of the uatr1x */
y = STARIY - kkBLK_DELTA_Y;
onerow(matrix, 1, x, y);
1++}

3

{

11-JAN-88 21:18:15 masknew.c

Page:

} rd
¥ i
fprintf(outfile, "DE;\n"); ‘

onerow(matrix, 1, X,y) /% take care of one row of 5 bit data &/
int natrixCMAXCOLILBITI; '
int 1, x,vy;

{
int i, temp; ,
int smal_delta_x = 1600; /4 16 micron between diffusion CEF &/

y = y-650; /% shift 6.5 micron down X/

tor (i=0; i{=4; i++) /% 5 bit data cif &/

{

temp = x + iksmal_delta_x + 430; /% shift right 4.5 micron %/
if (matrixC110id ==1) /% it '1* ,put a CF layer &/

fprintf(outfile,’C 20 R 100 0 T Xd Zd;\n*, temp,y);

3 .

} .

5

)

(

,

¢

g

{

a8

11-JAN-B88 21:16:03 " merge.c

Page:

$include <stdio.t®
fdefine BIT 3

FILE #infile, *outfile;
int tnumcell;

main(arqc, argv)
int argcy - -
char *arqvll; S '

{

char chj

int i,j,k, 13 —_
int basiccell,

outfile = fopen{argvfll, *u*)j
thumcell = 0; :

. /% transfer all the data from argvl[il cell-to the new output file &/

/% transfer the basic cell first &/ : —
trans_count(argvli21);
basiccell = thumcell;

for (i=3; i¢= (arge-1); i++)
trans_count(argvlil);

/% group the rom cell and the data cell together #/
for (i=ly i <= (arqc-3); i++)
{
3
1

jit+tnumcell; /% built more new cells %/
i+basiccell; /4 call from the basic cell &/

nn

fprintf(outfile,*DS 2d 1 1;\n*, j)§

fprintf{outtile,*9 ROM_ETRId}\n*, 1);

fprintf(outfile,*C %d R 100 0 T 1600 03\n°®, basiccell);

fprintf(outfile,"C Zd R 100 0 T -43900 44400;\n‘,1);

tprintf{outfile,'DE;\n");

3 .

k = tnuacell + arqc -2;

/% make up the final call cell %/
fprintf(outfile,*DS %d 1 1;\n*, K);
fprintf(outfile,*9 CHIF;\n®);
for (i=0; i< (argqec=3); i++)

{ A

. fprintf(outfile,*C %d T %d00 0;\n®, (trumcell+l+il, (1%£1375));

/% 40 is used for overlap the cells to make connection &/

} - .
fprintf(outfile,“DE;\n');
fprintt(outfile,’C %d;\n*, k);

1

11-JAN-88 21:16:11 - merge.c . . Page:

C;. fprintf(outfile,'E\n');

fcloseloutfilel;
}

/% Count the number of cells in the file and transfer from the old file
to new file &/ :

trans_count(filename)
char filenazmeLll;
{

char string[B21;

infile = fopen{tilename, °r*);
/% transfer all the data from tilenawe cell to the new output file &/

while (fgets(string, 82, infile) != NULL) /% not end of file &/
4 .
it stringf0J==‘D‘ &% stringfl} ==’F") /4 count how many cell %/
tnumcell+t;

fprintf(outfile,'!s',-string);

T b _ :
fclosetintiled; © -
} *

"™

)

¢

3

¢

!

¢

11-JAN-88 21:09:58 mergenult.c

Page:

1

#include <{stdio.h>
#define BIT 5

FILE #xinfile, #outfile;
int tnumcell;

main(argc, argv)
int arge;
char #argvll;

{
char ch; o -

int i,j,k, 1;
int basiccell;
int deltax=137500, deltay=145100; /# distance between cells %/

outfile = fopen(argv[ll, "Wt);
tnumcell =

/% transfer all the data from argv[i) cell to the new output file 4/

/% transfer the basic cell first &/
trans_count (arqvl2]);
basiccell = tnumcell;

for (i=3; i<= (arge-1); i++)
trans_count(argvlil);

/% group the rom cell and the-data cell together 4/
for (i=1; i <= {(argec-3); i++) &
{
j = i+tnumcell; /4 built more new cells &/
1 = i+basiccell} /% call from the basic cell &/

tprintf{outfile,"DS Id 1 13\n', j);
fprintf(outfile,"*9 ROM_ EIRZd \n', i);
/% 1600 0 and -43900 44400 can be changed for different basic cell 7/

fprintf(outfile,"C Zd R 100 0 T 1600 0;\n*, basiccell);
fprintf(outfile, C Zd R 100 0 T -43900 44400;\n®,1);
fprintf(outfile, "DE;\n");
¥ .
= tnumcell + arge -2;
/% make up the final call cell &/
fprintf(outfile, DS %d 1 1;\n*, kJ;
fprintf{outfile,'9 CHIP;\n');

LIk specfy the floor planning for multipler cell x/

,for (J =1; j<=b; j++) /k specfy the botton row k/ -
rprzntr(outf1le,'c %d T %d 03\n", 38-j, deltaxk(j-1));

11-JAN-88 21:10:11 'ﬁﬂergenult.c Page: 2

/k specfy'the substractor in the piddle row %/
for (j=1; j<=5; j++)
fprintf(outfile,'C %d T %d 4d;\n*, 31+j, jhdeltax, deltay’;:

/% specty the top row for, adder &/
/4 cell number 37 is-the address content cell calculated by multaddss x/

~ fprintf(outfile,'C 37 MY T 0 Xdj\n", 2kdeltay);
for (j=1; j<=5; j++) . -
tprintf(outtile,*C Zd MY T Zd %d;\n*, 32-j, jkdeltax, 2kdeltay);
5 .

fprintti{outfile,"DF;\n*);
fprintf(outtile,'C Zd;\n*, k)3
fprintf(outfile,*E\n");

friose{outfile);

>

/% Count the number of cells in the file and transfer from the old file
to new file &/

trans_count(rilenané)
char filenamell;
{

char string[B821;

infile = fopen(filename, ‘r"); ‘
/% transfer all the-data from filename cell to the new output file &/

vwhile (tgets(striﬁg, B2, infile) != NULL) /% not end of file &/

{
it (stringf0l==’D’ &% stringll1] ==‘F’) /% couni how many cell &/

tnuncell+t;
fprintf(outfile,"Zs", string);
3 _
N
felose(intile);
}

e

€9

¢)

.

©int argey

11-JAN-88 20:39:46 QSQUARE.C - - Page:

1

/*HHNHHHNHHH””HNNHNNR”NNNN”"'NNNRHI‘NNHNNNNNNHNHNNN~HNNNH~RNNNHHHHHNHK

This program Wil generate pemory content for the guarter square
multiplier. The equation is based upon the following

content = (|address™2] / 4) nod B o

m = wmodulo-number

tisers invokes the program by typing

% qsquare output-file |

00 B 20 B B B B 0 B 2 B B B 0B BT OB NI ML MR NN N ERRONIY
|

/*Nll“‘.ﬂNNMH’NN”“‘H’NM#NNNNIIHNMNN”HHHNH’MNNHHHU”U”NN‘NNNNNNNN”NN’N””#NNNNN’N”

futhor: Alger Yeung

Versiont 1.0

Date: November 1987

Purpose: a module program for HOSC silicon compiler

NNNN””U"NHHNﬂﬂN&dﬁNﬂNNN“N#HH’HHHNNNRNU”““NN’NNNHNNﬂﬂdﬂﬂﬂﬂnﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂx*/

1

#inciude {stdio.h>
$define BIT 5
tdefine MAXNUM 200
main(arge, argv)

char karqvil;

FILE koutfile;
unsigned short mod[MAXNUM], number=1, adder, reset, check, modulo;
register int i, ii; S

if (argc < 2)

{ printf(*Usage: Program outf1le-nane\n |
exit(l);

¥

/% determine the range of address 0--nunber */
for (i= 1‘ i(=RII; i++)
number *= 2§ -
nupbar--;

printf(*\nEnter the modulo nunber: '),
scanf('id', imodulo);

check = modulo; ‘)
ii = 4

1

/4 mod(int((addressxi2)/ 4)) &/

=

11-JAN-88 20:39:47 . QSQUARE.C

Page:

2

for (ii=0; ii{=number; ii++)
{ wodliid = (int) ((iikii) / 4); p
while (mod[iil >= check) B
modCiil = mod[iil - check;
printf{(*%3d-->%3d\n", ii, modliid);
]

/% convert the decimal number into binary nuaber
1.s.b comes first
A/

\§§§~uutr11e = topen(argv[l],'u')‘
fprintf(outfile,"1\n"); /% write dnun one cell in the output flle &/

/% least signi bit is taken care first #/
/% therefore l.s.b is come first &/
for (1i=0; ii{=number; ii++)
{ int j, ebitl, .ebit2, temp;

/% check number of ‘1’ bit in the address number X/
ebitl =03 T .
for (j=0; j<= BIT-1; j+H))
{ temp = {i}
it (temp & Ox01)

+

ebitl++;
temp >>= 13
)
/% check number of ‘1’ bit in the data {content } %/
ebit2 = 0;
for (j=0; j<= BII-1; j++) 7
{
if (modCii] & 0x01)
{
fprintfioutfile,"l *);
- ebit2++) , _
} . . e
- else
fprintfiouvitile, "0 *);
modLiil >»>= 1}
>

/k use even parity scheme &/
if {ebitl & 0x01)
fprintf{outfile,"l "),
else
fprintf(outfile,*0 *);

/% take care the address lines x/

it (ebit2 & 0x01) /% take care the data lines &/
fprintf(outtile,'l *);

3

¢

y

¢

11-JAN-88 20239149 GSAUARE.C

Page:

3

else
fprintf(outfile,*0 ");

putc(‘A\n’, outfile);
}

fclose(outfile);

s

)

11-JAN-B8 21222136 ° _ gen_one_data.c

1

Page:

1

)

)

/*dﬂ‘#ﬂﬂ”ﬂd”ﬂ””ﬂﬂﬂﬂﬂdﬂﬂﬂﬂﬂ'ﬂlﬂ”ﬂﬂﬂﬂﬂﬂﬂﬂUﬂ”#l”ﬂdﬂnﬂ”h‘ﬂnﬂdﬂﬁﬂﬂﬂﬂﬂﬂ NNMNNNNM

- This program will generate memory content for one memory cell only.
Users can add, subtract and multiply a constant value. The program
is invoked by typing

% gen_one_data output-filenane

NHUNNANRNNENENRNANNERERNNRRNRNEN DN RN NN ANRNENENERNARANRRNENNRNNRRN L [
e

/*NNNNH“HHHHMNHHHNHHH"M#NHNHNHHNRNNNNﬂﬂHNNHﬂﬂﬂ#ﬂ“ﬂ"ﬂﬂﬂﬂﬂd”ﬂ”ﬂﬂﬂﬂﬂﬂﬂ'ﬂﬂ'
-

aduthor: Alger Yeung
Version: 1.0 »)
Date: November 1987 i,
Purpose: a module program for MOSC silicon compiler :

MNN“’NNNNNNHNﬂﬂﬂdNﬂ”ﬂﬂﬂﬂ"ﬂﬂH’NNM‘I“HNHHHNNH”‘INH’HNNHN"NN’NN’NHHH"“N#HNHHNN*/

.#include <stdio.h>
#define BIT 5
$define MAXNUN 200 :

main(arge, argw)
int argc;
echar kargvLl;
{ .
FILE koutfile; ' ‘
unsigned short modlBITILMAXNUMI, nunber-l, adder, reset, check, modulo;
char typelSl; .
char chj
register int i, ii;}
unsigned short firstvalue;

it (arqc < 2)
{ printf(*Usaqe: Progran outfile-name\n®); - .
exit(1);
.} ‘ . | |

/% determine the range pf address 0--number %/ L
for (i=l; i<=BIT; i++) -
number = 2;

number-=-3
printf (" \RAAKRARAAAAARARRAAKAAAKKAKAKAARNR") 3
printf("x Constant A\n"};

printsf (*kirAkRARARARARAAKAAAAKRAARRAAANNNAAR®) 3

prxntf(\nEnter the modulo nuuber' *);

scanf(*id*, &modulo); :

printf(* \nSelect Adder/Subtractor/Hultzplzer =>\n");
scanf{"Zs", type);

printf(* \nEnter the constant valuei==> *); e
scanf(*Xd*, ¥firstvalue); :)

printf{*\n\n"); . C;*ﬂxxg

¢ 7

?

¢

e~

11-JAN-BB 21:22:50 qen_one_data.c

A

Pagef

]

s

/% addition parameter %/
addenx 13
resef‘-
check = uodulo;

d

" /% detersine thQ first number of each array */

modL0IL0] = firstvalue,
/% take care of subtraction &/
iz (typelll==‘u’&itypel2])=='b")
‘mod[01L0] = wmodulc - firstvalue;

/% if multiplier is wanted %/)
~if (typelll=‘u’&&typel2]=="1")
1 ‘ .
=0;
* for "(1i=0; ii{=number; ii++)
{ - ,
podCilliil = ii % firstvalue;
while (mpdLilLiil >= modulo)
wodlilfiil = mod[ilLiil - modulo;

b

else /4 construct adder/subtractor #/
{ 4
i=0;
for (ii=l; iid=number; iit+)

{ . :
rod[ilLiid = mod[ilCii-13 + adder;
if (wodLilliil == check))

mod[ilLiil = reset;

outfile = fopentargvll],"u’);

/% write out the number of bit deal here &/
fprintf(outfile,”l\n"};
/% least signi bit is taken care first &/
/% therefore 1.s.b is come first x/
for (1i=0;. iid=number; ii++) ~)
{ register int j; ' *
int ebitl, ebit2, teap;

/% check number of ‘1’ “blt in the address number */
ebitl =0;
for (j=0; j<= BII-1; j++)
{ temp = iij .
if (temp T Ox01)
ebitl+; -
temp >>= 13-

v 53

£y

-

11-JAN~88 21:23:04 . qgen_bne_data.c : Page: 3

>
/% check number of ‘1’ bit in the data (content) &/
. ebit2 = 0}
for (j=0; j<= BIT-1j j++)-
{ -
if (pod[ilCiil & Ox01)
. { :
; fprintf(outtile,'l *);
ebit2++;
}
.o else

fprintf(outfile, 0 *);
©wodCilLiil >>= 1;
3 :
/% use even parity scheme %/ . ! '
it (ebitl & Ox01) /% take care‘the address lines */
fprintf(outfile,’l *);
. else '
fprintf (outfile,®0 *);

,)
it (ebit2 % OxO1) /% take care the data lines &/
fprinttloutfile,'l *); :
else - ‘ .

tprintf(outfile, 0 *);:

putc(’\n’, outfile); 7 SR I -
} : l

fclose(outfilel;

1.

{

)

¢

\

11-JAN-BB 20356108 peterault.c Page:

/*NNNNNNN‘HNHNN’#NN‘NN_NNNN”HHNHnﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂNﬂﬂdNﬂ”ﬂﬂﬂ”dﬂdﬂ#ﬂh’ﬂﬁﬂﬂﬂﬂkﬂﬂﬂ
-

NH#NNNﬂﬂNHnl'HNNHNNH#NNNHN“N“NN"”MN’NNNHﬂdﬂnxﬂNHJ’NNNHNN#”NNHHHN‘NNNHNNNN*/

/*ﬂﬂﬂﬂﬂﬂﬂﬂ”ﬂN_NNNN”NN“l‘dﬂﬂ”ﬂ”ﬂﬂﬂ”ﬂ”ﬂﬂkﬂqﬂﬂﬂﬂﬂﬂ#ﬂ”ﬂﬂHH’NNHNﬂNHNﬂN’HHNHNNN
.
Author: Alger Yeung »Ti;{> - .
& .) i *

Version: 1.0
Purpose: 2 module progran ur‘ﬁbsc silicon roppiler

Date: Navenmber 1987
HMNHNN”NNNN”NNNMNNNH“NN‘”“‘N Mﬂﬂﬂﬁﬂ'llﬂﬂfﬂﬂﬂﬂh‘NNHNNNHNRHINHHU‘!N“"#H#Nﬂld”ﬂ'*/
X

#include <{stdio.h>
#define BIT 5 ’

> . -
FILE xinfile, #outfile; -) “ﬁs§¥§

v int tnumcell;

9 d N
nain{argc, argv) o - : -
int argc; : by
char iargvlly T
{

char chy

‘ tint i,j,k, 17
~ int basicecelly
int deltax=69900, deltay=62700; /4 distance betwean cells #/

-

4) g é? '
. butfile =, fopen(argvill, *w");
nupcell =0,

La;

‘ /% transfer all the data from érgv[i] cell to the new output file %/

/% transfer the basic cell first X/
trans_count(argvl21);
basiceell = tnumcell;

+

for (i=3; i¢= (arge-1)j i++)
trans_count(argvlil)y

N

“" /% group the rom cell and the data cell together 4/
' for (i=l; i <= (arge-3); it++)
: _

J
1

“ . .
i+tnq;cell; /% built more new cells &/
it+basiccell; /k call from the basic cell &/

. gprintf(outfile,'DS Zd 1 13\n', j);
fprintf(outtile,"9 ROM_FIRXd;\n®, 1); ' .
/k 1600 0 and -43900, 44400 can be changed for different basic cell &/,

11-JAN-B8 20:56:15 peterculi.c . Page:

—— ot

fprintf(outfile,"C Xd kK -100 0 H Y T © 0;\n®, basiccell -1)3
tprintf{outtile,*C %d R 100 0 T 14050 -21100;\n*,1);
fprintfloutfile, *DE;\n*); -
}
k = tnuacell + argec -2;
/% make up the final call cell %/
tprintfioutfile,*DS Zd 1 13\n*, k);j
fprintf(outfile,*$ CHIP;\n");
/% specty the floor planning for multipler cell &/

for (jel; j<=6; j++) /% specty the botton row &/
fprintf{outfile,"C %d R -100 0 I Xd -700;\n®, 43-j, deltaxx{j-11);
/% specty the substractor in the middle row &/
for (j=1; j<=5; j++) : '
fprintfioutfile,"C Zd R ~100 0 T Xd Zd;\n*, 36+j, jhdeltax, deltay);

/% specfy the top row for adder &/

/% cell number 42 is the address content cell calculated by multaddss 4/

fprintf(outtile,’C 42 R -100 0 Y T 0 Zd;\n*, (2kdeltay -300));
for (j=1; j<=5; j++)
tprintf(outtile,'C %d R ~100 O MY T %d Xd;\n', 37-j, jhdeltax,
"7 (2kdeltay-300));

gprintf(outtile, 'DE;\n*);
fprintfioutfile,*C Zd;\n*, k),
fprintfi{outfile,"E\n*);

. felose{outfile);

by

. /% Count the number of cells in the file and transfer from the old file

to new file &/

trans_count(filenane)
char filenamell;
{

char stringl821;

infile = fopen(filename, *r"); -
/% transfer all the data from filename cell to the new output file &/
e ’ .
while (fgets(string, 82, infile) != NULL) /% not end of file &/
{ g
if (stringl0l==‘D‘ 8% stringll]l ==‘F’) /% count how many cell &/
tnuncell++; h
fprintf(outtile, s, string);
} N

felosel(infile);
Y

3

(

4

e

11-JAN-88 20:56134

<<

peterault.c

Page:

3

‘."/4& a

)

-procedure readingfile{var matrix:icoluen3d2); o \

11-JAN-8B 20:48:23 systolic.p - ~ Page: 1

e -

J

progran raJarunZ(xnﬁ{ji put);

{ This program will compute the coord. of CIF ‘code which will

be stick on the Mr. Raja’s ROM. The ROM is highly reqular so that
I will program single bit first, 7-bit next, one-blaock next and
eight-block.

The first data of the input file specfies number of s1ngleblock.1e 5

The input is a 3247 matrix which composes of 8 blocks. Each block
has four 7-bit value so that each block is 447 matrix.

Inside each block, there are four colusns of data. Each column has 7-bit
If the input data of any particular bit is 0,.a connection is made. Or
the connection can be skipped.

The connection consists of a diffusion layer, two contact cuts and one
metal CMl layer. ’
The program will use Box command heavily in the CIF Code output.

The width and length are almost constant inside a block.

-}

const
£wr=900;
£1r=900;
£wl1=900;
£11=900;
fun=900;
£1m=1500;

cw=500;
£1=500;

nw=900;
ml=1400,

type

onecolumn=array [1..7] of integer;
fourcolusn=array [l..4,1..7] of integer;
column32=array [1..32,1..71 of .integer;

var

celitext)

diffitext;

ceitext;

infile:text;

i, nuafile, stnum, cellnamenun integer; { number of subfile in the 1nf119}
matrix:icolumn32;

dataftile:packed array [1..401 of char;

string: packed array El..BO] of char;

{The reading-file procedure will 1nput the 3247 matrix into the matrix
variable > ' ~‘%
\

var
i,jrinteger;

)

¢
)

{ infile:text; A
9 R datafile: packed array [1..401 of chars ' (

begin

for it=l to 32 do
begin
for j:=1 o 7 do
: read(infile,natrixti,j]); ‘
| ' readln(infile);
: - endy
end}

3

i

% |

] procedure intléngth(value:integer; var 1en9th:inte9er);

L - . {10 tind the nusber of digits in the integer variable value ¥
"3 “yar

é constant:integer;'

i . begin

3

: it value'< 0 then
3. _ begin

% constant:=-%;
e jengthi=l}
" . repeat
_i} length:=1en3th+1; o
T constant:=constantk10-9;
3 : until constant ¢ valuei
3 jengthi=length2;
end

else
begin

constanti=%

1enathi=1;

repeat
1ength:=1en9th+1;
Wconstant:=cnnstantk10+9;

until constant ? value)

length:?length+1;

end)

endy

procedure.coniactcut(cx,cy:integer);
var .
1cx,1cy:integer; -{ nusber of digits of CXyCYT

begin

11-JAN-88 20:48:48 systolic.p p Page:

] intlength(cox,loxd;

g & intlength{cy,ley);

ur:teln(cc,'B',cl 4,cui4,oxilex,cyiley, ;)5
ehd;

) W

procedure metalone(cx,cysinteger);
var

lex,lcysinteger; { number of digits of cx,ty)

begin

intlength(ex, lcx)'

intlengthicy,leyd; g

writeln(cel, ‘B’ ,ml:5,mu24,cxilex Lcyiley,’3');
end;

procedure dlfru51on(cx +CY,1,wiinteger);
var

. lex,leytinteqger; { number of digits of cx,cy}

begin
intlength(ex,lex);
intlength(cy,ley);
if 1=1500 then R
ur1te1n(d1ff,'B’,1:5,u:4,cx:1cx,cy:1cy,’;')
else -
writeln(diff,’B’,1:4,u:4,0xilcx,cyiley, 1)} A -
end; - . _ '

procedure bnebito(k,y inteqer);
{ %,y is the point of upper left corner of the transistor.}
var
tcentrexr,fcentreyr.1nteger,‘ {centre 'of box in diffusion layer }
" fcentrexl,fcentreyliinteqer;
feentrexm,feentreymlinteger;

ccentrexr,ccentreyr linteger; {centre of box in contact-cut layer 2
ccentrexl,ccentreyliinteger;

ncentrex,acentrey:integer; {centre of box in matel layer)

.begin
feentrexli=x+450; 7
fcentreyli=y-450; —~

feentrexm:=x+1650;
feentreymi=feentreyl;

feentrexr:=x+2850;
tcentreyri=feentreyl;

(3

ccentrexr:i=fcentrexr,
ceentreyri=fecentreyr;

()

1

¢

11-JAN-88 20:149:017 systolic.p

_ Page:

4

ccentrexl:i=fcentrexl;
ccentreyli=fcentreyl;

mcentrexi=x+3100;

. mcentreyt=frentreyl;
diffusion(fcentrexl,feentreyl,f11,26l);
diffusion(fcentirexs,fcentreyn,fln,fun);
ditfusion(fcentrexr,fcentreyr,flr,furl;

contactcut(ccentréxr,ccentreyr);
contactcut{ccentrexl,ccentreyll};

rmetalone{mcentrex,mcentrey);

end;

procedure onebite(x,y:integer); {Ihese one takes care the even cloumn }
{ %,y is the point of upper left corner of the transistor.}

var .

fcentrexr,fcentreyriinteger; {centre of box in diffusion layer }
fecentrexl,fcentreyliinteger; :
fecentrexn,feentreyniinteger;

ccentrexr,ccentreyr:integer;' {centre of box in contact-cut layer }
ccentrexl,ccentreyliinteger;

moentrex,ncentrey:integer; {centre of bpx in matel layer }

begin
feentrexl ;=x+450;
feentreyli=y-450;

_fcentrexn:=x+1650;
fcentreym:=fcentreyl;

fecentrexr i=x+2850;
feentreyri=fcentreyl;

ccentrexr i=fcentrexr;
ccentreyr:i=fcentreyr;

ccentrexli=feentrexl;
cecentreyli=fcentreyl;

_meentrex:=x+200; { Here is oﬁly thange, made in even coluen }
{ only shift 200 unit ¥

mcentrey:=fcenireyl; { The rest are the same as before.}

diffusion(fcentrexl,fcentreyl,fll,full;
diffusion(fcentrexa,fcentreyn,fln,fun);

-

~

11-JAN-BB 20:49:14 systolic.p © Page: S

ditfusion(tcentrexf,tcentreyr,flr,fur);

contactcut{ccentrexr,ceentreyr);
contactcut (ccentrexl,ccentreyl);

petalone(ncentrex,ncentrey);
end;

{ define onecolumn=array [1..7] of integer ¥
procedure sevenbito(x,ytinteger; dataionecolumn);
const -
distanceZrow=1600, A
-var { This takes care of odd column data.)
itinteger; »

begin
for iz=]l t0 7 do
begin
/ if datalil = ¢ then
onebito(x,y); /
y:=y-distance2row;

. end;” /

end;

procedure sevenbite(x,y:integer; dataionecolumnl;
const ' -
distance2row=)600;
var ° { this takes care of even coluan data. }
itinteger; ')

begin
tor ii=1 to0 7 do
begin
it datalil = ¢ then
. onebite(x,y);
yi=y-distanceZrow;
end; :
end;

{ define fourcolumn= array [l..4 1..71 of-integer ¥
procedure oneblock(x,y:integer; datasifourcolumn);
const _ - '
distance2coluen=7800;
~ distancenextcoluan=5400;
var
k,jryl,izinteger;
data: onecolumn;

)

)

¢'.Z

)

‘-

11-JAN-88 20:49:27 systolic.p

Page:

- -

tempiinteger,

begin
terpi=x;
for it=1 to 2 do
beqin
je=2ki~13 { take the odd number of column first. }
for ki=l to 7 do,
datalkl:= dataslj,kl}
sevenbito(temp,y,data);
» tempi=temp+distance2column;
end;
-.E- -
®:=x+distancenextcolumn;
for i:=l to 2 do
begin ' :
ji=2ki; { Take care of even number of colusn data }
for ki=l to 7 do
datalklz=dataslj,k];
_sevenbite(x,y,data);
x:i=x+distance2colunn;
end;
end;

{ define column32=array [1..32 1..7]1 of integer; }
procedure eightblock(x,yiinteger; matrixicolusn32);
const :
distancexblock=19600;
distanceybloek=12900;

var .
jrigk,1sx1,x22integer;
datas:ifourcolumn;

begin
xli=y; L
xZ2i=x+distancexblock;

for i:=1 to 4 do
begin
ji=(i-1)%8;

for ki=1 to 4 do

begin
for 1:=1 to 7 do
datasik,1):=aatrix(j+k,13;

end;
oneblock(xl,y,datas);

for k:i=1 to 4 do
begin '
for 1:=1 to 7 do

6

11~JAN-88 20:49:39 systolic.p

Page:

7

(E' datasCk,11:=matrixl j+k+4,1];
. end,
oneblock(x2,y,datas);

y:=y~disténceyblock;

end;
end;

procedure tixfileﬁ
var i, iitinteger;

begin

{ to transfer the data in the the metal file to poly file}

reset{cal, ‘metal.dat’);
while not eof{cml) do
begin .
; i:1=0; _ ¢
while not eoln(cml) do begin
it=i+]}
read{cnl ,stringlil);
end; '
_ readin{cml);
(E: : for iii=1 to i do
‘ write(diff,stringliil);
writeln(ditf); —
end;

{ To transfer the contact cut data to poly file.)

reset(ce, ‘contact.dat’);
while not eof(cc) do
begin
i:=0; :
while not eoln(ce) do begin
ir=itl;
read(cc,stringfil);
end;
readln(ec)} °
" for iii=l to i do
write(diff,stringliill);
writeln(diff);
end;)
writeln(diff,“DF;’/);
{ writeln(dift,‘E’); 3}

{close(cnl);
close(ee);
close(diff);

=

>
end;

)

¢

3

¢

¢

11-JAN-8B 20:49:52 systolic.p

Page:

procedure singleblock(arg: integer);

var
i integer;

®yysinteger;

nuaber,leng, cellnumberiinteger;
cellname: packed array [1..20] of char,
begin

a
'

readingfile{matrix);
argvlarqg+l, datafile);

{ write(’Enter the original point (x,y)' ‘)

readlnix,y);

write(’Enter the c¢ell DS & I');
readln(nhumbar); 3}

iz 0}

y:=0;

nuaber := arg+stnum;
intlength(number,leng};
cellnunber = argtcellnamenum;

{ write(’ Enter the name of the cell')

ii=};

shile not eoln do begin
read{cellnamelil);
ii=i+}}

end;

i=i-1;

Y

{ open three files to store three different layers

rewrite(diff, datatile);
rewrite(enl, ‘metal.dat’);
rewrite(ce, ‘contact.dat’);
write down the Iayer naee }

writeln(diff,’Ds ,nunber.(lengLZ) 113

writeln(diff,’9 CEL_‘,cellnumber: 3,’;’);

_writeln(dif?,’L CE;’);

- q

{

{ merge the three files into a single fxle. >

{

>

writeln(cml,‘L CM;’)}
uriteln(cc,'L CC;)}

carry the actual work on the ROW)
eightblock(x,y,matrix);
close(cml) i}

tixfiley -

writeln{diff, ‘C ‘,number: (leng-l},"‘)'
writeln(diff,’E"); .

end;

ie. diff,cc,cm)

8

11-JAN-88 20:50:05 systolic.p Page! 9

beqin
argv(l, datafile);
reset{infile, datafile);
readln(infile, numfile);
writeln(’Enter the starting cell number #: ‘)3
readln(stnum};
writeln(’Enter the starting cellname number CEL #I ’);
readln{cellnasenum);
stnup = stnhum - 1;
for ii=1 to numfile do begin
- singleblock{i’;
end; -
end.

o,

¢)

11-JAN-88 21308340 . sodnum.c

o~

#include <stdio.h>

aain()

{ FILE #outfile;
int mod;

printf(*\nEnter the modulo numberi==> *);
scanf(*%d", &mod); ' :
putchar{’\n’);

outfile = fopen(*adder.dat", "w');

fprintf(outtile, Zd\n*, mod);

fprintf(outfile,*a\n®);

fclose(outfile);

outfile = fopen{‘'substractor.dat®, "w");

£printt{outfile, %d\n*, mod);

fprintf(outfile,*s\n*);

fclose(outfiled; .

outfile = fopen(‘modnumber.dat®, 'w*); : [
. .fprintf(outfile,"Xd\n*, mod); X

frclose(outfile);

‘“@

=y

11-JAN-88 22:00:42 callelec.c : Page: 1

$include <{stdic.h>
¥include <string.h>
main{arqc, .argv)
it arge;

char %xargvil;

{ int i, ii,
char ch, pudthO] 1091nd1r[40] ?ixname[401];
FILE koutfile, kinfile;

if (arge ¢ 22

{) ¥ -

. printf(*Usage: prograwm filename\n®)]
exit(l); ' N

} .

if (getwd(pud) == NULL) SRR

{ LY
printf(*Error in reading your current dlrecturyl\n | \
printf(*_Exit\n"); -/
exit (1), ‘

} ! %
i= 73

 while(pwdlil != . ‘/‘ &% pud[1++J 1=\0" ¥ ;

i==3 .
for (ii=0; ii<=iy 11++) , ”")

logindirfiil = pwd[iil;
‘logindirf++il = “\0’; .
printf(*%s\n*, logindir); ' y

printf(’ Zs\n y pud)'

i=0;

while(logindirCi++]1 1= ‘\0‘)}
logindir{--i1 ='/"}

i=07
while(pudlis+ 1= "\0*);) | :
pwdl--1) =/*; L o ' : /

~ streat{fixnanme, 1091nd1r), ,
_streat(fixname,".fix.mac"); /% create file loginname/.fix.mac x/

streat{logindir, *.cadrec®); /i create file~loginname/.cadrec &/

strcat(pwd, argvEll); -
infile = fopen(fixname, "r' =z
outfile = fopen(logiggir, dh

/k transfer all the bas *ngfﬁﬁ. Ry fiz.mac f1le to new ,cadrc */ | ’
whilé((ch = getclintile)) 1=-€Q9Y . .. ‘ L
. pute(ch, outfile); ' -
fclose(infilel; .
i

AL

¢)

)

¢

]

TN

1

11~JAN-88 22:00:55 - callelec,t : ~ Page: 2

fpriﬁtf(outfile,'electric cifin X%s\n*, pud); -
fprintf(outfile,'electric editcell chip\n');

fclose(outfile)d; “

L

2

11-JAN-B8 21:40:45 - fixelec.c

Page:

Ik .
This program find the user login dlrectory
and copy .fix.mac file to .cadrc file in the login directory
. Hence., the user can issue this program in any dxectory he is
currently work */

.. #include <{stdioc.h>

#¢include <string.h>
nain{()

Joint i, 13

char pwd[100], logindir[40], fixname[40], movel1301}

it (getwd(pwd}) == NULL)
{ .
printf(*Error in reading your cyrrent directory!\n');
printf(*_Exit\n");
exit(1l);

i= 73
while(pud[il 1= //* 8% pud[i++] 1=/\0*) ;
. i==3 ' ' '
tor (ii=07 ii<=ij ii++)
logindir[iil = pwdliil; '
logindirf++il = ‘\0’;

i=0;

while{logindir[i++] = ‘\0’);

logindirf~-i] =7/}
i=03

while{pwdli++]1 1= ‘\0");

pwdl--il1 =/";

strcpy(move, ‘cp *); . -

strcat(fixname, logindir); .

streat(fixname,® .fix.mac"); /% creste file logirhame/.fix.mac %/

sticat(logindir, *.cadre®); /% create file loginname/.cadrc. &/

strcat(move, fixnamel,
strcat(move, * *);
streat(nove, logindir);
/% move = * cp fixname logindir® X/
/% i.e.t cp /users/yeung/.fix.mac /usrs/yeung/.cadrc X/
system{sove)} /4 issue a command = cp fixname logindir */ -

1

k!

J

(.

!

{

3

¢

11-JAN-BB 22:04:55 peternultipler.con

$ create those adder.dat, substractor.dat and modnumber .dat for erodulo num.
modnug

create adder bit data ' -

gen_data bit0l < adder.dat

pasknew bit0l ¢l c2'¢3 c4 ¢5 < cellnum2l

$ create substractor data

gen_data bit0l < substractor.dat ‘ o
masknew bit0l ccl ce2 cc3 ccd ced € cellnua2ée - g
¥ create addresscontent data

multaddss bit0l < modnumber.dat

masknew bit0l ccel < cellnun3l

4 layout the floor planning for the sultipler

petersult $1 cif.cif cl c2 3 c4 ¢5 ccl cc2 ce3 ced ccd ceel

re ¢l c2 c3 c4 c5.ccl cc2 cc3 ce4 ool ceel

rin bit0l : ‘

-

W

o~

" 11-JAN-88 22:03:20 one_data.com _ Page:

—

¢ one_data.com output file

s :

% create numerical data

qen_one_data dummyl)

create the mask data from the dummyll
masknew dummyll $1 ¢ .cnedata

& append the "end® statment to the output file

‘cat .endata >> $1

% remove the dupmyll file
ra dupmyll

¢

)

)

¢

S

11-JAN-88 22:01:47 addsub.con

—p=

Page:

1.

+ create a adder/substractor, anser the question of modulo number
qen_data bitol '

‘systolic bitCl cl c2 c3 c4 S < cellnumlé
merge $1 rajaoneftr.cif cl c2 3 c4 c5

e bit0l
re cl' c2 c3 o4 5
ri& contact.dat metal.dat

~

. ’\

1

11-JAN-88 22:02:32 pultipler.com . © Page: 1

'# create adder data

qen_data bit0l < adder.dat

systolic bit0l cl ¢2 c3 o4 3 < cellnumlb

% create substractor data

gen_data bit0l < substractor.dat

systolic bit0l ccl cc2 cc3 cc4 ced < cellnum2l
% create addresscontent data

multaddss bit0]l < modnumber.dat -

systolic bit0l cecel < cellnunm2b

$ layout the floor planning for the multipler
mergenult $1 rajaoneftr.cif ¢l c2 ¢3 c4 cd ccl ce2 ced cod e ceel
ra cl ¢2 c3 c4 ©5 ccl ce2 ce3 cocd cod ceel

re bit0l ,

ra contact.dat metal.dat

& e ©

)

¢

)

(

)

¢

Design Examples of MOSC

Appendix IX -

A .

@

.
e

&

soeac LG

vl
Tty v
attlhonll

ik

PEYIED
z

Mask layout of the

multiplier circuit

.

3

B B

Mask layout of the memory content of the Ist cell

GHND

L

Row SELEST

—_—

_\\\\\\\\\\\‘\\‘5\ \\\\\

AR
W AN

W -f:xr.‘.\\'\=.\'n.'-’:§*\\

S\‘\ \\"'\\.\

RN

A

;‘»‘\@é\.x

:\\\% § \k\\%\\\%_ ;
&\!\\L}‘

\\“}\

\‘\\

R
*srm\;\\

+

rR.S.

AN

N

-

W

NE
N

NE
N

Mask layout of two rows of memory locations

»

1%
Ul
i
W 3
S LRAAELS

] "“b\\“ \;‘_,___

NEW RoM

Ay

i

e

&

t=3

ETIYTI A

IR i, b | R FJ:n’Lii.jI ;

AT

' .

AN ST T e
e T BT K § i i

= “:ii : TRRCT %.‘;: . ?'-i g _‘

I
bl
"

'\. 4 oy
- W o
N
o L

e’
%"

PE- T

S PPEES
g
B

i 2 m2

s

o
&
i
m

X0 i
=T
L33
1
s

! Ll
ot . M
, g ‘

3 2 NN T
et . || a0
Lyl I K T]

ul ; ! !‘ o

- ‘ » R TN

iHistibal

XN

N ELIEE ST

i 1
b [
T
=
| . N
I
1 1
i
1
1 [
I 0
' 1
+ |

Mask layout of a single cell generated in Daisy

273

<4

e

e

==

[ST

EEapr

ey 1
i
T "
“E&l
t I
15 "
[
Bk

iy ¥ 11

¥ . * 1 4l
: l s Y. i mili
L} e e e et } 3
7 2 Lo b B o 5
“74":'.-_; S — et . 19
e —_— IPhjias i
- N ' S .
"
. - . , e
. Mask -layout of the second memory oriented cell K , -

\

-

it /;’:
2 Yt o} bLE Z //ff//'

%'fg}? l

o

T

A B
Date of birth: September 10, 1961
Place of birth: Hong Kong PR
1986G: B.A.Sc. in Electrical Engineering, University of Windsor
19887 Candidate for M.A.Sc. in Electrical Engineering at
University of Windsor. 4
A
- j
é
. / ’
, . ;
- f L3 ~ ! -
@
b
; ¥
e ' p

VITA AUCTORIS

3

	A Unix based VLSI design workstation.
	Recommended Citation

	tmp.1363370417.pdf.X5VGG

