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Abstract

A geometric approach to the standard model in terms of the Clifford al-
gebra (¥7 is advanced. The gauge symmetries and charge assignments of
the fundamental fermions and the Higgs boson are seen to arise uniquely
from a simple geometric model involving only four extra space-like dimen-
sions. A key feature of the model is its use of double-sided operations on
the algebraic spinors. Transformations separate naturally into left-sided or
“exterior”, and right-sided or “interior” types. The exterior transformations
include those of the Poincaré and SU (2) . groups, the interior ones include
those of SU(3)c, and a unique double-sided form of transformation con-
stitutes the U(1)y group . The separation allows a nontrivial coupling of
Poincaré and isotopic symmetries within the restrictions of the Coleman-—
Mandula theorem. The four extra dimensions are also shown to form a

natural basis for the Higgs isodoublet field.
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Chapter 1

Introduction

In many physics equations of a fundamental nature, Clifford (geometric) al-
gebras may be employed to recast conventional expressions into more holistic
and acsthetically pleasing forms. This approach often reveals insights that
were previously obscured by an inappropriate choice of mathematical ar-
chitecture. The result may allow the consolidation of incongruous terms,
suggest missing pieces. or reveal new restrictions imposed by identifying
privileged subspaces within the chosen algebra. Moreover, the inclusion of
higher dimensions into a model in a geometrically coherent manner requires
that careful attention be paid to the algebraic structure of the equations. It
is principally in this regard that conventional expressions often prove defi-
cient.

The proesent dissertation introduces a geometric approach to the minimal
standard model in terms of Clifford’s geometric algebra[l] C¥7. The aim here
is to demonstrate how the seemingly disparate gauge symmetries U Dy ®
SU(2).®SU(3)c arise in a simple algebraic model involving only four extra
space-like dimensions. This is far fewer than the minimum of seven extra

dimensions required in the usual approach[2] to using the isometries of a



higher-dimensional manifold to carry the gauge symmetries, and stems from
the availability of double-sided transformations on algebraic spinor elements.
The gauge symmetries are also given a firm geometric foundation and are
no longer relegated to abstract spaces as in the conventional approach. The
model may thus lead to a better understanding of the overall geometry
underlying the standard model.

There have been numerous attempts in the past to combine the exist-
ing symmetries into an encompassing structure. Many of these have fallen
victim to the Coleman-Mandula theorem(3] that disallow most except triv-
ial (i.e., direct-product) couplings of internal and space-time symmetries
of the S matrix. One of the motivations of supersymmetric models has
been to evade the restrictions of such theorems(4]. The algebraic approach
proposed here, which builds on a previous formulation(5] in geometric alge-
bra of the Dirac theory, is distinct in that the spinor, representing a single
generation of fermions of the standard model, connects “interior” and “exte-
rior” symmetries (transformations operating from the right and left side of
the algebraic spinor respectively), but its two-sided transformations main-
tain a direct-product group structure. Similar attempts based on Clifford
algebra[6] invariably treat time as a vector component of the particular al-
gebra being considered and have not been successful in describing the full
gauge group of the standard model. The paravector approach adopted here,
where time is assigned to the scalar element of the algebra, has been previ-
ously overlooked as a possible candidate for generating the gauge structure
from geometric transformations.

In chapter 2, it is useful to first briefly state the conventions adopted,
since notations vary considerably even within the geometric-algebra commu-

nity. An 8 x 8-matrix representation of C¥¢7 is also provided in order to make
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contact with more conventional expressions. Chapter 3 proceeds to develop
the notion of spinors in C¢7 and shows how a number of different spinor
representations contained within the algebra may be ascribed to distinct
fermionic particles and currents. In chapter 4, the algebraic interrelation-
ships between these spinors are shown to yield the gauge symmetries of the
standard model as geometric symmetries of the generalized current. The
gauge symmetries are seen to arise naturally from the algebra itself rather
than being imposed on some abstract space. In chapter 5, the various ba-
sic terms used in the standard-model Lagrangian density are constructed
algebraically, with emphasis placed on the holistic nature of the construc-
tions. Of particular interest is how the four extra spatial dimensions and
their transformation properties are precisely what is required for the four
components of a minimal Higgs field.

The presentation is somewhat pedagogical with numerous explicit ex-
amples, as much of the algebraic formalism may be unfamiliar to many
physicists. It is assumed that the reader is familiar with the traditional stan-
dard model and its Lagrangian formulation. Comparisons with conventional
picces of the standard model are made throughout the work as they arise,
with emphasis placed on some of the deficiencies addressed by the geometric
approach. As in the conventional notation, the natural units ¢ = A = 1 are

used throughout this work.



Chapter 2

Algebraic Foundations

2.1 Geometric Algebra

Clifford algebras are associative algebras of vectors whose product is gener-
ally noncommutative. They are extensions of vector spaces, complex num-
bers, quaternions and Grassmann exterior algebras, and are particularly
well suited to modeling the geometry of metric vector spaces in relativity
and quantum mechanics. Their introduction by William Kingdon Clifford
(1845-1879) predates these applications and was in part an effort to unite the
discovery of quaternions by William Rowan Hamilton (1805-1865) and the
work of Herman Grassmann (1809-1879) dealing with anticommuting vari-
ables. In the conventional vector notation, originated in part by J. Willard
Gibbs (1839-1903) and Oliver Heaviside (1850-1925), vector manipulations
involving the geometry of a given model are accomplished through a collec-
tion of disjoint definitions for operations such as the dot and cross product.
It is largely a matter of historical consequence that these formalisms have not
been displaced by the more efficient algebraic methods, where all that is re-

quired is a defining anticommutator for the base vector elements. The terms



arising from the traditional vector operations aré naturally contained within
the products of algebraic elements. In addition, the algebraic method often
provides a clearer geometric rationale for interpreting many equations, as
there is a closer contact with the underlying geometry through the defining
anticommutator. In the same manner that the various vector manipulations
may be encompassed by simple algebraic products, it will be shown how the
gauge symmetries of the standard model arise from the underlying algebraic
structure of the equations and need not be artificially constructed in purely
abstract spaces .

In the real Clifford algebra CV-, the unit vector elements e, ey, ..., e7 are
chosen to represent space-like directions, with e, €3, e3 allotted to the three
observed (physical) directions. The product of any number of vectors is

completely determined by the defining anticommutator

e;e; + epe; =26jk7 jyk =1,...,7, (2‘1)
or equivalently,
ejex = —erej, J#K,
e = 1. (2.2)

Although this completely characterizes the algebra and is the only tool re-
quired for carrying out algebraic manipulations, it will be useful at times to
develop further particular theorems or appeal to a matrix representation.
Through the anticommutator (2.1), all higher-order products of the vec-
tors can be reduced to linear combinations of 27 = 128 basis forms. For
example, there is one scalar, 7 vectors, 21 bivectors ejex (j < k), and in
general (:) distinct basis forms built from r vectors. Each one of these forms

is used to represent a geometric object. For example, eje4 represents the
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plane spanned by the directions e; and e4, and ejeze3 represents the physi-
cal volume element. The defining anticommutator naturally embodies what
one would expect geometrically from reversing the directions or the inter-
changing of any vectors. For example, eqe; = —ejeq4, since interchanging
the vectors is equivalent to negating the plane.

Two basic conjugations are used in this work. The reversion of K € C¥r,
denoted K7, reverses the order of appearance of all vector elements within
K. For example,

(e1e2e3)t = ezeze; = —ejeges. (2-3)

Clifford conjugation, denoted by K, both reverses the order and negates all

vector elements of K. For example,
(e1e2) = (—€2)(—e1) = —eye. (2.4)

Both of these operations are antiautomorphic involutions, which can be

expressed through the general rules

(AB)' = B'At,
(AB) = BA. (2.5)

The sign change induced by basic operations on elements composed of n
distinct vectors may be summarized in table 2.1.

In the algebras C¥,, the basis vectors e; can all be taken to be Hermitian,
and then reversion is equivalent to Hermitian conjugation. The algebra C?;
is appealing in that the maximal volume element of the algebra (i.e., the
hyper-volume of seven spatial dimensions) commutes with all elements and
squares to —1. Both of these statements follow from repeated application

of Eq. (2.1), and noting that an element that commutes with all of the



Table 2.1. Sign changes in basic algebraic operations.
n 0/1(2/3|4({5|6]|7
et=xe |+ |+ ||| +|+|=]|=
e=zxe |+ | - | | +|+|—-| -]+
eh=te |+ | -+ | =] +|=|+] =
E=%l|++|-|-|+|+]-]|-=

vector elements also commutes with any basis form in general. The max-
imal volume element can therefore be associated identically with the unit
imaginary

t = ejezezeqesegey, (2.6)

where it = —i. This definition can be used to reduce products of real vectors

to elements of a complex space with 64 basis forms. For example,

e1ezeqe; = —616263(648566)267
= (eiezezeqeseser)(eseses)

= i846586. (2.7)

This fortuitous circumstance occurs for every (X344, with non-negative inte-
ger i, and C¥7 is the smallest of the series that contains the Dirac algebra as
a subalgebra. The choice of adding exactly four extra dimensions to phys-
ical space will also be further justified below in that they arise naturally
from a metric-free approach to physical space and also form a natural basis
for the four components of the minimal Higgs field. The presence of an
imaginary unit arising from the geometry is an important point as complex
vector spaces are central to the tenets of quantum mechanics but seldom is
any attention brought to their fundamental origin. Using the algebra C¥¢;

is in fact an extension of enlarging the real numbers to complex numbers,
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providing an architecture sufficiently elaborate to encompass the standard

model.

2.2 Paravectors

The formalism used here builds on the physical applications of C¥3 (the
Pauli algebra), in particular the use of paravectors|T, 8] to model space-time

vectors. Paravectors are sums of scalars and vectors such as
V=V0+Vie + V2 + Viey = Ve, (2.8)

where for notational convenience we denote the unit scalar by eg, and the
scalar V? is the time component in the observer frame, that is, the frame
with proper velocity ey = € = 1. The Minkowski space-time metric Ty With

signature (1, 3) arises naturally through the square norm of paravectors
VV =(VV), =VHVY(c,E,) ¢ = VIV, (2.9)

as 1,, = (eu€,)g. Here, (---)g means the scalar part of the enclosed ex-
pression, and we adopt the summation convention for repeated indices, with
lower-case Greek indices taking integer values 0. ..3. The algebra generated
by products of paravectors is just C¢3, which is isomorphic to quaternions
over the complex numbers, and it admits a covariant formulation of rel-
ativity. It has also been shown to provide a natural formulation of the
single-particle Dirac theory[5].

Proper and orthochronous Lorentz transformations of space-time vectors

are effected by double-sided transformations of the form[9]

V - LVL!, (2.10)



where L is any unimodular element: LL = 1. Every such L can be expressed
as the product
L = exp (w/2) exp (8/2) (2.11)
of a spatial rotation Lg = exp (6/2) in the plane of the bivector § = %Bj ke,-ék
and a pure boost Lg = exp (w/2) in the direction of the rapidity w = w’e;
(or, equivalently, as a hyperbolic rotation in the space-time plane of we;eg).
The scalar coefficients satisfy 7 = —% and w’ = 0 for Jj>3.
A key advantage of the formalism is that the generators of the transfor-
mations have direct physical significance. For example, the generator e;e;
induces a rotation in the ejes plane. Explicitly, using the vector (2.8), we

have
1 1
V — cxp(—EOeleg)Vexp(—z-Heleg)
6
— [cos(g) - sin(g)eleg]V[cos(g) +sin(§)eleg]
— VO 4 [cos(0) V! - sin(6)V?|e;
+[cos(A)V? + sin(0)V']e; + V3es. (2.12)
As a further explicit example, a boost in the e, direction would be given by

v — cxp(—;-Gel)Vexp(%Oel)
— [cosh(g) + sinh(g)el]V[cosh(g) + sinh(g)el]
—  [cosh(8)VO + sinh(9)V'!]
+[cosh(8)V'! +sinh(8)V0e; + V2e; + V3e;. (2.13)

This lucidity will be of particular use when the formalism is extended to

higher-dimensional spaces.
Note that a scalar is not necessarily the time component of some space-

time vector. The mass m of a particle, for example, may be the time com-
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ponent of the momentum p (in units with ¢ = 1) in the rest frame, or it may
be the invariant norm of p. The two possibilitics are distinguished by how

they transform. In particular. the square norm of p transforms as
m® =pp — (Lpo> (Efﬁi) =pp (2.14)
whereas the rest-frame momentum becomes
meg — LmegLt = mLLT. (2.15)

In general, the same algebra may be used to accommodate a number of

different tensorial objects that are characterized by how they transform.

2.3 Extensions to Higher Dimensions

The extension from (3 to C?; requires four additional basis vectors, ¢4, c5,
g, 7, that are orthogonal to physical space, namely the span of {ej,ez,e3},
which gencrates C¥¢3. If z is any linear combination of eq, €es, ¢g, er, its

product with any A" € C¢3 satisfies
K =Rtz (2.16)

This relation follows from simply using the two basic involutions to sum-
marize the sign changes effected by carrying = through to the opposite side.
It then follows that z is invariant under any Lorentz transformation (2.10)

with

LeCl:z—Lz2Lf =LLz==z. (2.17)

More general rotations in C¢7 have the form of Eq. (2.10) but are generated
by bivectors that are not restricted to the three spatial planes of C¢; . For

example, the generator e;&4 induces transformations in the e;e4 plane. Such

10



rotations are the only nontrivial linear transformations that leave scalars
invariant and transform vectors into vectors in C¥7.

It is natural to question the meaning, motivation, and apparent absence
of the extra dimensions. Of course it may be that the additional dimensions
are Kaluza-Klein(10, 11] in nature, but then one can still perform rotations
in the tangent space, for example in the e;e4 plane or in other planes involv-
ing the extra dimensions. Alternatively, the extra dimensions may simply
represent degrees of freedom that arise from the algebra but are not associ-
ated with a spatial direction. One way to arrive at C¥; from C¥; is to seek a
metric-free foundation for C¢3. The anticommutation relation (2.1) implies a
Euclidean spatial metric, but we may instead start with a three-dimensional

metric-free Witt basis[12, 13] of null vectors {a, as, a3} satisfying
ajoq +opa; =0, jhk=1,2,3. (2.18)
A dual space can then be defined as the span of {af, a},a3}, where
ajop + ara; = 6. (2.19)

Making the identification
e; = aj +aj, (2.20)

we then have, using (2.18) and (2.19),

ejer +exe; = ((Yj + a;)(ak -i-(l,:) + (ak + QE)(C!J’ <+ a;)
= (a;ak + o) + (ajax + aka;)‘

= 2 Fk (2'21)

and the anticommutation relation (2.1) for C¥3 follows directly. However,

there are now three extra linearly independent vectors that we can label

11



€—; = aj —aj. It is easily verified that the six basis vectors e.s anticommute
and square to £1. The span of {etk}lskgs is a six-dimensional space with
the metric signature (3,3). It generates the Clifford algebra (3 3, and its
volume element e; = e_jze_se_ e;eqe3 squares to +1 and anticommutes with
the six exit. As in the familiar Dirac algebra. the volume element in 3 3
acts as an additional spatial dimension. It can be added to the basis to
form a seven-dimensional space with the corresponding universal Clifford
algebra (X4 3. The algebra Cls43 can be mapped to C¥7 if we assume the
existence of a scalar unit imaginary element /. We replace the three e_;
by clements €i+; = ie_; that square to +1. The clements eg, with k& =
1,2,...,7, then satisfy Egs.(2.1) and (2.6) and span a seven-dimensional
Euclidean space such as used here. The Witt basis clements can now be
written

1
e = 5 (ek —icqpr), Kk =1.2,3, (2.22)

and if we take the ¢; to be Hermitian, the dual clements are their Her-
mitian conjugates: af = a{.- The anticommutation relations (2.18,2.19) arc
Just those of fermion annihilation and creation operators, whose products,
together with other constructions analogous to Eq. (2.22), can generate the
isotopic groups used below.

Another motivation for using Cl7 is that the Dirac algebra seems some-
what ill suited to clean geometric interpretations when higher dimensions
arc added. One sees hints of modeling problems in details such as a v5 that
anticommutes with all the other gammas and thus acts like an extra dimen-
sion, the introduction of 7 as a distinct algebraic object, and the inclusion
of 7y in the adjoint spinor ¥ = ¢"*70. Such behavior has become so routine

that one seldom stops to ponder whether by absorbing the Dirac algebra
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inte a larger, more mathematically uniform algebra we might gain insight.

2.4 Matrix Representation for C?;
Building upon any 4 x 4-matrix representation of the Dirac algebra
YuYo TV Yu = 277;;0, (2.23)

a faithful 8 x 8 matrix representation of (¥ may be constructed in the

block-matrix form

1 0 —Y0Yk 0
le— y € — y

0 1 0 ~Y0Vk
Y075 0 Y% 0

€4 3 €5 )

0 1775 0 -7

0 0 -z

eg o , €7+ Yo ) (2.24)
Yo O o 0

with & = 1,2,3. Each basis vector e is thus represented by a Hermitian
matrix. It can be seen that this representation absorbs -y, into the definition
of & spatial direction, thus relegating time to the scalar part of the algebra,
and then introduces four extra space-like dimensions in accordance with the
defining anticommutator (2.1) so that [i|gxs arises naturally through the
full volume element (2.6). Operations involving these higher dimensions
may now be stated and executed cleanly in terms of the basis vectors e;
without having to appeal to confusing products of gamma matrices. It
should be noted that Eq. (2.24) is only one of many possible representations
of C¥7 that build upon the Dirac algebra, but it is sufficient as a tool for

providing explicit examples of higher-dimensional spinors. Although all that

13



follows may be done without reference to specific matrix representations,
the representation (2.24) is useful for making comparisons to conventional
expressions. Appendix A includes an explicit representation of C¥7 using

the Weyl representation of the Dirac algebra.

14



Chapter 3

Algebraic Spinors and Currents

3.1 Spinors

Algebraic spinors may be defined as entities that transform under the re-
stricted Lorentz group not as vectors, as in Eq. (2.10), but according to the

rule

¥ — LU. (3.1)

In the C¥3 version of the Dirac theory(5], the spinor field ¥ is represented by
a 2x 2 matrix. and it is an amplitude for the bilinear Lorentz transformation
[see Eq. (2.10)] relating the rest and laboratory frames of the particle. The
current. in particular, corresponds to the transformation of the rest-frame
time axis: J = ¢yt.

To describe one generation of the standard model, we use (¥7, where V¥ is
represented by an 8 x8 matrix. The conventional spinor of a massive particle
requires four complex numbers. The 128 basis forms of (¥7 is therefore able
to accommodate a maximum of 16 such spinors. This is sufficient to contain
column spinors for the leptons (v, €) as well as for three colors of quarks (u,d)

and all their antiparticles and presumably specifies not only the motion and
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orientation of the particles in space-time, but in the space spanned by the
extra four dimensions as well.

The transformations (3.1) are preserved by multiplication from the right
by Lorentz-invariant factors, in particular by real idempotent elements (pro-
jectors) that project the spinor ¥ onto left ideals of C¥;. In particular, there
are eight primitive idempotents that, in terms of matrices, reduce ¥ to a
single nonvanishing column. (Examples are given below.) Each such column
of ¥ transforms as a spinor [Eq.(3.1)], and the Lorentz operator from the
left does not mix components between spinors in different columns. Cur-
rents constructed from these spinors reveal symmetries that otherwise must

be imposed over abstract spaces in the conventional formalism.

3.2 Currents

In constructing an algebraic expression for the particle current J, we clearly
want a form that is bilinear in the spinors, transforms as a vector, and
satisfies Jt = J. The later requirement ensures that the physical components
J# of J are real. The simplest solution to this, and the one that we adopt

here, has the same form as found for the Dirac theory in (¥3:
J =90l - LewtLt (3.2)

One may then ask what higher-dimensional algebraic solutions present them-

selves if we match the space-time components to the conventional Dirac

formalism through
J = [¥7v*y]e,, (3.3)

where the delimiters designate the prevailing non-algebraic notation. A spe-

cific component of J may be extracted by contracting it with its associated
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direction through
Ju = (¥, ) s = (U'e, ). (3.4)

Here, we have used the algebraic property
(AB)s = (BA)g, (3.5)
whose matrix representation through
1
(o) o gtr(--) (3.6)
is the familiar trace theorem
tr(AB) = tr(BA). 3.7)

Note that if both ¥ and Clifford-conjugated basis element €, are subjected

to the same Lorentz transformation L, the component Jy, is invariant:
(P'e, ¥)s — (VL' Lte, LLU)s = (U'E,U)s. (3.8)

This form of expression will be suitable for later discussions of the La-
grangian density. From the matrix representation for ey, we see that the
form of (3.4) is identical to the conventional expression [ 1217,,1/)], except that
it is duplicated in the upper and lower portions of the 8 x 8 matrices, where
we simply use the columns of an arbitrary 8 x 8 matrix for our spinors,
admitting four chiral states per column.

It is useful to distinguish transformations from the left with others from
the right. Those from the left include the Lorentz transformations as well
as transformations in the space of the extra four dimensions that commute
with the Lorentz transformations. They are applied to the spinor after the

particles have been given the motion and orientation described by ¥ and
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will be called “exterior” transformations to represent their position, as in
Eq. (3.2), in transformations of the current J. Transformations applied from
the right will similarly be called “interior”. They are applied to the particles
in their reference frames, before they acquire the motion and orientation im-
plied by the spinor. It should be noted that exterior transformations are not
synonymous with erternal transformations, since the extra four dimensions
may relate to properties that are commonly considered to be internal.

The primitive idempotents needed to isolate columns of ¥ can be con-

structed from interior products of three pairs of simple projectors

P; =Pl =P2 =P, (3.9)
where
P.+P_=1 (3.10)
and
P.P_=0. (3.11)

From among several equivalent choices, we use the three mutually commut-
ing projector pairs

Py = %(1 +e3),

Py, = %(1 +ieqes),

P,y = %(li‘i85€7). (3.12)

For convenience, we abbreviate the product Pi3PiqPig by Piys+. One
reason for this choice is that in the Weyl y-matrix representation (appendix
A), which we adopt here, the products are simply the eight diagonal matrices

with a single unit element. For example,
P++— = dlag[la 01 ov 0’ 0, Oa 09 0]7 (3'13)
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and the first-column spinor may be written VUP,_. Each of the eight
primitive projectors Piiy4, applied from the right, projects ¥ (or other
elements) onto one of eight minimal left ideals of (¥;. Each column VP,
is identified with a different type of particle and forms current elements in
Eq. (3.2) only with itself.

One pair of simple projectors, applied from the right, can be taken to sep-
arate particles from antiparticles. We let this be Py, although this choice
will be generalized later. (Note that we could have used iejez in place of e3
in P.3, again forming a set of three commuting projectors and only introduc-
ing at most sign changes in the Pyiiy column designations. This alternate
construction is again characterized by a vector, in this case the ez that is
not used explicitly. It is the direction of such a vector, which is inherent
in any choice of three commuting projectors, that will later be generalized).
Thus, columns 1, 4,5, 8, selected by P, 5 are designated for particles and the
remaining columns, selected by P_j, contain antiparticle spinors. Each col-
umn contains the spinors for a fermion doublet, and the projectors for the
two isotopic-spin components are Pig applied from the left. In the Weyl
Y-matrix representation (appendix A), each four-component spinor in ¥ is
split into two-component spinors of right and left chirality. For example,
the upper spinor of column one comprises the nonvanishing components of

P_H‘I’P++_:

Uy L2

ta | _t o _[RY) (3.14)
U3y (2N L

Wqy U3

The lower four components ¥s; to ¥g; and the other P43 columns are labeled

in a similar manner. The Py3 (particle) spinors can be factored explicitly
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Table 3.1. The algebraic P, 3 (particle) spinors for leptons (¢) and quarks (q).

fermion lower spinor upper spinor
14 V8(Ypeses +Yeres) Py VB(WR + ¥ eres) Py
a(R)  VB(Ypeser +¥reses)Po—  B(Wgeser + 1) Pr—
9(G) VB(Yr +vrese1)Pi—y  VB(Ypeses +Yperes)Pry
q(B) VB(¥reies +¥L)Piry  VB(¥peser +Ypeses)Peyyt

as in table 3.1, where for the fermion in each half column, Yg and ¥ are

given by

Yr =Yg+ €1,
YL = Y3 —aer. (3.15)

For the sake of brevity, we take the liberty of labeling the spinors with
the particle designations shown, although no gauge structure has been de-
termined yet. This is one of many possible arrangements that will later be
generalized. The P_3 spinors have a similar form but have been excluded for
brevity. Indeed, one need only work out the algebraic equivalent of the first
column, since the remaining P,3 columns are easily obtained by multiplying
the first-column spinor from the right by the elements ese;, eseg, egel, which
shifts it to columns 4, 5,8 respectively. These algebraic spinors transform
under ¥ — LV in the same manner as in the conventional column represen-
tation, and they match the conventional current expression [J# = ¥v4%]| in

the algebraic current (3.2).
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3.3 Antiparticle Currents

Using the matrix representation, one may verify that the chiral projector for
all fermions in the Weyl representation is an exterior operator (operating

from the left-hand side) given by
PryL = Pp/p = %(1 + eseseger). (3.16)
The chirality is flipped by the transformation
U - —ejezezeq U (3.17)

This has the effect of reversing the vector components of the current (3.2)
in the span of {e,ez,e3,e4} while leaving the components in the span of
{eo0, e5,€e6,e7} invariant.

Charge conjugation can be defined by the algebraic operation
e = ieq b . (3.18)
The combination of the two antiautomorphic involutions obeys the rule
@B =a'B". (3.19)

The conjugate spinor transforms under a Lorentz transformation (3.1) in

the same manner as the particle spinor. Using rule (2.17), we have
e — iesL ' = Lieg¥' = LUc . (3.20)

The conjugate of the upper spinor of the first column (see table 3.1), for

example, is

Uc = ieaVB(h + Dleres) P (3.21)

where

ok = vg —dier. (3.22)
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Table 3.2. Column designations of the matrix representation of ¥.
¢ —q(G) 4(B) q(R) q(G) ¢ —g(R) q(B)

VR dr, —CZL Uup up —er JL ugR
ve dr —drp  ur urL  —€p dg ur,
er ~ir iir dp dg vy —ir dg
er —1up iR dr, dr, Up  —ug dr

In the matrix representation, this operation is equivalent to defining the

conventional charge conjugates through
[Ye = iv*e"] (3-23)

and exchanging the upper and lower components as shown in table 3.2. Note
that charge conjugation reverses the sign of all the projectors and shifts the
particle spinors to the P—_3 columns. This will turn out to be structurally

advantageous in the later gauge symmetries.

Geomeetrically, charge conjugation transforms the particle current as
J = ‘I’\Ilf — C4‘i’f‘i/(?4 = (,'4.]—(?4 (3.24)

and has the effect of negating the e; component while leaving all other
directions invariant. Aside from the arbitrary direction chosen, this is a
unique discrete symmetry of the higher-dimensional directions in that it is
not accessible by a rotation. The negation of two or four directions can be
achieved by rotations, and to negate three directions one simply reverses
one direction followed by reversing another two or four. The choice of e4
and the phase introduced in Eq. (3.18) is merely a convenient choice for the
representation used. The effect of this transformation on charge currents

will be apparent in the next section.
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The total current obtained by simply adding all the left ideal doublets
into a single element ¥ is then

16
J=0¥ = ZI'J‘;) leu + (higher-dim. terms). (3.25)

a=1

The sum here runs over the 16 four-component spinors assigned to the upper
and lower halves of the eight minimal left ideals, each of which may be
ascribed to distinct fermions. The residual part of the current involves
cross-current terms between the upper and lower fermions of the same ideal,
and mass-like terms of the form [¥1}], all projected onto higher-dimensional
elements.

It should be noted that a similar primitive idempotent structure for
particle doublets has been proposed for the algebra (¥;[6]. However, in
spite of an isomorphism between C¥7 and (¥; g, the use of paravectors here,
specifically the relegation of time to the scalar component of the algebra,
provides additional degrees of freedom. Indeed, it corresponds to a 2-to-1
mapping of the larger (¥} 7 onto its even subalgebra C!f' 7 =y.

The main idea of this section has simply been that, instead of writing
a separatc term for each particle current, they may be consolidated into a
single expression that accommodates a number of spinorial representations.
The advantage of using the algebraic formalism becomes evident when we
enumerate all of the possible algebraic symmetries of this current. Although
each of these representations transforms identically under a Lorentz trans-
formation, gauge transformations may induce a different change on each due
to their distinct projector structures. The charges of each of the fermions
will be shown to result from this enriched architecture. The antiparticles
occupy separate columns so that one encompassing gauge structure may be

used to describe all the observed currents of one generation.
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Chapter 4

Gauge Symmetries

4.1 Motivation

The current of Eq.(3.2) holds all the chiral currents of a single generation
of the standard model, with distinct antiparticle currents. In this section,
we show that within this framework, transformations that leave both the
physical components of the current and right-chiral neutrino (and left-chiral
antineutrino) invariant lead to symmetries of the currents arising naturally
from the algebra itself. Specifically, we enumerate all possible continuous
transformations on ¥ that transform vector components of the current into
vectors, leave invariant the physical components of the current,>and only
mix the 15 remaining chiral spinors among themselves. This is analogous to
the conventional case where one notices that ¢ — exp(i0)¢ | is a symmetry
of the current, but now we consider all algebraic gencrators in general. This
involves investigating various generators acting from both the left and right
of the algebraic spinor, as these generators do not necessarily commute with
¥. Furthermore, by combining the currents into the single form of Eq. (3.2),

we uncover relationships among the fermions that are otherwise imposed
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over abstract spaces. The underlying idea is essentially complete at this
point, and the rest of this chapter is devoted to showing in detail how it
results in the gauge group of the standard model. While it will turn out
that the generators of these symmetries are almost exclusively bivectors,
we keep the construction as general as possible by considering all algebraic

generators.

4.2 Exterior SU(2) Transformations
We begin by considering exterior transformations
¥ — GV =exp(6T)¥ (4.1)

that leave the physical components of the form ¥t invariant, where T is

some candidate algebraic generator. From the infinitesimal form
J = (1+6T)u¥ot(1 + 61", (4.2)

it is clear that T = —T"' in order to leave the scalar time component (eg
component) of J invariant. This limits the choice to basis forms built from
2.3, 6 or 7 vectors. We also have the restriction that the spatial components
ey, ea,c3 of the current should be invariant, so 7 must also commute with
cach of these clements. This further reduces the choices down to any linear

combination of i, ejezes, and the six bivector generators
ejex : (J,k) € {4,5,6,7}, j <k. (4.3)

We can eliminate both i and e;eze; since it can be shown that every lin-
ear combination of them will change the phase of a conjugate pair of Weyl

spinors by the same nonvanishing amount and therefore conflict with the
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definition (3.18) of charge conjugation. Note that all of the remaining gener-
ators are linear combinations of bivectors that rotate the higher-dimensional
vector components of the current among themselves. There is some physics
here in that these directions are presumed to be unobservable directly, so
this is a statement that the orientation of the components should not matter
at this point. As seen above, generators comprising products of eq4, €5, g, €7
are also invariant under Lorentz transformations and therefore generate in-
trinsic (rest-frame) transformations. The higher-dimensional bivector gen-
erators commute with any Lorentz generator, so a direct product structure
is maintained between the Lorentz group and any group formed using these
new generators.

Exclusion of the right-chiral neutrino (and the left-chiral antineutrino)
imposes restrictions on possible rotations to ensure its Weyl spinor does not
participate in any of the symmetry transformations. Simple rotations in any
single plane in the span of {e4, es, €5, 7} transform both vg and &z. Only
by combining rotations in orthogonal planes can we satisfy the exclusion.

We therefore combine the six higher-dimensional bivectors into three pairs

1
T, = 2(3634 +ese7),
1
T, = Z(e7e4 + eges),
1
T3 = Z(e584 + ereg). (4.4)

These combinations implicitly contain the left-chiral projector (3.16), for

example
2T, = egeq P, (4.5)

and therefore act only on left-chiral particles and right-chiral antiparticles.

‘The three generators (4.4), which induce simultaneous rotations in a pair of
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commuting planes, satisfy

(Ta, Ts] = fabeTe, (4.6)

with the fully antisymmetric structure constants fa. where fi23 = 1. The
conventional presence of the unit imaginary in front of T, has been absorbed
into the properties of bivectors.

The effect of the transformation
U — exp(0,T,)¥ (4.7)

on the total spinor set is identical to that of the prevailing SU(2) prescrip-
tions

vy urp —e€p —dg

e di Up ug

—  exp(—i0q,0,/2) YL wL —er —dp (4.8)
e. dp VR g

where 0, are the Pauli spin matrices. Although the defining anticommutator
of the algebra is the only tool required to verify these comparisons, this is an
exercise where appealing to the matrix representations of the generators is
casicr: operations from the left shuffle entire rows about in the matrix repre-
sentation but do not shift columns, so the assignment of doublets to columns
is still arbitrary. Appendix B shows the computed matrix representations of
the generators (4.4), where one can see that the conventional Pauli matrices
are contained as submatrices operating on the left-chiral states. The three
linearly independent generators formed by replacing the + signs in Eq. (4.4)
by — signs, and indeed any linear combination of them, all have the form

bPR, where b is a bivector. They thus couple with vg and its conjugate and

arc therefore eliminated.
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4.3 Interior SU(3) Transformations

Now let us look at the possible interior transformations
¥ — UG = Wexp(6T'). (4.9)

To emphasize the fact that they act on the right side of ¥, all interior op-
erators and generators are denoted with a prime. Any such unitary trans-
formation will leave J = ¥¥' invariant, but we want to ensure a stronger
condition: we demand that the particle and antiparticle currents are sepa-
rately invariant. Mathematically, we split the current in two using the ¥ P, 3

spinors

J = é@(1+e3)wf+-21-\p(1-e3)\pf
= Jua+J3 (4.10)

and require each part to be invariant. Recall that the P.3 and P_j3 spinors
arc allotted to particles and antiparticles respectively, as in table 3.1. It
should be noted here that the interior projectors do not Lorentz transform;
they represent a choice in the intrinsic or rest-frame structure of the particles
and are not altered by a Lorentz transformation operating from the opposite
side of the spinors. This also applies to generators used in between ¥ and
¥t Thus, we may involve the elements e;,es,e3 in the interior symmetries
while evading the Coleman—Mandula theorem(3] that prohibits any non-
trivial combination of the Poincaré and isotopic groups. Considering the

infinitesimal transformation
¥ — §(1+6T), (4.11)

we have

Jog — %\pa +6T')(1 % e3)(1 + 6T W, (4.12)
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which may be viewed as a transformation of the central Py projector. We
can see that the space of available bivector generators that leave e3 invariant

is now spanned by the larger set of 15 bivectors
ejer : (7,k) € {1,2,4,5,6,7}, j < k. (4.13)

Insulating the right-chiral neutrino from interior transformations in a similar
manner as before now requires that the lepton columns (1 and 6 in the
representation adopted) be avoided. This determines the surviving terms
P01
T, = Z(ele7 + egez),
r 1
T, = Z(ele(; + esez),
1
T3 = Z(e;eg + ezeg),
A
T; = ;(eseq +eser),
e
T = Z(e,ge-,v + eses),
ro01
T: = 2(6461 +6265),
1
T7 = J(eres + ezeq), (4.14)

’ 1
Ty = —=(eze; + 2ese4 + ezeg),
8= 7 \/3( 2€1 s€4 + ereg)
arranged to display the resulting SU(3) symmetry satisfying
[Te. To] = ~faeTe., (4.15)

with the antisymmetric structure constants f,;. where

fizz = 1,
1
fisr = fies = faa6 = fos7 = faas = fars = 3
V3
fass = fers = -5 - (4.16)



Computing the matrix representation for each of these generators, as shown

in Appendix B, the transformation
¥ — Wexp(8.7.) (4.17)
can be seen to be identical in its effect on the P.3 spinor components to
(R,G,B) — (R,G, B) exp(—if.\3/2), (4.18)

where A, are the Gell-Mann matrices. This is equivalent to the more famil-

iar.
R R
G | —mexp(—if\/2) | G |. (4.19)
B B

It must be emphasized herc that operations from the left shuffic rows whereas
operations from the right shuffie columns. These two operations commute
with cach other so it is of no consequence that the generators from the left do
not necessarily commute with the generators acting from the right. They act
on independent structural clements (rows and columns) of ¥ and thus effect
transformations as if they were two commuting symmetries in an abstract
space. This is basically how these gauge groups arise from only four extra
dimensions.

Under the same algebraic operation, the effect of the remaining subma-

trices on the conjugate spinors (=G, B, —R) is equivalent to

(R,G,B) — (R,G, B) exp(ifara/2), (4.20)

which is the correct transformation. Note that in the case of SU(2), the
fact that the doublets can be written in the same representation by using

the column (—d, @) is a special property of SU(2). Such a construction is
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not possible in the case of the SU(3) triplet, bﬁt the geometric symmetries
here provide a separate set of SU(3) submatrices, one in terms of —A; and
the other A,, operating on the two carrier spaces. This is an advantage of
having the conjugate spinors in a separate set of columns in that the same
algebraic symmetry applies to both particles and antiparticles.

In considering the other possible interior generators, the invariance of
the time components again restricts them to basis forms built from 2, 3,6,
or 7 vectors, and the condition T" = T'!, required for consistency with charge
conjugation, further restricts T to be an even element. The remaining can-
didate ie3, which is the only 6-vector that commutes with the Ps3 projector,

may be excluded since it does not avoid vg or 7.

4.4 Double-sided U(1) Symmetry

There remains one potential symmetry that has not yet been exploited. We
may consider a synchronized double-sided transformation that has the effect
of various phase changes on the spinors and that conspires to cancel out in
the case of the right-chiral neutrino. As this is to represent a distinct sym-
metry, the left- and right-side generators must commute with all SU(2) and
SU(3) generators respectively. We may resurrect the previously discarded
generators (eses + ereg) acting from the left, and ie3, (ejez + eses + eger)

operating from the right. One may verify with the infinitesimal operator

O — (1 + 60To)¥(1 + 60T}) (4.21)
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that the solution for which there is no phase change on the right-chiral

neutrino may be normalized to

1
v = 5(6465 + eres),
Ty = B(ere2 + eseq +eser) + (1 — 3B)ies. (4.22)

Applying this operation to each spinor in turn proves to be identical to the

U(1)y transformation
V) — exP(“wOY(j))"/J(j) (4.23)
with the weak hypercharge assignments

Y(vgr,vi,er,er) =(0,-1,-2,-1)
= =Y (PL,UR,C,€R),
Y(ur,ur,dr,dL) = (46,48 — 1,48 - 2,43 — 1)
= -Y (G, Tn,dL,dp) (4.24)

This produces the conventional weak hypercharge assignments for the lep-
tons. The ie3 term is eliminated by restricting the set of generators to those
with geometrical significance, namely bivectors. This implies 3 = 1/3, which
gives the correct values for the quarks as well.

The previous transformations may now be combined into a single ex-

pression

U — exp(60T0 + OaTa) ¥ exp(0oTy + 6,T5), (4.25)

exhausting the algebraic gauge symmetries. The complete gauge group of
the standard model is now seen to arise from a single encompassing trans-
formation on the spinor set, including both particles and antiparticles, and
describes the rotational invariances of the physical part of a generalized cur-

rent expression. The use of the correct algebra is essential here, since even if
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one were to construct such a formalism by embedding the gauge generators
into 8 x 8 matrices that commuted with the Lorentz group generators, the
identification of these generators as a privileged subspace of bivectors would

not be evident.

4.5 Electromagnetism

In the standard model, the electromagnetic charge is obtained by mixing
the U(1) symmetry with the T3 component of the SU(2) symmetry. The
details of the gauge fields associated with these symmetries will be handled
in chapter 5, but it is illustrative at this point to show how the algebraic
formalism provides a simple derivation of why this mixing is necessary.
The laws of electromagnetism are invariant under a parity transformation
of the spatial coordinates. Furthermore, electromagnetic interactions do
not change the identity of particles, so only generators that induce a phase
change need be considered. The generators T§ and T§ are excluded since
no lincar combination has a uniform effect on the three colours of quarks,
which are postulated to all have the same electric charge for a given type.
Therefore, in order to derive the electromagnetic charges we must look for
lincar combinations of the generators {Tp @ Ty, T3} yielding assignments
that are invariant under the parity transformation of Eq. (3.17). Since the
generators from the left must commute with the parity operator —e;ezeze4,
the only possibility is to isolate the generator ezeg = (T3 + %To) on the left.

The U(1)em symmetry is then specified by the generators

Tem = xeves,

2
1
Tim = 6(8162 + eseq + eger) (4.26)

33



Table 4.1. Charge assignments of the fermions.

13 Y Q I3 Y Q
vp | 1/2 -1 0 or 0 0 0
ve| 0 0 0 pRl-1/2 1 0
er |-1/2 -1 -1 el 0 2 1
er| 0 -2 -1 er| 1/2 1 1

u | 1/2 1/3 2/3 G| 0 -4/3 -2/3
ur | O 4/3 2/3  ag|-1/2 -1/3 -2/3
de|-1/2 /3 -1/3  d | o 2/3 1/3
dr| O -2/3 -1/3 dg| 1/2 -1/3 1/3

operating simultaneously from the left and right respectively. It is readily
verified that these furnish the correct electromagnetic charge assignments

for each of the fermions with
¥ — exp(0emTem) ¥ exp(BemTim) (4.27)

being identical to
wf(j) - exP(-ioch(j))"./)(j)J- (4.28)

This is essentially the basis of the Gell-Mann-N ishijima formula[14, 15]
1
Q =13 + SY (4.29)

as this is the relation obeyed by the generators for each of the corresponding

charges, as listed in table 4.1.

4.6 Alternate Representations

The U(1)y ® SU(2) L ®SU(3)c result here is a general consequence of the al-
gebra not specific to the ¥ P, 3 spinors. Any arbitrary fitting of the doublets
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into some orthogonal linear combination of the columns is accessible by shuf-
fling the P;3 columns through a transformation ¥ — ¥S where SST = 1.
The constraint that the transformations are consistent with charge conjuga-
tion demands that ¥ and ¥' transform in the same way, and this implies that
S is an even element, comprising only terms with products of an even num-
ber of vectors. The accompanying similarity transformations 7, — St T.S
and P;3 — S'P,3S maintain the results, with the former preserving the
structure constants of the interior symmetries.

In any other set in which the interior generators are written solely as
bivectors, the same weak hypercharge assignments are obtained. This can

be shown by considering the transformations

ertez — Slejes§ =5, + f,
eses — SlesesS =by — §,

eger — Sfese-,-S = b3 + f, (4.30)

where b0y, b2, b3 are bivectors and f is some 6-vector. Note that a 4-vector

result is ruled out by the reversion of the terms in (4.30). For example,
(Steie2S)t = —SteessS. (4.31)

The transformations (4.30) parameterize the most general case where T3 and
Ts both transform to bivectors, and the bivector portion of T in Eq. (4.22)

is transformed to
BS'(eres + eseq + eser)S = B(by — by + b + 3f). (4.32)

We must initially allow for the possibility of f arising since it may mix with

the transformation of the remaining (1 — 303)ie3 portion of Tp and alter the
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value of 3 determined by restricting the generators to bivectors. However,

by considering contractions of the form

(Steie2Sf)s = ((ere2SfSh)s
= ((e1e2S(Rie3R")S")s, (4.33)

where R is some rotation operator, we can see that the term
SR(ie3) R'ST = SR(e1e2)(eqes)(eger) R ST (4.34)

must contain the bivectors e;ez, eseq, eger in equal proportions. The ele-
ment SR will also be even and satisfy the property (SR)(R!St) = 1. It is not
difficult to convince oneself that such an element does not exist, therefore
it must be that f does not exist. The transformation S then preserves the

value of § = 1/3, at most rotating e3 to some new direction
ie3 — iSte3S. (4.35)

This framework then gives a geometric basis for the gauge group of the
standard model, which arises unambiguously through the various rotational

symmetries of the algebraic current in the seven-dimensional space of C¥7.
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Chapter 5

Lagrangian Terms

3.1 Gauge Fields

In constructing the Lagrangian dt;nsity (Lagrangian) of the standard model,
the basic strategy is to consider all possible terms that are invariant under
both Lorentz and local gauge transformations. The latter condition is ac-
complished by adding pieces to the basic Lorentz-invariant derivative terms
that compensate for the derivatives arising from gauge transformations that
may vary from point to point in space-time. The fundamental reason why
gauge invariance should be a guiding principle of the universe is not at
present understood, although it has been shown to be a necessary feature
of any renormalizable theory[4]. Any formalism that illuminates a stronger
connection between the Lorentz and gauge generators may prove useful in
addressing this question.

The transformations encompassed by Eq. (4.25) may be locally gauged
by introducing vector gauge fields {B,W,,G,.} € (¥3 that transform accord-

ing to
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(v 1

— 2 _
— B + =00,
g, 0
W, — W, + 550., + fuscOs W,
- - ) R r =
Gs —Ga + Z-aoa + fabc0pGe (5.1)
[ ]

into the Lagrangian derivative terms

Ls = (¥1id¥)g
- %’-(\Il'iB(To\II +UTY))s
- g(VHiW, T, ¥)s
— 9s(U1iG,¥T.)s. (5.2)

The algebraic operator used in the derivative term is defined by
0 = 8y + O1e1 + Bhea + Bse3, (5.3)

with the derivatives acting to the right. To avoid confusion when involutions
are invoked, we suspend the often used bidirectional derivative form 3-9
in favour of simply redefining the scalar delimiter to be the real scalar part
of the algebra, although either definition is tenable. In either case, care must
be taken when applying antiautomorphic involutions since they reverse the

direction of operation of the derivatives. For example,

0 =G — O1e) — hey — O3€3

operates on the left with a positive sign.
To show gauge invariance in detail it is sufficient to look at the infinites-

imal spinor transformations. Consider first the exterior SU(2) generators.
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Note that all bivector generators uniformly obey Tt = T = —T, and all ex-
terior T commute with the physical gauge fields. The Lagrangian derivative

term transforms to first order in 6, as

(TTigW) g
— (U1 - 0,T,)i(1 + 6,T) ¥) g
— (U1idT)s + (U1i(86,) T, ¥)s. (5.4)

The relevant gauge field term transforms to first order as

~g(UHW, T, )5 — —!](‘I’fi(Wa+£50a+fabc9bm)Ta‘I’)s
+9( U (0, T3 )iW, T, ) g
—g(UHiW,T,(6,T3) ¥) s
— —g(THW,T, )
—(U1i(56,) T ¥)s, (5.5)

where we have used [Ty, Ty] = faecT- and

fbacTcob "Va = f bcaTaoch
= fabcTabsWe. (5.6)

Note that SU(2) transformations on the spinor leave the remaining La-
grangian terms invariant since all T, commute with 7y and the interior
generators are on the opposite side of the spinor. The latter term in (5.4)
then cancels with that in (5.5), leaving the Lagrangian invariant.

Gauge invariance for the SU(3) transformations follows in a similar man-

ner. except that the analogy of trace theorems as in Eq. (3.5) is used to move
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generators across to the right side in the gauge-coupling term. In detail,
(Btiow) g
— (L —6,T,)¥'9¥(1 + 6,T)))s
— (U'idW) s + (V1i(96,) T s (5.7)
is compensated for by the term
—Ys (‘I’TiG—a ‘I’T;)S
~ g (UG + gisa"o; + FaseByGe)UT.) s
+gs (VNG U T, (0,T7)) s
—gs (PG W (O, T)T.) s
—  —g:(U'iG.UTL)s — (W'i(D6,)UT})s. (5.8)
Note that the choice of originally introducing a minus sign in [T}, T}] =
—favcT; is an artifact of the double-sided trausformations and done merely
to maintain all plus signs in Eq. (5.1).
The remaining U(1) spinor transformation.
(UHiow) g
— {(1 = 60Tg) ¥t (1 — 00T0)id(1 + 60T ) ¥ (1 +600TH))s
— (U'idW)s + (U1i(D6) Tyl + (T1i(060)TTY)s, (5.9)
is compensated for by the term
—%'(\pfiB(Toxp +UTE)) s
- —‘%,(‘Ilfi(é + 3,500)(%\1/ + UT)s. (5.10)
4 g

Since Tp and T commute with the other SU(2) and SU (3) generators
respectively, there are no cross terms arising between the different symme-

tries. Note that Ty by itself would be the singlet generator associated with
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the often ruminated “ninth gluon”, which has now been absorbed into the
definition of the weak hypercharge.

All of the terms in Eq. (5.2) are Lorentz invariant since the generators
of the Lorentz group commute with all exterior generators and we have, for

example,

W, T, ¢ — StLYI'W, LT, LU
— UH(LL)'W,T,(LL)Y
— W, T, v, (5.11)

where W is a vector field and therefore transforms according to Eq. (2.10).
The derivative term does not pick up any extra Lorentz terms since these
transformations are not local in flat space-time.

The clectromagnetic field is traditionally incorporated by introducing

lincar combinations of the B and Wj fields through

= Bcosbl, +W;3sinfy,,

= -—Dsinf, + W3cosé,, (5.12)
or cquivalently,
W3 = Asind, + Zcosby,
B = Acosb, — Zsinb,, (5.13)

where 8y, is the weak-mixing (or Weinberg) angle[16] to be determined by

experiment. This redefinition preserves the norm of the fields since

AA+ ZZ = BB + W3W3. (5.14)
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The relevant Lagrangian terms become
J
~L(WiB(To¥ + UT3))s - g(UHiV3 T3 0)

_ T _
= —g sinOw(‘IlfiZ(%\Il +T2))s — gcos 0, (UHiZT3T)s
T

2

—q cos@w(‘IlfiZ(?‘I/ + U2 s — gsin 0, (PHAT3U)g. (5.15)

Since the last two terms should be equivalent to the clectromagnetic coupling

term

—e(UHA(T.m¥ + OT),)}s (5.16)

in order to gauge-compensate the transformation of Eq. (4.27), where e is

the electromagnetic coupling constant, we must have the relation
e =gsinfy, = g’ cosb,,. (5.17)

The value of 8,, measured in experiments depends upon the energy regime
under investigation, as the running coupling constants are subject to renor-

malization effects.

5.2 Free-Field Terms

Although the core argument of this work is centered around terms involving
the gauge transformations of the algebraic spinor, the free-field terms, which
describe the coupling of the fields to themseclves, may also be formulated
within the C¥¢; algebra. This approach suggests an interesting high-energy
limit to the Weinberg angle.

The internal and external generators, when taken by themselves and out
of context with no spinor to separate them. do not necessarily commute

with each other. The design in the algebraic free-field expressions is then
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to divide the internal and external transformations into two separate terms.
The physical part of the tensor associated with each generator 7 occupies
the six vectors and bivectors of C¥3 and may be written in the form
Fe = (OW, — W.9) — gWo W fase- (5.18)
The gauge transformations of Eq. (5.1) induce the transformation
Fo — Fu+ fapc0s(OW, — W.0)
—90;WiWe( fojk foca + fojcSfisa)
—  Fu+ fabcOs(OW: — W_0)
+96s Wi Wi foik foba
—  Fa+ fabcbpFe. (5.19)
Using the B field as an example that is unhindered by structure constants,
the components of the first term are
9B -~ B = 2[(8B'+8,B°% + j(8:B* + &3B%)|e;
+2((80B? +8,B%) + j(8sB* + 81B%)]ez
+2((9B* + 83B°) + j(B1B* + 8,B")]es
= —2[(8oB1 — 01Bo) + j(62B3 — :3B3)]ex
+ (permutations). (5.20)
where we have defined j = ejeze; for convenience. Within (¥3, the element
J has the properties of the unit imaginary[17], but in the extension to C¢;
one must take caution since j anticommutes with higher-dimensional vector
clements. The six components in the span of {e1,e2,e3,je1, je2, jes} are the
same as those arising from the conventional six-component antisymmetric

tensor

[B,. =8,B, - 8,B,]. (5.21)
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By squaring Eq. (5.20) we have
~5{(@B - BoY)s = [ BuB*|, (5.22)

which is the conventional Lagrangian term for a free field. Terms such as

this are Lorentz invariant since, for example,
0B - B3 — L'9LLBL'-L'BLLAL!
— LYéB-Ba)Lt (5.23)
transforms as the components of a six-tensor, and
(6B — B8)®)s — (L'(8B - BA)L'LY(6B — BI)L"s
— ((@B — BO)(LL)'(8B — BA)(LL)"s
— ((@B - B3)?)s. (5.24)

For self-interacting fields (those with structure constants), the conven-

tional approach is to construct a tensor
(W) = g,W® —9,W® — gfun WOW)] (5.25)

using a somewhat cumbersome mix of tensor components v and fields (a)
associated with each generator. The gauge-invariant Lagrangian term is
then
1 1
(=3 W - W = -1 S wowew |, (5.26)
a

In the algebraic form, the tensor and gauge generator contractions are both

handled within the algebra. The full Lagrangian term is
1 !
Lrp= ‘E(Fan{T;aIZ} +Fa}?l>{Tay Tb})s (5-27)

where @ = 0 and & = 0 are now included in the sum, since Tp and T

commute with all other generators on their respective sides and also do
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not contract any scalar elements with them. The anticommutator in Eq.
(5.27) is evidently necessary in the case of internal rotations since products
such as TyTs = %(e-,-es + eze;) would otherwise introduce spurious terms
through the presence of a physical plane, which would contract between the
e; component of Fy and the ez component of Fs, for example. This also
ensures that under Eq. (5.19), the scalar part in (5.27) remains invariant
since the only purely physical element contracted by the generators is then

the identity element. Eq. (5.27) is infinitesimally gauge invariant since

FoFy — (Fa+ fabcObFc)(Fo + fajk0;Fr)
— FuFq + FoF, fapcOp + FeFg fopabs
— F.F,. (5.28)

One of the reasons for displaying the free-field terms in this manner is
to emphasize a key point concerning the field normalizations. The W and
G ficlds may be entered into Eq. (5.27) directly, since they share a common

factor of

1

(Ti)s = (Té)s = —3- (5.29)
In the case of B we have
2 1 2 1
(Tg)s =3, (To)s= -3 (5.30)
and are obliged to insert
Wo =Go = /3/20B (5.31)
in order to recover the conventional expression
Cr = _:11- B B" + W, - W* + G, - G**|. (5.32)
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At unification energies, where one would expect pure geometry to dominate,
the gauge transformations of W, and G, via Eq. (5.1) should share a conjoint
coupling constant relating the geometric rotation angle to the field strengths.

We would then expect to have

- - L~
Wy — Wh + 5000, (5.33)

B—B+=y/2d0 (5.34)
-r-g 3 0- .

Comparing both Eq. (5.34) and the similar transformation for Gy with Eq.

which is equivalent to

(5.1) immediately implies that the coupling constants at this high-energy

limit should obey

’ B
f =1, tanf, = % = \/g (5-35)

which results in a Weinberg angle of
sin® 0, = g. (5.36)

Radiative corrections are assumed to lower the weak mixing angle to the
observed value of sin?6, ~ 0.23 at accclerator cnergies. It has not been
examined as yet what role the extra space-like dimensions might play in

such a renormalization procedure carried out within this framework.

5.3 Higgs Field

In the conventional standard model, it is observed that the W* and Z fields
must be massive in order to expiain their low-cnergy absence. Introducing
a mass term such as

[L=-m>Z"Z,] (5.37)

[ RN
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directly into the Lagrangian is not permitted since this form is not gauge-
invariant. In order to produce gauge-invariant mass terms for the vector
bosons, the standard model appeals to the Higgs mechanism(18]|, whereby
a Lorentz-invariant scalar field that transforms as an SU (2) isodoublet is
postulated in order to yield a gauge-invariant mass term as a by-product of
the coupling of the Higgs field to the vector fields. The same mechanism
is also invoked to add gauge invariant mass terms for the fermions. In
the conventional approach, this is achieved through a decidedly artificial
construction that is one of the least palatable aspects of the standard model.
It will be shown here how the Higgs field arises as a natural extension of the
previous terms to include higher-dimensional components.

When looking at the exterior invariances of the current, we previously
disregarded the higher-dimensional vector components and allowed them to
frecly rotate among each other. This Lorentz-invariant vector space is then
a carrier space for the set of exterior gauge transformations and affords a
natural inclusion of the minimal Higgs field. With the help of the matrix
representation (2.24), one can verify that by formulating the complex scalar

isodoublet A and conjugate Higgs H. = —H?' as

H = —(¢166 + $2e7) Pra — (P3e5 + Pae4) P_g
G5
O3 + idy

He = (@66 + d2e7) P_q — (¢3€5 + Pge4) Py

(222
~ | , 5.38
( @1 — 19, ( :
the expression
Lo = 71.;(@(;83\1/13, + TN (GH + G H.)UP,)s (5.39)
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proves to be identical in form to the conventional Higgs-coupling Lagrangian
term with coupling strengths G, 4. The projectors B, = P,,_ and P, =
Py _ + P, , + P, are used to separate the quark and lepton currents.

The transformation required for gauge invariance,
H — exp(80To + 8,T,) H exp(—600To — 6,T3), (5-40)
is equivalent to the conventional notation

(%) — exot-ivto — o/ (%,), (5.41)

where the weak hypercharge assignment of Y = 1 (Y = -1) for the Higgs
field (conjugate field) is recovered naturally from the double-sided algebraic
transformation.

Note that H + H, consists only of elements in the span of {eq, 5, €5, €7}
and exhaust the couplings between R and L leptons and between the R and
L quarks. Application of the gauge transformation (5.40) naturally sepa-
rates the higher-dimensional vector space into the two carrier spaces of H
and H, using the same projectors as previously defined in Eq. (3.12). Ignor-
ing the various weighted projectors used in both the Higgs field (5.38) and
Lagrangian term (5.39) used to give distinct masses to the different fermions,
the form of Eq. (5.39) is the same as that of the current, Eq. (3.4), where the
components of the current being extracted are from the set {eq4, es,€s, €7}
The Higgs field—one of the least understood aspects of the standard model—
then has the interpretation of a coupling to the higher-dimensional vector
components of the current. Here again, the Higgs field is no longer an arti-
ficial appendage cast in some abstract space, but emerges readily from the
higher-dimensional geometry.

For completeness, the remaining parts of the minimal Higgs sector may
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also be written algebraically. The gauge-invariant free-field term is given by
I
Lo = ((OH — TB(To, H] - gWa[Tu, H))s, (5-42)

where Eq. (2.16) provides for the Minkowski contraction of the physical

components. In detail, the first term transforms as

OH — (1 + 60T + gaTa)(éH)(l — 8010 + 6vT3)
+(880)(To, H) + (80,)(Ts, H]. (5.43)

The incongruous latter two terms in (5.43) are cancelled out by adding
9 A T
~Z B[To, H] — gWa[Tu, H]
I 9.
- LB+ ~360)[To, (1 + 0T + 6.T) H(L - 60T + 65T3)]
—g(ﬁ"a + 550,1 + fabcach) [Ta, (14607 + ode)H(l — 610 + OITI)]
'
— (1L +60Tp + 0aTa)(—%’B[To, H| — gW, [Ty, H])(1 - 60T + 0.T¢)
—(960)[To, H] — (864)(Ta, H]. (5.44)

The exterior transformations on the left and right then cancel by use of Eq.
(3.5). The Lagrangian term is squared here since the original H term does

not contain any scalar elements.

The gauge symmetry may be broken by choosing a vacuum expectation

value
o= _H 2
Hy = —vesP_g, v=—, Yy A> 0, 5.45
0 sP_p A # (5.45)
and inserting this into the gauge-invariant potential term
A
Ly = (uH? - EH“ +--)s, (5.46)

analogous to the conventional choice. (Note that the factor of 1/2 in (5.46)

is due to the fact that (P; )s = 1/2 and not 1/4). This leads directly to
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the vector-boson mass relations of the Weinberg-Salam model, the relevant
initial term being

22 _ - _ o =
Liy = %[gZI'VjVVj — 99 (WaB + BW3) + ¢*BB] +--- . (5.47)

Through the field redefinition (5.13) and the relation (5.17), this term may

be rewritten as

Ly, = %2[(g +9VZ2Z+(0)(AA+AZ +ZA) + G (WHWH + W W) +---
(5.48)

where
w* = i(wl FiW32). (5.49)

V2
This produces the conventional mass terms for the IV and Z gauge bosons

in a gauge-invariant manner with

1 -
m, = —uy\/g®+ g=.

2
My = 309
m
= = cosl,. (5.50)

m.

The principle of gauge invariance used to deduce the form of the vari-
ous Lagrangian couplings is the same as that of the conventional formalism.
When used with the interior and exterior generators found above, the ex-
pression (5.2) yields all the usual particle and antiparticle charge currents.
However, although the above terms look similar to the conventional forms,
it should be emphasized that all of the currents are now simuitaneously han-
dled in the same expression using one algebraic spinor set, and the gauge
symmetries are no longer relegated to abstract spaces but arise naturally

from the algebra itself. As the Lorentz and gauge generators now have a
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common geometric basis, and both are compensated for by the transfor-
mation properties of the gauge fields, it is speculated that this formalism
may be of great use when incorporating gravity into the standard model.
Although it is beyond of the scope of this dissertation, the core components
of general relativity involve extending the Poincaré group to a more gen-
eral set of transformations set upon curved spaces that may be modeled
using higher-dimensional Euclidean spaces. The algebraic method shown

here seems ideally suited to further advances in this direction.
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Chapter 6

Conclusion

We began by formulating a generalized current expression in the Clifford
algebra (¥7. The new formulation made it easier to enumerate geometric
symmetries in a higher-dimensional space where four extra space-like dimen-
sions were added in accordance with the defining geometric anticommutator.
The extended algebra provided exactly the number of basis forms required to
represent all the observed fermions (particles and antiparticles) of one gen-
eration (including a right-chiral neutrino) combined into a single spinorial
element.

By examining the algebraic invariances of the extended current, consid-
ering both erterior (left-sided) and interior (right-sided) operations on the
combined algebraic spinor ¥, and through the local isomorphisms SO(4) ~
SU(2) @ SU(2) and SO(6) ~ SU(4), exclusion of the right-chiral neutrino
led directly to

SU(2) ® SU(2) ® SU(4) — U(l)y ® SU(2)L ® SU(3). (6.1)

We thus found the remarkable result that the gauge group of the standard

model arises naturally and uniquely from local geometric rotations in the

52



tangent space of a manifold that requires only four extra spatial dimensions.
The isotopic groups are no longer relegated to an independent abstract space
but are tied to local rotational invariances. Furthermore, the SU (2) trans-
formations arise as exterior transformations whereas the SU (3) are interiors
ones, a fact that may suggest a relation to quark confinement. The U (1),
transformation arises as a unique double-sided transformation and returns
the correct weak hypercharge assignments of the fermions. As a bonus, the
four extra dimensions added to accomplish this, together with their exterior
transformation properties, turned out to be precisely what is needed for the
four components of a minimal scalar Higgs field along with the correct weak
hypercharge assignment.

Note that the value of sin?8,, = -g- at unification energies is identical
to the often touted result from minimal SU(5) grand unification[19]. This
is not entirely surprising, as both originate from the normalization of the
weak hypercharge operator. However, the notion of embedding the gauge
symmetries of the standard model into some master group such as SU(5) to
accomplish this adds extra gauge bosons and the hierarchy problem associ-
ated with their apparent absence. The traditional prescription for handling
the gauge ficlds needed to compensate additional generators is to have them
acquire tremendous mass, beyond the range of current experiments. This
incurs further problems in explaining why there should exist such disjoint
mass scales and in preventing these scales from mixing through higher-order
perturbative corrections (the so-called fine-tuning problem([4]). One of the
motivations for supersymmetry, for which there does not exist a single piece
of experimental evidence even in high-energy cosmic ray detectors, is to
accommodate this situation. This can all be avoided if one abandons the

notion of an abstract master group right from the start, instead having the
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gauge group result naturally from the underlying geometry. Furthermore,
there is seldom any physical justification for a particular abstract master
group, other than its suiting a selection process under various constraints.
This has been done here to some extent in that the choice of (¥7 was in part
to accommodate the number of observed fermions. However, the notion that
higher dimensions are directly responsible for the presence of gauge groups
is more fundamental, as the physical basis for those symmetries is apparent.

A clear deficiency of this model is the need to suppress interactions
with the right-chiral neutrino, as this does not appear to have an obvious
geometric basis. We must have a total exclusion of this sector in the model
presented, otherwise there would be extra massless gluons mediating the
additional interior transformations, which is ruled out by experiment. It is
speculated that this restriction may be related to the incorporation of gravity
into a more elaborate version of the model. Also lacking is a geometric
rationale for the inclusion of three generations of fermions and for some
indication as to the origin of their disjointed masses. It is hoped that this

framework may provide new insights into these questions.
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APPENDIX A

Conventional Matrix Representations

The 2 x 2 Pauli spin matrices are

0 1 0 —i 1 0
= (Vo)m=(27)m=(o ).

There are various conventions for the 4 x 4 Weyl representation. To avoid
confusion, the choice here is explicitly stated as

_ 0 -1 Y 0 -0
70—<_1 O)v‘yk- Y "(dk 0 )1
Y5 = — YY1 Y23 1/’weyl = ( zn ) .

L

This is consistent with Kaku[4].
The 3 x 3 Gell-Mann matrices are

010 0 -2 0
’\l = 1 0 0 ,/\2= i O O 3
0 00 0O 0 O
1 0 O 0 01
A3 = 0 -1 0 , A4 = 0 0 0 ,
0 0 0 1 0O
0 0 — 0 0O
As = 0 0 0O , Ag = 0 01 ,
t 0 0 010
0 0 O 1 1 0 0
A7 = 0 0 —: , Ag = — 01 0 .
0 i 0 3\ o0 0 -2



APPENDIX B

Selected 8 x 8 Matrix Representations

Using the matrix representation of appendix A. the explicit 8 x 8 matrix
representations of the vector elements of C¢; are as follows. Zeros have been
denoted by dots for clarity.
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€3

€4

€5

57

-1

-t




€g =

\—.i i

The parity operator is given by

—€1€2e3ey =
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"The explicit matrix representations of the SU(2) gauge-group generators
are

-t
-1

-1
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The explicit matrix representations of the SU(3) gauge-group generators
are

Xy = | T

60



‘:":31

oT}

. =1

.=t

-1

61

. =

-t

. =t




g
oy
il

\ o 2 )
The explicit matrix representations of the U(1) double-sided group gen-
erators are

(T L)

—1

-1
—i

3TY =
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