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" ABSTRACT

—

4

-

‘An  algorithm has been -developed to study the effect of .
melting on the'sfaﬁilitg of a two dimensional irregularly shaped
“:iceberg'fluatiné on water. The method uééd in~tgp algorithm can

fl

be  employed for regular symmetrical shapes such as rectangular

-

“sﬁapes as well as for highly irregul;r two dimgnsional shapes.
The éléurithm is in the_form of a compute?‘program which needs as
inéuts thg‘ shape of the icebeég defined as co-ordinate points
with respect to an arbitrarily chosen Cartesian co-ordinate
sgstem and am initial orieétatinn of the iceberg with respect to

the water surface.

Three phases of work are involved. The first part can
be wused for., finding the various orientations at which a two
dimensional irreéularlg shaped ieeberg can float in stable
equilibrium 6n water.” It may be recalled that at stable
equilibrium orientations, if the iceberg is subjected to a small
angﬁlar disturbance, then a couple should be sat up in such a way
that it tends to restore éhe iceberg to the same orientation. | ﬁ‘;
criterion is developed for describing the relative stability of

the wvarious orientations which can be taken by an iceberg

floating at equilibrium positions.
4 —

The second phase describes a method for modelling the
two degrées of freedom of motion of the iceberg. This is done by

solving numerically the differential equations representing the



translational -as Qell as tﬁe rotational motion of the iceberg.
The wvalidity of this method is established by predicting the
motion of the iceberg from an initial orientation for the case of
no me}ting. It is‘fnund that this algorithm brings the iceberg
Vfo one of the several stable equilibrium positions predicted by

the first algorithn.

The third part incorporates a method for dynamically
modelling the effect of melting of the iceberg. It is based on
the assumption that the entire iceberg is at the melting
temperature and that the coefficient of heat transfer around the
surfaeé of the iceberg is uniform. The coefficient of heat
transfer. is assumed to be equal to that in the case of a
turbulent natural convection boundary layer. Although the
melting model is reiafivelg crude and could be improved, its
incorpofation in the dynamic model demonstrates how melting can

affect iceberg behaviour such as roll over.

In all, three shapes are analuysed, a typical irregular
- shapey an irregular shape with a hole in it and a rectangular

shape.

id
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NOMENCLATURE

the perpendicular distance between the lines of
action of buoyancy and weight in m (moment arm)
value of A during previous iteration in m
the force of buoyancy in N
value of B during previous iteration in N
angular damping coefficient in N-m-sec/rad
linear damping coefficient in N-sec/m
linear damping rafio (dimensicnless)
angular damping ratio (dimensionless)
specific heat of ice in W-sec/Kg K
spring force in N
drag force in N
drag moment in N-m
drag coefficient (dimensionless)
acceleration due to gravity in p/sec”™
heat transfer coefficient in W/m~ 'K
mass moment of inertia in Kg-m™ ,
spring constant in the case of a mass, spring and
damper system(linear) in N/m
spring constant in the case of a mass, s=pring and
damper system (angular) in N-m/rad
thermal conductivity of ice in W/m-XK

characteristic dimension in m

mass of iceberg in Kg



Pr

Ra

frontal area in m*

Prandtl Number (dimensionless)

Ragfeigh Number (dimensionless)

angular displacement of iceberg about its centre of

gravity in rad

value of T during previous iteration in rad

value of T obtained from lipear interpolation in rad

value of T at time t=0.0 in rad

time in sec

bulk temperature of water in degree centigrade.
temperature of ice in degree centigrade.
velocity of iceberg in water in m/sec
rate of melting in m/sec

weight of iceberg in N

waterline

cartesian co~ordinates

function of transformation

consecutive amplitudes

perpendicular distance of the centgf of gravity

“iceherg from waterline in m

value of Y during previous iteration in m

value of Y obtained from linear interpclation inm

value aof Y at time t=0.0 in m
function of transformation

melt displacement in m

x4

of
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o ¢ thermal diffusivity of water in m*/sec

0
.

thermal expansion coefficient in 1/K
§ : logarithmic decrement {dimensionless)

AT t a small increment in T in rad

AY : a small increment in Y in m
&t * a small increment in t in sec
A ¢ latent heat of fusion of ice in J/kg
YV ¢ kinematic viscosity in m-/sec
‘ p, ¢ density of uater in kg/n’
Y : density of ice in kg/m>
w : angular velociég of iceberg in water in rad/sec
Subscripts :
n ! time level
Symbols :
+ ! indicates the location of the centre of gravity

- : indicates the locatioﬁ of the centre of buoyancy

xii



1. INTRODUCTION |

The rapid increase in oil and gas explgration and the
probability of future developmgnt in the off-shore regions éf
Newfoundland and. Labrador has stimulated an inferest in a
ithorOugh Qnderstandiné and prediction of the thermal and
-mechanical behaviour of icebergs. The reason for this is the
hindrance to these operations caused by the presence of huje
icebergs in these regqions. The knowledge accumulated about the
ocean, the icebergs and the atmosphere in these regions has
enabled scientists to gain a more precise picture of icebergs as
ensembles of three dimensional irregularly shaped masses with
masses upto ZxICPTons approximately. These icebergs are driven
by air and water currents, influenced by the earth’s rotation and
subject to melting and freezing as dictated by the regional
climate. This melting or freezing affects the floating stability
of icebergs and it has been observed that_icébergs }011 over from
time to time. This roll-over phenomenon causes some difficulty
in the placement of human observers or equipment on or near
icebergs, Therefore, a thorough understanding is necessary of
the response of an iceberg when subjected to varying

thermomechanical inputs.

The process of melting has a very serious impact on the
above application, for melting affects the floating stability and

causes roll over. In the following the process of melting as



2
applied to an irregularly shaped solid floating in a stationary

Il

liquid medium is studied in detail.

If an isothermal solid of/;::;;:;ar shape is to float in

a stationary liquid medium with higher density, it will do so in
one of the several possible stable equilibrium positions, with
part of the saolid in the liquid mediuﬁ and pa}t of the solid
exposed to air. If the liquid medium has a temperature different’
from tﬁat of the solidy then due to natura& convection, heat
transfer will. take place from the liquid to the solid if the
temperature of the liqujd is greatg?,}han that of the solidy or
from the solid to the liquid medium if the temperature of the
solid is greater than that of the ligquid. Similar heat-transfer
takes place between the air and the solid. If the transfer of
heat to the solid is such as to melt the solid, then the shape of
the solid changes as time progresses. Thé_change in shape of the
splid affects its floating stability to the extent that it will
be continually moving to a small extent in the liquid medium. In
some cases a previously stable shape gets modified by melting to
the extent that stability is not obtainable by a small motion and
the object rolls over to a very different orientation. While
icebergs are in fact three dimensional irregularly shaped objects
an analysis will become simpler if an isothermal iceberg of
infinite length and of highly irregular cross—section is

considered. This is referred to in this report as a two-



dimensional shape.

Generally in regions where icebergs occury, the air
temperatures are low and the amount of heat gained by the ice
from the surrounding water is much greater th;n that gained from
the air. (Therefore, the change'in shape takes place at a pmuch.
faste; rate in the portion of the iceQerg which is below the
water surface. This change in shape mhay render the present

floating position unstable and the iceberg may eventually roll-

. 1
over to a new stable equilibrium position.

Brpadly speaking, the present work is concerned néﬁ%
modelling the dynamic stability of a two dimensional . iceberg.
However, before defining the ohjective of the present work in a

greater detail, a survey of the relevant literature is necessary.

As far as is known, the first work on the melting of an
. ice block was done by Tkachev (1). He performed experiments by
melting ice spheres and cylinders in both horizontal and vertiéal
positions with sizes 10 and 12 mm diameter for freestream

temperatures ranging fram 0 to 30" C. He found that the

coefficient of heat transfer changes during the melting process
inasmuch as the radius of the sphere changes. He also found that
the coefficient of heat transfer is lowest for a -uwater

temperature of somewhere around 5.5°C.
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Merk (2) considered the melting of vertical ice-sheets

"in water by using an integral momentum method of analusis. He

found that the heat-transfer coefficient decreases as the extent

of melting increases.

Another work of interest is that of Shenk and Shepkals
(3). They studied thermal free convection for-fhe melting of ice
spheres in water, for uwater tgmperatures between ¢ and 10 "C.
+he9 obtained flow patterng as well as the local heat-transfer

characteristics.

Roberts (4) prnposeﬁ a simple mathematical model to
describe the steady melting of a semi-infinite body of ice, which
presents a plane surface transverse to a stream of hot air. This
approach can be applied only to the case where the interest is to
analyse the meltin? of a plane surface. Although this model is
very simple, it cannot be successfully applied to an iyregula%

surface.

The work of Vanier and Tien (5) 1is of particular
interest to the present work. Their main objective was to
investigate the effect of frge cohvection-bn a more practical
geometry and to consider the effect of changing bodg shape. The
authors carried out experiments by melting ice spheres of

selected diameters 2,3 and 4 inches for selected free stream

temperatures of\a, 7y 11 and 22°C.  An important assumption that



5
was made in this work was that the shape of the body is always
that of a spheté. However, in the actual experiments they found
that this assumption was violated by the hollowing out of a
circular scalloped region at the bottom of the sphere. They
ﬁttributed ffhis.phenomenon to a heavy circulation in the wake of
the boundary layer flow around the sphere. They also assumed
that the entire heat transfer to ice was accounted for only in

the phase change from solid to liquid. This is equivalent to_

assuming that the entire sphere was at the melting temperature.

Griffin (&) determined the velocity, temperature and
concentration distributions near a melting horizontal surface of
pure ice in saline water using integral techniques, for free

stream water temperatures of 5 and 10°C.

Saitoh (7) studied the heat trapsfer characteristics
around a horizontal ice-cylinder immersed in water, both
theureticalig and experimentally. A graph between Nusselt number
and the éngular position was drawn for three typical free stream

water temperatures namely 4.6, 5.6 and 7.0°C.

Wilson and Vyas (8) conducted experiments on the
velocity profiles near a vertical ice surface melting into fresh
water for free stream temperatures ranging from 2 to 7 C. . Their
results indicated steady state motion upwards when the water

températqre is below 4.7 'C and downwards when the water



&
temperature is above 7 "C. For intermediate temperatures

nscillatory bidirectional flow was observed.

Wilson and Srivastava (9) performed a two dimensional
analysis for the heat, mass and momentum transfer during the

melting of a horizontal ice-sheet above fresh or saline uwater

flowing at laminar Reynolds number,

Bendell and Gebhart (1@) conducted an experimental study
of natural convective flow over a vértical ice slab immersed in
told water. The major emphasis of this study was on ambient
temperature; in the vicinity of the density extremum of water.
They found that the minimum Nusselt number occured at a free

stream temperature of 5.4°C.

From the above review of the literature, the work done

in the past can be summarized as follows.

1. The heat transfer characteristics on the melting of
ice blocks have been studied in the past, but the study hés been
restricted to constrained weil defined shapes such as spheres,
cylinders and vertical and horizontal ice-sheets. However, 1;#99
icebergs existing in nature have irregular shapes including holes
passing through thém in some cases. These irregular geometries
will have very much more complex flow patterns and melting

<
characteristics. However, same of the melting models such as the



one used in the work of Vanier and Tien (5) can be applied.

2. Most of the previous studies have been of an
experimental nature and they have been carried ogut for particular
conditions such as a particular combination aof the free stream
temperatﬁre with the diameter 6f fhe sphere and for selected
values of the heat transfer coefficients. 'Therefnra, the results
Dbtaiﬁed from one particular combination need not necessarily
apply to the other combination and there arises the necessity to

repeat experiments for each combination.

3. In all the studiesy, the ice blocks were completely
submerged. In reality, icebergs float on the water surface,
gaining heét by convection partly from air and partly from water.
In such a situation, the changing shape affects the stability of
an iceberg to the extent that it is continually moving to a small
extent in the wafer. Occasionally as a previously stable shape
is modified, it becomes unstable and roll over DCCUrs.
Therefore, information obtained from artificially constrainea ice
blocks millinot necessarily apply difkctly to naturally occuring

N :
icebergs. '
I

In view of the above summary, the objectives of the

present work can now be bropadly defined.

(1), From the literature surveyy, it is quite clear that

any further analysis must consider a more realistic geometry



8
{i.e.) an irregular cross-section. Therefore, a two dimensional

shape is considered in this work,

(2). In reality icebergs float on the water surface.
Therefore, it is wvery important to analyse the floating

characteristics of an irregular iceberg.

(3). Since melting has a serious impact on certain
applications, the effect of mglting on the stability of icebergs
should be investigated thoroughly. For this reason a method
éeéds to be formulated that Qill at least crudely model the
melting of the iceberg in order that the effects of such melting
on the iceberg motion can be studied. Thus, once the algorithms
are develaped to desEribe the dunamic behaviour of an iceberg
with time varging shapey, future work would concentrate on the

development of a realistic melting model for a floating iceberg.

(13



2. ANALYSIS

If an infinitely long two dimensional iceberg having
irregular cross-section is to float on water, then it will do so
in one of the several possible stable equilibrium Positions.
With the temperature of the iceberg being at the melting point
and the temperature of water being higher than that of the
iceb;rg, melting of the iceberg takes place in the portion of the
iceberg which is below the water surface. . A similar heat
transfer mechanism. takes place in the portion of the iceberg
which is above the water surface. This melting changes the shape
of the iceberg as time progress, The change in shape of the
iceberg affects the floating stability of the iceberg to the
extent that it.will be continually moving to a small extent in
water, Occassionally a previously stable shape gets modified ta
the extent that stability is not obtainable by a small motion and
the iceberg rolls‘aver to a very different orientation. Broadly
speaking, the objéctive of this work is to model the roll-over.
In  this work, it was decided to model this rhenomenon with the
assumption that the only information that needs to be known about
the iceberg 1is its shape defined as co-ordinate poinfs with'
respecj to an arbitrarily chosen Cartesian co-ordinate system.
This 1is accomplished as follows: Suppose that the iceberg is

floating in one of the stable positions. Develop a melting model

and use it to predict the change in shape of the iceberq. Because
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6f this change in shape, the iceberg will move at least to a
small extent in-water. Predict the‘motion of'the iceberg due to
melting by using the - appropriate - differential equations
describing the translationai as well as rotational motion of the
iceberg. The motion of thé iceberg is predicted by solving
numerically the differential egquations. The above method of
modeiling the motion of the icéberg necessitates that the

following information be known:

Firstly, all the stable orientations of an iceberg must
be knawn. Since the only information that is known about the
icebefg is its shape defined as co-ordinate points with ‘respect
to a Cartesian co-ordinate system, it is necessary to develop a
method of finding the different drientatiuns at thch an
irregular iceberg can float in a stable equilibrium position on

water. -

—

Secondly, the numerical scheme used to solve the
differential equations representing the translational as well as
rotational motion of the iceberag must be validated.— This can be
achieved by using the numerical scheme to predict the motion of
the iceberg from an arbitrary initial orientation, for the case
of no melting. Theny if the numerical scheme is good, it should

bring the iceberg to one of the stable positions.

Thirdly, an algorithm must be developed which can deal



2 A 1
with the characteristics of a floating, two dimensional iceberg
of irregular crosé—section. This algorithm should be capable of
handling shapes of a generQI nature as uwell és being simple to
implement as part of the a computer program. Since an iceberg of
infinite length is considered, it is sufficient if the analysis

is carrieﬂ out for unit length.

Before going into greater detail in this section, it is
necessary fo identify the three phases of this work which are

(1). To develop a method of finding the different stable
orientations of a tuwo dimen;iunal irFégqlapig shaped iceberg.

{2). To validate the numerical scheme used to solve the
equations of motion. =

(3&2 To develop a melting model and use it to preéict
the change in shape of the lceberg due to melting. The motion of

the iceberg arising due to melting can then be modelled by using
~

the validated numerical scheme.

-
-

The three phases of work were carried out by developing
three different algorithms. The following sections will describe

each of these algorithms,

2.1 STABILITY ANALYSIS : -

The objective of this analysis is to develap a method of

tinding the different stable equilibrium orientations of a tuwo
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dimensional irregular icebersg. If an iceberg floats on water, .
then the forces that keep the iceberg in equilibrium are

1. the weight of the iceberg, dencted by W, which acts
vertically downward through the centre of gravity of the iceberg
and
2. the force of buoyancy, deﬁotéd by By which acts
" vertically upward, through the centroid of the displaced volume

of water.

The determination of the values for B and W as well as
the location of the centre of gravity and centre of buoyancy is
described in Appendix A. In order that a particular orientation
of the iceberg may correspond to, a stable equilibrium
orientation, 1t 1is necessary that the following two conditions
must b;' satisfied. Firstly, the effects of the two forces,
buoyancy and weight must bé nullified. This condition is called
the nécessarg conditinn;- However, for a particular floating
positiony, even if the effects of these two forces nullify, it

does not follow that this position corresponds to & stable

equilibrium position, for the reasons explained below.

A particular orientation where the necessary condition
is satisfied 1s said to correspond to a stable equilibrium
position, anly ify, when the iceberqg is subJected to a small

disturbance which may be translational or rotatiocnal, forces ar



e

13
couples are set up that tend to restore the iceberg to its
original orientation. This is called the sufficient condition.

When the orientation corresponds to an unstable one, any small

-angular displacement sets up a couple that tends to increase the

angular aisplacement. The stabilitg analysis for a body of
symmetrical cross-section can be ca;ried out by using the concept
of metacentric height as can be found in many introductory fluid
mechanics texts. Such é procedure cannot be applied in this
case, because of the irregular cross-sectional shape. Therefore
a different procedure based on the same principle used in the
metacentric height calculations is developed to, suit this
i

problem. This is explained in detail in Chapter 3.

In order that a particular orientation of the iceberg
with respect to the waterline surface may correspond to a stablé
equilibrium positian, both the necessary and sufficient
conditions must be satisfied. The necessary condition is that
the effect of the forces like buoyancy and weight must nullify.
The different orientations‘of the iceberg at which this necessary
condition is satisfied may be found by iteration., Then at each of
these orientations, it can be checked to see uwhether the
sufficient condition is also satisfied. This is done in Chapter
3. The following explains the method of determining the
different orientqtions at which the necessary condition is

satisfied.
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Restating the necessary condition mathematically, at
those orientations where the necessary condition is satisfied,

one must have

B=W T
and

A=0.0, where A is the perpendicular distance between
the lines of action of the forces of buoyancy and weight. A free
body diagram showing the forces acting on the iceberg is shown in

Figure 1.

The aobjective of this analysis _is to find those
orientations of the iceberg with respect to the waterline at
which B=W and A=0.0. However, for a non-melting iceberg the
value of weigﬁt does not change. . There are two variables that

determine the values of B and A. They are

(1). The angular orientation of the iceberg with respect
td'the waterline, denoted by T

(2). For a particular angular orientation, the position
of the centre of gravity aof the iceberg with respect to the

waterline, denoted by Y.

Since the only infnrmation that is known about the
iceberg is its shape defined as co-ordinate points with respect
to a Cartesian ¢o-ordinate system, it might appear necessary at

this stage that the iceberg be analysed for every possible
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cg: locaticn of centre of gravity

location of centre of buoyancy

WL

Flgure 1. Free Body Diagram of an Irregular Iceberg
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orientation of it with Easpect to the uwaterline. This would
mean that an infinite number of possible combinations of Y and T
would require consideration. However, this can be avoided as

explained below.

Since there are two variables that determine the wvalues
of B and A, it is possible to carry out the analysis, keeping one
variable temporarily constant, while varying the other. It is
also known that for each angular orientation T, there exists a ¥
at which B=W. Therefore, for each angular orientation T, the Y
at which B=W is found by iteration, Then at each of these

nrientafions, it can be checked to find whether A=Q.

When the necessary condition is satisfied, the centre of
gravity of the iceberg will be below the waterline. This really
means that the orientations of the iceberg that correspond  to,

cases where the centre of gravity is above the waterline need not

be analysed. For an angular orientation Ty consider that Y at
which B=W. Call this ﬁ:. This value must be negative, because
of the sign convention. (This is described in Appendix  A).

Consider two successive iterations during which the Y value
remains higher than ﬁ: . In the present iterationy the product
(By—W)x(B-W)- will be positive. By 1is the value of force of

buoyancy during the previous iteration,

Consider two successive iterations during which the Y
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value remains lower than Ye - In the present iteration, the
product (Ba-W)x(B-W) mifl be positive. If the value of Y remains
higher than Ye during the previous iteration and Y value becomes
less than QC during the present iteration, then the product {By-
Wix(B-W) will become negative. The value of Yo lies between the
values of Y during these two successi;e iterations. The ﬂ: value
can be found bg lipear interpclation from the previous value.
Therefore, if the algorithm is capable of identifying this
situation, then. this will eliminate the necessity of analysing
the iceberg for an infinite number of Y values. This idea is
used in this algorithm to find the value of Y at which B=W, for

each angular orientation.

Cnce W:is found by the procedure explained above, the
value of A is computed as explained in Appendix—A. A can have a
positive or a negative value or A can even be equal to zero. If
A is equal to gero, then this position corresponds to the one at
which the necessary condition is satisfied. If the value of A is
other than zero, then the sign of A éhould be checked. If A has
the same sign as in the previous iteration,the valu® of T is
incremented by AT and the calcdlations are carried out as before
for the new T value. On the other handy if the sign of A is
different from its sign in the previous iteration, then using

linear interpoclation from the previous value of Ty the new value

of T is found out. (If the centre of buoyancy lies to the right
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~of the centre of gravity, then the magnitude of A will have a
positive sign and if ofherwise, it will have a negative sign).
This check on the sign of A eliminates the necessity to analyse
the shape for an infinite number of T values. The following are
the steps of calculation involved in this algorithm. There are
two different iteration processes that are involved in this
algorithm, The first iteration finds the value of Yo, for an
angular orijentation 7. The second iteration finds that value of
T at which A=0, The first iteration consists of the following

steps of calculation.

(1). Compute the value of B, taking the value of Y to be
the value corresponding to the initial orientation.

(2). Change Y by adding Ay to it. \

(3). Calculate B again and hence determine the product

(Bq=W)x (B=W)

{4). Repeat steps 2 and 3 successively and find that v
at which the péuduct (Bg~W)x(B-W) is negative.

(3). Use the linear interpolation relation

Yn=Yo +(Y—Yg )3 { (W-Bg)/ (B-Bq))

to find the news Y value Yy. Using this new Y, compute B and
check whether B=W. If B is not equal éo Wy then repeat this step’
till B=W. Since it is very difficult to get the condition that B

is exactly equal to W in a computer, assume that B is exactly

equal to Wy if the absolute value of the difference between them
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is less than or equal to 0.000%1,

The second iteration process finds the position of the
angular orientation T at which A=0.0. This consists of the

following steps of calculation.

{1}. For the present T value and corresponding YC value,
compute the value of A as explained in Appendix A.

(2). This A can have a positive or a negative value or
can even be egqual to zero. If A is equal to zero, then this
position corresponds to the orientation at which tﬁe necessary
condition 1is satisfied. fi}en, the value of T is increased by
OHTand the calculations are carried out for the next T wvalue.
The cgl;ulations are stopped when T reaches a value of 350
degrees.

(3. If A has any other value except zero, then the
change of sign of A should be checked. If A has the same 5ign as
it had in the previous iteration, then the value of T is changed
by adding AT to it and the calculations are carried out as
before,

} (4). If A has a sign which is different from what it had

in the previous iteration, then using linear interpolation

TN=T0—(T—TO )}:MO /(A—AO)}

the new value Ty is determined.

(3). At this new value of Ty, the first iteration



process is performed to find the value of E .

{8). Unce the E“ value is determined corresponding to
- this new quvalue, the second iteration is performed.
(7. The calculation procedure is stopped as soon as T

reaches a value of 360 degrees.

Thusy the procedure described in this section helps in
identifying the different equilibrium orientations of a tuwo
dimensional irregular iceberg. This algorithm 1s cast in the
form of a computer program which 1s given in Appendix C.
ProvisianS" mére made in the algorithm so that the program would
print out the values of A and the corresponding T, whenever R
matches W. The information obtained about the values of A and T
is used in deciding how many of those equilibrium orientations
correspond  to gtable ones. This is done in Chapter 3.1. This
helps in wvalidating the numerical scheme used éo solve the
differential equations representing the translational as well as
rotational moticn of the iceberg. This numerical scheme is

discussed in the following section.

2.2 DYNAMIC ANALYSIS:

The objectives of this analysis are

(1). to identify the differential equations representing

the translational as well as rotational motion of the iceberg
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(2). to describe the numerical scheme developed to solve

those differential equations

{(3). to specifg;the method used to validate the numerical

scheme.

An analysis of forces acting on the iceberg as. shown in

Figure ! will result in the following system of equatians.

d2y dy :
Mm-w—g—cda . seneanas (1),
deT dT
Id_t-z BA—Ca‘cE } ceesaeas (2).
B!

where €4 and C; are the damping coefficients. The Y value in
equation 1 represents the vertical distance of the centre of
gravity of the iceberg from the waterline. The T wvalue

represents the angular arientation of the iceberg with respect to

the waterline.

A careful inspection of equations (1) and (2) will
reveal that both the equations are non-linear. This is because
of the fact that B is a non-linear function of both Y and T and
that Cyc and C, are dependent on Y and T. Therefore, the
Principle of superposition does not hold good for these
equations. Therefore,_ detailed consideraticon of the nature of

Cd and Ca 15 necessary as is described below :
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In equation (1), the bucyancy force B represents a force
quite similar to the spring force in the case of a linear sustem.
In the case of a linear system, the spring force F is ;epresented
by KY, where K is the linear spriqg constant. The quantity Ky
by definition is the force per unit displacement in a linear
system, represented by dF/4gy. By a similar analysis, if B in
equation (1) 1is expressed as B=%% xY y then %%’ will

represent a quantity which is similar to a spring constant K in

the case of a linear suystem. The main difference between K and
[}

‘%%- is that K is independent of Y, whereas, since B may be a
non—-linear function of Y, %%- may be dependent on Y.
Similarly, 3(BA represents a quantity which is quite similar

oT

to Kg + the spring constant for angular motion in the case of a

linear system.

Therefore, if Cd and Ca are expressed by the

following expressiochs

B .
c, =2 —
d Ciaf3y * M e (3)
. 3BA
C, = 20y /37 % I o (8)

it may be observed that these expressions are quite similar to
the expressions in the case of a linear system. Qbviously C and

% represent the damping ratios in the case of linear system.
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To determine approximate values of Cl and 02 a small

experiment was performed. & schematic of the experimental setup
is shown in Figure 2. The objective of the experiﬁent was to
determine the displacement versus time curve for small ‘linear
motions of a small simulated ice block floating on water. From
such a curve, one can determine the value of the damping ratié
C1 . Since ice melts quickly in water at room temperature, a
piece of wood-block with a small thickness compared with its
length and width was attached to a piece of iron-plate and made
to simulate an ice block. The dimensions of both the pieces we}e
adjusted such that the weight of the whole piece was equal to
that of an ice block of the same volume. This piece was floated
. in a tank of uwater. It was made certain that the size of the
tank was much larger compared to the size of the piece so thét
the piece would not touch the side of the tank during the ccursé
of the experiment. A displacement transducer was used to record
the motion of the piece in water. The output of the transducer
was connected to a storage oscilloscope. Sufficient time was
allowed so that all the oscillations of the piece in water would
die nqt. Then a small vertical displacement was given to the
piece. Then the motion of the piece was recorded in the storage
oscilloscope. The displacement versus time curve resembled more

or less the displacement versus time curve for a4 Spring, mass

damper sustem, when the spring constant and the damping
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Flgure 2. A Schematic of the Experimental Set Up
.\.




25
coefficient ;re independent of displacement. The consecutive
;eaks in the displacement were measured from the graduatians in
the oscilloscope and hence the value of C1 was determined. The
value of C, was assumed to be equal to that of Cl . The

necessary calculations are shown in Appendix B.

This way of specifuing Cd and Ca values are acceptable
as lohg as the iceberg flbats on thb water surface. But when
roll over occursy it is quite possible that the entire iceberg

gnés bFlcw the water surface for a short t}me before reaching a
4
stable equilibrium position. When the entire iceberg goes below
the water surface, the v'alues of % and -B—-BA will be zero .
3T
which corresponds to zerog damping force. However, this is not
realistic since tﬁe icéberg esperiences a viscous resisting force
for its movements inside water. For this reason, if the entire
iceberg goes below the water surface, then the damping force is
replaced by means of a drag force calculated as explaineﬁ below.
For this purpose an equivalent culindrical iceberg is considered.
This' equivalent cglindricgl iceberg is assumed to have the
diameter as the maximum distance along the iceberg. Calculated
this wayy the eauivalent cylindrical iceberg will have, for the

icebergs considered in this report, a diameter of the order of

150 metres.

The drag force 'is normally eapressed as
o 3 : .
F 1/2f5 %; pwvW .......... . (3a).
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In eguation 3a, fD ~is the drag coefficient and is taken tc be
equal to the drag coefficient for an infinite culinder. The drag

coefficient for an infinite cylinder is 0.48.

F_ = 3.6x10°v° o (3D)
D W

Calculated in a similar fashion, the drag moment for the
angular motion is

o

11 2
FDA = 1.47x10 w ve..(3c)

khenever. the entire iceberg goes belbw the water
surfacey the 1last term in equations | and 2 are replaced by FD

and FDArespect1velg.

Equations 1 and 2 are interconnected in the sense that
solution of one equation ig dependent an the solution of the
other. This is because of the fact that B is a function of both
Y and T. ‘No direct analytical solution of these equations is

possible and hence the following solution procedure is used.

~Equations 1 and 2 following the transformations

. dyY _ dT .
h=%'EE and &% dt y transform into the following system of
equations.
dX
}IE+B+CdX=w ) «esa(5a)

dY/dt - X =0 «e..{5b)
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- dz _
I3 ~BA+ CZ =0 .v..(62)

dT
dt"z 0 no-o(Gb)

The first derivatives in equations 5.and & are replaced
by means of a forward difference approximation. The rest of the
terms in equation 5a and 6a'are evaluated at time step n. The
terms X in 5b and Z in éb are replaced by %CXn+l+Xn) and

%(Zn+l+znj respecfivelg. Under these circumstances the system

of equations 5 and &6 reduce to

Xn+l—Xn
i G———EE——“) +B F (Cd)n X f W ... (73)

Yn+l—Yn
— i & LK) =0 ....(7b?

Z_ .,~Z )
ntl “n -
In ——~EE——-_— (BA)n + (ca)nzn 0 «es.(8a)

= ....(8b
n+l+zn) Q (8b)

Tn+l—Tn
At

The system of equations 7 and 8 are first order accurate
because the foruward difference approsimation is first order

T accurate. As can be seen from equations 7 and 8, the numerical

scheme is self starting.



2.2.1 SOLUTION STRATEGY:
Equations 1 and 2 are second order differential
equations. Therefore, four initial conditions (in tnjal) are

required to solve these egquations.

Specifying the initial orientations of the iceberg with
respect to the waterline is equivalent to specifying the values
of ¥ and T at n=0.0 (at time t=0.0). Since two more initial
conditions are required, the values of Xh and Zn are assumed
to be zero at n=0.90. This is equivalent to assuming that the
iceberg has no tnitial linear or angular velocity. Since
specifying the initial orientation gives the values of W, By M, I
and A at n=0.0, equation 7a.can be used tﬁ determine the value of

'xnfl . Then equation fﬁ can be'used to find Yn+l . Similarly

equation B8a’ can be used to find Zn+l which can be wused in

equation B8b tg find Tn+l . Likewise, the solution can be

marched in time. J

Another important calculation necéssars for the soclution

is tﬁe determination of values for Cd and Ca . These values are
calculated at each fime step by equations 3 and 4. This
9B ' 3(BA)

necessitates the_ evaluation of 37 'n and 3T |n .

These derivatives are evaluated by means of the following
differencing scheme. That is,

B . __BnnBﬂ‘l e (9)
Y o Yn_Yn—l .
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Similarly, . *

acgay _BA, - (A,
3T

. ea 0 (10)
n Tn--l

Thus the amalysis described in this section helps in
modelling the motion of the iceberyy, starting from an a;bitrary
initial orientation. With the assumption that there is no
meiting, this numeri;al scheme is used to predict the motion of
thé iceberg starting from an initial orientation. A computer
program for this purpose was written and is given in Appendix C.
This modelling of the motion of the iceberg is combined with a
melting model to predict the motion of the iceberg arising due to
melting. The method used to model the motion of the iceberg
arising due to melting and the melting madel developed are

described in the following section.

2.3 MELTING ANALYSIS :

The objectives of this analysis are

(1). To develop a melting model that can be used to

"

A
predict the change in shape of the iceberg

(2). To describe a method of modelling the motion of the .
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iceberg arising because of its shape changing due ta melting.

In order to predict the motion of the iceberg arising
out of melting, the following steps of calculation procedure is
used.

(1). The initial orientation of the iceberg is taken to
be one of the stable positions assuming that the iceberg has no
initial translational or angular velocity.

(2). A time step Al is selected. It is assumed that
the iceberg melts for this time step Al. The shape of the
iceberg at the end of this time step is determined. Because of
this melting, the values of weight and buogancy and moment qf
inertia change and are recalculated.

(3). For thié time Al y the motion of the iceberg is
modelled using the method described in Chapter 2.2

(4). Modelling the motion of the iceberg gives rise to
a new orientation and in this new orientation steps 2 and 3 are

-

repeated. Likewise, the analysis is marched in time.

The step 2 described above nétessitatas that a melting
model be developed, which can be used in predicting the shape of
the iceberg due to melting. The melting model developed in this
work 1s based on the following assumptions:

(1). The convective heat transfer coefficient and ‘the

temperature of the fluid medium surrounding the iceberg are
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assuméd to be uniform. The dimensions of the iceberq are very
large. Therefore, the natural convection taking place on its
surface is in the turbulent region and the heat transfer
coefficient in the case of a turbulent natural convection flow is
independent of physical dimensions. Thusy it can be assuméd that
the heat transfer coefficient around its surface is constant.
Since the turbulent boundary layer thickness is very small

compared to the dimensions of the iceberg, it can be assumed that

the temperature surrounding the iceberg is uniform.

(2). In regions where icebergs occur, the temperature
difference driving the phase change is very small and hence
sensible heat effects can be considered to be neqligibly small
compared to latent heat effects. This means that heat conduction
into ice is neglected. This corresponds to assuming that the ice

is at its fusion temperature throughout.

{3}. In this and the succeeding developments, the thermal
properties of ice.. namely P , k and-Cp are assumed to be

constant and independent of temperature.

Therefore, the heat transferred tg the ice by convection
through the fluid can be equated tg the heat required to melt the
1 .
ice. Thus, the rate of melting can be expressed as

V=~h(T,-Ty)/ AX e (11).

"

El
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The rate of melting is the velocity with which the

surface of the iceberg will advance into itself per unit time.

This melting model is applied only below the waterline
portion. The reascn for this is that in regions uwhere icebergs
occur, the air temperatures are low and the amount of heat gained
from "mater is greater than the amount of heat gained from air.
Hence, .melting takes place ét a much faster rate below the
waterline than above. The rate of melting multirlied by the time
step & , gives the amount by whi;h thé surface of the iceberg
will advance during the timeAl. This is called the melt

displacement dz.

To calculate the melt displacement the required

quantities are
(1), the temperature of ice. {This is assumed to be

- equal to the fusion temperature of ice at atmospheric pressure
which is 0°C)

(2). the bulk temperature of water. This is arbitrarily
chosen to be 5.0°C.

(3). the heat transfer coefficient h,

and (4}. the density and the latent heat of fusion of ice.

Except for the heat transfer coefficient h, the other
quantities can be obtained with ease. To determine the value of

the heat transfer coefficient, the following method is used. In
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Chapter 2.2, when the dra; force was calculated, the diameter of
the equivalent cylinder was taken to be 150 meters. This
equivalent cylinder replaces the icebergs considered in this
report. The value of the heat transfer coefficient is calculated
following the equation developed by Raithby and Hollands (15}.

For this purpose, the Rayleigh number of the flow is estimated.

The Rayleigh number is given by

\

3 .
R g(Tb-Ti)L
avy

Ra =

... (12)

Here L is the characteristic length and is taken to be the
diameter of the equivalent cylinder. For a nTS.O'C, the Rayleigh
number is 5.06x101?. Obviously, this Ragleigh number range
corresponds {0 turbulent regime of the natural convection flow.
For the turbulent regime, in the case of a cylinder, Raithby and
Hollands{(135) developed the " following equation relating the
Nusselt number and the Rayleigh number

Nu = 0.101 P0’084 . Ral/3

. veea(13)

In this equationy the length dimensions in Nusselt
number and Rayleigh number cancel each other leaving the heat
transfer coefficient independent of physical size. Using the

above eguation the Nusselt number is calculated. From the

Nusselt number the average value of the heat transfer coefficient
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is calculated, assuming the characteristic dimension to be the
diameter of the equivalent cylinder. The heat transfer
coefficient thus ohtained is increased by a factor of 4 in order
to account for all the complexities involved in the natural
convection flow, because of the irregular cross-section. This
corresponds  to a heat transfer coefficient of approximately 2000

W/m 'K

Once the melt displacement is calculated as explained
abovey this melting procedure is applied to the portion of the
iceberg which is below the water surface. Thi;\\Té done as
fnlinms. Each co-ordinate point describing the iceberg which
lies below the water surface is given the melt displacement dz
into the iceberag. This displacement dz is given in a direction
perpendicular to the line Joining the point under consideration
and the next point with a direction into the iceberg. The neuw
co-ordinate values of the points below the waterline are thus
obtained. Once this type of calculation is carried out for all
the points below the waterline, the new shape defining the
iceberg is obtained. However, this procedure has the following
drawback. Consider a sharp corner in the iceberg such as the one
shown in Figure 3. Under melting, such a portion of an iceberg
will undergec shape changes as shown in Figure 3. In Figure JR,

there 1s a cross-~over between the points defining the shape of

the iceberg and therefore an unrealistic shape is produced. The
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Flgure 3.

WATER

Illustration of the Cross-over Problem
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a;gnrithm developed in this work will fail under such a cross-
over. Therefore, a good algorithm must identify such situations
and hence prevent cross—overs. This is accomplished as follows.
A right handed rectangular Cartesian co-ordinate system with its
origin at point 1 and positive x-axis along tge peints jolining 1
‘and i-l1 is attached. With respect to this co-ordinate syétem.
the point i+l will always lie in the first quadrant. Therefore,
the angle subtended by the line joining the point i+1 and the
origin with the x—axis of this co-ordinate suystem will always he
less than or equal to 90 degrees, If this angle becomes less
than or equal 45 degrees dur;ng the calculation, then the co-
ordinates of point i will be replaced by the average of the co-
ordinate points between i-1 and i+1. This is eauivalent to
assuming that the point i lies in the midpoint of the line

Jjoining points i-1 and i+1,

Thus the analysis described in this section helps in
modelling the motion of the iceberg arising due to melting. A

computer program for this purpose is given in Appendix C.

The following summarizes the thrge phases of work
described in this Chapter.

(1). A procedure to determine the different equilibrium
orientations of a two dimensional irregular dceberg is described.

(2). A numerical scheme is developed to solve the
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differential equations ;:%resenting the translational as well as .

19

rotational motion of the iceberg.

(3). A nmethod is described to model the motion of the
iceberg arising from melting. A simple melting model is
developed to predict the change in shape of the iceberg due to

melting,



J. RESULTS AND DISCUSSION

3.1 RESULTS OF STABILITY ANALYSIS:

=

"~ In Chaptér 2.1, it was established as to how one can
find out the wvarious orientations of a tuwo dimensional
irregularly lshaped iceberg at which the necessary .condition is
satisfied. The objective of this analysis was to find those
oriéntatinns‘ of the iceberg at which‘thé weight and buoygncy
forces match each other under the condition that the value of the
moment arm A is zero. This was done in a systematic manner. For
each angular orientation T, the value of Y at which the uweight
matches the force of buoyancy was found out by iteration.
Starting from a particular angular drientatiun. the iceberg was
rotated through 27 radians. A method by which the necessity to
analyse the iceberg for the infinite opumber of Y * and T
combinations can be avoided was also indicated. This algorithm
was cast in thelform of a computer program which is given 1in
Appendix C. This camputér program needs the x and 4 co-ordinates
describing .the shape of. the iceberg ana an initial orientation
with respect to the waterline. Provisions were made ih the
algorithm so that the program would print out the values of A and
T whenever W matches B. If a graph is drawn taking fhe values of
T along the abscissa and the values of A along the ordinatey then
every point in this graph will correspond to that orientation of

the iceberg with respect to the waterline surface, at which the

38
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weight and buoyancy forces match  each other. Points on the
éraph that lié on the abscissa correspond to situations in which
the effects of weight W and the force of buoyancy B nullify. In
other words, these points (points on the abgeissa) correspond to
cases in which the necessary condition is satisfied. Some of
these points may correspond to stable‘ equilibrium orientations
but others may be unstable. If any equilibrium orientation
corresponds to a stable one, then at that orientation, a small
rntétidn of the iceberg must shift the centre of buouancy in such
a way that this shift in the centre of buog&ncg must produce an
effect that opposes the rctatinn‘ of the iceberg and the
combination must produce an effect such that it will bring the

iceberg to its original orientation.

In simpler words, if an iceberg floating in stable
‘equilibrium position is given a small rotation clockwise, then
the centre of buoyancy should shift to the‘right of centre of
gravity and similarly, if an anticlockwise rotation is given,
then the centre of buoyancy should shift to the left of centre of

gravity.

i

In this work, A is assumed to be positive if the centre
of buoyancy lies to the right of centre of gravity and negative,
if it is to the left of centre of gravity and T is assumed to be

positive if anticlockwise and negative if clockwise. If a small
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anticlockﬂise rotation ( a pesitive change in T) is given to an
iceberg at a stable position, then from the above rule and sign

Eonvention. it is quite clear that the value of A will decrease (
a negative change in A ). On the other bhandy, if a small
clockwise rotation ( a negative change in T ) is givenr to an
iceberg at a stable pnsi%ion. then from the above rule and sign
convention, it is quite clear that the value of A will increase !
a positive change in A ). Therefore, it can be concluded that at
a stable pogition, a positive.change in T produces a negative
change in A and vice versa. This suggests that the value of the
derivative dA/dT should be negative at an equ£1ibrium position

for that one to be a stable one .

. If dA/dT is positive at an equilibrium .PDSitiDn, from
the sign convention, it is quite clear that the effect of a small
angular disturbance { a small chapge in T) is to shift the centre
of buoyancy in such a way as to set up a couple that tends  to
increase the angular disturbance. Therefore, obviously, if dA/dT
is positive at an equilibrium position, then that corresponds to

an unstable equilibrium orientation.

Three shapes were analysed in this work and they are
shown 1n Figures %4a,4b and 4c. Figure 5 shows the A versus T
graph for the typical shape shown in Figure 4a. It hathatallg

4

six equilibrium orientationsy, since the graph has six points on
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Y

Figure 4a. The Typical Shape as Defined by Co-ordinates in

Table 3.
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SCALE : | CM=10M

Figure 4b. The Irregular Shape with a Holg- as Defined by

Co—-ordinates 1n Table 4
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Flgure 4c.

SCALE: ICM=|0OM

The Rectangular Shape as Defined by the Co-ordinates in

Table 5
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the abscissa. The curve starts from a T value of 0.1 rad with a
negative A valué. It ﬁrosses the T axis at T7=0.183 rad. At this
point, the slope of the A versus T is positive, which means that
it corresponds to an unstable equilibrium orientation. This

orientation is shown Figure S5a.

The curve c;osses the T axis again at T7=0.992 rad and at
this point, it has a negative slope. This &orrespoﬁas to a
stable equilibrium orientation and this is shown in Fiéure 5b.
The third crcsé—over occurs at T=1.995 rad and the slope of the A
versus T curve at this point is positive, ' which means that this

orientation corresponds to an unstable position. This is shouwn

in Figure 5c.

The fourth cross-over is at T=3.189 rad and the curve

has a negative slope. This means that this orientation
corresponds 'to a stable one and this is shown in Figure 5d. The
fifth cross—over is at T=§.394 rad and the curve has a positive
slopey which means that this orientation is an unstable one and

is shown in Figure Se.

The last cross—over is at T7=5.3B rad and the curve has a
negative slope. This suggests that this orientation corresponds

-

to a stable one and is shown in Figure 5f.

From the graph shown in Figure 5, it can also be
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observed that the value of dA/dT is successively positive  or
negative, as T increases from O to Z= radians. The changes in
sign of dA/dT correspond to cases of unstable and- stablé
orientations. If dA/dT were to become  zero for a particLlar
shapey then that urientation-would correspond to the case of a
neutral equilibrium position. .Fcr example, the value of dA/dT

will always be zero, if an iceberg with circular cross—section

were considered.

One - more observation that can be made from the graph is
that for any shape, the number of stable equilibrium orientations
must be equal to the humber of unstable equilibrium orientations,
unless an intervening neutral equilibrium position occurs. The
 first and the last point in the A versus T curve must bhe the

14
same. This is because the first and the final orientation of the

{ceberg with re;pect to the waterline are the same, since the
iceberg 1is rotated through 27 radians. I1fy for exampley the
initial point has a positive A value, then any cross-over of the
T axis, af the A versus T graph must have a cqrrespondfng cross-—
over back so that the final point will have a positive A-value,

‘The same argument holds good if the initial point has a negative

A wvalue. This really means that number of cross-overs of A

versus T curve must alwaus be even.

. It is established previously that each cross—over
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corrésponds to either a stable or unstable orientation. A cross-
over where the A 'value changes  from positive to negative
corresponds to a stable orientation whereas a negative to
positive cross-over 'CDPPESPDHdS to an unstable orientation.
Since the number of cross-over should always be even, it can he
§aid that the number of positive to negative cross-overs must be
equal to the number of negative to positive cross-over. This
really means that the number of stable positions must be equal to

the number of unstable positions.

Howevery this conclusion is not true, if an intervening
neutral eguilibrium ﬁosifiﬁn gccurs. & At a neutral équilibrium
posiﬁion dA/dT is zero. This means that the A versus T graph
will be tangent to the abscissa. A cross-over of the T axis, of
the A versus T graph can take place through a neutral equilibrium

position.

The A versus T graph for the irregular shape with a hole
is shown 1in Figure 6. Figures ba to &6f show the equilibrium
orientations ‘of the shape. As can be observed from the graph,
this shape has three stable equilibrium orientations and three
unstable ones. The stable ones are shown in Figures &b, 6d and
&f. Here also it can be observed that stable and unstable
orientations occur one after the 6ther as Twis increased from O

to 2. The reason for analusing this shape is to show that the

L3
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algorithm developed in this work can be applied to a shape having

a hole in it.

Finally, the same algorithm is applied to a rectansular
shape, The reasons for this are several. Firstly, it can be
thecked to see whether the algorithm developed in this work holds
good for a symmetrical shape. Secondly, for a rectangular shapé,
the stable equilibriﬁm orientations are known. Therefore, it can
be checked whether the proce;ure develaped in this work is
correct or not. ° Thirdly, the two orientations of the rectangle

are equally stable, Therefore, those points on the A versus T

graph that correspond to these orientations must héve the same

value for the slope. The A versus T graph for this rectangular

shape is shown in Figure 7. The graph shows that there are tuo
stable eqﬁilibrium positions. The four equilibrium orientations
of the rectangle are shown in Figures 7a to 7d. The wvalue of
da/dT foé the two stéble positions are the samey, which indicates

that the two positions are equally stable,

The information as to how stable one orientation is
compared to the other for a particular shape can be obtained from
the magnitude of dA/dT. This is because the value of dA/dT.gives
the information as to how A is going to change for a small change
in T. For this purpose, the value of dA/dT is evaluated by means

of a backward difference formula.



62

ay3

adeyg ieTn3ueiosay

103 UOTIRIUITIO ABTNIUY YIFM WAy JUSWOK JO EOﬁumwum> *f 8an3dfg

SNYIOWY NI L
€

0z "~ av -

000

Q¥ -

{Oix SH3L3W NI Y



63

adeyg um.a:wnmuumm,m:u JOo U0EIBIUITID E:ﬁua:ﬂ:wm_mﬁﬂm.um *ef 2an3iyg

1M

GE:T  AIVOS LZ8T*TY- = LP/VP

1226 LT- = & L6ESYL 0 = 1



64

adeyg 1ernlue]osy 8yl Jo uoTIejuaTLQ wniiqiinby arqelsy)  *q; 2ian3Tg

GET  ATVOS 06ZL6°% = 1Lp/VP

0L0%*85-= A . 69TSE"Z = 1



65

‘

mmn:m umﬂamzuuumm 943 JO UOTIBIUDTIQ WNTAqETInbd a7qers ‘*az a2andyg

M

GE:T  FATVOS . o G981 " Th= = LP/VP

122641 = & _ 66926'C = I



66

M . . 7

———

SET  dIVOS

. 0007°85-= % Q e 6LL6Y"S

9€0Z0°S = Lp/VP

1



&7

Consider two stable orientations one uwith higher
magnitude for dA/dT and another with lower magnitude for dA/dT.
For the same chapge.in Ty the change in A for the case with
higher dA/dT will be higher compared to the change in A for the
case with lower dA/dT. Therefore, it can bg c;ﬁcluded that the
.cases with higher magnitudes fnr'dA/dT"corresFonﬁ to more- stable
orientations than the cases with lower magnitudes for dA/dT.
Using this principley, it can be observed that the Figure 5d.
. corresponds to a more stable orientat;nn compared to the other
ones, for that shape. Similarly, for the shape shown in Figure
4h, “~the orientation showun in éigure &f is a more stable position
compared to the other ones. This algorithm is an exact analysis,

becausg this one is based purely on the fundamental principles.

The following conclusions are drawn from the results

obtained in this section.
{1). An algorithm has been developed to find the
|
different orientations of a two dimensional irregular iceberg at
‘which it can float in stable equilibrium on water.

{2}, Results obtained from this analysis indicate that a
two 'dimensiunal iceberg has several stable and unstable
eaquilibrium positions.

(3). From & particular orientation, as the icéberg is

rotated through 27 radians, stable and unstable orientations

occur one after the other. The number of stable positions must
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be equal to the number of unstable positions. Houwever, these tuwo
conclusions are not truey, if an intervening neutral equilibrium
position occurs.

(4}, Certain stable positions are more stable compared

to the other siable positions, for a particular shape.

Thus the procedure described in this secficn helps 1in
identifying the different ' stable orientations of a two
dimensional irregular iceberg floating on water. This analuysis

_providesr a standard against which the results from the numerical
scheme used to solve the differential equations can be compared.
This also provides the initial arientations for the melting
analysis. The validation of the numerical scheme is dome in the

following section.

3.2 RESULTS OF DYNAMIC ANALYSIS:

In Chapter 2.2. an apalgsis of forces acting on an
iceberg game rise to a system of equations-one representing -the
translational motion of the iceberg and the other representing
the rotational motion of the iceberg. They were both ordinary
differential equations. Solution of those equations represent
the motion!7nf the iceberag. A numerical scheme was devised to

solve those equations which was self-starting and explicit.

Obviously, there 1is a necessity to establish that the
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solution obtained from this numerical scheme represents the true
solution. This is done in this section of the report. With the
assumption that there is no melting, - this algorithm is used in
pfedicting the motion of the icebl 9 as time progresses from an
initial Drien¥ation. Naturally, as time progresses, the motion
of the iceberg should be such that it brings the iceberg to one

of the several stable equflibrium orientations predicted by the

stability analuysis

For this purposey a computer program was written. This
program will predict the motion of the iceberg from an initial
orientation, for a maximum specified time. This is given in

Appendix €.

The potion of each of the three icebergs considered in
this work was predicted for three initial orientationst which
correspond to three initial conditions). In all the cases the
Al chosen was 0.2 seconds. The total time of the analysis was
chosen to be 300 seconds. The translational displacement yersué
time as well as the angular displacement versus time was plotted

-

for these initial conditions.

The Figures Ba and 8b show the result of this type. of
analysis applied to the typical iceberg shown in Figqure 4a. The
initial orientation chosen correspond to Y=-3.0 m and T=0.1 rad.

These graphs indicate that at the end of 300 seconds, the iceberg



70

( pex 1°0 = INIJ pue u grg- = INIy)

.mrﬁﬁ Y374 JuswaoseTdsyg TBUOIIBRIBUBI] JO uollefies -eg aindyg
| SGNOD3S N1 3WIL
goe 0sZ ili74 oSt 01 0S 0

¥ Ll L 4

adeyg Ted1dAlL

000

og*- 09°- oy - 0l -

oo 1-

ZOI* SY3L3W NI IN3W3IIYJSIO



71

{ pea 1°Q= =INIj

pue m o g-=INIZ) aury yaza u:mEme%mmummsﬁumo coﬂJm.ﬂumS

- 00€

0se

00z

0st

oot

0s

*qg 21n37a

0

’

adeyg TeoTdA]

—y—

¥

L

A%

00-°0

¥0°

g1°

A

1.E)l."‘ SNHIOHY NI JSIQ ¥UINONY



72

. ( pea ¢o1 = INIg
w g'g~- = INIx) awys yigs juswadeldsy@ [PUOTIBTSUBIL JO UOTIEBTIEA

SOND0J3S NI 3WllL

.

00€ 0sz © ooe 0st oot 0s

*0g 8andT]

L v k4 L L]

00°0

0c°-

0g°- 09 -

00"t~

ZOI* SEBLBH NI INIWNIIGHSIA



73

( pex g1 = INIy

PUR W [~ = HzHMV Swfl UITM JuswadeTdsid ZeIn3uy Jo uorlefFaeps ‘PR IIn3d g

00€

SON0D3S NI 3WIL
asz goz 0st oot 0s

Ll L

adeyg Teord4l

0z°- o~ ‘

ot°-

or:

{OI* SNHIQWN NI J4S10 ¥yIeNd



74

(pex gy = INIg
PUB W '€~ = Hsz ) |wWIl Yim u:msmumﬂmmﬂn TeuorleIEURl], JO Uoflefielp -9g 2andyg
SANOD3S N1 MIL

00€ 0sZ 00z ost . gor s 0

[ ) ¥ LJ

adeyg (eoTd4l

og° - SL*- 0s°- S¢°- 800

STA b

LO1% S¥ALIW NI INSNIIHdS10



75

r .
«m ( pex gry = INIg
wcmEo.mlnHszvacuﬂaucmamumﬁmmﬂmnmaswéuo:o,ﬁumﬂum>.mwmuswﬂm
., ,

SONOD3S NI 3HIL

0ge ost ooz 0sI oot 0s 0

L) L § L T T

adeyyg Featd4],

go°o-

0"

2

001

IOIx-SNHIUHH N1 dSI0 ¥YINSNY



74
comes to a position identified by Y=-43,4512 m_and T=0.9928 rad.
This orientation corresponds very closely to the orientation
shown in Figure 5b. The orientation shown in Figure 5b is one of
the stable orientations for the typical shape aﬁd is identified
by Y=-43.58569 m and T=0.9923 rad. The Y value predicted by the
numerical scheme is higher by 0.0643 m compared to the Y value
corresponding to Figure 5b. The agreement betweern both the T
values 1s guite good, for the difference between them is only

0.00Q5 radians.

Figures 8c and 8d show the results of the dynamic
~analysis for the typical shape when the initial orientation is
given by Y=-3.0 m and T=1.5 rad. Figure 8c and Figure 8d
indicate that at the end of 300 seconds, the value of ¥ is -
36.5044 m-and the value of T is -3.093 rad. A T value of -3,093
rad corresponds to the same Drientatiun.identified bu T=3.19018
rad. These Y and T values correspond very closely to the Y and T
values corresponding to the orientétion shown in Figure 5d. The
Y and T values corresponding to Figure 5d are -36.5131 m and
T=3.18985 rad. Obviously, the results predicted by the numerical
scheme agree very closely with the values corresponding to the

stable orientation.

Fiqures ' Be and B8f show the result of the dynamic

analysis for the typical shape, when the initial orientation is
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identified by Y=-3.0 m and T=4.5 rad. At the end of 300 seconds,
the numerical solution brings the iceberg to a position
identified by Y=-43.3916 m and T=7.2702 rad. The angular
orientation given by T=7.2702 rad is the same as the angular
orientation given by T=0,9870 rad. This arientation is
approximately the same as the orientation shown in Figure 5b.
The difference between the Y values.in this case is 0.1953 n.
This difference is higher compared to the previous twoc cases.

The difference between the T values is 0.0053 rad.

In order to show that the procedure developed in this
work can be applied to an irregular shape with a hole iﬁ it, the
same algorithm is applied to the shape shown in Figure 4b. In
this case also the initial conditions are taken to be the same as
that for the previous shape. The results of this analysis are

shown in Figures 9a to 9f.

When the initial conditions are Y=-3.0 m and T=0.1 rad,
the results are shown in Figure %a anﬁ ?h, From these Figures,
it is clear that the iceberg comes to an crientation identified
by Y=-57.2081 m and T=-0.1034 rad, at the end of 300 seconds.
These. Y and T values correspond very closely to the Y and T
values for the orientation shown in Figure 6&f. The orientation
in Figure &f is ong\cf the stable positions for that shape. The

value of Y predicted by the numerical scheme at the end of 300
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seconds is lower by 0.043 m éomparea to Figure &f.. A T value of
-0.1036 rad is the same as a T value of 6.1796 rad. .The T value
predicted by the npumerical solution is higher by ©.0033 m
compared to the T value corresponding to the Figuré &f. However,
an observation of Figure b inditates that the ‘oscillation
tendency of the angular displacement has not died ocut complefely
even at 300 seconds. At the same time, the curve does not
indicate any tendency af deviation from the position about which
it is oscillating and also the amplitude rof‘ oscillations is
decreasing. The graph shows that the angular displacement starts
oscillating in a decaying fashion from around 100 seconds. The
graph reaches a local minimum at about 120 seconds and has an
angular displacement of -0.1815 rad. At 284 seconds, the graph
‘reaches another local minimum which corresponds to an angular
displacement of -0.1132 rad. The T value corresponding ta the
orientation shown in Figure &f is -0.1068 rad. The amplitude of
the angular displacement about this T value at 120 seconds is
0.0747 rad and ;t 286 seconds is 0.0064 rad. The ratio of these
amplitudes 1is only Q.084. This means that the amplitude at 286
secaonds is only B.6 % 6f éhe amplitude at 120 seconds.
Therefore, even though the curve shows an oscillating behaviour,
the amplitude ﬁf oscillations is greatly reduced at about 300
seconds., Therefore, the T value at 300 seconds is taken to

: repre;ent the final angular orientation of the iceberg.
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"Figures 9c and 9d show the results “of the  dunamic

S Y - |
analysis for the irregular shape with a hole, when the initial

orientation }5 ideﬁtified by Y=-3.0 m and T=I.5Arad. At the end
of 300 5eéénd5, the Y and T Q;lues are -53.0346 m and ;,559'rad
reﬁpectivglg. The;e Y and T values correspond approximately to
that of the orientation shown in Figure éb. The orientagicn_
.%houh in.Figure 4b is one of the‘stablg positions for that shape.
. The Y. and. T values éorre;ponding to Figure &b are —53.0154 m and
1.56121 rad resp;cfi§elg. . Obviausly,. fhe agreement between the -
final ﬁrienta£i6n' ;redicfed bQﬂthe;numeridéi scheme with the.h

stable position shown in Figure &b .is quite good.

Finally, Figures. 9e and’ 9f givé the result of the
,.dgnamic analysis, when the initial orie;tatiun'is éiven by Y=-3.0
m and T=4.35 rad. | The oriéntation at the end nf'BOO'seconds‘ is
identified bg Y=—5r.14i;m and T=4.é492 rad. 'Tﬁese Y and T values '

correspond approximately to the orientation shown in Figure -&d.

v

The Y value corresponding to Figure &d is -51.0933 m'and the T
value is 4.25037 rad. Obviously, the‘aqreement is qﬁité gu;a.
However, the angular displacement versus.time curve shown in
Figure 9f shnms_an oscillating behaviour even at 300 sécnnds.
The graph starts oscillating in a decaying fashion from abﬁgt 50
secnndﬁ.- The curve reaches a 1Bca1 maximum at 56.6 seconds and

. ‘ LA b .
the angular orientation is 4.3976 rad. It has another local

maximum at 293.8 seconds and the angular orientation is 4.2677 °

O



rad; If the- xurvaiié,agsumed.tn oscillat about \the ., T value '

‘ correspnnding to thé orientat;on shuwn‘ in Figure é&d, thep

obvieusly the rat1o of the amplltude of osc:llatlon about this T - s

3

-

value gives a measure of hnw much Ef the uscxllat:on “has yxgd

-

out. Thzs ratio in this case ig 0.0053. Therefoce,” even though
' the graph. shows an oscillating 'behaJipur,-ﬂthe' amplitude of

i T L LI .
oscillation is Feduced drasticarly at 300 secnnds - Therbfore,

‘-~ -

[y

the angular. orlentatxnn ngen bg this graph atx300 seconds 15

. _,.- [§ . 3
taken. to’ be;-the fina} angular nrientation pred;cted by - the C

numenical scheme. - 1 _ AT e

Finally, ‘tpe sape algor1thm mas applxed tn. 'thg
“rectangular shape shown” in FLgure 4ggA Fxgures 104 and 10b. sﬁow' )
S . L BN T
+" the result'of this analgsis, when the initial :onditjqp is-given

.bg Y--3 om and T=-0 786 rad. ?igurés‘joé-giyg?'fhe;d§§pléceﬁént
i}versus | t:meﬂ\ qurve. . wh:le Fxgure\ 10b .éiveé‘ the a;du;aF
. d1sp;acement versué.:time. _The,visplaéemént-féurvé‘,}eachés a
constant v#lue-;fiébﬁut“i50 Qeéunds; The value of Y at the end _:
of 300 secnndé-is=—17.54 ﬁ. The. angular displaﬁéﬁent .cunvé
reaches a steady state value at about 200 seconds. The value o;
i T at the end of 300 seconds is 0.7859 rad.' .These Y and T valueé
correspond very closely to_the‘Y and T Qalues in Figﬁre Ta. Tﬁe
Figure 7a is one of the stable p051t1uns for fhE‘ reﬁtanéular.

shape.‘\.The Y and T values currespondxng to the Flgure Ta are -

17.5221 'm and 0.785397 rad respectively. © The value of Ty
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predicted - by the numerical methed is lower by 0.02 m compared to

"the Y corresponding to Figure 7a. The value of T is higher by

0.0006 rad compared toc the T for Figure 7é.

Figures 10c and 10d show the results of the dgnamic
analysis applied to the rectangular shape when the initial
condition is given by Y=-3.0 m and T=1.5 rad. The orientation at
the end of 300 seconds is given by Y=-i7.52 m and T=-2.45 rad.

=-=2.45 rad is the same as T=3.833 rad. These ¥ and T values

correspond very closely to the same orientation shown in Figure

73.

Figures 10e and 10f show the results of the dynamic
analysis applied to the rectangular shapey, when the initial
condition is given by Y¥—3.0 m and T=4.5 rad. As shown by these
Figures, the oscillating behaviour of the curve dies out
completely at about 150 seconds. At the end of 300 seconds, the
Y and T values are -17.52 m and 3,95 rad respectively. These Y
and T correépund approximately to the Y and f values for the
orientation shown in Figure 7c. The Figure 7c is one of stable
orientations for the réctangular shape. Table 1 qives the final

orientation corresponding to each initial orientation for the

three shapes.

The next important thing that is to be discussed is the

stability of the numerical method. This numerical scheme is nat

N



TABLE 1

RESULTS OF DYNAMIC

ANALYSIS

94

SHAPE. INITIAL ORIENTATION FINAL ORIENTATION
y T v T :
-3. 0.1 ~43.6512| 0.9928 Fig. Sb
Fig. 4a -3. 1.5 ~36.5044 |~3.093 Fig. 5d
-3. 4.5 —43.3916| 7.2702 Fig. Sb
-3, 0.1 -57.2081|-0.1038 Fig. 6f
Fig. 4b -3. 1.5 i ~53.0365| 1.559 Fig. 6b
-3, 4.5 -51.141 | 4.2492 Fig. 6d
-3. ~0.78539 -17.82 | 0.7859 Fig. 7a
Fig. e 3. 1.5 ~17.52 |-2.45 Fig. 70
-3, 4.5 -17.52 | 3.95 Fig. 7c
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stable for all values of Al and as a matter of facty, it has
different stability limits for different shapes. Far example{
the method is stable for the typical shape shown in Figure 4a,
for A value;{ less than or equal to 5 %ecunds. For the
irregular . shape with a hole shoun in Figure 4b, the method is
stable for Al values less than or egqual to & seconds. For the
rectanéular shape, it is stable for &  values between 0 and 8

seconds. _ .

The reasons for the lower values of A  for the method
to be stable are several.

(1. Since the shapes considered are quite irregular, a
small change in T or Y or in both can bring a substantial change
in B, This really means that the B is very sensitive to a small
change in + or T or in Both. Since the dependency of B on Y and
T is different for different shapes, obviously, the method has.
different stability limits for different shapes.

(2).  Another reason for the lower values of Al , is
that the finite difference schemes used in equations 7a and Ba

are explicit.

Now, two important gquestions arise - firstlyy are lower
values of Al acceptable 7 - secondluy, since the method has
different stability limits for different shapes, ~how does one

find out the stability limits for different shapes 7 The
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following paragraphs answer these questions.

-

Lower- values of At should be chosen for two reascns -

firstly because lower values of A improve accuracy and secondly

-

because of limits imposed by the stability. Whether lower values
of Al are agreeable or not really depends on the computer

execution time. For 300 seconds of modelled time with Al =0.2

secondsy the program takes 1.5 minutes of CPU time. This

execution time is obviocusly not very high and thus, a value of

£¢:=0.2 seconds is acceptable.

The following method is suggested to find out the
stability limits for different shapes. It is necessary to run
some trial runs to find out the stability limit. This can be
done by running the computer program for a particular A from ©
to 20 ;econda of motion méhelling fime. If the method is
unstable for the Al chosen, fhen the following things may
happen:

1. The displacement between time intervals may become
so high*that a% a particular tihe, the iceberg may be above the
waterline.

2. Buring the next time interval, the entire iceberg
may be well below the waterline surface.

3. Similar behaviour with the angular displacement may

also be noticed.

&)
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In this way, by running some trial runs, the stability

limit can be established.

From the results obtained in this section of the report,
the following conclusions are draun.

(1). No matter what the initial condition isy the
_iceberg comes to one of the several stable positions predicted by
the previous algorithm. The dif%erence between the values of Y
ranges from 0.1953 m to-0.0021_m. The difference Setween the
values of T ranges from 0.117 rad to 0.0005 rad. Evea though
oscillations aré observed in some angular displacemeﬁf versus
time curvesy, it is found that the amplithde of oscillations is
éreatlu reduced at 300 seconds.

(2). The final orientation of the iceberg at the end of
300 seconds is dependent on the initial condition.

{(3). From the graphs shown in Figurgs 9a to lif, it is
clear that within 300 seconds, the icebe#g comes to one gf the
stable positions. This really suggests that 300 seconds of

modelling time is quite sufficient for stability to be achieved.

3.3 RESULTS OF MELTING ANALYSIS:

In Chapter 2.3y a procedure was devised to model the
motign of the iceberg arising because of its shape changing due

tc melting. This procedure required that the different stable
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Positions of a two dimensional irregular icdberg be known.  This
was done in Chabter 3.1, where a procedure was descr1bed to f:nd)
the d1fferent stable positions of a twn d1mgnszonal irregular

.icebery. By this procedure, it was established " that a tuo

dimensional.iceberg has several stable positions.

The melting analysis also required that tﬁe numerical
‘schemg used to solve the differential equdtioﬁs be validated.
'fhié‘caiidation.was done in Chapter_3;2. ‘ Thé results from ' this
validation study indicate that 300 seconds of motién modelling

time is quite sufficient for stability tg be achieved.

t Inm order to model the rol! over phénumenon{ it isl also
necessary that the melting analysis‘shnuld be carried out’ in the
.fnl;dwinq-manner.. o ' o I

-(1). - The initial ar:entatzon should be chosen to bhe one
of the stable p051t1on5. The stable orientations for the
1cabergs consi#ered in this work are given by the results of thet

. - -~
stability analusis.

(2). Starting from the stable puﬁition and using the
melting ﬁbdel' the change in shape of the iceberg should hé
prediﬁtéd for each time step.CI. The motion of the iceberg
shoul?- be modelled using the dynamic analgéi#. Thié procedure

should be continued till the time roll-over occurs. Roll-over is

a major change in the angular orientation of the iceberg caused
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by melting. Quantitativelyy, if an angular displacement of 1

radian is caused by melting,. then it is taken that the iceberg

has rolled over.’

The roll-over time is usually of the order of days.
However, the time §tep4£§is restricted to within secondsy, by the
stability ~limit imposed by the numerical method. The execution
time of fhe computer program will be tremendously hiéh, if  the
time of melting is taken to be'within‘the time .step Ta's v imposed
by the stability limit; This problem was solved in the following
manner i

(1). The init;al orientation of the iceberg is assumed
to be one of the stable positions.

(2). The surface of the iceberg below the waterline is
givén a melt displacement dz into the iceberg. ‘In calculating
dz, a melting time of 1800 seconds is assumed.

{3). Then the motion of the iceberg is modelled for 300

seconds to find the new orientation of the iceberg.

Except when raoll-over occursy, the orientation of the
iceberg with respect to the water surface changes only a little.
The change in shape of the iceberg even for an hour of melting is
extremely low. Therefore, this way of modelling the motion of

the iceberg will not introduce any appreciable error.

This tupe of analusis is applied to each of the icebergs
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considered in fhis work, taking each stable position to be the
initial orientation. The process of melting nbviuuslg changes
the cross-sectional shape of the iceberg., Because of this change
in shape, the orientation of the i&eberq with respect to the
waterline might alsockﬁange. If the melting analysis is carried
out for sufficiently longer time, then the shape of the iceberg

might get changed to such an extent that it causes a roll-over.

In order to demonstrate this.and thereby to establish
that the algorithm developed in'this work can model 'such a
phenomenon, the crdss-sectional shape of the iceberg as well as
the orientation of the iceberg with respect to the waterline is
plotted far different times. The meltipg analysis is carried nuf

for sufficiently longer time so that the roll-over behaviour can

be modelled.

An estimate of the time of roll-over is obtained, for
the cases which exhibit the roll-over phenomenon. In other cases
which do not exhibit the roll-over phenomenon, a possible reason

for this behaviour is found out.

Figures 1la to 11d show the results of the melting
analysis for the typical shape, when the initial orientation is
taken to be the one shown in Figure 5b. The angular orientation
corresponding to Figqure 3b is 0.99233 rad. The angular

orientations corresponding to Figures lla to 11d are different
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a). Z

-

T=1.09 rad Ty=5.0 C
After 45 Hrs of melting

b)c wil |
T=1.09 rad Tp=5.0 C
After 83 Hrs of melting

cr. o ) "~ WL ‘
T=1.125 rad Tp=5.0 €
After 98.5 Hrs of

.? melting
a). WL

T=0.05'rad. Tp=5.0 C
After 98 Hrs 36 Min
of melting '

%
Figure 11. TIllustration of Roll-over of the Typical iceberg
' (Initial Orientation Figure 5b) .
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a). — M WL

T=3.2 rad

Tp=5.0 c .

After 27 Hrs of
melting

b).

'T=3.02 rad
Tp=5.0 C
After 102 Hrs
of melting

ch. r\_______;\_______ﬂ_____ﬂﬁﬂﬁ WL
T=3.2 rad

Tp=5.0 C &

After 145 Hrs '

of melting

Figure 12. The Change in Cross-sectional shape of

the Typical Iceberg (Initial Orientation Figuresd)
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'a)_- .‘ / N\ 'r\ WL
T=5.03 rad Tp=5.0 C

After - 45 Hrs Qf
" melting

. b). |
| T=5.05 rad Tp=5.0'C
"After 83 Hrs of melting
c. o~ KW

T=5.03 rad T=5.0 C
After 99 Hrs of melting

d). - ’\A WL'
& . T=6.28 rad Tp=5.0 C
. . r
: : Aftexr 99 Hrs 5 min

of melting

4

Figure 13. illustfation of Roll-over of the Typical.
Iceberg (Initial Orientation Figure 5f)

T
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from 0.99233 rad. This change in angular orientation is caused
because- of melting, As shown in Figure 11, (at time =98.5
hours) a small portion of thificgggrg breaks away from the main
icebefg. Due to this -hré;king awayy the present floating
position becomes unstable and hence the iceberg rolls over to a

new stable equilibrium position, at 98 hours 34 minutes.

Figures 12a to 12c show the results of the melting
analysis .when the initial nrieﬁtation is taken to be the one
shown in Figure 5d. In this casé'alsu, a portion of fhe iceberg
breaks away from the‘main block. However, in this case no roll
over was observed, This is mainly due to the nature of the shape
the iceberg attains after 145 hours of meltimg as shown in Figure
12c. This shape more closely resembles a rectangular shape, with
thiﬁkness small comparéd to the length. Such rectangular shapes
will not roll over, however long the melting time might be. This
may be explained as follows. Since the thickness of the shape is
quite small compared to its length, .the effect of melting is
essentially to reduce the thickness of the iceberg, with its
shape remaining basically rectangular, It is élso known that a
rectangular iceberg with its thickness small compared to its
length will float in stable positiony, when its length dimension
is parallel to the waterline surface. In this casey, the

rectangular shape always floats with its length dimension

parallel to the waterline surface. Melting does not change this
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a).-’

T=1.56 rad
Tp=5.0 C

" After 38 Hrs
of melting °

b).
T=1.47 rad
Tw=5.0 C

- After 73 Hrs
of melting

e

c). el

AL
T=0.124 rad : ' \\‘_J/
Tb=5.0 C .
After 76.5 '
Hrs of melting . ¥ Lo E _
- \

/ﬂi \" o~

- V--J

Figure 14. TIllustration of Roll-over of the Irregular
Shape with a:Hole {Initial Orientation Figure6b)

-
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a).

b)

a).

o)

e)
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T=4.25 rad Tp=5:0 C
After 38 Hrs of
melting

*T=4,25. rad Tp=5.0 C
After 83 Hrs of
melting

‘*T=4,25 rad Tp=5.0 C
After 218 Hrs of melting

o

*T=4.25 rad = Tp=5.0 C

After 413 Hrs of melting o
| | — 7 WL
"T=2.58 rad Tp=5.0 C . \\ ' )
After 463 Hrs 6Min ! _ ..
of me lting ) ' ” &

fa

Figure 15. Illustration of Roll-over of the Irregular'Iceberg

with.a Hole (Initial Orientation Figure 6d)
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a).

T=6.17 rad Tp=5.0 C
After 38 Hrs of =

melting

b).

T=6.2 rad Tp=5.0 C
After 76 Hrs of melting

c).

T=6.2 rdad TpL=5.0 C
After 138 Hrs of melting

d ) - .
T=7.7 rad Tp=5.0C
After 139 Hrs of melting

Figure 16. Illustration of Roll-over of the Irregular Iceberg
with a Hole (Initial Orientation Figureéf)

.
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condition. Therefore, no roll-over was observed.

Figures 13a to 13d show the result of the melting
analysis for the typical shape, when the initial nrientation is
~ taken to be the one shown in Figure 5f. In this‘case,. after 99
hours uffmelting, a small portién of the iceberg breaks away from
the main block. This breaking away renders the ﬁresent floating
position unstable ‘and hence the iceberg rolls over to a new

stable orientation.

This melting procedure was then apprEd,tB’fhe irregular
shape with a hole in it. Figures l4a éﬁ l4c show the change in
'éhape. of the icebehg along with its orientation with respect to
the‘ waterline, when the initial orientation is taken to be the

one shown in Figure 6b.

Figures 15a to {5e show the results .of the melting
analusis, when the initial orientation is taken to be.the one
shown in Figure &d. Even though the iceberg has a hole
initiallg, ‘the hole completely disappears after 83 hours of
mélting. The shape undergoes further changes and eventually

rolls over at 463 hours and & mifidtes.

Figures 16a to 146d show the result of ‘the melting
analysis applied to the irregular shape with a " holey when the

“initial orientation 1is taken to be the one shown in Figure &f.



TS

WL T [
a) aw
. - _
After 19 Hrs of melting T=0.785 rad T, =5.0 C -
WI, < : - i
-
) £
After 69 Hrs Qf melging T=0.786 rad Typ=5.0 G
WL A iz
c).

S

After 163 Hrs of melting T=0.786 rad Tp=5.0 C

Figure 17.

The Change "in Cross-sectional Shape of the

Rectangular Igeberg (Initial Orientation Figure 7a)

109
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The purpose of analysing this irregular shape with a hole is to
show that the melting analysis developed in this work can be

applied to an irregular shape with a hole in it.

Finally, Figures 17a to 17c show the result of the
melting analgsis applied to the rectanpgular shape. However, in
this case, no roll-over mas'nbserved; This 1is because, the
effect of melting is essentially to reduce the thickness of the
iceberq, with its shape remaining basically rectangular. Since
this shape floats with its length dimension parallel to the

waterline surfacey obviously no roll-over was observed.

Table 2 gives the roll-over time for  different
orientations along with how stable one position is. compared to
the other, for a particular shape. As can be noted from Table 2,
the roll-over time does not depend on how stahble ane position is

compared to the other for a particular shape.

From this analysis, the following conclusions are draun.

(1). Rollwqyer is dependent on the shape as well as on the
initial orientation

(2). Roll over time is not dependent on how stable one

position is compared te the other, for a particular shape.

£
N



TABLE 2

ROLL OVER TIME

INITIAL '% RELATIVE ROLL OVER
ORIENTATION STABILITY TIME

Fig. 5b IT most stable 98 Hrs. 36 min.
Fig. 5d most stable -No Roll Over
Fig. 5£ ITI most stable ~99 Hrs. 6 min.
Fig. 6b II most stable 76.5 Hrs.

Fig. 6d IIT most stable 463 Hrs. 6 min.
Fig. 6f most stable 139 Hrs.

Fig. 7b

No Roll Over

111



4. CONCLUSIONS AND RECOMMENDATIONS

1. A géneral algorithm in the form of a computer
program has been developed to model the floating characteristics
of a two dimensional irregularly shaped iceberqg floating on

water.

2. The algorithm has three important parts. The first

part of the algorithm helps find out the various stable

orientations of a two dimensional irregular__iceberg. Resulfts
show that a two dimensional irregular iceberg has\several stabl

orientations and several unstable ones.

3. From a particular orientation, as the icebgrg is
rotated through 27 radians, stable and unstable positions occur
one after the other. The number of stable positions must be
equal to the humber of unstable ones. However, these tuwo
tonclusions are not trué,‘ if an istervening neutral equilibrium

position occurs,

4. Certain stable positions are more stable than other

4

stable ones, for a particular shape.

5. The second part of the algorithm helps model the

motions of a two dimensional irregularly shaped iceberg.

6. The validity of the dunamic analysis is established

by wusing it to predict the motions of the iceberg from a

112
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particular orientation for the case of no melting. It is found
that this brings the iceberg to one of the stable positions found
from the stability analysis. It is also found that the stable
position to which the icéberg is brought is dependent on the

initial orientation.

7. The third part of the algoritéim models the motions
of tﬁe iceberg arising due to melting. Using this, it |is
established that the roll over time is not dependent on how
stable one position 1s compared to the other, for a particular
shape.

8. Roll over is dependent on the shape as well as on

the'initial orientation.
4.1 AREAS QF FUTURE RESEARCH:

1. As mentioned in the introductiony icebergs are in
fact three dimensional irregularly shaped masses. Therefore, it
is recommended that the present analysis be extended to the three

dimensional case.

2. It may be advantageous if an unconditionally stable
numerical scheme can he‘designed for solving the equations of
motion. The reason for this is that such a scheme might reduce

the amount of computer time.

3. Since icebergs are quite irregular, the natural
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convection taking piace around them is much more complicated in
nature. Because of this, tﬁe heat transfer coefficient might be
different along differént sections of the iCéEE;g. The present

melting model must be improved to incorporate this phenomenon.

4. The theoretical conclusions drawn in this work
should be verified by means of an experiment. The experiment can
be carried out with a small ice block and the results predicted
by this analysis can be verified, with appropriate modifications

being made to the melting model.
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Irregular Shape with a Hole
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TALLE §°

!

Co-ordinate Points Descriding the Ractangular Shape

12y

INDEX X=-CO0~QORD ¥-C0=-0RD INDEX X-CO-ORD ¥-C0-0RD

NQ NO

1. 88.0 ~-28.2 A7, 3a.a 13.d
2. 73.8 -29.0 48. 13.@ 1.0
3. 7.0 -12.8 49. - 460.0 2.2
a, 45.0 -35.0 3Q. 65.@ - 5.0
5. 60.0 ~-4Q.0 31. 70.0 -10.0
&, 55.0 —45.0 2. 73.0 -15.0
7. 58.0 -50.0 33. 89.0 -20.0
8. 45,0 ~43.0

9. 40.0 -48.,2

1@. J5.Q -33.0

11. J2.0 -J2.8

12. 2.9 -25.2

13. 20.@ -2@.8 N

14, 1s.8 -15.0

13, 1.9 -108.0

14, 3.2 - 5.0

17. a.9. 2.9

18. - 3.9 3.8

19. -13.8 1.8

29. -15.0 1.9 _—

21. -20.8 28.49

22, -24.8 25.0

23. -Ja.2 33.2

24, -33.@ %.8

25. -4@.0 40.0

24. -4%5.0 45.Q

27. -52.3@ “a.0

28. -45.8 33,0

9. -43.0 &0.8

3a. -33.8 43.0

31, -32.Q 70.@

2. -2%.2 7.0

33. -2g.@ 80.2

J&, -13.@ 73.@

35. -19.9Q 70.8

3&. - 5.0 63.0

37. Q.a 40.0

Ja. 5.2 33.Q

39. 13.0 59,8

4@. 13.8 45.0

41. 2g.0 42.9

42, 2%.9 33.0

3, J2.@ 3a.Qa

44, 35.@ 25.08

45, 49.0 22.9

B8, 43.3 15.8
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Moment Arm and Angular Orientation for the Typical Shape

SERTAL T A SERIAL T A

NO ) NO

1 2.1@8@ | -0.2507 39 4.3942 | -0.@003
2 2.3000 | @.1319 4@ 4,.5943 | 0.9794
3 @.1555 | -0.0214 41 4.7943 | 1.9414
4 @.1757 | -B.02043 42 4.9943 | 2.25@8
5 @.1848 | 0.0085 43 5.1943 | 1.4370
& 8.1834 | 0.0000 44 5.3943 | ~0.1028

45 '5.3809 | 0.0050

7 8.3834 | 0.3207 46 5.3815 | @.0000
8 8.5834 | 1.8655 47 5.5815 | -1.6754
9 9.7834 | 1.4501 48 5.7815 | ~1.@996
1@ 8.9834 | @.1140 49 5.9815 | -8.3978
11 1.1835 | -1.8082 50 6.1815 | -@.1177
12 8.9953 | -0.02388 51 6.3815 | -8.0512
13 8.9912 | 0.8149

14 2.9923 | ©.0000

15 1.1923 | -1.8631 -

16 1.3923 | -2.6412

17 1.5923 | ~2.1882

18 1.7923 | -1.1256

19 . 1.9923 | -0.08171

2 2.1923 | 1.0406

21 1.9955 | @.2004

22 1.9954 | 0.0008

2 2.1954 | 1.0765

24 2.3954 | 2.0540

2 2.5954 { 2.9322 T

2 2.7954 | 3.6197 ;

2 2.9954 { 3.3505

2 3.1954 | -B.1337

29 3.1877 | 0.0494

30 3.1898 | @.@008

31 3.1899 | ©.0009

2 3.3899 | -3.0179

33 ~3.5899 | -3.0386

34 3.7899 | -2.5736

35 3.9899 | -1.8464

36 4.1899 | -8.9486

a7 4.3899 | -0.0212

38 4.5899 | ©.9577 -




Moment Arm and

TABLE 7

Angular Orientation for the Irregular Shape

with a hole

SERIAL T A
NO
1 8.1000 | -3.1784
2 8.3@000 | -2.7455
3 @.508@ | -2.1871
4 2.7000 | -1.46108
5 8.5000 | -@.9483
& t.1000 | -@.2352
7 1.3008 2.51463
8 1.1626 | 2.8012
9 1.i§23 0.2028
1@ - 1.3623 | ©.7433
11 1.5623 1.4133
12 1.7623 | 2.8627
13 1.9623 2. 4835
14 2.1623 3.1820
15 2,3623 3. 44462
16 2.5623 3. 1106
17 2.7623 { -1.1598
18 2.7080 3. 4290
19 2.7226 2. 0028
20 2,722 0. 0000
2 2.9227 | -3.255@
22 3.1227 | -3.4855
2 3.3227 | -3.0974
24 3.5227 | -2.5821
~ 25 3.7227 | -1.97256
26 3.9227 | -1.3544
2 4.1227 | -8.6432
28 4,3227 2. 1250
29 .2901 | -0.0010
30 4,2904 . 2000
31 4,4904 -} @.7635
2 4, 6904 1.4564
- 33 4.B8904 2.0729
34 5.8904 2.6727
35 5, 2984 3.1570
36 ' 5. 4904 3. 4204
37 5. 6904 3.1043

—
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SERIAL T A
NO
38 5.8904 -0.8997
39 5.8555 0.3619
4 5.8583 0.0084 |
41 5.8584 2.2000
' 42 6.0584 -3.1715
43 &.2584 -3.3323
44 b.4584 -3.8369




TABLE 8

Moment Arm
Shape
SERIAL T A

NO

1. 2.1002 -0.9872
2 2.3e02e -1.2554
K] 0.5000 -P.8917
4 2.7@ T -@.2683
5 @. 9090 @.50%4
5 0.74690 -@.0126
7 B.7722 -@. 0085
8 P.7723 0.0000
9 0.9723 0.8040
10 1.1723 1.593%9
11 1.3723 1.08825
2 1.5723 -0.0@589
13 1.54620 -0.0040
14 1.5612 0.00020
15 1.7612 -0.7510
15 1.9612 -1.9908
17 2.14612 -1.7335
18 2.3612  [--0.4068
19 2.5612 ‘B. 3966
20 2.4822 Q.0459
2 2.4718 -0. 0066
22 2.4731 0.0200
2 2.6731 @.79465
2 2.8731 1.8311
2 3.0731 1.0547
2 3.2731 1.0057
2 3.4731 0.9417
2 3.6731 1.8319
2 3.8731 1.2458
30 4,@731 B.7874
31 4,2731 ~Q.1289
32 4,2450 B.@293
33 4.2592 8.0010
34 4.2504 @.0000
35 4.4504 -1.34@3
356 4.6504 -1.8137

and the Angular Orientation for

tﬁe Rectangular

SERIAL T A

NO

37 4,854 | -1.4140
38 5,504 | -8.8872
39 5.2504 | -0.2614
40 5. 4504 g.3039
41 5.5357 2.5216
42 5,7357 8.9743
43 5.9357 1.1122
44 6.1357 | ©.2658
45 6.3357 | -0.8159
48 6.1849 | -2.08583
47 6.1733 | @.0218
48 6.1763 0. 2000
49 6.3763

-0.9654
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TABLE 9

Consecutive Amplitudes of the Test Piece

SERIAL X1 X2 c1

NQ

1 b 4 0.06432
2 9 5 2.09310
3. 12 7 0.028550
4, 15 8 0.029950
5 17 9 Q. 10060
5 19 e 0. 10160
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APPENDIX A

AREA CALCULATION:

7

In order that one can deal extensively with the floating
characteristics of a two dimensional object having 'irregular
cross—-section, it becomes necessary to develop a general
algorithm to determine the values of buoyancy and weight forces
as well as their points of action. The weight of the -iceberg per
unit length is the product of the cross—sectional area and the
specific weight of the iceberg. The force of buoyancy per unit
length is the product of the cross-sectional area below the
waterline and the specific weight of wuwater. This in turn
necessitates the development of a general and easy algorithm to
determine the area and the centroid of an irregular cross-

_section. Two points need an emphasis here. Firstly, the
algorithm must be quite general so that it can be adapted to any
irregular cross—-section and secondly it must be adaptable to

computers,

If the algorithm becomes adaptable to computers, then it
can be develaped in the form of a computer program which will
calculate the necessary quantities with the shape of the

irregular cross—-section having been supplied to the program.

With such an idea in mind, the foliowing algorithm has

been developed. It is assumed here that the irregular shape has

125
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been defined as co-ordinate points with‘;espect to an arbitrarily

chosen Cartesian co-ordinate system as shown in Figure 1B.

A careful look at Figure 1B will réveal that the entire
irregular area can be approximated by many triangular- areas.
Naturally the sum of these triangular areas will constitute a
good approximation to the irrégular area only if the points
describing the irregular shape aré close to one another so thét
the curve joining the two adjacent points can be approximated by
a straight line. Thus clesely spaced points need be specified in
regions where the shape has a strong curvature. Then the area of
the irregular sﬁape is equal\to thé sum of the areas of the

triangles. The problem now hoils down to finding these

triangular areas with the help of a computer.

The inﬁut to the computer program is the co-ordinate
points  defining the irregular shape with respect to an
arbitrarilg_ chosen Cartesian co-ordinate sgsteﬁ.‘ These points
are input to the program in a particular order,l {i.e.} starting
from a particular point, - the irregular shape is traced clockwise
till the starting point is once again reached. During this
tracing the co-ordinate points are input as and when they are
traced and in that order, including the starting point once

again.

Further development of the algorithm needs an extensive
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reference to the Figure 1B. (A separate nomenclature 15

.

maintained for this section of the report). The values of a and b

can be computed as follows:

2 2
a -\J&i—l Ty
2 2
b = Vx| + Yy

i

It is clear from this that a and b represent the

distéﬁces of points i-1 and i from the origin. The value of

dei is computed from the following expression.
i-1 Vi
i-1 . |

~ Hence the area of the triangle can be computed by

-

dAi = 5 ab sin dei vee A2

Then the area of the irregular shape is given by

N

AR = X dAi

i=2
where N is the total number of points.

The centroid of this area can be found by the following
procedure. The moments Df.the entire area about the X and Y axes

are given by N
M o= ¥ dA, ¥y,
X =2 i el
N
M o= I dA, x
Y ogmp P
and Yci are the co-ordinates of the centroid

L

where X
cl

of the triangle.
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Figure 18. A Two Dimensional Irregular
Cross-section (Case 1)
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From thi¥#s the co-ordinate points of the centroid of the

entire area can be determined as follouws:

X, = My/AR

Yo = M/Ap
The values of Hx and }5_ necessitates determination of
the values of (xci’ycil the co-ordinate points of the centrocid of
each triangle. The procedure used to determine the co-ordinate

points of the centroid of each triangle is as follows.

The centroid of a triangle is the point of iptersection
of 1its medians. Therefore,‘ if the equations for two of its
medians are known, then its centroid is the point of intersection
of the two straight lines. Without loss of generality, the two

medians of the triangle can‘bg represented by straight - lines

d vem. sohd . Th al £ d
ynmi_lx_qi_l and y mi 1 € values o mi—l an mi
can be found from
- 2 -
= —"__i7"7”h' t -
i=1 xi—l xi 2 i xi xi—l 2

Since the above straight lines pass through the points

{ ) and ¢ } the values of and can be evaluated
*-17¥1-1 X3y 4130 4y

by

disy T Yip T Wy Fpad 4y Ty
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co

Both the stﬁaight lines pass - through the centroid

‘xciyci)' The values of Xy and Y.q ore determined by
d,-d
i 1-1
M — - = d
Xet o1 ! Yer ™ -1 et T %4

The above algorithm can be conveniently cast in the form
of a computer program, uwhich taking the co-ordinate points as -
inputy, will calculate the area and the co-ordinate points of the

centroid of the area.

At first sight; this algorithm may appear to haQe some
serious drawbacks especially for shapes such as the one shown in
Figure 19. For the shape shown in Figure 19, it may appear that
the area calculatgd.bg this btocedure will have some unwanted
area ( the shaded portion a) also. In Figure 19, .the points

1/2y3:4454647 describe the irregular shagpe.

The following will reveal that the unwanted area will
not be encountered in the course of, the calculation. | As
described in this section D% the report, the total area of the
irregular shape is the algebraic addition of the triangular areas
as calculated by egquation kz. " 1f some triangular areas become

negative then those areas will be subtracted from the total area.

The criteria which decides whether a triangular area is positive



Figure 19.

A Two Dimensional Irregular Cross-section (Case 2)
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or negative is the angle deiwhich is.calculéted from equation Al.
If dBi is positive then sindei will be Positive. If dBi is
negétive, then éindei will be negative and hence the area will

become negative.

This way of calculating the value of deiin a computer
allows the value deeito become positive or negative depending
upan whether the angle subtended between the line Jjoining the
point (xi—l’yilland the origin and the X-axis is greater than or
less than the angle subtended between the line joining the point.

(xi,yi ) and the origin and the X-axis.

Further analysis needs an extengive reference to Figure
19. As the triangqular areas ;re calculated from point 1 to
point 3, the Qalue of deiis;greater than zeroc and hence«iAfs also
positive, From the Figure 19, it is quite clear that these
triangular areas include the undesired portion alsc. (the shaded
portion a). Moving from point 3 to point S, the value of
dBi will become negative and hence dAi is negative. These
tfiangular areas calculated from 3 to 5 subtract the undesired
ones from the total area. Hnwevef; they not only subtract the
undesired ones but some desired pnrﬁicn of the area alsc (shaded
partion b). In moving from 5 to 7, the value Df'&eiwill become

positive and hence dAiiS also positive. These triangular areas

calculated from point 5 to 7 will add the area af the shaded
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portion b to the total area. Therefore, the algorithm developed
does not have any drawbacksy .as long as the points are
sufficiently close toc one another in regions where the shape has

a strong curvature,

-

The following demonstrates that tﬁe above procedure
could be wused to find the area and centroid of an irregular
cross—section having a hole in it. Consider Figure 20. This
shows that both the irregular croés—section as well as the
location and the profile of the hole are defined as co—ordinate.
points with respectltn a particular co-ordinate system. It
should be kept in mind that the ﬁule can be irregular in shape.
The area and hence the centroid of this cross-section can. be
.calculated as follo@s. If one imagines that the area be cut with
the aid of a pair of scissors (this to produce a straight line
cut) from point ! to point 2, then the Figure 20 will look as
shown in Figure 20a.

Now if one orders the points as shown in the Figure 20@a,
then no prdslem will be encountered to calculate the area and the
centroid. The same prbcedure could be used, with no

modifications.

’

The subroutine CENTRO in Appendisx C calcwlates the area

and the co-ordinate points of the centroid of any two



>
X
‘Figure 20.
Ny 5

Fiéure 20a. o
~

Figure 20. A Two Dimensional Irregular Cross-section
' with a Hole
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dimensional irregular shape. As can be seen from the parameter
list, the parameters passed are x,yy the co-or@inate of each
peint and Ny the number of points. The subroufi;e CéﬂTRO
calculates the area, ACG. and‘the co-ordinate points Df the
centroid of the i;regular-cross-section (XéG,YCG).' It also gives
each triangular area DAR and the co-ordinate points of the
centroid of each triangle (XB,YR), In equation .2, the:value of
I, the mass moment of inertia about its centre of gravity is
needed. For this purpose, a subroutine NENI&E is written.: This
subruu&ine NEWICE changes the origin of the co-ordinate sgstem to
the centre of gravity of the irregular area. Once this is done,
the subroutine CENTRO is once again used‘ to calcuiate each
tria69u1ar area DAR and the c0~ordinate.points of the;centroid,df
each triangular area (XB,YB) with respect to the new origin.
Then the value of Ilis ;omputed+és tollows: -

N
I, =i£§dAingi+Y%il

If 1, is nultiplied by. the density Bf//fE;; “then
I=Iinives the mass moment of inertia of the iceberg about its

centre of gravity., ( p is the density of ice)

BUOYANCY CALCULATION:

In order to calculate the force of buoyancy, the area

of the iceberg below the water line should be computed. This is
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done as follows? A right-handed rectangular Cartesian co-

- '

ordinate system is attached to the uwater sqrfaﬁe in such- a way
that the absqissa ot tﬁat co-ordinate sgs&em is alang the water
surface. - }he calculation of the aré; below ;he.waterliné needs
the pr}gntatinn of the iceberg w;th respect to the waterline to
be specified. ’ fheré are jmoi Qariables that determine the

orientation of the iceberg with respect to the waterline. They

are

¥

Y (1{. .the angular orientation of the iceberg with respect
. s
to the waterline. ,This is represented by a‘qusﬁtitg T

C(2). ;hew much of the portion of the icebaerg is below the
waterline. This is determined by the éuantitg Y 5, the distaﬁce
of the centre :Df gravity of the iceberg from the waterline.
Considér Figure 21. In this Figure, the x’~y’ co-ordinate system
reéresents the waterline co-ordinate system, mitg %x'-axis running

.

along the water surface.

If it 1is assumed that the shape of the iceberg is

defined with respect to the x-y co—prdinate suystem, with the

» origin of this co-ordinate system lying on the centre of gravity

of the .icebergy then the x—;\go-urdinate system will look as

" shown in Figure 21, uwith respect to the waterline co-ordinates.

The value of ¥ 1is referred to from the »’ line. A positive Y

means that the centre of gravity of the iceberg is above the
- , .
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Figure 21.

Illustration of the Buoyancy Calculation
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waterline and a negative Y means that the centre of .gra#ifg of
the iceberqg is below the waterline. A positive T means that the
iceberg is rotated in an anticlockwise direction and a negative T
meﬁns that the iceberg is rotated in a clockwise direction. In
order to calculate the cross—-sectional area of the iceberg below
the waterline, - the co-ordinate points describing the iceberg:are
temporarilg transferred from the x-y co-ordinate system to the
x'-y? co-ordinate suystem. The points describing the iceberg that
lies below the waterline will have a negative ordipate value with
respict to the x’-y’ co-ordinate system. These points ( points
that lie below the waferline) along with the points representing
the intersection of the waterline with the iceberg are fed to the
CENTRO routine in a clc;kwise ardering. The CENTRO voutine then
calculates the area and the centroid of the area below the
waterline. In this work, this area and the centroid aof this area
are calculated with respect to the »-y co-ordinate ;gstem. To
determine the value of the moment arm Ay, the following method is’
used: The moment arm A iepresents the perpendicular distance
between the vertical line passing through the centroid of thé
whole area and the vertical line passing through the centroid of
the area below the waterline. The co-ordinate points of the
centrdid of the whole area any the centroia of the area below the

waterline are transformed temporarily to the u’-y’ co-ordinate

systen. Then the wvalue of A is obtained by subtractiné. the
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abscissa of the centroid of the whole area from the abscissa of
the centroid of the area below the waterline. This means that,
if the centre of buoyancy lies to the right of centre of gravituy,

them A will be positive and if it is to the left, it will be

negative.



‘APPENDIX - B

.DAMPING COEFFICIENT CALCULATION:

‘The consecutive peaks shoun in Table 9 are used to

calculate the damping ratio Cd . The following shows the

calculation procedure.

'From the ratio of X1/X2y the logarithmgc decrement

§ can be calculated. Using the relationship (12) between

$ and ¢, , the value of C  is calculated.

MODEL CALCULATION:-

Observation No.2 is taken for example.

2% Cl
§ = n(X1/X2) = —0—0———
' 2
A
m C,
2n(9/5) =
A-c,*

0.365 = 0.345 ¢, % = 42” ¢, *

+C, =0.0931
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APPENDIX C

CMNFUTER FRCGRAMS

SLBRCLTINE CENTRO(XsY+XBeYE,DARsN+AREA, XBAF ,YBAR)
DIMENEION X(N)-Y(N)oXE(N)oYB(N).DAR(N)

LCGICAL V1,V

ALEN(XX YY) = SORT(XX**2+YY**2) -

AREA=C. 0

YNCO=C, 0

XMON=Ce O

BC 20 I=2.N

Vi=eFALSE.

.
n
™
-
(5]
m
.

=ATAN2(Y1 «X1)-ATANZ2(Y2,X2)
DTHETA)eLTeleE-05) OTHETA=0.0
LENI(X1,Y1l )RALEN(X2, YZ}*SIN(DTHETA)/E-
J«NE.CG.0) GO TO 30

s DT DR
uumUMiH

A
1
1
1
0
E

t CNALX~UI~1

‘x’.-xz
X.EQQ « Q) V1=.TRUE. ~
GO TC t2
e ¥Y1-Y¥2)/DELX
SL1*X1
«a¥X2-X1
XeEGQCe0al) Y2=2TRUE.
GO TGC 13
e ®¥Y2-Y1)/DELX
SL2+X2
AND.V2) GO TO 25
GC TQ 14
GG TG 15
E«5L2):G0O0 TO 90
«Q

Imwrnnl N0

Neomemm || || o~ 27

[ [T LY

Lo )
oo

2-B81)/(5L1-5L2)

o«

bt ] gt bttt b N C L) CCOT Wt L I el af i ra (TN ot of W

g,

)
Q
L]
-
Q
E
6
2
L1xxXgB8{(I)+B1
T

1

L

Wy gy

0
0
2
{
1
X
S
1
=X
=SL2%¥XEB(I)+EB2
CCATINMNUE
AREA=AREA+DAR(I)
XMON=CAR(I ) *YB(I)+XMCM
YNON=CAR(I)®XB(I)}+YMOM
CCNTINUE
IF(AREA.NE.0.0) GC TO 31
XEAF=C- 4]
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YEAFR=C(.0

RETLFE M

CCNTINUE

XEAR=YMCM/AREA

YEARSXMCM/AREA

FETUFM

WRITE (6.102)

"FCRMATULIH +YERROR 2 IN. CENTRO-CANNOT DETERMINE

ECENTREID OF ELEMENT')

STCF

END

SLBRCLTINE WATLIN(XsYsXEsYE,DAR4N) )
CChMCA XOFF o YOFF s THETA+ACGsXCGoYC Gy XBEL » YBEL 4 ABEL,
DIMEMSION XIN),Y{N)s XB(N)> YB(N)-DAR(N)-XX(21-YY(ZI-XXB(‘)-

*YYB(2)+DDAR(2)

DIMERSIAON XINC{30).YINC(320).,INC(30Q)
K=0

DC 10 I= lnN

CALL TRANSI(X(I).Y(I)sXP,LYP)
IF(YF«ECeQ20) GO Tg 2 \
IF{I1.EQel) GO TO 1

IF(YF*YPAOLD «LT.0.,0) GO TO 3.
XFOLD=Xp

YFCLE=YP

YPCLD=-YP)
(K} e YINC(K))

il

XECLL=XP
YECLC=YP

CCNTINUE

IF(KeLEel) GO TO 80
J=1

ABLF=0,0
XBLF=0,0
YEBUF=0.0
AREA=0.0
XNCN=040
YNCN=0.0
L=J+l
MLISINC(J)+1
N2=INC(L)

CG 20 I=N11.N
AREA2AREA+DAR
XBCH=XNOM+DAR
YNCA=YNGM+DAR
CCNTINUE

xX
X

~ e N

1
1
1

- N
#*+ %

o -
N N
LB g
s
o = X
g
ZZ

Ll

o

[
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IENC=1

CALL CENTRO(XX- oXXB.YYB.DDAR-2-0UH.XDUM.YDUM)
AREA=AREA+DDAR{2

’NC?=XNOM+YYE(2J*DDAR(2] -3
YNOCH=YNOM+XXB{2)*DDAR(2)

IF(IEND.EQ.3) GO TO 17

IF(IEND.EQ.2)} GO TO 16

AX(1)=X{N2)
YY(2)=YINC{L)
XX{Z)=XINC(L)
YY(1l)=Y(N2)
IENC=2

¢C T1C 1S
XX(1)=XINC(L)
XX(Z)=XINC(J)
YY{1)=YINC(L)
YY(2)=YINC{J)
IENC=3 ‘
GC IC 1S5
CCMTINUE

" XBEL=YMOM/AREA

YBEL=XNGM/AREA

CALL TRANS]1(XBEL+YBEL +XEE,YBE)
IF(YEE«.LT.0.0) GG TO 30
AELF=ABUF+AREA

XBUF=XBUF +XM0OM

YELF=YBUF +YNGM a

J=Jd+1

IF{JelLTeKaANDeKaGT» 2) GC TO 40 -
AREA=(Q .0

ANCN=0.0

YMCh=0.0

M=IMNI(IK)

M1=N1+1

IF{IMNCIK)«EQ.N) GO TC 100

'CC EC€ "I=N114N

AREA=AREA+DAR
XNMCN=XMOM+DAR
YMCN=YNOM+DAR
MI=INC(1)

CC 6C I=2.N1
AREAz=ZARE A+DAR
XNCN=XMCM+DAR
YMCWN=YNOM+DAR
XX{1)}=XINC(K)
xX(z)=X(N11=-1)

YY{1l)=YINC(K)

YY{(2)=Y(N11-1)

IENC=1

CALL CENTRO(XX e YY s XXEeYYESCDARy2+DUMXDUM,YDUM)
AREA=ARE A+DDAR(2)

XNCM=XNOM+DDAR(2)*YYEB(2)
YNCM=YNOM+DDAR(Z2)xXXE(2)

IF(1IENB.EQ.3) GO TO 23

IF{IENDsEC.2) GO TQO 22

X(N1)
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CCATINUE
XBEL=YMLCM/AREA
YEBEL=XMCM/AREA

CALL TRANS] (XBEL + YBEL +XBE,.YBE

IF (YEE«LTe0e0)
ABLF=ABUF + AREA
XEUF=XBUF +XMGM
YBLF=YBUF +YMGM
ABEL=ACG—ABUF
XBEL=( XCG*ACG-YBUF )/ ABEL
YEEL=(YCG®*ACG-XBUF)/ ABEL
GC TC 90
ABEL=ACG
XBEL=XCG
YEBEL=YCG
RETUFRN

ENC

GC YQ 70

SUERCUTINE TRANS1(X»YesXP+YP)

CONMCN XOFF ,YOFF ¢ THETA»ACGsXCGs YCG o XBEL s YBEL o AEEL

CATA PI2/1.57079¢6/
EETA=0.0

IF(Y eEQaO0e0.ANCa

EETA=ATAN2 (Y +X)
GAN=FI2-BETA-THETA
ASSORTIX®RX+Y*%Y )
XP=ASSIN(GAM)

YE=ASCCS(GAM) +YOFF
RETLRN

ENC

SUBFCUTINE TRANSZ2(XPiYPsXyY)

COMNCN XCFF+YOFF ¢ THETAJACG,XCG,YCG+ XBEL s YBEL s AEEL

EATA PI2/1.570796/
EETA=PI2Z-THETA-ATAN2(XP,YP-YOFF)
A=SQRT(XP*XP+(YP~YOFF )*%2)
X=A3C0ES(BETA)
Y=AREIN(BETA)
RETLFRN

ENC

SUEBRCU

Cim

QLY ™
A1 ¥ et (vt e

Mo
MmN
O -4

E

NMOO-wollllo»>

Ze o i I

<x W

(oY R A Y Yl

O

O s )

INE NEWICE(X
ON X{N) .Y (N)

A E)
» XB

)

XeEQ+040) GO TO 1

CG+YCG)
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THIS IS THE MAIN PROGRAM FOR THE DYNAMIC ANALYSIS

THE TWO DATA STATEMENTS TAKE THE X CO-URD AND Y. CO—QRD
VALUES. THE YDFF AND THETA IN THE READ STATEMENTS¥TAKE

THE INITIAL Y AND T VALUES. THE DELT IN THE FEAD STATEMENT
IS THE TIME STEP WHICH IS USUALLY TAKEN TO BE 0.2 SECe THE
TMAX IS THE MAXIMUM TIME FOR THE DYNAMIC ANALYSIS WHICH IS -
USUALLY TAKEN TO BE 300 SECONDSe » THE SCALE IN THE READ
STATEMENT IS THE AMOUNT BY w4ICH THE ICEBERG wiLL BE REDUCED
FOR PLOTTING PURPUSES.

DIMENSION X(N),Y(N), XBIND , YB{ N)yDAR(N) ,
COMMON XOFF , YOFF, THETA,ACG+XC G4 YCG ¢ XBEL » YBEL » ABEL
DATA X/ /
DATA Y/ /

DATA N/N/
DATA AREA,XBAR, YBAR/3%0,/

XOFF=0 0

YOFF=0.0
READ 25,YQFF
READ S52,TMAX

READ S3.DELT
READ S44+THETA
READ 53,SCALE

‘FORMAT(F11.6)

FORMAT{F6.0)
FORMAT(Fa4.
FORMAT(F10.7)
CALL CENTRO(XsYsXBrYBsDARINIACG e XCGoYCG)
CE(XsY 4 XBaY3 4N, XCG+YCG )
RO(Xs Y o XBoYBsDAR TNACG s XCG 4 YCG)

CALL NEWI
CALL CENT
VEL=0.0
ANGVEL=0.0
TIME=0,0
AIZZ=0.0
DU 11 I=2,N
AIZZ=A[ZZ+(XB(I)**2+YB‘[)**2)*DAR([)@

ALIZZ=Al ZZ*913, .
WEIGHT=ACG*91 3. )

K=1 .

CALL WATL IN{X.Y s XBsYBsDAR»N)

BUQY=ABEL* 1000,

IF{KeEQ.1l) BUOYOL=BUDY

IF(KsSQal) DISP=1.0

SPRIN=ABS (3UQY-BUOYOL )/ABS(DISP)
CD=0a0931%2,xS2RT(SPIIN*WEIGHT/9.81)

==CD*xvVEL )
[F(K-GT-IOAND-UUUY-EQOBUOYUL) F=3.6504*V§L*VEL
[F(KeGT al s AND4BUOYEQ «BUOYOL s AND o

oYL Y N

GVEL.GT$gm0) F=-F
ACCEL=CWEIGHT-BUQOY+F) *9.81 /W= IGHT

CALL TRANSLI{XCG.YCGeXC,YC)
CALL TRANS1({XBEL . YBEL +XBE»YB=)
ARM=XBE-XC
IF(KsEQel)l ARMOL =ARM
iF(KoEQ-I) ROT=1.0 .
SPR[I=ABS(BUOY*ARM—BUOYOL*AR“UL)/ABS(RGT)
CA= 040931 *2.*%SQRT(SPRII*AIZZ/ 9.81)
F==CAXANGVEL .
IF(KaGT sl e ANDJARMOLLEQsARM) T=1a5Z 1 0®XANGVEL*ANGVEL
IFIKsGT ala ANDARMOL s EQ e ARM4AND &

EANGVEL s GT «0+0) F=-F



-100

NOOONONNN

25
52
53
54

11

31

146

ANGACC= (BUOY®ARM+F)/A [Z2Z%9,.81
DISP=VEL*DELT+ACCEL#*DELT*DELT/2.0
VEL=VEL +ACCEL*DELT
ROT=ANGVEL*®DELT+ANGACC*DELT®DELT/2.0
ANGVEL= ANGVEL +ANGACC*DEL T
YOFF=YOFF=DISP

THETA=THETA+RQT

TIME=DELT+TIME

FORMAT(1H ,7G13.6)

K=K +1 -
BUDYDL=BUGY
ARMOL=ARM

WRITE (6,100) TIME, THETA + ANS VEL s ANGACC « YOFF s VEL s ACCEL
IF(TIME.LT.TMAX) GO TQ 30
CALL QUTL IN(XsY+N+SCALE) .

STAaP

END

THIS IS5 THE MAIN PROGRAM FOR THE MELTING ANALYSIS

THE TWO DATA STATEMENTS TAKE THE X CU-URD AND ¥ CO-0RD

VALUES. THE YOFF AND THETA IN THE READ STATEMENTS TAKE

THE INITIAL Y AND T VALUES. THE DELT IN THE READ STATEMENT ’/}
£S THE TIME STEP WHICH IS USUALLY TAKEN TO BE 0«2 SEC. THE

TMAX IS THE MAXIMUM TIME FOR THE DYNAMIC ANALYSIS WHICH IS
USUALLY TAKEN TO BE 300 SECONDS. THE SCALE IN THE READ
STATEMENT [S THE AMOUNT 8Y WHICH THE "[CEBERG wILL BE REDUCED
FOR PLOTTING PURPQSES.
DIMENSION X(MNJ)sY(N)s XB(N),YBIN)+DAR(N)
COMMON XOFF.YOFF'THETA.ACGoXCG:YCG.XBEL-YBELoABEL
DATA X/ / .
DATA Y7 /7 . o ) .

DATA N/N/ .
DATA AREA,XBAR,YBAR/3%0,./ )

XO0FF=0 .0

YOFF=0.,0
READ 25,.2YOFF
READ S52.,TMAX
READ 53,DELT
READ S4,THETA
READ 53.SCALE
FORMAT({F11.6) c
FORMAT(F6.0)
FORMAT(Fa4.1)
FORMATA(F10,.,7
CALL CENTRO(
CALL NEWICE(
CALL CENTRO(
VEL=0.0
ANGVEL=0.,0
TIME=0,.,0
AIZZ=0.,0
DO 11 [=2,N
AIZZ=AIZZ+‘XB(I)**2+YB(I)#*E)*DAR(I)
ALZZ=Al ZZ*913.
WEIGHT=ACG*91 3,
K=1 . :
TIM=0.0
CALL WATLIN(X.YoXBvYBQDARnN,
Ni=0
NZ2=0
TIM=TIM+0.5

}
X|Y-XB|Y810AR|NQQCG-XCG.YCG)
XeY s XBeYBaN¢ XCGsYCG )
XOYoXBgYB-DAR'N'QCGoXCG.YCG)
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CALL MELTIN(XeY NINI+N2+1800e¢s20000+5.0.TIM)
CALL CENTPRO(X+sYsXBsYBsDARN+ACG,XCG,YCG)
CALL NEWICE(XsYsXBsYBsN» XCGeYCG)

CAaLL CENIRO(X.Y.XB-YB-DAR-N-ACG-XCQ-YCG)
IF(TIM.EJ.0.0) GO T2 1000

AlZZ=0.0

DO 29 1=2.N

AJZZ=ATZZ+(XB{1)*%x2+YB( I )**2) *DAR(I)

ALlZZ=AlZZ*913.0

WEILGHT=ACG*913,0

CALL WATLIN(XsY s XBsYBsDARWN)

BUOY=ABEL% 1000

IF(K«EQs1) BUOYOL=BUQY

IF(K+EQal) DISP=1.0

SPRIN=ABS (BUQOY-BUQYOL }YZ/AB S{DI 5P) .

CD= 0.0931*2.*53QT(SPQIN*WEIGHT/Q-BI)
==CD*%*VEL )

[FIKeGT «1 e ANDBUOY.EQ.BUOYOL)Y F=3. S6EQ4 *xVEL*VEL

IF(KsGT +1 2 ANDBUDY+EQ.BUOYOL.AND»

EVEL aGT.0.0) F==F

ACCEL=(WE IGHT=BUOY +F ) *9.81/WZ [GHT
CALL TRANSL{XCG.YCGyXC,YC)
CALL TRANS1 { XBEL » YBEL , XBE.YB")
ARM=XBE-XC
IF(KeEQe.1l) ARMQL=ARM
IF(K4EQel) ROT=1.0
SPRII=ABS{BUDY* ARM~BUGYOL *ARMGL) /ABS(RUT)
CA=0e0931%2.xSART(SPRII*AIZZ/9.81)
F==-CA®ANGVEL
IF{KeGT « Ll e ANDeARMUOLEQoARM) “=1,5E10%ANGVEL¥ANGVEL
IF(KeGT ela ANDSARMOL & EQeARMa.AND.

EANGVELeGT s0s0) F==F

ANGACC= (BUOY®ARM+F)}/AIZZ%9.81 !
DISP=VEL*DELT+ACCEL*DELT*DELT /2.0 :
VEL=VEL+ACCEL*DELT

ROT=ANGVEL*DELT +ANGACC*DELT*JELT/ 2.0
ANGVEL=ANGVEL +ANGACC®DELT

YOFF=YOFF-DISP

THETA=THETA+ROT

TIME=DELT+TIME

FORMAT(1H ,7Gi3.6)

K=K+1
BUQYOL=8UOY
ARMCOL=ARM

- IF(TIME.LT.TMAX) GO TO 30

WRITE (6+.100) TIME,THETA+ANGVEL 4ANGACC, YOFF » VEL s ACCEL
TIME=0.0

IF{TIM.GE+38.0) GO TO 1000

IF(TIMJLES.3000.0) GO TO 31

WRITE(64105) "(X(L)sl=1LsN)

FORMAT(1H ,'X
WRITE(6+1006)
FORMAT{1H +'Y
CALL OUTLIN(X
STAaP

END

SUBROUT INE OQUT_IN{(X+Y Ny SCALE)

THE QUTLIN SUBROUTINE PLOTS THE ORIENTATION OF THE
ICEBERG DURING EVERY TIME STZP OF MELTING.

COMMCN XOFF s YOFF, THETA ACGsXC Ge YCGo XBEL 4 YBEL + ABEL

F4 YA
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DIMENSION X{N),Y{N}

CALL PLOTS(5340+~9)

CALL. PLOT(500500-3)

CALL PLOT(-Sav0eqe 3}

CALL PLOT (S5s¢0e+2)

CALL TRANS1(XCG+YCGeXCsYC)

XB8=0.0

YB=YCrsSCALE

CALL PLOT{XBsYB+al,3)

CALL PLOT(XBsYB=e1,2)

CALL PLOT(XB—el,YB,.3)

CALL PLOTI(XB+el,YB:2) .-

CALL TRANS] (XBEL s YBEL + XBE + YBZ )

XB=({ XBE=XC) /SCALE ° _
YB=YBE/SCALE *
CALL PLOT(XBsYB+sl1l,3}

CALL PLDT(XB.YB—.I.E)

CALL PLOT(XB—sleYB:s2}

CALL PLOT(XB+elsYB,.2}

CALL PLOT(XBysYB+el1:2)

IP=3 .

DO 20 I=1sN

CALL TRANSI1(X(I)+Y(1)eXIeYI)
XI={XI-XC)/SCALE '

YI=YI/SCALE

CALL PLOTI(XI+YIL.IP)

IP=2

CALL PLOT(Qe90s4999)

RETURN )
END .

THE MELTIN SUBROUTINE FINDS THES SHAPE 0OF THE ICEBERG
AFTER EVERY 1B00 SECONDS OF MELTINGa FOR ICEBERGS
wWITH A HGLE SUCH AS THE ONE SHOWN IN FIGURE 20,
THE pUINTS_Z AND 7 SHOULD BE INPUT TO THE ROUTI NE
THROUGH N1 AND N2 PARAMETERS. FUR ICEBERGS WITHOUT A
HOLE. EITHER N1 OR N2 SHOULD BE EQUAL TO ZERQe.
SUBROUT INE MELTIN(X'Y.NoNl-Na.DELToHloTaTIM)
COMMON XOFF.YUFFvTHETA-ACGoXCGoYCGaXBELcYBEL'ABEL
DIMENSION X{N),Y(Ni}

LOGICAL CROSS

DO 10 I=1,N

CALL TRANSLI(X{I)sY(I)eXP,.YP)

IF(YPLLE«Q0s0) GO TU 2 .
GO TO 10

IF(IaEQe{NI=1)e0R<I.EQ.N2) GO TO 10
DELR=HL*T*DELT*(3«429E-09)

IF(I1.EQeN) GO TO s
THET:ATAN2((Y(I)«Y(x+1)).(X(I)-x(I+1)))
DS=SORT((X(l+1)-X(I))**2+(Y(I+1)-Y(IJ}¥#2)
RNEW=SOQRT (DELR**2 +DS%x%2) -
BETA=ATANZ2{DELR sDS)+THET
Y(I)=Y(1I+1)+RNEWXSIN(BETA)
X{I)=X{I+1)+RNEWXCOS(BETA)

CONT INUE

GO TO 11
THET=ATANZ{(Y(N)I=Y{2) ), { X(N)=X(2)))
DS=SQRT((X(2)—X(NJ)**2+(Y(Z[;Y(N))**2)

RNEW=SQRT {DELR**2+DS**2)
BETA=ATANZ(DELR 4DS)+THET
Y{(N)=Y(2) +RNEWXSIN(BETA)
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X(N)=X(2)+RNEwW*COS(BETA)

X{1)}=X{N)

Y(1)=Y(N)

X{NI=X(1)

YIN)=Y(1)

IF(N] sEQ«D0RaN2.EQ+0) GO TL 32

X(N1=-1)=X{N2+1)

Y{Nl1=1)=¥Y(N2+1}

X{N2)=X(N1)

YIN2)=Y(N1) )

IFISART ((X(N2)}=X{N2¢1 ) ) *+2+{Y(N2)-Y{N2+1))*%2).GT,
£0.l) GO TO 32 :
WRITE(6,100) TIM

.FURMAT( 1H .'DISTANCE PROBLEM AT TIME=!',Gl34+6)
TIM=0.0 '

RETURN

CROSS=.FALSE. ’ -
00 20 I=14N .
CALL TRANSI(X(I)sY{I)XP,.YP)
IF(YPLWLE.0.0) GO TO 3
GO TO 20
COND=0Q.0
IND=0
IF{NL1 sEQeOQe. UR.NE-EQ.O! GO TOo S9
IF(l+EQa{NiI-1)e0R+I.EQa{(N2+1)) CALL
ECHECKAX Y+ N+ INDICONDsN1sN2)

59 IF(IND.EQ 1) CROSS=.TRUE.

IF{COND+EQ+«1.0)} GO TQ 20
IF(l1.EQa.l) GO TO 8 .
ALPH=ATANZ2((Y(I=1)=Y( 1)) {X{I=-1)=X{1)))

™GO0 TO 9

8

~g-

25

1900
20

ALPH=ATAN2{ ¥YIN-1 }=Y( 1)) »( X{N=1)=X(I)))
CALL GTRANS{XsY ¢NslsALPH s XXsYY)
IF{XXeLTe0sO0sOR«YYulLTa0+0) GO TQ 1000

IF{]leEQaN+DR.I«sEQel) GO TQ 25
IF(I1«EQeN120RI«EGaN2) GU TO 1000
X(I)=(X(I+l)+X(I—1))/2.0
Y(I)=(Y{I+1)+Y{I-1))/2.0
CROSS5=«TRUE.
WRITE(6.110) TIM, I
GO TO 1000
X{I)=(X{2)+Y(N-1))/2.0
Y(I)=(Y(2)}+Y(N-1))/2.0 :
CROSS= +TRUE,
WRITE(6+110) TIlid,l
FORMAT(1H , *CRUSS—-0VER OCCURS AT TIME"-GIJ.&. I=',14)
CONTINUE
CONTINUE
X{NJ)=X(1)
Y(N)=Y(1)
IF(CROSS) GU TO 32 .
X{N)=X{1) !
YI(NI=Y(1)
" RETURN

END

SUBROUT INE CHECK(XsYsNs INDsCONDsNLN2)
DIMENSION X{N)sY(N)

K=N1l=1

ALPH=AT ANZ2{ (Y (K=1)=Y(K)) s { X(K=-1)=X(K)))
XD=X(N2+2)-X{K}
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READ 2000+ SCALE
WEIGHT=ACG*3Q13.0

KTHE=1

CALL NATLIN(K Y+ XBeYBWsDAR «N)
KY=1

-BUUYOL—ABEL*IDO0.0

YOL=YOFF

YOFF=YOFF=1.0

CALL WATLIN{X,Y XBsYB.DARN)

KY=KY+1 ) N

BUOY=ABEL*1000.0 :
IF( (BUUYOL—=®E IGHT )*(3UOY~WEISHT}eLTe0e0) NZARY=sTRUE.
IF{NEARY) GO TO 400 '

YOL=YOFF .

BUOYOL=BUQY

YOFF=YOFF +DYOFF

GO TO 100

CONT INUE

YNEW=YUL+{YOFF-YDUL)*({ wWEIGHT- BUOYDL)/(BUOY—BUDYDL)
IF(ABS(1.0-BUOY/WEIGHT)aLTA0.0001) GO TO 1015
YOL=YOFF

8uoYoL=8UQgY

YOFF=YNEW

GO TO 100

CONT INUE

CALL TRANSLI(XCGYCGsXCLYC)

CALL TRANS1(XBEL.YBEL +XBE,YBZ}

TARM=XBE-XC

WRITE(6+:300) KTHE+THETA+ARM
FORMAT(1IH +15+2G13.06)
IF{ABS(1+0-THETA/THEOLD) 4L T402a000140Ra ABS{ARM)aLT+0,0001

&) GU TO 170

IF(KTHE «sEQ«1!) GO Ta 140 ‘
IF(ARMULD*ARM.LE.O-O;GR NEAR) GO TQ 110
ARMOL D= ARM

THEOLB=THETA

THETA=THET DTHET A

IF(THETA«GT «a642832+DTHETA) GO TO 301

KTHE=KTHE+1

YOFF=0.0

GO TQ 120

THENEW—THEDLD—(THETA THEOLD)* ARMOLD/ ( ARM=ARMOLD)
RMOL D= ARM .

THECLD=THETA

THETA=THENEW

IF({«NOTeNEAR) WRITE(6+160)}

FORMAT(1lH »'NEAR A RDOT.BEGIN SEARCH FOR A ROOT')

NEAR=+TRUE «

GO0 TO 150

DADT={ARM- ARMOLD)/(THETA—THEDLD)

HRITE(O’IBO}QPADT

FURMAT(IH +*A ROOT HAS.BEEN FDUND WITH DADT='+G1340}

CALL OUTLIN(X.YsNe+SCALE)

NEAR= .,F ALSEa ) _/"'-

KTHE=0

GO TO 140
STapP

END

]
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