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Abstract:
In an enumerative induction we project a property found in all the examined members of a class to

a hitherto unexamined member of that class. I consider an unresolved disagreement between
Stephen Thomas and John Nolt about how likely the conclusion of one example of such reasoning

is, given the premisses. Reflection on their controversy, and on the example, indicates that many

textbook commonplaces about enumerative inductions are false. In particular, uniformity of the

examined members of a class does not necessarily make it highly likely that the next member will

have the target property; this proposition may still be unlikely, or on the other hand be quite definite,

depending on our background knowledge. Also, enumerative induction need not rely on any
general assumption about the uniformity of nature or the resemblance of the future to the past.

***

Introduction

I propose to discuss the logic of enumerative induction. By an enumerative induction, I mean an inference of the
following form:

All examined Ms are B.
Therefore, the next examined M will be B.

M is a variable ranging over kinds, or more generally over sets of individuals. B is a variable ranging over

properties. Here is an example of such an inference:

There were fifty marbles in this jar. The marbles were thoroughly stirred and mixed before

sampling. The first forty-nine marbles that I removed, all of which were chosen at random, were all
blue. Therefore, the next marble that I choose from the jar will also be blue. (Thomas 1997: 148)

Enumerative induction is a humble form of reasoning. All of us use it frequently, whenever we extrapolate from

uniform past experience. Its logic seems obvious. It is not a deductively valid form of reasoning, we think,

because the meaning of the premiss leaves open the possibility that the conclusion is false. But it can be

inductively strong, as we say. By this we mean that, if the premiss cites enough instances of the kind, and we

have some reason to think the examined instances are representative of the whole kind with respect to our target

property, then the truth of the premisses makes it highly likely that the conclusion is true. Some reference may be

made here to the need for a more sophisticated view of induction than that possessed by Russell's chicken

(Russell, 1912), who confidently came up to the farmer every morning expecting to get its daily handout of grain,

until one day the farmer cut its head off.

We may acknowledge that there is a problem of induction, first raised by Hume, a theoretical problem of

justifying this and other sorts of inductive inference. Our inductive practices, we might say, assume that the future



always resembles the past, or that nature is uniform, assumptions which we cannot prove to be true but for

making which some reason can be given.

I shall argue, through reflection on the above example, that most of the above commonplaces are false.

 

1. The Thomas-Nolt Controversy

In an exchange some years ago in Informal Logic, Stephen Thomas and John Nolt gave wildly different answers

to the question how likely it is that the conclusion of our example is true, assuming that the premisses are true.

Thomas wrote as follows:

If one calculates the probability that the remaining ball1 is blue given that the first forty-nine drawn

at random have been blue, the probability is well in excess of 80%. (Thomas 1984: 32)

Thomas made this claim as part of his case against John Nolt's proposal "to measure strength of reasoning by the

proportion of conceivable worlds in which the conclusion is true among worlds in which the premises are true"

(Nolt 1984). In reply, Nolt made the following comment about Thomas' claim of a probability well in excess of
80%:

This claim seems plausible, but in fact there is no way to calculate such a probability from the

information Thomas gives... if we do not know the number of blue balls in the urn initially and we
make only the assumptions that Thomas gives, then no calculation will yield the probability that the

remaining ball is blue. We can, without violating any mathematical law, assign that proposition any
probability we like. (Nolt 1985: 56)

It is noteworthy that Thomas nowhere gives the method of calculation by which he gets a probability well in

excess of 80%. On the other hand, Nolt gives no justification either for his striking claim that we can assign any
probability we like, consistently with the premisses of the argument, to the proposition that the next marble that I
choose from the jar will be blue. He says only:

We intuitively feel that the probability of the 50th ball being blue ought to be high, given the

premises; but this feeling is based on what Hume would have called our "habit" of extrapolating
constant conjunction. It is based, in other words, on our implicit assumption of the uniformity or

likely uniformity of the urn's contents, not on any mathematical principle... If we do not make such
an assumption, however, then we have no basis for thinking that the colour of the first 49 balls is in

any way relevant to the colour of the 50th. Since there are many possible colors other than blue, the
inference is genuinely weak. (1985: 56)

Nolt defends the possible worlds test as helping us to notice the assumption.

Although Nolt had the last word, Thomas continues to maintain that the premisses of such an argument give

strong support to its conclusion. About a similar example, he writes the following in the 1997 edition of his text:

The large proportion of marbles examined and the fact that the marbles were thoroughly stirred
before sampling and were chosen at random, all contribute to the strength of this reasoning. Yet the

reasons do not make the truth of the conclusion totally certain. It remains possible that one (or even
both) of the two marbles still in the bag is not made of clear glass. [In the example under discussion,



48 marbles selected at random without replacement from a bag of 50 marbles were clear glass.—

DH] Although we can imagine that the reasons are true while the conclusion is false, this situation is
unlikely. Consequently, the step from these reasons to the conclusion is rated as strong [italics in

original—DH]. Unlikely as it may be, the logical possibility that a remaining marble is not clear glass
(despite the fact that the first 48 drawn at random were clear glass) makes this step of reasoning

less than 100 per cent certain, the highest possible degree of strength. (Thomas, 1997: 131)

My reason for discussing Thomas' example, then, is that there is an unresolved disagreement about how likely the
conclusion is, given the premisses, a disagreement whose resolution may shed light on our theorizing generally

about enumerative induction. The example may of course seem absurd. Who cares, someone might say, how
likely the premisses make the conclusion? All one has to do is pull out the last marble and find out what colour it

is. But picking a marble from a jar—or more exactly a ball from an urn—has been used since Laplace
(1952/1819) as a metaphor for conducting an experiment or making a systematic observation. When we make
extrapolations from experiments or observations, there is typically no limit to the number of further instances

which might be observed. In such cases we cannot pull out all the remaining instances and look at them.

 

2. Improbability of true premisses with a false conclusion

Thomas appeals to its being unlikely "that the reasons are true while the conclusion is false" (1997:131); in other
words, he regards as unlikely the following situation: 49 marbles selected at random without replacement from

this jar containing 50 marbles are blue, while the non-selected marble is not blue. But it is unclear what sort of
likelihood we are being asked to estimate when we contemplate such a situation, and this unclarity perhaps

explains how Thomas came up with his probability "well in excess of 80%" that the conclusion is true given that
the reasons are true (1984: 32). It sounds as if we are being asked to estimate the conditional probability that all

49 marbles selected at random without replacement are blue, given that the jar contains 49 blue marbles and one
non-blue marble. And this probability is 1/50, or .02.2

Since the probability of a set of mutually exclusive and jointly exhaustive events sums to 1, then we can work out

by subtraction that the probability of a blue marble being chosen last is .98. And we might then be inclined to
take this as the likelihood that the conclusion of our argument is true, given that the reasons are true. But this
would be a mistake. For the argument corresponding to the probability of .98 is the following argument:

49 marbles are selected at random without replacement from a jar containing 49 blue marbles and
one non-blue marble.
Therefore, the marble left in the jar is blue.

And that is clearly a different argument from the one whose inference we are evaluating, since it includes in the

premiss the assumption that one of the original 50 marbles is not blue and it does not include the information that

the 49 examined marbles are blue (information with which the premiss and the conclusion are in fact jointly
incompatible).

What has gone wrong? In construing as we did the likelihood that the reasons are true while the conclusion is

false, we have treated the problem as one of estimating the probability of a given outcome of a not yet completed
stochastic (indeterministic) process. But our problem does not involve any such stochastic processes. We are

supposing that the 49 marbles have already been selected, and that they are all blue. There is no indeterminacy



about their colour, or about the colour of the remaining marble in the jar. It is true that, prior to their selection, if

49 marbles in the jar were blue and one was non-blue, the result we observed was very unlikely, with a

probability of only .02. It is also true that, if all 50 marbles in the jar were blue prior to the selection of the 49,
then the result we observed was inevitable, with a probability of 1.3

But it is still unclear what these two conditional probabilities have to do with the probability we are seeking to

determine.

Our probability is in fact some sort of epistemic probability, the degree of certainty that it is reasonable for us to

attach to a proposition given certain information. An initial approximation to understanding this kind of probability

is to think of it in terms of the betting odds one should be willing to give that the proposition is true. Given that the
first 49 marbles selected from the jar are blue, what would be fair odds if one person bet another person a dollar

that the 50th marble will also be blue? The basic approach to understanding this sort of probability was worked

out by Frank P. Ramsey in a paper written in 1926 and published posthumously in 1931 (Ramsey, 1990/1931).
For a recent moderate defence and elaboration of the approach, see Kaplan (1996).

Note that this is not probability in any frequency sense, as when we say that the probability is .25 that a playing

card in a standard deck is a heart, meaning that one in every four cards in the deck is a heart. We are dealing
with the probability that a particular proposition about a particular marble is true.4

Once we recognize that we are dealing with an epistemic probability, we can see that the word "while" is

misleading. We are not dealing with the probability of a conjunction, or the complement of the probability of a
conjunction. The epistemic probability of interest is not the probability that the reasons are true and the

conclusion true. That would involve some sort of assessment of how likely it is that the first 49 marbles picked at

random without replacement from this jar are blue. But we have no background information on the basis of

which to calculate such a probability. We are simply given that it is so. Nor is the probability of interest the
complement of the probability that the reasons are true and the conclusion false, for similar reasons.

Rather, what we are trying to work out is the conditional probability that the conclusion is true, given that the

premisses are true. Equivalently, it is the complement of the conditional probability that the conclusion is false,
given that the premisses are true.5

We might be tempted to reason that our conclusion is probably true, since the evidence is otherwise so unlikely
to occur. Our reasoning would have the following form:

The evidence rules out all but two possibilities.

One of these possibilities when combined with the evidence means that what we observed was
bound to occur before we started.

The other when combined with the evidence means that what we observed was very unlikely

before we started.

Therefore, the first possibility is probably actual.

If we consider the parallel inductive generalization, we could consider our evidence as settling a decision between

two general hypotheses: that all 50 marbles are blue and that 49 were blue and one non-blue. Our reasoning

would have the following form:

The evidence rules out all but two hypotheses.



On one hypothesis, the evidence was bound to occur.

On the other hypothesis, the probability of the evidence was .02.

Therefore, the first hypothesis is probably correct.

This is an argument of the form:

E.
If E, then H or H'.

If H, then E.

If H', then very probably not E.

Therefore, probably H.

(H is a variable ranging over hypotheses, E a variable ranging over evidence.) This form of argument looks

legitimate. But we shall have occasion to question its validity.)

 

3. Bayes' theorem

We have seen that the conditional probability we seek is not the probability that a certain result will occur given a

certain hypothesis, but the probability that a hypothesis is true given a certain result. From now on I shall call this

the posterior probability. For such posterior probabilities, we must have recourse to Bayes' theorem, which
enables us to calculate the posterior probability if we have three pieces of information. First, we need the prior

probability of the hypothesis, that is, the probability that the hypothesis is true, given our background knowledge

independently of the new evidence. (I shall call this "P(H/K)", where P() is the probability function, H is the

hypothesis and K is our background knowledge apart from the new evidence.) Second, we need the posterior
likelihood, the likelihood of the evidence on the assumption that the hypothesis is true, again assuming the same

background knowledge which we have independently of the new evidence. (I shall call this "P(E/H & K)", where

E is the new evidence.) Third, we need the so-called prior likelihood of the evidence, that is, the likelihood that

the evidence is true on the assumption of our background knowledge, without assuming the truth of the
hypothesis under investigation. (I shall call this "P(E/K)".) Bayes' theorem tells us that the posterior probability of

a hypothesis on new evidence is its prior probability multiplied by the ratio of the posterior likelihood of the

evidence to its prior likelihood:

P(H/E & K) = P (H/K) ´ P(E/H & K) ¸ P(E/K)

Bayes' theorem rests on a definition of a conditional probability P(A/B) as the result of dividing the probability

that both A and B obtain by the probability that B obtains, provided that this latter probability is not zero. Thus,

for example, the probability that a card in a deck of playing cards is a heart, given that it is red, is the probability
that a card is both a heart and red (13/52) divided by the probability that it is red (26/52), or 1/2. If one replaces

the conditional probabilities in Bayes' theorem according to this definition, one sees that the theorem is correct,

provided that the hypothesis under investigation has a non-zero prior probability, and assuming that probabilities

can be assigned to the component propositions.

The justification of applying Bayes' theorem to the calculation of our epistemic probability is that this epistemic

probability satisfies the axioms of the probability calculus (the Kolmogoroff axioms). For a moderate justification

of this claim, see Kaplan (1996).



 

4. First solution: assumption of independence

Now let us attempt to apply Bayes' theorem to our problem.

1) Prior probability of the hypothesis: What is the probability that the 50th marble to be drawn from the jar is
blue, given our background knowledge but not given the evidence of the colour of the first 49 marbles drawn?

We have been told nothing about the way the marbles were put in the jar, who put them there, for example, or

how they were selected. But we know that a marble can be any colour at all, or a combination of colours. So we

might suppose that the prior probability, independently of our new evidence, that the 50th marble to be drawn is
blue is the same as the probability that a randomly selected marble from the set of all marbles now existing on

earth is blue. Let us call this probability "p".

2) Prior likelihood of the evidence: Making no assumption of an inclination on the part of whoever filled the jar

to prefer uniformity to diversity, I would put the prior likelihood of the first 49 marbles being blue at the product

of the likelihood of any particular marble's being blue, in other words at p to the 49th power (p49). That is, I am

assuming that the colour of any marble in the jar is independent of the colour of the other marbles in the jar.

3) Posterior likelihood of the evidence: Assuming our background knowledge, what is the likelihood, given

that the 50th ball to be drawn is blue, that the first 49 will also be blue? Not knowing anything about how the

marbles were selected to be put in the jar, I find it difficult to say. I have no particular reason for thinking that

marbles in a single jar are likely to be of uniform colour. It is quite possible to put in a jar marbles of a great
variety of colours. So I would personally be inclined to think that the colour of the 50th marble picked from the

jar would not change the likelihood of any particular sequence of colours drawn in the first 49 drawings. In other

words, I would put the posterior likelihood also at p to the 49th power (p49).

Putting these numbers in the formula, one sees immediately that the probability of the 50th ball being blue, given

that the first 49 drawn at random without replacement are blue, is p. That is, it is exactly the same as the prior

probability. The evidence of drawing 49 balls in a row which are blue has made no difference at all to the

probability that the 50th one is blue!

If this result is correct, then Nolt is correct in maintaining that we can make the posterior probability anything we

like, since we can cook up details of the situation which will make the value of p whatever we like. (If p is zero,
then Bayes' theorem does not apply. But new evidence cannot change the probability of something which has a

zero probability on the basis of background knowledge.)

This result is so counter-intuitive that it demands explanation. Has there not been some mistake in the calculation?

Does Bayes' theorem really apply to such situations?

The explanation, I believe, is that, in filling out the background knowledge for calculating the prior likelihood and

posterior likelihood, I have assumed that the colour of each marble in the jar is independent of the colour of
every other marble. I have treated the drawing of a marble from the jar in the same way as one treats the flipping

of a fair coin or the turning of a fair roulette wheel. Just as a long run of heads does not change the odds that a

fair coin will come up heads the next time, so a long run of blue marbles drawn from the jar does not change the

odds that the next marble drawn from the jar will be blue. To think otherwise is to subscribe to the gambler's



superstitious and fallacious belief that there are such things as streaks, that once something starts coming up a
certain way several times in succession in a chance setup, it is more likely than usual to keep coming up that way.

 

5. Second solution: assumption of uniformity

Nolt claims that the intuitive belief that drawing 49 blue marbles in succession from a jar containing 50 marbles

increases the likelihood that the 50th marble will be blue depends on an assumption about the uniformity in
colour, or likely uniformity in colour, of the jar's contents.

Suppose, then, we build into our background knowledge some assumption that the marbles in the jar are, or are

likely to be, uniform in colour.

First consider the assumption that the marbles are all of one colour. In this case, the premisses of our argument

make the conclusion quite certain. The probability that the 50th marble to be selected will be blue is 1, given that
the first 49 are blue. But notice that it does not take observation of 49 marbles to get this high probability. One is

enough, if we assume that all the marbles in the jar are the same colour. And intuitively this seems not quite right.

For when would we be in a position to know in advance that all the marbles in a jar are the same colour, and on

what basis?

We would be in such a position (or close to it) if we had a justified theory from which we could deduce

uniformity of colour. We have such theories in real life when we perform experiments or observations on

instances of natural kinds in order to determine the value of some variable which theoretical considerations
indicate is uniform for that kind. For example, we might be measuring the solubility of (pure) sulphur in (pure)

water. Ignoring for the moment measurement error and effects of trace impurities, we can say that one

measurement will give us the answer we need.

Notice that in such a situation the conclusion follows definitely, as we might say, from the premiss, not

probabilistically. So the common statement that all inductive enumerations are probabilistic is incorrect. In cases

where we have a good theoretical basis for expecting uniformity, the conclusion follows non-probabilistically.
This does not mean that our acceptance of the conclusion is infallible, because we may be mistaken about a

premiss or about our background "knowledge". But the inference is not probabilistic.

 

6. Third solution: assumption of likely uniformity

A marble in a jar, however, is not like a pure sample of sulphur combined with a pure sample of water, at least
with respect to its colour. Let us suppose that our background knowledge tells us that there is a 50% probability

that the marbles in this jar are of uniform colour. This new information makes no difference to the prior

probability that the last marble chosen is blue; it remains at p. But the prior likelihood that the first 49 marbles

selected are blue is now much higher. If we assume that the alternative to complete uniformity of colour is

random variation, then the prior likelihood is (p ´ .5) + (p49 ´ .5). The posterior likelihood, on the other hand, is

.5 + (p49 ´ .5), since the observation of one blue marble makes it necessary that, if the marbles are of uniform

colour, they are all blue. The posterior probability of the hypothesis, given this new piece of background

information, is p ´ [.5 + (p49 ´ .5)] ¸ [p ´ .5) + (p 49 ´ .5)], which simplifies to (1 + p 49) ¸ (1 + p 48), or



practically 1, if we assume that p is considerably less than 1.

Changing the likelihood that the marbles are uniform in colour does not affect the posterior probability of the

hypothesis very much, provided the alternative is random variation among the colours marbles are known to

have. Even if the likelihood of uniformity in colour is as low as 10-10, the posterior probability of the hypothesis

turns out to be (1 + [1010 p49] - p49) ¸ (1 + [1010 p48] - p48), which is still practically one, assuming that p is a

small fraction of 1. (That is, assuming that far fewer than half the marbles on earth right now are blue.)

Even entertaining the alternative that the marbles in the jar are of two colours, with the relative proportion of

these colours determined by chance, does not reduce the posterior probability of our hypothesis much below 1.

Suppose our background knowledge, prior to drawing the first 49 marbles, makes two colours and one colour

equally likely. Then the prior likelihood of the evidence is (.5 ´ p) + (.5 ´ p ´ .548), and the posterior likelihood

is (.5 ´ 1) + (.5 ´ 0). So the posterior probability of the hypothesis is 1 ¸ (1 + .548), which is still practically one.

So, if we assume as part of our prior background knowledge that the marbles in the jar are likely to be uniform in

colour, we do indeed end up with the intuitive result that drawing 49 blue marbles in a row from the jar makes it

almost certain that the last marble will be blue.

 

7. Fourth solution: no assumption of (likely) uniformity

But Nolt's claim is still not vindicated. We need to show that the intuitive result requires an assumption of

uniformity, or likely uniformity, of the colour of the jar's contents. What if we made no such assumption in

advance?

Suppose that, according to our background knowledge, it is highly unlikely before we select any marbles from

the jar that they are all of the same colour. Let the probability that this is so be q. Suppose also that our

background knowledge makes it equally unlikely before we select any marbles from the jar that they are of only

two colours. Then we have the following values:

P(H/K) = p

P(E/H & K) = q + (q ´ 0) = q

P(E/K) = (p ´ q) + (p ´ q ´ .548) = p ´ q ´ (1 + .548)

Thus the posterior probability, P(H/E & K), is 1 ¸ (1 + .548), which is again very close to 1. Hence the intuitive

belief that the observed result makes it highly likely that the last marble in the jar is blue does not necessarily

depend on a prior assumption that the contents of the jar are uniform, or likely to be uniform, in colour. In our

example, we can set q as low as we please.

 

Conclusion

The extent to which the premisses of an enumerative induction make its conclusion probable thus varies with our

background knowledge about the kind and attribute with respect to which the inference is being made. Without



assuming some such background knowledge, we cannot calculate a definite probability. But we can assign the

conclusion a high probability, given the premisses, even if our background knowledge does not include any

assumption that nature is in general uniform or that the future resembles the past. Nor need it include an

assumption that this particular kind is uniform, or likely to be uniform, with respect to this attribute. On the other

hand, our background knowledge may be of such a sort that the conclusion of the inductive enumeration follows

quite definitely from its premisses, not merely probabilistically.

Notes

1. In adapting his textbook example, Thomas changed the marbles to balls. 

2. The easy way to calculate this probability is to calculate the probability that the non-blue ball will be chosen

last. Since the selection is random, there is an equal chance of the non-blue ball being chosen on each draw,
namely one out of 50; therefore, this is the probability that the non-blue ball will be drawn last. The same result

follows if, using the multiplication rule for calculating the probability of the conjunction of independent events, we

multiply together the probability of choosing a blue ball on the first draw (49/50), the probability of choosing a

blue ball on the second draw if a blue ball has been chosen on the first draw (48/49), and so on. 

3. These calculations assume a number of facts about marbles in general and about this jar in particular which are

not explicitly stated in the premisses of the original argument:

1) The number of marbles in a jar changes only by removing or adding marbles to the jar. (Contrast the number

of drops of water in a glass, or the number of rabbits in a cage, or the number of mothballs in an open jar.)
2) Marbles do not spontaneously change colour on their own. (Contrast chameleons.)

3) No marbles left or entered the jar after it had 50 marbles except for the 49 I removed.

4) In particular, I did not replace any of the 49 marbles I removed. 

4. Some theorists want to give our sort of probability a frequency interpretation. For some cogent arguments

against this approach, see Hacking (1965). 

5. Such conditional probabilities are not the same as the probability of a material conditional. To take a simple

example from playing cards, the conditional probability that a card is a queen, given that it is a face card, is .33.

But the probability of the material conditional that a card is a queen if it is a face card is the probability of the

disjunction that a card is a queen or not a face card, which is .85. 
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