# University of Windsor Scholarship at UWindsor

**Electronic Theses and Dissertations** 

Theses, Dissertations, and Major Papers

1995

# An analysis of manual postal sorting and station design using electromyography.

Chris Peter. Kourtis University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

#### **Recommended Citation**

Kourtis, Chris Peter., "An analysis of manual postal sorting and station design using electromyography." (1995). *Electronic Theses and Dissertations*. 954. https://scholar.uwindsor.ca/etd/954

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.



National Library of Canada

Bibliothèque nationale du Canada

Direction des acquisitions et

des services bibliographiques

Acquisitions and Bibliographic Services Branch

395 Wellington Street Ottawa, Ontario K1A 0N4 395, rue Wellington Ottawa (Ontario) K1A 0N4

Your the - Votre reference

Our file - Notre reference

#### NOTICE

AVIS

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments. La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.

# Canadä

# AN ANALYSIS OF MANUAL POSTAL SORTING AND

# STATION DESIGN USING ELECTROMYOGRAPHY

Chris Kourtis

A Thesis Submitted to the Faculty of Graduate Studies and Research through the Department of Industrial Engineering in Partial Fulfilment of the Requirements for the Degree of Master of Applied Science at the University of Windsor

Windsor, Ontario, Canada

1995

© 1995 Chris Kourtis



National Library of Canada

Acquisitions and Bibliographic Services Branch

395 Wellington Street Ottawa, Ontario K1A 0N4 Bibliothèque nationale du Canada

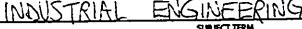
Direction des acquisitions et des services bibliographiques

395, rue Wellington Ottawa (Ontario) K1A 0N4

Your file ... Votre reférence

Our Ne None reterance

THE AUTHOR HAS GRANTED AN IRREVOCABLE NON-EXCLUSIVE LICENCE ALLOWING THE NATIONAL LIBRARY OF CANADA TO REPRODUCE, LOAN, DISTRIBUTE OR SELL COPIES OF HIS/HER THESIS BY ANY MEANS AND IN ANY FORM OR FORMAT, MAKING THIS THESIS AVAILABLE TO INTERESTED PERSONS. L'AUTEUR A ACCORDE UNE LICENCE IRREVOCABLE ET NON EXCLUSIVE PERMETTANT A LA BIBLIOTHEQUE NATIONALE DU CANADA DE REPRODUIRE, PRETER, DISTRIBUER OU VENDRE DES COPIES DE SA THESE DE QUELQUE MANIERE ET SOUS QUELQUE FORME QUE CE SOIT POUR METTRE DES EXEMPLAIRES DE CETTE THESE A LA DISPOSITION DES PERSONNE INTERESSEES.


THE AUTHOR RETAINS OWNERSHIP OF THE COPYRIGHT IN HIS/HEP. THESIS. NEITHER THE THESIS NOR SUBSTANTIAL EXTRACTS FROM IT MAY BE PRINTED OR OTHERWISE REPRODUCED WITHOUT HIS/HER PERMISSION. L'AUTEUR CONSERVE LA PROPRIETE DU DROIT D'AUTEUR QUI PROTEGE SA THESE. NI LA THESE NI DES EXTRAITS SUBSTANTIELS DE CELLE-CI NE DOIVENT ETRE IMPRIMES OU AUTREMENT REPRODUITS SANS SON AUTORISATION.

ISBN 0-612-01460-6



HRIS KOURTIS

Dissertation Abstracts International is arranged by broad, general subject categories. Please select the one subject which most nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.



SUBJECT TERM



#### Subject Categories

Name

#### THE HUMANITIES AND SOCIAL SCIENCES

| COMMUNICATIONS AND THE | ARTS  |
|------------------------|-------|
| Architecture           |       |
| Art History            | 0377  |
| Gnend                  | 0900  |
| Dance                  | 0378  |
| Fine Arts              | 0357  |
| Information Science    | 0723  |
| Journalism             | 0391  |
| Librory Science        | 0399  |
| Mass Communications    | 0708  |
| Music                  | 0413  |
| Search Communication   | 0459  |
| Thumber                | n#/.5 |

#### EDUCATION

| General                                                                                                                                                                                                           | 0515  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| General                                                                                                                                                                                                           | 0514  |
| Adult and Continuing                                                                                                                                                                                              | 0516  |
| Accultural                                                                                                                                                                                                        | 0517  |
| Art                                                                                                                                                                                                               | 0273  |
| Administration<br>Adult and Continuing<br>Agricultural<br>Art<br>Bilingual and Multicultural<br>Business                                                                                                          | 0282  |
| Reningen                                                                                                                                                                                                          | 0688  |
| Community College                                                                                                                                                                                                 | 0275  |
| Curriculum and Instruction                                                                                                                                                                                        | 0727  |
| Early Childhood                                                                                                                                                                                                   | 0518  |
| Elementary                                                                                                                                                                                                        | 0524  |
| Engage                                                                                                                                                                                                            | 0277  |
| Cuidenes and Cousseling                                                                                                                                                                                           | 0519  |
| Manual and Counseling counseling                                                                                                                                                                                  | 0.840 |
| Business<br>Community College<br>Curriculum and Instruction<br>Early Childhood<br>Finance<br>Guidance and Counseling<br>Health<br>Higher<br>History of<br>Home Economics<br>Industrial<br>Learning and Literature | 0745  |
|                                                                                                                                                                                                                   | 0520  |
|                                                                                                                                                                                                                   | 0278  |
| Frome coolonics and and the                                                                                                                                                                                       | 0521  |
| Locusing and Dearburn                                                                                                                                                                                             | 0270  |
| Language and Literature                                                                                                                                                                                           | 0200  |
| Mathematics<br>Mathematics<br>Music<br>Philosophy of<br>Physical                                                                                                                                                  | 0522  |
|                                                                                                                                                                                                                   | 0000  |
| LUNGODLA OL                                                                                                                                                                                                       | 0770  |
| Physicol                                                                                                                                                                                                          | 0523  |

| Psychology              | 0525 |
|-------------------------|------|
| Pending                 | 0535 |
| Deltaiaur               | 0527 |
| Raligious               | 0714 |
| Clences                 | 0677 |
| Secondary               | 0533 |
| Social Sciences         | 0334 |
| Sociology of            | 0340 |
| Sociology of<br>Special | 0529 |
| Teacher Training        | ບຣວບ |
| Technology              | 0710 |
| Tests and Measurements  | 0288 |
| Vocational              | 0747 |
|                         |      |

#### LANGUAGE, LITERATURE AND LINGUISTICS

Longuoge General Ancient 0679 .0289 .0290 Linguistics ..... Modern ..... Literature 0401 General 0294 0295 0297 Classical ..... 0298 Modern ..... 0316 American ..... 0591 Asian 0305 Canadian (English) 0352 Canadian (French) 0355 

| PHILOSOPHY, RELIGION AND<br>THEOLOGY         |       |
|----------------------------------------------|-------|
| Philosophy                                   | .0422 |
| Religion<br>General<br>Biblical Studies      | 0321  |
| Clergy<br>History of<br>Philosophy of        | .0319 |
| _ Philosophy of                              | 0322  |
| Theology                                     | .0409 |
| SOCIAL SCIENCES<br>American Studies          | .0323 |
| Anthropology<br>Archoeology                  | .0324 |
| Cultural                                     | 0326  |
| Physical<br>Business Administration          | 0210  |
| General                                      | 0272  |
| Bonking                                      |       |
| Management<br>Market.ng<br>Canadian Studies  | .0338 |
| Economics                                    |       |
| General<br>Agricultural<br>Commerce-Business | 0501  |
| Commerce-Business<br>Finance                 | 0505  |
| History                                      | 0509  |
| Labor                                        | 0511  |
| Folklore                                     | 0358  |
| Gerontology                                  | 0351  |
| History<br>General                           | 0578  |

|                                                                                | ~~~   | ς.  |
|--------------------------------------------------------------------------------|-------|-----|
| Ancient                                                                        | U2/3  | ٧.  |
| Medieval                                                                       | 058   | t.  |
|                                                                                | 220   |     |
| Modern                                                                         | 028   | 2   |
| Block                                                                          | 0329  | 2   |
|                                                                                | 202   | ζ.  |
| African                                                                        | 653   | i - |
| Asia, Australia and Oceania<br>Canadian                                        | 033   | >   |
|                                                                                | 233.  |     |
| Canadian                                                                       | 033   | 4   |
| European                                                                       | 077/  | ٢.  |
| Coropourt                                                                      | 200   | 7   |
| Lonin American                                                                 | 033   | D   |
| Middle Eastern                                                                 | 033   | 7   |
|                                                                                | 200   | Ξ.  |
| United States                                                                  | 033.  | 1   |
| History of Science                                                             | 058   | 5   |
|                                                                                | 2000  | ×   |
|                                                                                | 032   | 5   |
|                                                                                |       |     |
| General<br>International Law and                                               | A / 1 | •   |
| General                                                                        | UQ I. | Э   |
| Internetional Low and                                                          |       |     |
| Indiana and and                                                                | A/1   | ,   |
| Relations                                                                      | .uoi  | o   |
| Public Administration                                                          | 061   | 7   |
| Relations                                                                      | 201   | ٢.  |
| Yerrection                                                                     | .usi  | 4   |
| Social Work                                                                    | 045   | 2   |
| 300.00 VYOR                                                                    |       | -   |
| Sociology                                                                      |       |     |
| General<br>Criminology and Penology<br>Demography<br>Ethnic and Rocial Studies | 042   | ٨   |
|                                                                                |       | Ξ   |
| Criminology and Penology                                                       | .062  | 1   |
| Democranity                                                                    | 093   | 8   |
|                                                                                |       | ĩ   |
| Ethnic and Kocial Studies                                                      | .ພວມ  | 4   |
| Individual and Family                                                          |       |     |
| Individual and Family<br>Studies                                               | 0/0   | -   |
| 2006165                                                                        | .002  | 0   |
| Industrial and Labor                                                           |       |     |
| Relations<br>Public and Social Welfare                                         | A/2   | -   |
| Kelohons                                                                       | ,002  | 7   |
| Public and Social Welfare                                                      | .063  | C   |
|                                                                                |       |     |
|                                                                                |       |     |
| Development                                                                    | 070   | Ю   |
| Development                                                                    | 52.   |     |
| incory and Methods                                                             | . 034 |     |
| Transportation                                                                 | .070  | ю   |
| Transportation                                                                 |       | ÷   |
| Urban and Kegional Planning                                                    | . עאט | 7   |
| Women's Studies                                                                | 045   | . 1 |
|                                                                                |       |     |

#### THE SCIENCES AND ENGINEERING

#### **BIOLOGICAL SCIENCES**

| Agriculture                            |       |
|----------------------------------------|-------|
| " Garand                               | 0473  |
| Apropanty                              | 0285  |
| Agronomy<br>Animal Culture and         |       |
|                                        | 11475 |
| Animal Pathology                       | 0476  |
| Animal Pathology<br>Food Science and   |       |
| Technology                             | 0359  |
| Technology                             | 0478  |
| Plant Culture                          | 0479  |
| Plant Pathology                        | 0480  |
| Plant Physiology                       | .0817 |
| Ronoe Monooement                       | 0777  |
| Ronge Monogement<br>Wood Technology    | 0746  |
| Rickow                                 |       |
| General                                | 0306  |
| Analomy                                | 0287  |
| Bioslatistics                          | 0308  |
| Bolony                                 | 0309  |
| Cel                                    | 0379  |
| Ecology                                | 0329  |
| Entrandom                              | 0353  |
| Entomology                             | 0349  |
| Limnology<br>Microbiology              | 0793  |
| Minimizer                              | 0410  |
| Moleculor                              | 0307  |
| Neuroscience                           | 0317  |
| Oceanography                           | 0416  |
| Physiology                             | 0433  |
| Rediction                              | 0821  |
| Velerinory Science                     | 0778  |
| Zoology                                | 0472  |
| Bindunia                               |       |
| Biophysics<br>General                  | 0784  |
| Medical                                | 0740  |
| ······································ |       |
| FARTH SCIENCES                         |       |

| Geodesy               | 0370  |
|-----------------------|-------|
| Geology               | 0372  |
| Geochesics            | 03/3  |
| Hydrology             | 0388  |
| Minerology            | 0411  |
| Poleobology           | 0345  |
| Paleoecology          | 0426  |
| Paleontology          | 0418  |
| Paleozoology          | 0985  |
| Palynology            | 0427  |
| Physical Geography    | 0368  |
| Physical Oceanography | .0415 |

#### HEALTH AND ENVIRONMENTAL

#### SCIENCES

| Environmental Sciences | 0768   |
|------------------------|--------|
| Health Sciences        |        |
| General                | .,0566 |
| Audiology              | 0300   |
| Cherrotheropy          | . 0992 |
| Denfistry              | .,0567 |
| Education              | 0350   |
| Hospital Management    | 0769   |
|                        |        |

| TOSOICI INCITOCOTIONI             |       |
|-----------------------------------|-------|
| Humon Development                 | 0758  |
| Immunology                        | 0982  |
| Medicine and Surgery              | 0564  |
| Mental Health                     | 0347  |
|                                   | 0540  |
| Nu.ang                            | 00007 |
| Nutrition                         | .0570 |
| Obstetrics and Gynecology .       | ,0380 |
| Occupational Health and           |       |
| Therapy<br>Ophihoimology          | 0354  |
| Ochibalandan                      | 0201  |
| Obulionoio8A                      | 0001  |
| Pathology                         | 0571  |
| Pharmocology                      | .0419 |
| Phormocy                          | 0572  |
| Physical Therapy<br>Public Health | 0382  |
|                                   | 0572  |
|                                   |       |
| - Trolic ream                     |       |
| Radiology                         | .0574 |
| Radiology                         | .0574 |

| Speech Pathology | ) |
|------------------|---|
| Toxicology       | 3 |
| Home Economics   | Ś |
|                  |   |

#### PHYSICAL SCIENCES

#### **Pure Sciences** Ċ

| Chemistry                                                                                                                                                                                                               |                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| General                                                                                                                                                                                                                 | 0485                                                                 |
| Acricultural                                                                                                                                                                                                            | 0749                                                                 |
| Analytical                                                                                                                                                                                                              |                                                                      |
| Biochernistry                                                                                                                                                                                                           | 0487                                                                 |
| Inorganic                                                                                                                                                                                                               | 0488                                                                 |
| Nuclear                                                                                                                                                                                                                 | 0738                                                                 |
| Organic                                                                                                                                                                                                                 | 0490                                                                 |
| Pharmaceutical                                                                                                                                                                                                          | 0491                                                                 |
| Physical                                                                                                                                                                                                                | 0494                                                                 |
| Polymer                                                                                                                                                                                                                 | 0495                                                                 |
| Rediction                                                                                                                                                                                                               | 0754                                                                 |
| Mothematics                                                                                                                                                                                                             | 0405                                                                 |
| Physics                                                                                                                                                                                                                 |                                                                      |
| General                                                                                                                                                                                                                 | 0605                                                                 |
| Acoustics                                                                                                                                                                                                               |                                                                      |
|                                                                                                                                                                                                                         |                                                                      |
| Astronomy and                                                                                                                                                                                                           | A/A/                                                                 |
|                                                                                                                                                                                                                         |                                                                      |
| Astronomics                                                                                                                                                                                                             |                                                                      |
| Astronomics                                                                                                                                                                                                             |                                                                      |
| Astronomics                                                                                                                                                                                                             | 0606                                                                 |
| Astrophysics<br>Atmospheric Science<br>Atomic<br>Electronics and Electricity                                                                                                                                            | 0608<br>0608<br>0607                                                 |
| Astrophysics<br>Atmospheric Science<br>Atomic<br>Electronics and Electricity<br>Electronics and Electricity                                                                                                             | 0608<br>0748<br>0607                                                 |
| Astrophysics<br>Atmospheric Science<br>Atomic<br>Electronics and Electricity<br>Electronics and Electricity                                                                                                             | 0608<br>0748<br>0607                                                 |
| Astrophysics<br>Atmospheric Science<br>Atomic<br>Bectronics and Electricity<br>Elementary Particles and<br>High Energy<br>Fluid and Plasma                                                                              | 0608<br>0748<br>0607<br>0798<br>0759                                 |
| Astrophysics<br>Atmospheric Science<br>Atomic<br>Electronics and Electricity<br>Elementary Particles and<br>High Energy<br>Fluid and Plasma<br>Molecular                                                                | 0608<br>0748<br>0607<br>0798<br>0759<br>0609                         |
| Astrophysics<br>Atmospheric Science<br>Atomic<br>Electronics and Electricity<br>Elementary Particles and<br>High Energy<br>Fluid and Plasma<br>Molecular<br>Nuclear                                                     | 0608<br>0748<br>0607<br>0798<br>0759<br>0609<br>0610                 |
| Astrophysics<br>Atmospheric Science<br>Alomic<br>Electronics and Electricity<br>Elementary Particles and<br>High Energy<br>Fluid and Plasma<br>Molecular<br>Nuclear<br>Optics                                           | 0608<br>0748<br>0607<br>0798<br>0759<br>0609<br>0610<br>0752         |
| Astrophysics<br>Atmospheric Science<br>Atomic<br>Electronics and Electricity<br>Elementary Particles and<br>High Energy<br>Fluid and Plasma<br>Molecular<br>Nucleor<br>Optics<br>Radiation                              | 0608<br>0748<br>0607<br>0798<br>0759<br>0609<br>0610<br>0752<br>0756 |
| Astrophysics<br>Atmospheric Science<br>Atomic<br>Electronics and Electricity<br>Elementary Particles and<br>High Energy<br>Fluid and Plasma<br>Molecular<br>Nuclear<br>Optics<br>Rodiction<br>Solid State               |                                                                      |
| Astrophysics<br>Atmospheric Science<br>Atomic<br>Electronics and Electricity<br>Elementary Particles and<br>High Energy<br>Fluid and Plasma<br>Molecular<br>Nucleor<br>Optics<br>Radiation                              |                                                                      |
| Astrophysics<br>Atmospheric Science<br>Atomic<br>Electronics and Electricity<br>Elementary Particles and<br>High Energy<br>Fluid and Plasma<br>Molecular<br>Nuclear<br>Optics<br>Radiation<br>Solid State<br>Statistics |                                                                      |
| Astrophysics<br>Atmospheric Science<br>Atomic<br>Electronics and Electricity<br>Elementary Particles and<br>High Energy<br>Fluid and Plasma<br>Molecular<br>Nuclear<br>Optics<br>Radiation<br>Solid State<br>Statistics |                                                                      |
| Astrophysics<br>Atmospheric Science<br>Atomic<br>Electronics and Electricity<br>Elementary Particles and<br>High Energy<br>Fluid and Plasma<br>Molecular<br>Nuclear<br>Optics<br>Rodiction<br>Solid State               |                                                                      |

| Facineerioo                |       |
|----------------------------|-------|
| Engineering<br>General     | .0537 |
| Aerospoce                  | .0330 |
| Aericultura                | .0539 |
| Automotive                 | .0540 |
| Biomedical                 | .0541 |
| Chemical                   |       |
| <u>Civil</u>               | .0543 |
| Electronics and Electrical |       |
| Heat and Thermodynamics    | .0345 |
| Hydroulic<br>Industrial    | 0545  |
| Marine                     | 0547  |
| Materials Science          | 0704  |
| Mechanical                 | 0548  |
| Metallurgy                 | 0743  |
| Mining                     | .0551 |
| Nuclear                    | 0552  |
| Pockoging                  | 0549  |
| Petroleum                  | 0765  |
| Senitary and Municipal     | 0554  |
| System Science             | 0790  |
| Geolechnology              | 0428  |
| Operations Research        | 0/96  |
| Plastics Technology        |       |
| Textile Technology         | 0774  |

#### PSYCHOLOGY

| General       | .0621 |
|---------------|-------|
| Behavioral    | 0384  |
| Clinical      | 0622  |
| Developmentoi | 0620  |
| Experimental  | .0623 |
| Industrial    | .0624 |
| Benerality    | 0425  |
| Physiological | .0989 |
| Psychobiology | 0349  |
| Psychometrics | .0632 |
| Social        | 0451  |
|               |       |

 $\textcircled{\blue}{\blue}$ 

#### ABSTRACT

Twelve subjects sorted mail to discover if the mail sorting task or station design caused repetitive strain injury symptoms. Subjects performed the task at six different stations. Each station had two design components for study.

Electrodes were placed on the deltoid, trapezius and infraspinatus muscles to study localised muscle fatigue, which is known to be a contributing factor to repetitive strain injuries.

54% of the male and 33% of the female trials resulted in statistical indications of muscle fatigue. There was no indication that the occurrence of indicators was due to station design. Additional analysis was  $p_{\rm corr}$  formed using subjective responses of the perceived exertion. There were gender differences but no differences due to station design.

The results indicate that the sorting task itself may be responsible for the occurrence of RSI symptoms. To eliminate RSI incidence, it would be necessary to redesign the task and equipment used.

I hereby declare that I am the sole author of this thesis. I authorize the University of Windsor to lend this thesis to other institutions or individuals for the purpose of scholarly research.

Chris Kourtis

I further authorise the University of Windsor to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

.

Chris Kourtis

The University of Windsor requires the signatures of all persons using or photocopying this thesis. Please sign below and give an address and the date.

#### ABSTRACT

Twelve subjects, eight males and four females, sorted mail manually in an attempt to discover if the manual mail sorting task and/or station design was conducive to the occurrence of repetitive strain injuries. Each subject performed the task six times, for a two hour period, at different stations. Each station had two design components for study, namely, three different boards and two mail pickup points.

Electrodes were placed on the anterior deltoid, upper trapezius and infraspinatus muscles for the purpose of performing an electromyographic (EMG) study. It has been documented that an increase in the Root-Mean-Square (RMS) values of the EMG signal, coupled with a decrease, over time, of the Mean Power Frequency (MPF) is an indicator of localised muscle fatigue. Localised muscle fatigue is known to be a contributing factor to repetitive strain injuries.

It was found that 54% of the male and 33% of the female trials resulted in statistical indications of muscle fatigue. The occurrence rate between genders was not found to be statistically significant. Also, there was no indication that the high occurrence of fatigue indicators was due to station design. Additional analysis was performed using subjective responses. Nine different parts of the body were considered. Subjects rated their perceived exertion rates using the Borg RPE scale. Aside from some minor gender differences, there were no indications of differences due to station design.

A linear regression model was developed based on fatigue indicators and the EMG signals. It indicated that the slope of the MPF values of the deltoid muscle, helped to predict the occurrence of statistical signs of fatigue.

These results tend to indicate that the actual mail sorting task may be responsible for the high incidence rates. In order to reduce the incidence rate, it will be necessary to redesign either the station or job. The key points to improving the station design include elimination of movements above the shoulder, allowing flexibility in seating arrangements, eliminating twisting of the body and placing the mail slots below the hands.

# DEDICATION

This thesis is dedicated to my parents.

•

.

### ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. S.M. Taboun, and my committee members, Dr. S.P. Dutta and Dr. G.W. Marino, for their help and support during the life of this project. I also wish to thank our departmental secretary, Ms. Jacquie Mummery, and technician, Mr. Tom Williams for their help. Finally, I wish to thank Nancy Urban and Jim Muma for proof-reading this document.

I could not, would not, on a boat. I will not, will not, with a goat. I will not eat them in the rain. I will not eat them on a train. Not in the dark! Not in a tree! Not in a car! You let me be! I do not like them in a box. I do not like them with a fox. I will not eat them in a house. I do not like them with a mouse. I do not like them here or there. I do not like them ANYWHERE! I do not like green eggs and ham! I do not like them, Sam-I-am.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> from: Geisel, T.S., 1960, <u>Green Eggs and Ham</u>, by Dr. Seuss (pseud.), Beginner Books (Random House)

| ABSTRACT                                                                                                                                                                                                                                                                                      | v                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| DEDICATION v                                                                                                                                                                                                                                                                                  | 'ii                                                 |
| ACKNOWLEDGEMENTS vi                                                                                                                                                                                                                                                                           | iii                                                 |
| LIST OF APPENDICES ×                                                                                                                                                                                                                                                                          | ii                                                  |
| LIST OF TABLES                                                                                                                                                                                                                                                                                | ili                                                 |
| LIST OF FIGURES xi                                                                                                                                                                                                                                                                            | iv                                                  |
| 1 INTRODUCTION                                                                                                                                                                                                                                                                                | 1                                                   |
| 2.1 Cumulative Trauma Disorders         2.2 Repetitive Work         2.3 Carpal Tunnel Syndrome         2.4 Importance to Industry of CTDs         2.5 Reducing CTDs         2.6 Prevention and Management of CTDs         2.7 Risk Assessment         2.8 Electromyography and Muscle Fatigue | 5<br>5<br>7<br>8<br>9<br>13<br>15<br>17<br>20<br>22 |
| 3.1 Postal Equipment         3.2 Postal Sorting Task         3.3 EMG Measurements         3.4 Data Collection         3.5 Subjects                                                                                                                                                            | 24<br>28<br>30<br>33<br>35                          |
| 5.0 Experimental Design                                                                                                                                                                                                                                                                       | 37<br>39                                            |
| 4 TABULATION OF INEGOETO                                                                                                                                                                                                                                                                      | 41<br>41                                            |

# TABLE OF CONTENTS

| 4.2 Envelope Count and Pickup       | 48  |
|-------------------------------------|-----|
| 4.3 Subjective Ratings              | 50  |
| 4.4 Analysis of RMS Values          | 58  |
|                                     | 66  |
|                                     | 67  |
| 5 DISCUSSION                        | 69  |
| 5.1 Fatigue Indicators              | 69  |
| 5.2 Subjective Ratings              | 70  |
| 5.3 RMS Values                      | 75  |
|                                     | 77  |
| 5.5 Selection of Station            | 78  |
| 5.6 Decision Making                 | 80  |
| 5.7 Rest Cycles                     | 81  |
| 5.8 Sources of Error                | 83  |
| 5.9 Recommendations for Future Work | 83  |
| 6 CONCLUSIONS                       | 87  |
| 7 REFERENCES                        | 90  |
| APPENDICES                          | 101 |
| VITA AUCTORIS                       | 307 |

## LIST OF APPENDICES

| Consent Forms                                             | 102                                    |
|-----------------------------------------------------------|----------------------------------------|
| Diagrams of Layouts Used in Experiment                    | 106                                    |
| Written Instructions Given to Subjects                    | 110                                    |
| Experimental Order                                        | 112                                    |
| Electrode Placement                                       | 114                                    |
| Preamplifier Settings                                     | 118                                    |
| Viewdac Screens                                           | 120                                    |
| RMS and MPF Information                                   | 127                                    |
|                                                           | 130                                    |
| Subjects                                                  | 132                                    |
| Experimental RMS and MPF Values                           | 134                                    |
| Confidence Intervals of Slopes for RMS and MPF Values     | 208                                    |
| RMS and MPF Slopes                                        | 222                                    |
| Statistical Analysis of Fatigue                           | 226                                    |
| EMG, RMS, MPF Graphs with Statistical Signs of Fatigue    | 228                                    |
| EMG, RMS, MPF Graphs without Statistical Signs of Fatigue | 233                                    |
| Statistical Analysis of Envelope Count                    | 238                                    |
| Subjective Scores                                         | 243                                    |
| Statistical Analysis of Subjective Scores                 | 256                                    |
| Correlation Coefficients for Subjective Ratings           | 276                                    |
| Statistical Analysis of RMS Values                        | 286                                    |
| Linear Regression Model                                   |                                        |
| Reliability Equations                                     | 305                                    |
|                                                           | Diagrams of Layouts Used in Experiment |

•

# LIST OF TABLES

| Summary for Results of any Response Variable           | 38                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Time to First Occurrence of Statistical Muscle Fatigue | 42                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Occurrence Rates of Indications of Muscle Fatigue      | 44                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Additional Occurrences of Fatigue by Muscle            | 45                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Count of Envelopes                                     | 48                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Variance of Envelope Count                             | 49                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Analysis of RMS Values                                 | 59                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Differences in Stations Based on RMS Interactions      | 64                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Mean Time to Signs of Statistical Fatigue              | 68                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                        | Summary for Results of any Response Variable         Time to First Occurrence of Statistical Muscle Fatigue         Occurrence Rates of Indications of Muscle Fatigue         Additional Occurrences of Fatigue by Muscle         Count of Envelopes         Variance of Envelope Count         Analysis of RMS Values         Differences in Stations Based on RMS Interactions         Mean Time to Signs of Statistical Fatigue |

.

# LIST OF FIGURES

| Figure 1 | Photograph of Straight Layout                                     | 25 |
|----------|-------------------------------------------------------------------|----|
| Figure 2 | Photograph of "V-Shaped" Layout                                   | 26 |
| Figure 3 | Photograph of Inclined Layout                                     | 27 |
| Figure 4 | Photograph of Subject Showing Electrode Placement                 | 32 |
| Figure 5 | Intervals of Means of Fatigue Score by Gender                     | 46 |
| Figure 6 | Intervals of Means of Fatigue Score by Board                      | 46 |
| Figure 7 | Intervals of Means of Fatigue Score by Pickup Point               | 47 |
| Figure 8 | Intervals of Means of Subjective Scores: Upper Back by Gender .   | 51 |
| Figure 9 | Intervals of Means of Subjective Scores: Elbows by Gender         | 52 |
| Figure 1 | Intervals of Means of Subjective Scores: Lower Back by Gender .   | 52 |
| Figure 1 | 1 Intervals of Means of Subjective Scores: Hips/Thigh by Gender . | 53 |
| Figure 1 | 2 Intervals of Means of Subjective Scores: Knees by Gender        | 53 |
| Figure 1 | 3 Intervals of Means of Subjective Scores: Ankles by Gender       | 54 |
| Figure 1 | 4 Intervals of Means of Male Subjective Scores by Body Part       | 56 |
| Figure 1 | 5 Intervals of Means of Female Subjective Scores by Body Part     | 57 |
| Figure 1 | 6 Intervals of Means of Female Deltoid RMS Values by Board        | 60 |
| Figure 1 | 7 Intervals of Means of Female Deltoid RMS Values by Pickup       | 60 |
| Figure 1 | 8 Intervals of Means of Male Deltoid RMS Values by Board          | 61 |
| Figure 1 |                                                                   | 61 |
| Figure 2 | 0 Intervals of Means of Female Trapezius RMS Values by Board .    | 62 |
| Figure 2 | 1 Intervals of Means of Infraspinatus RMS Values by Board         | 63 |
| Figure 2 |                                                                   | 63 |
| Figure 2 | 3 Board/Pickup Interaction for Female Deltoid RMS Values          | 64 |
| Figure 2 | 4 Board/Pickup Interaction for Male Deltoid RMS Values            | 65 |
| Figure 2 | 5 Board/Pickup Interaction for Infraspinatus RMS Values           | 65 |
| Figure 2 | 6 Linear Regression Model for Statistical Indications of Fatigue  | 67 |
| Figure 2 | 7 Intervals of Means of Subjective Scores: Neck by Gender         | 72 |
| Figure 2 |                                                                   | 72 |
| Figure 2 | 9 Intervals of Means of Subjective Scores: Wrist/Hand by Gender . | 73 |

#### **1 INTRODUCTION**

Traditionally, the sorting of letters in the post office has been a task performed by hand by individual operators. Even with the advent of automated postal sorting systems, which have become prevalent due to the technology available today, there is still a requirement for postal workers to sort mail by hand. In the United States, 11% of all letters require manual sorting (United States Postal Service, 1994). This is due to the fact that mail may be in irregular shapes that do not allow for automatic processing, where automatic processing is available, or that errors can be made. These errors may be mechanical or made by humans inside (sorting errors) or outside (addressing errors) the postal service. Regardless, manual mail sorters still place mail into pigeon-hole slots (United States Mail, 1978?).

The physical work task involved in sorting mail is fairly consistent and is repeated daily over a long period of time by the individual concerned. It involves a high number of repetitions of low force work. These repetitive motions, performed many times over a long period of time can result in musculoskeletal stress that may lead to temporary or permanent physical damage to the individual. Postal workers, due to the continual movements of their arms, are likely to be at risk of developing problems in the shoulder-neck areas of their bodies. These motions are, of course, dependent on the sorting station used by the worker. It was this sorting procedure along with the design of equipment that was evaluated.

In recent years, the temporary or permanent damage that may occur to a worker in industry has come to be known as a cumulative trauma disorder (CTD) or repetitive strain injury (RSI). CTDs are a great concern, not only for the damage they cause to individuals, but also due to the costs that may be incurred by individual companies as a result of these injuries.

The purpose of this study was to evaluate different manual postal sorting stations to determine which of the studied stations allows for the greatest number of letters to be sorted, coupled with a low possibility of CTD incidence. Three different 'boards' or 'layouts', used to sort mail, were considered. In each layout, the worker picked up mail from two different points, making a total of six different stations.

While performing the study, a count of the number of envelopes sorted by each worker at each station was taken. In addition, surface electrodes were attached to three different muscles for the purpose of recording electromyographic (EMG) signals to assess the performance of each muscle and to determine if any indications associated with muscle fatigue developed over the course of the experiment. After sorting the envelopes, each subject answered a subjective rating scale of the perceived exertion of the different parts of the body, which was used to assess the ease or difficulty in sorting mail at each station.

The primary goal of this study was an ergonomic evaluation of the various stations used to sort mail. Specifically, the repetition of the work performed and the analysis of the EMG signals of the muscles could allow this work to be used to determine the occurrence of CTDs. In this particular study, the interest was in determining if the sorting of mail, at various types of stations, predisposed individuals to develop symptoms of CTDs. The only characteristic being considered in this aspect of the study was localised muscle fatigue.

The concept of fatigue used in this study was not one where fatigue is considered to occur when a muscle is unable to perform or maintain a certain function. While a muscle is operating, indications of fatigue may be occurring at any time. An analogy would be a steel bridge that collapses at a certain point. What is observed in the collapse is the failure point, not fatigue. Closer investigation of the bridge, at any point prior to the collapse, would show varicus mechanical signs of fatigue (DeLuca, 1984). Consideration was also given to evaluating each station for performance of the mail sorting task. In doing so, this study could be used as a template for other studies of light repetitive work. The results could be used for the specific design of manual mail sorting stations in post offices or company mailrooms or as a basis for further study of other styles of manual sorting stations in other fields.

This experiment received the approval of the Ethics Committee of the University of Windsor. Copies of the consent form used can be found in Appendix A.

#### **2 LITERATURE REVIEW**

#### 2.1 Cumulative Trauma Disorders

Cumulative trauma disorders, or repetitive strain injuries, have been described as painful and limiting soft tissue failures that result from repeated or continuous application of slight to moderate physical stress over extended periods of time (Burnette and Ayoub, 1989a). Putz-Anderson (1988) defines CTDs as "A disorder of the muscular and/or tendinous and/or osseous and/or nervous system(s) caused, precipitated or aggravated by repeated exertions or movements of the body". The key phrase of any definition of CTDs is in the emphasis of the repetitive occurrence of similar motions over long periods of time, which would result in the symptoms of the specific trauma. CTDs usually affect the hand-wrist-forearm area or the shoulder-neck area and can cause damage to muscles, tendons, nerves and blood vessels. Occasionally, certain motions may cause damage to bones, such as vertebrae in the spinal column (Kroemer, 1992).

Causes of CTDs may be either occupational or non-occupational activities. Occupational causes include repetitive and forceful activities resulting in prolonged exertions, static muscle load, awkward body postures, direct pressure from work equipment, vibration from machinery and exposure to cold temperatures or airflows. Non-occupational causes include age, gender, chronic disease and hereditary causes (ie. pre-disposition to CTDs).

It is thought that activities that involve repetitive or forceful exertions, or a combination of both are the primary cause of CTDs, although there is no precise definition of what would constitute a high amount of repetition or excessive force (Kroemer, 1989). Such a definition could vary depending on the specific task under consideration. Some examples of CTDs are localised muscle fatigue, which was the primary focus of this paper, tendon-related disorders, nerve entrapment syndromes, carpal tunnel syndrome (CTS), which is discussed presently and hand-arm vibration syndrome (HAVS) (Rempel et al., 1992).

Ranney (1993) argues that the terms CTD and RSI should be regarded as "statements of causation", rather than as medical diagnoses of their own. Even though these types of injuries can be sustained through non-occupational activities, determining a generally accepted definition for CTD and RSI, one that may only refer to occupational causation, is important if only for legal reasons. More frequently, employers are being taken to court in an attempt to receive compensation by injured workers. Each case may provide its own unique set of circumstances and

6

Ċ

determination of causation may rely on analysis of the work and/or lifestyle routine of the individuals concerned.

#### 2.2 Repetitive Work

The effects of fatigue due to repetitive work have been studied for a variety of different tasks. Kadefors et al. (1976) found signs of muscle fatigue in welders doing overhead work. Inexperienced welders showed general fatigue, whereas experienced welders only showed signs of fatigue in one muscle.

Hagberg (1981) found increases in heart rate and perceived exertion during a series of concentric and eccentric flexions in the shoulder over a period of one hour. Subjects had complaints with regard to the descending trapezius muscle twenty-four hours after the experiment.

Vezina et al. (1992) measured the forces exerted by sewing machine operators, during standard repetitive operations and provided reports of fatigue and discomfort. The work performed was considered to be light work, and was based on the fact that the government of Quebec uses energy expenditure as the only measure of physical work.

Sundelin and Hagberg (1992) found that fatigue occurred in the trapezius and infraspinatus muscles for light repetitive MTM paced arm motions over a period of one hour. The work involved reaching for and grasping a cylinder, moving it to a hole and releasing it.

Higgs et al. (1992) reported that in workers from meat-packing plants, jobs with the highest repetition and the smallest rest cycle had the highest upper extremity impairment. Workers who rotated from job-to-job were found to have less impairment than workers who performed only one job.

#### 2.3 Carpal Tunnel Syndrome

Carpal tunnel syndrome affects the hand-arm area and is a result of the compression of the median nerve in the carpal tunnel of the wrist. This can affect the entire hand, since the median nerve extends into the fingers. Swelling of the tendons can reduce the opening of the carpal tunnel and can pinch the median nerve or blood vessels. This can cause pain, numbness or tingling in the hand

(Kroemer, 1989). While this occurs infrequently in the general population, it can have a high incidence in certain industries, such as assembly work, the butcher/meat packing industry and garment/sewing work (Rempel et al., 1992). Physicians have estimated that from 31 to 55 percent of all CTS cases are work related. In Canada, there were an estimated 27,500 incident cases of CTS in 1989. Of this number, 8,500 to 15,100 were thought to be work-related (Kraut, 1994).

Skandalakis et al. (1992a, 1992b, 1992c) provide a detailed discussion of CTS symptoms, anatomy of the wrist and treatments based on the dissection of 156 wrist cadavers.

#### 2.4 Importance to Industry of CTDs

One of the reasons CTDs are of interest, aside from their medical considerations, is the cost that employers may bear for their occurrence. These costs can be direct or indirect costs and may occur from worker absence due to injury, high turnover, frequent rest breaks, compensation for injuries, reduced productivity or quality of workers, medical costs for treatments and legal fees (Carson, 1993).

Individual cases of CTDs can cost from \$20,000 up to \$100,000 (US) in lost time in addition to medical costs. In 1990 approximately 60% of all occupational injuries were attributed to CTDs. Estimates indicate that 35% of all workers will experience CTDs at one point in time and the actual numbers may rise dramatically since it is expected that half of all jobs may be affected by the year 2000 (Noaker, 1993).

Companies that ignore ergonomic procedures can pay a heavy price for doing so. Samsonite Corporation, of Denver, recently reached an agreement with the Occupational Safety and Health Administration (OSHA) to provide a comprehensive ergonomic management program to protect its workers, and paid a \$495,000 penalty for not doing so earlier. Furthermore, OSHA has targeted meat-packing plants, for reduction of CTDs, since workers in this industry suffer from injuries at a rate that is twelve times greater than workers in industries which produce nondurable goods, such as in the textile industry (Stix, 1991). Punnett (1992) found that male workers in the retail meat industry reported occurrences of pain in the shoulder, elbow/arm and wrist/hand areas at rates from 1.7 to 2.2 times greater than workers performing similar tasks in other industries.

Franklin et al. (1991) report that the incidence of occupational CTS in

Washington state from 1984 to 1988 compared to that of non-occupational CTS is significantly different. Occupational CTS occurs in persons with a lower average age (37 for occupational CTS to 51 for non-occupational CTS) and with a significantly different female to male ratio (1.2:1 compared to 3:1), where males experience a smaller overall incidence rate, and a smaller rate still in non-occupational CTS. Industries that were found to have the highest CTS rates were food processing and packing, carpentry, manufacturing and wood product industries, such as sawmills and logging.

Some of the increases in the occurrence of CTDs can be attributed simply to a greater awareness of the problem. Previously, some workers may have attributed various injuries to arthritis or pulled muscles or to some other self-diagnosed injury. As workers become more aware of the role played by on-the-job conditions in the development of CTDs, there will be an increase in the reporting of the injuries (Kalogeridis, 1991). This increased awareness may account for the fact that reported cases rose 500% from 1979 to 1988 and 100% from 1987 to 1989. Even so, there are still problems in obtaining correct incidence numbers of CTDs since the injuries that occur may be referred to by many different names. Depending on the source, CTDs may account for anywhere from 30 to over 50 percent of all workplace injuries (Schwartz, 1992; Sommerich et al., 1993). The automotive industry and other heavy engineering occupations are prone to occurrences due to the wide variety of tasks performed. Studies have been published on the use of scissors (Tannen et al., 1986), sewing machine operators (Stetson et al., 1986) and electricians (Hunting et al., 1994). Occurrences of CTDs were studied within five different types of automotive plants (Nelson et al., 1992). Incidence rates were found to be higher in specific types of plants, namely the assembly and foundry plants, but within the divisions of the assembly plant, rates differed greatly according to exposure group. Fransson-Hall et al. (1992) found gender differences in exposure to physical load within divisions.

Carpal tunnel syndrome is also recognized as a problem in the computer industry and can occur in office workers who use keyboards for an excessive period of time, such as journalists and data-entry clerks (Sauter et al., 1987; Buckle, 1991; Harvey, 1991; Bernard et al., 1992; Buckle, 1992; Silverstein, 1992). However, a British court, in a controversial decision, recently rejected the idea that RSI may be considered as a medical condition in a ruling on a case involving a journalist, even though British courts have previously awarded judgements of £20,000 to an electronics worker and £21,000 to six turkey factory workers. (O'Brien, 1993; Reuters, 1993).

12

CTDs can also affect workers outside of heavy industries. Studies have been conducted on fishermen (Törner et al., 1988), secretaries and office workers (Kamwendo and Linton, 1991; Kamwendo et al., 1991, Franzblau et al. 1993), sign language interpreters (Feuerstein and Fitzgerald, 1992; Stedt, 1992), musicians (Grieco et al., 1989; Lederman, 1993) and checkout workers in grocery stores and supermarkets (Ryan, 1989; Harber et al., 1992; Orgel et al., 1992; Harber et al., 1993a; Harber et al., 1993b; Osorio et al., 1994).

#### 2.5 Reducing CTDs in Industry

Often, by redesigning equipment and/or the tasks individuals must perform, CTDs can be eliminated or reduced, and in the process the company can reap financial benefits from doing so.

Westgaard and Aarås (1985) report on the effects of ergonomic improvement efforts at a Norwegian factory that were made during the late 1970's. The productivity in the factory was, on average, higher after implementation of the improvements than before. They report a reduction in long-term sick leave (Aarås and Westgaard, 1987), primarily due to musculoskeletal problems being reduced. Galt (1993) reports on the example of Cuddy Foods of London, Ontario, which, in the late 1980's had as many as 44 workers per month being disabled from a work-force of 750 people. After a one million dollar investment to redesign equipment and work stations and the development of a system to monitor workers for signs of CTDs, they managed to reduce the injured worker count to zero, and estimated that they received a return of six to one on the original investment.

Noaker (1993) reports on Updyke Stamping of Oxford, Michigan. Updyke analysed two welding operations that required the operator to make three 90° bends to lift stock from a container. After redesigning the worksite, in under eleven implementation hours, the productivity at the two welding operations had increased by 45% and 29%, respectively. Including this redesign and others over the previous two years, the cost of 95% of the ergonomic improvements undertaken was less than \$300.

There are also situations where some solutions may be prohibitively expensive for companies to initiate changes. Special ergonomic keyboards currently sell in the \$600 to \$800 range, compared to \$20 for conventional keyboards. However, if companies buy new equipment, such as chairs, they should attempt to buy adjustable equipment that can fit a majority of workers (Marley, 1994).

#### 2.6 Prevention and Management of CTDs

In order to avoid CTDs it is necessary to design jobs so that the tasks that must be performed are suitable for the worker rather than finding workers who are suitable to perform any particular task. Kroemer (1992) lists seven conditions that should be avoided. They are: high numbers of repetitions, excessive exertion of force, unusual body positions or contortions, direct pressure from work equipment on the body, vibration, cold temperature or airflows and static body positions. The occurrence of any of these situations are indicators of potential CTDs.

Effective prevention of CTDs requires a coordinated approach in companies between management and employees. Redesigning equipment in hindsight is an approach that will cost the company money, since losses will have already occurred. Roughton (1993) describes the elements that must go into a task force, that is charged with eliminating problems before they occur.

The task force must be composed of different elements of the company such as management, who will provide the resources for and accountability of the program. Supervisory groups are required, since they have the understanding of what is required to complete any task; the employees must be present to provide for communication channels to make all workers aware of the program goals; engineering departments are required for their understanding of the equipment and processes involved; maintenance groups are required since it is they who carry out the installation and maintenance of the equipment; and finally, ergonomists are required in order to evaluate any potential risks in the workplace.

Training must be provided and should include elements of how to control risk factors, methods of prevention, how early symptoms can be detected along with emphasis on early reporting of these symptoms and instruction on appropriate work practices. Job hazard analysis is required to identify activities that may contribute to CTDs, collect and analyse historical data, review all jobs and review and eliminate hazardous steps. Medical management is required to manage and treat injured and recovering workers, so that they can be assigned duties that will not place them at further risk. The task force must look into the proper design of tools, considering aspects such as proper weight, shape, vibration, noise, grips, pressure and posture required to use the tool. The workplace design must also be analysed for various physical and environmental factors. Finally, any program to prevent CTDs must have an Evaluation System to determine if it is meeting its objectives. Mahone (1993) advocates a six-stage design process, that could be used to remove the trial-and-error aspect of system design. Usually, little attention is paid to the design of small systems, until something goes wrong. Kittusamy et al. (1992) provided a checklist for a questionnaire, that can be used in the design process.

#### 2.7 Risk Assessment

In order to minimize the occurrence of CTDs, various attempts at predicting, rather than diagnosing, occurrences have been made. These attempts generally involve methods of quantifying work done by an individual, or performing specific physical tests to increase the ability to detect CTDs.

Baleshta and Fraser (1986) developed a symbolic notation to indicate various motions made by the arm during work. The notation was designed to be computerised for analysis by machine. Armstrong et al. (1986) used drawing-board manikins to help determine the best layout and location for a given task. Burnette and Ayoub (1989b) have proposed a computerized model to rate various tasks according to their risk. The rating is based on a series of inputs regarding anthropometric and job-based parameters.

Moore et al. (1991) developed a mathematical model to predict the various loads that occur in the wrist and hand, to better predict CTS. The mathematical model developed includes reference to the geometry of the task, tendon pressure on tissue, tendon forces, tendon excursion and friction. This allows the study of the combined effects of the force, posture and repetition for each individual. White and Kaczmar (1992) have attempted to predict a relationship between muscle stress and wrist movement as related to CTS symptoms, using computerized cinematography and electromyography. Wygant et al. (1993) have developed a system of measuring human work based on time modules, in order to analyse tasks at the design stage. It is based on three classes of motions. They are: movement class, involving movement of the finger, hand, arm, shoulder and trunk; terminal class, which categorises activities at the end of a movement; and the auxiliary class, which refers tc activities performed by other parts of the body. Wells et al. (1994) reported on an approach to assessing the risk factors of various types of work. The method involves analysis of video images of the worker and of simultaneous display of qualitative EMG information of various muscles on the screen.

Keyserling et al. (1993) developed a two-page checklist, designed to identify various ergonomic risk factors associated with CTDs. It was found that the results of the checklist tended to correspond to results of analysis done by ergonomic professionals. It also appeared to be more likely to identify risk factors associated with various jobs. Five major categories of exposure to CTDs were used. They were repetitiveness, local mechanical contact stress, forceful manual exertions, awkward upper extremity posture and hand tool usage.

Bird and Hill (1992) report on a study of twelve women who developed repetitive strain injuries. It was found that analysis of the particular tasks allowed a localised prediction to be made as to where symptoms would occur. Grant et al. (1992), in an attempt to diagnose CTS cases, tested devices that measured motor nerve conduction time and tactile sensitivity, but currently, have found them to be of only limited use.

Pelmear et al. (1992) discuss six different tests that can be done to identify the existence and severity of Hand-Arm Vibration Syndrome (HAVS), so that it is not incorrectly treated as CTS. Confusion between CTS and HAVS may exist, since HAVS has been defined as having symptoms which include circulatory disturbances, sensory and motor disturbances and musculoskeletal disturbances (Pelmear and Taylor, 1991). Hagberg (1992) indicated that there is an association between CTS and HAVS which is dependent on repetitive forceful gripping and/or extreme position of the wrist. Meanwhile, Taylor (1992) argued that standardized tests are not currently in existence that can conclusively distinguish HAVS from CTS. A basic discussion of HAVS can be found in Pelmear and Taylor (1994).

## 2.8 Electromyography and Muscle Fatigue

Merletti et al. (1991) describe muscle fatigue as a "failure point" at which the muscle is not able to sustain a desired force level. This "point" is determined by an amount and/or rate of change of the measurement of the electrical potential that exists in the motor units of the muscle during contraction. This is the EMG signal which is a representation of the muscle activity over time (Chaffin and Anderson, 1991).

Electromyography has been used to conduct studies of various activities, including uphill walking (Arendt-Nielsen and Sinkjær, 1991), wheelchair propulsion (Veeger et al., 1991) and Methods-Time Measurement (MTM) paced work with and without shoulder pauses (Sundelin, 1993). Electromyography has four main applications in ergonomic studies, namely muscle coordination studies, quantitative EMG (the study of relative load on each muscle), localised muscle fatigue studies and qualitative EMG (effects of static loading) (Jonsson, 1991).

Postal sorting, which is considered to be light repetitive work, has also been an area of study. Jørgensen et al. (1989) conducted a study on mail sorters during normal daily sorting activities of irregular length (20 to 40 minutes). Of six subjects, muscle fatigue was indicated in the trapezius muscles in two subjects and one subject recorded fatigue in the infraspinatus muscle. There was no fatigue recorded in the deltoid muscle. DeGroot (1987) found that the top row or rows used in sorting mail into pigeon-holes required greater muscular activity than for lower rows. This was particularly true for rows above shoulder height.

When attempting to measure fatigue in light work, the use of subjective signs of fatigue and measurable signs of fatigue provide an opportunity to follow the conditions under which fatigue may develop. EMG measurements are also considered to be a better form of measurement than the measurement of other physiological factors. Fatigue can usually be detected by an increase in the EMG signal amplitude and a shift of the Mean Power Frequency (MPF) to lower frequencies. (Basmajian and DeLuca, 1985; Nakata et al., 1992). Waly et al. (1986) studied muscle behaviour in a static task until the occurrence of muscle fatigue. They found that indicators of fatigue include increases in Root-Mean-Square (RMS) values and a shift towards a lower frequency content. A definition of MPF is given in Winter et al. (1979).

Basmajian and DeLuca (1985), in performing analysis of EMG signals, recommend the use of the RMS value, which is a value dependent on the amplitude, above all other measures. In controlled laboratory experiments, it is usually easier to detect EMG signs of fatigue than during regular work tasks, due to the technical difficulties in making correct measurements in a non-laboratory setting (Jonsson, 1991). Even so, in some laboratory experiments involving light repetitive work, use of a subjective scale for fatigue is sometimes a better indicator of fatigue (Nakata et al., 1991). Hammarskjöld and Harms-Ringdahl (1992) have measured the fatigue of manual performances of carpenters using only the mean EMG amplitude, in addition to subjective ratings.

#### 2.9 Work Station Design

Jørgensen et al. (1998), in their study of Danish mail sorters, did not design a particular sorting station, but used the standard sorting station available. There were a total of 32 pigeon holes, with four holes in each row and eight columns. The total station height was 174.5 cm (69"), where the height to the bottom of the topmost row was 165 cm (65"). The bottom row was at a height of 93 cm (37"). The mail to be sorted was placed on a desk at a height of 73 cm (29"). The mail was sorted from a standing position.

When designing work stations, there are certain considerations that must be made to allow for the proper use of any equipment by workers. Konz (1990) has given several guidelines to follow in designing stations. They include avoiding static loads and fixed work postures, designing to reduce CTDs and setting work height at 50 mm below the elbow. Other considerations applicable to this study include designing for use by the preferred hand and to design stations such that they are within normal reach areas for as wide a segment of the population as possible. Similar discussions can also be found in Grandjean (1988), Pulat (1992) and Sanders and McCormick (1993).

Design considerations are not always given with respect to ergonomics considerations in classical Industrial Engineering methodology. Barnes (1980) related a number of principles of motion economy for use of the human body and design of work places. The development of a preferred work method was summarized by eliminating all unnecessary work, combining operations or elements to eliminate unnecessary movements and changing or simplifying sequences of operations. In order to make these determinations, a process analysis of the task at hand should be performed.

## **3 EXPERIMENTAL METHOD**

#### 3.1 Postal Equipment

For the purpose of this study, a station was considered to consist of a combination of one layout and one mail pickup point. There were a total of three different layouts and two mail pick up points used. They totalled six different stations.

The first station layout (Layout 1), and the one on which the other two were based, was a flat and straight board 71" (180 cm) wide by 51" (130 cm) high. There were one hundred pigeon-hole slots on the board, each one of which was six inches wide by four inches (15.2 cm x 10.2 cm) high. A one inch (2.54 cm) margin was left between each slot in each direction. The height was 74" (188 cm) in order to accommodate the reach of a 5th percentile female. The height to the bottom of the slots in the top-most row was 69" (176 cm). This was based on Marras and Kim (1993), who give the total of shoulder height, upper arm length and lower arm length as being approximately 77" (196.7 cm) for 5th percentile females. This board was placed in front of a mail collection station that allowed mail to be sorted into the slots and be collected at the back. It was placed eight inches (20.3 cm) from the edge of the table to allow mail to be placed there for pick-up during sorting (this was the first of the two mail pick-up points).




Figure 1 Photograph of Straight Layout

This layout was modified in two ways to produce the remaining layouts. The second layout was a "V-shaped" orientation. From the perspective of the worker, the sorting station "surrounds" the worker, who stood in the middle. The board had been cut in the middle, so that there were two boards, 51" (130 cm) high and 35½" (90 cm) wide. The two boards were joined together in the middle at an angle of 157°. This allowed the middle of the joined boards to be placed back an additional seven inches

(17.8 cm) for a total depth of fifteen inches (38 cm). This was done to accommodate the available equipment and allow approximately six inches (15.2 cm) behind the board, at the centre, for the collection of the envelopes. Because of the orientation, the outer most edges of the "V" layout were now four inches (10.2 cm) from the edge of the table.

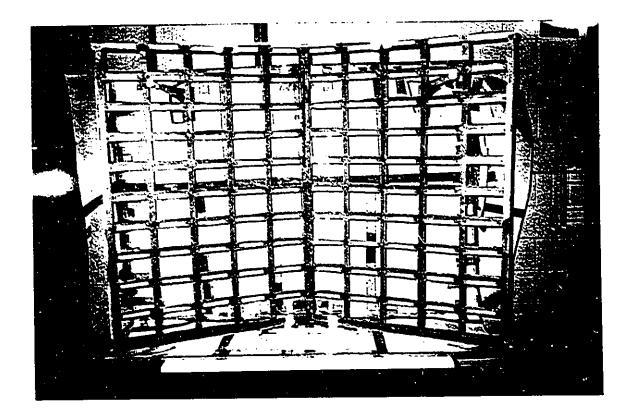



Figure 2 Photograph of "V-Shaped" Layout

The third layout involved "bending" or inclining the flat board near the middle to partially incline the bottom part of the board in the workers' direction. This compressed the height of the station by four inches (10.2 cm) to 70" (178 cm) (65" (165 cm) to bottom of top-most mail slots). The bottom four rows (two-fifths of the board) was folded forward 36°. The top entire board was still flat and straight, except that the bottom portion was now inclined upwards towards the worker.



Figure 3 Photograph of Inclined Layout

Diagrams of each of the three layouts are presented in Appendix B.

In each layout there were two different locations from which the mail was

picked up. The mail was placed in the centre of the table (in front of the board) or to the side opposite of the workers handedness. That is, left-handers would pick up mail from their right side and right-handers from the left side. When the mail was to be picked up from the opposite side, it was placed on a platform 23" (58 cm) high, which corresponded to the height of the table.

### 3.2 Postal Sorting Task

Subjects were asked to sort mail from a standing position and place envelopes into a slot, in the station layout, corresponding to the address on the front of the envelope.

Each layout had one hundred different slots into which mail could be placed. The one hundred mail slots consisted of thirty different Windsor area addresses (sixteen postal codes, five post offices, three rural routes and six institutions), sixty different Ontario cities or towns and ten out-of-province destinations. In order to facilitate the sorting process, the three left-most columns contained only Windsor addresses, the next six columns contained the Ontario cities, listed in alphabetical order, and the right-most column was used for out-of-province destinations. In total, there were three thousand different envelopes available to be sorted. There were an equal number of envelopes available to be placed in any one slot, which was a total of thirty envelopes per slot. The envelopes used were standard No. 10 size ( $4 \ 1/8" \times 9 \ 1/2"$ , 10.5 cm  $\times 24.1$  cm). Each envelope was sealed and had one standard sheet of 8 1/2"  $\times 11"$  (21.6 cm  $\times 28$  cm) paper folded inside to simulate regular first class mail. At the time of the experiment, first class mail consisted of letters which weighed less than 30 grams.

The subject had to determine from the address printed on the envelope how to sort each envelope. The addresses on each envelope had fictional names and street addresses, which were randomly generated, but the cities and towns indicated were real. In addition, the first letter of the postal code (first three in the case of Windsor addresses) were correct.

Each subject sorted letters for two hours. A total of seven sessions were conducted, the first being a training session. The station used for the training session was randomly selected. Verbal and written instruction was given to each subject before the training session. The written instruction given to each subject is shown in Appendix C. Each subject was required to be able to sort approximately 12-13 envelopes per minute by the end of the training sessions. This would correspond to a minimum of 1500 envelopes being sorted during the full two hour period. The two hour time period was selected since it is usually the maximum amount of time that would be worked, before a regular rest break would occur.

The following six sessions were then randomly selected from the six different stations. The stations, with the notation used to represent them in this paper, are: straight layout (Layout 1) with mail pick-up in the centre (Sc); straight layout (Layout 1) with mail pick-up in the centre (Sc); straight layout (Layout 1) with mail pick-up on the opposite side (So); "V-shaped" layout (Layout 2) with mail pick-up from the centre (Vc); "V-shaped" layout (Layout 2) with mail pick-up from the centre (Vc); "V-shaped" layout (Layout 2) with mail pick-up from the opposite side (Vo); inclined layout (Layout 3) with mail pick-up from the centre (lc); inclined layout (Layout 3) with mail pick-up from the opposite side (lo). During each trial, a light source was immediately above the sorting station. The experiments were conducted at a room temperature of approximately 20° C. The order in which the subjects performed the experiments are shown in Appendix D.

#### 3.3 EMG Measurements

In order to measure muscle fatigue in the worker, bipolar surface electrodes were attached to three muscles. The muscles were the anterior deltoid, the upper trapezius and infraspinatus muscles. Subjects were asked to sort mail with only one hand, and the electrodes were attached to this side of the body. The electrodes used were 'Gold Disk Electrodes' (heavy gold plate over pure solid silver), type E5GH made by the Grass Instrument Company of Quincy, Massachusetts. These electrodes were approximately 10 mm in diameter. The separation of the electrodes was approximately 2.5 cm (1"), and they were located on the muscles according to Dalagi et al. (1975) and Goodgold (1974). The electrodes were held in place with medical tape, due to the fact that collars were not available for the model used.

Diagrams for electrode placement are provided in Appendix E.

The EMG signals from the electrodes were amplified through a Grass Instruments High Performance AC Preamplifier (Model P511). The settings for the Preamplifier can be found in Appendix F. The amplified signals were then read by a 486-based Personal Computer using the available data collection software, Viewdac, Release 2.10, by Keithley Data Acquisition Division, of Taunton, Massachusetts.

Subjects that participated in the study completed one sorting session per day. In order to minimise problems associated with effects of training, the sessions were completed over a fixed time frame. Male subjects completed the seven sessions (one training plus six measured sessions) in seven to nine days. Female subjects completed the study in a period of two to three weeks (fourteen to twenty days).

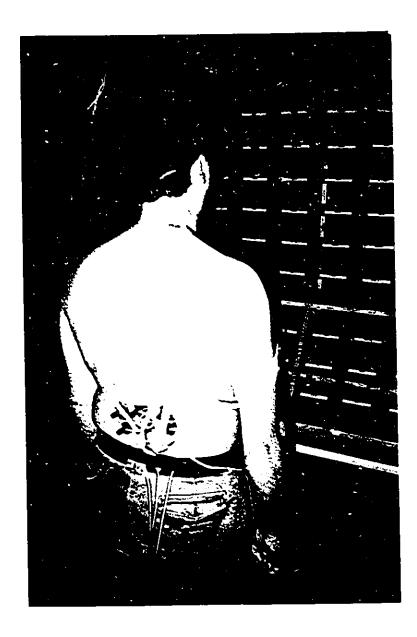



Figure 4 Photograph of Subject Showing Electrode Placement

Since the study was conducted over a period of time, this meant that the surface electrodes had to be placed on the subject every time. In situations such as this, the results obtained from surface electrodes are considered reliable. Giroux and Lamontagne (1990) found that results of surface electrodes are considered to be statistically similar, both in same day and day-to-day use. The results should be consistent over the temperature range (Holewijn and Heus, 1992) and there should be little variability across subjects for the same muscles (Preece et al., 1994).

#### 3.4 Data Collection

Viewdac uses an Analog-to-Digital conversion routine to sample the information transmitted from the amplifier. With three channels being received, one channel for each muscle, the software was able to make 45 readings per second per channel (2700 per minute). Data were collected at fixed intervals during the two hour session. The session was broken into twelve equal periods of ten minutes, where the sampling was done during the last three of the ten minutes. In effect, this means readings were taken during the following 36 minutes of the session: 8, 9, 10, 18, 19, 20, 28, 29, 30, 38, 39, 40, 48, 49, 50, 58, 59, 60, 68, 69, 70, 78, 79, 80, 88,

89, 90, 98, 99, 100, 108, 109, 110, 118, 119 and 120. The voltage received was converted to a value between -5 and 5 volts. The Viewdac procedures, that were used to collect this information, are shown in Appendix G.

The voltage values can be analysed to determine the RMS and MPF values. Information on calculating these is provided in Appendix H.

At times during the experiment, the electrodes would come loose. Readings obtained when this happened were ignored. A total of 7776 minutes (12 subjects x 6 sessions x 3 muscles x 36 minutes per session) worth of data was collected. A total of 91 minutes of data was deemed inadequate and was not included in calculations. This represents a loss of 1.2% of the total data collected.

Two other sets of data were collected for each experiment. The number of envelopes that were sorted by each individual for each station was recorded. Also, at the end of the experiment, each subject was required to provide subjective responses to a questionnaire to rate the perceived exertion in nine different body parts. This questionnaire used Borg's RPE (Rating of Perceived Exertion) scale as a discomfort scale (Gamberale, 1972; Borg, 1990). The body parts that were considered were the neck, shoulders, upper back, elbows, lower back, wrists/hands, hips/thighs, knees and ankles/feet. These divisions of the body were taken from definitions in the Nordic questionnaire for the analysis of musculoskeletal symptoms (Kuorinka et al., 1987). It is reproduced in Appendix I.

#### 3.5 Subjects

A total of twelve subjects, eight males and four females, completed the experiment. In this paper, the eight male subjects were referred to numerically, as subjects 1 to 8. The four female subjects were referred to with letters, as subjects A to D.

The average age of the males that participated was 26.5 years, with a range of 21 to 36, and a standard deviation of 5.5 years. Of the females, the average age was 21.3 with a standard deviation of 2.6 years. The range of the ages of the females was 19 to 25. Overall, the average age of all twelve subjects was 24.8 years. The standard deviation was 5.3 years. The difference of the ages and the difference in variance of these ages were not statistically significant at a 5% level.

The average height of the males was 177.9 cm, with a standard deviation of 6.7 cm and for the females it was 176.8 cm, with a standard deviation of 7.6 cm. The range of heights of the males was 168 cm to 186 cm. The range of heights of the females was 169 cm to 187 cm. Considering all twelve subjects together, the average height was 177.5 cm. The standard deviation was 6.7 cm.

The average shoulder height was 147.0 cm for the males, with a standard deviation of 6.0 cm. The average shoulder height of the females was 146.0 cm, with a standard deviation of 6.7 cm. Overall, the average shoulder height was 146.7 cm and the standard deviation was 6.0 cm. The ranges of the shoulder height by gender were 136 to 154 cm (males) and 139 to 155 cm (females).

An analysis of the differences of the heights and shoulder heights between genders, and of the differences of the variance of these measures, was not found to be statistically significant at a 5% level.

Subject-by-subject information is given in Appendix J.

#### 3.6 Experimental Design

In this study, the experimental unit, or block, was the individual performing the experiment. In order to control the variability of the individuals concerned, each subject performed the experiment for each combination of factors. This is a "within-subject" or repeated measures experimental design. Repeated measures designs are characterised by the fact that a number of measurements or results are obtained from an individual performing an experiment. (Norman and Streiner, 1994)

For any response variable y, the model for the response variable was:

 $\mathbf{y}_{ijk} = \boldsymbol{\mu} + \mathbf{g}_i + \mathbf{b}_j + \mathbf{p}_k + \boldsymbol{\epsilon}_{ijk},$ 

where  $y_{ijk}$  was the (ijk)th observation,  $\mu$  was the overall mean,  $g_i$  was the parameter based on the (i)th gender,  $b_j$  was the parameter based on the (j)th board,  $p_k$  was the parameter based on the (k)th pickup point and  $e_{ijk}$  was the error component. Of the subscripts, i was the gender and was one of {m,f}; j was the board and was one of {s,v,i}; and k was the pickup point and was one of {c,o}. The various responses are summarised in Table 1.

| Gender | Pickup   | Board Layout     |                  |          |  |
|--------|----------|------------------|------------------|----------|--|
|        | Point    | Straight         | V-Shaped         | Inclined |  |
| Male   | Centre   | Y <sub>nee</sub> |                  |          |  |
| Male   | Opposite |                  | <br>≓eve         | <br>45.0 |  |
| Female | Centre   | ¥frz             | ⊻ <sub>fvs</sub> | ¥ fing   |  |
| Female | Opposite | ¥                | Y <sub>fvs</sub> | ¥s.c     |  |

Table 1 Summary for Results of any Response Variable

Statistical analysis of the results obtained was performed using Statgraphics Plus 7.0, by Manugistics, Inc. of Rockville, Maryland.

The experiment may be described as a "Factorial Design", since the controlled variables have different levels. Multifactor analysis of variance (ANOVA) tests were performed on the "fatigue scores", count of envelopes, subjective ratings and the RMS values. If the analysis of variance was found to be significant at 5 percent, a multiple range analysis was performed using Duncan's Multiple Range Test to determine if there were significant differences of means among the significant factor. Duncan's test was chosen because of its conservative nature in detecting differences of means only when they really exist (Montgomery, 1991). In situations where there was a significant two-way interaction between factors, a graph is included.

The ANOVA table was calculated with three factors. One factor had three levels (board) and two had two levels (pickup point and gender). In the analysis of the ANOVA table, the response variable (one of fatigue score, envelope count, subjective ratings or RMS values) was the dependent variable. The board, pickup point and gender were the independent variables. In advance of the testing, no assumption was made that males and females would perform the experiment in a similar manner. As such, gender was used as a factor in these experiments.

In order to simplify the analysis of the data, if a three-way analysis found that gender was a significant factor, testing was then done within each gender. This had the effect of making the experiment a two-factor test. If gender was significant, then males and females were treated separately. When gender was not significant, consideration could be given to the two remaining factors. This allowed a focus, in the analysis, on the design aspects of the station.

## 3.7 Calculation of "Fatigue Score"

Mathematical analysis, to determine if various experimental factors were likely to induce signs of muscle fatigue, were done using the "fatigue score" for each experimental trial.

In order to determine if statistical signs of fatigue existed, the RMS (Root-Mean-Square) and MPF (Mean Power Frequency) values were calculated from the EMG signal. If, over time, there was found to be a positive slope for the RMS values coupled with a negative slope of the MPF values, then statistical signs of fatigue were considered to exist. In this experiment, trials that yielded such indications were given a "fatigue score" of one, indicating that there were signs of fatigue. Trials that did not have results indicating fatigue were given a score of zero.

## **4 TABULATION OF RESULTS**

### 4.1 Statistical Indicators of Muscle Fatigue

For each of the 36 different minutes in each trial that the EMG signal was recorded, the RMS (Root-Mean-Square) and MPF (Mean Power Frequency) values have been calculated. The results of the calculations for the RMS and MPF values are shown in Appendix K.

Regression analysis has been done for the RMS and MPF values with RMS and MPF as variables dependent on time (in minutes). Testing was done for each of the three muscles for each station. Interval testing of the slope was performed at 95 and 99 percent confidence levels. The confidence intervals of the RMS and MPF slopes, for each trial and muscle studied, are printed in Appendix L. The actual slopes are printed in Appendix M. The methodology for linear regression can be found in any standard engineering statistics text (eg. Miller et al., 1990; Scheaffer and McClave, 1990). A fatigue score of one was assigned to a station if any one of the three muscles that were being studied showed statistical indications of fatigue.

Statistical signs of fatigue may have occurred at a point before the full two

hour period was over. Additionally, if an individual was working and feeling "fatigued", they may have changed their work pattern at various points in time. If this occurred, there may not have been statistical signs of muscle fatigue after two hours, but there may have been at an earlier point in time.

In order to determine if signs of muscle fatigue existed at any point during the experiment, analysis was performed on the RMS and MPF values from the beginning of the experiment to all recorded time points from 30 to 120 minutes. In doing so, it was possible to determine at what point statistical signs of fatigue first occurred.

**Table 2** Time to First Occurrence of Statistical Muscle Fatigue, based on Regression Analysis of RMS and MPF Values, showing Station worked on, muscle that first showed statistical signs of fatigue (D=Deltoid, T=Trapezius, I=Infraspinatus), time, in minutes, to the first statistical occurrence of muscle fatigue indication and best confidence level and interval for the slope.

| Station      |      |    |             | F          | RMS Slope * 10 <sup>3</sup> | MPF Slope                  |
|--------------|------|----|-------------|------------|-----------------------------|----------------------------|
| <u>&amp;</u> | Musc | le | <u>Time</u> | <u>Con</u> | <u>nfidence Interval</u>    | <u>Confidence Interval</u> |
| 1            | So   | D  | 108         | 99         | ( 0.0035, 0.0052)           | 95 ( -0.0126,-0.0014)      |
| 1            | Vc   | I  | 118         | 95         | ( 0.0007, 0.0080)           | 95 ( -0.0738,-0.0085)      |
| 1            | Io   | D  | 50          | 99         | ( 0.1874, 0.2521)           | 95 ( -0.0405,-0.0006)      |
| 2            | Vo   | I  | 30          | 99         | ( 0.1119, 0.1431)           | 95 ( -0.0591,-0.0011)      |
| 3            | Vo   | I  | 39          | 99         | ( 0.0126, 0.0715)           | 95 ( -0.7160, -0.1012)     |
| 3            | Vc   | D  | 90          | 99         | ( 0.0894, 0.1244)           | 95 ( -0.2993,-0.0067)      |
| 3            | Ic   | D  | 40          | 99         | ( 0.0614, 0.1709)           | 95 ( -1.7595,-0.0796)      |

| 4<br>4                     | So<br>Io                         | I<br>D           | 100<br>89                        | 99<br>99                         |             | 0.0005,<br>0.1201,                       |                                          | 95<br>95             | ( -0.0657,-0.0014)<br>( -0.0393,-0.0034)                                                                                                         |
|----------------------------|----------------------------------|------------------|----------------------------------|----------------------------------|-------------|------------------------------------------|------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 5<br>5<br>5                | So<br>Vo<br>Vc                   | T<br>I<br>I      | 30<br>60<br>39                   | 99<br>99<br>99                   | (           | 0.0384,<br>0.0524,<br>0.0799,            | 0.1008)                                  | 95                   | ( -1.0223,-0.1663)<br>( -0.5786,-0.0485)<br>( -0.9966,-0.0583)                                                                                   |
| 6<br>6<br>6                | So<br>Vo<br>Vc<br>Ic             | D<br>D<br>D<br>I | 49<br>69<br>38<br>78             | 99<br>99<br>95<br>99             | (<br>(      | 0.0229,<br>0.0479,<br>0.0053,<br>0.0012, | 0.1393)<br>0.1519)                       | 95                   | <pre>( -3.3648,-0.0308)<br/>( -1.3571,-0.0253)<br/>( -2.8944,-0.0755)<br/>( -0.1252,-0.0039)</pre>                                               |
| 7<br>7<br>7<br>7<br>7<br>7 | So<br>Sc<br>Vo<br>Vc<br>Io<br>Ic | I<br>I<br>D<br>D | 30<br>40<br>78<br>30<br>68<br>49 | 99<br>95<br>95<br>99<br>99<br>95 | (<br>(<br>( | 0.1511,                                  | 0.0735)                                  | 99<br>95<br>95<br>95 | <pre>( -3.8828,-0.6077)<br/>( -3.6965,-0.0858)<br/>( -2.3601,-0.1334)<br/>( -5.7651,-0.4987)<br/>( -0.2072,-0.0026)<br/>( -5.0235,-0.0474)</pre> |
| 8<br>8<br>8                | So<br>Sc<br>Vc<br>Ic             | ם<br>ם<br>ם      | 48<br>58<br>60<br>38             | 95<br>99<br>95<br>99             | (<br>(      | 0.0497,<br>0.0118,                       | 0.2315)<br>0.3508)<br>0.2150)<br>0.3237) | 99<br>95<br>99<br>95 | (-16.0912,-2.9150)<br>( -8.0274,-1.0437)<br>( -9.3047,-0.4687)<br>( -8.8319,-1.0025)                                                             |
| A<br>A                     | So<br>Ic                         | I<br>D           | 88<br>30                         | 95<br>99                         |             | -                                        | 0.0066)<br>0.3112)                       | 99<br>95             | ( -0.1642,-0.0159)<br>( -0.1267,-0.0102)                                                                                                         |
| B<br>B<br>B<br>B           |                                  | I                | 68                               | 95<br>99                         | (           | 0.0023, 0.0117,                          |                                          | 99<br>95             | <pre>( -8.4066, -1.1889) ( -6.9030, -3.2781) ( -1.5431, -0.1815) (-30.7353, -4.2552)</pre>                                                       |
| C<br>D                     | Ic<br>Vo                         |                  |                                  |                                  |             |                                          |                                          |                      | ( -0.0458,-0.0026)<br>( -0.5243,-0.0145)                                                                                                         |

Of the 72 total trials, 34 trials showed results consistent with statistical signs

of muscle fatigue (47%). Of the 48 total trials performed by males, indications of muscle fatigue occurred in 26 instances (54%). There were eight instances of statistical indicators of muscle fatigue in 24 total trials performed by females (33%).

| Pickup   | Board    |          |          |       |  |  |
|----------|----------|----------|----------|-------|--|--|
| Point    | Straight | V-Shaped | Inclined | Total |  |  |
| Opposite | 8        | 6        | 4        | 18    |  |  |
| Centre   | 3        | 7        | 6        | 16    |  |  |
| Total    | 11       | 13       | 10       | 34    |  |  |

 Table 3 Occurrence Rates of Indications of Muscle Fatigue

There were additional cases where more than one muscle showed statistical signs of muscle fatigue during a trial. There were seven additional occurrences by the deltoid muscle for a total of 26 of 72 trials. There were two additional occurrences by the trapezius muscle for a total of three of 72 trials. Finally, there were seven additional occurrences by the infraspinatus muscle for a total of 21 of 72 occurrences. These additional occurrences were not considered further, since a statistical sign of fatigue was considered to occur if any muscle showed signs. The additional occurrences are tabled below.

| Subject | Station | Muscle(s) |
|---------|---------|-----------|
| 2       | Vo      | D         |
| 5       | So      | D, I      |
|         | Vc      | D         |
| 6       | So      | I         |
|         | Vo      | I         |
| 7       | So      | D         |
|         | Sc      | D         |
|         | Vo      | D         |
|         | Vc      | Т         |
|         | Ic      | T, I      |
| 8       | Ic      | I         |
| А       | Ic      | I         |
| в       | So      | D         |
|         | Io      | I         |

Table 4Additional Occurrences of Fatigue by Muscle(D=Deltoid, T=Trapezius, I=Infraspinatus)

In order to analyse if any particular factor was more likely to induce signs of muscle fatigue, the "fatigue score" was analysed. No specific factor was found to have any statistically significant effect on the occurrence of muscle fatigue indicators at a 5% level. Graphs showing 95% confidence intervals of the fatigue score by gender, board and pickup point, are shown in Figures 5, 6 and 7. The ANOVA table relevant to this analysis can be found in Appendix N.

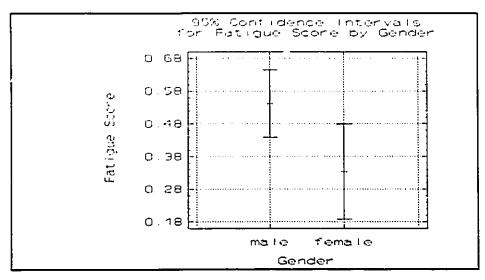



Figure 5 Intervals of Means of Fatigue Score by Gender

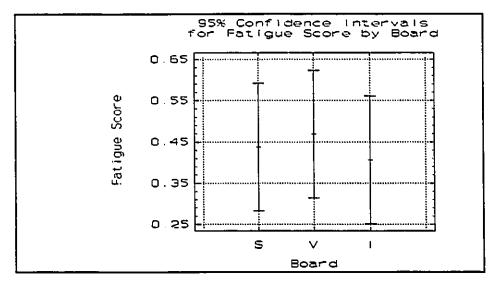



Figure 6 Intervals of Means of Fatigue Score by Board

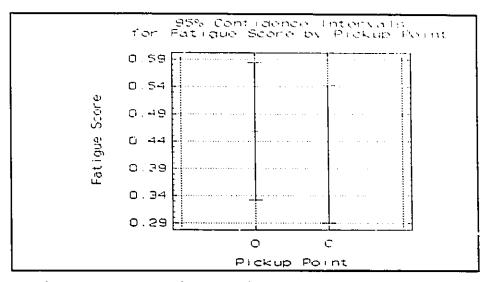



Figure 7 Intervals of Means of Fatigue Score by Pickup Point

For reference, Appendix O contains printouts of the EMG signal and RMS/MPF plots for a muscle that was found to have signs of fatigue during the experiment. The plots are for the deltoid muscle for Subject 7 (Station: So). Appendix P contains printouts of the EMG signal and RMS/MPF plots for a muscle that was not found to have fatigue occur during the experiment. The plots are for trapezius muscle for Subject 7 (Station: So).

For each muscle, the EMG signal has been printed for the first collection of data during the experiment (minutes 8, 9 and 10), the mid-point of the experiment (minutes 58, 59 and 60) and the end of the experiment (minutes 118, 119 and 120). The RMS and MPF plots appear on the same graph, for comparison purposes.

# 4.2 Envelope Count and Pickup

The most direct way to measure the performance at the different stations was to count the number of envelopes that were sorted at each station. The results are presented in Table 5.

|         |      | Station |      |      |      |      |
|---------|------|---------|------|------|------|------|
| Subject | So   | Sc      | Vo   | Vc   | Io   | Ic   |
| 1       | 1908 | 2160    | 2313 | 2071 | 2265 | 2065 |
| 2       | 2150 | 2107    | 2115 | 2172 | 1944 | 1989 |
| 3       | 2803 | 2499    | 2697 | 2633 | 2241 | 2828 |
| 4       | 1797 | 2385    | 2227 | 2153 | 1558 | 2354 |
| 5       | 1708 | 2100    | 1899 | 1880 | 1587 | 2106 |
| 6       | 1856 | 1668    | 1806 | 1751 | 1895 | 2026 |
| 7       | 2647 | 2738    | 2809 | 2242 | 2809 | 2946 |
| 8       | 1654 | 1748    | 2131 | 1964 | 2001 | 1530 |
| A       | 2377 | 2575    | 2500 | 2491 | 2425 | 2512 |
| в       | 2515 | 2390    | 2185 | 2421 | 2483 | 1911 |
| с       | 1872 | 2063    | 2052 | 1991 | 2192 | 1649 |
| D       | 1924 | 1608    | 1770 | 1718 | 1873 | 1689 |

| Table | 5 | Count | oſ | Envel | lopes |
|-------|---|-------|----|-------|-------|
|-------|---|-------|----|-------|-------|

Analysis was carried out on the envelope count to ascertain if subjects sorted different amounts of mail at any stations. No significant results were obtained at a 5% level.

There appeared to be some significant differences in the ranges of the number of envelopes each subject sorted. The intervals of the variance at a 95% confidence level were calculated for each subject. The only difference of variability between subjects was found between subjects 4 and A. This was likely due to the fact that subject 4 required a longer learning curve to come up to "normal" sorting speed, while subject A was at a "normal" level much faster. There were no other significant differences recorded among the subjects. The values are presented below.

 Table 6
 Variance of Envelope Count

| Subject | Range                    |
|---------|--------------------------|
| 1       | (92,363)                 |
| 2<br>3  | ( 57, 225)<br>(137, 539) |
| 4       | (207, 812)               |
| 5       | (130, 509)               |
| 6       | (77, 303)                |
| 7       | (152, 599)               |
| 8       | (144, 565)               |
| A       | ( 43, 171)               |
| В       | (144, 565)               |
| С       | (118, 462)               |
| D       | ( 74, 289)               |

While performing the task, subjects were required to pickup mail from a designated position. The number of times that this was done during the two-hour

period may have effected the rate at which the work was performed. However, during the trials, it was not possible to make observations during the experiment without being overly intrusive. In order to attempt some measure of the number of envelopes that each subject grabbed from the pickup point, five trials were conducted after the final sorting session, for each of the two pickup points. Analysis of the ANOVA table did not indicate that subjects picked up significantly different amounts of mail due to gender or pickup point.

The analysis for this section is found in Appendix Q.

#### 4.3 Subjective Ratings

••

Subjective ratings of perceived exertion were provided by each subject after each experiment. The rating was based on Borg's RPE scale and it ranges from six (for very, very light exertion) to 20 (for very, very hard exertion). Ratings were provided for nine parts of the body, namely: neck, shoulders, upper back, elbows, lower back, wrists/hands, hips/thighs, knees and ankles/feet. The results are printed in Appendix R. For each of the nine body parts, the ratings were tested to determine if any of the three factors had a significant effect on the ratings provided. It was found that for six of the nine body parts rated, females provided significantly lower scores than males. This occurred for the upper back, elbows, lower back, hips/thighs, knees and ankle/feet. There was no significant difference for the neck, shoulders and wrists/hands. No other factor was found to have a significant effect. Graphs showing the differences of means due to gender, for the six body parts with such differences, are displayed in Figures 8 to 13.

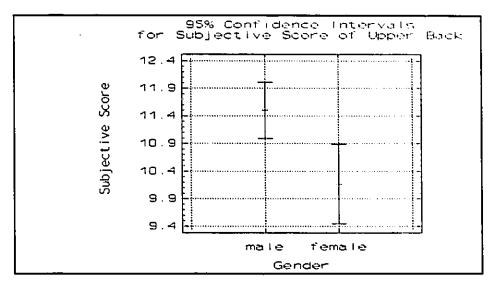



Figure 8 Intervals of Means of Subjective Scores: Upper Back by Gender

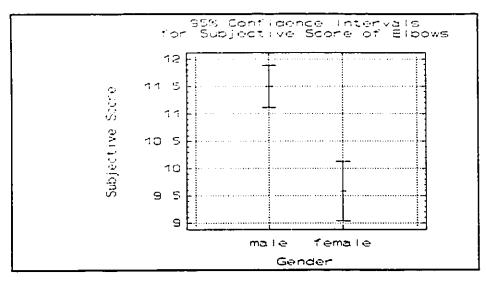



Figure 9 Intervals of Means of Subjective Scores: Elbows by Gender

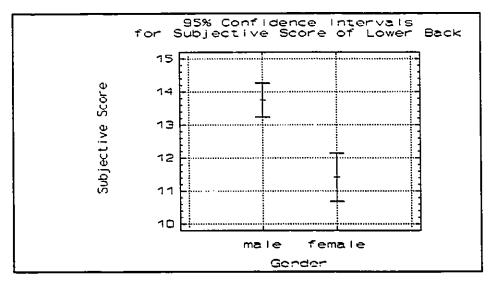



Figure 10 Intervals of Means of Subjective Scores: Lower Back by Gender

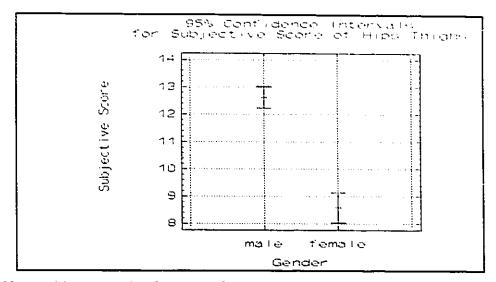



Figure 11 Intervals of Means of Subjective Scores: Hips/Thigh by Gender

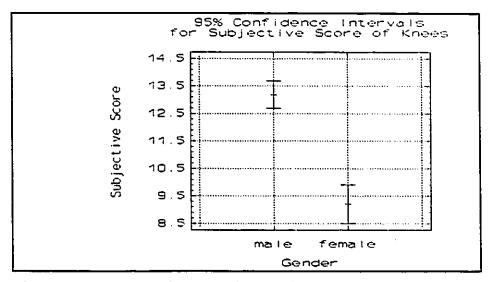



Figure 12 Intervals of Means of Subjective Scores: Knees by Gender

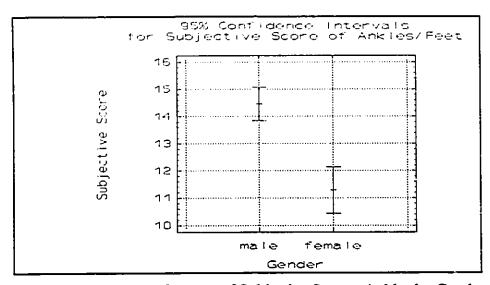



Figure 13 Intervals of Means of Subjective Scores: Ankles by Gender

Since the population sizes were unequal, a comparison was done on the variance for the six body parts that showed significant differences in the mean score, due to the gender. Four body parts, namely the upper back, hips/thighs, knees and ankles/feet were not found to have statistically different variances at a 5% level. The variances for the lower back and elbows, however, were found to have statistical differences. In both of these cases, the variance for the responses provided by the females were greater than those provided by the males.

In order to determine if the ratings provided were due to the station design or inherent to the task, ANOVA tables were calculated with gender and body part as factors. It was found that gender and body part were significant factors in the subjective score provided. Consequently, the subjective scores were tested within each gender, with the body part as the only factor, to determine if there were differences in how each part of the body was scored. Differences were found in how each gender provided the subjective ratings.

The male scores provided the clearest divisions. Specifically, males scored the neck lowest. They next scored the wrist/hands, elbows, shoulders and upper back as a homogenous group. It should be noted that these five body parts are all part of the upper body. The lower body parts were scored at the upper end of the scale. The hips/thighs score was significantly lower than that of the lower back and ankles/feet. Also, the knees were significantly lower than the ankles/feet. In general, the ratings ascribed to the 'upper' half of the body (neck, shoulders, upper back, elbows, wrists/hands) were found to be significantly lower than the ratings given to the 'lower' parts of the body (lower back, hips/thighs, knees, ankles/feet). These results are displayed in Figure 14.

۶,

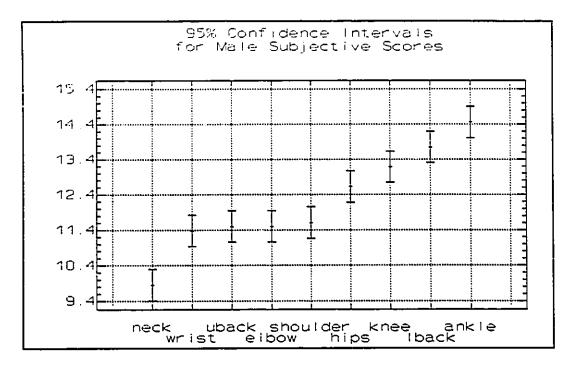



Figure 14 Intervals of Means of Male Subjective Scores by Body Part

The females did not provide as many clear cut divisions in their scoring. Significant differences were found as follows: hips/thighs lower than neck, shoulders, lower back and ankles/feet; knees lower than shoulders, lower back and ankles/feet; and, elbows lower than shoulders. The results are displayed in Figure 15.

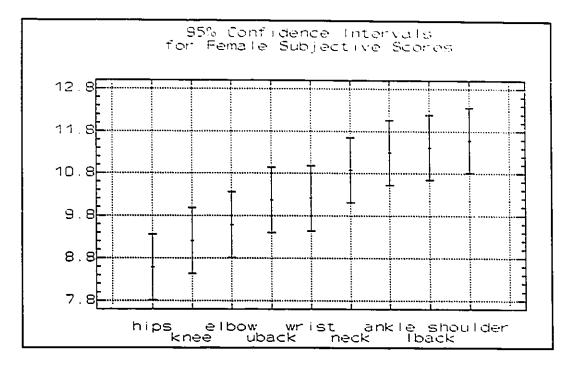



Figure 15 Intervals of Means of Female Subjective Scores by Body Part

The results for analysis of subjective ratings, within gender, by body part is printed in Appendix S.

In order to see if the subjective ratings provided had a relationship with the occurrence of statistical signs of fatigue or the number of envelopes counted, Spearman's Correlation Coefficients were calculated for the subjective rating, fatigue score and envelope count using Statgraphics. The testing was done within gender and for each of the nine body parts. The results are printed in Appendix T.

It was found that females had a negative correlation between the number of

envelopes sorted and the scores provided for the shoulders, lower back and ankles/feet. A positive correlation was found between fatigue score and the subjective ratings for the wrist/hand and hips/thighs. Males were found to have a positive correlation between the fatigue score and three body parts. They were the neck, shoulders and upper back. Males were not found to have any correlation between envelope count and subjective ratings.

#### 4.4 Analysis of RMS Values

When fatigue in a muscle occurs, the amplitude of the EMG signal, from surface electrodes, increases (Winter, 1990) and the frequency spectrum shifts to lower frequencies (Basmajian and DeLuca, 1985). In looking specifically at the meaning of the RMS value, it has been established that the amplitude (ie. RMS) of the EMG signal can be used as a proportional measure of the force required by the muscle to perform a task (Wells and Patla, 1985).

In attempting to determine which, if any, of the particular designs used were most suitable for a human operator, the actual RMS values were studied. The purpose for the study of the RMS values was to determine if certain stations required a greater force from the muscles involved. If so, conclusions could be made that the greater force requirement could, in time, more readily lead to muscle fatigue.

| Gender | Muscle        | Board          | Pickup Point   |
|--------|---------------|----------------|----------------|
| Female | Deltoid       | I < V < S      | c < 0          |
| Male   | Deltoid       | (VS) < I       | c < 0          |
| Female | Trapezius     | S < (VI)       | No Differences |
| Male   | Trapezius     | No Differences | No Differences |
| Both   | Infraspinatus | I < S < V      | 0 < C          |

 Table 7 Analysis of RMS Values (based on required force)

Analysis indicates that there were gender differences for the deltoid and trapezius muscles. The infraspinatus muscle showed no such differences. Data for the deltoid and trapezius muscles was further analysed by gender to determine significant differences.

Analysis of the RMS values of the deltoid muscles for the females indicated that the RMS values were significantly different for each board. The boards, from highest required force to lowest force were: straight board, V-shaped and inclined. The pickup points were also different, with a greater force required from the deltoid muscle when dealing with pickups from the opposite side. These are illustrated below in Figures 16 and 17.

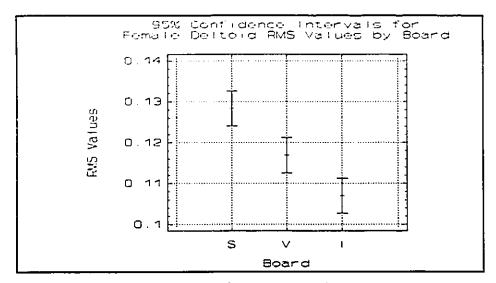



Figure 16 Intervals of Means of Female Deltoid RMS Values by Board

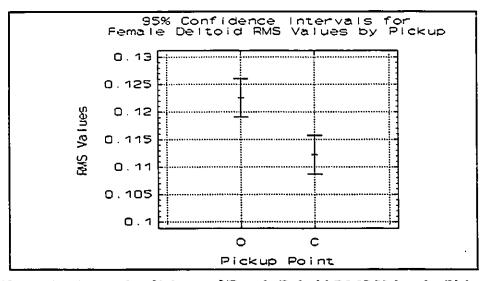



Figure 17 Intervals of Means of Female Deltoid RMS Values by Pickup

The analysis of the RMS values of the deltoid muscles for the males indicated that a greater amount of force was required when using the inclined board and when picking up mail from the opposite side pickup point. These results are illustrated in Figures 18 and 19.

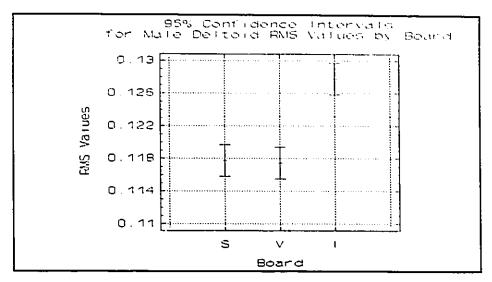



Figure 18 Intervals of Means of Male Deltoid RMS Values by Board

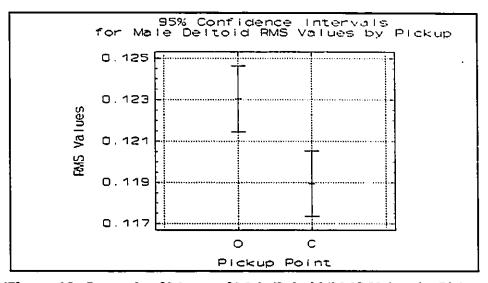



Figure 19 Intervals of Means of Male Deltoid RMS Values by Pickup

Analysis by gender, of the RMS values for the trapezius muscle, showed no significant differences among the males. Among females, the only significant difference that was found was due to the board used. The trapezius muscle required less force when using the straight board than for either of the other two boards. The

results are summarised in Figure 20.

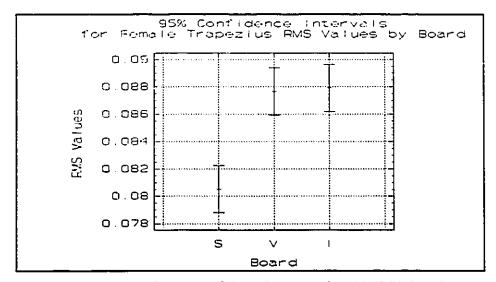



Figure 20 Intervals of Means of Female Trapezius RMS Values by Board

Analysis of the infraspinatus muscle showed no differences due to gender, but did show differences based on the board used and the pickup point. The board with the lowest force required was the inclined board. The straight board was next and the V-shaped board required the greatest force. When considering the pickup point, the stations with opposite pickups produced a lower RMS value. Graphical representation of these points are illustrated in Figures 21 and 22.

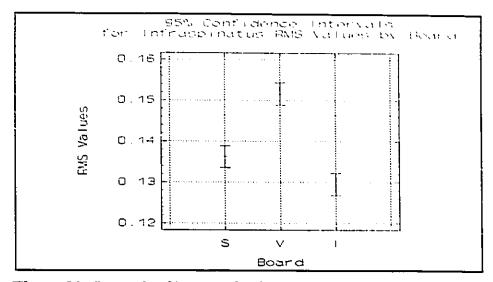



Figure 21 Intervals of Means of Infraspinatus RMS Values by Board

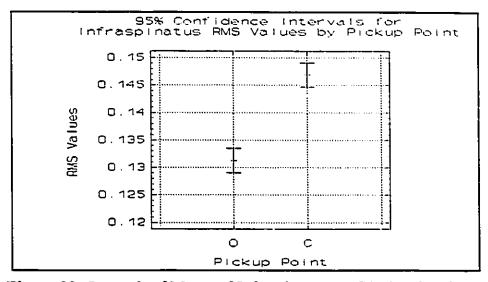



Figure 22 Intervals of Means of Infraspinatus RMS Values by Pickup

If the ANOVA table displayed any significant effects due to interaction of the board and pickup, a check was done of the confidence intervals of the mean, for the interaction. Statgraphics calculates the interval at a 95% confidence level using the Least Significant Difference (LSD) method. A discussion of the LSD methodology

can be found in Montgomery (1991). The results are tabulated in Table 8.

| Gender | Muscle                       | Force Required  |  |
|--------|------------------------------|-----------------|--|
| Female | Deltoid                      | All Others < So |  |
| Male   | Deltoid                      | All Others < Io |  |
| Female | Trapezius                    | none            |  |
| Male   | Trapezius                    | none            |  |
| Both   | Infraspinatus All Others < 1 |                 |  |

Table 8 Differences in Stations Based on RMS Interactions

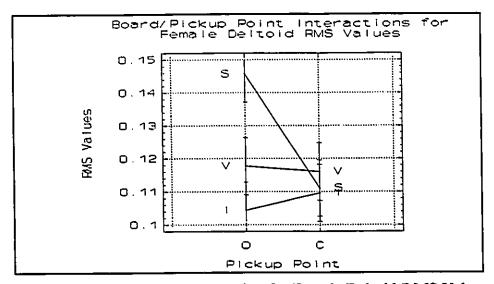



Figure 23 Board/Pickup Interaction for Female Deltoid RMS Values

- 22

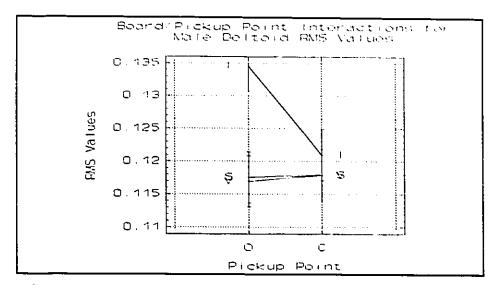



Figure 24 Board/Pickup Interaction for Male Deltoid RMS Values

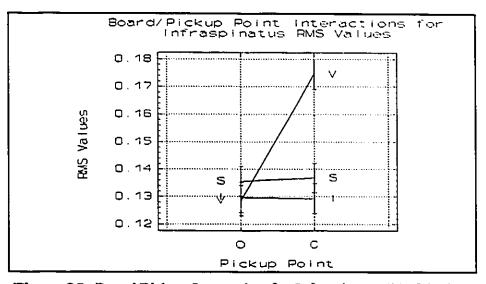



Figure 25 Board/Pickup Interaction for Infraspinatus RMS Values

Figures 23, 24 and 25 show the significant interactions between board and pickup point. Using these results, it was possible to identify some stations that could be avoided, due the increased force required. Specifically, both genders would avoid using station Vc, due to the requirements of the infraspinatus muscle. Also,

for consideration of the effects on the deltoid muscle, females be kept away from station So and males from station lo.

The analysis for this section can be found in Appendix U.

#### 4.5 Analysis of MPF Values

The raw MPF values were not analysed in a manner similar to the RMS values. However, it should be noted that they were all roughly in the 200 to 500 range. This corresponded to measurements by Genaidy et al. (1991), where frequency measurements were made of muscles during a static task, with varying loads. With a load of zero, the mean power frequencies ranged from approximately 280 to 350 over the twenty second duration of the experiment and had a standard deviation of up to 330. When a load was introduced, the frequencies fell below 100. Thus, with the MPF values calculated during the mail sorting task, it could be argued that the task was a "light" task, as it was roughly analogous to the static task of holding one's arm motionless for twenty seconds with no load.

Attempts to determine a linear regression model for the occurrence of

statistical signs of fatigue yielded one significant model. It was for a simple regression model of the form y = a + bx, with the fatigue score as the dependent variable (y) and the MPF slope of the deltoid muscle as the independent variable (x). The calculated model provided the equation y = 0.43 - 0.075x.

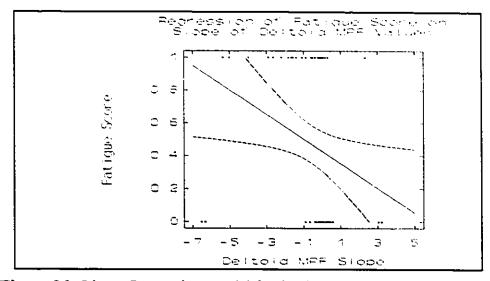



Figure 26 Linear Regression Model for Statistical Indications of Fatigue

The analysis for this section can be found in Appendix V.

### 4.6 Reliability

In trying to determine when or how often statistical signs of fatigue will occur, an analogy can be drawn to reliability testing. If the occurrence of signs of fatigue is considered to be a "failure", it would be possible to predict the mean time to its statistical occurrence and the occurrence rate over a eight hour working day.

The exponential distribution is frequently employed in reliability testing. The equations used are presented in Appendix W. The results for the "mean time to failure" for each station are listed in Table 9, along with 95% confidence intervals for the mean.

| Station | Mean  | Interval       |
|---------|-------|----------------|
| So      | 124.0 | (68.8,287.2)   |
| Sc      | 428.7 | (178.0,2079.2) |
| Vo      | 154.1 | (82.6,383.4)   |
| Vc      | 183.8 | (94.5,500.9)   |
| Io      | 299.3 | (136.5,1098.2) |
| Ic      | 179.3 | (92.2,488.6)   |

Table 9 Mean Time to Signs of Statistical Fatigue (all times in minutes)

Over an eight hour period, the reliability of station Sc would be the best. It would have a 33% reliability. This means that 67% of all individuals working at this station could be expected to develop signs of muscle fatigue. This did not take into account rest cycles, but was still a very high rate.

#### **5 DISCUSSION**

#### 5.1 Fatigue Indicators

2

The primary point of this study was to analyse the sorting task and station design as they relate to the possible onset of CTDs. Analysis of the RMS and MPF values, as indicators of localised muscle fatigue, indicated a high incidence rate. However, there was no evidence that any of the differences in station designs used in this study contributed directly to the occurrence of fatigue.

The analysis of the envelope count indicated that the number of envelopes sorted during the experiment was not affected by gender, board used or the mail pickup point. These three factors did not appear to play a role in the occurrence of signs of muscle fatigue. Also, the occurrence of statistical signs of muscle fatigue did not appear to be dependant on any of these factors. Furthermore, analysis of how many envelopes the workers picked up from the pickup points did not show any differences in how the mail was handled. Together, these factors would tend to indicate that the occurrence of muscle fatigue indicators was not due to the rate at which the work was performed, how many times workers reached for additional mail or to any differences in the designs used in the experiment. Since this was the case, the occurrence of fatigue may be a result of the actual mail sorting task or it may be due to common properties of the station designs that were used. It was possible that the different stations used were not different enough in size and shape to evoke statistically significant result.

A look at the low reliability rates shows that if workers are repeatedly exposed to working at stations of this design, they will be exposed to signs of fatigue on a regular basis. Over time, they will likely develop symptoms of CTDs. It is very likely that all workers could be affected and that this could lead to permanent injuries to workers. In addition, the employer would suffer, due to high medical costs and reduced productivity that would ensue.

#### 5.2 Subjective Ratings

The score of the subjective ratings were not significantly different for differences in station design. There were some differences between gender for six of the nine body parts considered. Analysis of the variance, of the six body parts that did show differences due to gender, indicated that the variance of four of these body parts were not statistically different. The two remaining body parts indicated a greater variance in the female scores. This is likely due to the fact that fewer females participated in the study. However, the fact that four of the variances were statistically similar indicates, that even with the unequal sample sizes, the differences do appear to be true gender differences.

The three body parts that did not have significantly different scores between genders were the neck, shoulders and the wrists/hand (Figures 27, 28 and 29). It was notable that these three parts of the body were the ones most utilised in the sorting task, as they were continually in motion during the task. In addition, the muscles that were selected for analysis were all in the neck/shoulder region of the body, since they were the muscles most utilised in the sorting task.

This fact may indicate that the single greatest factor in rating the perceived exertion of the various parts of the body was the direct relationship between the physical task in question and the utilisation, for the task, of the various parts of the body. This would have a greater effect on the perceived rating than any effect due to gender. In this instance, since the neck, shoulder and wrist/hands were the parts of the body most directly related to the sorting task, any inherent gender differences were downplayed in favour of a response due to the actual perceived exertion of the task. The remaining scores, for body parts not directly related to the task, may be

scored more due to gender differences than any other factor.

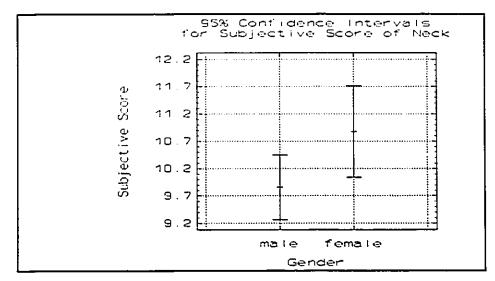



Figure 27 Intervals of Means of Subjective Scores: Neck by Gender

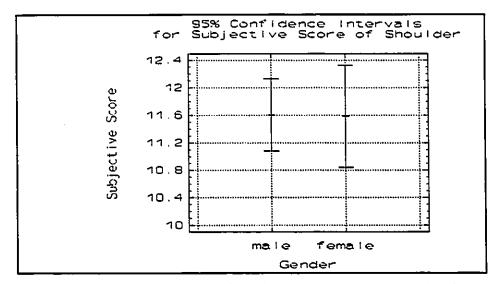



Figure 28 Intervals of Means of Subjective Scores: Shoulder by Gender

•\_\_\_\_

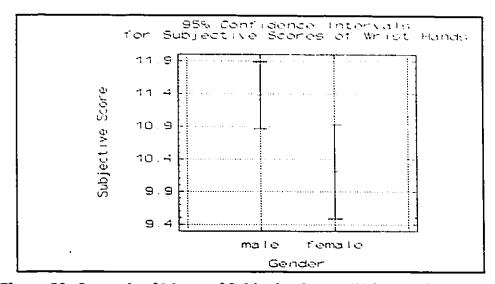



Figure 29 Intervals of Means of Subjective Scores: Wrist/Hand by Gender

When comparing the subjective scores only within genders, it was found that there were no significant differences recorded due to station design. There were differences in some results due to the part of the body being rated. The males tended to score the upper half of the body higher than the lower half, while the females recorded significant differences only for certain joints.

Males scored the upper part of the lower than the lower half of the body. Specifically, the neck was the lowest score. The wrist/hands, upper back, elbow and shoulders formed a homogeneous group, and were rated higher than the neck. The four lower parts of the body did not form a homogeneous group, but were all rated higher than the previously mentioned body parts. This may tend to indicate that the ratings were a result of some common element of the experiment, likely the fact that the experiment was performed while standing up. Even though mail was sorted continuously throughout the experiment, the standing and walking from side-to-side seemed to require a greater exertion on the lower half of the body than the sorting of mail requires of the upper half.

The scores of the females did not form any readily apparent groups. The three lowest scores were of the hips/thighs, elbows and knees. The only comment that can be made at this time, is that all three of these are major joints of the body.

The results of the correlation testing indicate that, for males, the higher the subjective score for the neck, shoulders or upper back, the more likely that there would have been indications of fatigue. This is likely due to the fact that the muscles being studied are in the neck/shoulder and upper back area. If these parts of the body were experiencing signs of fatigue, it is reasonable to assume that the males would have provided a higher score for these areas. The coefficients for the neck, shoulders and upper back, were, respectively, 0.46, 0.38 and 0.35. This indicated a fairly significant relationship between fatigue score and the subjective ratings.

The results of correlation testing for females displayed different results. The positive correlation between fatigue score and subjective scores for the wrist/hands

and hips/thighs indicated that statistical signs of fatigue were more likely to occur when these two scores were higher. This was possibility a result of using the wrist and hands to sort the mail, continuously, over the two-hour period. The result for the hips and thighs may have been a result of using bending the body more to lean into the board while sorting. This was probably done while turning the body, to the appropriate mail slot, using the hips and thighs to direct themselves to the slots. The negative correlation between envelope count and the scores for the shoulders, lower back and ankles/feet, indicate that as fewer envelopes would be sorted as the perceived exertion increased. A possible explanation for this, is that as the discomfort increased in these areas of the body, the females would not be able to sort as many envelopes. This would have been particularly true for the shoulders, as they are in motion throughout the experiment, and for the lower back and ankles/feet, since the subject was standing for the entire two-hour period.

## 5.3 RMS Values

The analysis of the RMS values yielded statistically significant results. It was found that, for the deltoid muscle, the best board for use by females was the inclined board and that the worst choice for males was the same inclined board. This was

likely due to the adoption of different strategies by the genders in sorting the mail. The inclined board tends to follow the work envelope of the arm more closely than the other boards. As such, the deltoid muscle, which is doing most of the work in the sorting task would have had less force required to complete the task. if the operator tended to always face the board directly. If the operator adopted a strategy of walking back and forth in front of the board, the advantage of following the work envelope would be lost if the operator was often at an angle to the board.

In analysis of the trapezius muscle, males showed no differences in the RMS values. In the sorting task, the greatest effort of the trapezius muscle would have come from moving the head and neck to identify the appropriate slot for sorting or from excessive rotation of the shoulder. Since males did not have any significant differences, they would have moved the head and neck in a similar manner, regardless of the board. The females, however, required less force from the trapezius muscle for the straight board. This indicated that they could see the board better and that they did not have to move their neck as often to see the slots or that due to the regularity of the board, it did not require excessive shoulder rotation to find the appropriate slot for sorting.

The infraspinatus muscle, because of its position in the back, was least

76

affected by gender differences. It would primarily have been affected by the arm reaching across the body to sort letters. Both genders showed a smaller force requirement for the inclined board. Again, this is likely due to the fact that the inclined board most closely follows the arm's work envelope.

## 5.4 Linear Regression Model

The linear regression model that was determined, with the fatigue score dependent on the slope of the MPF value of the deltoid muscle indicated that as the slope of the MPF tended farther towards a negative slope, the chance of an occurrence of statistical signs of muscle fatigue increased.

It is already known that a negative slope of the MPF values is an indicator of fatigue. In this study, the deltoid and infraspinatus muscles had the highest rates of occurrence of signs of muscle fatigue. Therefore, one would expect that the MPF slope of the infraspinatus muscle would also be an statistically significant indicator of muscle fatigue in a linear regression model. However, this was not the case. The deltoid muscle may have been the only significant muscle in this case because it did the bulk of the work in the sorting task.

Further study would be required to determine if there is a significant difference between muscles that show high rates of statistical indicators of muscle fatigue and those that are also significant predictors in linear regression models.

### 5.5 Selection of Station

In using this study to determine a preferred station for sorting, one can look at the high incidence rates of muscle fatigue indicators, and would be unable to recommend any of the station designs. The reliability figures indicate that approximately two-thirds of all workers would show statistical signs of muscle fatigue, on a daily basis. Analysis of design factors, using statistical indicators of fatigue and subjective ratings, did not reach any particular conclusion. Next, it was possible to look at using the RMS values, since they are roughly proportional to force, to determine which of the stations was most suitable for use. After the three stations that appeared to require a higher amount of force (So, Io, Vc) were eliminated, there then remained three choices of stations, namely Sc, Ic and Vo. If it was absolutely necessary to select stations for use based on the available results, one of these three stations could have been selected. However, selection of a station from RMS values alone may not be a reliable method. RMS values are proportional to force but the relationship of force to amplitude signals can be affected by other factors (Wells and Patla, 1985).

What is needed is to redesign the type of station that will be used. By following certain design principles, the effort required in the task can be reduced. Improvements that can be made would include elimination of awkward reaching and allowing for improved postures. Currently, subjects must reach above shoulder level to sort the envelopes, which is an action that should be eliminated. The highest row to sort mail should be at or slightly lower than shoulder level. Secondly, without a seat, subjects were on their feet for a long duration and tended to adopt individual, sometimes awkward, postures while sorting. The station needs to be redesigned so that the worker can carry out the required task while in a seated or standing position. This would allow the worker the ability to sit or stand (or lean against an object) at leisure, without being required to stand for a prolonged period of time or being forced to adopt a static seated position.

If the idea of placing the top of the sorting station below shoulder level is taken a step further, the station would be placed even lower so that the operator could be "above" the station. Ideally, the slots would be located below the operator's shoulder such that the operator could drop envelopes into the appropriate slots. Currently, the operator must push or "flick" the envelopes into slots, which requires a greater effort from the wrist. If the effects of gravity were considered in such a design, then a station with slots that are vertical rather than horizontal could be employed.

## 5.6 Decision Making

One aspect of this study, which has not been addressed, involves the fact that some decision making was required by the subjects. The subjects must process the information that they received from reading the letter and correctly determine the slot in which to place the letter. The subjects were required to correctly determine the city for which the letter was being sent, and for Windsor addresses in this study, which postal code or other sub-division the address belonged to.

The stages of word recognition involve proceeding from the stimulus to feature analysis (ie. straight or curved lines, etc.) to letter analysis and finally word recognition. Errors in sorting, which were not monitored in this experiment, can be made. Categories of errors that could occur in mail sorting include mistakes (failing to form the right intention), slips (incorrectly carrying out the right intention) and

lapses (failure to carry out an action) (Wickens, 1992). Examples of how these errors could occur include identifying the city on the envelope incorrectly and placing the mail into the slot for the incorrect city (mistake), placing the envelope into the incorrect slot after identifying the correct city on the envelope (slip) and not sorting the envelope at all because it was dropped and left on the floor (lapse). It should be noted in this study, that no consideration was given to the effects of decision making or vigilance.

#### 5.7 Rest Cycles

The use of rest cycles may play a role in the reduction of CTDs. Reliability calculations have been made to project the effects of mail sorting over a standard eight hour workday. However, these figures do not take into account the effect of rest cycles.

The main purpose of rest cycles, in a task such as mail sorting, is to make allowances for fatigue and to allow the muscles sufficient time to recover from the effects of work, so as to avoid any impairment to the muscle. Konz (1990) discussed four different methodologies for calculating work allowances. The main considerations include the dynamic load, cycle time, posture and clothing. There was also consideration given for allowances due to mental fatigue.

While the effects of rest cycles were not measured in this study, what is of most interest is the effect of the rest period on the EMG signal. Baidya and Stevenson (1988) measured the effects on the mean frequency, for five and ten minute rest periods, for a simple repetitive task. They found no significant difference with regard to the length of the break. Furthermore, the MPF slopes showed a general downward trend, a characteristic consistent with signs of fatigue in the muscles. However, Sundelin (1993) found that MTM-paced work, with 10 minute rest intervals each hour, were able to reduce the slopes of both RMS and MPF measures. While rest cycles may not necessarily stem the occurrence of muscle fatigue indicators, they do appear to inhibit its occurrence somewhat.

In order to draw any reasonable conclusions on the effect of rest cycles vis-avis characteristics of the EMG signals received, further testing would need to be done.

82

### 5.8 Sources of Error

In this experiment, it was not possible to measure the accuracy of the individuals sorting the mail. The mail was placed into pigeon-hole slots which had no backing and was allowed to accumulate behind the station. It is inconceivable that each subject placed each letter in the correct slot every time. If the slots involved were in rows at the top or bottom of the board or towards the far left or right hand columns, the work would be slightly more or less difficult and would show a corresponding difference in the EMG signal.

A second source of error was that of inter-subject variability. This would be due to the fact that subjects may perform differently on different days. Subjects were allowed to select the time of day that best suited their personal preferences and schedules. Days that were particularly busy for subjects were skipped and rescheduled.

### 5.9 Recommendations for Future Work

The main consideration in studying human work is to design operations

and/or workstations that allow the work to be completed as quickly as possible, with little risk to the operator. The risk, if this is not done adequately, is that workers will begin to develop signs of CTDs.

The basic process of this occurrence is that the worker will perform some repetitive task. At some point the stress will become excessive and the muscle will experience localised fatigue. If this occurs often enough, the muscle could experience either temporary or permanent damage.

What will often happen is that CTDs will first occur and then attempts will be made to rectify the problem. What is needed to prevent CTDs is a proactive, rather than reactive, approach to the problem. To some extent, a proactive approach is possible with the use of various design principles, ergonomic checklists and other subjective measures that are available to measure various aspects of a station/job design.

What is not available is a quantitative method for determining when or how certain work methods will become dangerous to a muscle. There are certain methods to measure the performance of a muscle, which include EMG signals. From this, it may be possible to develop indexes describing the performance level

required (ie. difficulty) and the effects of repetition. Since a combination of these factors could lead to CTDs, the goal would be to determine at what point, statistically, CTDs may occur.

This study, for example, was a situation where a task was analysed to determine the occurrence of statistical indicators of fatigue. The question raised from the results would be to determine at what point these statistical indicators will lead to CTDs. Factors that could be used to measure CTD risk, would include differences due to individual variability and specific task elements. These elements of the task can be quantified in various ways and could include both subjective measurements (eg. questionnaires) and direct measures of performance (eg. EMG signals), number of days working at these tasks (ie. time) and aspects due to the length of work cycles, repetition of tasks and rest cycles.

One avenue for doing this could lie in further investigation of the results of Genaidy et al. (1991). The MPF was measured for a simple task with different loads. The results indicate that the MPF deceases as the load increases. A possible use of this could be to study fatigue and CTDs in simple tasks and then extrapolate the results to more complicated work patterns. For example, if a particular work task was found to have an MPF value roughly equivalent to holding a 10 kg weight, an investigation could be carried out of the latter task, as it would be easier to control under laboratory conditions. However, problems could occur if different muscles do not react to events in a consistent manner. Also, the method of extrapolating results may not be sufficiently accurate to ensure proper results.

.

### 6 CONCLUSIONS

The current design used for manual postal sorting is inappropriate. The designs that were tested in this study were meant to mimic actual stations used in industry. It was found that use of these stations will lead to a high incidence rate of statistical indicators of localised muscle fatigue. Since localised muscle fatigue can lead to repetitive strain injures, methods should be taken to reduce its occurrence.

The analysis based on the EMG signals of the subjects did not determine if any particular layout or pickup point was preferable for mail sorting. Analysis of the RMS and MPF values indicated statistical signs of fatigue on a number of occasions, but the occurrence was apparently not a result of any aspect of the station design. As such, it can be considered to be inherent to the task of mail sorting at the stations used. Two of the layouts used in this study were derived from the first layout (ie. Straight Board), and perhaps, were not sufficiently different to produce discernable differences.

Analysis of the raw RMS values did produce some statistically significant differences with regard to station design. However, since there were no significant results due to station design for statistical occurrence of fatigue, it was not possible to draw any conclusions from this evidence. This was so, because, while the RMS value if roughly proportional to force required, it is not an exact measure. As such, it was not possible to determine if the force required by certain muscles was excessive without additional proof.

The use of subjective ratings by the subjects was not able to distinguish design aspects of the stations from one another. Of nine different divisions of the body that were used, there were significant differences only due to gender, six times. The gender differences appeared to be true gender differences. Also, it was significant to note that the three body divisions that did not have gender differences were parts of the body most directly related to the actual task performed by the individuals. If the gender differences were true differences, then subjective ratings may only be useful for body parts directly involved in a particular task.

None of the stations that were tested was considered to be suitable for postal sorting. A redesign of the station is necessary, in order to eliminate the occurrence of statistical signs of fatigue. Using standard ergonomic principles, some guidelines for a new sorting station can be developed. The key points are to allow the operator flexibility in posture with seated and standing positions, to ensure that the operator need never raise the hands above shoulder level, to eliminate the requirement for

the body to turn from side-to-side and to allow the operator to drop, rather than place, envelopes into slots.

It is also important to note, that this study was an example of a reactive, rather than proactive, method of ergonomic analysis. In order to conduct the study, it was necessary to go through a complete and time consuming study and analyse recorded data to make a determination of incidence rates. The analysis done was very much specific to the task. It is necessary to do this because there is no coherent method for an engineer to determine a risk factor of CTD occurrence from the analysis of EMG signals.

# 7 REFERENCES

Aarås, A. and R.H. Westgaard, 1987, Further studies of postural load and musculoskeletal injuries of workers at an electro-mechanical assembly plant, <u>Applied</u> <u>Ergonomics</u>, 18 (3), 211-219

Arendt-Nielsen, L. and T. Sinkjær, 1991, Assessment of Dynamic Muscle Fatigue by EMG and Kinematic Profiles, In: <u>Electromyographical Kinesiology</u>, P.A. Anderson, D.J. Hobart and J.V. Danoff (Eds.), Elsevier Science, 247-250

Armstrong, T.J., R.G. Radwin, D.J. Hansen and K.W. Kennedy, 1986, Repetitive Trauma Disorders: Job Evaluation and Design, <u>Human Factors</u>, 28 (3), 325-336

Baidya, K.N. and M.G. Stevenson, 1988, Effect of Rest Breaks on Local Muscle Fatigue During Repetitive Work, In: <u>Ergonomics International 88</u>, A.S. Adams, R.R. Hall, B.J. McPhee and M.S. Oxenburgh (Eds.), Taylor & Francis

Baleshta, M.M. and T.M. Fraser, 1986, An Arm Movement Notation System In Investigation of Cumulative Trauma Disorders, In: <u>Trends in Ergonomics/Human</u> <u>Factors III</u>, W. Karwowski (Ed.), Elsevier Science, 613-621

Barnes, R.M., 1980, <u>Motion and Time Study, Design and Measurement of Work</u>, Seventh Edition, John Wiley & Sons

Basmajian, J.V. and C.J. DeLuca, 1985, <u>Muscle Alive: Their Functions Revealed by</u> <u>Electromyography</u>, Fifth Edition, Williams & Wilkins

Bernard, B., S.L. Sauter, L.J. Fine, M.R. Petersen, T.R. Hales, 1992, Psychosocial and work organization risk factors for cumulative trauma in the hands and wrists of newspaper employees, <u>Scandinavian Journal of Work, Environment and Health</u>, 18 (supplement 2), 119-120

Bird, H.A. and J. Hill, 1992, Repetitive strain disorder: towards diagnostic criteria, <u>Annals of the Rheumatic Diseases</u>, 51 (8), 974-977

Borg, G., 1990, Psychophysical scaling with applications in physical work and the perception of exertion, <u>Scandinavian Journal of Environmental Health</u>, 16 (supplement 1), 55-58

Buckle, P.W., 1991, Upper Limb Disorders Among Newspaper Personnel, In: <u>Contemporary Ergonomics 1991</u>, E.J. Lovesey (Ed.), Taylor & Francis, 253-258

Buckle, P., 1992, Work Related Upper Limb Disorders Amongst Journalists, Presentation at the International Conference on Occupational Disorders of the Upper Extremities, Ann Arbor

Burnette, J.T. and M.A. Ayoub, 1989a, Cumulative Trauma Disorders, Part I: The Problem, Pain Management, 2 (4), 196-208

Burnette, J.T. and M.A. Ayoub, 1989b, Cumulative Trauma Disorders, Part II: Assessment of Risk, Pain Management, 2 (5), 256-264

Carson, R., 1993, Ergonomically Designed Tools: Selecting the Right Tool for the Job, <u>Industrial Engineering</u>, 25 (7), 27-29

Chaffin, D.B. and G.B.J. Andersson, 1991, <u>Occupational Biomechanics</u>, Second Edition, Wiley-Interscience

Chapra, S.C. and R.P. Canale, 1988, <u>Numerical Methods for Engineers</u>, Second Edition, McGraw-Hill

Dalagi, E.F., A. Perotto, J. lazzetti and D. Morrison, 1975, <u>Anatomic Guide for the</u> <u>Electromyographer: The Limbs</u>, Charles C. Thomas

DeGroot, J.P., 1987, Electromyographic analysis of a postal sorting task, Ergonomics, 30 (7), 1079-1088

DeLuca, C.J., 1984, Myoelectrical Manifestations of Localized Muscular Fatigue in Humans, <u>Critical Reviews in Biomedical Engineering</u>, 11 (4), 251-279

Feuerstein, M. and T.E. Fitzgerald, 1992, Biomechanical Factors Affecting Upper Extremity Cumulative Trauma Disorders in Sign Language Interpreters, <u>Journal of Occupational Medicine</u>, 34 (3), 257-264

Franklin, G.M., J. Haug, N. Heyer, H. Checkoway and N. Peck, 1991, Occupational Carpal Tunnel Syndrome in Washington State 1984-1988, <u>American Journal of Public Health</u>, 81 (6), 741-746

Fransson-Hall, C., S. Byström, G. Hägg, J. Öster, R. Kadefors and Å. Kilbom, 1992, Work disorders in an Automotive Assembly Plant-Exposure Assessment, Presentation at the International Conference on Occupational Disorders of the Upper Extremities, Ann Arbor

Franzblau, A., D. Flaschner, J.W. Albers, S. Blitz, R. Werner and T. Armstrong, 1993, Medical Screening of Office Workers for Upper Extremity Cumulative Trauma Disorders, <u>Archives of Environmental Health</u>, 48 (3), 164-170

Galt, V., 1993, Silent epidemic disabling work force, <u>The Globe and Mail</u>, November 5, 1993, A5

Gamberale, F., 1972, Perceived Exertion, Heart Rate, Oxygen Uptake and Blood Lactate in Different Work Operations, <u>Ergonomics</u>, 15 (5), 545-554

Genaidy, A.M., A. Mital and J.A. Hidalgo, 1991, Effects of Load, Time, and Gender on Frequency Characteristics of Myoelectric Signal, In: <u>Contemporary Ergonomics</u> <u>1991</u>, E.J. Lovesey (Ed.), Taylor & Francis

Giroux, B. and M. Lamontagne, 1990, Comparisons between surface electrodes and intramuscular wire electrodes in isometric and dynamic conditions, <u>Electromyography and Clinical Neurophysiology</u>, 30 (7), 397-405

Goodgold, J., 1974, <u>Anatomical Correlates of Clinical Electromyography</u>, Williams & Wilkins

Grandjean, E., 1988, <u>Fitting the task to the Man: A textbook of Occupational</u> <u>Ergonomics</u>, Fourth Edition, Taylor & Francis

Grant, K.A., J.J. Congleton, R.J. Koppa, C.S. Lessard and R.D. Huchingson, 1992, Use of motor nerve conduction testing and vibration sensitivity as screening tools for carpal tunnel syndrome in industry, <u>The Journal of Hand Surgery</u>, 17A (1), 71-76

Grass Instruments, 1985, Instruction Manual. Model P511 High Performance AC Preamplifier

Grieco, A., E. Occhipinti, D. Colombini, O. Menoni, M. Bulgheroni, C. Frigo and S. Boccardi, 1989, Muscular effort and musculo-skeletal disorders in piano students: electromyographic, clinical and preventive aspects, <u>Ergonomics</u>, 32 (7), 697-716

Guttman, I., S.S. Wilks, J.S. Hunter, 1982, <u>Introductory Engineering Statistics</u>, Third Edition, John Wiley & Sons

Hagberg, M., 1981, Work load and fatigue in repetitive arm elevations, <u>Ergonomics</u>, 24 (7), 543-555

Hagberg, M., 1992, Carpal Tunnel Syndrome and Neurological Symptoms in Vibration Exposed Workers, <u>Presentation at the International Conference on</u> <u>Occupational Disorders of the Upper Extremities</u>, Ann Arbor

Hammarskjöld, E. and K. Harms-Ringdahl, 1992, Effect of arm-shoulder fatigue on carpenters at work, <u>European Journal of Applied Physiology and Occupational</u> <u>Physiology</u>, 64 (5), 402-409

Harber, P., D. Bloswick, L. Peña, J. Beck, J. Lee and D. Baker, 1992, The Ergonomic Challenge of Repetitive Motion with Varying Ergonomic Stresses, Journal of Occupational Medicine, 34 (5), 518-528

Harber, P., D. Bloswick, L. Peña, J. Beck, J. Lee and D. Baker, 1993a, Supermarket Checker Motions and Cumulative Trauma Risk, <u>Journal of Occupational Medicine</u>, 35 (8), 805-811

Harber, P., D. Bloswick, J. Luo, J. Beck, D. Greer and L. Peña, 1993b, Work-Related Symptoms and Checkstand Configuration: An Experimental Study, <u>American</u> <u>Industrial Hygiene Association Journal</u>, 54 (7), 371-375

Harvey, D.A., 1991, Health and Safety First, <u>Byte</u>, 16 (10), 119-128

Hewlett-Packard Co., 1991, The Fundamentals of Signal Analysis. Application Note 243

Higgs, P., V.L. Young, M. Seaton, D. Edwards and C. Feely, 1992, Upper Extremity Impairment in Workers Performing Repetitive Tasks, <u>Plastic and Reconstructive</u> <u>Surgery</u>, 90 (4), 614-620

Holewijn, M. and R. Heus, 1992, Effects of temperature on electromyogram and muscle function, <u>European Journal of Applied Physiology and Occupational</u> <u>Physiology</u>, 65 (6), 541-545

Hsu, H.P., 1984, Applied Fourier Analysis, Harcourt Brace Jovanovich

Hunting, K.L., L.S. Welch, B.A. Cuccherini and L.A. Seiger, 1994, Musculoskeletal Symptoms Among Electricians, <u>American Journal of Industrial Medicine</u>, 25(2), 149-163

Jonsson, B., 1991, Electromyography in Ergonomics, In: <u>Electromyographical</u> <u>Kinesiology</u>, P.A. Anderson, D.J. Hobart, J.V. Danoff (Eds.), Elsevier Science, 133-136

Jørgensen, K., N. Fallentin and B. Sidenius, 1989, The Strain on the Shoulder and Neck Muscles During Letter Sorting, <u>International Journal of Industrial Ergonomics</u>, 3 (3), 243-248

Kadefors, R., I. Petersén and P. Herberts, 1976, Muscular Reaction to Welding Work: An Electromyographic Investigation, Ergonomics, 19 (5), 543-558

Kalogeridis, C., 1991, Cumulative trauma disorder: New name for old pain, <u>Textile</u> <u>World</u>, 141 (6), 77-81

Kamwendo, K. and S.J. Linton, 1991, A Controlled Study of Neck School in Medical Secretaries, <u>Scandinavian Journal of Rehabilitation Medicine</u>, 23 (2), 143-152

Kamwendo, K., S.J. Linton and U. Moritz, 1991, Neck and Shoulder Disorders in Medical Secretaries, <u>Scandinavian Journal of Rehabilitation Medicine</u>, 23 (2), 135-142

Keithley Instruments Inc., 1992, VIEWDAC Reference

Keyserling, W.M., D.S. Stetson, B.A. Silverstein and M.L. Brouwer, 1993, A checklist for evaluating ergonomic risk factors associated with upper extremity cumulative trauma disorders, <u>Ergonomics</u>, 36 (7), 807-831

Kittusamy, N.K., O.G. Okogbaa and A.J.B. Babu, 1992, A Preliminary Audit For Ergonomic Designs in Manufacturing Environments, <u>Industrial Engineering</u>, 24 (7), 47-53

Konz, S.A., 1990, Work Design: Industrial Ergonomics, Third Edition, Publishing Horizons

Kraut, A., 1994, Estimates of the Extent of Morbidity and Mortality Due to Occupational Diseases in Canada, <u>American Journal of Industrial Medicine</u>, 25 (2), 267-278

Kreyszig, E., 1993, <u>Advanced Engineering Mathematics</u>, Seventh Edition, John Wiley & Sons

Kroemer, K.H.E., 1989, Cumulative trauma disorders: Their recognition and ergonomics measures to avoid them, <u>Applied Ergonomics</u>, 20 (4), 274-280

Kroemer, K.H.E., 1992, Avoiding Cumulative Trauma Disorders in Shops and Offices, <u>American Industrial Hygiene Association Journal</u>, 53 (9), 596-604

Kuorinka, I., B. Jonsson, A. Kilborn, H. Vinterberg, F. Biering-Sørensen, G. Andersson and K. Jørgensen, 1987, Standardised Nordic questionnaires for the analysis of musculoskeletal symptoms, <u>Applied Ergonomics</u>, 18 (3), 233-237

Lederman, R.J., 1993, Entrapment Neuropathies in Instrumental Musicians, <u>Medical</u> <u>Problems of Performing Artists</u>, 8 (2), 35-40

Mahone, D.B., 1993, Review of System Designs Employs Ergonomics Prior To Work Injuries, <u>Occupational Health and Safety</u>, 62 (5), 89-92+

Manugistics Inc., 1993, Statgraphics Plus Reference Manual. Version 7 for DOS

Marley, S., 1994, Repetitive motion claims increase, Business Insurance, 28 (7), 3+

Marras, W.S., and J.Y. Kim, 1993, Anthropometry of industrial populations, Ergonomics, 36 (4), 371-378

Merletti, R., L.R. LoConte and C. Orizio, C., 1991, Indices of Muscle Fatigue, <u>Journal</u> of <u>Electromyography and Kinesiology</u>, 1 (1), 20-33

Miller, I., J.E. Freund and R.A. Johnson, 1990, <u>Probability and Statistics for</u> <u>Engineers</u>, Fourth Edition, Prentice-Hall

Montgomery, D.C., 1991, <u>Design and Analysis of Experiments</u>, Third Edition, John Wiley & Sons

Moore, A., R. Wells and D. Ranney, 1991, Quantifying exposure in occupational manual tasks with cumulative trauma disorder potential, <u>Ergonomics</u>, 34 (12), 1433-1453

Nakata, M., I-M. Hagner and B. Jonsson, 1991, Effects of Light Repetitive Work, In: Electromyographical Kinesiology, P.A. Anderson, D.J. Hobart, J.V. Danoff (Eds.), Elsevier Science, 157-160

Nakata, M., I-M. Hagner and B. Jonsson, 1992, Perceived Musculoskeletal Discomfort and Electromyography During Light Repetitive Work, <u>Journal of</u> <u>Electromyography and Kinesiology</u>, 2 (2), 103-111

Nelson, N.A., R.M. Park, M.A. Silverstein and F.E. Mirer, 1992, Cumulative Trauma Disorders of the Hand and Wrist in the Auto Industry, <u>American Journal of Public Health</u>, 82 (11), 1550-1552

Noaker, P.M., 1993, The Curse of Carpal, Manufacturing Engineering, 110 (5), 44-49

Norman, G.R. and D.L. Streiner, 1994, Biostatistics: The Bare Essentials, Mosby

O'Brien, R.B., 1993, Outrage over 'RSI does not exist' ruling, <u>The Weekly Telegraph</u> (<u>Canadian Edition</u>), November 3, 1993-November 9, 1993, 5

Orgel, D.L., M.J. Milliron and L.J. Frederick, 1992, Musculoskeletal Discomfort in Grocery Express Checkstand Workers, <u>Journal of Occupational Medicine</u>, 34 (8), 815-818

Osorio, A.M., R.G. Ames, J. Jones, J. Castorina, D. Rempel, W. Estrin and D. Thompson, 1994, Carpal Tunnel Syndrome Among Grocery Store Workers, <u>American Journal of Industrial Medicine</u>, 25 (2), 229-245

Pelmear, P.L., and W. Taylor, 1991, Hand-Arm Vibration Syndrome: Clinical Evaluation and Prevention, Journal of Occupational Medicine, 33 (11), 1144-1149

Pelmear, P.L., and W. Taylor, 1994, Hand-Arm Vibration Syndrome, <u>The Journal of</u> <u>Family Practice</u>, 38 (2), 180-184

Pelmear, P.L., L. Wong and B. Dembek, 1992, HAVS: Evaluation of Severity, Presentation at the International Conference on Occupational Disorders of the Upper Extremities, Ann Arbor

Preece, A.W., H.S.K. Wimalaratna, J.L. Green, E. Churchill and H.M. Morgan, 1994, Non-invasive quantitative EMG, <u>Electromyography and Clinical Neurophysiology</u>, 34 (2), 81-86

Pulat, B.M., 1992, Fundamentals of Industrial Ergenemics, Prentice-Hall

Punnett, L., 1992, Musculoskeletal Disorders and Ergonomic Stressors in the Retail Meat Industry, <u>Presentation at the International Conference on Occupational</u> <u>Disorders of the Upper Extremities</u>, Ann Arbor

Putz-Anderson, V. (Ed.), 1988, <u>Cumulative trauma disorders: A manual for</u> <u>musculoskeletal diseases of the upper limbs</u>, Taylor & Francis

Ranney, D., 1993, Work-related chronic injuries of the forearm and hand: their specific diagnosis and management, <u>Ergonomics</u>, 36 (8), 871-880

Rempel, D.M., R.J. Harrison and S. Barnhart, 1992, Work-Related Cumulative Trauma Disorders of the Upper Extremity, <u>Journal of the American Medical</u> <u>Association</u>, 267 (6), 838-841

Reuters News Agency, 1993, Judge rejects repetitive strain injury, <u>The Globe and</u> <u>Mail</u>, October 29, 1993, B6

Roughton, J., 1993, Implementing an Ergonomics Program: Developing Procedures, Industrial Engineering, 25 (9), 44-49

Ryan, G.A., 1989, The prevalence of musculo-skeletal symptoms in supermarket workers, <u>Ergonomics</u>, 32 (4), 359-371

Sanders, M.S. and E.J. McCormick, 1993, <u>Human Factors in Engineering and</u> <u>Design</u>, Seventh Edition, McGraw-Hill

Sauter, S.L., L.J. Chapman, S.J. Knutson and H.A. Anderson, 1987, Case examples of wrist trauma in keyboard use, <u>Applied Ergonomics</u>, 18 (3), 183-186

Scheaffer, R.L. and J.T. McClave, <u>Probability and Statistics for Engineers</u>, Third Edition, Duxbury Press

Schwartz, R.G., 1992, Cumulative Trauma Disorders, Orthopedics, 15 (9), 1051-1053

Silverstein, B.A., 1992, Prevalence of Work-related Musculoskeletal Disorder Symptoms in Newspaper Employees: Follow-Up Survey Summary, <u>Presentation at</u> the International Conference on Occupational Disorders of the Upper Extremities, Ann Arbor

Skandalakis, J.E., G.L. Colborn, P.N. Skandalakis, S.M. McCollam and L.J. Skandalakis, 1992a, The Carpal Tunnel Syndrome: Part I, <u>The American Surgeon</u>, 58 (1), 72-76

Skandalakis, J.E., G.L. Colborn, P.N. Skandalakis, S.M. McCollam and L.J. Skandalakis, 1992b, The Carpal Tunnel Syndrome: Part II, <u>The American Surgeon</u>, 58 (2), 77-81

Skandalakis, J.E., G.L. Colborn, P.N. Skandalakis, S.M. McCollam and L.J. Skandalakis, 1992c, The Carpal Tunnel Syndrome: Part III, <u>The American Surgeon</u>, 58 (3), 158-166

Sommerich, C.M., J.D. McGlothlin and W.S. Marras, 1993, Occupational risk factors associated with soft tissue disorders of the shoulder: a review of recent investigations in the literature, <u>Ergonomics</u>, 36 (6), 697-717

Stect, J.D., 1992, Interpreter's Wrist: Repetitive Stress Injury and Carpal Tunnel Syndrome in Sign Language Interpreters, <u>American Annals of the Deaf</u>, 137 (1), 40-43

Stetson, D.S., T.J. Armstrong, L.J. Fine, B.A. Silverstein and K. Tannen, 1986, A Survey of Chronic Upper Extremity Disorders in an Automobile Upholstery Plant, In: <u>Trends in Ergonomics/Human Factors III</u>, W. Karwowski (Ed.), Elsevier Science, 623-630

Stix, G., 1991, Science and Business: Handful of Pain, <u>Scientific American</u>, 264 (5), 118-120

Sundelin, G., 1993, Patterns of electromyographic shoulder muscle fatigue during MTM-paced repetitive arm work with and without pauses, <u>International Archives of</u> <u>Occupational and Environmental Health</u>, 64 (7), 485-493

Sundelin, G. and M. Hagberg, 1992, Electromyographic signs of shoulder muscle fatigue in repetitive arm work paced by the Methods-Time-Measurement system, <u>Scandinavian Journal of Work. Environment and Health</u>, 18 (4), 262-268

Tannen, K.J., D.S. Stetson, B.A. Silverstein, L.J. Fine and T.J. Armstrong, 1986, An Evaluation of Scissors for Control of Upper Extremity Disorders in an Automobile Upholstery Plant, In: <u>Trends in Ergonomics/Human Factors III</u>, W. Karwowski (Ed.), Elsevier Science, 631-639

Taylor, W., 1992, Vibration, Objective Tests and the Carpal Tunnel Syndrome (CTS), Presentation at the International Conference on Occupational Disorders of the Upper Extremities, Ann Arbor

Thomson, W.T., 1988, <u>Theory of Vibration with Applications</u>, Third Edition, Prentice-Hall

Törner, M., G. Bilde, H. Eriksson, R. Kadefors, R. Karlsson and I. Petersen, 1988, Musculo-skeletal symptoms as related to working conditions among Swedish professional fishermen, <u>Applied Ergonomics</u>, 19 (3), 191-201

United States Mail, 1978? (Year Uncertain), <u>Trainer's Instructions: Manual</u> <u>Distribution Technique, Letters and Flats</u>

United States Postal Service, 1994, Communication Letter (J.E. Potter), February 7, 1994

Veeger, H.E.J., L.H.V. van der Woude and R.H. Rozendal, 1991, Load on the Upper Extremity in Manual Wheelchair Propulsion, <u>Journal of Electromyography and Kinesiology</u>, 1 (4), 270-280

Vezina, N., D. Tierney and K. Messing, 1992, When is light work heavy? Components of the physical workload of sewing machine operators working at piecework rates, <u>Applied Ergonomics</u>, 23 (4), 268-276

Waly, S.M., T.M. Khalil and S.S. Asfour, 1986, Physiological Basis of Muscular Fatigue: An Electromyographic Study, In: <u>Trends in Ergonomics/Human Factors III</u>, W. Karwowski (Ed.), Elsevier Science, 751-758

Wells, R.P. and A.E. Patla, 1985, An Introduction to the Biomechanics of Human

Movement, University of Waterloo

Wells, R., A. Moore, J. Potvin and R. Norman, 1994, Assessment of risk factors for development of work-related musculoskeletal disorders (RSI), <u>Applied Ergonomics</u>, 25 (3), 157-164

Westgaard, R.H. and A. Aarás, 1985, The effect of the improved workplace design on the development of work-related musculo-skeletal illnesses, <u>Applied Ergonomics</u>, 16 (2), 91-97

White, B., and J. Kaczmar, 1992, Using Computerized Cinematography to Develop a Predictive Model Relating Muscle Stress and Wrist Movement, <u>Computers and</u> <u>Industrial Engineering</u>, 23, (1-4), 201-204

Wickens, C.D., 1992, Engineering Psychology and Human Performance, Second Edition, Harper-Collins

Winter, D.A., 1990, <u>Biomechanics and Motor Control of Human Movement</u>, Second Edition, Wiley-Interscience

Winter, D.A., G. Rau and R. Kadefors, 1979, Units, Terms and Standards in the Reporting of Electromyographical Research, <u>Proceedings of the Fourth Congress</u> of ISEK, Boston, 100-102

Wygant, R.M., B.E. White and D. Hunt, 1993, Combining Ergonomics and Work Measurement for Job Analysis, <u>Computers and Industrial Engineering</u>, 25 (1-4), 423-426

APPENDICES

A Consent Forms

#### CONSENT FORM

I, \_\_\_\_\_\_, am participating in this study of my own free will. The decision to participate is completely voluntary on my part. No one has coerced or intimidated me to participate.

The Investigator has answered any and all questions I have asked about this study, my participation, and the procedures involved, which are described in the attachment to this consent form, which I have initialled.

I understand that the Investigator or his Supervisor will be available to answer any questions concerning procedures throughout this study. I understand that if significant new findings develop during the course of this research which may relate to my decision to continue participation, I will be informed. I further understand that I may withdraw consent at any time and discontinue further participation at my discretion. I understand that the Investigator or the Supervisor or any medical consultant may terminate my participation in this study if it is felt to be in my best interest.

I do not have any disorders of my cardiovascular system, my spinal column, within my wrists, arms, shoulders or neck or any other disorders or deficiencies that make it inadvisable for me to participate as a subject in this experiment.

I understand that the results of my efforts will be will be recorded but that no photographic record will be made of the experiment. I consent to the use of the recorded information for scientific or training purposes and understand that any records of my participation in this study may be disclosed only according to federal and provincial law and that no one will be able to identify myself as a participant in this study from the reporting of any results or conclusions reached by the Investigator. I also understand that personal information will not be released to an unauthorized third party without my permission.

I understand that I will be compensated at the minimum wage rate as set out by law. This money will be paid to me at the conclusion of my participation in this study. I understand that I will not be paid if I do not complete the study, unless I have a medical or other valid reason for not completing the study and documentation to support this fact.

٩.

I FULLY UNDERSTAND THAT I AM MAKING A DECISION WHETHER OR NOT TO PARTICIPATE IN THE STUDY. MY SIGNATURE INDICATES THAT I HAVE DECIDED TO PARTICIPATE UNDER THE CONDITIONS DESCRIBED ABOVE.

Volunteer Signature

Date

Signature of Witness

Date

This study has been cleared by the Ethics Committee of the University of Windsor. Any questions or comments concerning research ethics can be addressed to the Office of Research Services at (519) 253-4232, Ext. 3916. Any other questions or comments concerning study procedures may be addressed to the Department of Industrial Engineering at (519) 253-4232, Ext. 2607.

### ATTACHMENT TO CONSENT FORM

You are invited to participate as a subject in an experiment to measure stress and fatigue in the shoulder-neck area in the performance of a postal sorting task. The data gathered in this study will be used to study the relative merits of several different designs of sorting stations. In addition, a normal strength exertion test will be conducted.

The postal sorting task encompasses approximately twelve different designs with two hours of work required to complete testing on each design. The times to conduct the experiment will be scheduled at mutually convenient times. If more than one design is to be tested at one sitting a rest period of one-half hour will be permitted between testing of designs in order to simulate a real-life work situation. In performing the task, you will be required to work at a "normal" pace, suitable to your own abilities.

In measuring your performance, three surface electrodes will be attached to your skin in the shoulder-neck area to monitor muscle activity. In agreeing to participate in this study you acknowledge that you have no objection, medical or otherwise, to being monitored in this manner. It is possible that you will experience temporary muscle soreness or fatigue as a result of participation in this experiment.

The results of your participation will be recorded and analyzed. Only overall results of all subjects who participate in this study will be reported. There will be no reporting of results in a manner that would allow anyone to specifically identify your specific results.

Before your use as a test subject, you must inform the Investigator or Supervisor of any change to your physical status. This information will include any medication taken or medical care or conditions that will directly or indirectly affect the experiment.

If you have any questions you can reach the Investigator (Chris Kourtis) or Supervisor (Dr. S. Taboun) via the Department of Industrial Engineering at the University of Windsor at (519) 253-8132, extension 2607, during normal business hours.

Subject's Initials:

B Diagrams of Layouts Used in Experiment

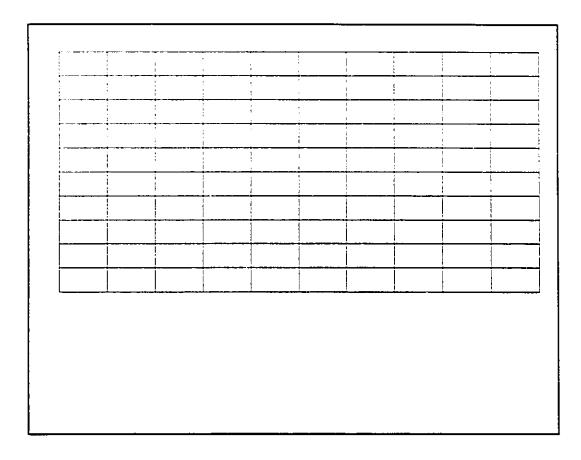



Diagram of Layout A (Straight board)

-

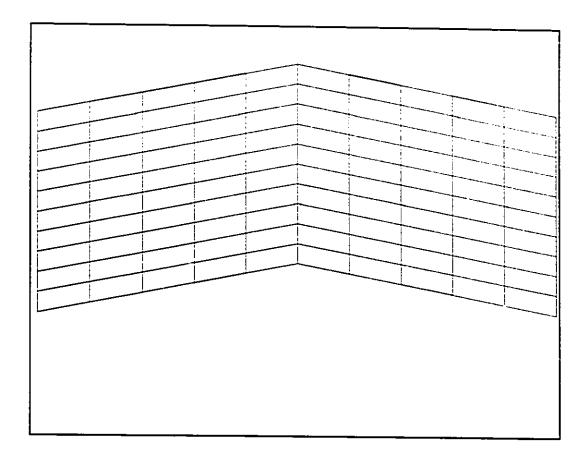



Diagram of Layout B (V-shaped board)

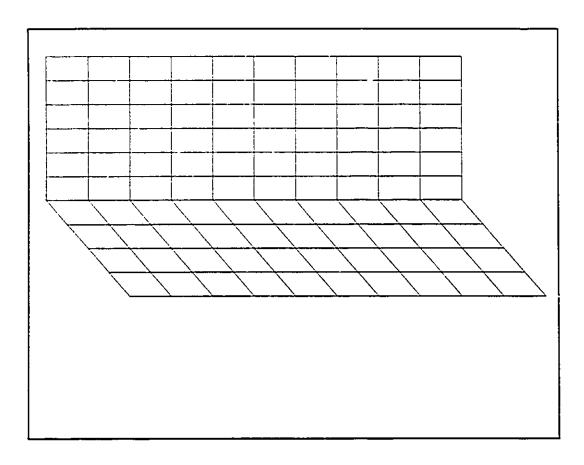



Diagram of Layout C (Inclined board) (Top six rows straight, bottom four rows angled towards subject) C Written Instructions Given to Subjects

.

-

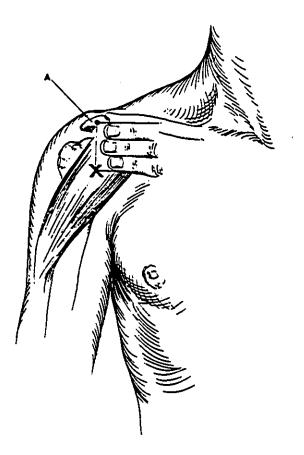
#### EXPERIMENTAL INSTRUCTIONS

You are being asked to participate in a study which involves the manual sorting of mail. You will be required to handle envelopes and place them in appropriate slots corresponding to the address on the envelope. There are 100 different slots for mail to be placed in. They are presented to you in the sorting station in 10 columns with 10 slots in each column, for a total of 10 rows.

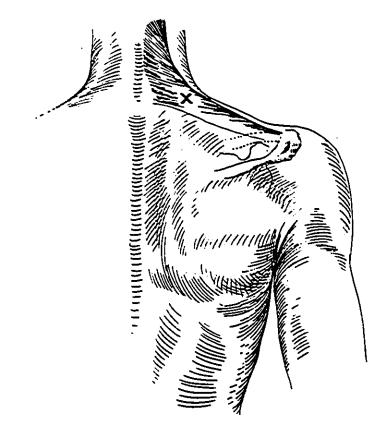
The columns are arranged as follows:

The three left-most columns are all for mail with a Windsor address. From top to bottom the left-most column contains nine slots for mail addressed to postal codes beginning with N8 (eg. N8Y) arranged in alphabetical order, followed by a slot specifically for mail addressed to the City of Windsor. The next column contains seven slots for mail addressed to postal codes beginning with N9 (eg. N9A), followed by slots for mail specifically addressed to Chrysler, Ford and General Motors. The third column has five slots for mail addressed to different post office boxes (ie. Postal Station A and stations in LaSalle, Sandwich, Tecumseh and Walkerville), three slots for mail addressed to rural routes (RR1, RR2 and RR3) and two slots for mail addressed specifically to St. Clair College and the University of Windsor.

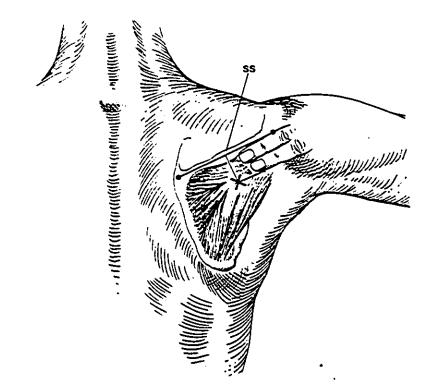
Please note that postal codes for mail addressed to a post office box or a rural route do not begin with N8 or N9, while mail addressed to the six specific organizations will begin with N8 or N9.


The next six columns contain the names or sixty Ontario cities or towns. They are arranged in alphabetical order top to bottom and then left to right. The right-most column contains nine slots for the other nine provinces arranged in alphabetical order, with a slot for mail addressed to the United States at the bottom.

Your task is to sort the mail that is given to you into the correct slots. You should work at a normal pace, one that is neither too fast, nor too slow. D Experimental Order


| Subject | Sessions |    |    |    |    |    |
|---------|----------|----|----|----|----|----|
|         | 1        | 2  | 3  | 4  | 5  | 6  |
| 1       | So       | Vc | Vo | Ic | Sc | Io |
| 2       | Io       | Ic | Sc | So | Vo | Vc |
| 3       | Io       | Sc | Vo | Vc | So | Ic |
| 4       | Io       | So | Vc | Vo | Ic | Sc |
| 5       | Io       | So | Vc | Vo | Sc | Ic |
| 6       | Sc       | Ic | Io | Vo | Vc | So |
| 7       | Vc       | So | Sc | Io | Vo | Ic |
| 8       | Ic       | Sc | So | Io | Vc | Vo |
| A       | Io       | So | Vc | Vo | Ic | Sc |
| в       | Ic       | Vo | Sc | So | Io | Vc |
| С       | Ic       | So | Vc | Sc | Vo | Io |
| D       | Sc       | Ic | Vc | Vo | So | Io |

E Electrode Placement


The following diagrams are used to aid in the placement of the electrodes. They are reproduced from Dalagi et al. (1975).



Placement of Electrodes for Anterior Deltoid



Placement of Electrodes for Upper Trapezius



Placement of Electrodes for Infraspinatus

F Preamplifier Settings

Calibration Input - Use-Cal - A/C - D/C 1/2 Amp. Lo Freq. Amplification Amplification Calibration 1/2 Amp. Hi Freq. 60 Hz Filter 1 MV Use D/C 1 Hz 2000 (10 x 200) Manual Adjustment 30 Khz Out G Viewdac Screens

-

,

| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s             |                                                                     |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------|--|
| Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson<br>Christellesson |               | Edit<br>Control<br>Stule<br>Add Del                                 |  |
| Add Task Type<br>foory<br>Blook<br>Begin Until<br>Do While<br>NoP<br>Facro<br>fone<br>Current Panel: [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | JSTEM () Data I/0<br>Anel () DAS<br>rigger () GPIB<br>Alo () RS-232 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Not westynea. |                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                     |  |

## Main Viewdac Screen

This and the following pages contains screen captures of routines in Viewdac used to collect data. This is the main screen.

| · · · ·        |                                       | •                                     |                       |
|----------------|---------------------------------------|---------------------------------------|-----------------------|
| Chrisi.        |                                       |                                       |                       |
| Time 7         | · · · · · · · · · · · · · · · · · · · | Start Start                           |                       |
| Time 27        |                                       | Edit                                  |                       |
| Time 53        |                                       | Control                               | and the second second |
|                |                                       |                                       |                       |
|                |                                       | Loop Task                             |                       |
|                |                                       |                                       |                       |
| - Ada          | Loop 1 Begin                          |                                       | lit)                  |
| Nlock<br>Begin | Line Graph 1                          | H                                     | trol                  |
| Do Whi<br>NOP  | SCII Write 3                          |                                       |                       |
| Macro          | Loop 1 End                            | · · · · · · · · · · · · · · · · · · · | wl                    |
|                | L                                     |                                       | Der L                 |
| Current        | Add Task Type -                       |                                       |                       |
|                | Block                                 |                                       | ta I/O                |
|                | Begin Until<br>Do While<br>NOP        | O Panel O De                          |                       |
|                | Hacro<br>Lone                         |                                       | -232                  |
|                |                                       |                                       | -232                  |
|                | Start: 0                              | Sync Time: [1666                      | msec.                 |
|                | Stop: <u>1</u><br>Incr: [1            | ] [] Infinite                         |                       |
|                | Current: 1                            |                                       |                       |
|                |                                       | ок                                    |                       |
|                |                                       |                                       |                       |

Loop 1

"Loop 1" is the main routine which collects data for three minutes, graphs the data at the end of the three minutes on-screen and prints out data to a DOS file.

|                                              | A/D Task                           | */12101-14911-1K) |        |  |  |
|----------------------------------------------|------------------------------------|-------------------|--------|--|--|
| Name : 👔                                     |                                    |                   |        |  |  |
| DAS Device:                                  | NoDevice (board 1)                 |                   |        |  |  |
| Start Channel: 1                             | # of Scans:                        | 8100              |        |  |  |
| # of Channels: 3                             | Scan Rate:                         | 43                | ⊒ਮ∞    |  |  |
| Ch# Data Name                                | Input Range                        | Slope             | Offset |  |  |
| 1 0h1                                        | 0.000 to 10.000 Volts              | 1                 |        |  |  |
| 2 ch2                                        | 0.999 to 10.999 Volts              | 1                 | 8      |  |  |
| 3 ch3                                        | 0.000 to 10.000 Volts              | 1                 | 8      |  |  |
| External OK Cancel Clooking   Trigger Cancel |                                    |                   |        |  |  |
| Begin<br>Do Hhi<br>Nop<br>Macro<br>Tone      | Until UPane)<br>10 Trigs<br>0 Calo | _                 |        |  |  |
| Start:<br>Stop                               |                                    | 1.12442           | ]изес. |  |  |
| Inor:<br>Current:                            |                                    | _ок               |        |  |  |
|                                              |                                    |                   |        |  |  |

### A to D 1

"A to D 1" is the task that collects data for three minutes from each of the three channels at a rate of 45 readings per second.

| Chrisi.seq<br>Loop I Start (Stop)                                                                                                                            | *<br>- |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Line Graph Task<br>Name: <u>Line Graph 1</u>                                                                                                                 |        |
| Y Data Sets<br>Chi<br>Chi<br>Chi<br>Chi<br>Chi<br>Chi<br>Chi<br>Chi                                                                                          |        |
| Add Y Data     Select X Data     Curve Style       Remove Y Data     Index of Y       Panel:     Panel 1                                                     | * *    |
| MOP     III () Trigger () CPIB       Macro     Calo       Tone     O Calo       Start:     III       Stop:     III       Incr:     III       Current:     OK |        |

# Line Graph 1

"Line Graph 1" prints the collected data to the screen immediately after the three minutes are up.

| 1          | phrisi.seg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|            | ASCII File Write Task                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • • •         |
|            | Nano: State at 121 Contemporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
|            | Data List: Type: Size:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b></b>       |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
|            | [ InFa] Add Remove Format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>p1</b>     |
|            | File: ["ohi.dat"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
|            | Comment:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
| *          | 🛛 Column Headings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u></u>       |
|            | 🛛 Line Delimiter: 🔽 [CrLf]<br>🖄 Column Delimiter: 🔀2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/0           |
|            | Append O Overwrite     ON     Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
| <u>i</u> _ | Tone 🛛 🖓 🗘 Calc 🗘 RS-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 232           |
|            | Start:         Image: Sync Time:         Imag | <b>H</b> 5+C. |

ASCII Write 1

"ASCII Write 1" appends the data to a DOS file.

|   |                                                                   |              |                                                | and the second                           | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---|-------------------------------------------------------------------|--------------|------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | ohris1.seq<br>Loop 1<br>Line 7                                    |              | <u>k</u>                                       | Start   Sco                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                                                                   | Time Trigger |                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Name :    Line                                                    |              |                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| • |                                                                   | <u> </u>     | Cancel                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Block<br>Block<br>Begin Until<br>Do While<br>NOP<br>Macro<br>Tone |              | () System<br>() Panel<br>() Trigger<br>() Calc | O DACA I/<br>O DAS<br>O CPIB<br>O RS-232 | <ul> <li>●</li> <li>●</li></ul> |
|   | Current Panel                                                     | : Not Assig  |                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                                                                   |              |                                                | •                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                                                                   |              | · · · · ·                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                                                                   |              |                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Time 7

"Time 7" is a trigger that begins the three minute collection process, in this case beginning at the end of seven minutes.

H RMS and MPF Information

The RMS (Root-Mean-Square) is calculated from the raw EMG values. It is the square root of the mean square value. The mean square value, in turn, is the average of the squared values of each individual EMG signal. The reader is directed to Thomson (1988) for more information.

The MPF (Mean Power Frequency) is computed by first calculating the FFT (Fast Fourier Transform) of the EMG values. This transfers the EMG signal from the time to frequency domain<sup>2</sup>. An algorithm for calculating the FFT, adapted from Chapra and Canale (1988) is given below. Note that it is a two-step process, and that x and y are variables of dimension n. The variable y, which is the complex component, is dropped from the second part of the algorithm. It is not required for the MPF calculation, but is necessary for the process.

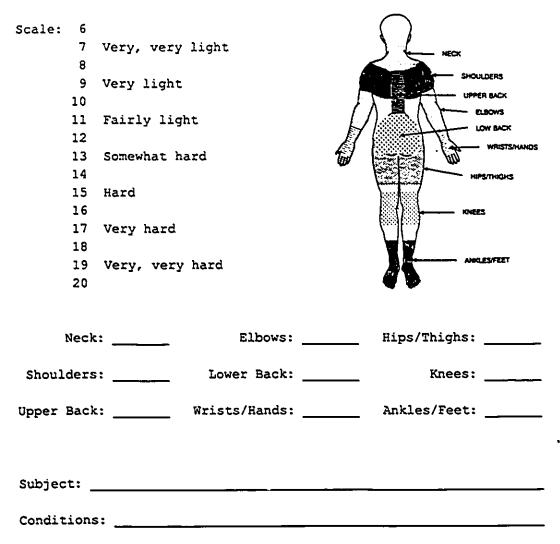
```
n2 = n
for k = 1 to m
       n1 = n2
       n2 = n2/2
       angle = 0
       argument = 2\pi / nl
       for j = 0 to (n2 - 1)
               c = cos(angle)
               s = -sin(angle)
               for i = j to (n - 1) step nl
                      1 = i + n2
                      xtemp = x(i) - x(l)
                      x(i) = x(i) + x(i)
                      ytemp = y(i) - y(l)
                      y(i) = y(i) + y(i)
                      x(l) = (xtemp * c) - (y(t) * s)
                      y(l) = (ytemp * c) + (x(t) * s)
               next i
               angle = (j + 1) * argument
       next j
next k
j = 0
```

<sup>&</sup>lt;sup>2</sup>If graphed, the time domain would have the EMG signal as the y-axis and the x-axis would be time. When mapping to the frequency domain, via the FFT, the x-axis becomes the frequency and the y-axis remains unchanged.

for i = 0 to 
$$(n - 2)$$
  
if (i < j) then  
 $xtemp = x(j)$   
 $x(j) = x(i)$   
 $x(i) = xtemp$   
end if  
 $k = n / 2$   
while  $(k < (j + 1))$   
 $j = j - k$   
 $k = k / 2$   
end while  
 $j = j + k$   
next i  
for i = 0 to  $(n - 1)$   
 $x(i) = x(i) / n$   
next i

The FFT produces a number of data points that are of an order of 2. In this experiment, 2700 data points are collected per minute. Since this is not a power of two, zero values are added until there are 4096 points. The squared value of the FFT (ie. x) is the power spectrum. To calculate the MPF, the power spectrum is multiplied by the frequency, since we are now in the frequency rather than time domain, and integrated over all frequencies. This value is divided by the integral of the power spectrum over all frequencies. The resulting value is the MPF. More information regarding EMG reporting units can be found in Winter et al. (1979). The equation for the Mean Power Frequency is given below.

$$MPF = \frac{\int_{n}^{n} fG(t) dt}{\int_{n}^{n} G(t) dt},$$


where f is the frequency and G(f) is the Power Spectrum.

Additional information on the Fast Fourier Transform can also be found in Kreyszig (1993) or Hsu (1984). General information on signals and the FFT can be found in Hewlett-Packard (1991).

I Questionnaire

## QUESTIONNAIRE

For each part of your body, as indicated on the accompanying diagram on the right, please indicate your perceived exertion during this postal sorting procedure, using the scale below on the left.



J Subjects

| Subject | Age | Height | Shoulder Height |
|---------|-----|--------|-----------------|
| 1       | 22  | 186    | 151             |
| 2       | 33  | 178    | 148             |
| 3       | 24  | 176    | 149             |
| 4       | 23  | 168    | 136             |
| 5       | 21  | 182    | 151             |
| 6       | 29  | 179    | 147             |
| 7       | 24  | 185    | 154             |
| 8       | 36  | 169    | 140             |
| A       | 25  | 177    | 146             |
| В       | 19  | 169    | 139             |
| с       | 20  | 187    | 155             |
| D       | 21  | 174    | 144             |

## Ages, Heights and Shoulder Heights of Subjects

All heights are in cm.

K Experimental RMS and MPF Values

This appendix contains the calculated RMS and MPF values for each trial. They are listed sequentially by minute and contain values for all three muscles. Where information was lost during the experiment, a blank space is left.

The abbreviation "Min" represents the minute of the trial.

Subject: 1 Board: Straight Pickup: Opposite

|     | Delto  | id     | Trapez | ius    | -Infraspi | natus  |
|-----|--------|--------|--------|--------|-----------|--------|
| Min | RMS    | MPF    | RMS    | MPF    | RMS       | MPF    |
|     |        |        |        |        |           |        |
| 8   | 0.1447 | 240.19 | 0.1089 | 239.87 | 0.1627    | 239.87 |
| 9   | 0.1446 | 239.18 | 0.1089 | 238.83 | 0.1627    | 239.94 |
| 10  | 0.1446 | 240.98 | 0.1088 | 239.62 | 0.1626    | 239.16 |
| 18  | 0.1445 | 239.55 | 0.1089 | 240.63 | 0.1627    | 239.69 |
| 19  | 0.1446 | 240.36 | 0.1088 | 241.41 | 0.1627    | 240.15 |
| 20  | 0.1446 | 239.54 | 0.1088 | 239.25 | 0.1626    | 240.00 |
| 28  | 0.1447 | 239.26 | 0.1088 | 240.08 | 0.1627    | 239.38 |
| 29  | 0.1445 | 239.35 | 0.1088 | 239.60 | 0.1627    | 239.46 |
| 30  | 0.1446 | 240.44 | 0.1088 | 239.84 | 0.1627    | 239.70 |
| 38  | 0.1447 | 240.09 | 0.1089 | 239.85 | 0.1628    | 239.81 |
| 39  | 0.1447 | 239.35 | 0.1089 | 239.48 | 0.1627    | 239.34 |
| 40  | 0.1446 | 239.85 | 0.1089 | 240.37 | 0.1628    | 240.13 |
| 48  | 0.1446 | 240.26 | 0.1089 | 239.14 | 0.1628    | 240.14 |
| 49  | 0.1447 | 239.60 | 0.1089 | 240.45 | 0.1628    | 239.98 |
| 50  | 0.1447 | 240.10 | 0.1090 | 239.91 | 0.1627    | 239.21 |
| 58  | 0.1448 | 240.05 | 0.1090 | 239.78 | 0.1628    | 239.76 |
| 59  | 0.1447 | 239.75 | 0.1090 | 239.84 | 0.1629    | 239.63 |
| 60  | 0.1448 | 240.42 | 0.1089 | 239.14 | 0.1628    | 240.03 |
| 68  | 0.1448 | 239.18 | 0.1092 | 242.78 | 0.1629    | 239.61 |
| 69  | 0.1448 | 238.60 | 0.1090 | 239.77 | 0.1628    | 239.85 |
| 70  | 0.1448 | 239.73 | 0.1090 | 239.59 | 0.1628    | 239.73 |
| 78  | 0.1447 | 239.41 | 0.1090 | 239.74 | 0.1628    | 239.76 |
| 79  | 0.1448 | 239.18 | 0.1091 | 239.84 | 0.1628    | 239.55 |
| 80  | 0.1448 | 239.64 | 0.1090 | 240.53 | 0.1628    | 239.59 |
| 88  | 0.1449 | 240.05 | 0.1092 | 239.55 | 0.1630    | 239.37 |
| 89  | 0.1449 | 239.57 | 0.1091 | 240.15 | 0.1629    | 239.47 |
| 90  | 0.1449 | 239.30 | 0.1091 | 239.68 | 0.1629    | 239.63 |
| 98  | 0.1450 | 239.64 | 0.1091 | 239.52 | 0.1630    | 240.06 |
| 99  | 0.1450 | 239.32 | 0.1092 | 240.17 | 0.1630    | 239.01 |
| 100 | 0.1449 | 239.41 | 0.1091 | 240.31 | 0.1629    | 238.47 |
| 108 | 0.1449 | 238.91 | 0.1091 | 239.69 | 0.1630    | 240.37 |
| 109 | 0.1450 | 239.11 | 0.1092 | 239.27 | 0.1631    | 239.62 |
| 110 | 0.1450 | 239.29 | 0.1092 | 239.66 | 0.1630    | 240.00 |
| 118 | 0.1451 | 239.45 | 0.1092 | 238.75 | 0.1631    | 240.20 |
| 119 | 0.1451 | 239.51 | 0.1092 | 239.21 | 0.1632    | 239.30 |
| 120 | 0.1451 | 240.04 | 0.1093 | 239.22 | 0.1632    | 238.96 |
|     |        |        | •      |        |           |        |

Subject: 1Board: StraightPickup: Centre

|     | Deltoid |        | Trapezius |        | -Infraspinatus |        |
|-----|---------|--------|-----------|--------|----------------|--------|
| Min | RMS     | MPF    | RMS       | MPF    | RMS            | MPF    |
|     |         |        |           |        |                |        |
| 8   | 0.1277  | 258.40 | 0.1072    | 304.80 | 0.1518         | 258.79 |
| 9   | 0.1282  | 261.01 | 0.1089    | 328.88 | 0.1519         | 258.05 |
| 10  | 0.1287  | 262.97 | 0.1146    | 467.71 | 0.1527         | 257.04 |
| 18  | 0.1300  | 265.49 | 0.1096    | 347.67 | 0.1527         | 257.21 |
| 19  | 0.1316  | 301.65 | 0.1099    | 373.82 | 0.1543         | 276.38 |
| 20  | 0.1311  | 287.70 | 0.1087    | 336.86 | 0.1530         | 253.11 |
| 28  | 0.1321  | 278.96 | 0.1055    | 254.72 | 0.1536         | 261.40 |
| 29  | 0.1318  | 271.61 | 0.1051    | 255.92 | 0.1534         | 252.24 |
| 30  | 0.1319  | 271.78 | 0.1050    | 250.98 | 0.1542         | 260.60 |
| 38  | 0.1337  | 283.61 | 0.1059    | 262.36 | 0.1544         | 265.06 |
| 39  | 0.1343  | 304.19 | 0.1063    | 276.02 | 0.1551         | 264.69 |
| 40  | 0.1340  | 287.33 | 0.1056    | 251.17 | 0.1547         | 262.79 |
| 48  | 0.1353  | 295.61 | 0.1060    | 266.78 | 0.1552         | 265.19 |
| 49  | 0.1347  | 279.97 | 0.1058    | 263.50 | 0.1556         | 263.23 |
| 50  | 0.1350  | 285.17 | 0.1055    | 265.35 | 0.1547         | 255.47 |
| 58  | 0.1358  | 285.06 | 0.1047    | 252.00 | 0.1553         | 256.29 |
| 59  | 0.1357  | 275.88 | 0.1053    | 257.38 | 0.1552         | 251.64 |
| 60  | 0.1363  | 282.60 | 0.1059    | 263.84 | 0.1554         | 264.11 |
| 68  | 0.1360  | 275.20 | 0.1055    | 260.38 | 0.1561         | 251.02 |
| 69  | 0.1383  | 305.61 | 0.1059    | 263.11 | 0.1563         | 258.45 |
| 70  | 0.1370  | 284.65 | 0.1057    | 267.95 | 0.1558         | 256.70 |
| 78  | 0.1381  | 298.88 | 0.1052    | 265.92 | 0.1564         | 257.29 |
| 79  | 0.1367  | 277.34 | 0.1053    | 256.95 | 0.1565         | 252.39 |
| 80  | 0.1370  | 277.53 | 0.1054    | 254.80 | 0.1563         | 251.11 |
| 88  | 0.1395  | 309.86 | 0.1062    | 275.25 | 0.1565         | 260.52 |
| 89  | 0.1377  | 281.32 | 0.1059    | 253.14 | 0.1566         | 253.62 |
| 90  | 0.1388  | 293.72 | 0.1053    | 252.95 | 0.1566         | 257.52 |
| 98  | 0.1393  | 292.26 | 0.1060    | 265.61 | 0.1570         | 262.74 |
| 99  | 0.1389  | 299.32 | 0.1058    | 275.00 | 0.1574         |        |
| 100 | 0.1392  | 291.81 | 0.1056    | 261.42 | 0.1572         | 268.95 |
| 108 | 0.1403  | 301.11 | 0.1059    | 265.84 | 0.1578         | 263.35 |
| 109 | 0.1393  | 285.79 | 0.1054    | 260.76 | 0.1572         | 262.52 |
| 110 | 0.1398  | 289.19 | 0.1058    | 258.42 | 0.1574         | 254.78 |
| 118 | 0.1398  | 291.66 | 0.1060    | 270.35 | 0.1578         | 257.14 |
| 119 | 0.1398  | 293.67 | 0.1064    | 272.96 | 0.1576         |        |
| 120 | 0.1403  | 296.70 | 0.1064    | 270.15 | 0.1575         | 264.60 |
|     |         |        |           |        |                |        |

|     | Delto  | id     | Trapez | ius    | -Infraspi | natus  |
|-----|--------|--------|--------|--------|-----------|--------|
| Min | RMS    | MPF    | RMS    | MPF    | RMS       | MPF    |
|     |        |        |        |        |           |        |
| 8   | 0.1440 | 246.70 | 0.1104 | 240.09 | 0.1627    | 239.27 |
| 9   | 0.1439 | 247.47 | 0.1104 | 239.33 | 0.1627    | 239.42 |
| 10  | 0.1441 | 250.58 | 0.1103 | 239.78 | 0.1628    | 239.32 |
| 18  | 0.1446 | 259.24 | 0.1103 | 239.93 | 0.1627    | 239.29 |
| 19  | 0.1447 | 255.53 | 0.1104 | 239.51 | 0.1627    | 239.75 |
| 20  | 0.1448 | 260.76 | 0.1103 | 240.14 | 0.1627    | 239.26 |
| 28  | 0.1456 | 268.44 | 0.1103 | 241.15 | 0.1627    | 239.59 |
| 29  | 0.1448 | 266.26 | 0.1103 | 240.94 | 0.1626    | 239.37 |
| 30  | 0.1447 | 263.70 | 0.1104 | 241.83 | 0.1628    | 239.91 |
| 38  | 0.1466 | 302.92 | 0.1105 | 242.75 | 0.1628    | 239.40 |
| 39  | 0.1464 | 296.34 | 0.1107 | 245.15 | 0.1626    | 239.50 |
| 40  | 0.1471 | 309.63 | 0.1107 | 243.86 | 0.1628    | 238.86 |
| 48  | 0.1471 | 302.17 | 0.1107 | 248.84 | 0.1627    | 239.81 |
| 49  | 0.1483 | 330.80 | 0.1106 | 249.66 | 0.1627    | 239.80 |
| 50  | 0.1476 | 313.04 | 0.1106 | 247.05 | 0.1626    | 240.58 |
| 58  | 0.1492 | 342.59 | 0.1106 | 244.80 | 0.1627    | 240.27 |
| 59  | 0.1522 | 378.59 | 0.1108 | 255.53 | 0.1626    | 240.57 |
| 60  | 0.1512 | 367.71 | 0.1108 | 251.95 | 0.1627    | 240.43 |
| 68  | 0.1565 | 450.80 | 0.1108 | 256.49 | 0.1627    | 240.17 |
| 69  | 0.1542 | 409.45 | 0.1105 | 253.50 | 0.1628    | 241.98 |
| 70  | 0.1550 | 422.89 | 0.1108 | 252.85 | 0.1627    | 240.10 |
| 78  | 0.1575 | 481.33 | 0.1110 | 263.31 | 0.1627    | 243.99 |
| 79  | 0.1534 | 420.73 | 0.1114 | 266.39 | 0.1628    | 244.18 |
| 80  | 0.1543 | 427.37 | 0.1112 | 268.51 | 0.1629    | 243.58 |
| 88  | 0.1551 | 432.80 | 0.1109 | 274.23 | 0.1634    | 251.88 |
| 89  | 0.1609 | 500.02 | 0.1117 | 293.09 | 0.1644    | 262.39 |
| 90  | 0.1625 | 537.80 | 0.1108 | 250.07 | 0.1649    | 279.22 |
| 98  | 0.1553 | 433.37 | 0.1108 | 257.60 | 0.1647    | 268.75 |
| 99  |        | 466.42 | 0.1108 | 268.24 | 0.1669    | 310.37 |
| 100 | 0.1586 | 472.87 | 0.1106 | 266.20 | 0.1670    | 320.18 |
| 108 | 0.1619 | 538.71 | 0.1126 | 284.97 |           |        |
| 109 | 0.1641 | 552.84 | 0.1123 | 293.88 |           |        |
| 110 | 0.1632 | 559.62 | 0.1127 | 305.36 |           |        |
| 118 | 0.1627 | 538.89 | 0.1112 | 277.34 |           |        |
| 119 | 0.1619 | 530.08 | 0.1107 | 257.25 |           |        |
| 120 | 0.1742 | 716.05 | 0.1111 | 266.60 |           |        |
|     |        |        |        |        |           |        |

|     | Deltoid |        | Trapezius |        | -Infraspinatus |        |
|-----|---------|--------|-----------|--------|----------------|--------|
| Min | RMS     | MPF    | RMS       | MPF    | RMS            | MPF    |
|     |         |        |           |        |                |        |
| 8   |         |        | 0.1120    | 265.32 |                |        |
| 9   |         |        | 0.1125    | 269.23 |                |        |
| 10  |         |        | 0.1120    | 255.99 |                |        |
| 18  | 0.1432  | 264.57 | 0.1114    | 249.36 |                |        |
| 19  | C.1434  | 257.47 | 0.1120    | 255.54 |                |        |
| 20  | 0.1443  | 269.53 | 0.1122    |        |                |        |
| 28  | 0.1435  | 258.22 | 0.1121    | 271.02 | 0.1637         | 253.83 |
| 29  | 0.1434  | 255.01 | 0.1119    | 256.03 | 0.1633         | 248.47 |
| 30  | 0.1431  | 254.32 | 0.1121    | 253.55 | 0.1627         | 245.70 |
| 38  | 0.1439  | 260.18 | 0.1114    | 259.13 | 0.1632         | 245.04 |
| 39  | 0.1442  | 265.29 | 0.1121    |        | 0.1631         | 247.37 |
| 40  | 0.1434  | 258.67 | 0.1116    | 265.57 | 0.1629         | 245.80 |
| 48  | 0.1455  | 274.64 | 0.1136    | 298.41 | 0.1626         | 247.17 |
| 49  | 0.1447  | 270.11 | 0.1127    | 293.68 | 0.1631         | 244.22 |
| 50  | 0.1445  | 280.50 | 0.1128    | 289.75 | 0.1633         | 246.92 |
| 58  | 0.1443  | 260.44 | 0.1125    |        | 0.1633         |        |
| 59  | 0.1442  | 271.61 | 0.1120    | 282.11 | 0.1631         |        |
| 60  | 0.1447  | 258.30 | 0.1116    | 261.16 | 0.1627         | 241.41 |
| 68  | 0.1447  | 265.25 | 0.1114    | 255.37 | 0.1633         | 244.45 |
| 69  | 0.1449  | 260.70 | 0.1122    | 278.76 | 0.1634         | 245.74 |
| 70  | 0.1447  | 271.64 | 0.1123    | 292.03 | 0.1633         |        |
| 78  | 0.1446  | 261.22 | 0.1127    | 280.95 | 0.1632         | 246.95 |
| 79  | 0.1443  | 255.58 | 0.1117    | 265.32 | 0.1631         | 240.88 |
| 80  | 0.1438  | 254.81 | 0.1115    | 259.59 | 0.1634         | 245.41 |
| 88  | 0.1443  | 250.94 | 0.1114    | 261.90 | 0.1633         | 244.14 |
| 89  | 0.1448  | 259.14 | 0.1124    | 275.43 | 0.1629         |        |
| 90  | 0.1447  | 260.81 | 0.1119    | 269.73 | 0.1632         | 244.74 |
| 98  | 0.1441  | 256.03 | 0.1122    | 269.70 | 0.1634         | 244.09 |
| 99  | 0.1447  | 251.74 | 0.1113    | 255.00 | 0.1634         | 244.84 |
| 100 | 0.1454  | 267.39 | 0.1121    | 261.99 | 0.1634         | 246.32 |
| 108 | 0.1447  | 257.18 | 0.1118    | 277.97 | 0.1633         | 245.73 |
| 109 | 0.1451  | 263.83 | 0.1125    | 285.90 | 0.1636         | 245.97 |
| 110 | 0.1463  | 275.99 | 0.1121    | 279.36 | 0.1636         | 243.73 |
| 118 | 0.1454  | 266.80 | 0.1123    | 285.62 | 0.1636         | 242.97 |
| 119 | 0.1450  | 270.80 | 0.1117    | 270.50 | 0.1633         | 242.75 |
| 120 | 0.1449  | 254.48 | 0.1109    | 256.06 | 0.1634         | 246.20 |
|     |         |        |           |        |                |        |

Subject: 1 Board: Inclined Pickup: Opposite

| Deltoid |        | Trapezius |        | -Infraspinatus |        |        |
|---------|--------|-----------|--------|----------------|--------|--------|
| Min     | RMS    | MPF       | RMS    | MPF            | RMS    | MPF    |
|         |        |           |        |                |        |        |
| 8       | 0.1236 | 241.22    | 0.0988 | 250.29         | 0.1457 | 240.47 |
| 9       | 0.1240 | 240.67    | 0.0992 | 252.33         | 0.1460 | 240.27 |
| 10      | 0.1245 | 241.09    | 0.0992 | 255.13         | 0.1463 | 239.89 |
| 18      | 0.1271 | 239.67    | 0.0995 | 249.44         | 0.1479 | 238.91 |
| 19      | 0.1274 | 239.58    | 0.0998 | 256.01         | 0.1480 | 239.59 |
| 20      | 0.1277 | 240.92    | 0.0999 | 267.37         | 0.1482 | 240.04 |
| 28      | 0.1296 | 240.19    | 0.0995 | 253.72         | 0.1492 | 239.83 |
| 29      | 0.1298 | 240.91    | 0.0999 | 258.32         | 0.1493 | 239.33 |
| 30      | 0.1300 | 240.20    | 0.1000 | 259.73         | 0.1493 | 239.38 |
| 38      | 0.1313 | 239.91    | 0.1002 | 252.54         | 0.1501 | 240.19 |
| 39      | 0.1315 | 240.62    | 0.1003 | 261.34         | 0.1502 | 239.84 |
| 40      | 0.1317 | 239.51    | 0.0997 | 246.96         | 0.1503 | 239.59 |
| 48      | 0.1328 | 239.90    | 0.0995 | 247.94         | 0.1508 | 239.57 |
| 49      | 0.1330 | 240.34    | 0.0998 | 252.32         | 0.1509 | 240.43 |
| 50      | 0.1331 | 239.69    | 0.0997 | 251.90         | 0.1511 | 240.04 |
| 58      | 0.1342 | 240.30    | 0.0999 | 263.80         | 0.1516 | 240.10 |
| 59      | 0.1343 | 239.64    | 0.1001 | 260.25         | 0.1515 | 240.11 |
| 60      | 0.1344 | 239.82    | 0.0999 | 259.23         | 0.1516 | 239.72 |
| 68      | 0.1353 | 240.11    | 0.1002 | 258.98         | 0.1520 | 238.74 |
| 69      | 0.1354 | 240.35    | 0.0999 | 261.96         | 0.1521 | 239.29 |
| 70      | 0.1355 | 240.10    | 0.1002 | 260.50         | 0.1522 | 240.11 |
| 78      | 0.1363 | 239.63    | 0.1001 | 253.02         | 0.1526 | 239.70 |
| 79      | 0.1363 | 240.12    | 0.0997 | 260.68         | 0.1525 | 239.76 |
| 80      | 0.1364 | 239.96    | 0.1002 | 257.73         | 0.1526 | 239.56 |
| 88      | 0.1371 | 240.74    | 0.0998 | 255.13         | 0.1530 | 239.63 |
| 89      | 0.1372 | 241.10    | 0.1003 | 264.60         | 0.1531 | 240.17 |
| 90      | 0.1373 | 240.16    | 0.1000 | 261.61         | 0.1531 | 239.59 |
| 98      | 0.1378 | 239.25    | 0.1004 | 258.54         | 0.1534 | 239.86 |
| 99      | 0.1384 | 249.66    | 0.1005 | 271.89         | 0.1534 | 239.21 |
| 100     | 0.1380 | 240.71    | 0.1011 | 272.29         | 0.1535 | 239.27 |
| 108     | 0.1384 | 240.37    | 0.1008 | 272.65         | 0.1537 | 240.37 |
| 109     | 0.1384 | 240.11    | 0.1000 | 265.70         | 0.1538 | 239.90 |
| 110     | 0.1386 | 240.77    | 0.1006 | 279.47         | 0.1538 | 239.93 |
| 118     | 0.1390 | 239.38    | 0.1001 | 262.92         | 0.1540 | 240.06 |
| 119     | 0.1390 | 239.75    | 0.1006 | 269.18         | 0.1540 | 239.29 |
| 120     | 0.1390 | 240.15    | 0.1005 | 289.12         | 0.1541 | 240.22 |

· · · · · ·

|     | Deltoid |        | Trapezius |        | -Infraspinatus |        |
|-----|---------|--------|-----------|--------|----------------|--------|
| Min | RMS     | MPF    | RMS       | MPF    | RMS            | MPF    |
| ••• |         |        |           |        |                |        |
| 8   | 0.1309  | 322.43 | 0.1038    | 240.95 | 0.1501         | 239.50 |
| 9   | 0.1288  | 309.19 | 0.1038    | 240.52 | 0.1502         | 239.53 |
| 10  | 0.1286  | 250.25 | 0.1039    | 241.02 | 0.1502         | 239.68 |
| 18  | 0.1315  | 279.50 | 0.1039    | 240.64 | 0.1509         | 239.32 |
| 19  | 0.1303  | 308.85 | 0.1037    | 239.52 | 0.1510         | 239.15 |
| 20  | 0.1308  | 224.70 | 0.1040    | 239.98 | 0.1511         | 240.39 |
| 28  | 0.1290  | 309.75 | 0.1039    | 240.73 | 0.1517         | 238.92 |
| 29  | 0.1311  | 302.23 | 0.1039    | 241.20 | 0.1518         | 239.93 |
| 30  | 0.1341  | 293.07 | 0.1039    | 241.06 | 0.1518         | 239.22 |
| 38  | 0.1331  | 266.71 | 0.1037    | 241.48 | 0.1524         | 239.51 |
| 39  | 0.1332  | 287.96 | 0.1038    | 242.18 | 0.1525         | 239.98 |
| 40  | 0.1327  | 269.83 | 0.1041    | 247.02 | 0.1525         | 239.63 |
| 48  | 0.1319  | 288.53 | 0.1039    | 245.01 | 0.1530         | 239.75 |
| 49  | 0.1347  | 276.85 | 0.1038    | 246.99 | 0.1531         | 239.65 |
| 50  | 0.1342  | 283.03 | 0.1041    | 243.22 | 0.1533         | 239.07 |
| 58  | 0.1391  | 279.30 | 0.1045    | 253.47 | 0.1537         | 240.24 |
| 59  | 0.1361  | 260.16 | 0.1044    | 258.70 | 0.1536         | 239.56 |
| 60  | 0.1359  | 279.30 | 0.1045    | 253.07 | 0.1538         | 240.52 |
| 68  | 0.1385  | 279.89 | 0.1043    | 250.18 | 0.1541         | 239.56 |
| 69  | 0.1384  | 315.82 | 0.1044    | 264.27 | 0.1541         | 239.85 |
| 70  | 0.1377  | 286.69 | 0.1042    | 252.24 | 0.1541         | 239.99 |
| 78  | 0.1364  | 283.12 | 0.1045    | 251.87 | 0.1545         | 242.41 |
| 79  | 0.1319  | 288.68 | 0.1044    | 251.93 | 0.1546         | 240.57 |
| 80  | 0.1375  | 298.71 | 0.1040    | 245.48 | 0.1546         | 239.34 |
| 88  | 0.1429  | 313.67 | 0.1045    | 256.25 | 0.1552         | 242.47 |
| 89  | 0.1369  | 332.99 | 0.1048    | 259.12 | 0.1550         | 241.13 |
| 90  | 0.1382  | 310.98 | 0.1052    | 265.25 | 0.1549         | 241.76 |
| 98  | 0.1406  | 315.48 | 0.1045    | 254.95 | 0.1556         | 244.07 |
| 99  | 0.1402  | 329.55 | 0.1049    | 258.77 | 0.1554         | 243.06 |
| 100 | 0.1398  | 323.44 | 0.1058    | 276.82 | 0.1559         | 244.95 |
| 108 | 0.1428  | 344.67 | 0.1044    | 251.12 | 0.1556         | 245.09 |
| 109 | 0.1440  | 335.56 | 0.1053    | 271.96 | 0.1561         | 246.86 |
| 110 | 0.1442  | 311.75 | 0.1048    | 254.58 | 0.1560         | 242.46 |
| 118 | 0.1418  | 330.66 | 0.1047    | 256.04 | 0.1562         | 246.44 |
| 119 | 0.1402  | 364.35 | 0.1048    | 271.73 | 0.1563         | 247.80 |
| 120 | 0.1442  | 358.48 | 0.1045    | 257.81 | 0.1563         | 248.62 |

Subject: 2 Board: Straight Pickup: Opposite

|     | Deltoid |        | Trapez | Trapezius |        | -Infraspinatus |  |
|-----|---------|--------|--------|-----------|--------|----------------|--|
| Min | RMS     | MPF    | RMS    | MPF       | RMS    | MPF            |  |
|     |         |        |        |           |        |                |  |
| 8   | 0.1421  | 262.40 | 0.1031 | 239.65    | 0.1571 | 239.80         |  |
| 9   | 0.1424  | 265.65 | 0.1030 | 240.18    | 0.1571 | 239.76         |  |
| 10  | 0.1422  | 261.98 | 0.1030 | 239.33    | 0.1570 | 239.05         |  |
| 18  | 0.1433  | 276.87 | 0.1031 | 238.83    | 0.1571 | 239.90         |  |
| 19  | 0.1426  | 273.50 | 0.1032 | 239.91    | 0.1571 | 240.23         |  |
| 20  | 0.1427  | 269.69 | 0.1031 | 239.38    | 0.1570 | 239.90         |  |
| 28  | 0.1424  | 258.77 | 0.1031 | 240.63    | 0.1572 | 239.58         |  |
| 29  | 0.1420  | 258.39 | 0.1031 | 240.02    | 0.1572 | 239.85         |  |
| 30  | 0.1426  | 270.09 | 0.1031 | 239.47    | 0.1572 | 239.74         |  |
| 38  | 0.1426  | 264.06 | 0.1033 | 239.38    | 0.1573 | 239.62         |  |
| 39  | 0.1423  | 260.75 | 0.1032 | 239.71    | 0.1573 | 239.25         |  |
| 40  | 0.1427  | 265.70 | 0.1032 | 240.53    | 0.1573 | 239.65         |  |
| 48  | 0.1424  | 256.89 | 0.1032 | 240.40    | 0.1574 | 240.60         |  |
| 49  | 0.1434  | 262.87 | 0.1033 | 239.47    | 0.1574 | 240.86         |  |
| 50  | 0.1424  | 255.85 | 0.1033 | 239.32    | 0.1574 | 240.06         |  |
| 58  | 0.1426  | 264.67 | 0.1033 | 239.99    | 0.1575 | 240.04         |  |
| 59  | 0.1429  | 268.55 | 0.1034 | 239.82    | 0.1575 | 239.79         |  |
| 60  | 0.1432  | 268.85 | 0.1033 | 240.42    | 0.1575 | 240.56         |  |
| 68  | 0.1431  | 264.77 | 0.1036 | 238.99    | 0.1577 | 241.23         |  |
| 69  | 0.1431  | 262.31 | 0.1034 | 239.81    | 0.1575 | 240.50         |  |
| 70  | 0.1431  | 261.64 | 0.1035 | 238.96    | 0.1577 | 240.25         |  |
| 78  | 0.1433  | 270.72 | 0.1034 | 240.05    | 0.1576 | 240.44         |  |
| 79  | 0.1438  | 271.73 | 0.1034 | 240.62    | 0.1578 | 240.39         |  |
| 80  | 0.1432  | 265.76 | 0.1035 | 240.19    | 0.1577 | 240.52         |  |
| 88  | 0.1433  | 264.04 | 0.1035 | 240.78    | 0.1580 | 242.41         |  |
| 89  | 0.1436  | 264.26 | 0.1036 | 240.71    | 0.1579 | 241.70         |  |
| 90  | 0.1440  | 267.44 | 0.1036 | 240.76    | 0.1579 | 241.75         |  |
| 98  | 0.1435  | 260.17 | 0.1035 | 240.74    | 0.1580 | 240.13         |  |
| 99  | 0.1433  | 257.39 | 0.1036 | 239.99    |        |                |  |
| 100 | 0.1439  | 271.12 | 0.1036 | 241.14    |        |                |  |
| 108 | 0.1434  | 262.40 | 0.1036 | 240.64    | 0.1581 | 238.99         |  |
| 109 | 0.1434  | 258.32 | 0.1037 | 240.66    | 0.1581 | 239.18         |  |
| 110 | 0.1433  | 261.88 | 0.1036 | 240.93    | 0.1581 | 238.95         |  |
| 118 | 0.1437  | 258.72 | 0.1037 | 239.87    | 0.1581 | 239.20         |  |
| 119 | 0.1441  | 262.53 | 0.1037 | 239.96    | 0.1581 | 240.01         |  |
| 120 | 0.1434  | 257.41 | 0.1037 | 238.63    | 0.1583 | 240.18         |  |
|     |         |        |        |           |        |                |  |

•

|     | Deltoid |        | Trapezius |        | -Infraspinatus |        |
|-----|---------|--------|-----------|--------|----------------|--------|
| Min | RMS     | MPF    | RMS       | MPF    | RMS            | MPF    |
|     |         |        |           |        |                |        |
| 8   | 0.1339  | 239.47 | 0.1047    | 240.21 | 0.1544         | 240.26 |
| 9   | 0.1339  | 239.86 | 0.1046    | 241.06 | 0.1544         | 239.19 |
| 10  | 0.1340  | 240.51 | 0.1047    | 240.18 | 0.1545         | 239.61 |
| 18  | 0.1343  | 239.66 | 0.1046    | 239.64 | 0.1546         | 240.06 |
| 19  | 0.1345  | 240.10 | 0.1046    | 241.56 | 0.1548         | 240.42 |
| 20  | 0.1345  | 239.55 | 0.1047    | 239.96 | 0.1549         | 239.45 |
| 28  | 0.1349  | 240.02 | 0.1047    | 240.41 | 0.1550         | 239.73 |
| 29  | 0.1351  | 239.27 | 0.1047    | 240.31 | 0.1551         | 238.95 |
| 30  | 0.1351  | 240.74 | 0.1046    | 240.76 | 0.1551         | 239.71 |
| 38  | 0.1355  | 239.03 | 0.1047    | 240.04 | 0.1553         | 238.91 |
| 39  | 0.1357  | 240.06 | 0.1046    | 241.16 | 0.1553         | 240.02 |
| 40  | 0.1357  | 239.77 | 0.1047    | 242.54 | 0.1552         | 240.29 |
| 48  | 0.1362  | 240.60 | 0.1047    | 242.05 | 0.1555         | 239.62 |
| 49  | 0.1362  | 239.95 | 0.1047    | 241.70 | 0.1556         | 239.61 |
| 50  | 0.1363  | 240.89 | 0.1047    | 242.14 | 0.1556         | 240.28 |
| 58  | 0.1366  | 240.55 | 0.1046    | 240.97 | 0.1558         | 240.04 |
| 59  | 0.1367  | 239.58 | 0.1046    | 240.96 | 0.1558         | 239.69 |
| 60  | 0.1368  | 239.18 | 0.1047    | 241.80 | 0.1558         | 239.55 |
| 68  | 0.1372  | 240.12 | 0.1048    | 244.62 | 0.1560         | 241.42 |
| 69  | 0.1371  | 240.55 | 0.1047    | 244.33 | 0.1561         | 241.35 |
| 70  | 0.1372  | 240.20 | 0.1049    | 242.15 | 0.1560         | 239.70 |
| 78  | 0.1382  | 254.67 | 0.1045    | 242.81 | 0.1564         | 241.37 |
| 79  | 0.1379  | 245.91 | 0.1047    | 241.07 | 0.1563         | 242.48 |
| 80  | 0.1384  | 255.06 | 0.1047    | 242.33 | 0.1564         | 240.58 |
| 88  | 0.1383  | 245.31 | 0.1048    | 242.56 | 0.1566         | 240.68 |
| 89  | 0.1403  | 282.01 | 0.1049    | 243.14 | 0.1565         | 241.21 |
| 90  | 0.1401  | 283.81 | 0.1048    | 248.07 | 0.1565         | 239.81 |
| 98  | 0.1407  | 280.98 | 0.1049    | 249.51 | 0.1568         | 240.32 |
| 99  | 0.1402  | 267.61 | 0.1049    | 246.55 | 0.1567         | 240.66 |
| 100 | 0.1391  | 254.63 | 0.1047    | 246.50 | 0.1568         | 242.12 |
| 108 | 0.1405  | 279.56 | 0.1050    | 245.81 | 0.1570         | 240.10 |
| 109 | 0.1411  | 276.87 | 0.1053    | 258.48 | 0.1569         | 240.14 |
| 110 | 0.1404  | 263.64 | 0.1049    | 249.34 | 0.1569         | 240.35 |
| 118 | 0.1489  | 413.98 | 0.1052    | 250.78 | 0.1571         | 239.54 |
| 119 | 0.1415  | 286.77 | 0.1051    | 248.53 | 0.1571         | 239.62 |
| 120 | 0.1400  | 255.54 | 0.1050    | 247.61 | 0.1571         | 239.16 |

Subject: 2 Board: V-Shaped Pickup: Opposite

| Min         RMS         MPF         RMS         MPF         RMS         MPF         RMS         MPF           8         0.1520         709.13         0.1112         326.98         0.1518         240.77           9         0.1463         608.64         0.1102         306.73         0.1520         240.36           10         0.1393         495.02         0.1097         304.78         0.1533         239.69           20         0.1334         302.21         0.1114         317.30         0.1536         240.12           28         0.1328         291.96         0.1117         338.24         0.1544         239.99           29         0.1348         319.18         0.1101         290.80         0.1546         240.11           30         0.1339         303.22         0.1108         293.75         0.1547         239.69           29         0.1343         292.59         0.1109         317.79         0.1555         239.49           40         0.1346         284.58         0.1105         295.66         0.1561         239.22           49         0.1354         275.47         0.1105         295.17         0.1562         239.89         |     | Delto  | oid    | Trapez | ius    | -Infraspi | natus  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|--------|--------|--------|-----------|--------|
| 8         0.1520         709.13         0.1112         326.98         0.1518         240.77           9         0.1463         608.64         0.1102         306.73         0.1520         240.37           10         0.1393         495.02         0.1097         304.78         0.1522         240.37           18         0.1341         361.74         0.1104         300.16         0.1533         239.61           19         0.1336         332.36         0.1018         314.51         0.1536         240.12           28         0.1328         291.96         0.1117         338.24         0.1546         240.11           30         0.1339         303.22         0.1108         293.75         0.1547         239.61           38         0.1338         284.13         0.1111         299.18         0.1555         239.47           40         0.1346         284.58         0.1111         303.06         0.1556         239.95           48         0.1354         275.87         0.1105         295.66         0.1562         239.83           50         0.1358         269.35         0.1095         295.17         0.1568         239.72           60   | Min | RMS    | MPF    |        |        |           |        |
| 9         0.1463         608.64         0.1102         306.73         0.1520         240.36           10         0.1393         495.02         0.1097         304.78         0.1522         240.37           18         0.1341         361.74         0.1104         300.16         0.1533         239.61           19         0.1336         332.36         0.1108         314.51         0.1536         240.36           20         0.1334         30.21         0.1117         38.24         0.1544         239.99           29         0.1348         319.18         0.1101         290.80         0.1546         240.11           30         0.1339         303.22         0.1108         293.75         0.1547         239.61           30         0.1334         39.259         0.1109         317.79         0.1555         239.49           40         0.1346         284.58         0.1111         303.06         0.1561         239.22           49         0.1354         275.87         0.1105         295.66         0.1562         239.49           40         0.366         275.45         0.1115         311.71         0.1568         240.11           59     |     |        |        |        |        | _         |        |
| 9         0.1463         608.64         0.1102         306.73         0.1520         240.36           10         0.1393         495.02         0.1097         304.78         0.1522         240.37           18         0.1341         361.74         0.1104         300.16         0.1533         239.61           19         0.1336         332.36         0.1108         314.51         0.1535         239.69           20         0.1334         330.21         0.1114         317.30         0.1534         239.99           29         0.1348         319.18         0.1101         290.80         0.1546         240.11           30         0.1339         303.22         0.1108         293.75         0.1547         239.61           30         0.1343         292.59         0.1109         317.79         0.1555         239.49           40         0.1346         284.58         0.1111         303.06         0.1561         239.24           40         0.1354         275.87         0.1105         295.66         0.1563         239.24           50         0.1358         269.35         0.1095         295.17         0.1562         239.89           51  | 8   | 0.1520 | 709.13 | 0.1112 | 326.98 | 0.1518    | 240.77 |
| 10 $0.1393$ $495.02$ $0.1097$ $304.78$ $0.1522$ $240.37$ $18$ $0.1341$ $361.74$ $0.1104$ $300.16$ $0.1533$ $239.61$ $19$ $0.1336$ $332.36$ $0.1108$ $314.51$ $0.1535$ $239.69$ $20$ $0.1334$ $330.21$ $0.1114$ $317.30$ $0.1536$ $240.12$ $28$ $0.1328$ $291.96$ $0.1117$ $338.24$ $0.1544$ $239.99$ $29$ $0.1348$ $319.18$ $0.1101$ $290.80$ $0.1547$ $239.61$ $30$ $0.1339$ $303.22$ $0.1108$ $293.75$ $0.1547$ $239.61$ $30$ $0.1338$ $284.13$ $0.1111$ $299.18$ $0.1555$ $239.49$ $40$ $0.1346$ $284.58$ $0.1111$ $303.06$ $0.1556$ $239.95$ $48$ $0.1349$ $275.35$ $0.1098$ $280.23$ $0.1561$ $239.22$ $49$ $0.1354$ $275.87$ $0.1105$ $295.66$ $0.1563$ $239.24$ $50$ $0.1358$ $269.35$ $0.1095$ $295.17$ $0.1568$ $239.72$ $60$ $0.1372$ $287.97$ $0.1101$ $310.01$ $0.1569$ $239.89$ $76$ $0.1372$ $287.97$ $0.1101$ $310.01$ $0.1569$ $239.89$ $70$ $0.1377$ $262.30$ $0.1099$ $289.93$ $0.1575$ $239.59$ $70$ $0.1377$ $262.30$ $0.1099$ $289.93$ $0.1575$ $239.59$ $70$ $0.1381$ $266.89$ <t< td=""><td>9</td><td>0.1463</td><td>608.64</td><td>0.1102</td><td>306.73</td><td></td><td></td></t<>                                                                    | 9   | 0.1463 | 608.64 | 0.1102 | 306.73 |           |        |
| 18 $0.1341$ $361.74$ $0.1104$ $300.16$ $0.1533$ $239.61$ 19 $0.1336$ $332.36$ $0.1108$ $314.51$ $0.1535$ $239.69$ 20 $0.1334$ $330.21$ $0.1114$ $317.30$ $0.1536$ $240.12$ 28 $0.1328$ $291.96$ $0.1117$ $338.24$ $0.1544$ $239.99$ 29 $0.1348$ $319.18$ $0.1101$ $290.80$ $0.1547$ $239.61$ 30 $0.1339$ $303.22$ $0.1108$ $293.75$ $0.1547$ $239.61$ 38 $0.1338$ $284.13$ $0.1111$ $299.18$ $0.1555$ $239.49$ 40 $0.1346$ $284.58$ $0.1111$ $303.06$ $0.1556$ $239.95$ 48 $0.1349$ $275.35$ $0.1098$ $280.23$ $0.1561$ $239.22$ 49 $0.1354$ $275.87$ $0.1105$ $295.66$ $0.1563$ $239.24$ 50 $0.1358$ $269.35$ $0.1095$ $295.17$ $0.1568$ $239.72$ 60 $0.1372$ $287.97$ $0.1101$ $310.01$ $0.1569$ $239.89$ 68 $0.1369$ $264.33$ $0.1109$ $287.19$ $0.1568$ $239.43$ 69 $0.1373$ $261.52$ $0.1088$ $265.42$ $0.1575$ $239.43$ 69 $0.1373$ $261.52$ $0.1099$ $289.93$ $0.1575$ $238.99$ 78 $0.1381$ $266.89$ $0.1105$ $319.31$ $0.1580$ $239.54$ 79 $0.1382$ $267.54$ $0.1099$ $304.93$ <t< td=""><td>10</td><td>0.1393</td><td>495.02</td><td>0.1097</td><td>304.78</td><td>0.1522</td><td></td></t<>                                                                           | 10  | 0.1393 | 495.02 | 0.1097 | 304.78 | 0.1522    |        |
| 20         0.1334         330.21         0.1114         317.30         0.1536         240.12           28         0.1328         291.96         0.1117         338.24         0.1544         239.99           29         0.1348         319.18         0.1101         290.80         0.1546         240.11           30         0.1339         303.22         0.1108         293.75         0.1547         239.61           38         0.1343         292.59         0.1109         317.79         0.1555         239.49           40         0.1346         284.58         0.1111         303.06         0.1556         239.95           48         0.1349         275.35         0.1098         280.23         0.1561         239.22           49         0.1354         275.47         0.1105         295.66         0.1562         239.83           58         0.1366         275.45         0.1115         311.71         0.1568         239.72           60         0.1372         287.97         0.1101         310.01         0.1568         239.72           60         0.1372         287.97         0.1101         310.01         0.1568         239.72           60 | 18  | 0.1341 | 361.74 | 0.1104 | 300.16 | 0.1533    | 239.61 |
| 28 $0.1328$ $291.96$ $0.1117$ $338.24$ $0.1544$ $239.99$ $29$ $0.1348$ $319.18$ $0.1101$ $290.80$ $0.1546$ $240.11$ $30$ $0.1339$ $303.22$ $0.1108$ $293.75$ $0.1547$ $239.61$ $38$ $0.1338$ $284.13$ $0.1111$ $299.18$ $0.1555$ $239.67$ $39$ $0.1343$ $292.59$ $0.1109$ $317.79$ $0.1555$ $239.49$ $40$ $0.1346$ $284.58$ $0.1111$ $303.06$ $0.1556$ $239.22$ $49$ $0.1354$ $275.35$ $0.1098$ $280.23$ $0.1561$ $239.22$ $49$ $0.1354$ $275.87$ $0.1105$ $295.66$ $0.1563$ $239.24$ $50$ $0.1358$ $269.35$ $0.1095$ $295.17$ $0.1568$ $239.24$ $50$ $0.1366$ $275.45$ $0.1115$ $311.71$ $0.1568$ $240.11$ $59$ $0.1369$ $268.61$ $0.1099$ $287.19$ $0.1568$ $239.72$ $60$ $0.1372$ $287.97$ $0.1101$ $310.01$ $0.1569$ $239.89$ $68$ $0.1369$ $264.33$ $0.1109$ $289.93$ $0.1575$ $239.59$ $70$ $0.1373$ $261.52$ $0.1088$ $265.42$ $0.1575$ $239.59$ $70$ $0.1381$ $266.89$ $0.1105$ $319.31$ $0.1580$ $239.54$ $79$ $0.1382$ $267.54$ $0.1099$ $249.93$ $0.1579$ $239.70$ $80$ $0.1405$ $277.58$ <t< td=""><td>19</td><td>0.1336</td><td>332.36</td><td>0.1108</td><td>314.51</td><td>0.1535</td><td>239.69</td></t<>                                                       | 19  | 0.1336 | 332.36 | 0.1108 | 314.51 | 0.1535    | 239.69 |
| 29 $0.1348$ $319.18$ $0.1101$ $290.80$ $0.1546$ $240.11$ 30 $0.1339$ $303.22$ $0.1108$ $293.75$ $0.1547$ $239.61$ 38 $0.1338$ $284.13$ $0.1111$ $299.18$ $0.1555$ $239.67$ 39 $0.1343$ $292.59$ $0.1109$ $317.79$ $0.1555$ $239.49$ 40 $0.1346$ $284.58$ $0.1111$ $303.06$ $0.1566$ $239.25$ 48 $0.1349$ $275.35$ $0.1098$ $280.23$ $0.1561$ $239.22$ 49 $0.1354$ $275.87$ $0.1105$ $295.66$ $0.1563$ $239.24$ 50 $0.1358$ $269.35$ $0.1095$ $295.17$ $0.1568$ $239.24$ 50 $0.1366$ $275.45$ $0.1115$ $311.71$ $0.1568$ $240.11$ 59 $0.1369$ $268.61$ $0.1099$ $287.19$ $0.1568$ $239.72$ 60 $0.1372$ $287.97$ $0.1101$ $310.01$ $0.1569$ $239.89$ 68 $0.1369$ $264.33$ $0.1109$ $289.93$ $0.1575$ $238.99$ 70 $0.1377$ $262.30$ $0.1099$ $289.93$ $0.1575$ $239.70$ 80 $0.1383$ $259.79$ $0.1089$ $267.67$ $0.1580$ $239.71$ 80 $0.1383$ $259.79$ $0.1089$ $267.67$ $0.1584$ $239.54$ 90 $0.1404$ $282.38$ $0.1107$ $304.56$ $0.1584$ $239.70$ 88 $0.1405$ $277.58$ $0.1119$ $322.19$ <t< td=""><td>20</td><td>0.1334</td><td>330.21</td><td>0.1114</td><td>317.30</td><td>0.1536</td><td>240.12</td></t<>                                                                     | 20  | 0.1334 | 330.21 | 0.1114 | 317.30 | 0.1536    | 240.12 |
| 30 $0.1339$ $303.22$ $0.1108$ $293.75$ $0.1547$ $239.61$ $38$ $0.1338$ $284.13$ $0.1111$ $299.18$ $0.1555$ $239.67$ $39$ $0.1343$ $292.59$ $0.1109$ $317.79$ $0.1555$ $239.49$ $40$ $0.1346$ $284.58$ $0.1111$ $303.06$ $0.1556$ $239.95$ $48$ $0.1349$ $275.35$ $0.1098$ $280.23$ $0.1561$ $239.22$ $49$ $0.1354$ $275.87$ $0.1105$ $295.66$ $0.1562$ $239.22$ $49$ $0.1358$ $269.35$ $0.1095$ $295.17$ $0.1562$ $239.83$ $58$ $0.1366$ $275.45$ $0.1115$ $311.71$ $0.1568$ $240.11$ $59$ $0.1369$ $268.61$ $0.1099$ $287.19$ $0.1568$ $239.72$ $60$ $0.1372$ $287.97$ $0.1101$ $310.01$ $0.1569$ $239.89$ $68$ $0.1369$ $264.33$ $0.1109$ $286.33$ $0.1575$ $239.59$ $70$ $0.1377$ $262.30$ $0.1099$ $289.93$ $0.1575$ $239.59$ $70$ $0.1381$ $266.89$ $0.1105$ $319.31$ $0.1580$ $239.72$ $80$ $0.1383$ $259.79$ $0.1089$ $267.67$ $0.1580$ $239.70$ $80$ $0.1383$ $259.79$ $0.1089$ $267.67$ $0.1584$ $239.54$ $79$ $0.1383$ $259.79$ $0.1089$ $267.67$ $0.1584$ $239.54$ $89$ $0.1404$ $282.38$ <t< td=""><td>28</td><td>0.1328</td><td>291.96</td><td>0.1117</td><td>338.24</td><td>0.1544</td><td>239.99</td></t<>                                                       | 28  | 0.1328 | 291.96 | 0.1117 | 338.24 | 0.1544    | 239.99 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29  |        | 319.18 | 0.1101 | 290.80 | 0.1546    | 240.11 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |        | 303.22 | 0.1108 | 293.75 | 0.1547    | 239.61 |
| 400.1346284.580.1111303.060.1556239.95480.1349275.350.1098280.230.1561239.22490.1354275.870.1105295.660.1563239.24500.1358269.350.1095295.170.1562239.83580.1366275.450.1115311.710.1568240.11590.1369268.610.1099287.190.1568239.72600.1372287.970.1101310.010.1569239.89680.1369264.330.1109296.330.1574239.43690.1373261.520.1088265.420.1575239.59700.1377262.300.1099289.930.1575238.99780.1381266.890.1105319.310.1580239.54790.1382267.540.1099304.930.1579239.70800.1383259.790.1089267.670.1584239.54900.1400288.540.1111337.140.1585239.70980.1402270.630.1108293.380.1588239.15990.1401270.040.1102303.240.1588239.15990.1401270.660.1108293.380.1588239.691080.1414279.060.1105307.190.1591240.361090.1407268.320.1100<                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 0.1338 |        | 0.1111 | 299.18 | 0.1555    | 239.67 |
| 480.1349275.350.1098280.230.1561239.22490.1354275.870.1105295.660.1563239.24500.1358269.350.1095295.170.1562239.83580.1366275.450.1115311.710.1568240.11590.1369268.610.1099287.190.1568239.72600.1372287.970.1101310.010.1569239.89680.1369264.330.1109296.330.1574239.43690.1373261.520.1088265.420.1575238.99700.1377262.300.1099289.930.1575238.99780.1381266.890.1105319.310.1580239.54790.1382267.540.1099304.930.1579239.70800.1383259.790.1089267.670.1584239.54900.1400288.540.1111337.140.1585239.70980.1402270.630.1108293.380.1588239.15990.1401270.040.1102303.240.1588239.691080.1414279.060.1105307.190.1581239.691080.1414279.060.1105307.190.1591240.361090.1407268.320.1100296.520.1593239.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 0.1343 | 292.59 | 0.1109 | 317.79 | 0.1555    | 239.49 |
| 490.1354275.870.1105295.660.1563239.24500.1358269.350.1095295.170.1562239.83580.1366275.450.1115311.710.1568240.11590.1369268.610.1099287.190.1568239.72600.1372287.970.1101310.010.1569239.89680.1369264.330.1109296.330.1574239.43690.1373261.520.1088265.420.1575239.59700.1377262.300.1099289.930.1575238.99780.1381266.890.1105319.310.1580239.54790.1382267.540.1099304.930.1579239.70800.1383259.790.1089267.670.1580239.54800.1405277.580.1119322.190.1584239.54900.1404282.380.1107304.560.1584239.70980.1402270.630.1108293.380.1588239.15990.1401270.040.1102303.240.1588239.15990.1401270.040.1105307.190.1588239.691080.1414279.060.1105307.190.1591240.361090.1407268.320.1100296.520.1593239.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | 0.1346 | 284.58 | 0.1111 | 303.06 | 0.1556    | 239.95 |
| 50 $0.1358$ $269.35$ $0.1095$ $295.17$ $0.1562$ $239.83$ $58$ $0.1366$ $275.45$ $0.1115$ $311.71$ $0.1568$ $240.11$ $59$ $0.1369$ $268.61$ $0.1099$ $287.19$ $0.1568$ $239.72$ $60$ $0.1372$ $287.97$ $0.1101$ $310.01$ $0.1569$ $239.89$ $68$ $0.1369$ $264.33$ $0.1109$ $296.33$ $0.1574$ $239.43$ $69$ $0.1373$ $261.52$ $0.1088$ $265.42$ $0.1575$ $239.59$ $70$ $0.1377$ $262.30$ $0.1099$ $289.93$ $0.1575$ $238.99$ $78$ $0.1381$ $266.89$ $0.1105$ $319.31$ $0.1580$ $239.54$ $79$ $0.1382$ $267.54$ $0.1099$ $304.93$ $0.1579$ $239.70$ $80$ $0.1383$ $259.79$ $0.1089$ $267.67$ $0.1580$ $239.67$ $80$ $0.1383$ $259.79$ $0.1089$ $267.67$ $0.1584$ $239.54$ $90$ $0.1404$ $282.38$ $0.1107$ $304.56$ $0.1584$ $239.84$ $90$ $0.1404$ $28.54$ $0.1107$ $304.56$ $0.1584$ $239.70$ $98$ $0.1402$ $270.63$ $0.1108$ $293.38$ $0.1588$ $239.15$ $99$ $0.1401$ $270.04$ $0.1102$ $303.24$ $0.1588$ $239.15$ $99$ $0.1401$ $270.66$ $0.1083$ $246.03$ $0.1588$ $239.69$ $108$ $0.1414$ $279.06$ <t< td=""><td>48</td><td>0.1349</td><td>275.35</td><td>0.1098</td><td>280.23</td><td>0.1561</td><td>239.22</td></t<>                                                       | 48  | 0.1349 | 275.35 | 0.1098 | 280.23 | 0.1561    | 239.22 |
| 580.1366275.450.1115311.710.1568240.11590.1369268.610.1099287.190.1568239.72600.1372287.970.1101310.010.1569239.89680.1369264.330.1109296.330.1574239.43690.1373261.520.1088265.420.1575239.59700.1377262.300.1099289.930.1575238.99780.1381266.890.1105319.310.1580239.54790.1382267.540.1099304.930.1579239.70800.1383259.790.1089267.670.1580239.54890.1404282.380.1107304.560.1584239.54900.1400288.540.1111337.140.1585239.70980.1402270.630.1108293.380.1588239.15990.1401270.040.1102303.240.1588239.15900.1401270.660.1083246.030.1588239.691080.1414279.060.1105307.190.1591240.361090.1407268.320.1100296.520.1593239.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |        | 275.87 | 0.1105 | 295.66 | 0.1563    | 239.24 |
| 590.1369268.610.1099287.190.1568239.72600.1372287.970.1101310.010.1569239.89680.1369264.330.1109296.330.1574239.43690.1373261.520.1088265.420.1575239.59700.1377262.300.1099289.930.1575238.99780.1381266.890.1105319.310.1580239.54790.1382267.540.1099304.930.1579239.70800.1383259.790.1089267.670.1580239.54800.1405277.580.1119322.190.1584239.54800.1400288.540.1111337.140.1585239.70980.1402270.630.1108293.380.1588239.15990.1401270.040.1102303.240.1588239.691000.1397256.050.1083246.030.1588239.691080.1414279.060.1105307.190.1591240.361090.1407268.320.1100296.520.1593239.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |        | 269.35 | 0.1095 | 295.17 | 0.1562    | 239.83 |
| 600.1372287.970.1101310.010.1569239.89680.1369264.330.1109296.330.1574239.43690.1373261.520.1088265.420.1575239.59700.1377262.300.1099289.930.1575238.99780.1381266.890.1105319.310.1580239.54790.1382267.540.1099304.930.1579239.70800.1383259.790.1089267.670.1580239.54800.1405277.580.1119322.190.1584239.54890.1404282.380.1107304.560.1584239.84900.1400288.540.1111337.140.1585239.70980.1402270.630.1108293.380.1588239.15990.1401270.040.1102303.240.1588240.111000.1397256.050.1083246.030.1588239.691080.1414279.060.1105307.190.1591240.361090.1407268.320.1100296.520.1593239.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |        | 275.45 | 0.1115 | 311.71 | 0.1568    | 240.11 |
| 680.1369264.330.1109296.330.1574239.43690.1373261.520.1088265.420.1575239.59700.1377262.300.1099289.930.1575238.99780.1381266.890.1105319.310.1580239.54790.1382267.540.1099304.930.1579239.70800.1383259.790.1089267.670.1580239.54880.1405277.580.1119322.190.1584239.54890.1404282.380.1107304.560.1584239.84900.1400288.540.1111337.140.1585239.70980.1402270.630.1108293.380.1588239.15990.1401270.040.1102303.240.1588240.111000.1397256.050.1083246.030.1588239.691080.1414279.060.1105307.190.1591240.361090.1407268.320.1100296.520.1593239.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        |        | 0.1099 | 287.19 | 0.1568    | 239.72 |
| 690.1373261.520.1088265.420.1575239.59700.1377262.300.1099289.930.1575238.99780.1381266.890.1105319.310.1580239.54790.1382267.540.1099304.930.1579239.70800.1383259.790.1089267.670.1580239.07800.1405277.580.1119322.190.1584239.54890.1404282.380.1107304.560.1584239.84900.1400288.540.1111337.140.1585239.70980.1402270.630.1108293.380.1588239.15990.1401270.040.1102303.240.1588240.111000.1397256.050.1083246.030.1588239.691080.1414279.060.1105307.190.1591240.361090.1407268.320.1100296.520.1593239.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |        |        | 0.1101 | 310.01 | 0.1569    | 239.89 |
| 700.1377262.300.1099289.930.1575238.99780.1381266.890.1105319.310.1580239.54790.1382267.540.1099304.930.1579239.70800.1383259.790.1089267.670.1580239.07880.1405277.580.1119322.190.1584239.54900.1404282.380.1107304.560.1584239.84900.1400288.540.1111337.140.1585239.70980.1402270.630.1108293.380.1588239.15990.1401270.040.1102303.240.1588240.111000.1397256.050.1083246.030.1588239.691080.1414279.060.1105307.190.1591240.361090.1407268.320.1100296.520.1593239.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |        | 264.33 | 0.1109 | 296.33 | 0.1574    | 239.43 |
| 780.1381266.890.1105319.310.1580239.54790.1382267.540.1099304.930.1579239.70800.1383259.790.1089267.670.1580239.07880.1405277.580.1119322.190.1584239.54890.1404282.380.1107304.560.1584239.84900.1400288.540.1111337.140.1585239.70980.1402270.630.1108293.380.1588239.15990.1401270.040.1102303.240.1588239.691000.1397256.050.1083246.030.1588239.691080.1414279.060.1105307.190.1591240.361090.1407268.320.1100296.520.1593239.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        |        | 0.1088 | 265.42 | 0.1575    | 239.59 |
| 790.1382267.540.1099304.930.1579239.70800.1383259.790.1089267.670.1580239.07880.1405277.580.1119322.190.1584239.54890.1404282.380.1107304.560.1584239.84900.1400288.540.1111337.140.1585239.70980.1402270.630.1108293.380.1588239.15990.1401270.040.1102303.240.1588240.111000.1397256.050.1083246.030.1588239.691080.1414279.060.1105307.190.1591240.361090.1407268.320.1100296.520.1593239.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |        |        | 0.1099 | 289.93 | 0.1575    | 238.99 |
| 800.1383259.790.1089267.670.1580239.07880.1405277.580.1119322.190.1584239.54890.1404282.380.1107304.560.1584239.84900.1400288.540.1111337.140.1585239.70980.1402270.630.1108293.380.1588239.15990.1401270.040.1102303.240.1588240.111000.1397256.050.1083246.030.1588239.691080.1414279.060.1105307.190.1591240.361090.1407268.320.1100296.520.1593239.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |        |        |        |        | 0.1580    | 239.54 |
| 880.1405277.580.1119322.190.1584239.54890.1404282.380.1107304.560.1584239.84900.1400288.540.1111337.140.1585239.70980.1402270.630.1108293.380.1588239.15990.1401270.040.1102303.240.1588240.111000.1397256.050.1083246.030.1588239.691080.1414279.060.1105307.190.1591240.361090.1407268.320.1100296.520.1593239.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |        |        | 0.1099 | 304.93 | 0.1579    | 239.70 |
| 890.1404282.380.1107304.560.1584239.84900.1400288.540.1111337.140.1585239.70980.1402270.630.1108293.380.1588239.15990.1401270.040.1102303.240.1588240.111000.1397256.050.1083246.030.1588239.691080.1414279.060.1105307.190.1591240.361090.1407268.320.1100296.520.1593239.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |        |        | 0.1089 | 267.67 | 0.1580    | 239.07 |
| 900.1400288.540.1111337.140.1585239.70980.1402270.630.1108293.380.1588239.15990.1401270.040.1102303.240.1588240.111000.1397256.050.1083246.030.1588239.691080.1414279.060.1105307.190.1591240.361090.1407268.320.1100296.520.1593239.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        |        | 0.1119 |        | 0.1584    | 239.54 |
| 980.1402270.630.1108293.380.1588239.15990.1401270.040.1102303.240.1588240.111000.1397256.050.1083246.030.1588239.691080.1414279.060.1105307.190.1591240.361090.1407268.320.1100296.520.1593239.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |        |        |        |        | 0.1584    | 239.84 |
| 990.1401270.040.1102303.240.1588240.111000.1397256.050.1083246.030.1588239.691080.1414279.060.1105307.190.1591240.361090.1407268.320.1100296.520.1593239.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |        |        |        |        | 0.1585    | 239.70 |
| 1000.1397256.050.1083246.030.1588239.691080.1414279.060.1105307.190.1591240.361090.1407268.320.1100296.520.1593239.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        | 270.63 | 0.1108 | 293.38 | 0.1588    | 239.15 |
| 1080.1414279.060.1105307.190.1591240.361090.1407268.320.1100296.520.1593239.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |        |        | 0.1102 | 303.24 | 0.1588    | 240.11 |
| 109 0.1407 268.32 0.1100 296.52 0.1593 239.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |        |        | 0.1083 | 246.03 | 0.1588    | 239.69 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |        |        | 0.1105 | 307.19 | 0.1591    | 240.36 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |        |        | 0.1100 | 296.52 | 0.1593    | 239.99 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110 | 0.1416 | 276.41 | 0.1105 | 303.01 | 0.1592    | 239.85 |
| 118 0.1417 272.28 0.1102 286.29 0.1594 239.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |        |        | 0.1102 | 286.29 | 0.1594    | 239.96 |
| 119 0.1419 272.12 0.1099 282.99 0.1595 240.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |        |        |        | 282.99 | 0.1595    | 240.27 |
| 120         0.1417         279.93         0.1125         334.26         0.1595         240.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120 | 0.1417 | 279.93 | 0.1125 | 334.26 | 0.1595    | 240.23 |

|     | Deltoid |        | Trapezius |        | -Infraspinatus |        |
|-----|---------|--------|-----------|--------|----------------|--------|
| Min | RMS     | MPF    | RMS       | MPF    | RMS            | MPF    |
|     |         |        |           |        |                |        |
| 8   | 0.1463  | 268.85 | 0.1129    | 257.48 | 0.1639         | 239.97 |
| 9   | 0.1460  | 268.16 | 0.1129    | 266.50 | 0.1639         | 239.86 |
| 10  | 0.1462  | 269.02 | 0.1130    | 259.17 | 0.1639         | 239.86 |
| 18  | 0.1462  | 269.00 | 0.1127    | 253.93 |                |        |
| 19  | 0.1463  | 273.42 | 0.1128    | 263.45 |                |        |
| 20  | 0.1465  | 263.62 | 0.1131    | 263.85 |                |        |
| 28  | 0.1464  | 271.78 | 0.1130    | 261.72 | 0.1640         | 238.57 |
| 29  | 0.1472  | 271.42 | 0.1135    | 270.51 | 0.1639         | 239.84 |
| 30  | 0.1464  | 279.00 | 0.1130    | 276.24 | 0.1640         | 240.10 |
| 38  | 0.1460  | 261.19 | 0.1129    | 263.67 | 0.1640         | 239.82 |
| 39  | 0.1458  | 259.77 | 0.1127    | 254.75 | 0.1638         | 239.29 |
| 40  | 0.1459  | 263.39 | 0.1127    | 267.29 | 0.1639         | 239.74 |
| 48  | 0.1455  | 258.38 | 0.1125    | 257.81 | 0.1640         | 239.88 |
| 49  | 0.1465  | 275.53 | 0.1129    | 269.04 | 0.1639         | 240.50 |
| 50  | 0.1455  | 261.14 | 0.1130    | 264.68 | 0.1640         | 240.49 |
| 58  | 0.1456  | 254.43 | 0.1130    | 259.01 | 0.1640         | 240.12 |
| 59  | 0.1458  | 260.38 | 0.1130    | 263.48 | 0.1640         | 240.54 |
| 60  | 0.1586  | 470.60 | 0.1127    | 267.95 | 0.1640         | 240.47 |
| 68  | 0.1460  | 252.78 | 0.1133    | 258.18 | 0.1640         | 240.04 |
| 69  | 0.1451  | 254.34 | 0.1123    | 261.00 | 0.1640         | 239.69 |
| 70  | 0.1457  | 264.20 | 0.1131    | 271.44 | 0.1641         | 240.61 |
| 78  | 0.1459  | 258.45 | 0.1131    | 260.03 | 0.1640         | 239.20 |
| 79  | 0.1456  | 260.80 | 0.1128    | 261.50 | 0.1641         | 239.22 |
| 80  | 0.1463  | 270.59 | 0.1137    | 267.15 | 0.1640         | 239.38 |
| 88  | 0.1463  | 266.83 | 0.1131    | 271.39 | 0.1641         | 239.37 |
| 89  | 0.1461  | 258.04 | 0.1129    | 256.25 | 0.1641         | 240.38 |
| 90  | 0.1463  | 268.48 | 0.1129    | 265.91 | 0.1640         | 239.92 |
| 98  | 0.1457  | 251.71 | 0.1128    | 255.14 | 0.1641         | 239.57 |
| 99  | 0.1463  | 258.77 | 0.1135    | 266.97 | 0.1641         | 239.91 |
| 100 | 0.1456  | 262.17 | 0.1135    | 266.08 | 0.1641         | 239.52 |
| 108 | 0.1464  | 263.05 | 0.1129    | 265.34 | 0.1641         | 239.57 |
| 109 | 0.1462  | 259.26 | 0.1133    | 262.94 | 0.1642         | 239.52 |
| 110 | 0.1459  | 250.68 | 0.1128    | 256.38 | 0.1642         | 239.39 |
| 118 | 0.1462  | 258.18 | 0.1129    | 260.87 | 0.1642         | 239.35 |
| 119 | 0.1464  | 271.54 | 0.1135    | 279.36 | 0.1642         | 239.07 |
| 120 | 0.1459  | 257.31 | 0.1133    | 253.81 | 0.1643         | 239.20 |
|     |         |        |           |        |                |        |

| Deltoid |        | Trapezius |        | -Infraspinatus |        |        |
|---------|--------|-----------|--------|----------------|--------|--------|
| Min     | RMS    | MPF       | RMS    | MPF            | RMS    | MPF    |
|         |        |           |        |                |        |        |
| 8       | 0.1451 | 239.81    | 0.1109 | 239.19         | 0.1655 | 270.24 |
| 9       | 0.1450 | 240.25    | 0.1109 | 240.33         | 0.1639 | 243.11 |
| 10      | 0.1450 | 240.55    | 0.1108 | 240.45         | 0.1664 | 281.13 |
| 18      | 0.1450 | 240.38    | 0.1108 | 240.01         | 0.1640 | 242.56 |
| 19      | 0.1451 | 240.44    | 0.1108 | 240.38         | 0.1639 | 244.14 |
| 20      | 0.1451 | 240.14    | 0.1108 | 239.48         | 0.1640 | 244.41 |
| 28      | 0.1451 | 240.31    | 0.1106 | 239.17         | 0.1638 | 242.52 |
| 29      | 0.1452 | 241.01    | 0.1106 | 239.63         | 0.1636 | 242.09 |
| 30      | 0.1452 | 241.30    | 0.1106 | 239.45         | 0.1640 | 244.01 |
| 38      | 0.1453 | 240.89    | 0.1107 | 239.88         | 0.1638 | 241.66 |
| 39      | 0.1454 | 239.64    | 0.1106 | 241.29         | 0.1638 | 242.68 |
| 40      | 0.1454 | 241.12    | 0.1107 | 241.35         | 0.1638 | 241.83 |
| 48      | 0.1455 | 240.99    | 0.1107 | 241.25         | 0.1639 | 242.43 |
| 49      | 0.1455 | 241.12    | 0.1106 | 240.32         | 0.1639 | 241.65 |
| 50      | 0.1454 | 240.95    | 0.1107 | 240.04         | 0.1640 | 245.34 |
| 58      | 0.1456 | 240.74    | 0.1106 | 239.59         | 0.1639 | 240.47 |
| 59      | 0.1456 | 240.72    | 0.1107 | 241.68         | 0.1642 | 243.80 |
| 60      | 0.1457 | 240.89    | 0.1106 | 240.43         | 0.1643 | 244.23 |
| 68      | 0.1457 | 240.34    | 0.1106 | 239.35         | 0.1641 | 244.31 |
| 69      | 0.1456 | 240.21    | 0.1106 | 240.25         | 0.1640 | 243.51 |
| 70      | 0.1457 | 240.11    | 0.1106 | 241.12         | 0.1640 | 240.90 |
| 78      | 0.1457 | 241.01    | 0.1106 | 240.97         | 0.1641 | 244.70 |
| 79      | 0.1459 | 241.56    | 0.1106 | 241.02         | 0.1644 | 242.56 |
| 80      | 0.1459 | 242.92    | 0.1106 | 239.44         | 0.1642 | 242.56 |
| 88      | 0.1461 | 246.10    | 0.1106 | 240.53         | 0.1640 | 241.29 |
| 89      | 0.1461 | 244.61    | 0.1106 | 240.01         | 0.1640 | 241.99 |
| 90      | 0.1460 | 244.63    | 0.1106 | 240.33         | 0.1642 | 241.71 |
| 98      | 0.1464 | 249.66    | 0.1106 | 239.91         | 0.1642 | 241.55 |
| 99      | 0.1464 | 248.34    | 0.1106 | 240.61         | 0.1640 | 242.08 |
| 100     | 0.1468 | 258.42    | 0.1106 | 239.79         | 0.1642 | 243.53 |
| 108     | 0.1473 | 257.71    | 0.1106 | 240.57         | 0.1641 | 245.66 |
| 109     | 0.1469 | 255.29    | 0.1105 | 240.24         | 0.1641 | 242.06 |
| 110     | 0.1468 | 253.68    | 0.1106 | 239.45         | 0.1642 | 241.53 |
| 118     | 0.1474 | 268.20    | 0.1106 | 240.71         | 0.1641 | 241.70 |
| 119     | 0.1470 | 258.11    | 0.1106 | 239.80         | 0.1641 | 240.79 |
| 120     | 0.1478 | 273.33    | 0.1106 | 239.73         | 0.1641 | 241.78 |
|         |        |           |        |                |        |        |

Subject: 2Board: InclinedPickup: Centre

|     | Delto  | id     | Trapez | ius    | -Infraspi | natus  |
|-----|--------|--------|--------|--------|-----------|--------|
| Min | RMS    | MPF    | RMS    | MPF    | RMS       | MPF    |
|     |        |        |        |        |           |        |
| 8   | 0.1426 | 245.00 | 0.1130 | 284.77 | 0.1630    | 249.37 |
| 9   | 0.1427 | 249.75 | 0.1131 | 281.47 | 0.1628    | 247.71 |
| 10  | 0.1430 | 256.44 | 0.1130 | 279.32 | 0.1628    | 250.29 |
| 18  | 0.1445 | 280.03 | 0.1133 | 283.95 | 0.1632    | 252.77 |
| 19  | 0.1444 | 280.13 | 0.1134 | 293.51 | 0.1629    | 249.86 |
| 20  | 0.1445 | 283.78 | 0.1131 | 284.32 | 0.1634    | 252.99 |
| 28  | 0.1448 | 282.32 | 0.1124 | 280.37 | 0.1638    | 263.83 |
| 29  | 0.1455 | 294.81 | 0.1124 | 278.57 | 0.1638    | 264.29 |
| 30  | 0.1470 | 307.42 | 0.1134 | 298.27 | 0.1647    | 273.89 |
| 38  | 0.1450 | 291.68 | 0.1115 | 276.54 | 0.1642    | 272.09 |
| 39  | 0.1447 | 281.15 | 0.1120 | 263.70 | 0.1637    | 260.04 |
| 40  | 0.1440 | 274.54 | 0.1126 | 274.94 | 0.1635    | 261.14 |
| 48  | 0.1442 | 266.48 | 0.1123 | 272.28 | 0.1632    | 252.30 |
| 49  | 0.1453 | 285.12 | 0.1122 | 273.55 | 0.1630    | 249.07 |
| 50  | 0.1460 | 289.07 | 0.1123 | 282.86 | 0.1635    | 257.60 |
| 58  | 0.1452 | 282.00 | 0.1122 | 275.73 | 0.1630    | 247.45 |
| 59  | 0.1447 | 262.83 | 0.1119 | 260.16 | 0.1631    | 247.58 |
| 60  | 0.1453 | 272.36 | 0.1117 | 269.58 | 0.1631    | 248.91 |
| 68  | 0.1476 | 305.50 | 0.1121 | 271.71 | 0.1630    | 246.87 |
| 69  | 0.1479 | 325.25 | 0.1126 | 280.84 | 0.1630    | 249.08 |
| 70  | 0.1452 | 264.56 | 0.1119 | 268.64 | 0.1633    | 247.51 |
| 78  | 0.1455 | 276.70 | 0.1108 | 260.94 | 0.1637    | 257.88 |
| 79  | 0.1440 | 254.44 | 0.1119 | 263.50 | 0.1629    | 244.92 |
| 80  | 0.1450 | 264.07 | 0.1119 | 271.90 | 0.1629    | 243.10 |
| 88  | 0.1445 | 265.20 | 0.1117 | 260.59 | 0.1631    | 244.16 |
| 89  | 0.1454 | 282.28 | 0.1117 | 267.37 | 0.1629    | 243.44 |
| 90  | 0.1473 | 302.57 | 0.1113 | 260.34 | 0.1632    | 245.97 |
| 98  | 0.1468 | 295.24 | 0.1114 | 269.98 | 0.1636    | 248.20 |
| 99  | 0.1465 | 285.53 | 0.1114 | 263.62 | 0.1636    | 250.95 |
| 100 | 0.1457 | 271.94 | 0.1121 | 274.26 | 0.1634    | 248.67 |
| 108 | 0.1469 | 288.65 | 0.1128 | 281.47 | 0.1633    | 246.23 |
| 109 | 0.1466 | 288.39 | 0.1122 | 280.95 | 0.1631    | 243.89 |
| 110 | 0.1458 | 283.56 | 0.1135 | 300.61 | 0.1633    | 246.48 |
| 118 | 0.1467 | 282.95 | 0.1132 | 290.80 | 0.1633    | 245.14 |
| 119 | 0.1469 | 290.86 | 0.1134 | 294.03 | 0.1632    | 243.70 |
| 120 | 0.1487 | 328.56 | 0.1132 | 306.31 | 0.1637    | 252.69 |

|     | Delto  | id     | Trapez | ius    | -Infraspi | natus  |
|-----|--------|--------|--------|--------|-----------|--------|
| Min | RMS    | MPF    | RMS    | MPF    | RMS       | MPF    |
|     |        |        |        |        |           |        |
| 8   | 0.1464 | 276.21 | 0.1046 | 239.98 | 0.1596    | 239.57 |
| 9   | 0.1464 | 283.04 | 0.1046 | 239.30 | 0.1595    | 239.71 |
| 10  | 0.1454 | 269.15 | 0.1050 | 246.73 | 0.1596    | 239.36 |
| 18  | 0.1471 | 290.90 | 0.1047 | 240.33 | 0.1597    | 239.47 |
| 19  | 0.1473 | 289.29 | 0.1047 | 239.96 | 0.1597    | 240.09 |
| 20  | 0.1469 | 282.96 | 0.1048 | 240.13 | 0.1598    | 239.66 |
| 28  | 0.1484 | 285.38 | 0.1048 | 240.25 | 0.1597    | 239.98 |
| 29  | 0.1467 | 278.85 | 0.1047 | 239.41 | 0.1597    | 239.58 |
| 30  | 0.1479 | 297.89 | 0.1047 | 239.76 | 0.1597    | 240.23 |
| 38  | 0.1459 | 266.44 | 0.1048 | 240.20 | 0.1598    | 239.34 |
| 39  | 0.1467 | 294.72 | 0.1048 | 240.21 | 0.1598    | 239.54 |
| 40  | 0.1464 | 286.28 | 0.1047 | 240.51 | 0.1598    | 239.93 |
| 48  | 0.1463 | 277.39 | 0.1048 | 240.06 | 0.1598    | 239.65 |
| 49  | 0.1490 | 327.41 | 0.1048 | 240.74 | 0.1598    | 239.56 |
| 50  | 0.1485 | 305.68 | 0.1047 | 240.99 | 0.1598    | 239.72 |
| 58  | 0.1477 | 285.32 | 0.1048 | 241.84 | 0.1598    | 239.89 |
| 59  | 0.1474 | 298.75 | 0.1048 | 239.63 | 0.1598    | 239.82 |
| 60  | 0.1484 | 295.67 | 0.1048 | 240.44 | 0.1599    | 240.21 |
| 68  | 0.1468 | 280.39 | 0.1047 | 240.45 | 0.1598    | 239.78 |
| 69  | 0.1467 | 267.56 | 0.1049 | 239.99 | 0.1599    | 239.49 |
| 70  | 0.1491 | 321.32 | 0.1049 | 241.39 | 0.1599    | 239.82 |
| 78  | 0.1466 | 274.55 | 0.1049 | 242.01 | 0.1598    | 239.48 |
| 79  | 0.1479 | 305.01 | 0.1049 | 241.37 | 0.1599    | 240.40 |
| 80  | 0.1471 | 278.79 | 0.1048 | 240.84 | 0.1598    | 239.23 |
| 88  | 0.1496 | 300.15 | 0.1049 | 241.20 | 0.1600    | 239.54 |
| 89  | 0.1469 | 273.65 | 0.1049 | 240.55 | 0.1599    | 240.01 |
| 90  | 0.1471 | 274.11 | 0.1049 | 239.28 | 0.1599    | 240.28 |
| 98  | 0.1479 | 286.21 | 0.1049 | 239.38 | 0.1599    | 239.19 |
| 99  | 0.1470 | 279.60 | 0.1049 | 240.54 | 0.1600    | 238.72 |
| 100 | 0.1471 | 271.47 | 0.1049 | 240.10 | 0.1599    | 239.48 |
| 108 | 0.1466 | 275.46 | 0.1050 | 241.67 | 0.1599    | 239.97 |
| 109 | 0.1495 | 299.27 | 0.1049 | 240.74 | 0.1600    | 240.40 |
| 110 | 0.1474 | 286.61 | 0.1050 | 241.35 | 0.1600    | 240.09 |
| 118 | 0.1463 | 274.38 | 0.1048 | 241.24 | 0.1600    | 239.70 |
| 119 | 0.1462 | 270.18 | 0.1049 | 240.20 | 0.1600    | 239.06 |
| 120 | 0.1484 | 292.98 | 0.1049 | 241.87 | 0.1601    | 239.92 |
|     |        |        |        |        |           |        |

|     | Deltoid |        | Trapezius |        | -Infraspinatus |        |
|-----|---------|--------|-----------|--------|----------------|--------|
| Min | RMS     | MPF    | RMS       | MPE    | RMS            | MPF    |
|     |         |        |           |        |                |        |
| 8   | 0.1455  | 239.77 | 0.1113    | 240.38 | 0.1641         | 240.01 |
| 9   | 0.1455  | 239.32 | 0.1113    | 239.11 | 0.1640         | 239.23 |
| 10  | 0.1455  | 239.80 | 0.1112    | 240.58 | 0.1540         | 239.30 |
| 18  | 0.1455  | 239.15 | 0.1113    | 240.07 | 0.1641         | 239.00 |
| 19  | 0.1456  | 240.29 | 0.1113    | 240.81 | 0.1641         | 239.56 |
| 20  | 0.1456  | 239.61 | 0.1112    | 241.56 | 0.1641         | 239.46 |
| 28  | 0.1457  | 240.17 | 0.1113    | 242.72 | 0.1641         | 239.40 |
| 29  | 0.1457  | 238.98 | 0.1112    | 240.63 | 0.1641         | 239.80 |
| 30  | 0.1457  | 238.87 | 0.1112    | 240.14 | 0.1641         | 239.29 |
| 38  | 0.1458  | 239.60 | 0.1112    | 240.97 | 0.1641         | 239.10 |
| 39  | 0.1459  | 239.29 | 0.1112    | 239.15 | 0.1641         | 238.92 |
| 40  | 0.1458  | 239.53 | 0.1113    | 240.61 | 0.1640         | 239.54 |
| 48  | 0.1460  | 240.16 | 0.1112    | 240.36 | 0.1642         | 239.12 |
| 49  | 0.1460  | 238.59 | 0.1113    | 242.48 | 0.1642         | 239.22 |
| 50  | 0.1460  | 239.43 | 0.1111    | 247.43 | 0.1641         | 239.83 |
| 58  | 0.1462  | 240.79 | 0.1114    | 246.37 | 0.1642         | 239.46 |
| 59  | 0.1461  | 239.81 | 0.1115    | 245.80 | 0.1643         | 239.59 |
| 60  | 0.1461  | 239.81 | 0.1113    | 244.01 | 0.1643         | 239.27 |
| 68  | 0.1463  | 239.89 | 0.1115    | 245.36 | 0.1643         | 239.67 |
| 69  | 0.1462  | 240.15 | 0.1111    | 245.12 | 0.1643         | 239.59 |
| 70  | 0.1462  | 239.72 | 0.1111    | 243.07 | 0.1644         | 239.82 |
| 78  | 0.1463  | 239.90 | 0.1113    | 243.50 | 0.1643         | 239.43 |
| 79  | 0.1464  | 239.13 | 0.1109    | 242.15 | 0.1644         | 239.34 |
| 80  | 0.1464  | 237.77 | 0.1113    | 245.57 | 0.1643         | 239.95 |
| 88  | 0.1466  | 240.07 | 0.1110    | 250.38 | 0.1644         | 239.41 |
| 89  | 0.1466  | 239.94 | 0.1111    | 245.74 | 0.1645         | 239.59 |
| 90  | 0.1465  | 239.78 | 0.1114    | 251.07 | 0.1644         | 239.77 |
| 98  | 0.1467  | 239.93 | 0.1116    | 255.17 | 0.1645         | 239.66 |
| 99  | 0.1467  | 239.95 | 0.1114    | 249.55 | 0.1645         | 239.56 |
| 100 | 0.1467  | 239.67 | 0.1111    | 250.81 | 0.1645         | 239.37 |
| 108 | 0.1468  | 240.23 | 0.1113    | 246.11 | 0.1646         | 239.15 |
| 109 | 0.1468  | 238.44 | 0.1114    | 259.45 | 0.1645         | 239.75 |
| 110 | 0.1468  | 239.34 | 0.1119    | 262.61 | 0.1646         | 239.24 |
| 118 | 0.1470  | 240.04 | 0.1113    | 256.66 | 0.1646         | 239.33 |
| 119 | 0.1470  | 239.96 | 0.1113    | 254.80 | 0.1646         | 239.36 |
| 120 | 0.1470  | 240.38 | 0.1113    | 254.40 | 0.1646         | 239.81 |
|     |         |        |           |        |                |        |

|     | Delto  | id     | Trapez | ius    | -Infraspi | natus  |
|-----|--------|--------|--------|--------|-----------|--------|
| Min | RMS    | MPF    | RMS    | MPF    | RMS       | MPE    |
|     |        |        |        |        |           |        |
| 8   | 0.1308 | 242.65 | 0.1043 | 239.74 | 0.1539    | 258.43 |
| 9   | 0.1311 | 245.86 | 0.1043 | 239.85 | 0.1543    | 261.41 |
| 10  | 0.1314 | 246.95 | 0.1043 | 239.92 | 0.1548    | 272.53 |
| 18  | 0.1329 | 248.00 | 0.1042 | 239.92 | 0.1546    | 254.66 |
| 19  | 0.1332 | 251.30 | 0.1041 | 240.03 | 0.1550    | 261.07 |
| 20  | 0.1335 | 253.57 | 0.1042 | 240.55 | 0.1551    | 261.09 |
| 28  | 0.1342 | 244.28 | 0.1040 | 239.45 | 0.1550    | 251.03 |
| 29  | 0.1344 | 251.00 | 0.1040 | 240.40 | 0.1546    | 253.57 |
| 30  | 0.1343 | 247.73 | 0.1040 | 238.33 | 0.1549    | 253.59 |
| 38  | 0.1361 | 249.83 | 0.1039 | 239.71 | 0.1559    | 256.95 |
| 39  | 0.1356 | 247.37 | 0.1039 | 240.67 | 0.1556    | 249.01 |
| 40  | 0.1361 | 254.79 | 0.1039 | 239.28 | 0.1556    | 250.68 |
| 48  | 0.1365 | 249.59 | 0.1038 | 240.53 | 0.1558    | 250.05 |
| 49  | 0.1377 | 258.25 | 0.1038 | 239.91 | 0.1563    | 250.74 |
| 50  | 0.1374 | 259.25 | 0.1039 | 239.35 | 0.1558    | 250.00 |
| 58  | 0.1382 | 262.72 | 0.1037 | 240.58 | 0.1558    | 247.46 |
| 59  | 0.1380 | 262.74 | 0.1038 | 241.19 | 0.1566    | 249.58 |
| 60  | 0.1383 | 256.76 | 0.1038 | 239.83 | 0.1601    | 309.46 |
| 68  | 0.1399 | 262.02 | 0.1036 | 242.28 | 0.1569    | 251.06 |
| 69  | 0.1390 | 261.16 | 0.1038 | 241.34 | 0.1568    | 250.74 |
| 70  | 0.1389 | 255.32 | 0.1038 | 242.69 | 0.1562    | 249.45 |
| 78  | 0.1406 | 259.12 | 0.1037 | 245.98 | 0.1568    | 247.43 |
| 79  | 0.1401 | 268.77 | 0.1037 | 247.10 | 0.1570    | 246.61 |
| 80  | 0.1403 | 262.23 | 0.1037 | 246.82 | 0.1576    | 260.53 |
| 88  | 0.1410 | 265.00 | 0.1037 | 247.17 | 0.1571    | 250.36 |
| 89  | 0.1407 | 273.91 | 0.1039 | 251.10 | 0.1568    | 252.96 |
| 90  | 0.1404 | 263.88 | 0.1037 | 246.60 | 0.1574    | 253.43 |
| 98  | 0.1419 | 278.65 | 0.1038 | 248.67 | 0.1601    | 294.61 |
| 99  | 0.1427 | 282.97 | 0.1035 | 250.90 | 0.1601    | 299.70 |
| 100 | 0.1416 | 264.53 | 0.1036 | 242.70 | 0.1580    | 261.52 |
| 108 | 0.1425 | 272.12 | 0.1035 | 248.73 | 0.1588    | 271.94 |
| 109 | 0.1425 | 264.68 | 0.1038 | 252.84 | 0.1576    | 248.23 |
| 110 | 0.1407 | 254.10 | 0.1034 | 247.29 | 0.1575    | 253.94 |
| 118 | 0.1424 | 278.43 | 0.1036 | 259.44 | 0.1581    | 254.94 |
| 119 | 0.1443 | 302.52 | 0.1038 | 254.19 | 0.1609    | 305.32 |
| 120 | 0.1427 | 275.76 | 0.1040 | 263.71 | 0.1577    | 251.22 |
|     |        |        |        |        |           |        |

|     | Delto  | id     | Trapez | ius    | -Infraspi | natus  |
|-----|--------|--------|--------|--------|-----------|--------|
| Min | RMS    | MPF    | RMS    | MPF    | RMS       | MPF    |
|     |        |        |        | ••••   |           | ••••   |
| 8   | 0.1309 | 254.82 | 0.1032 | 239.81 | 0.1515    | 240.14 |
| 9   | 0.1335 | 292.72 | 0.1033 | 240.33 | 0.1516    | 239.30 |
| 10  | 0.1338 | 289.97 | 0.1033 | 242.03 | 0.1517    | 239.65 |
| 18  | 0.1332 | 274.65 | 0.1034 | 242.13 | 0.1526    | 239.81 |
| 19  | 0.1345 | 282.65 | 0.1031 | 238.77 | 0.1526    | 240.06 |
| 20  | 0.1345 | 280.68 | 0.1032 | 239.76 | 0.1527    | 241.14 |
| 28  | 0.1350 | 275.88 | 0.1032 | 240.29 | 0.1534    | 239.63 |
| 29  | 0.1349 | 281.73 | 0.1032 | 241.26 | 0.1535    | 239.54 |
| 30  | 0.1360 | 270.38 | 0.1032 | 241.53 | 0.1536    | 239.81 |
| 38  | 0.1369 | 272.39 | 0.1032 | 241.94 | 0.1542    | 240.20 |
| 39  | 0.1384 | 286.34 | 0.1033 | 242.68 | 0.1542    | 240.06 |
| 40  | 0.1381 | 299.66 | 0.1034 | 246.32 | 0.1542    | 240.92 |
| 48  | 0.1376 | 272.57 | 0.1034 | 242.52 | 0.1549    | 240.34 |
| 49  | 0.1385 | 276.32 | 0.1034 | 242.64 | 0.1548    | 239.84 |
| 50  | 0.1384 | 260.83 | 0.1033 | 242.87 | 0.1549    | 239.90 |
| 58  | 0.1394 | 275.89 | 0.1034 | 245.26 | 0.1552    | 239.63 |
| 59  | 0.1386 | 268.28 | 0.1036 | 244.75 | 0.1554    | 239.59 |
| 60  | 0.1386 | 264.94 | 0.1033 | 244.11 | 0.1553    | 240.25 |
| 68  | 0.1397 | 271.63 | 0.1036 | 246.91 | 0.1559    | 240.09 |
| 69  | 0.1399 | 263.49 | 0.1034 | 242.50 | 0.1559    | 239.52 |
| 70  | 0.1400 | 276.60 | 0.1038 | 245.89 | 0.1560    | 240.79 |
| 78  | 0.1400 | 270.34 | 0.1038 | 243.72 | 0.1564    | 240.70 |
| 79  | 0.1408 | 268.79 | 0.1038 | 241.04 | 0.1563    | 240.71 |
| 80  | 0.1416 | 276.94 | 0.1038 | 250.08 | 0.1563    | 240.34 |
| 88  | 0.1410 | 277.93 | 0.1037 | 249.83 | 0.1566    | 240.68 |
| 89  | 0.1415 | 260.12 | 0.1038 | 245.65 | 0.1569    | 240.74 |
| 90  | 0.1409 | 266.44 | 0.1036 | 244.65 | 0.1567    | 239.24 |
| 98  | 0.1419 | 272.68 | 0.1038 | 248.50 | 0.1569    | 240.58 |
| 99  | 0.1418 | 277.62 | 0.1039 | 249.45 | 0.1571    | 240.71 |
| 100 | 0.1423 | 276.75 | 0.1037 | 251.35 | 0.1570    | 241.48 |
| 108 | 0.1418 | 261.33 | 0.1040 | 249.50 | 0.1571    | 240.68 |
| 109 | 0.1425 | 268.48 | 0.1040 | 251.38 | 0.1575    | 240.75 |
| 110 | 0.1420 | 265.36 | 0.1038 | 244.85 | 0.1572    | 239.83 |
| 118 | 0.1437 | 280.83 | 0.1043 | 255.14 | 0.1576    | 242.51 |
| 119 | 0.1422 | 255.25 | 0.1039 | 242.97 | 0.1576    | 240.38 |
| 120 | 0.1441 | 284.13 | 0.1043 | 251.53 | 0.1577    | 243.47 |

Subject: 3 Board: Inclined Pickup: Opposite

|     | Delto  | id     | Trapez | ius    | -Infraspi | natus  |
|-----|--------|--------|--------|--------|-----------|--------|
| Min | RMS    | MPF    | RMS    | MPF    | RMS       | MPF    |
|     |        |        |        |        |           |        |
| 8   | 0.1397 | 241.70 | 0.1098 | 240.63 | 0.1603    | 240.31 |
| 9   | 0.1397 | 240.82 | 0.1099 | 240.65 | 0.1604    | 241.31 |
| 10  | 0.1397 | 239.95 | 0.1098 | 239.00 | 0.1604    | 239.94 |
| 18  | 0.1400 | 240.88 | 0.1098 | 241.31 | 0.1605    | 239.41 |
| 19  | 0.1402 | 241.25 | 0.1098 | 239.48 | 0.1605    | 239.70 |
| 20  | 0.1400 | 240.75 | 0.1097 | 240.87 | 0.1606    | 239.06 |
| 28  | 0.1403 | 238.99 | 0.1098 | 240.56 | 0.1606    | 240.59 |
| 29  | 0.1404 | 239.61 | 0.1097 | 240.41 | 0.1606    | 239.23 |
| 30  | 0.1404 | 240.12 | 0.1097 | 240.31 | 0.1606    | 239.98 |
| 38  | 0.1406 | 240.33 | 0.1099 | 241.41 | 0.1608    | 239.67 |
| 39  | 0.1406 | 239.79 | 0.1096 | 241.22 | 0.1608    | 240.28 |
| 40  | 0.1407 | 241.39 | 0.1097 | 241.75 | 0.1608    | 241.16 |
| 48  | 0.1409 | 238.96 | 0.1097 | 241.83 | 0.1609    | 240.62 |
| 49  | 0.1409 | 240.72 | 0.1098 | 242.66 | 0.1609    | 240.48 |
| 50  | 0.1409 | 239.53 | 0.1096 | 241.38 | 0.1608    | 239.51 |
| 58  | 0.1411 | 239.90 | 0.1097 | 240.53 | 0.1610    | 240.48 |
| 59  | 0.1412 | 240.82 | 0.1096 | 241.48 | 0.1610    | 240.51 |
| 60  | 0.1411 | 241.00 | 0.1096 | 240.67 | 0.1611    | 240.59 |
| 68  | 0.1413 | 240.14 | 0.1096 | 242.07 | 0.1611    | 240.78 |
| 69  | 0.1415 | 241.54 | 0.1097 | 241.44 | 0.1611    | 241.11 |
| 70  | 0.1414 | 240.33 | 0.1096 | 238.79 | 0.1610    | 240.43 |
| 78  | 0.1417 | 240.40 | 0.1096 | 240.23 | 0.1612    | 240.15 |
| 79  | 0.1416 | 240.51 | 0.1098 | 241.53 | 0.1613    | 240.70 |
| 80  | 0.1416 | 240.72 | 0.1096 | 241.49 | 0.1612    | 240.55 |
| 88  | 0.1418 | 240.56 | 0.1097 | 242.29 | 0.1615    | 242.33 |
| 89  | 0.1420 | 239.61 | 0.1097 | 243.37 | 0.1613    | 242.02 |
| 90  | 0.1419 | 240.13 | 0.1098 | 243.42 | 0.1612    | 240.94 |
| 98  | 0.1419 | 239.50 | 0.1097 | 243.37 | 0.1613    | 239.97 |
| 99  |        | 240.24 |        |        | 0.1614    | 241.47 |
| 100 | 0.1420 | 240.44 | 0.1099 | 246.21 | 0.1615    | 241.42 |
| 108 | 0.1422 | 240.99 | 0.1098 | 249.84 | 0.1616    | 241.27 |
| 109 | 0.1422 | 239.30 | 0.1097 | 240.77 | 0.1614    | 240.49 |
| 110 | 0.1423 | 239.92 | 0.1099 |        |           |        |
| 118 | 0.1424 | 240.40 | 0.1098 |        |           | 241.68 |
| 119 | 0.1424 | 240.30 | 0.1098 | 245.81 | 0.1615    | 239.39 |
| 120 | 0.1423 | 240.85 | 0.1100 | 243.69 | 0.1615    | 239.29 |

,

-

|     | Delto: | id     | Trapezi | ius    | -Infraspir | atus   |
|-----|--------|--------|---------|--------|------------|--------|
| N4: | RMS    | MPF    | RMS     | MPF    | RMS        | MPF    |
| Min | 1410   |        |         |        |            |        |
| 8   | 0.1358 | 291.01 | 0.1015  | 240.05 | 0.1519     | 240.20 |
| 9   | 0.1363 | 299.83 | 0.1016  | 243.30 | 0.1521     | 239.92 |
| 10  | 0.1368 | 329.47 | 0.1015  | 243.80 | 0.1522     | 239.95 |
| 18  | 0.1382 | 302.53 | 0.1015  | 243.06 | 0.1530     | 239.75 |
| 19  | 0.1383 | 300.02 | 0.1017  | 244.50 | 0.1530     | 239.68 |
| 20  | 0.1377 | 279.67 | 0.1014  | 241.52 | 0.1530     | 240.66 |
| 28  | 0.1384 | 273.11 | 0.1013  | 240.91 | 0.1537     | 239.72 |
| 29  | 0.1404 | 311.30 | 0.1013  | 245.03 | 0.1538     | 240.60 |
| 30  | 0.1399 | 295.74 | 0.1013  | 242.58 | 0.1539     | 240.18 |
| 38  | 0.1394 | 268.01 | 0.1014  | 242.19 | 0.1544     | 240.77 |
| 39  | 0.1400 | 284.19 | 0.1013  | 241.72 | 0.1545     | 240.97 |
| 40  | 0.1396 | 273.44 | 0.1013  | 241.27 | 0.1546     | 239.92 |
| 48  | 0.1418 | 280.75 | 0.1012  | 243.96 | 0.1551     | 241.08 |
| 49  | 0.1412 | 272.83 | 0.1012  | 243.44 | 0.1550     | 240.83 |
| 50  | 0.1422 | 269.29 | 0.1012  | 245.59 | 0.1551     | 240.38 |
| 58  | 0 1445 | 310.97 | 0.1011  | 243.73 | 0.1557     | 241.76 |
| 59  | 0.1432 | 271.22 | 0.1011  | 243.47 | 0.1558     | 242.03 |
| 60  | 0.1436 | 288.80 | 0.1012  | 244.70 | 0.1558     | 243.22 |
| 68  | 0.1442 | 291.36 | 0.1013  | 243.73 | 0.1562     | 241.84 |
| 69  | 0.1439 | 265.17 | 0.1013  | 241.88 | 0.1562     | 241.10 |
| 70  | 0.1429 | 263.12 | 0.1013  | 243.53 | 0.1563     | 243.20 |
| 78  | 0.1428 | 257.78 | 0.1012  | 240.88 | 0.1564     | 241.44 |
| 79  | 0.1438 | 272.42 | 0.1011  | 244.70 | 0.1567     | 240.92 |
| 80  | 0.1444 | 262.50 | 0.1012  | 241.84 | 0.1569     | 245.50 |
| 88  | 0.1452 | 287.59 | 0.1015  | 249.58 | 0.1570     | 243.60 |
| 89  | 0.1440 | 266.25 | 0.1014  | 240.70 | 0.1570     | 243.02 |
| 90  | 0.1462 | 286.50 | 0.1013  | 248.51 | 0.1571     | 241.66 |
| 98  | 0.1455 | 269.36 | 0.1012  | 242.43 | 0.1573     | 241.79 |
| 99  | 0.1457 | 275.92 | 0.1013  | 246.80 | 0.1575     | 243.04 |
| 100 | 0.1456 | 273.01 | 0.1013  | 243.59 | 0.1574     | 243.17 |
| 108 | 0.1457 | 262.51 | 0.1013  | 244.99 | 0.1575     | 240.11 |
| 109 | 0.1463 | 290.30 | 0.1012  | 248.73 | 0.1576     | 242.42 |
| 110 | 0.1447 | 253.92 | 0.1010  | 239.63 | 0.1575     | 241.13 |
| 118 | 0.1459 | 278.68 | 0.1012  | 246.50 | 0.1578     | 240.98 |
| 119 | 0.1479 | 298.02 | 0.1015  | 247.55 | 0.1576     | 240.71 |
| 120 | 0.1479 | 286.54 | 0.1014  | 248.91 | 0.1578     | 239.65 |
|     |        |        |         |        |            |        |

-

Subject: 4 Board: Straight Pickup: Opposite

-· 2

|     | Delto  | id     | Trapez | ius    | -Infraspi | natus  |
|-----|--------|--------|--------|--------|-----------|--------|
| Min | RMS    | MPF    | RMS    | MPF    | RMS       | MPF    |
|     |        |        |        |        |           |        |
| 8   | 0.1442 | 239.57 | 0.1111 | 240.59 | 0.1634    | 239.64 |
| 9   | 0.1442 | 239.38 | 0.1111 | 241.18 | 0.1634    | 240.02 |
| 10  | 0.1442 | 239.60 | 0.1109 | 241.33 | 0.1634    | 239.98 |
| 18  | 0.1443 | 240.28 | 0.1111 | 241.21 | 0.1639    | 248.37 |
| 19  | 0.1443 | 240.49 | 0.1112 | 240.91 | 0.1642    | 251.87 |
| 20  | 0.1444 | 239.35 | 0.1110 | 240.51 | 0.1637    | 243.70 |
| 28  | 0.1445 | 239.17 | 0.1110 | 242.61 | 0.1635    | 240.27 |
| 29  | 0.1444 | 240.26 | 0.1111 | 239.15 | 0.1636    | 239.92 |
| 30  | 0.1445 | 239.65 | 0.1111 | 240.99 | 0.1636    | 242.69 |
| 38  | 0.1446 | 239.43 | 0.1111 | 240.01 | 0.1635    | 240.87 |
| 39  | 0.1447 | 239.59 | 0.1110 | 241.50 | 0.1636    | 240.75 |
| 40  | 0.1447 | 239.55 | 0.1110 | 240.12 | 0.1635    | 240.56 |
| 48  | 0.1448 | 241.74 | 0.1112 | 243.72 | 0.1636    | 239.99 |
| 49  | 0.1447 | 240.29 | 0.1111 | 242.33 | 0.1636    | 240.17 |
| 50  | 0.1447 | 239.75 | 0.1112 | 242.02 | 0.1636    | 240.94 |
| 58  | 0.1448 | 239.84 | 0.1110 | 241.76 | 0.1636    | 240.00 |
| 59  | 0.1449 | 239.95 | 0.1111 | 240.84 | 0.1636    | 240.01 |
| 60  | 0.1448 | 239.04 | 0.1109 | 239.95 | 0.1636    | 240.43 |
| 68  | 0.1451 | 238.62 | 0.1110 | 241.16 | 0.1637    | 240.19 |
| 69  | 0.1449 | 239.60 | 0.1111 | 240.65 | 0.1638    | 240.26 |
| 70  | 0.1451 | 240.51 | 0.1111 | 242.44 | 0.1637    | 240.90 |
| 78  | 0.1452 | 241.70 | 0.1110 | 240.33 | 0.1638    | 239.93 |
| 79  | 0.1452 | 241.19 | 0.1110 | 242.58 | 0.1637    | 240.10 |
| 80  | 0.1452 | 239.55 | 0.1111 | 241.55 | 0.1638    | 240.41 |
| 88  | 0.1452 | 241.25 | 0.1109 | 243.15 | 0.1639    | 239.98 |
| 89  | 0.1452 | 240.99 | 0.1113 | 242.28 | 0.1638    | 240.33 |
| 90  | 0.1454 | 241.37 | 0.1111 | 242.46 | 0.1639    | 240.44 |
| 98  | 0.1451 | 240.89 | 0.1110 | 240.53 | 0.1638    | 240.46 |
| 99  | 0.1453 | 242.18 | 0.1110 | 240.76 | 0.1640    | 240.90 |
| 100 | 0.1456 | 245.10 | 0.1112 | 241.36 | 0.1637    | 239.56 |
| 108 | 0.1459 | 246.21 | 0.1112 | 242.45 | 0.1639    | 240.37 |
| 109 | 0.1455 | 245.15 | 0.1110 | 240.46 | 0.1639    | 240.48 |
| 110 | 0.1458 | 245.45 | 0.1110 | 243.02 | 0.1639    | 240.93 |
| 118 | 0.1458 | 244.97 | 0.1111 | 241.49 | 0.1638    | 241.03 |
| 119 | 0.1456 | 245.90 | 0.1111 | 240.18 | 0.1640    | 241.40 |
| 120 | 0.1457 | 245.22 | 0.1113 | 241.61 | 0.1640    | 240.88 |
|     |        |        |        |        |           |        |

|     | Delto  | id     | Trapez | ius    | -Infraspi: | natus  |
|-----|--------|--------|--------|--------|------------|--------|
| Min | RMS    | MPF    | RMS    | MPF    | RMS        | MPF    |
|     |        |        |        |        |            |        |
| 8   | 0.1446 | 348.85 | 0.1117 | 443.46 | 0.1554     | 239.88 |
| 9   | 0.1429 | 303.12 | 0.1111 | 406.95 | 0.1554     | 240.44 |
| 10  | 0.1454 | 370.97 | 0.1144 | 439.23 | 0.1554     | 239.44 |
| 18  | 0.1437 | 318.31 | 0.1076 | 352.83 | 0.1554     | 239.53 |
| 19  | 0.1450 | 349.81 | 0.1114 | 422.83 | 0.1556     | 239.76 |
| 20  | 0.1435 | 315.82 | 0.1074 | 388.75 | 0.1554     | 240.31 |
| 28  | 0.1457 | 380.38 | 0.1129 | 447.92 | 0.1555     | 239.87 |
| 29  | 0.1456 | 351.09 | 0.1132 | 454.11 | 0.1555     | 240.42 |
| 30  | 0.1509 | 440.64 | 0.1157 | 558.55 | 0.1554     | 240.23 |
| 38  | 0.1427 | 312.10 | 0.1131 | 480.43 | 0.1554     | 238.64 |
| 39  | 0.1438 | 328.30 | 0.1131 | 447.99 | 0.1554     | 240.04 |
| 40  | 0.1441 | 332.25 | 0.1154 | 523.47 | 0.1555     | 240.44 |
| 48  | 0.1434 | 305.88 | 0.1104 | 418.53 | 0.1555     | 239.51 |
| 49  | 0.1442 | 329.91 | 0.1165 | 556.56 | 0.1556     | 238.94 |
| 50  | 0.1450 | 347.43 | 0.1155 | 540.95 | 0.1557     | 239.73 |
| 58  | 0.1444 | 339.77 | 0.1182 | 539.39 | 0.1557     | 239.23 |
| 59  | 0.1448 | 331.94 | 0.1153 | 507.77 | 0.1557     | 240.85 |
| 60  | 0.1452 | 326.63 | 0.1155 | 537.31 | 0.1558     | 240.51 |
| 68  | 0.1431 | 293.11 | 0.1125 | 438.96 | 0.1557     | 240.03 |
| 69  | 0.1433 | 312.24 | 0.1111 | 406.67 | 0.1557     | 240.05 |
| 70  | 0.1418 | 298.40 | 0.1097 | 416.93 | 0.1558     | 239.94 |
| 78  | 0.1434 | 319.86 | 0.1161 | 511.04 | 0.1561     | 241.85 |
| 79  | 0.1442 | 316.47 | 0.1154 | 489.10 | 0.1562     | 244.56 |
| 80  | 0.1428 | 300.13 | 0.1106 | 401.92 | 0.1559     | 240.53 |
| 88  | 0.1436 | 327.62 | 0.1105 | 404.82 | 0.1561     | 242.72 |
| 89  | 0.1426 | 276.49 | 0.1093 | 386.12 | 0.1559     | 241.22 |
| 90  | 0.1448 | 320.55 | 0.1145 | 481.71 | 0.1561     | 241.63 |
| 98  | 0.1436 | 342.16 | 0.1099 | 413.18 | 0.1564     | 245.76 |
| 99  | 0.1450 | 356.37 | 0.1185 | 545.74 | 0.1564     | 249.19 |
| 100 | 0.1452 | 346.26 | 0.1166 | 503.79 | 0.1564     | 247.29 |
| 108 | 0.1433 | 321.19 | 0.1132 | 498.16 | 0.1565     | 247.62 |
| 109 | 0.1433 | 334.69 | 0.1145 | 468.99 | 0.1567     | 249.10 |
| 110 | 0.1443 | 318.79 | 0.1120 | 442.26 | 0.1565     | 247.23 |
| 118 | 0.1430 | 321.98 | 0.1119 | 429.72 | 0.1570     | 255.44 |
| 119 | 0.1434 | 331.24 | 0.1102 | 390.38 | 0.1568     | 251.65 |
| 120 | 0.1440 | 319.46 | 0.1136 | 455.27 | 0.1570     | 252.50 |

|     | Delto  | id     | Trapez | ius    | -Infraspi | natus  |
|-----|--------|--------|--------|--------|-----------|--------|
| Min | RMS    | MPF    | RMS    | MPF    | RMS       | MPF    |
|     |        |        |        |        |           |        |
| 8   | 0.1360 | 240.44 | 0.1029 | 239.56 | 0.1568    | 278.93 |
| 9   | 0.1360 | 240.83 | 0.1030 | 239.66 | 0.1574    | 298.54 |
| 10  | 0.1361 | 239.26 | 0.1030 | 240.56 | 0.1573    | 290.14 |
| 18  | 0.1369 | 240.87 | 0.1031 | 240.72 | 0.1578    | 287.10 |
| 19  | 0.1369 | 245.77 | 0.1032 | 240.25 | 0.1577    | 282.05 |
| 20  | 0.1369 | 246.16 | 0.1031 | 239.80 | 0.1585    | 301.87 |
| 28  | 0.1375 | 246.62 | 0.1034 | 239.50 | 0.1600    | 322.40 |
| 29  | 0.1371 | 246.08 | 0.1034 | 239.78 | 0.1610    | 345.17 |
| 30  | 0.1376 | 244.80 | 0.1033 | 239.40 | 0.1591    | 311.79 |
| 38  | 0.1378 | 247.60 | 0.1034 | 240.64 | 0.1646    | 391.42 |
| 39  | 0.1377 | 245.99 | 0.1035 | 239.06 | 0.1571    | 269.97 |
| 40  | 0.1376 | 244.07 | 0.1034 | 240.30 | 0.1583    | 284.85 |
| 48  | 0.1382 | 246.12 | 0.1036 | 240.00 | 0.1595    | 300.27 |
| 49  | 0.1385 | 255.68 | 0.1036 | 241.16 | 0.1585    | 297.64 |
| 50  | 0.1386 | 257.01 | 0.1036 | 239.44 | 0.1575    | 272.14 |
| 58  | 0.1387 | 263.90 | 0.1038 | 240.02 | 0.1581    | 285.47 |
| 59  | 0.1387 | 262.90 | 0.1039 | 240.59 | 0.1583    | 276.30 |
| 60  | 0.1388 | 259.00 | 0.1038 | 240.74 | 0.1582    | 278.84 |
| 68  | 0.1390 | 260.13 | 0.1040 | 239.86 | 0.1573    | 261.17 |
| 69  | 0.1391 | 259.00 | 0.1040 | 239.58 | 0.1573    | 259.10 |
| 70  | 0.1391 | 268.12 | 0.1039 | 239.96 | 0.1577    | 270.15 |
| 78  | 0.1390 | 269.23 | 0.1041 | 240.73 | 0.1574    | 263.41 |
| 79  | 0.1395 | 269.54 | 0.1041 | 240.79 | 0.1572    | 260.61 |
| 80  | 0.1391 | 252.88 | 0.1041 | 239.72 | 0.1576    | 262.33 |
| 88  | 0.1395 | 270.81 | 0.1041 | 240.29 | 0.1571    | 265.92 |
| 89  | 0.1400 | 264.51 | 0.1042 | 240.69 | 0.1574    | 258.88 |
| 90  | 0.1396 | 250.91 | 0.1043 | 239.95 | 0.1575    | 256.81 |
| 98  | 0.1409 | 275.55 | 0.1042 | 239.53 | 0.1583    | 270.41 |
| 99  | 0.1402 | 265.13 | 0.1043 | 240.57 | 0.1577    | 263.58 |
| 100 | 0.1404 | 270.48 | 0.1043 | 240.58 | 0.1578    | 276.32 |
| 108 | 0.1406 | 267.49 | 0.1043 | 241.34 | 0.1583    | 264.73 |
| 109 | 0.1400 | 273.61 | 0.1043 | 240.57 | 0.1573    | 263.96 |
| 110 | 0.1407 | 283.35 | 0.1044 | 242.12 | 0.1573    | 261.03 |
| 118 | 0.1402 | 269.05 | 0.1044 | 239.83 | 0.1573    | 255.12 |
| 119 | 0.1395 | 260.99 | 0.1045 | 240.38 | 0.1576    | 257.09 |
| 120 | 0.1400 | 273.20 | 0.1045 | 240.48 | 0.1589    | 275.54 |
|     |        |        |        |        |           |        |

|     | Delto  | id     | Trapez | ius    | -Infraspi | natus  |
|-----|--------|--------|--------|--------|-----------|--------|
| Min | RMS    | MPF    | RMS    | MPF    | RMS       | MPF    |
|     |        |        |        |        |           |        |
| 8   | 0.1333 | 241.04 | 0.1108 | 239.08 | 0.1579    | 239.40 |
| 9   | 0.1337 | 243.13 | 0.1108 | 239.21 | 0.1580    | 240.07 |
| 10  | 0.1339 | 245.81 | 0.1108 | 239.10 | 0.1581    | 239.88 |
| 18  | 0.1351 | 243.94 | 0.1107 | 240.09 | 0.1587    | 239.98 |
| 19  | 0.1359 | 247.40 | 0.1107 | 239.51 | 0.1587    | 239.36 |
| 20  | 0.1353 | 247.01 | 0.1108 | 239.78 | 0.1588    | 239.69 |
| 28  | 0.1373 | 251.57 | 0.1106 | 239.47 | 0.1594    | 239.19 |
| 29  | 0.1367 | 250.24 | 0.1107 | 238.72 | 0.1594    | 240.35 |
| 30  | 0.1377 | 262.19 | 0.1107 | 239.70 | 0.1595    | 239.69 |
| 38  | 0.1385 | 258.66 | 0.1107 | 240.01 | 0.1599    | 240.34 |
| 39  | 0.1388 | 259.88 | 0.1107 | 240.13 | 0.1601    | 240.17 |
| 40  | 0.1382 | 247.47 | 0.1106 | 239.36 | 0.1599    | 239.86 |
| 48  | 0.1397 | 298.69 | 0.1106 | 238.89 | 0.1604    | 240.23 |
| 49  | 0.1408 | 265.74 | 0.1107 | 239.16 | 0.1604    | 240.18 |
| 50  | 0.1416 | 286.43 | 0.1107 | 240.23 | 0.1606    | 240.15 |
| 58  | 0.1425 | 287.18 | 0.1107 | 240.17 | 0.1609    | 239.72 |
| 59  | 0.1414 | 266.18 | 0.1106 | 239.72 | 0.1609    | 239.87 |
| 60  | 0.1429 | 283.27 | 0.1105 | 239.75 | 0.1610    | 239.63 |
| 68  | 0.1437 | 312.51 | 0.1107 | 239.80 | 0.1613    | 240.19 |
| 69  | 0.1434 | 305.04 | 0.1107 | 239.75 | 0.1613    | 239.29 |
| 70  | 0.1434 | 271.54 | 0.1107 | 239.85 | 0.1613    | 240.37 |
| 78  | 0.1452 | 305.66 | 0.1106 | 240.20 | 0.1616    | 239.70 |
| 79  | 0.1439 | 294.63 | 0.1107 | 239.64 | 0.1617    | 240.20 |
| 80  | 0.1442 | 292.98 | 0.1106 | 240.31 | 0.1618    | 239.39 |
| 88  | 0.1437 | 283.63 | 0.1106 | 240.49 | 0.1620    | 240.03 |
| 89  | 0.1443 | 293.64 | 0.1107 | 239.22 | 0.1620    | 239.91 |
| 90  | 0.1451 | 294.77 | 0.1107 | 240.82 | 0.1620    | 239.29 |
| 98  | 0.1451 | 286.57 | 0.1108 | 239.87 | 0.1623    | 240.24 |
| 99  | 0.1440 | 270.90 | 0.1107 | 240.47 | 0.1623    | 239.37 |
| 100 | 0.1449 | 281.34 | 0.1107 | 240.18 | 0.1623    | 240.32 |
| 108 | 0.1439 | 269.82 | 0.1107 | 239.68 | 0.1625    | 239.71 |
| 109 | 0.1441 | 269.78 | 0.1108 | 239.91 | 0.1627    | 240.03 |
| 110 | 0.1461 | 294.68 | 0.1107 | 239.95 | 0.1627    | 240.15 |
| 118 | 0.1477 | 298.78 | 0.1107 | 240.75 | 0.1628    | 239.75 |
| 119 | 0.1454 | 279.38 | 0.1107 | 240.19 | 0.1628    | 239.72 |
| 120 | 0.1454 | 285.17 | 0.1107 | 241.59 | 0.1628    | 239.13 |

Pickup: Opposite

| • • • • • • • • • • • • • • • • • • • •   | PF<br>1.50<br>1.09<br>1.45 |
|-------------------------------------------|----------------------------|
|                                           | ).09<br>).45               |
|                                           | ).09<br>).45               |
| 9 0.1280 240.63 0.1124 278.21 0 1553 24r  | .45                        |
|                                           |                            |
| 10 0.1283 241.46 0.1126 285.14 0.1554 239 | 06                         |
| 18 0.1298 240.97 0.1134 307.98 0.1564 239 | +00                        |
| 19 0.1302 241.52 0.1137 291.13 0.1564 239 | .75                        |
| 20 0.1303 240.80 0.1145 319.10 0.1565 239 | .48                        |
| 28 0.1318 240.72 0.1121 262.34 0.1572 239 | 0.07                       |
| 29 0.1320 240.94 0.1142 308.69 0.1573 239 | 9.98                       |
| 30 0.1321 240.97 0.1134 298.99 0.1573 239 | .67                        |
| 38 0.1335 242.84 0.1137 291.70 0.1579 239 | 9.12                       |
| 39 0.1336 244.98 0.1136 286.50 0.1581 239 | 9.80                       |
| 40 0.1130 286.69 0.1581 239               | 9.46                       |
| 48 0.1114 251.55 0.1586 23                | 9.86                       |
| 49 0.1116 268.53 0.1586 240               | 0.05                       |
| 50 0.1116 273.13 0.1587 23                | 9.93                       |
|                                           | ).51                       |
| 59 0.1359 240.61 0.1120 268.58 0.1592 240 | ).52                       |
| 60 0.1360 240.13 0.1136 302.34 0.1592 24  | 80.0                       |
| 68 0.1369 240.66 0.1137 308.93 0.1597 24  | ).07                       |
| 69 0.1369 240.94 0.1143 320.43 0.1596 24  | ).24                       |
| 70 0.1127 282.25 0.1598 24                | ).63                       |
| 78 0.1379 239.99 0.1131 299.87 0.1600 24  | 1.07                       |
| 79 0.1380 240.04 0.1117 269.65 0.1602 23  | 9.79                       |
| 80 0.1380 239.71 0.1141 312.98 0.1603 24  | 1.52                       |
| 88 0.1386 239.75 0.1138 303.18 0.1605 24  | 2.43                       |
| 89 0.1387 239.47 0.1127 297.55 0.1607 24  | 4.77                       |
| 90 0.1387 240.32 0.1141 320.95 0.1606 24  | 5.18                       |
| 98 0.1393 241.44 0.1143 321.88 0.1614 25  | 1.74                       |
|                                           | 3.01                       |
| 100 0.1394 239.47 0.1123 272.98 0.1614 24 | 7.87                       |
| 108 0.1399 240.77 0.1146 320.01 0.1624 25 | 8.96                       |
| 109 0.1400 240.32 0.1149 328.70 0.1628 26 | 7.33                       |
| 110 0.1401 240.37 0.1139 311.71 0.1623 26 | 1.55                       |
|                                           | 1.15                       |
| 119 0.1405 240.06 0.1140 313.41 0.1625 25 | 8.61                       |
| 120 0.1407 240.12 0.1122 282.67 0.1628 26 | 3.23                       |

|     | Deltoid |        | Trapezius |        | -Infraspinatus |        |
|-----|---------|--------|-----------|--------|----------------|--------|
| Min | RMS     | MPF    | RMS       | MPF    | RMS            | MPF    |
|     |         |        |           |        |                |        |
| 8   | 0.1500  | 238.90 | 0.1026    | 240.06 | 0.1608         | 239.71 |
| 9   | 0.1500  | 239.41 | 0.1026    | 239.70 | 0.1609         | 239.74 |
| 10  | 0.1500  | 239.15 | 0.1027    | 239.00 | 0.1608         | 239.68 |
| 18  | 0.1499  | 239.50 | 0.1029    | 240.77 | 0.1608         | 239.90 |
| 19  | 0.1499  | 239.75 | 0.1027    | 240.82 | 0.1609         | 239.35 |
| 20  | 0.1498  | 239.57 | 0.1027    | 240.07 | 0.1608         | 239.76 |
| 28  | 0.1496  | 239.62 | 0.1028    | 239.86 | 0.1608         | 239.32 |
| 29  | 0.1496  | 240.05 | 0.1030    | 244.56 | 0.1607         | 239.38 |
| 30  | 0.1496  | 239.08 | 0.1156    | 528.14 | 0.1607         | 239.11 |
| 38  | 0.1500  | 246.90 | 0.1030    | 241.14 | 0.1607         | 239.17 |
| 39  | 0.1496  | 241.27 | 0.1030    | 240.60 | 0.1607         | 239.31 |
| 40  | 0.1495  | 239.47 | 0.1029    | 240.64 | 0.1608         | 239.42 |
| 48  | 0.1494  | 238.23 | 0.1030    | 240.33 | 0.1607         | 239.85 |
| 49  | 0.1495  | 238.63 | 0.1030    | 239.43 | 0.1607         | 239.16 |
| 50  | 0.1494  | 239.95 | 0.1030    | 239.26 | 0.1607         | 239.84 |
| 58  | 0.1493  | 239.66 | 0.1030    | 240.51 | 0.1607         | 239.08 |
| 59  | 0.1493  | 239.13 | 0.1030    | 239.56 | 0.1607         | 239.51 |
| 60  | 0.1493  | 239.53 | 0.1030    | 239.70 | 0.1607         | 239.56 |
| 68  | 0.1492  | 239.47 | 0.1030    | 239.10 | 0.1607         | 239.52 |
| 69  | 0.1492  | 239.66 | 0.1030    | 240.08 | 0.1607         | 239.89 |
| 70  | 0.1492  | 239.43 | 0.1031    | 241.20 | 0.1606         | 240.11 |
| 78  | 0.1490  | 239.20 | 0.1031    | 239.11 | 0.1606         | 239.13 |
| 79  | 0.1490  | 239.52 | 0.1031    | 239.91 | 0.1606         | 239.13 |
| 80  | 0.1489  | 239.14 | 0.1031    | 239.88 | 0.1606         | 239.23 |
| 88  | 0.1488  | 239.86 | 0.1032    | 240.43 | 0.1605         | 239.41 |
| 89  | 0.1487  | 239.60 | 0.1033    | 239.38 | 0.1605         | 239.03 |
| 90  | 0.1488  | 239.37 | 0.1032    | 241.33 | 0.1606         | 239.18 |
| 98  | 0.1487  | 238.93 | 0.1034    | 239.62 | 0.1605         | 239.76 |
| 99  | 0.1487  | 239.20 | 0.1035    | 240.66 | 0.1606         | 239.74 |
| 100 | 0.1486  | 239.39 | 0.1035    | 240.67 | 0.1606         | 239.40 |
| 108 | 0.1484  | 239.33 | 0.1035    | 240.37 | 0.1605         | 239.36 |
| 109 | 0.1483  | 240.60 | 0.1036    | 240.07 | 0.1605         | 239.23 |
| 110 | 0.1484  | 239.74 | 0.1036    | 240.49 | 0.1606         | 240.05 |
| 118 | 0.1482  | 240.04 | 0.1037    | 241.08 | 0.1604         | 239.16 |
| 119 | 0.1481  | 239.96 | 0.1037    | 240.92 | 0.1605         | 239.45 |
| 120 | 0.1480  | 239.45 | 0.1037    | 239.90 | 0.1605         | 239.25 |
|     |         |        |           |        |                |        |

Subject: 5 Board: Straight Pickup: Opposite

|     | Deltoid |        | Trapezius |        | -Infraspinatus |        |
|-----|---------|--------|-----------|--------|----------------|--------|
| Min | RMS     | MPF    | RMS       | MPF    | RMS            | MPF    |
|     |         |        |           |        |                |        |
| 8   | 0.1004  | 325.54 | 0.0806    | 278.52 | 0.1246         | 311.60 |
| 9   | 0.1036  | 391.69 | 0.0821    | 286.31 | 0.1254         | 317.43 |
| 10  | 0.1015  | 308.18 | 0.0819    | 275.75 | 0.1271         | 349.23 |
| 18  | 0.1083  | 327.65 | 0.0832    | 279.54 | 0.1346         | 412.28 |
| 19  | 0.1086  | 335.06 | 0.0835    | 277.13 | 0.1328         | 379.67 |
| 20  | 0.1072  | 290.99 | 0.0838    | 278.34 | 0.1324         | 366.96 |
| 28  | 0.1095  | 258.19 | 0.0837    | 262.82 | 0.1292         | 269.89 |
| 29  | 0.1114  | 333.52 | 0.0837    | 269.15 | 0.1339         | 351.00 |
| 30  | 0.1132  | 322.31 | 0.0841    | 272.06 | 0.1340         | 364.68 |
| 38  | 0.1124  | 278.92 | 0.0844    | 272.79 | 0.1318         | 307.86 |
| 39  | 0.1123  | 287.25 | 0.0844    | 280.43 | 0.1316         | 290.21 |
| 40  | 0.1148  | 314.70 | 0.0844    | 281.44 | 0.1338         | 302.52 |
| 48  | 0.1157  | 309.11 | 0.0851    | 290.02 | 0.1337         | 330.42 |
| 49  | 0.1160  | 311.83 | 0.0851    | 305.23 | 0.1336         | 312.12 |
| 50  | 0.1161  | 300.94 | 0.0850    | 288.99 | 0.1342         | 306.28 |
| 58  | 0.1169  | 285.58 | 0.0848    | 270.87 | C.1333         | 294.23 |
| 59  | 0.1170  | 306.23 | 0.0851    | 292.48 | 0.1337         | 297.52 |
| 60  | 0.1194  | 353.59 | 0.0854    | 283.52 | 0.1361         | 328.75 |
| 68  | 0.1187  | 306.59 |           |        | 0.1362         | 318.88 |
| 69  | 0.1181  | 305.56 |           |        | 0.1388         | 367.25 |
| 70  | 0.1177  | 269.10 |           |        | 0.1343         | 284.35 |
| 78  | 0.1183  | 273.48 | 0.0847    | 262.03 | 0.1343         | 281.63 |
| 79  | 0.1201  | 311.50 | 0.0850    | 270.01 | 0.1364         | 303.99 |
| 80  | 0.1203  | 301.87 | 0.0845    | 260.21 | 0.1364         | 306.71 |
| 88  | 0.1193  | 272.46 | 0.0846    | 263.09 | 0.1340         | 260.83 |
| 89  | 0.1201  | 272.88 | 0.0848    | 268.50 | 0.1354         | 284.58 |
| 90  | 0.1204  | 281.34 | 0.0845    | 262.32 | 0.1346         | 273.35 |
| 98  | 0.1205  | 278.33 | 0.0845    | 259.13 | 0.1381         | 327.41 |
| 99  | 0.1226  | 319.04 | 0.0850    | 281.00 | 0.1409         | 377.57 |
| 100 | 0.1204  | 265.62 | 0.0844    | 256.25 | 0.1373         | 310.49 |
| 108 | 0.1231  | 302.05 | 0.0845    | 264.24 | 0.1364         | 292.10 |
| 109 | 0.1221  | 277.61 | 0.0859    | 283.27 | 0.1372         | 301.66 |
| 110 | 0.1207  | 273.54 | 0.0841    | 254.25 | 0.1362         | 283.69 |
| 118 | 0.1208  | 255.86 | 0.0848    | 265.74 | 0.1362         | 279.12 |
| 119 | 0.1228  | 301.68 | 0.0852    | 289.24 | 0.1394         | 325.65 |
| 120 | 0.1232  | 322.05 | 0.0851    | 298.61 | 0.1377         | 312.69 |
|     |         |        |           |        |                |        |

|     | Deltoid |        | Trapezius |        | -Infraspinatus |        |
|-----|---------|--------|-----------|--------|----------------|--------|
| Min | RMS     | MPF    | RMS       | MPF    | RMS            | MPF    |
|     |         |        |           |        |                |        |
| 8   | 0.1261  | 301.70 | 0.0797    | 372.51 | 0.1312         | 252.59 |
| 9   | 0.1261  | 311.18 | 0.0814    | 390.08 | 0.1309         | 256.90 |
| 10  | 0.1253  | 293.48 | 0.0808    | 394.17 | 0.1313         | 250.36 |
| 18  | 0.1267  | 305.63 | 0.0812    | 379.02 | 0.1312         | 253.53 |
| 19  | 0.1250  | 283.62 | 0.0806    | 370.94 | 0.1311         | 252.69 |
| 20  | 0.1247  | 283.43 | 0.0819    | 386.76 | 0.1313         | 250.05 |
| 28  | 0.1262  | 299.18 | 0.0805    | 365.24 | 0.1314         | 256.48 |
| 29  | 0.1247  | 286.73 | 0.0812    | 390.68 | 0.1314         | 253.08 |
| 30  | 0.1251  | 278.76 | 0.0806    | 369.12 | 0.1314         | 258.72 |
| 38  | 0.1268  | 318.97 | 0.0837    | 473.15 | 0.1314         | 256.36 |
| 39  | 0.1253  | 288.97 | 0.0802    | 325.93 | 0.1310         | 251.10 |
| 40  | 0.1251  | 291.53 | 0.0808    | 360.22 | 0.1309         | 253.84 |
| 48  | 0.1245  | 295.75 | 0.0829    | 418.29 | 0.1312         | 254.65 |
| 49  | 0.1246  | 293.39 | 0.0815    | 352.66 | 0.1313         | 256.93 |
| 50  | 0.1259  | 307.28 | 0.0822    | 386.12 | 0.1314         | 250.20 |
| 58  | 0.1245  | 280.90 | 0.0801    | 342.72 | 0.1316         | 254.43 |
| 59  | 0.1257  | 328.77 | 0.0826    | 421.53 | 0.1310         | 261.72 |
| 60  | 0.1262  | 297.09 | 0.0812    | 378.86 | 0.1315         | 257.99 |
| 68  | 0.1257  | 319.29 | 0.0825    | 389.77 | 0.1314         | 253.57 |
| 69  | 0.1258  | 306.13 | 0.0831    | 418.69 | 0.1310         | 250.57 |
| 70  | 0.1240  | 265.89 | 0.0803    | 343.14 | 0.1312         | 252.18 |
| 78  | 0.1263  | 306.64 | 0.0860    | 477.10 | 0.1319         | 253.12 |
| 79  | 0.1269  | 330.05 | 0.0849    | 474.84 | 0.1315         | 253.06 |
| 80  | 0.1251  | 295.46 | 0.0811    | 364.52 | 0.1317         | 250.09 |
| 88  | 0.1265  | 312.95 | 0.0837    | 437.05 | 0.1315         | 251.93 |
| 89  | 0.1235  | 259.08 | 0.0810    | 361.71 | 0.1313         | 252.16 |
| 90  | 0.1241  | 271.10 | 0.0817    | 367.79 | 0.1316         | 248.13 |
| 98  | 0.1272  | 318.42 | 0.0820    | 367.40 | 0.1312         | 250.21 |
| 99  | 0.1251  | 284.54 | 0.0802    | 340.01 | 0.1316         | 255.14 |
| 100 | 0.1270  | 319.06 | 0.0833    | 397.20 | 0.1315         | 250.73 |
| 108 | 0.1243  | 284.60 | 0.0811    | 358.89 | 0.1315         | 253.11 |
| 109 | 0.1250  | 281.36 | 0.0801    | 324.08 | 0.1317         | 254.07 |
| 110 | 0.1254  | 293.13 | 0.0813    | 360.91 | 0.1319         | 256.18 |
| 118 | 0.1255  | 298.74 | 0.0824    | 423.48 | 0.1315         | 255.71 |
| 119 | 0.1271  | 327.97 | 0.0852    | 485.83 | 0.1314         | 262.31 |
| 120 | 0.1268  | 318.57 | 0.0838    | 421.15 | 0.1316         | 253.53 |

Subject: 5 Board: V-Shaped Pickup: Opposite

|     | Deltoid |        | Trapezius |        | -Iniraspinatus |        |
|-----|---------|--------|-----------|--------|----------------|--------|
| Min | RMS     | MPF    | RMS       | MPF    | RMS            | MPF    |
|     |         |        |           |        |                |        |
| 8   | 0.1042  | 243.52 | 0.0691    | 323.67 | 0.1183         | 274.32 |
| 9   | 0.1044  | 244.83 | 0.0692    | 321.85 | 0.1175         | 266.36 |
| 10  | 0.1045  | 244.93 | 0.0686    | 304.12 | 0.1178         | 271.02 |
| 18  | 0.1062  | 246.36 | 0.0691    | 301.02 | 0.1202         | 288.57 |
| 19  | 0.1066  | 245.78 | 0.0686    | 314.36 | 0.1200         | 285.30 |
| 20  | 0.1066  | 245.61 | 0.0698    | 356.57 | 0.1200         | 296.61 |
| 28  | 0.1079  | 244.35 | 0.0697    | 335.00 | 0.1203         | 275.11 |
| 29  | 0.1081  | 240.47 | 0.0701    | 375.26 | 0.1199         | 270.35 |
| 30  | 0.1083  | 243.21 | 0.0693    | 331.10 | 0.1198         | 271.94 |
| 38  | 0.1098  | 246.29 | 0.0714    | 393.29 | 0.1215         | 270.94 |
| 39  | 0.1097  | 241.83 | 0.0690    | 303.20 | 0.1205         | 262.95 |
| 40  | 0.1100  | 243.62 | 0.0690    | 316.11 | 0.1208         | 264.84 |
| 48  | 0.1111  | 241.50 | 0.0678    | 270.47 | 0.1214         | 261.64 |
| 49  | 0.1115  | 243.41 | 0.0694    | 322.77 | 0.1217         | 265.97 |
| 50  | 0.1116  | 244.32 | 0.0718    | 395.10 | 0.1225         | 282.55 |
| 58  | 0.1127  | 246.52 | 0.0689    | 309.71 | 0.1223         | 267.06 |
| 59  | 0.1126  | 241.83 | 0.0684    | 280.83 | 0.1221         | 260.86 |
| 60  | 0.1127  | 241.45 | 0.0680    | 291.43 | 0.1216         | 257.43 |
| 68  | 0.1138  | 241.60 | 0.0688    | 304.71 | 0.1225         | 265.49 |
| 69  | 0.1139  | 245.71 | 0.0700    | 339.65 | 0.1226         | 269.75 |
| 70  | 0.1142  | 250.03 | 0.0703    | 356.58 | 0.1231         | 267.92 |
| 78  | 0.1150  | 244.21 | 0.0696    | 325.32 | 0.1236         | 268.36 |
| 79  | 0.1151  | 247.11 | 0.0705    | 363.21 | 0.1237         | 279.32 |
| 80  | 0.1151  | 244.64 | 0.0701    | 314.66 | 0.1238         | 273.75 |
| 83  | 0.1158  | 242.50 | 0.0695    | 322.60 | 0.1239         | 277.13 |
| 89  | 0.1159  | 244.75 | 0.0690    | 306.08 | 0.1244         | 287.57 |
| 90  | 0.1159  | 239.59 | 0.0693    | 300.19 | 0.1245         | 266.82 |
| 98  | 0.1166  | 240.73 | 0.0683    | 261.49 | 0.1236         | 259.82 |
| 99  | 0.1167  |        | 0.0677    | 251.37 | 0.1241         | 274.78 |
| 100 | 0.1281  | 468.42 | 0.0683    | 267.18 | 0.1240         | 264.94 |
| 108 | 0.1172  | 241.16 | 0.0682    | 255.46 | 0.1249         | 274.70 |
| 109 | 0.1173  | 240.18 | 0.0682    | 251.57 | 0.1246         | 261.12 |
| 110 | 0.1173  | 240.30 | 0.0685    | 256.41 | 0.1246         | 270.51 |
| 118 | 0.1182  | 244.60 | 0.0681    | 250.68 | 0.1245         | 276.38 |
| 119 | 0.1181  | 242.44 | 0.0681    | 249.51 | 0.1247         | 276.68 |
| 120 | 0.1181  | 242.72 | 0.0681    | 248.12 | 0.1252         | 274.01 |
|     |         |        |           |        |                |        |

Subject: 5 Board: V-Shaped Pickup: Centre

|     | Deltoid |        | Trapezius |        | -Infraspinatus |        |
|-----|---------|--------|-----------|--------|----------------|--------|
| Min | RMS     | MPF    | RMS       | MPF    | RMS            | MPF    |
|     |         |        |           |        |                |        |
| 8   | 0.1009  | 302.08 | 0.0822    | 301.90 | 0.1219         | 250.14 |
| 9   | 0.1041  | 363.16 | 0.0834    | 327.78 | 0.1231         | 269.25 |
| 10  | 0.1026  | 315.10 | 0.0827    | 311.66 | 0.1234         | 262.58 |
| 18  | 0.1047  | 299.13 | 0.0836    | 312.71 | 0.1246         | 258.86 |
| 19  | 0.1073  | 350.97 | 0.0834    | 309.35 | 0.1253         | 263.68 |
| 20  | 0.1072  | 347.06 | 0.0836    | 300.62 | 0.1245         | 256.54 |
| 28  | 0.1115  | 371.35 | 0.0855    | 335.38 | 0.1263         |        |
| 29  | 0.1107  | 341.51 | 0.0845    | 330.07 | 0.1264         | 258.85 |
| 30  | 0.1130  | 385.41 | 0.0867    | 349.99 | 0.1268         | 263.09 |
| 38  | 0.1104  | 298.78 | 0.0840    | 324.65 | 0.1263         |        |
| 39  | 0.1149  | 424.44 | 0.0855    | 344.44 | 0.1267         | 240.62 |
| 40  | 0.1118  | 343.43 | 0.0853    | 335.10 | 0.1268         |        |
| 48  | 0.1147  | 350.97 | 0.0870    | 377.85 | 0.1278         |        |
| 49  | 0.1145  | 349.46 | 0.0855    | 343.25 | 0.1280         |        |
| 50  | 0.1125  | 320.38 | 0.0841    | 299.17 | 0.1279         |        |
| 58  | 0.1145  | 334.76 | 0.0847    |        | 0.1292         |        |
| 59  | 0.1163  | 353.19 | 0.0851    | 331.18 | 0.1290         |        |
| 60  | 0.1159  | 337.20 | 0.0853    | 340.71 | 0.1292         |        |
| 68  | 0.1135  | 282.88 | 0.0855    | 316.55 | 0.1297         |        |
| 69  | 0.1157  | 302.71 | 0.0864    | 347.76 | 0.1299         | 245.22 |
| 70  | 0.1150  | 295.67 | 0.0842    |        | 0.1298         |        |
| 78  | 0.1157  | 295.69 | 0.0868    | 357.27 | 0.1305         |        |
| 79  | 0.1175  | 343.94 | 0.0856    | 345.18 | 0.1308         | 249.70 |
| 80  | 0.1180  | 336.24 | 0.0857    | 326.06 | 0.1308         | 252.12 |
| 88  | 0.1179  | 290.10 | 0.0854    | 335.55 | 0.1313         |        |
| 89  | 0.1163  | 267.55 | 0.0847    |        | 0.1313         |        |
| 90  | 0.1176  | 298.99 | 0.0875    | 351.52 | 0.1317         |        |
| 98  | 0.1194  | 304.75 | 0.0885    | 398.88 | 0.1315         | 242.68 |
| 99  | 0.1200  | 319.27 | 0.0879    | 376.30 | 0.1321         | 245.04 |
| 100 | 0.1202  | 332.14 | 0.0886    | 387.77 | 0.1323         | 245.47 |
| 108 | 0.1215  | 344.00 | 0.0874    | 381.71 | 0.1328         | 248.16 |
| 109 | 0.1190  | 276.13 | 0.0871    | 332.20 | 0.1326         | 242.10 |
| 110 | 0.1198  | 291.98 | 0.0878    | 364.00 | 0.1326         | 243.92 |
| 118 | 0.1200  | 283.78 | 0.0880    | 379.78 | 0.1330         | 244.18 |
| 119 | 0.1199  | 283.94 | 0.0876    | 361.02 | 0.1332         | 241.79 |
| 120 | 0.1201  | 281.52 | 0.0861    | 357.76 | 0.1334         | 242.02 |

Subject: 5 Board: Inclined Pickup: Opposite

|     | Deltoid |        | Trapez | ius    | -Infraspinatus |        |
|-----|---------|--------|--------|--------|----------------|--------|
| Min | RMS     | MPF    | RMS    | MPF    | RMS            | MPF    |
|     |         |        |        |        |                |        |
| 8   | 0.0972  | 301.62 | 0.0739 | 300.48 | 0.1153         | 255.64 |
| 9   | 0.0984  | 318.65 | 0.0734 | 317.28 | 0.1155         | 255.05 |
| 10  | 0.0982  | 307.35 | 0.0735 | 313.13 | 0.1156         | 256.83 |
| 18  | 0.1013  | 329.54 | 0.0735 | 286.95 | 0.1173         | 261.18 |
| 19  | 0.1018  | 329.89 | 0.0750 | 312.96 | 0.1178         | 256.80 |
| 20  | 0.1005  | 306.93 | 0.0732 | 295.98 | 0.1173         | 262.48 |
| 28  | 0.1020  | 295.11 | 0.0736 | 303.33 | 0.1179         | 256.49 |
| 29  |         | 327.71 | 0.0743 | 318.44 | 0.1183         | 257.51 |
| 30  | 0.1034  | 328.21 | 0.0744 | 307.45 | 0.1186         | 266.60 |
| 38  | 0.1064  | 352.59 | 0.0741 | 305.26 | 0.1194         | 275.46 |
| 39  | 0.1041  | 294.18 | 0.0737 | 297.84 | 0.1197         | 262.80 |
| 40  | 0.1052  | 320.62 | 0.0743 | 307.40 | 0.1194         | 271.87 |
| 48  | 0.1076  | 357.41 | 0.0737 | 280.67 | 0.1201         | 262.85 |
| 49  | 0.1094  | 395.67 | 0.0740 | 293.91 | 0.1207         | 270.66 |
| 50  | 0.1057  | 295.83 | 0.0736 | 273.82 | 0.1202         | 261.21 |
| 58  | 0.1081  | 323.84 | 0.0750 | 320.81 | 0.1217         | 284.59 |
| 59  | 0.1073  | 300.59 | 0.0742 | 301.26 | 0.1218         | 276.01 |
| 60  | 0.1082  | 329.34 | 0.0747 | 303.10 | 0.1221         | 280.24 |
| 68  | 0.1104  | 338.29 | 0.0762 | 335.53 | 0.1231         | 287.14 |
| 69  | 0.1099  | 320.28 | 0.0763 | 343.29 | 0.1227         | 282.11 |
| 70  | 0.1092  | 318.65 | 0.0744 | 282.39 | 0.1221         | 264.07 |
| 78  | 0.1090  | 294.31 | 0.0753 | 300.20 | 0.1228         | 269.99 |
| 79  | 0.1097  | 301.06 | 0.0748 | 312.61 | 0.1228         | 267.20 |
| 80  | 0.1093  | 296.38 | 0.0739 | 267.46 | 0.1227         | 260.37 |
| 88  | 0.1107  | 291.34 | 0.0748 | 299.96 | 0.1230         | 262.90 |
| 89  | 0.1106  | 304.75 | 0.0755 | 294.97 | 0.1233         | 269.83 |
| 90  | 0.1103  | 286.07 | 0.0744 | 282.54 | 0.1233         | 265.66 |
| 98  | 0.1107  | 284.65 | 0.0742 | 255.62 | 0.1237         | 260.77 |
| 99  | 0.1127  | 342.69 | 0.0755 | 305.59 | 0.1238         | 271.35 |
| 100 | 0.1128  | 335.26 | 0.0748 | 299.78 | 0.1236         | 267.57 |
| 108 | 0.1126  | 297.09 | 0.0754 | 302.60 | 0.1243         | 259.69 |
| 109 | 0.1128  | 324.42 | 0.0754 | 305.86 | 0.1248         | 269.34 |
| 110 | 0.1124  | 290.56 | 0.0755 | 285.49 | 0.1239         | 260.84 |
| 118 | 0.1121  | 286.76 | 0.0758 | 286.94 | 0.1243         | 257.10 |
| 119 | 0.1135  | 307.60 | 0.0764 | 321.51 | 0.1250         | 274.02 |
| 120 | 0.1133  | 297.49 | 0.0759 | 294.42 | 0.1248         | 273.85 |
|     |         |        |        |        |                |        |

Subject: 5 Board: Inclined Pickup: Centre

|     | Deltoid |        | Trapezius |        | -Infraspinatus |        |
|-----|---------|--------|-----------|--------|----------------|--------|
| Min | RMS     | MPF    | RMS       | MPF    | RMS            | MPF    |
|     |         |        |           |        |                |        |
| 8   | 0.1323  | 282.99 | 0.0837    | 359.03 | 0.1365         | 248.25 |
| 9   | 0.1306  | 249.75 | 0.0829    | 309.44 | 0.1367         | 245.10 |
| 10  | 0.1312  | 260.32 | 0.0815    | 298.72 | 0.1365         | 244.69 |
| 18  | 0.1331  | 294.57 | 0.0867    | 398.16 | 0.1367         | 249.20 |
| 19  | 0.1309  | 261.97 | 0.0831    | 328.67 | 0.1367         | 247.21 |
| 20  | 0.1320  | 279.34 | 0.0839    | 348.42 | 0.1366         | 249.11 |
| 28  | 0.1320  | 272.73 | 0.0847    | 343.79 | 0.1368         | 247.48 |
| 29  | 0.1310  | 272.19 | 0.0845    | 348.41 | 0.1367         | 248.58 |
| 30  | 0.1330  | 306.32 | 0.0836    | 358.05 | 0.1367         | 245.85 |
| 38  | 0.1322  | 288.37 | 0.0865    | 412.99 | 0.1366         | 247.10 |
| 39  | 0.1330  | 290.98 | 0.0895    | 472.87 | 0.1366         | 251.10 |
| 40  | 0.1335  | 313.02 | 0.0887    | 455.56 | 0.1368         | 249.63 |
| 48  | 0.1315  | 275.59 | 0.0852    | 373.19 | 0.1365         | 250.48 |
| 49  | 0.1308  | 269.51 | 0.0871    | 437.67 | 0.1366         | 247.03 |
| 50  | 0.1311  | 273.66 | 0.0850    | 394.48 | 0.1366         | 247.55 |
| 58  | 0.1298  | 274.72 | 0.0858    | 410.57 | 0.1364         | 247.42 |
| 59  | 0.1311  | 271.19 | 0.0860    | 373.49 | 0.1361         | 244.46 |
| 60  | 0.1324  | 298.36 | 0.0845    | 343.51 | 0.1365         | 247.31 |
| 68  | 0.1318  | 315.60 | 0.0898    | 482.56 | 0.1366         | 248.22 |
| 69  | 0.1301  | 279.39 | 0.0874    | 422.20 | 0.1364         | 246.50 |
| 70  | 0.1305  | 263.98 | 0.0866    | 379.96 | 0.1365         | 245.88 |
| 78  | 0.1308  | 283.69 | 0.0890    | 437.55 | 0.1367         | 246.62 |
| 79  | 0.1303  | 286.06 | 0.0883    | 445.60 | 0.1363         | 247.42 |
| 80  | 0.1299  | 269.42 | 0.0855    | 390.85 | 0.1366         | 248.76 |
| 88  | 0.1292  | 258.05 | 0.0862    | 386.19 | 0.1363         | 244.90 |
| 89  | 0.1295  | 260.78 | 0.0838    | 341.67 | 0.1364         | 247.04 |
| 90  | 0.1331  | 313.95 | 0.0872    | 424.88 | 0.1368         | 251.47 |
| 98  | 0.1296  | 277.08 | 0.0895    | 455.92 | 0.1361         | 247.46 |
| 99  | 0.1300  | 276.04 | 0.0875    | 433.84 | 0.1368         | 248.69 |
| 100 | 0.1304  | 281.37 | 0.0874    | 430.26 | 0.1363         | 245.61 |
| 108 | 0.1311  | 295.12 | 0.0868    | 425.89 | 0.1362         | 247.60 |
| 109 | 0.1299  | 277.15 | 0.0861    | 372.65 | 0.1364         | 244.72 |
| 110 | 0.1303  | 283.81 | 0.0875    | 452.55 | 0.1364         | 249.92 |
| 118 | 0.1303  | 283.37 | 0.0864    | 401.29 | 0.1362         | 248.99 |
| 119 | 0.1305  | 287.95 | 0.0888    | 442.97 | 0.1366         | 248.19 |
| 120 | 0.1306  | 272.42 | 0.0847    | 330.70 | 0.1363         | 247.27 |

|     | Deltoid |        | Trapez | ius    | -Infraspinatus |        |
|-----|---------|--------|--------|--------|----------------|--------|
| Min | RMS     | MPF    | RMS    | MPF    | RMS            | MPF    |
|     |         |        |        |        |                |        |
| 8   | 0.1112  | 448.24 | 0.0800 | 427.13 | 0.1211         | 268.39 |
| 9   | 0.1067  | 326.48 | 0.0789 | 379.49 | 0.1206         | 256.36 |
| 10  | 0.1088  | 353.60 | 0.0789 | 386.35 | 0.1204         | 256.42 |
| 18  | 0.1081  | 316.90 | 0.0789 | 380.42 | 0.1219         | 258.64 |
| 19  | 0.1105  | 337.14 | 0.0802 | 382.82 | 0.1214         | 256.29 |
| 20  | 0.1109  | 353.73 | 0.0801 | 399.79 | 0.1218         | 265.65 |
| 28  | 0.1113  | 339.75 | 0.0786 | 365.34 | 0.1235         | 265.04 |
| 29  | 0.1147  | 417.83 | 0.0803 | 410.47 | 0.1239         | 270.24 |
| 30  | 0.1136  | 347.24 | 0.0811 | 397.24 | 0.1235         | 266.15 |
| 38  | 0.1148  | 363.12 | 0.0814 | 409.85 | 0.1236         | 269.51 |
| 39  | 0.1129  | 317.78 | 0.0788 | 382.22 | 0.1233         | 251.65 |
| 40  | 0.1120  | 304.12 | 0.0783 | 318.30 | 0.1237         | 256.24 |
| 48  | 0.1133  | 293.56 | 0.0810 | 409.25 | 0.1239         | 253.78 |
| 49  | 0.1127  | 290.15 | 0.0803 | 393.23 | 0.1240         | 252.35 |
| 50  | 0.1131  | 313.51 | 0.0810 | 420.78 | 0.1237         | 254.45 |
| 58  | 0.1125  | 270.90 | 0.0795 | 363.68 | 0.1242         | 246.55 |
| 59  | 0.1145  | 309.57 | 0.0804 | 396.32 | 0.1249         | 255.05 |
| 60  | 0.1133  | 280.31 | 0.0795 | 382.98 | 0.1243         | 249.22 |
| 68  | 0.1143  | 277.89 | 0.0790 | 360.30 | 0.1251         | 253.45 |
| 69  | 0.1171  | 342.45 | 0.0790 | 339.11 | 0.1254         | 257.67 |
| 70  | 0.1152  | 289.20 | 0.0809 | 386.98 | 0.1251         | 256.60 |
| 78  | 0.1148  | 279.36 | 0.0786 | 341.11 | 0.1255         | 248.40 |
| 79  | 0.1158  | 286.86 | 0.0790 | 376.79 | 0.1256         | 255.93 |
| 80  | 0.1142  | 261.73 | 0.0792 | 344.64 | 0.1255         | 241.03 |
| 88  | 0.1163  | 299.77 | 0.0809 | 388.48 | 0.1258         | 254.11 |
| 89  | 0.1161  | 273.86 | 0.0785 | 348.90 | 0.1259         | 251.33 |
| 90  | 0.1158  | 270.78 | 0.0794 | 343.69 | 0.1261         | 251.27 |
| 98  | 0.1173  | 281.21 | 0.0816 | 442.96 | 0.1259         | 247.08 |
| 99  | 0.1168  | 281.36 | 0.0799 | 378.43 | 0.1262         | 250.02 |
| 100 | 0.1168  | 284.36 | 0.0796 | 347.68 | 0.1266         | 251.81 |
| 108 | 0.1174  | 302.84 | 0.0805 | 413.62 | 0.1269         | 258.52 |
| 109 | 0.1214  | 363.61 | 0.0828 | 422.89 | 0.1272         | 268.69 |
| 110 | 0.1169  | 279.56 | 0.0799 | 357.47 | 0.1266         | 248.03 |
| 118 | 0.1190  | 315.80 | 0.0800 | 387.60 | 0.1273         | 262.48 |
| 119 | 0.1193  | 325.70 | 0.0816 | 416.11 | 0.1279         | 267.88 |
| 120 | 0.1189  | 306.03 | 0.0816 | 391.16 | 0.1278         | 271.09 |
|     |         |        |        |        |                |        |

|     | Deltoid |        | Trapezius |        | -Infraspinatus |        |
|-----|---------|--------|-----------|--------|----------------|--------|
| Min | RMS     | MPF    | RMS       | MPF    | RMS            | MPF    |
|     | -       |        |           |        |                |        |
| 8   | 0.1219  | 238.94 | 0.0871    | 303.53 | 0.1359         | 247.84 |
| 9   | 0.1218  | 239.85 | 0.0888    | 322.61 | 0.1359         | 251.56 |
| 10  | 0.1218  | 239.28 | 0.0890    | 334.44 | 0.1364         | 250.50 |
| 18  | 0.1219  | 242.15 | 0.0889    | 347.00 | 0.1362         | 251.86 |
| 19  | 0.1217  | 241.45 | 0.0885    | 357.41 | 0.1367         | 259.53 |
| 20  | 0.1216  | 240.33 | 0.0875    | 318.30 | 0.1356         | 247.53 |
| 28  | 0.1215  | 239.54 | 0.0874    | 309.74 | 0.1359         | 243.84 |
| 29  | 0.1216  | 245.24 | 0.0876    | 324.66 | 0.1366         | 248.84 |
| 30  | 0.1217  | 245.01 | 0.0894    | 343.48 | 0.1367         | 256.97 |
| 38  | 0.1215  | 241.21 | 0.0883    | 310.17 | 0.1362         | 250.48 |
| 39  | 0.1214  | 240.00 | 0.0871    | 297.44 | 0.1361         | 242.08 |
| 40  | 0.1214  | 244.47 | 0.0882    | 301.28 | 0.1361         | 247.49 |
| 48  | 0.1213  | 241.59 | 0.0888    | 310.54 | 0.1362         | 253.15 |
| 49  | 0.1215  | 246.66 | 0.0889    | 319.90 | 0.1364         | 256.77 |
| 50  | 0.1213  | 241.87 | 0.0875    | 316.70 | 0.1357         | 255.93 |
| 58  | 0.1214  | 244.03 | 0.0941    | 473.12 | 0.1365         | 257.05 |
| 59  | 0.1211  | 239.98 | 0.0888    | 322.93 | 0.1359         | 244.73 |
| 60  | 0.1215  | 247.94 | 0.1061    | 734.48 | 0.1360         | 252.36 |
| 68  | 0.1209  | 238.61 | 0.0875    | 298.39 | 0.1356         | 239.91 |
| 69  | 0.1209  | 241.23 | 0.0927    | 417.15 | 0.1361         | 249.21 |
| 70  | 0.1210  | 240.61 | 0.0876    | 315.49 | 0.1356         | 250.11 |
| 78  | 0.1209  | 241.80 | 0.0859    | 240.65 | 0.1356         | 248.04 |
| 79  | 0.1209  | 243.97 | 0.0858    | 242.33 | 0.1360         | 250.97 |
| 80  | 0.1207  | 241.12 | 0.0859    | 240.24 | 0.1357         | 243.88 |
| 88  | 0.1206  | 240.20 | 0.0860    | 241.89 | 0.1356         | 245.49 |
| 89  | 0.1210  | 240.57 | 0.0860    | 243.74 | 0.1359         | 250.00 |
| 90  | 0.1208  | 243.33 | 0.0861    | 243.13 | 0.1364         | 254.94 |
| 98  | 0.1207  | 240.03 | 0.0862    | 241.69 | 0.1358         | 244.95 |
| 99  | 0.1208  | 239.47 | 0.0863    | 242.10 | 0.1361         | 244.85 |
| 100 | 0.1208  | 239.27 | 0.0862    | 243.36 | 0.1356         | 242.55 |
| 108 | 0.1207  | 240.59 | 0.0863    | 241.51 | 0.1360         | 248.08 |
| 109 | 0.1207  | 240.11 | 0.0863    | 241.55 | 0.1363         | 247.91 |
| 110 | 0.1207  | 239.24 | 0.0862    | 242.29 | 0.1359         | 246.28 |
| 118 | 0.1207  | 239.89 | 0.0861    | 243.70 | 0.1357         |        |
| 119 | 0.1206  | 238.49 | 0.0863    | 243.14 | 0.1359         | 243.29 |
| 120 | 0.1206  | 239.67 | 0.0862    | 243.41 | 0.1363         | 246.69 |
|     |         |        |           |        |                |        |

|     | Deltoid |        | Trapezius |        | -Infraspinatus |        |
|-----|---------|--------|-----------|--------|----------------|--------|
| Min | RMS     | MPF    | RMS       | MPF    | RMS            | MPF    |
|     |         |        |           |        |                |        |
| 8   | 0.1135  | 340.28 | 0.0821    | 513.78 | 0.1230         | 261.93 |
| 9   | 0.1129  | 305.03 | 0.0802    | 480.56 | 0.1225         | 256.05 |
| 10  | 0.1119  | 271.27 | 0.0802    | 464.19 | 0.1220         | 250.15 |
| 18  | 0.1142  | 305.69 | 0.0793    | 449.15 | 0.1230         | 255.47 |
| 19  | 0.1166  | 345.37 | 0.0813    | 479.67 | 0.1239         | 259.18 |
| 20  | 0.1134  | 283.81 | 0.0802    | 456.09 | 0.1228         | 245.23 |
| 28  | 0.]163  | 323.45 | 0.0797    | 465.15 | 0.1236         | 254.21 |
| 29  | 0.1158  | 305.87 | 0.0799    | 488.86 | 0.1238         | 260.19 |
| 30  | 0.1147  | 277.51 | 0.0789    | 434.71 | 0.1236         | 245.99 |
| 38  | 0.1183  | 341.86 | 0.0825    | 525.26 | 0.1249         | 263.55 |
| 39  | 0.1163  | 283.06 | 0.0801    | 457.73 | 0.1245         | 252.96 |
| 40  | 0.1201  | 356.33 | 0.0814    | 468.92 | 0.1254         | 262.29 |
| 48  | 0.1182  | 303.70 | 0.0779    | 419.43 | 0.1254         | 254.57 |
| 49  | 0.1176  | 285.03 | 0.0775    | 382.57 | 0.1254         | 253.52 |
| 50  | 0.1168  | 274.02 | 0.0765    | 345.28 | 0.1251         | 250.98 |
| 58  | 0.1176  | 265.58 | 0.0792    | 425.29 | 0.1256         | 251.74 |
| 59  | 0.1170  | 258.90 | 0.0793    | 402.85 | 0.1256         | 246.31 |
| 60  | 0.1194  | 305.76 | 2.0807    | 438.79 | 0.1258         | 250.78 |
| 68  | 0.1175  | 260.82 | 0.0788    | 421.82 | 0.1258         | 245.69 |
| 69  | 0.1191  | 273.72 | 0.0782    | 390.80 | 0.1262         | 248.48 |
| 70  | 0.1190  | 289.49 | 0.0787    | 412.62 | 0.1265         | 249.02 |
| 78  | 0.1193  | 281.77 | 0.0791    | 415.33 | 0.1265         | 258.52 |
| 79  | 0.1191  | 268.59 | 0.0770    | 356.90 | 0.1266         | 254.42 |
| 80  | 0.1214  | 304.54 | 0.0775    | 373.36 | 0.1278         | 265.19 |
| 88  | 0.1201  | 268.66 | 0.0784    | 388.25 | 0.1268         | 249.78 |
| 89  | 0.1219  | 317.82 | 0.0792    | 392.70 | 0.1285         | 275.27 |
| 90  | 0.1216  | 298.09 | 0.0793    | 380.39 | 0.1277         | 257.94 |
| 98  | 0.1203  | 258.82 | 0.0778    | 357.50 |                |        |
| 99  | 0.1218  | 292.85 | 0.0810    | 456.30 |                |        |
| 100 | 0.1213  | 304.13 | 0.0806    | 440.86 |                |        |
| 108 | 0.1232  | 327.94 | 0.0824    | 493.35 | 0.1283         | 260.20 |
| 109 | 0.1212  | 265.34 | 0.0809    | 479.19 | 0.1275         | 247.54 |
| 110 | 0.1205  | 255.53 | 0.0804    | 429.79 | 0.1279         | 244.62 |
| 118 | 0.1238  | 324.03 | 0.0813    | 459.66 | 0.1280         | 251.84 |
| 119 | 0.1220  | 278.64 | 0.0822    | 474.71 | 0.1283         | 254.08 |
| 120 | 0.1241  | 333.05 | 0.0829    | 523.11 | 0.1292         | 267.84 |

|     | Deltoid |        | Trapezius |        | -Infraspinatus |        |
|-----|---------|--------|-----------|--------|----------------|--------|
| Min | RMS     | MPF    | RMS       | MPF    | RMS            | MPF    |
|     |         |        |           |        |                |        |
| 8   | 0.1187  | 317.63 | 0.0849    | 466.49 | 0.1269         | 239.72 |
| 9   | 0.1200  | 327.44 | 0.0870    | 528.53 | 0.1269         | 238.42 |
| 10  | 0.1171  | 276.99 | 0.0870    | 511.12 | 0.1270         | 239.40 |
| 18  | 0.1176  | 260.54 | 0.0865    | 502.50 | 0.1277         | 239.55 |
| 19  | 0.1187  | 272.11 | 0.0836    | 431.41 | 0.1277         | 239.67 |
| 20  | 0.1183  | 263.84 | 0.0836    | 428.69 | 0.1279         | 239.24 |
| 28  | 0.1198  | 268.55 | 0.0829    | 414.75 | 0.1286         | 239.83 |
| 29  | 0.1195  | 259.97 | 0.0830    | 402.26 | 0.1286         | 240.22 |
| 30  | 0.1196  | 278.00 | 0.0851    | 472.56 | 0.1287         | 240.77 |
| 38  | 0.1213  | 268.93 | 0.0852    | 467.57 | 0.1293         | 239.88 |
| 39  | 0.1224  | 293.17 | 0.0859    | 493.03 | 0.1293         | 239.87 |
| 40  | 0.1221  | 294.14 | 0.0861    | 559.40 | 0.1294         | 240.20 |
| 48  | 0.1226  | 262.26 | 0.0866    | 502.61 | 0.1301         | 240.45 |
| 49  | 0.1224  | 266.51 | 0.0841    | 453.54 | 0.1302         | 240.60 |
| 50  | 0.1240  | 276.17 | 0.0852    | 452.50 | 0.1302         | 239.38 |
| 58  | 0.1244  | 290.22 | 0.0857    | 456.18 | 0.1306         | 239.28 |
| 59  | 0.1241  | 276.45 | 0.0831    | 432.03 | 0.1307         | 239.12 |
| 60  | 0.1254  | 282.74 | 0.0826    | 423.69 | 0.1308         | 241.20 |
| 68  | 0.1251  | 292.28 | 0.0863    | 507.92 | 0.1312         | 239.85 |
| 69  | 0.1249  | 291.44 | 0.0860    | 499.96 | 0.1313         | 239.76 |
| 70  | 0.1261  | 295.68 | 0.0844    | 474.43 | 0.1312         | 238.71 |
| 78  | 0.1255  | 267.95 | 0.0845    | 442.29 | 0.1316         | 240.28 |
| 79  | 0.1261  | 285.63 | 0.0847    | 507.13 | 0.1317         | 240.98 |
| 80  | 0.1263  | 271.27 | 0.0858    | 482.58 | 0.1317         | 240.60 |
| 88  | 0.1302  | 315.60 | 0.0895    | 584.19 | 0.1321         | 241.31 |
| 89  | 0.1254  | 250.28 | 0.0828    | 400.61 | 0.1321         | 239.78 |
| 90  | 0.1269  | 280.93 | 0.0837    | 458.06 | 0.1321         | 239.73 |
| 98  | 0.1275  | 286.38 | 0.0835    | 446.51 | 0.1325         | 241.07 |
| 99  | 0.1286  | 288.12 | 0.0838    | 467.42 | 0.1325         | 240.48 |
| 100 | 0.1268  | 264.47 | 0.0826    | 402.39 | 0.1325         | 239.40 |
| 108 | 0.1279  | 272.89 | 0.0850    | 453.66 | 0.1328         | 239.36 |
| 109 | 0.1286  | 282.31 | 0.0860    | 498.25 | 0.1328         | 240.66 |
| 110 | 0.1268  | 270.91 | 0.0852    | 470.16 | 0.1328         | 240.27 |
| 118 | 0.1282  | 266.85 | 0.0840    | 433.32 | 0.1330         | 240.98 |
| 119 | 0.1287  | 289.84 | 0.0850    | 457.71 | 0.1331         | 240.19 |
| 120 | 0.1294  | 298.14 | 0.0858    | 502.03 | 0.1331         | 240.21 |
|     |         |        |           |        |                |        |

•

|     | Deltoid |         | Trapez | ius    | -Infraspinatus |        |
|-----|---------|---------|--------|--------|----------------|--------|
| Min | RMS     | MPF     | RMS    | MPF    | RMS            | MPF    |
|     |         |         |        |        |                |        |
| 8   | 0.1247  | 310.00  | 0.0720 | 359.04 | 0.1278         | 300.06 |
| 9   | 0.1239  | 293.99  | 0.0717 | 318.73 | 0.1340         | 406.75 |
| 10  | 0.1269  | 348.18  | 0.0718 | 325.96 | 0.1260         | 252.79 |
| 18  | 0.1224  | 262.17  | 0.0716 | 360.06 | 0.1268         | 254.33 |
| 19  | 0.1243  | 285.11  | 0.0732 | 417.50 | 0.1263         | 260.05 |
| 20  | 0.1265  | 348.88  | 0.0730 | 393.58 | 0.1266         | 252.69 |
| 28  | 0.1215  | 242.60  |        |        | 0.1265         | 252.61 |
| 29  | 0.1218  | 248.02  |        |        | 0.1265         | 252.40 |
| 30  | 0.1217  | 244.73  |        |        | 0.1262         | 256.26 |
| 38  | 0.1489  | 680.98  | 0.0752 | 462.25 | 0.1265         | 248.59 |
| 39  | 0.1403  | 574.61  | 0.0758 | 488.64 | 0.1264         | 248.81 |
| 40  | 0.1426  | 666.28  | 0.0766 | 463.71 | 0.1263         | 247.56 |
| 48  | 0.1325  | 459.75  | 0.0767 | 500.43 | 0.1267         | 255.48 |
| 49  | 0.1276  | 372.15  | 0.0769 | 474.92 | 0.1261         | 246.79 |
| 50  | 0.1277  | 374.88  | 0.0755 | 465.48 | 0.1263         | 243.24 |
| 58  | 0.1282  | 362.13  | 0.0757 | 452.35 | 0.1265         | 248.79 |
| 59  | 0.1257  | 345.97  | 0.0793 | 540.45 | 0.1264         | 259.19 |
| 60  | 0.1278  | 354.25  | 0.0775 | 480.69 | 0.1262         | 242.64 |
| 68  | 0.1358  | 520.09  | 0.0772 | 494.77 | 0.1267         | 251.30 |
| 69  | 0.1320  | 448.99  | 0.0793 | 581.10 | 0.1265         | 250.80 |
| 70  | 0.1268  | 344.71  | 0.0802 | 534.44 | 0.1267         | 254.40 |
| 78  | 0.1240  | 294.71  | 0.0779 | 490.73 | 0.1271         | 247.39 |
| 79  | 0.1242  | 296.58  | 0.0818 | 624.12 | 0.1265         | 243.60 |
| 80  | 0.1256  | 285.19  | 0.0782 | 524.56 | 0.1266         | 244.83 |
| 85  | 0.1230  | 265.81  | 0.0802 | 579.51 | 0.1267         | 245.99 |
| 89  | 0.1250  | 281.25  | 0.0801 | 615.68 | 0.1267         | 246.67 |
| 90  | 0.1235  | 281.31  | 0.0823 | 650.10 | 0.1269         | 251.02 |
| 98  | 0.1231  | 275.77  | 0.0811 | 579.86 | 0.1270         | 245.09 |
| 99  | 0.1255  | 297.08  | 0.0804 | 566.31 | 0.1272         | 244.52 |
| 100 | 0.1231  | 258.18  | 0.0838 | 610.52 | 0.1267         | 246.50 |
| 108 | 0.1633  | 880.82  | 0.0818 | 634.07 | 0.1274         | 247.39 |
| 109 | 0.1341  | 485.29  | 0.0824 | 635.31 | 0.1276         | 249.62 |
| 110 | 0.1620  | 912.21  | 0.0809 | 593.72 | 0.1273         | 247.73 |
| 118 | 0.1819  | 1148.75 | 0.0851 | 647.30 | 0.1280         | 264.45 |
| 119 | 0.1660  | 914.10  | 0.0837 | 647.86 |                | 250.78 |
| 120 | 0.1430  | 641.19  | 0.0875 | 729.36 | 0.1272         | 247.86 |
|     |         |         |        |        |                |        |

|                | Deltoid |        | Trapezius |        | -Infraspinatus |        |
|----------------|---------|--------|-----------|--------|----------------|--------|
| Min            | RMS     | MPF    | RMS       | MPF    | RMS            | MPF    |
|                |         |        |           |        |                |        |
| 8              | 0.1553  | 741.26 | 0.0875    | 284.27 | 0.1384         | 245.78 |
| 9              | 0.1276  | 281.41 | 0.0886    | 317.37 | 0.1391         | 254.51 |
| 10             | 0.1270  | 262.25 | 0.0883    | 321.19 | 0.1384         | 243.91 |
| 18             | 0.1270  | 264.26 | 0.0894    | 351.02 | 0.1383         | 240.25 |
| 19             | 0.1283  | 279.43 | 0.0900    | 348.78 | 0.1384         | 240.45 |
| 20             | 0.1270  | 272.13 | 0.0894    | 356.86 | 0.1384         | 241.69 |
| 28             | 0.1272  | 265.24 | 0.0902    | 359.90 | 0.1387         | 244.39 |
| 29             | 0.1276  | 270.30 | 0.0890    | 337.26 | 0.1385         | 239.08 |
| 30             | 0.1291  | 316.47 | 0.0898    | 376.74 | 0.1387         | 244.96 |
| 38             | 0.1286  | 290.65 | 0.0914    | 386.86 | 0.1387         | 242.03 |
| 39             | 0.1276  | 263.88 | 0.0910    | 398.04 | 0.1386         | 243.36 |
| 40             | 0.1271  | 257.17 | 0.0901    | 379.75 | 0.1387         | 242.66 |
| 48             | 0.1283  | 279.90 | 0.0902    | 385.59 | 0.1387         | 244.12 |
| 49             | 0.1285  | 286.75 | 0.0916    | 377.78 | 0.1388         | 244.45 |
| 50             | 0.1282  | 289.75 | 0.0907    | 396.98 | 0.1388         | 243.62 |
| 58             | 0.1276  | 259.31 | 0.0899    | 358.08 | 0.1387         | 240.96 |
| 59             | 0.1286  | 276.27 | 0.0897    | 342.51 | 0.1387         | 240.70 |
| 60             | 0.1274  | 259.70 | 0.0890    | 327.18 | 0.1389         | 241.41 |
| 68             | 0.1270  | 252.98 | 0.0897    | 349.20 | 0.1388         | 241.47 |
| 69             | 0.1274  | 265.26 | 0.0890    | 322.38 | 0.1388         | 240.05 |
| 70             | 0.1290  | 288.52 | 0.0923    | 389.31 | 0.1389         | 241.99 |
| 78             | 0.1273  | 250.58 | 0.0897    | 331.81 | 0.1390         | 241.10 |
| 7 <del>9</del> | 0.1281  | 267.99 | 0.0910    | 374.70 | 0.1388         | 243.16 |
| 80             | 0.1287  | 275.24 | 0.0904    | 361.80 | 0.1390         | 242.76 |
| 88             | 0.1272  | 260.74 | 0.0893    | 344.11 | 0.1389         | 241.21 |
| 89             | 0.1279  | 254.01 | 0.0903    | 357.23 | 0.1390         | 242.16 |
| 90             | 0.1276  | 262.93 | 0.0907    | 382.62 | 0.1390         | 241.65 |
| 98             | 0.1266  | 240.35 | 0.0879    | 288.23 | 0.1391         | 243.17 |
| 99             | 0.1266  | 240.03 | 0.0894    | 301.67 | 0.1392         | 242.79 |
| 100            | 0.1266  | 240.39 | 0.0891    | 310.07 | 0.1390         | 244.23 |
| 108            | 0.127.  | 246.40 | 0.0892    | 313.57 | 0.1391         | 242.86 |
| 109            | 0.1269  | 244.32 | 0.0889    | 303.57 | 0.1392         | 240.00 |
| 110            | 0.1273  | 251.84 | 0.0901    | 302.11 | 0.1391         | 241.14 |
| 118            | 0.1271  | 250.97 | 0.0891    | 298.50 |                |        |
| 119            | 0.1273  | 251.86 | 0.0884    | 291.57 |                |        |
| 120            | 0.1283  | 264.09 | 0.0887    | 290.16 |                |        |

• 200

171

.

. -

|     | Deltoid |        | Trape: | Trapezius |        | -Infraspinatus |  |
|-----|---------|--------|--------|-----------|--------|----------------|--|
| Min | RMS     | MPF    | RMS    | MPF       | RMS    | MPF            |  |
|     |         |        |        |           |        |                |  |
| 8   | 0.0702  | 627.15 | 0.0356 | 1609.18   | 0.0677 | 401.18         |  |
| 9   | 0.0733  | 741.98 | 0.0347 | 1557.86   | 0.0687 | 383.59         |  |
| 10  | 0.0756  | 802.01 | 0.0426 | 1716.69   | 0.0693 | 415.25         |  |
| 18  | 0.0719  | 627.71 | 0.0372 | 1566.63   | 0.0694 | 366.27         |  |
| 19  | 0.0738  | 641.47 | 0.0390 | 1641.63   | 0.0697 | 365.21         |  |
| 20  | 0.0723  | 574.74 | 0.0328 | 1442.25   | 0.0693 | 346.37         |  |
| 28  | 0.0727  | 539.24 | 0.0339 | 1470.41   | 0.0699 | 344.13         |  |
| 29  | 0.0759  | 643.25 | 0.0444 | 1655.86   | 0.0711 | 378.15         |  |
| 30  | 0.0723  | 551.34 | 0.0403 | 1539.63   | 0.0715 | 342.44         |  |
| 38  | 0.0740  | 516.43 | 0.0404 | 1574.73   | 0.0729 | 365.93         |  |
| 39  | 0.0740  | 501.85 | 0.0352 | 1496.06   | 0.0718 | 348.98         |  |
| 40  | 0.0767  | 601.09 | 0.0389 | 1558.22   | 0.0722 | 373.49         |  |
| 48  | 0.0748  | 494.30 | 0.0338 | 1440.81   | 0.0728 | 347.14         |  |
| 49  | 0.0768  | 516.34 | 0.0353 | 1538.18   | 0.0730 | 340.99         |  |
| 50  | 0.0771  | 541.20 | 0.0410 | 1629.59   | 0.0729 | 360.02         |  |
| 58  | 0.0787  | 549.08 | 0.0311 | 1334.08   | 0.0740 | 348.41         |  |
| 59  | 0.0768  | 525.27 | 0.0343 | 1393.40   | 0.0736 | 355.12         |  |
| 60  | 0.0782  | 501.00 | 0.0339 | 1392.19   | 0.0733 | 359.31         |  |
| 68  | 0.0783  | 480.81 | 0.0345 | 1361.42   | 0.0748 | 338.65         |  |
| 69  | 0.0792  | 497.50 | 0.0354 | 1440.20   | 0.0749 | 345.39         |  |
| 70  | 0.0804  | 535.11 | 0.0382 | 1498.90   | 0.0745 | 361.16         |  |
| 78  | 0.0789  | 501.43 | 0.0349 | 1393.38   | 0.0752 | 333.34         |  |
| 79  | 0.0792  | 489.24 | 0.0302 | 1173.06   | 0.0753 | 340.12         |  |
| 80  | 0.0780  | 411.18 | 0.0304 | 1256.82   | 0.0749 | 314.20         |  |
| 88  | 0.0845  | 599.27 | 0.0373 | 1431.82   | 0.0762 | 358.18         |  |
| 89  | 0.0798  | 466.66 | 0.0320 | 1281.87   | 0.0759 | 334.24         |  |
| 90  | 0.0825  | 523.09 | 0.0396 | 1443.50   | 0.0756 | 355.55         |  |
| 98  | 0.0825  | 478.20 | 0.0334 | 1319.11   | 0.0760 | 324.63         |  |
| 99  | 0.0824  | 487.00 | 0.0390 | 1453.03   | 0.0767 | 345.80         |  |
| 100 | 0.0818  | 451.52 | 0.0359 | 1382.50   | 0.0765 | 328.47         |  |
| 108 | 0.0836  | 485.90 | 0.0388 | 1477.59   | 0.0778 | 359.16         |  |
| 109 | 0.0799  | 427.69 | 0.0296 | 1123.07   | 0.0762 | 326.07         |  |
| 110 | 0.0812  | 415.72 | 0.0339 | 1221.64   | 0.0765 | 313.08         |  |
| 118 | 0.0820  | 427.72 | 0.0345 | 1284.00   | 0.0770 | 322.08         |  |
| 119 | 0.0852  | 527.52 | 0.0390 | 1469.74   | 0.0793 | 394.07         |  |
| 120 | 0.0826  | 478.37 | 0.0397 | 1484.29   | 0.0777 | 344.73         |  |

|      | Delto  | id     | Trape  | zius    | -Infraspi | .natus |
|------|--------|--------|--------|---------|-----------|--------|
| Min  | RMS    | MPF    | RMS    | MPF     | RMS       | MPF    |
|      |        |        |        |         |           |        |
| 8    | 0.0714 | 562.46 | 0.0430 | 1718.34 | 0.0706    | 467.92 |
| 9    | 0.0674 | 480.98 | 0.0354 | 1567.46 | 0.0693    | 414.27 |
| 10   | 0.0759 | 695.36 | 0.0383 | 1676.87 | 0.0707    | 479.67 |
| 18   | 0.0742 | 650.36 | 0.0359 | 1591.61 | 0.0709    | 418.26 |
| 19   | 0.0813 | 875.36 | 0.0361 | 1533.42 | 0.0712    | 451.85 |
| 20   | 0.0713 | 507.05 | 0.0400 | 1644.17 | 0.0703    | 424.01 |
| 28   | 0.0721 | 504.14 | 0.0337 | 1526.43 | 0.0702    | 384.12 |
| 29   | 0.0699 | 427.01 | 0.0315 | 1449.53 | 0.0697    | 391.92 |
| 30   | 0.0709 | 431.09 | 0.0318 | 1451.81 | 0.0714    | 398.29 |
| 38   | 0.0763 | 547.79 | 0.0367 | 1569.09 | 0.0718    | 419.81 |
| 39   | 0.0737 | 534.73 | 0.0373 | 1631.00 | 0.0713    | 398.40 |
| 40   | 0.0737 | 502.14 | 0.0357 | 1548.13 | 0.0714    | 393.13 |
| 48   | 0.0744 | 470.10 | 0.0317 | 1451.60 | 0.0732    | 407.88 |
| 49   | 0.0741 | 443.44 | 0.0325 | 1433.65 | 0.0723    | 379.42 |
| 50   | 0.0780 | 562.79 | 0.0386 | 1604.84 | 0.0740    | 435.81 |
| 58   | 0.0772 | 508.35 | 0.0364 | 1548.42 | 0.0742    | 444.08 |
| 59   | 0.0766 | 473.79 | 0.0369 | 1605.12 | 0.0731    | 423.73 |
| 60   | 0.0789 | 561.22 | 0.0371 | 1565.85 | 0.0735    | 435.89 |
| 68   | 0.0761 | 418.99 | 0.0306 | 1325.96 | 0.0732    | 370.35 |
| 69   | 0.0760 | 411.31 | 0.0336 | 1476.95 | 0.0736    | 376.63 |
| 70   | 0.0773 | 449.70 | 0.0313 | 1387.44 | 0.0738    | 387.63 |
| 78   | 0.0773 | 427.24 | 0.0359 | 1467.48 | 0.0751    | 393.59 |
| 79   | 0.0767 | 398.51 | 0.0314 | 1367.04 | 0.0753    | 390.02 |
| 80   | 0.0758 | 408.68 | 0.0360 | 1571.85 | 0.0750    | 399.66 |
| . 88 | 0.0784 | 433.64 | 0.0395 | 1534.83 | 0.0767    | 405.92 |
| 89   | 0.0771 | 369.61 | 0.0377 | 1540.12 | 0.0762    | 414.44 |
| 90   | 0.0771 | 350.99 | 0.0348 | 1518.97 | 0.0775    | 423.95 |
| 98   | 0.0789 | 459.57 | 0.0421 | 1608.29 | 0.0756    | 385.85 |
| 99   | 0.0774 | 358.32 | 0.0303 | 1250.98 | 0.0752    | 378.79 |
| 100  | 0.0769 | 364.26 | 0.0320 | 1401.94 | 0.0760    | 391.38 |
| 108  | 0.0767 | 334.80 | 0.0349 | 1515.17 | 0.0764    | 402.76 |
| 109  | 0.0763 | 311.22 | 0.0346 | 1376.50 | 0.0763    | 376.13 |
| 110  | 0.0787 | 382.82 | 0.0416 | 1644.69 | 0.0789    | 465.09 |
| 118  | 0.0770 | 315.17 | 0.0332 | 1390.30 | 0.0765    | 394.06 |
| 119  | 0.0762 | 291.52 | 0.0377 | 1531.75 | 0.0772    | 428.57 |
| 120  | 0.0760 | 289.18 | 0.0392 | 1508.11 | 0.0779    | 423.99 |
|      |        |        |        |         |           |        |

.

|     | Deltoid |        | Trape  | Trapezius |        | -Infraspinatus |  |
|-----|---------|--------|--------|-----------|--------|----------------|--|
| Min | RMS     | MPF    | RMS    | MPF       | RMS    | MPF            |  |
|     |         |        |        |           |        |                |  |
| 8   | 0.0788  | 625.16 | 0.0297 | 2028.67   | 0.0645 | 513.61         |  |
| 9   | 0.0823  | 694.29 | 0.0294 | 2023.05   | 0.0643 | 465.25         |  |
| 10  | 0.0847  | 774.97 | 0.0362 | 2029.37   | 0.0667 | 545.57         |  |
| 18  | 0.0790  | 578.59 | 0.0283 | 2024.81   | 0.0659 | 509.71         |  |
| 19  | 0.0783  | 569.95 | 0.0250 | 2000.73   | 0.0658 | 467.70         |  |
| 20  | 0.0765  | 503.71 | 0.0250 | 2009.34   | 0.0647 | 485.65         |  |
| 28  | 0.0842  | 700.70 | 0.0273 | 2001.67   | 0.0713 | 641.85         |  |
| 29  | 0.0781  | 558.79 | 0.0254 | 2016.50   | 0.0640 | 415.24         |  |
| 30  | 0.0842  | 690.50 | 0.0294 | 2016.46   | 0.0668 | 508.89         |  |
| 38  | 0.0847  | 654.82 | 0.0244 | 2002.09   | 0.0686 | 531.65         |  |
| 39  | 0.0865  | 702.60 | 0.0269 | 1992.42   | 0.0682 | 528.45         |  |
| 40  | 0.0844  | 660.41 | 0.0271 | 2008.23   | 0.0658 | 440.23         |  |
| 48  | 0.0838  | 596.30 | 0.0276 | 2001.81   | 0.0671 | 463.12         |  |
| 49  | 0.0836  | 613.01 | 0.0299 | 2018.90   | 0.0673 | 460.46         |  |
| 50  | 0.0857  | 624.32 | 0.0242 | 1993.70   | 0.0671 | 450.13         |  |
| 58  | 0.0896  | 733.58 | 0.0275 | 2003.46   | 0.0695 | 496.17         |  |
| 59  | 0.0887  | 713.08 | 0.0306 | 2001.25   | 0.0703 | 530.14         |  |
| 60  | 0.0850  | 609.01 | 0.0250 | 1997.82   | 0.0662 | 413.69         |  |
| 68  | 0.0816  | 477.39 | 0.0240 | 1986.74   | 0.0665 | 410.93         |  |
| 69  | 0.0840  | 496.81 | 0.0259 | 1984.33   | 0.0674 | 420.92         |  |
| 70  | 0.0819  | 496.33 | 0.0226 | 1953.97   | 0.0663 | 376.72         |  |
| 78  | 0.0918  | 703.82 | 0.0311 | 1987.68   | 0.0694 | 477.28         |  |
| 79  | 0.0855  | 557.28 | 0.0280 | 1998.04   | 0.0676 | 396.91         |  |
| 80  | 0.0878  | 579.89 | 0.0264 | 1992.64   | 0.0669 | 394.96         |  |
| 88  | 0.0862  | 564.28 | 0.0232 | 1954.02   | 0.0681 | 409.67         |  |
| 89  | 0.0843  | 501.84 | 0.0276 | 1984.57   | 0.0891 | 993.15         |  |
| 90  | 0.0852  | 505.00 | 0.0230 | 1930.13   | 0.0748 | 591.78         |  |
| 98  | 0.0830  | 451.47 | 0.0292 | 1986.46   | 0.0787 | 743.24         |  |
| 99  | 0.0888  | 629.71 | 0.0273 | 1987.04   | 0.0770 | 686.55         |  |
| 100 | 0.0893  | 621.37 | 0.0282 | 1995.45   | 0.0801 | 777.49         |  |
| 108 | 0.0870  | 543.91 | 0.0220 | 1930.48   | 0.0756 | 644.00         |  |
| 109 | 0.0880  | 575.72 | 0.0279 | 1984.50   | 0.0828 | 802.84         |  |
| 110 | 0.0910  | 615.19 | 0.0283 | 1983.47   | 0.0802 | 748.92         |  |
| 118 | 0.0875  | 568.20 | 0.0331 | 1985.88   | 0.0820 | 780.85         |  |
| 119 | 0.0844  | 479.63 | 0.0290 | 1960.12   | 0.0773 | 697.49         |  |
| 120 | 0.0884  | 539.28 | 0.0294 | 1954.71   | 0.0808 | 804.96         |  |
|     |         |        |        |           |        |                |  |

|     | Deltoid |        | Trapezius |        | -Infraspinatus |         |
|-----|---------|--------|-----------|--------|----------------|---------|
| Min | RMS     | MPF    | RMS       | MPF    | RMS            | MPF     |
|     |         |        |           |        |                |         |
| 8   | 0.0625  | 338.36 | 0.0254    | 279.16 | 0.2235         | 1804.15 |
| 9   | 0.0623  | 323.30 | 0.0255    | 283.41 | 0.1968         | 1735.68 |
| 10  | 0.0610  | 251.62 | 0.0256    | 289.70 | 0.2409         | 1858.08 |
| 18  | 0.0629  | 244.71 |           |        | 0.2724         | 1880.24 |
| 19  | 0.0630  | 243.51 |           |        | 0.2242         | 1799.25 |
| 20  | 0.0633  | 241.28 |           |        | 0.2658         | 1868.04 |
| 28  | 0.0650  | 243.14 |           |        | 0.2435         | 1838.77 |
| 29  | 0.0654  | 245.06 |           |        | 0.2411         | 1840.88 |
| 30  | 0.0655  | 244.20 |           |        | 0.2427         | 1820.65 |
| 38  | 0.0671  | 244.31 | 0.0268    | 283.23 | 0.2828         | 1879.44 |
| 39  | 0.0673  | 245.22 | 0.0269    | 287.30 | 0.3367         | 1933.99 |
| 40  | 0.0675  | 245.36 | 0.0269    | 281.69 | 0.3322         | 1932.85 |
| 48  | 0.0690  | 246.87 | 0.0272    | 288.78 | 0.3529         | 1944.12 |
| 49  | 0.0690  | 245.56 | 0.0272    | 282.81 | 0.3165         | 1909.34 |
| 50  | 0.0692  | 246.91 | 0.0273    | 280.29 | 0.2825         | 1854.37 |
| 58  | 0.0705  | 246.58 | 0.0277    | 294.67 | 0.3444         | 1919.12 |
| 59  | 0.0706  | 247.31 | 0.0279    | 305.47 | 0.2377         | 1820.97 |
| 60  | 0.0708  | 247.71 | 0.0280    | 309.45 | 0.3279         | 1912.01 |
| 68  |         |        | 0.0281    | 287.77 | 0.3006         | 1897.38 |
| 69  |         |        | 0.0281    | 280.84 | 0.2614         | 1860.35 |
| 70  |         |        | 0.0281    | 279.38 | 0.2819         | 1862.89 |
| 78  | 0.0805  | 497.89 | 0.0286    | 294.60 | 0.4476         | 1973.51 |
| 79  | 0.0795  | 433.67 | 0.0282    | 274.83 | 0.3117         | 1890.35 |
| 80  | 0.0781  | 402.04 | 0.0284    | 271.24 | 0.3002         | 1877.99 |
| 88  | 0.0780  | 365.39 | 0.0285    | 261.15 | 0.2564         | 1824.55 |
| 89  | 0.0829  | 501.90 | 0.0286    | 275.14 | 0.3638         | 1934.51 |
| 90  | 0.0813  | 447.69 | 0.0287    | 281.54 | 0.2945         | 1849.53 |
| 98  | 0.0826  | 479.03 | 0.0289    | 276.52 | 0.3944         | 1941.17 |
| 99  | 0.0824  | 510.55 | 0.0290    | 278.01 | 0.4315         |         |
| 100 | 0.0802  | 393.65 | 0.0288    | 261.67 | 0.2609         | 1827.55 |
| 108 | 0.0823  | 460.34 | 0.0291    | 269.82 | 0.3619         | 1937.86 |
| 109 | 0.0824  | 448.01 | 0.0293    | 284.35 | 0.4038         | 1941.84 |
| 110 | 0.0839  | 519.18 | 0.0292    | 277.85 | 0.3033         | 1882.78 |
| 118 | 0.0833  | 456.96 |           |        | 0.3657         | 1918.67 |
| 119 | 0.0798  | 377.82 | 0.0295    | 267.12 | 0.2694         | 1833.82 |
| 120 | 0.0840  | 461.51 | 0.0295    | 267.75 | C.2424         | 1784.16 |
|     |         |        |           |        |                |         |

Subject: 7 Board: Inclined Pickup: Opposite

|     | Deltoid |        | Trape  | zius    | -Infraspinatus |        |
|-----|---------|--------|--------|---------|----------------|--------|
| Min | RMS     | MPF    | RMS    | MPF     | RMS            | MPF    |
|     |         |        |        |         |                |        |
| 8   | 0.0615  | 249.57 | 0.0239 | 2024.93 | 0.0667         | 615.61 |
| 9   | 0.0617  | 250.38 | 0.0242 | 2038.86 | 0.0673         | 655.29 |
| 10  | 0.0621  | 250.92 | 0.0225 | 2026.55 | 0.0672         | 677.81 |
| 18  | 0.0637  | 250.06 | 0.0246 | 2017.78 | 0.0658         | 537.33 |
| 19  | 0.0642  | 262.56 | 0.0250 | 2026.03 | 0.0667         | 577.87 |
| 20  | 0.0641  | 247.50 | 0.0231 | 2016.24 | 0.0700         | 712.84 |
| 28  | 0.0654  | 244.71 | 0.0230 | 2016.26 | 0.0627         | 443.28 |
| 29  | 0.0657  | 251.62 | 0.0227 | 2005.08 | 0.0659         | 563.36 |
| 30  | 0.0660  | 253.94 | 0.0195 | 1983.98 | 0.0640         | 477.58 |
| 38  | 0.0672  | 251.54 | 0.0238 | 1979.01 | 0.0676         | 574.64 |
| 39  | 0.0674  | 251.66 | 0.0198 | 1987.70 | 0.0649         | 482.93 |
| 40  | 0.0675  | 247.96 | 0.0201 | 1952.78 | 0.0637         | 436.81 |
| 48  | 0.0689  | 251.13 | 0.0231 | 1987.67 | 0.0698         | 607.73 |
| 49  | 0.0689  | 248.71 | 0.0273 | 1986.95 | 0.0695         | 618.24 |
| 50  | 0.0689  | 247.78 | 0.0241 | 1982.77 | 0.0689         | 604.64 |
| 58  | 0.0699  | 244.30 | 0.0218 | 1946.83 | 0.0668         | 473.52 |
| 59  | 0.0701  | 245.79 | 0.0228 | 1966.34 | 0.0692         | 574.35 |
| 60  | 0.0704  | 250.44 | 0.0306 | 1992.07 | 0.0705         | 601.65 |
| 68  | 0.0713  | 242.82 | 0.0230 | 1954.27 | 0.0690         | 558.02 |
| 69  | 0.0714  | 246.24 | 0.0246 | 1959.29 | 0.0699         | 564.52 |
| 70  | 0.0716  | 245.11 | 0.0251 | 1940.40 | 0.0693         | 518.68 |
| 78  | 0.0726  | 247.20 | 0.0235 | 1915.78 | 0.0697         | 524.76 |
| 79  | 0.0728  | 251.90 | 0.0276 | 1932.06 | 0.0725         | 583.80 |
| 80  | 0.0727  | 254.53 | 0.0252 | 1946.04 | 0.0714         | 561.46 |
| 88  | 0.0734  | 246.47 | 0.0221 | 1897.99 | 0.0737         | 549.02 |
| 89  | 0.0736  | 248.24 | 0.0241 | 1903.85 | 0.0714         | 541.66 |
| 90  | 0.0738  | 255.71 | 0.0271 | 1957.10 | 0.0737         | 599.63 |
| 98  | 0.0743  | 251.54 | 0.0255 | 1923.37 | 0.0699         | 490.95 |
| 99  | 0.0746  | 245.60 | 0.0256 | 1916.22 | 0.0704         | 482.55 |
| 100 | 0.0744  | 251.76 | 0.0264 | 1876.67 | 0.0712         | 525.79 |
| 108 | 0.0752  | 257.27 | 0.0244 | 1896.05 | 0.0705         | 524.95 |
| 109 | 0.0753  | 251.83 | 0.0265 | 1893.84 | 0.0725         | 537.93 |
| 110 | 0.0754  | 252.05 | 0.0229 | 1891.03 | 0.0718         | 485.06 |
| 118 | 0.0759  | 251.19 | 0.0250 | 1897.66 | 0.0714         | 501.51 |
| 119 | 0.0760  | 257.68 | 0.0290 | 1918.47 | 0.0746         | 584.95 |
| 120 | 0.0761  | 247.95 | 0.0225 | 1866.12 | 0.0720         | 516.27 |
|     |         |        |        |         |                |        |

Subject: 7 Board: Inclined Pickup: Centre

|     | Deltoid |        | Trapez | ius     | -Infraspi | -Infraspinatus |  |
|-----|---------|--------|--------|---------|-----------|----------------|--|
| Min | RMS     | MPF    | RMS    | MPF     | RMS       | MPF            |  |
|     |         |        |        |         |           |                |  |
| 8   | 0.0719  | 538.32 | 0.0221 | 2038.17 | 0.0788    | 1036.65        |  |
| 9   | 0.0720  | 589.69 | 0.0266 | 2043.80 | 0.0891    | 1274.00        |  |
| 10  | 0.0719  | 543.47 | 0.0224 | 2036.21 | 0.0908    | 1296.44        |  |
| 18  | 0.0764  | 614.60 | 0.0282 | 2045.02 | 0.1248    | 1616.61        |  |
| 19  | 0.0751  | 617.10 | 0.0230 | 2041.83 | 0.0950    | 1291.12        |  |
| 20  | 0.0763  | 628.33 | 0.0301 | 2047.29 | 0.0854    | 1127.27        |  |
| 28  | 0.0769  | 577.82 | 0.0230 | 2043.30 | 0.0916    | 1232.43        |  |
| 29  | 0.0738  | 467.50 | 0.0212 | 2038.93 | 0.0909    | 1219.44        |  |
| 30  | 0.0755  | 510.86 | 0.0219 | 2040.63 | 0.1131    | 1489.87        |  |
| 38  | 0.0772  | 546.49 | 0.0241 | 2043.18 | 0.0982    | 1283.10        |  |
| 39  | 0.0764  | 572.00 | 0.0275 | 2045.46 | 0.0928    | 1242.29        |  |
| 40  | 0.0730  | 454.11 | 0.0240 | 2047.98 | 0.0907    | 1172.90        |  |
| 48  | 0.0804  | 556.58 | 0.0263 | 2048.00 | 0.1184    | 1521.52        |  |
| 49  | 0.0743  | 400.48 | 0.0186 | 2047.78 | 0.1070    | 1321.64        |  |
| 50  | 0.0745  | 406.63 | 0.0197 | 2047.05 | 0.1119    | 1481.04        |  |
| 58  | 0.0775  | 507.56 | 0.0240 | 2047.98 | 0.1155    | 1461.36        |  |
| 59  | 0.0764  | 421.97 | 0.0236 | 2047.98 | 0.1091    | 1336.68        |  |
| 60  | 0.0786  | 478.34 | 0.0243 | 2047.28 | 0.1056    | 1307.70        |  |
| 68  | 0.0788  | 488.73 | 0.0235 | 2045.40 | 0.1082    | 1353.10        |  |
| 69  | 0.0800  | 525.34 | 0.0238 | 2044.90 | 0.1241    | 1521.26        |  |
| 70  | 0.0822  | 548.96 | 0.0241 | 2047.25 | C.1059    | 1368.31        |  |
| 78  | 0.0804  | 494.51 | 0.0260 | 2043.93 | 0.1236    | 1529.90        |  |
| 79  | 0.0785  | 429.19 | 0.0227 | 2047.73 | 0.1145    | 1409.49        |  |
| 80  | 0.0804  | 501.94 | 0.0259 | 2045.16 | 0.1176    | 1455.31        |  |
| 88  | 0.0798  | 434.67 | 0.0237 | 2045.26 | 0.1324    | 1538.09        |  |
| 89  | 0.0793  | 425.80 | 0.0213 | 2043.37 | 0.1124    | 1431.77        |  |
| 90  | 0.0792  | 413.50 | 0.0209 | 2044.20 | 0.1239    | 1482.57        |  |
| 98  | 0.0819  | 481.28 | 0.0226 | 2039.59 | 0.1450    | 1638.87        |  |
| 99  | 0.0784  | 366.90 | 0.0222 | 2037.23 | 0.1178    | 1405.40        |  |
| 100 | 0.0796  | 437.41 | 0.0224 | 2040.95 | 0.1338    | 1560.79        |  |
| 108 | 0.0797  | 389.92 | 0.0197 | 2042.02 | 0.1224    | 1517.00        |  |
| 109 | 0.0804  | 442.84 | 0.0222 | 2038.21 | 0.1344    | 1612.17        |  |
| 110 | 0.0806  | 426.68 | 0.0216 | 2039.70 | 0.1209    | 1465.09        |  |
| 118 | 0.0857  | 534.53 | 0.0266 | 2041.79 | 0.1306    | 1534.35        |  |
| 119 | 0.0802  | 400.23 | 0.0218 | 2019.25 | 0.1396    | 1588.99        |  |
| 120 | 0.0819  | 416.05 | 0.0246 | 2037.29 | 0.1344    | 1547.37        |  |
|     |         |        |        |         |           |                |  |

Subject: 8 Board: Straight Pickup: Opposite

|     | Deltoid |         | Trapez | Trapezius |        | -Infraspinatus |  |
|-----|---------|---------|--------|-----------|--------|----------------|--|
| Min | RMS     | MPF     | RMS    | MPF       | RMS    | MPF            |  |
|     |         |         |        |           |        |                |  |
| 8   | 0.0429  | 986.54  | 0.0290 | 1461.51   | 0.0808 | 1652.30        |  |
| 9   | 0.0459  | 1037.80 | 0.0298 | 1505.10   | 0.0981 | 1769.92        |  |
| 10  | 0.0463  | 1028.13 | 0.0293 | 1525.56   | 0.1021 | 1801.00        |  |
| 18  | 0.0484  | 957.07  | 0.0323 | 1652.15   | 0.1315 | 1877.07        |  |
| 19  | 0.0487  | 938.84  | 0.0310 | 1634.71   | 0.1473 | 1903.24        |  |
| 20  | 0.0426  | 651.38  | 0.0291 | 1557.00   | 0.1371 | 1885.70        |  |
| 28  | 0.0496  | 818.18  | 0.0317 | 1674.50   | 0.1743 | 1932.95        |  |
| 29  | 0.0492  | 849.69  | 0.0304 | 1658.27   | 0.1802 | 1929.74        |  |
| 30  | 0.0451  | 627.20  | 0.0282 | 1605.80   | 0.1404 | 1862.56        |  |
| 38  | 0.0493  | 757.08  | 0.0285 | 1637.93   | 0.1650 | 1900.70        |  |
| 39  | 0.0493  | 704.72  | 0.0270 | 1589.18   | 0.1684 | 1919.31        |  |
| 40  | 0.0477  | 614.55  | 0.0298 | 1675.67   | 0.1799 | 1924.33        |  |
| 48  | 0.0511  | 700.80  | 0.0315 | 1731.57   | 0.2227 | 1959.36        |  |
| 49  | 0.0506  | 629.20  | 0.0302 | 1721.76   | 0.1852 | 1934.01        |  |
| 50  | 0.0570  | 850.11  | 0.0318 | 1733.72   | 0.1929 | 1938.60        |  |
| 58  | 0.0531  | 687.91  | 0.0300 | 1716.15   | 0.2141 | 1964.15        |  |
| 59  | 0.0539  | 733.22  | 0.0315 | 1760.03   | 0.2346 | 1960.39        |  |
| 60  | 0.0537  | 698.34  | 0.0315 | 1686.65   | 0.2087 | 1954.49        |  |
| 68  | 0.0531  | 593.90  | 0.0317 | 1724.29   | 0.2220 | 1963.49        |  |
| 69  | 0.0559  | 688.71  | 0.0338 | 1808.95   | 0.2262 | 1966.55        |  |
| 70  | 0.0501  | 444.88  | 0.0301 | 1732.37   | 0.1974 | 1927.08        |  |
| 78  | 0.0535  | 548.73  | 0.0306 | 1780.23   | 0.1861 | 1905.55        |  |
| 79  | 0.0530  | 503.32  | 0.0309 | 1802.26   | 0.1862 | 1909.66        |  |
| 80  | 0.0556  | 622.29  | 0.0322 | 1721.88   | 0.2547 | 1965.76        |  |
| 88  | 0.0570  | 601.49  | 0.0334 | 1798.90   | 0.1949 | 1931.37        |  |
| 89  | 0.0533  | 514.89  | 0.0319 | 1836.67   | 0.2397 |                |  |
| 90  | 0.0551  | 561.07  | 0.0304 | 1757.46   | 0.1915 | 1919.70        |  |
| 98  | 0.0535  | 414.80  | 0.0295 | 1762.83   | 0.1580 | 1858.24        |  |
| 99  | 0.0520  | 348.12  | 0.0290 | 1746.16   | 0.1242 | 1742.09        |  |
| 100 | 0.0576  | 596.00  | 0.0315 | 1786.37   | 0.2280 | 1944.96        |  |
| 108 | 0.0591  | 607.70  | 0.0311 | 1783.40   | 0.2029 | 1921.82        |  |
| 109 | 0.0579  | 594.48  | 0.0325 | 1807.97   | 0.2444 | 1965.21        |  |
| 110 | 0.0546  | 463.53  | 0.0317 | 1833.28   | 0.1514 | 1861.72        |  |
| 118 | 0.0572  | 522.13  | 0.0302 | 1793.63   | 0.2072 | 1941.82        |  |
| 119 | 0.0579  | 506.86  | 0.0290 | 1781.90   | 0.1550 | 1840.29        |  |
| 120 | 0.0593  | 589.17  | 0.0315 | 1807.16   | 0.2017 | 1930.33        |  |

|     | Deltoid |         | Trapez | Trapezius |        | -Infraspinatus |  |
|-----|---------|---------|--------|-----------|--------|----------------|--|
| Min | RMS     | MPF     | RMS    | MPF       | RMS    | MPF            |  |
|     |         |         |        |           |        |                |  |
| 8   | 0.0454  | 856.59  | 0.0494 | 1961.61   | 0.1293 | 1841.68        |  |
| 9   | 0.0441  | 727.44  | 0.0444 | 1906.82   | 0.0775 | 1524.99        |  |
| 10  | 0.0524  | 1000.50 | 0.0493 | 1957.90   | 0.1122 | 1732.23        |  |
| 18  | 0.0563  | 1040.72 | 0.0534 | 1992.68   | 0.1395 | 1834.69        |  |
| 19  | 0.0475  | 717.75  | 0.0477 | 1933.59   | 0.1034 | 1683.63        |  |
| 20  | 0.0503  | 800.72  | 0.0477 | 1972.45   | 0.1196 | 1771.77        |  |
| 28  | 0.0555  | 890.32  | 0.0518 | 1990.11   | 0.2265 | 1962.45        |  |
| 29  | 0.0571  | 908.29  | 0.0527 | 2003.07   | 0.1820 | 1905.91        |  |
| 30  | 0.0556  | 886.30  | 0.0484 | 1972.63   | 0.1417 | 1846.09        |  |
| 38  | 0.0540  | 685.58  | 0.0497 | 1994.43   | 0.1432 | 1825.61        |  |
| 39  | 0.0554  | 751.64  | 0.0493 | 1968.75   | 0.1258 | 1758.95        |  |
| 40  | 0.0573  | 777.43  | 0.0497 | 1979.18   | 0.1021 | 1634.66        |  |
| 48  | 0.0551  | 666.00  | 0.0450 | 1979.72   | 0.1199 | 1729.87        |  |
| 49  | 0.0587  | 814.13  | 0.0492 | 2003.00   | 0.1207 | 1717.44        |  |
| 50  | 0.0565  | 690.50  | 0.0456 | 1966.35   | 0.0811 | 1384.52        |  |
| 58  | 0.0555  | 611.20  | 0.0433 | 1936.11   | 0.1234 | 1706.65        |  |
| 59  | 0.0572  | 653.09  | 0.0478 | 2005.08   | 0.1098 | 1657.43        |  |
| 60  | 0.0625  | 816.36  | 0.0528 | 1988.13   | 0.2022 | 1928.41        |  |
| 68  | 0.0549  | 473.28  | 0.0416 | 1987.87   | 0.1255 | 1728.30        |  |
| 69  | 0.0575  | 607.10  | 0.0440 | 1979.60   | 0.0997 | 1533.33        |  |
| 70  | 0.0601  | 682.60  | 0.0467 | 1989.36   | 0.1268 | 1755.23        |  |
| 78  | 0.0589  | 606.67  | 0.0458 | 1999.55   | 0.1185 | 1681.08        |  |
| 79  | 0.0618  | 737.65  | 0.0419 | 1973.88   | 0.1547 | 1828.73        |  |
| 80  | 0.0591  | 608.96  | 0.0432 | 1985.01   | 0.1351 | 1755.75        |  |
| 88  | 0.0612  | 652.25  | 0.0466 | 1995.29   | 0.1959 | 1904.97        |  |
| 89  | 0.0604  | 602.84  | 0.0481 | 1995.94   | 0.1182 | 1653.28        |  |
| 90  | 0.0579  | 506.09  | 0.0401 | 1977.82   | 0.0901 | 1394.96        |  |
| 98  | 0.0619  | 629.09  | 0.0469 | 2012.59   | 0.1730 | 1864.11        |  |
| 99  | 0.0595  | 566.07  | 0.0441 | 1981.70   | 0.1318 |                |  |
| 100 | 0.0648  | 714.93  | 0.0478 | 2002.59   | 0.2094 |                |  |
| 108 | 0.0644  | 652.16  | 0.0487 | 2015.92   | 0.2149 |                |  |
| 109 | 0.0618  | 588.45  | 0.0430 | 2015.95   | 0.1695 | 1839.88        |  |
| 110 | 0.0591  | 497.40  | 0.0410 | 1990.48   | 0.1394 | 1765.28        |  |
| 118 | 0.0622  | 591.38  | 0.0433 |           | 0.1657 |                |  |
| 119 | 0.0644  | 606.37  | 0.0485 | 2011.97   | 0.2058 | 1903.84        |  |
| 120 | 0.0620  | 568.22  | 0.0471 | 2008.24   | 0.1818 | 1868.58        |  |

|        | Deltoid |         | Trapez | Trapezius |        | -Infraspinatus |  |
|--------|---------|---------|--------|-----------|--------|----------------|--|
| Min    | RMS     | MPF     | RMS    | MPF       | RMS    | MPF            |  |
| 1.1711 | 12.0    |         |        |           |        |                |  |
| 8      | 0.0621  | 1592.91 | 0.0481 | 1658.99   | 0.0614 | 1530.10        |  |
| 9      | 0.0493  | 1315.04 | 0.0367 | 1530.07   | 0.0498 | 1282.32        |  |
| 10     | 0.0605  | 1500.17 | 0.0428 | 1635.46   | 0.0538 | 1364.84        |  |
| 18     | 0.0454  | 1032.16 | 0.0350 | 1531.52   | 0.0487 | 1150.47        |  |
| 19     | 0.0471  | 1107.27 | 0.0361 | 1482.98   | 0.0494 | 1170.19        |  |
| 20     | 0.0502  | 1166.20 | 0.0374 | 1535.62   | 0.0527 | 1254.46        |  |
| 28     | 0.0503  | 1093.63 | 0.0539 | 1813.78   | 0.0529 | 1200.32        |  |
| 29     | 0.0448  | 860.64  | 0.0460 | 1696.61   | 0.0431 | 853.94         |  |
| 30     | 0.0484  | 968.55  | 0.0426 | 1634.45   | 0.0467 | 987.72         |  |
| 38     | 0.0472  | 844.26  | 0.0388 | 1591.97   | 0.0443 | 863.20         |  |
| 39     | 0.0504  | 1010.37 | 0.0427 | 1667.92   | 0.0509 | 1086.31        |  |
| 40     | 0.0480  | 839.33  | 0.0406 | 1601.32   | 0.0483 | 1004.86        |  |
| 48     | 0.0494  | 846.44  | 0.0373 | 1599.29   | 0.0509 | 1039.93        |  |
| 49     | 0.0505  | 875.09  | 0.0397 | 1670.78   | 0.0512 | 992.76         |  |
| 50     | 0.0465  | 701.51  | 0.0360 | 1522.93   | 0.0466 | 855.53         |  |
| 58     | 0.0496  | 711.80  | 0.0352 | 1528.21   | 0.0538 | 1075.06        |  |
| 59     | 0.0507  | 811.77  | 0.0364 | 1588.86   | 0.0535 | 1055.97        |  |
| 60     | 0.0474  | 661.64  | 0.0357 | 1590.08   | 0.0487 | 917.28         |  |
| 68     | 0.0485  | 593.68  | 0.0355 | 1608.30   | 0.0496 | 880.80         |  |
| 69     | 0.0526  | 774.53  | 0.0370 | 1588.24   | 0.0497 | 870.08         |  |
| 70     | 0.0526  | 772.25  | 0.0366 | 1645.28   | 0.0474 | 753.72         |  |
| 78     | 0.0537  | 757.62  | 0.0349 | 1592.39   | 0.0560 | 1070.63        |  |
| 79     | 0.0569  | 848.60  | 0.0385 | 1672.12   | 0.0667 | 1278.24        |  |
| 80     | 0.0552  | 769.31  | 0.0377 | 1623.79   | 0.0524 | 931.90         |  |
| 88     | 0.0518  | 607.50  | 0.0359 | 1654.92   | 0.0498 | 838.96         |  |
| 89     | 0.0518  | 619.02  | 0.0351 | 1626.66   | 0.0497 | 778.72         |  |
| 90     | 0.0511  | 589.61  | 0.0343 | 1597.14   | 0.0487 | 754.83         |  |
| 98     | 0.0520  | 566.89  | 0.0339 | 1598.59   | 0.0505 | 776.42         |  |
| 99     | 0.0512  | 574.75  | 0.0326 | 1532.60   | 0.0527 | 854.56         |  |
| 100    | 0.0532  | 628.60  | 0.0352 | 1618.86   | 0.0535 | 901.76         |  |
| 108    | 0.0531  | 613.68  | 0.0339 | 1652.74   | 0.0494 | 716.24         |  |
| 109    | 0.0516  | 559.66  | 0.0309 | 1567.70   | 0.0498 | 694.20         |  |
| 110    | 0.0525  | 533.00  | 0.0327 | 1545.25   | 0.0508 | 729.75         |  |
| 118    | 0.0552  | 605.21  | 0.0347 | 1677.22   | 0.0545 | 867.14         |  |
| 119    | 0.0527  | 517.15  | 0.0338 | 1608.75   | 0.0541 | 871.54         |  |
| 120    | 0.0599  | 790.17  | 0.0396 | 1693.68   | 0.0582 | 985.72         |  |
|        |         |         |        |           |        |                |  |

Subject: 8Board: V-ShapedPickup: Centre

.

.

|     | Deltoid |         | Trapez | ius     | -Infraspinatus |         |
|-----|---------|---------|--------|---------|----------------|---------|
| Min | RMS     | MPF     | RMS    | MPF     | RMS            | MPF     |
|     |         |         |        |         |                |         |
| 8   | 0.0499  | 1232.49 | 0.0373 | 1488.99 | 0.0551         | 1413.92 |
| 9   | 0.0566  | 1344.58 | 0.0388 | 1516.70 | 0.0525         | 1337.79 |
| 10  | 0.0525  | 1294.12 | 0.0389 | 1493.83 | 0.0536         | 1353.31 |
| 18  | 0.0543  | 1252.77 | 0.0401 | 1479.36 | 0.0476         | 1111.95 |
| 19  | 0.0518  | 1208.20 | 0.0401 | 1509.06 | 0.0476         | 1104.39 |
| 20  | 0.0512  | 1124.41 | 0.0365 | 1461.26 | 0.0415         | 893.07  |
| 28  | 0.0505  | 1041.35 | 0.0367 | 1450.08 | 0.0396         | 735.96  |
| 29  | 0.0585  | 1263.57 | 0.0401 | 1541.72 | 0.0492         | 1103.22 |
| 30  | 0.0467  | 853.85  | 0.0359 | 1403.33 | 0.0397         | 736.97  |
| 38  | 0.0552  | 1067.91 | 0.0382 | 1547.15 | 0.0491         | 1038.27 |
| 39  | 0.0534  | 1009.50 | 0.0384 | 1527.21 | 0.0453         | 901.03  |
| 40  | 0.0583  | 1179.16 | 0.0382 | 1481.05 | 0.0543         | 1187.43 |
| 48  | 0.0521  | 929.82  | 0.0383 | 1430.35 | 0.0465         | 901.23  |
| 49  | 0.0553  | 986.95  | 0.0387 | 1515.34 | 0.0480         | 949.57  |
| 50  | 0.0628  | 1218.23 | 0.0435 | 1597.23 | 0.0601         | 1300.19 |
| 58  | 0.0586  | 1030.57 | 0.0387 | 1535.68 | 0.0542         | 1129.52 |
| 59  | 0.0556  | 1005.86 | 0.0383 | 1564.94 | 0.0521         | 1033.42 |
| 60  | 0.0584  | 1050.28 | 0.0407 | 1578.99 | 0.0480         | 881.56  |
| 68  | 0.0639  | 1149.36 | 0.0420 | 1662.88 |                |         |
| 69  | 0.0601  | 1046.84 | 0.0384 | 1575.90 |                |         |
| 70  | 0.0633  | 1140.73 | 0.0364 | 1566.67 |                |         |
| 78  | 0.0700  | 1268.66 | 0.0410 | 1683.37 |                |         |
| 79  | 0.0645  | 1124.67 | 0.0411 | 1688.84 |                |         |
| 80  | 0.0557  | 889.25  | 0.0371 | 1592.85 |                |         |
| 88  | 0.0595  | 866.64  | 0.0385 | 1603.11 | 0.0447         |         |
| 89  | 0.0626  |         | 0.0404 | 1619.44 | 0.0485         | 774.77  |
| 90  | 0.0688  | 1163.72 | 0.0425 | 1676.37 | 0.0585         | 1151.02 |
| 98  | 0.0606  | 945.68  | 0.0392 | 1672.64 | 0.0482         | 743.44  |
| 99  | 0.0663  | 1073.43 | 0.0436 | 1723.03 | 0.0564         | 1058.01 |
| 100 | 0.0695  | 1013.19 | 0.0364 | 1630.47 | 0.0540         | 935.08  |
| 108 | 0.0571  | 797.62  | 0.0424 | 1753.02 | 0.0489         | 755.68  |
| 109 | 0.0734  | 1198.20 | 0.0420 | 1760.75 | 0.0518         | 867.13  |
| 110 | 0.0604  | 919.24  | 0.0385 | 1688.71 | 0.0481         | 710.92  |
| 118 | 0.0730  | 1226.67 | 0.0454 | 1779.32 | 0.0569         | 996.88  |
| 119 | 0.0640  | 1011.98 | 0.0411 | 1727.85 | 0.0484         | 695.93  |
| 120 | 0.0644  | 981.32  | 0.0400 | 1703.42 | 0.0486         | 690.36  |
|     |         |         |        |         |                |         |

|     | Deltoid |         | Trape2 | Trapezius |        | -Infraspinatus |  |
|-----|---------|---------|--------|-----------|--------|----------------|--|
| Min | RMS     | MPF     | RMS    | MPF       | RMS    | MPF            |  |
|     |         |         |        |           |        |                |  |
| 8   | 0.1917  | 1978.64 | 0.0381 | 1619.70   | 0.0672 | 1558.24        |  |
| 9   | 0.2258  | 2010.52 | 0.0382 | 1666.46   | 0.0837 | 1701.08        |  |
| 10  | 0.1970  | 1997.16 | 0.0381 | 1668.00   | 0.0716 | 1566.44        |  |
| 18  | 0.2196  | 1983.78 | 0.0381 | 1626.50   | 0.0773 | 1613.07        |  |
| 19  | 0.2403  | 1990.83 | 0.0383 | 1697.29   | 0.0863 | 1690.34        |  |
| 20  | 0.1819  | 1963.64 | 0.0379 | 1731.22   | 0.0677 | 1484.95        |  |
| 28  | 0.1565  | 1923.50 | 0.0374 | 1693.41   | 0.0729 | 1497.52        |  |
| 29  | 0.2111  | 1964.00 | 0.0397 | 1743.27   | 0.0951 | 1718.68        |  |
| 30  | 0.1783  | 1935.91 | 0.0393 | 1726.04   | 0.0772 | 1548.20        |  |
| 38  | 0.1459  | 1892.62 | 0.0390 | 1758.28   | 0.0744 | 1494.95        |  |
| 39  | 0.1826  | 1934.45 | 0.0386 | 1739.24   | 0.0764 | 1530.69        |  |
| 40  | 0.2484  | 1988.54 | 0.0421 | 1807.35   | 0.1035 | 1737.89        |  |
| 48  | 0.2040  | 1942.55 | 0.0391 | 1767.16   | 0.0831 | 1573.50        |  |
| 49  | 0.2399  | 1976.01 | 0.0405 | 1791.71   | 0.0937 | 1650.21        |  |
| 50  | 0.2123  | 1964.72 | 0.0394 | 1759.72   | 0.0836 | 1564.17        |  |
| 58  | 0.1915  | 1931.09 | 0.0398 | 1786.31   | 0.0968 | 1697.21        |  |
| 59  | 0.2447  | 1972.70 | 0.0386 | 1741.65   | 0.1024 | 1692.85        |  |
| 60  | 0.2334  | 1968.34 | 0.0444 | 1829.29   | 0.0997 | 1692.27        |  |
| 68  | 0.1683  | 1900.26 | 0.0396 | 1788.76   | 0.0881 | 1567.40        |  |
| 69  | 0.1565  | 1876.13 | 0.0388 | 1799.13   | 0.0850 | 1553.94        |  |
| 70  | 0.1768  | 1915.62 | 0.0352 | 1764.90   | 0.0782 | 1412.12        |  |
| 78  | 0.1801  | 1920.63 | 0.0368 | 1768.50   | 0.0934 | 1579.98        |  |
| 79  | 0.1924  | 1918.97 | 0.0391 | 1793.63   | 0.0963 | 1617.79        |  |
| 80  | 0.1837  | 1904.08 | 0.0375 | 1779.24   | 0.0972 | 1623.39        |  |
| 88  | 0.2104  | 1931.26 | 0.0374 | 1842.84   | 0.0974 | 1640.73        |  |
| 89  | 0.1849  | 1910.34 | 0.0369 | 1768.58   | 0.0992 | 1657.68        |  |
| 90  | 0.1599  | 1831.21 | 0.0392 | 1853.63   | 0.1099 | 1698.49        |  |
| 98  | 0.2713  | 1971.88 | 0.0441 | 1916.70   | 0.1266 | 1790.23        |  |
| 99  | 0.1633  | 1848.24 | 0.0376 | 1849.78   | 0.1069 | 1673.05        |  |
| 100 | 0.2799  | 1993.95 | 0.0401 | 1873.71   | 0.1551 | 1872.70        |  |
| 108 | 0.2416  | 1959.18 | 0.0392 | 1870.47   | 0.1453 | 1835.60        |  |
| 109 | 0.2641  | 1970.25 | 0.0406 | 1863.53   | 0.1770 | 1900.58        |  |
| 110 | 0.3440  | 1999.32 | 0.0395 | 1889.57   | 0.2114 | 1947.27        |  |
| 118 | 0.2435  | 1954.97 | 0.0389 | 1828.48   | 0.1927 | 1920.37        |  |
| 119 | 0.2255  | 1935.75 | 0.0391 | 1832.24   | 0.1323 | 1772.78        |  |
| 120 | 0.2094  | 1917.14 | 0.0397 | 1862.13   | 0.1187 | 1712.66        |  |

Subject: 8 Board: Inclined Pickup: Centre

|     | Deltoid |        | Trapez | ius     | -Infraspinatus |        |
|-----|---------|--------|--------|---------|----------------|--------|
| Min | RMS     | MPF    | RMS    | MPF     | RMS            | MPF    |
|     |         |        |        |         |                |        |
| 8   | 0.0465  | 603.72 | 0.0226 | 1929.11 | 0.0527         | 742.05 |
| 9   | 0.0495  | 700.77 | 0.0214 | 1909.78 | 0.0496         | 606.22 |
| 10  | 0.0494  | 718.52 | 0.0202 | 1868.57 | 0.0521         | 696.08 |
| 18  | 0.0504  | 614.70 | 0.0221 | 1937.30 | 0.0514         | 587.34 |
| 19  | 0.0534  | 710.87 | 0.0231 | 1948.11 | 0.0546         | 739.81 |
| 20  | 0.0495  | 569.29 | 0.0231 | 1941.81 | 0.0509         | 562.77 |
| 28  | 0.0530  | 625.22 | 0.0228 | 1949.43 | 0.0509         | 519.23 |
| 29  | 0.0520  | 554.26 | 0.0215 | 1942.38 | 0.0518         | 536.71 |
| 30  | 0.0530  | 602.52 | 0.0221 | 1942.88 | 0.0531         | 584.01 |
| 38  | 0.0521  | 503.83 | 0.0198 | 1974.20 | 0.0503         | 421.05 |
| 39  | 0.0555  | 629.71 | 0.0220 | 1944.64 | 0.0531         | 529.59 |
| 40  | 0.0537  | 564.40 | 0.0211 | 1976.07 | 0.0527         | 529.25 |
| 48  | 0.0557  | 557.64 | 0.0220 | 1976.99 | 0.0522         | 440.91 |
| 49  | 0.0575  | 610.51 | 0.0219 | 2003.25 | 0.0528         | 474.55 |
| 50  | 0.0551  | 542.58 | 0.0212 | 1969.42 | 0.0526         | 427.78 |
| 58  | 0.0563  | 511.66 | 0.0201 | 1980.50 | 0.0539         | 477.77 |
| 59  | 0.0573  | 577.12 | 0.0228 | 1990.98 | 0.0525         | 427.53 |
| 60  | 0.0565  | 548.11 | 0.0229 | 2006.67 | 0.0549         | 523.97 |
| 68  | 0.0561  | 432.41 | 0.0213 | 2008.68 | 0.0517         | 328.38 |
| 69  | 0.0608  | 663.50 | 0.0252 | 1997.13 | 0.0603         | 695.16 |
| 70  | 0.0607  | 574.09 | 0.0252 | 2003.13 | 0.0546         | 475.11 |
| 78  | 0.0590  | 481.54 | 0.0222 | 2002.54 | 0.0549         | 424.36 |
| 79  | 0.0575  | 439.97 | 0.0198 | 2004.32 | 0.0535         | 358.81 |
| 80  | 0.0602  | 552.01 | 0.0207 | 1988.24 | 0.0543         | 397.86 |
| 88  | 0.0568  | 358.37 | 0.0204 | 2004.86 | 0.0537         | 336.25 |
| 89  | 0.0594  | 434.42 | 0.0203 | 1989.07 | 0.0539         | 357.61 |
| 90  | 0.0608  | 534.43 | 0.0219 | 2019.04 | 0.0550         | 392.88 |
| 98  | 0.0608  | 472.10 | 0.0223 | 1991.50 | 0.0549         | 371.10 |
| 99  | 0.0593  | 408.51 | 0.0212 | 2022.79 | 0.0546         | 339.95 |
| 100 | 0.0610  | 440.45 | 0.0227 | 2002.87 | 0.0554         | 381.55 |
| 108 | 0.0629  | 518.24 | 0.0225 | 2023.69 | 0.0569         | 414.82 |
| 109 | 0.0652  | 591.37 | 0.0242 | 2033.10 | 0.0585         | 488.54 |
| 110 | 0.0613  | 443.83 | 0.0211 | 2025.26 | 0.0616         | 596.56 |
| 118 | 0.0656  | 576.35 | 0.0247 | 2031.74 | 0.0578         | 434.27 |
| 119 | 0.0636  | 510.77 | 0.0239 | 2014.14 | 0.0584         | 472.92 |
| 120 | 0.0629  | 508.61 | 0.0234 | 2034.90 | 0.0558         | 350.31 |
|     |         |        |        |         |                |        |

Subject: A Board: Straight Pickup: Opposite

•

|     | Deltoid |        | Trapezius |        | -Infraspinatus |        |
|-----|---------|--------|-----------|--------|----------------|--------|
| Min | RMS     | MPF    | RMS       | MPF    | RMS            | MPF    |
|     |         |        |           |        |                |        |
| 8   | 0.1283  | 239.60 | 0.0919    | 313.12 | 0.1420         | 252.37 |
| 9   | 0.1285  | 239.13 | 0.0904    | 267.64 | 0.1427         | 250.39 |
| 10  | 0.1284  | 239.63 | 0.0908    | 267.44 | 0.1428         | 253.28 |
| 18  | 0.1286  | 239.94 | 0.0932    | 335.29 | 0.1421         | 242.37 |
| 19  | 0.1286  | 239.93 | 0.0904    | 272.89 | 0.1424         | 241.32 |
| 20  | 0.1287  | 239.11 | 0.0914    | 294.47 | 0.1424         | 243.65 |
| 28  | 0.1287  | 240.23 | 0.0919    | 318.11 | 0.1422         | 240.03 |
| 29  | 0.1289  | 238.87 | 0.0929    | 335.49 | 0.1423         | 239.49 |
| 30  | 0.1288  | 239.75 | 0.0917    | 315.88 | 0.1423         | 240.29 |
| 38  | 0.1290  | 239.11 | 0.0906    | 301.21 | 0.1424         | 241.03 |
| 39  | 0.1291  | 240.77 | 0.0909    | 299.96 | 0.1423         | 240.31 |
| 40  | 0.1291  | 239.41 | 0.0916    | 297.63 | 0.1425         | 241.30 |
| 48  | 0.1293  | 240.26 | 0.0915    | 324.72 | 0.1423         | 241.76 |
| 49  | 0.1293  | 239.33 | 0.0915    | 305.84 | 0.1424         | 240.60 |
| 50  | 0.1294  | 239.03 | 0.0913    | 295.09 | 0.1424         | 240.17 |
| 58  | 0.1295  | 239.86 | 0.0930    | 342.36 | 0.1425         | 239.71 |
| 59  | 0.1296  | 239.84 | 0.0902    | 263.44 | 0.1424         | 241.02 |
| 60  | 0.1296  | 239.63 | 0.0911    | 308.13 | 0.1425         | 239.50 |
| 68  | 0.1298  | 239.80 | 0.0913    | 326.91 | 0.1426         | 241.81 |
| 69  | 0.1299  | 238.59 | 0.0905    | 285.95 | 0.1425         | 240.60 |
| 70  | 0.1298  | 239.50 | 0.0933    | 359.92 | 0.1426         | 240.15 |
| 78  | 0.1301  | 240.74 | 0.0921    | 313.61 | 0.1428         | 242.68 |
| 79  | 0.1301  | 239.15 | 0.0942    | 380.63 | 0.1427         | 240.90 |
| 80  | 0.1303  | 239.90 | 0.0932    | 348.59 | 0.1425         | 240.40 |
| 88  | 0.1305  | 242.75 | 0.0919    | 333.38 | 0.1429         | 240.76 |
| 89  | 0.1303  | 242.31 | 0.0934    | 351.72 | 0.1427         | 240.76 |
| 90  | 0.1304  | 242.68 | 0.0935    | 357.65 | 0.1430         | 243.32 |
| 98  | 0.1305  | 241.64 | 0.0947    | 410.63 | 0.1428         | 244.33 |
| 99  | 0.1307  | 240.62 | 0.0935    | 377.21 | 0.1429         | 242.25 |
| 100 | 0.1306  | 240.81 | 0.0925    | 332.04 | 0.1430         | 240.77 |
| 108 | 0.1310  | 240.45 | 0.0943    | 385.20 | 0.1429         | 240.93 |
| 109 | 0.1310  | 240.34 | 0.0914    | 317.69 | 0.1430         | 240.60 |
| 110 | 0.1310  | 241.15 | 0.0925    | 351.70 | 0.1430         | 242.25 |
| 118 | 0.1312  | 241.56 | 0.0927    | 346.50 | 0.1431         | 241.19 |
| 119 | 0.1311  | 243.14 | 0.0961    | 403.72 | 0.1435         | 242.27 |
| 120 | 0.1312  | 242.18 | 0.0933    | 381.57 | 0.1433         | 241.70 |

|     | Deltoid |        | Trapez | ius    | -Infraspinatus |        |
|-----|---------|--------|--------|--------|----------------|--------|
| Min | RMS     | MPF    | RMS    | MPF    | RMS            | MPF    |
| -   |         |        |        |        |                |        |
| 8   | 0.1064  | 418.57 | 0.0719 | 398.45 | 0.1168         | 278.51 |
| 9   | 0.1076  | 506.74 | 0.0732 | 447.95 | 0.1172         | 284.29 |
| 10  | 0.1054  | 425.99 | 0.0706 | 373.19 | 0.1156         | 262.79 |
| 18  | 0.1094  | 523.42 | 0.0732 | 455.67 | 0.1173         | 284.80 |
| 19  | 0.1105  | 486.96 | 0.0706 | 357.50 | 0.1175         | 267.58 |
| 20  | 0.1085  | 423.52 | 0.0693 | 346.14 | 0.1173         | 259.06 |
| 28  | 0.1064  | 357.55 | 0.0694 | 313.18 | 0.1175         | 259.57 |
| 29  | 0.1122  | 493.56 | 0.0724 | 435.32 | 0.1182         | 283.98 |
| 30  | 0.1107  | 430.80 | 0.0721 | 407.98 | 0.1184         | 274.75 |
| 38  | 0.1127  | 446.05 | 0.0734 | 429.41 | 0.1201         | 280.82 |
| 39  | 0.1131  | 470.90 | 0.0708 | 361.20 | 0.1187         | 273.62 |
| 40  | 0.1106  | 385.96 | 0.0693 | 309.99 | 0.1191         | 271.90 |
| 48  | 0.1189  | 522.17 | 0.0749 | 504.45 | 0.1210         | 302.55 |
| 49  | 0.1160  | 491.22 | 0.0746 | 508.35 | 0.1204         | 281.64 |
| 50  | 0.1162  | 433.67 | 0.0727 | 399.38 | 0.1203         | 273.99 |
| 58  | 0.1166  | 483.20 | 0.0736 | 438.37 | 0.1222         | 295.73 |
| 59  | 0.1157  | 427.07 | 0.0733 | 451.86 | 0.1210         | 280.47 |
| 60  | 0.1192  | 472.05 | 0.0757 | 518.52 | 0.1224         | 300.44 |
| 68  | 0.1170  | 440.19 | 0.0738 | 449.98 | 0.1219         | 274.67 |
| 69  | 0.1178  | 464.25 | 0.0756 | 492.31 | 0.1217         | 270.24 |
| 70  | 0.1169  | 441.46 | 0.0727 | 419.81 | 0.1215         | 268.14 |
| 78  | 0.1161  | 400.03 | 0.0726 | 350.99 | 0.1219         | 261.74 |
| 79  | 0.1164  | 413.81 | 0.0738 | 395.36 | 0.1225         | 268.97 |
| 80  | 0.1172  | 401.09 | 0.0742 | 416.70 | 0.1224         | 266.82 |
| 88  | 0.1201  | 432.77 | 0.0769 | 497.56 | 0.1231         | 264.04 |
| 89  | 0.1178  | 397.38 | 0.0723 | 348.98 | 0.1229         | 258.05 |
| 90  | 0.1181  | 390.06 | 0.0741 | 371.13 | 0.1227         | 259.67 |
| 98  | 0.1245  | 491.34 | 0.0790 | 543.43 | 0.1246         | 286.03 |
| 99  | 0.1219  | 453.73 | 0.0788 | 563.04 | 0.1236         | 269.44 |
| 100 | 0.1198  | 423.02 | 0.0788 | 548.17 | 0.1234         | 263.24 |
| 108 | 0.1190  | 381.16 | 0.0764 | 438.70 | 0.1242         | 263.58 |
| 109 | 0.1264  | 488.86 | 0.0797 | 562.47 | 0.1244         | 281.97 |
| 110 | 0.1183  | 373.04 | 0.0753 | 400.46 | 0.1242         | 262.95 |
| 118 | 0.1224  | 424.41 | 0.0811 | 562.82 | 0.1246         | 270.40 |
| 119 | 0.1226  | 455.13 | 0.0809 | 535.60 | 0.1254         | 265.85 |
| 120 | 0.1211  | 407.57 | 0.0756 | 410.30 | 0.1250         | 270.81 |
|     |         |        |        |        |                |        |
|     |         |        |        |        |                |        |

Subject: A Board: V-Shaped Pickup: Opposite

|     | Deltoid |        | Trapezius |        | -Infraspinatus |        |
|-----|---------|--------|-----------|--------|----------------|--------|
| Min | RMS     | MPF    | RMS       | MPF    | RMS            | MPF    |
|     |         |        |           |        |                |        |
| 8   | 0.1347  | 240.25 | 0.0997    | 243.49 | 0.1513         | 257.52 |
| 9   | 0.1348  | 240.82 | 0.0996    | 242.60 | 0.1517         | 258.33 |
| 10  | 0.1348  | 240.50 | 0.0998    | 244.76 | 0.1520         | 255.42 |
| 18  | 0.1354  | 239.80 | 0.0998    | 245.10 | 0.1515         | 251.75 |
| 19  | 0.1355  | 239.74 | 0.0997    | 243.39 | 0.1526         | 262.85 |
| 20  | 0.1356  | 241.14 | 0.1002    | 247.52 | 0.1522         | 262.46 |
| 28  | 0.1360  | 240.06 | 0.0995    | 242.93 | 0.1523         | 252.50 |
| 29  | 0.1360  | 240.08 | 0.0997    | 243.15 | 0.1519         | 250.91 |
| 30  | 0.1361  | 239.65 | 0.0998    | 248.34 | 0.1531         | 264.10 |
| 38  | 0.1367  | 240.86 | 0.0997    | 242.91 | 0.1532         | 272.76 |
| 39  | 0.1366  | 239.84 | 0.0999    | 245.30 | 0.1533         | 273.93 |
| 40  | 0.1367  | 239.61 | 0.1002    | 246.43 | 0.1534         | 264.34 |
| 48  | 0.1372  | 239.70 | 0.1000    | 250.28 | 0.1541         | 277.23 |
| 49  | 0.1371  | 239.66 | 0.0999    | 246.25 | 0.1531         | 258.58 |
| 50  | 0.1374  | 240.23 | 0.0999    | 251.36 | 0.1539         | 270.50 |
| 58  | 0.1377  | 240.04 | 0.0997    | 243.97 | 0.1532         | 257.39 |
| 59  | 0.1378  | 241.10 | 0.1000    | 249.47 | 0.1534         |        |
| 60  | 0.1379  | 240.82 | 0.1004    | 245.68 | 0.1532         | 257.81 |
| 68  | 0.1382  | 240.26 | 0.1001    | 248.94 | 0.1536         | 261.97 |
| 69  | 0.1383  | 241.30 | 0.1001    | 243.32 | 0.1543         | 264.16 |
| 70  | 0.1383  | 239.90 | 0.1001    | 245.59 | 0.1539         | 266.60 |
| 78  | 0.1385  | 240.75 | 0.1006    | 254.72 | 0.1549         | 270.59 |
| 79  | 0.1387  | 240.16 | 0.1003    | 247.46 | 0.1541         | 261.49 |
| 80  | 0.1386  | 240.36 | 0.1002    | 252.74 | 0.1544         | 262.18 |
| 88  | 0.1391  | 240.62 | 0.1005    | 250.76 | 0.1554         | 273.57 |
| 89  | 0.1391  | 241.17 | 0.1004    | 251.46 | 0.1542         | 253.27 |
| 90  | 0.1391  | 239.11 | 0.1002    | 247.60 | 0.1544         | 260.39 |
| 98  | 0.1394  | 239.69 | 0.1005    | 260.55 | 0.1551         | 276.17 |
| 99  | 0.1395  | 241.17 | 0.1008    | 256.72 | 0.1552         | 270.98 |
| 100 | 0.1395  | 240.03 | 0.1007    | 257.03 | 0.1549         | 268.91 |
| 108 | 0.1398  | 242.01 | 0.1009    | 251.73 | 0.1553         | 261.20 |
| 109 | 0.1399  | 240.94 | 0.1014    | 271.80 | 0.1569         | 303.08 |
| 110 | 0.1398  | 241.42 | 0.1008    | 254.84 | 0.1555         | 268.07 |
| 118 | 0.1401  | 242.12 | 0.1006    | 266.82 | 0.1562         | 280.98 |
| 119 | 0.1400  | 242.72 | 0.1009    | 264.38 | 0.1567         | 285.65 |
| 120 | 0.1403  | 240.72 | 0.1006    | 254.93 | 0.1557         | 271.11 |

|     | Deltoid |        | Trapezius |        | -Infraspinatus |        |
|-----|---------|--------|-----------|--------|----------------|--------|
| Min | RMS     | MPF    | RMS       | MPF    | RMS            | MPF    |
| -   |         |        |           |        | • • • • •      |        |
| 8   |         |        | 0.0904    | 423.68 | 0.1411         | 239.15 |
| 9   |         |        | 0.0877    | 365.94 | 0.1411         | 239.85 |
| 10  |         |        | 0.0879    | 395.22 | 0.1411         | 239.52 |
| 18  |         |        | 0.0936    | 543.31 | 0.1410         | 240.04 |
| 19  |         |        | 0.0914    | 461.52 | 0.1411         | 239.12 |
| 20  |         |        | 0.0878    | 382.74 | 0.1411         | 239.92 |
| 28  | 0.1362  | 297.16 | 0.0904    | 418.18 | 0.1411         | 240.15 |
| 29  | 0.1364  | 297.23 | 0.0882    | 392.67 | 0.1411         | 240.18 |
| 30  | 0.1358  | 319.28 | 0.0868    | 347.54 | 0.1411         | 239.28 |
| 38  | 0.1365  | 307.62 | 0.0898    | 450.98 | 0.1411         | 239.61 |
| 39  | 0.1368  | 301.49 | 0.0910    | 464.89 | 0.1410         | 240.09 |
| 40  | 0.1373  | 308.16 | 0.0892    | 462.75 | 0.1412         | 240.69 |
| 48  | 0.1361  | 297.78 | 0.0873    | 350.42 | 0.1410         | 239.33 |
| 49  | 0.1375  | 316.87 | 0.0928    | 482.26 | 0.1411         | 241.27 |
| 50  | 0.1364  | 314.84 | 0.0911    | 474.44 | 0.1411         | 241.33 |
| 58  | 0.1360  | 289.92 | 0.0894    | 401.79 | 0.1410         | 240.75 |
| 59  | 0.1357  | 316.01 | 0.0877    |        | 0.1411         | 241.35 |
| 60  | 0.1356  | 285.82 | 0.0901    | 413.53 | 0.1411         | 241.18 |
| 68  | 0.1356  | 274.71 | 0.0881    | 387.80 | 0.1410         |        |
| 69  | 0.1362  | 313.67 | 0.0915    | 511.68 | 0.1411         | 241.44 |
| 70  | 0.1368  | 300.82 | 0.0913    | 503.40 | 0.1411         | 240.36 |
| 78  | 0.1366  | 289.61 | 0.0889    | 407.69 | 0.1410         | 240.69 |
| 79  | 0.1362  | 299.86 | 0.0933    | 553.65 | 0.1411         | 241.58 |
| 80  | 0.1375  | 313.73 | 0.0928    | 506.70 | 0.1411         | 240.61 |
| 88  | 0.1349  | 284.97 | 0.0872    | 350.51 | 0.1410         | 240.97 |
| 89  | 0.1359  | 289.13 | 0.0870    | 350.70 | 0.1410         | 239.71 |
| 90  | 0.1356  | 287.45 | 0.0876    | 375.48 | 0.1410         | 239.99 |
| 98  | 0.1356  | 318.01 | 0.0914    | 464.11 | 0.1411         | 241.96 |
| 99  | 0.1359  | 307.16 | 0.0932    | 499.53 | 0.1410         | 241.75 |
| 100 | 0.1356  | 289.77 | 0.0894    | 417.65 | 0.1410         | 239.77 |
| 108 | 0.1354  | 279.28 | 0.0910    | 434.44 | 0.1410         | 240.13 |
| 109 | 0.1357  | 287.64 | 0.0927    | 484.45 | 0.1410         | 240.41 |
| 110 | 0.1366  | 301.87 | 0.0899    | 442.55 | 0.1410         | 239.94 |
| 118 | 0.1355  | 282.53 | 0.0870    | 338.99 | 0.1410         | 240.04 |
| 119 | 0.1375  | 298.34 | 0.0901    | 462.32 | 0.1410         | 239.84 |
| 120 | 0.1367  | 304.63 | 0.0922    | 488.34 | 0.1409         | 240.55 |

Subject: A Board: Inclined Pickup: Opposite

|     | Delto  | id     | Trapez | ius    | -Infraspi: | natus  |
|-----|--------|--------|--------|--------|------------|--------|
| Min | RMS    | MPF    | RMS    | MPF    | RMS        | MPF    |
|     |        |        |        |        |            |        |
| 8   | 0.1394 | 266.71 | 0.1060 | 272.34 | 0.1549     | 240.12 |
| 9   | 0.1408 | 281.73 | 0.1065 | 284.47 | 0.1549     | 239.32 |
| 10  | 0.1395 | 280.52 | 0.1062 | 283.77 | 0.1549     | 239.22 |
| 18  | 0.1408 | 277.16 | 0.1057 | 281.27 | 0.1553     | 239.52 |
| 19  | 0.1405 | 269.90 | 0.1065 | 298.80 | 0.1553     | 240.13 |
| 20  | 0.1402 | 276.89 | 0.1057 | 274.78 | 0.1554     | 239.95 |
| 28  | 0.1405 | 266.46 | 0.1061 | 270.99 | 0.1557     | 240.04 |
| 29  | 0.1416 | 278.27 | 0.1068 | 291.05 | 0.1558     | 239.74 |
| 30  | 0.1405 | 258.18 | 0.1062 | 274.48 | 0.1558     | 241.04 |
| 38  | 0.1410 | 263.26 | 0.1061 | 283.67 | 0.1560     | 239.96 |
| 39  | 0.1410 | 271.25 | 0.1072 | 286.04 | 0.1560     | 240.43 |
| 40  | 0.1413 | 278.29 | 0.1075 | 311.60 | 0.1560     | 239.85 |
| 48  | 0.1421 | 279.19 | 0.1077 | 290.32 | 0.1561     | 239.08 |
| 49  | 0.1410 | 278.50 | 0.1073 | 275.61 | 0.1561     | 239.14 |
| 50  | 0.1415 | 265.73 | 0.1061 | 287.67 | 0.1561     | 239.78 |
| 58  | 0.1412 | 278.27 | 0.1065 | 270.72 | 0.1562     | 240.40 |
| 59  | 0.1418 | 283.59 | 0.1086 | 291.88 | 0.1563     | 241.21 |
| 60  | 0.1420 | 292.39 | 0.1070 | 286.92 | 0.1562     | 240.58 |
| 68  | 0.1407 | 262.47 | 0.1068 | 264.47 | 0.1561     | 239.66 |
| 69  | 0.1412 | 271.99 | 0.1066 | 272.96 | 0.1563     | 240.17 |
| 70  | 0.1405 | 255.38 | 0.1066 | 250.60 | 0.1562     | 240.28 |
| 78  | 0.1396 | 258.52 | 0.1068 | 268.22 | 0.1562     | 239.87 |
| 79  | 0.1404 | 274.48 | 0.1070 | 272.64 | 0.1562     | 240.28 |
| 80  | 0.1405 | 269.37 | 0.1072 | 290.87 | 0.1563     | 240.27 |
| 88  | 0.1398 | 268.12 | 0.1076 | 279.70 | 0.1562     | 239.40 |
| 89  | 0.1411 | 288.36 | 0.1080 | 300.19 | 0.1562     | 240.44 |
| 90  | 0.1414 | 282.22 | 0.1077 | 287.29 | 0.1562     | 239.68 |
| 98  | 0.1427 | 319.45 | 0.1084 | 305.79 | 0.1562     | 240.12 |
| 99  | 0.1407 | 288.66 | 0.1091 | 316.99 | 0.1562     | 239.81 |
| 100 | 0.1407 | 282.94 | 0.1086 | 285.11 | 0.1561     | 239.82 |
| 108 | 0.1410 | 289.20 | 0.1068 | 275.38 | 0.1562     | 239.86 |
| 109 | 0.1394 | 258.38 | 0.1068 | 255.62 | 0.1562     | 240.64 |
| 110 | 0.1401 | 273.47 | 0.1073 | 279.19 | 0.1562     | 240.53 |
| 118 | 0.1390 | 253.78 | 0.1081 | 287.44 | 0.1562     | 243.37 |
| 119 | 0.1391 | 264.30 | 0.1082 | 292.78 | 0.1560     | 239.50 |
| 120 | 0.1400 | 279.82 | 0.1080 | 270.82 | 0.1563     | 242.32 |

-

Subject: A Board: Inclined Pickup: Centre

| MinRMSMPFRMSMPFRMSMPFRMSMPF80.1213240.980.1047240.600.1477253.5090.1219242.020.1046240.950.1478244.26100.1221241.980.1047240.180.1481242.75180.1248240.120.1052239.600.1492241.72190.1250239.910.1051239.450.1496242.98280.1271240.200.1054239.560.1506242.14290.1272240.300.1054239.900.1506242.14300.1275240.250.1055238.750.1511242.26390.1290239.780.1054239.960.1516242.26390.1290239.780.1055240.500.1516243.02490.1307241.080.1055239.930.1526243.02490.1307241.080.1055240.100.1529240.91590.1321239.580.1055240.100.1529240.91590.1321239.910.1055239.390.1532241.86600.1322240.310.1055240.390.1535240.64700.1334240.750.1055239.390.1532241.56690.1322239.610.1055240.390.1535240.64780.1342239.910.10                                                                                                                                                                                                                                                                                                                                                                                                         |     | Delto  | id     | Trapez | ius    | -Infraspi | natus  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|--------|--------|--------|-----------|--------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Min | RMS    | MPF    |        |        |           |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |        |        |        |        |           |        |
| 10 $0.1221$ $241.98$ $0.1047$ $240.18$ $0.1481$ $242.75$ 18 $0.1248$ $240.12$ $0.1052$ $239.60$ $0.1492$ $241.72$ 19 $0.1250$ $239.91$ $0.1051$ $239.45$ $0.1496$ $240.07$ 20 $0.1252$ $241.39$ $0.1087$ $334.20$ $0.1496$ $242.98$ 28 $0.1271$ $240.02$ $0.1054$ $239.56$ $0.1506$ $242.14$ 29 $0.1272$ $240.30$ $0.1054$ $239.90$ $0.1506$ $242.14$ 30 $0.1275$ $240.25$ $0.1055$ $238.75$ $0.1511$ $242.15$ 38 $0.1290$ $239.97$ $0.1054$ $239.966$ $0.1516$ $241.38$ 40 $0.1293$ $240.33$ $0.1054$ $239.966$ $0.1516$ $241.38$ 40 $0.1293$ $240.33$ $0.1055$ $239.93$ $0.1526$ $243.02$ 49 $0.1307$ $241.08$ $0.1055$ $239.93$ $0.1526$ $243.02$ 49 $0.1307$ $241.08$ $0.1055$ $240.20$ $0.1523$ $241.86$ 50 $0.1308$ $240.45$ $0.1055$ $240.20$ $0.1522$ $240.91$ 59 $0.1322$ $239.61$ $0.1055$ $240.01$ $0.1530$ $240.47$ 60 $0.1322$ $239.82$ $0.1055$ $240.33$ $0.1536$ $239.98$ 70 $0.1334$ $240.75$ $0.1055$ $238.65$ $0.1536$ $239.98$ 70 $0.1344$ $240.17$ $0.1056$ $239.83$                                                                                                                                  | 8   | 0.1213 | 240.98 | 0.1047 | 240.60 | 0.1477    | 253.50 |
| 18 $0.1248$ $240.12$ $0.1052$ $239.60$ $0.1492$ $241.72$ 19 $0.1250$ $239.91$ $0.1051$ $239.45$ $0.1496$ $240.07$ 20 $0.1252$ $241.39$ $0.1087$ $334.20$ $0.1496$ $242.98$ 28 $0.1271$ $240.02$ $0.1054$ $239.56$ $0.1506$ $242.14$ 29 $0.1272$ $240.30$ $0.1054$ $239.90$ $0.1506$ $242.14$ 30 $0.1275$ $240.25$ $0.1055$ $238.75$ $0.1511$ $242.15$ 38 $0.1290$ $239.77$ $0.1055$ $240.50$ $0.1516$ $241.38$ 40 $0.1293$ $240.33$ $0.1054$ $239.93$ $0.1526$ $243.02$ 49 $0.1305$ $240.94$ $0.1055$ $239.93$ $0.1526$ $243.02$ 49 $0.1307$ $241.08$ $0.1055$ $240.20$ $0.1523$ $241.86$ 50 $0.1308$ $240.45$ $0.1055$ $240.20$ $0.1529$ $240.91$ 59 $0.1321$ $239.88$ $0.1055$ $240.01$ $0.1529$ $240.91$ 59 $0.1322$ $239.61$ $0.1055$ $240.39$ $0.1535$ $240.46$ 69 $0.1332$ $240.31$ $0.1055$ $240.39$ $0.1536$ $239.98$ 70 $0.1334$ $240.75$ $0.1055$ $238.65$ $0.1536$ $239.98$ 70 $0.1344$ $240.17$ $0.1056$ $239.83$ $0.1543$ $239.35$ 80 $0.1352$ $240.57$ $0.1056$ $238.64$ <t< td=""><td>9</td><td>0.1219</td><td>242.02</td><td>0.1046</td><td>240.95</td><td>0.1478</td><td>244.26</td></t<>                | 9   | 0.1219 | 242.02 | 0.1046 | 240.95 | 0.1478    | 244.26 |
| 19 $0.1250$ $239.91$ $0.1051$ $239.45$ $0.1496$ $240.07$ 20 $0.1252$ $241.39$ $0.1087$ $334.20$ $0.1496$ $242.98$ 28 $0.1271$ $240.02$ $0.1054$ $239.56$ $0.1506$ $242.14$ 29 $0.1272$ $240.30$ $0.1054$ $239.90$ $0.1506$ $242.14$ 30 $0.1275$ $240.25$ $0.1055$ $238.75$ $0.1511$ $242.15$ 38 $0.1290$ $239.97$ $0.1055$ $240.50$ $0.1516$ $242.26$ 39 $0.1290$ $239.78$ $0.1054$ $239.96$ $0.1516$ $241.38$ 40 $0.1293$ $240.33$ $0.1054$ $241.01$ $0.1517$ $242.31$ 48 $0.1305$ $240.94$ $0.1055$ $239.93$ $0.1526$ $243.02$ 49 $0.1307$ $241.08$ $0.1055$ $240.20$ $0.1523$ $241.86$ 50 $0.1308$ $240.45$ $0.1055$ $240.10$ $0.1529$ $240.91$ 59 $0.1321$ $239.58$ $0.1055$ $240.10$ $0.1530$ $240.47$ 60 $0.1322$ $239.61$ $0.1055$ $240.39$ $0.1535$ $240.66$ 69 $0.1332$ $240.31$ $0.1055$ $240.39$ $0.1536$ $239.98$ 70 $0.1334$ $240.75$ $0.1055$ $238.65$ $0.1536$ $239.98$ 70 $0.1342$ $239.82$ $0.1056$ $239.83$ $0.1543$ $239.39$ 80 $0.1352$ $240.57$ $0.1056$ $238.65$ <t< td=""><td>10</td><td>0.1221</td><td>241.98</td><td>0.1047</td><td>240.18</td><td>0.1481</td><td>242.75</td></t<>               | 10  | 0.1221 | 241.98 | 0.1047 | 240.18 | 0.1481    | 242.75 |
| 200.1252241.390.1087334.200.1496242.98280.1271240.020.1054239.560.1506242.14290.1272240.300.1054239.900.1506242.14300.1275240.250.1055238.750.1511242.26390.1290239.970.1055240.500.1516242.26390.1290239.780.1054241.010.1517242.31480.1305240.940.1055239.930.1526243.02490.1307241.080.1055240.200.1523241.86500.1308240.450.1055240.100.1529240.91590.1321239.850.1055240.010.1529240.91590.1322239.610.1055239.390.1532241.15680.1331239.910.1055240.390.1535240.66690.1332240.310.1055238.650.1536239.98700.1334240.750.1055238.650.1536240.04780.1342239.820.1056239.830.1543239.35800.1345239.710.1057240.270.1546241.23890.1352240.580.1056239.830.1543240.30790.1344240.750.1056239.550.1547240.85900.1354239.790.1056 <td>18</td> <td>0.1248</td> <td>240.12</td> <td>0.1052</td> <td>239.60</td> <td>0.1492</td> <td>241.72</td>                                                                                                                                                                                                                                                                              | 18  | 0.1248 | 240.12 | 0.1052 | 239.60 | 0.1492    | 241.72 |
| 280.1271240.020.1054239.560.1506242.14290.1272240.300.1054239.900.1506242.14300.1275240.250.1055238.750.1511242.15380.1290239.970.1055240.500.1516242.26390.1290239.780.1054239.960.1516241.38400.1293240.330.1054241.010.1517242.31480.1305240.940.1055239.930.1526243.02490.1307241.080.1055240.200.1523241.86500.1308240.450.1053239.310.1524240.27580.1319239.850.1055240.010.1530240.47600.1322239.610.1055240.390.1532241.15680.1331239.910.1055240.390.1535240.66690.1332240.310.1055238.650.1536239.98700.1334240.750.1055238.650.1536240.04780.1342239.820.1056238.840.1543240.30790.1344240.170.1056239.830.1542241.64800.1352240.570.1056239.550.1547241.64800.1352240.570.1056239.550.1547240.85900.1354239.790.1057 <td>19</td> <td>0.1250</td> <td>239.91</td> <td>0.1051</td> <td>239.45</td> <td>0.1496</td> <td>240.07</td>                                                                                                                                                                                                                                                                              | 19  | 0.1250 | 239.91 | 0.1051 | 239.45 | 0.1496    | 240.07 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20  | 0.1252 | 241.39 | 0.1087 | 334.20 | 0.1496    | 242.98 |
| 30 $0.1275$ $240.25$ $0.1055$ $238.75$ $0.1511$ $242.15$ $38$ $0.1290$ $239.97$ $0.1055$ $240.50$ $0.1516$ $242.26$ $39$ $0.1290$ $239.78$ $0.1054$ $239.96$ $0.1516$ $241.38$ $40$ $0.1293$ $240.33$ $0.1054$ $241.01$ $0.1517$ $242.31$ $48$ $0.1305$ $240.94$ $0.1055$ $239.93$ $0.1526$ $243.02$ $49$ $0.1307$ $241.08$ $0.1055$ $240.20$ $0.1523$ $241.86$ $50$ $0.1308$ $240.45$ $0.1053$ $239.31$ $0.1524$ $240.27$ $58$ $0.1319$ $239.85$ $0.1055$ $240.10$ $0.1529$ $240.91$ $59$ $0.1321$ $239.58$ $0.1055$ $240.01$ $0.1530$ $240.47$ $60$ $0.1322$ $239.61$ $0.1055$ $240.01$ $0.1535$ $240.47$ $68$ $0.1331$ $239.91$ $0.1055$ $240.39$ $0.1535$ $240.47$ $69$ $0.1332$ $240.31$ $0.1055$ $239.39$ $0.1536$ $239.98$ $70$ $0.1334$ $240.75$ $0.1055$ $238.65$ $0.1536$ $239.98$ $70$ $0.1344$ $240.17$ $0.1056$ $239.83$ $0.1543$ $240.30$ $79$ $0.1344$ $240.17$ $0.1056$ $239.83$ $0.1542$ $241.64$ $88$ $0.1352$ $240.57$ $0.1056$ $239.83$ $0.1542$ $241.64$ $89$ $0.1352$ $240.57$ <t< td=""><td>28</td><td>0.1271</td><td>240.02</td><td>0.1054</td><td>239.56</td><td>0.1506</td><td>242.14</td></t<> | 28  | 0.1271 | 240.02 | 0.1054 | 239.56 | 0.1506    | 242.14 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29  | 0.1272 | 240.30 | 0.1054 | 239.90 | 0.1506    | 242.14 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30  | 0.1275 | 240.25 | 0.1055 | 238.75 | 0.1511    | 242.15 |
| 400.1293240.330.1054241.010.1517242.31480.1305240.940.1055239.930.1526243.02490.1307241.080.1055240.200.1523241.86500.1308240.450.1053239.310.1524240.27580.1319239.850.1055240.100.1530240.47600.1322239.610.1055240.010.1532241.15680.1331239.910.1055240.390.1535240.86690.1322240.310.1055240.390.1536239.98700.1334240.750.1055238.650.1536239.98700.1342239.820.1056238.840.1543240.30790.1344240.170.1057240.230.1542241.64880.1352240.580.1056239.830.1543239.35800.1352240.570.1056239.550.1547240.85900.1354239.790.1057240.350.1547240.85900.1354239.220.1058240.420.1552240.75990.1360239.350.1057239.490.1551238.651080.1368240.380.1058241.020.1554240.911090.1368239.120.1057240.800.1554242.49                                                                                                                                                                                                                                                                                                                                                                                                            | 38  | 0.1290 | 239.97 | 0.1055 | 240.50 | 0.1516    | 242.26 |
| 480.1305240.940.1055239.930.1526243.02490.1307241.080.1055240.200.1523241.86500.1308240.450.1053239.310.1524240.27580.1319239.850.1055240.100.1529240.91590.1321239.580.1055240.010.1530240.47600.1322239.610.1055239.390.1532241.15680.1331239.910.1055240.390.1535240.86690.1332240.310.1055238.650.1536239.98700.1334240.750.1055238.650.1536240.04780.1342239.820.1056238.840.1543240.30790.1344240.170.1056239.830.1543239.35800.1352240.570.1056240.270.1546241.23890.1352240.570.1056240.270.1546241.23890.1354239.790.1057240.350.1547240.85900.1354239.220.1058240.420.1552240.75990.1360239.350.1057239.460.1550242.081000.1360239.350.1057239.490.1551238.651080.1368240.380.1058241.020.1554240.911090.1368239.120.1057                                                                                                                                                                                                                                                                                                                                                                                       | 39  | 0.1290 | 239.78 | 0.1054 | 239.96 | 0.1516    | 241.38 |
| 490.1307241.080.1055240.200.1523241.86500.1308240.450.1053239.310.1524240.27580.1319239.850.1055240.100.1529240.91590.1321239.580.1055240.010.1530240.47600.1322239.610.1055239.390.1532241.15680.1331239.910.1055240.390.1535240.86690.1332240.310.1055238.650.1536239.98700.1334240.750.1056238.840.1543240.30790.1344240.170.1056239.830.1543239.35800.1352240.580.1056240.270.1546241.23890.1352240.570.1056239.550.1547240.85900.1354239.790.1057240.350.1547241.38980.1360239.220.1058240.420.1552240.75990.1360239.350.1057239.490.1551238.651000.1368240.380.1058241.020.1554240.911090.1368240.380.1058241.020.1554240.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40  | 0.1293 | 240.33 | 0.1054 | 241.01 | 0.1517    | 242.31 |
| 500.1308240.450.1053239.310.1524240.27580.1319239.850.1055240.100.1529240.91590.1321239.580.1055240.010.1530240.47600.1322239.610.1055239.390.1532241.15680.1331239.910.1055240.390.1535240.86690.1332240.310.1055240.530.1536239.98700.1334240.750.1055238.650.1536240.04780.1342239.820.1056238.840.1543240.30790.1344240.170.1057240.230.1542241.64880.1352240.580.1056239.830.1542241.64890.1352240.570.1056239.550.1547240.85900.1354239.790.1057240.350.1547241.38980.1360239.220.1058240.420.1552240.75990.1360240.010.1058239.460.1550242.081000.1368240.380.1057239.490.1551238.651080.1368240.380.1058241.020.1554240.911090.1368239.120.1057240.800.1554242.49                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48  | 0.1305 | 240.94 | 0.1055 | 239.93 | 0.1526    | 243.02 |
| 580.1319239.850.1055240.100.1529240.91590.1321239.580.1055240.010.1530240.47600.1322239.610.1055239.390.1532241.15680.1331239.910.1055240.390.1535240.86690.1332240.310.1055240.530.1536239.98700.1334240.750.1055238.650.1536240.04780.1342239.820.1056238.840.1543240.30790.1344240.170.1056239.830.1543239.35800.1345239.710.1057240.230.1542241.64880.1352240.570.1056239.550.1547240.85900.1354239.790.1057240.350.1547241.38980.1360239.220.1058240.420.1552240.75990.1360240.010.1058239.460.1550242.081000.1360239.350.1057239.490.1551238.651080.1368240.380.1058241.020.1554240.911090.1368239.120.1057240.800.1554242.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 49  | 0.1307 | 241.08 | 0.1055 | 240.20 |           | 241.86 |
| 590.1321239.580.1055240.010.1530240.47600.1322239.610.1055239.390.1532241.15680.1331239.910.1055240.390.1535240.86690.1332240.310.1055240.530.1536239.98700.1334240.750.1055238.650.1536240.04780.1342239.820.1056238.840.1543240.30790.1344240.170.1057240.230.1543239.35800.1345239.710.1057240.230.1542241.64880.1352240.580.1056239.550.1546241.23890.1354239.790.1057240.350.1547240.85900.1354239.220.1058240.420.1552240.75990.1360239.350.1057239.490.1551238.651080.1368240.380.1058241.020.1554240.911090.1368239.120.1057240.800.1554242.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50  | 0.1308 | 240.45 | 0.1053 | 239.31 | 0.1524    | 240.27 |
| 600.1322239.610.1055239.390.1532241.15680.1331239.910.1055240.390.1535240.86690.1332240.310.1055240.530.1536239.98700.1334240.750.1055238.650.1536240.04780.1342239.820.1056238.840.1543240.30790.1344240.170.1056239.830.1543239.35800.1345239.710.1057240.230.1542241.64880.1352240.580.1056239.550.1546241.23890.1354239.790.1057240.350.1547240.85900.1354239.790.1057240.350.1547241.38980.1360239.220.1058240.420.1552240.75990.1360239.350.1057239.460.1550242.081000.1368240.380.1058241.020.1554240.911090.1368239.120.1057240.800.1554240.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 58  | 0.1319 | 239.85 | 0.1055 | 240.10 |           | 240.91 |
| 680.1331239.910.1055240.390.1535240.86690.1332240.310.1055240.530.1536239.98700.1334240.750.1055238.650.1536240.04780.1342239.820.1056238.840.1543240.30790.1344240.170.1056239.830.1543239.35800.1345239.710.1057240.230.1542241.64880.1352240.580.1056239.550.1547240.85900.1354239.790.1057240.350.1547241.38930.1360239.220.1058240.420.1552240.75990.1360239.350.1057239.490.1551238.651000.1360239.350.1057239.490.1551238.651080.1368240.380.1058241.020.1554240.911090.1368239.120.1057240.800.1554242.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59  | 0.1321 | 239.58 | 0.1055 | 240.01 | 0.1530    | 240.47 |
| 690.1332240.310.1055240.530.1536239.98700.1334240.750.1055238.650.1536240.04780.1342239.820.1056238.840.1543240.30790.1344240.170.1056239.830.1543239.35800.1345239.710.1057240.230.1542241.64880.1352240.580.1056239.550.1546241.23890.1352240.570.1056239.550.1547240.85900.1354239.790.1057240.350.1547241.38980.1360239.220.1058240.420.1552240.75990.1360239.350.1057239.460.1550242.081000.1368240.380.1058241.020.1554240.911090.1368239.120.1057240.800.1554240.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60  | 0.1322 | 239.61 | 0.1055 | 239.39 | 0.1532    | 241.15 |
| 700.1334240.750.1055238.650.1536240.04780.1342239.820.1056238.840.1543240.30790.1344240.170.1056239.830.1543239.35800.1345239.710.1057240.230.1542241.64880.1352240.580.1056240.270.1546241.23890.1352240.570.1056239.550.1547240.85900.1354239.790.1057240.350.1547241.38980.1360239.220.1058240.420.1552240.75990.1360239.350.1057239.460.1550242.081000.1368240.380.1058241.020.1554240.911090.1368239.120.1057240.800.1554242.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 68  | 0.1331 | 239.91 | 0.1055 | 240.39 | 0.1535    | 240.86 |
| 780.1342239.820.1056238.840.1543240.30790.1344240.170.1056239.830.1543239.35800.1345239.710.1057240.230.1542241.64880.1352240.580.1056240.270.1546241.23890.1352240.570.1056239.550.1547240.85900.1354239.790.1057240.350.1547241.38980.1360239.220.1058240.420.1552240.75990.1360240.010.1058239.460.1550242.081000.1368240.380.1057239.490.1551238.651080.1368240.380.1058241.020.1554240.911090.1368239.120.1057240.800.1554242.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 69  | 0.1332 | 240.31 | 0.1055 | 240.53 | 0.1536    | 239.98 |
| 790.1344240.170.1056239.830.1543239.35800.1345239.710.1057240.230.1542241.64880.1352240.580.1056240.270.1546241.23890.1352240.570.1056239.550.1547240.85900.1354239.790.1057240.350.1547241.38980.1360239.220.1058240.420.1552240.75990.1360240.010.1058239.460.1550242.081000.1368240.380.1058241.020.1554240.911090.1368239.120.1057240.800.1554242.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70  | 0.1334 | 240.75 | 0.1055 |        | 0.1536    |        |
| 800.1345239.710.1057240.230.1542241.64880.1352240.580.1056240.270.1546241.23890.1352240.570.1056239.550.1547240.85900.1354239.790.1057240.350.1547241.38980.1360239.220.1058240.420.1552240.75990.1360240.010.1058239.460.1550242.081000.1368240.380.1057239.490.1551238.651080.1368240.380.1058241.020.1554240.911090.1368239.120.1057240.800.1554242.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78  | 0.1342 | 239.82 | 0.1056 | 238.84 | 0.1543    | 240.30 |
| 880.1352240.580.1056240.270.1546241.23890.1352240.570.1056239.550.1547240.85900.1354239.790.1057240.350.1547241.38980.1360239.220.1058240.420.1552240.75990.1360240.010.1058239.460.1550242.081000.1360239.350.1057239.490.1551238.651080.1368240.380.1058241.020.1554240.911090.1368239.120.1057240.800.1554242.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 79  | 0.1344 | 240.17 | 0.1056 | 239.83 | 0.1543    | 239.35 |
| 890.1352240.570.1056239.550.1547240.85900.1354239.790.1057240.350.1547241.38980.1360239.220.1058240.420.1552240.75990.1360240.010.1058239.460.1550242.081000.1360239.350.1057239.490.1551238.651080.1368240.380.1058241.020.1554240.911090.1368239.120.1057240.800.1554242.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80  | 0.1345 | 239.71 | 0.1057 | 240.23 | 0.1542    | 241.64 |
| 900.1354239.790.1057240.350.1547241.38980.1360239.220.1058240.420.1552240.75990.1360240.010.1058239.460.1550242.081000.1360239.350.1057239.490.1551238.651080.1368240.380.1058241.020.1554240.911090.1368239.120.1057240.800.1554242.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88  | 0.1352 | 240.58 | 0.1056 | 240.27 | 0.1546    | 241.23 |
| 980.1360239.220.1058240.420.1552240.75990.1360240.010.1058239.460.1550242.081000.1360239.350.1057239.490.1551238.651080.1368240.380.1058241.020.1554240.911090.1368239.120.1057240.800.1554242.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 89  | 0.1352 | 240.57 | 0.1056 | 239.55 | 0.1547    | 240.85 |
| 990.1360240.010.1058239.460.1550242.081000.1360239.350.1057239.490.1551238.651080.1368240.380.1058241.020.1554240.911090.1368239.120.1057240.800.1554242.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90  | 0.1354 | 239.79 | 0.1057 | 240.35 | 0.1547    |        |
| 1000.1360239.350.1057239.490.1551238.651080.1368240.380.1058241.020.1554240.911090.1368239.120.1057240.800.1554242.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 98  | 0.1360 | 239.22 | 0.1058 | 240.42 | 0.1552    | 240.75 |
| 1080.1368240.380.1058241.020.1554240.911090.1368239.120.1057240.800.1554242.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99  | 0.1360 | 240.01 | 0.1058 | 239.46 | 0.1550    | 242.08 |
| 109 0.1368 239.12 0.1057 240.80 0.1554 242.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100 | 0.1360 | 239.35 | 0.1057 | 239.49 | 0.1551    | 238.65 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 108 | 0.1368 | 240.38 | 0.1058 | 241.02 | 0.1554    | 240.91 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109 | 0.1368 | 239.12 | 0.1057 | 240.80 | 0.1554    | 242.49 |
| TTO 0.1369 533.33 0.1028 541.01 0.1526 533.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110 | 0.1369 | 239.93 | 0.1058 | 241.07 | 0.1556    | 239.87 |
| 118 0.1375 239.83 0.1057 240.72 0.1558 240.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 118 | 0.1375 | 239.83 | 0.1057 | 240.72 | 0.1558    | 240.27 |
| 119 0.1375 240.89 0.1058 240.48 0.1560 240.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119 | 0.1375 | 240.89 | 0.1058 | 240.48 |           |        |
| 120 0.1376 239.79 0.1058 239.26 0.1559 241.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120 | 0.1376 | 239.79 | 0.1058 | 239.26 | 0.1559    | 241.07 |

| MinRMSMPFRMSMPFRMSMPF80.06371682.780.0485243.310.02221091.1090.06251654.460.0486246.640.02361140.60100.04801451.650.0485243.660.0204887.36180.05581622.330.0483245.840.0211878.43190.05721615.400.0483243.670.0210833.64200.05101467.910.0483243.330.0200734.56280.05931591.490.0481247.800.0226889.65290.05831545.300.0480246.370.0219830.90300.05841577.530.0481251.280.0224894.61380.05891569.980.0478241.980.0230862.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | Deltoid |         | Trapez: | ius    | -Infraspinatus |         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|---------|---------|--------|----------------|---------|--|
| 8       0.0637       1682.78       0.0485       243.31       0.0222       1091.10         9       0.0625       1654.46       0.0486       246.64       0.0236       1140.60         10       0.0480       1451.65       0.0485       243.66       0.0204       887.36         18       0.0558       1622.33       0.0483       245.84       0.0211       878.43         19       0.0572       1615.40       0.0483       243.67       0.0210       833.64         20       0.0510       1467.91       0.0483       243.33       0.0200       734.56         28       0.0593       1591.49       0.0481       247.80       0.0226       889.65         29       0.0583       1545.30       0.0481       246.37       0.0219       830.90         30       0.0584       1577.53       0.0481       251.28       0.0224       894.61         38       0.0589       1569.98       0.0478       241.98       0.0230       862.93 | n  |         |         | _       |        | -              |         |  |
| 90.06251654.460.0486246.640.02361140.60100.04801451.650.0485243.660.0204887.36180.05581622.330.0483245.840.0211878.43190.05721615.400.0483243.670.0210833.64200.05101467.910.0483243.330.0200734.56280.05931591.490.0481247.800.0226889.65290.05831545.300.0480246.370.0219830.90300.05841577.530.0481251.280.0224894.61380.05891569.980.0478241.980.0230862.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |         |         |         |        |                |         |  |
| 90.06251654.460.0486246.640.02361140.60100.04801451.650.0485243.660.0204887.36180.05581622.330.0483245.840.0211878.43190.05721615.400.0483243.670.0210833.64200.05101467.910.0483243.330.0200734.56280.05931591.490.0481247.800.0226889.65290.05831545.300.0480246.370.0219830.90300.05841577.530.0481251.280.0224894.61380.05891569.980.0478241.980.0230862.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8  | 0.0637  | 1682.78 | 0.0485  | 243.31 | 0.0222         | 1091.10 |  |
| 100.04801451.650.0485243.660.0204887.36180.05581622.330.0483245.840.0211878.43190.05721615.400.0483243.670.0210833.64200.05101467.910.0483243.330.0200734.56280.05931591.490.0481247.800.0226889.65290.05831545.300.0480246.370.0219830.90300.05841577.530.0481251.280.0224894.61380.05891569.980.0478241.980.0230862.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |         | 1654.46 | 0.0486  | 246.64 | 0.0236         | 1140.60 |  |
| 180.05581622.330.0483245.840.0211878.43190.05721615.400.0483243.670.0210833.64200.05101467.910.0483243.330.0200734.56280.05931591.490.0481247.800.0226889.65290.05831545.300.0480246.370.0219830.90300.05841577.530.0481251.280.0224894.61380.05891569.980.0478241.980.0230862.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 0.0480  | 1451.65 | 0.0485  | 243.66 | 0.0204         | 887.36  |  |
| 190.05721615.400.0483243.670.0210833.64200.05101467.910.0483243.330.0200734.56280.05931591.490.0481247.800.0226889.65290.05831545.300.0480246.370.0219830.90300.05841577.530.0481251.280.0224894.61380.05891569.980.0478241.980.0230862.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 0.0558  | 1622.33 | 0.0483  | 245.84 | 0.0211         | 878.43  |  |
| 200.05101467.910.0483243.330.0200734.56280.05931591.490.0481247.800.0226889.65290.05831545.300.0480246.370.0219830.90300.05841577.530.0481251.280.0224894.61380.05891569.980.0478241.980.0230862.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | 0.0572  | 1615.40 | 0.0483  | 243.67 | 0.0210         | 833.64  |  |
| 280.05931591.490.0481247.800.0226889.65290.05831545.300.0480246.370.0219830.90300.05841577.530.0481251.280.0224894.61380.05891569.980.0478241.980.0230862.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 0.0510  | 1467.91 | 0.0483  | 243.33 | 0.0200         | 734.56  |  |
| 290.05831545.300.0480246.370.0219830.90300.05841577.530.0481251.280.0224894.61380.05891569.980.0478241.980.0230862.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | 0.0593  | 1591.49 | 0.0481  | 247.80 | 0.0226         | 889.65  |  |
| 300.05841577.530.0481251.280.0224894.61380.05891569.980.0478241.980.0230862.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | 0.0583  | 1545.30 | 0.0480  | 246.37 | 0.0219         | 830.90  |  |
| 38 0.0589 1569.98 0.0478 241.98 0.0230 862.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | 0.0584  | 1577.53 | 0.0481  | 251.28 | 0.0224         |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | 0.0589  | 1569.98 | 0.0478  | 241.98 | 0.0230         | 862.93  |  |
| 39 0.0620 1578.33 0.0478 245.08 0.0227 844.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | 0.0620  | 1578.33 | 0.0478  | 245.08 |                | 844.65  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0  | 0.0524  | 1400.09 | 0.0479  | 246.60 |                | 778.28  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8  | 0.0659  | 1635.14 | 0.0477  | 247.12 |                | 836.50  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9  | 0.0586  | 1506.80 | 0.0477  | 243.75 |                | 721.06  |  |
| 50 0.0550 1402:52 0.0110 Caller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0  | 0.0556  | 1462.52 | 0.0476  | 247.05 |                | 751.90  |  |
| 38 0.0031 1321.00 0101/1 01000 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8  | 0.0631  | 1524.85 | 0.0474  | 243.94 |                | 756.75  |  |
| 59 0.0011 1041.04 000101 010000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9  | 0.0611  | 1541.84 | 0.0474  | 245.01 |                | 762.00  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50 | 0.0626  | 1479.45 | 0.0474  | 246.01 |                | 863.98  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58 | 0.0592  | 1484.18 | 0.0472  |        |                | 736.05  |  |
| 09 0.0004 100100 000101 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59 | 0.0554  | 1351.73 | 0.0471  |        |                | 694.89  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0  | 0.0661  | 1530.81 | 0.0472  |        |                | 877.49  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 78 | 0.0583  | 1456.28 | 0.0470  |        |                | 711.31  |  |
| 19 0.0004 100002 000100 000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79 | 0.0554  | 1339.92 | 0.0470  |        |                | 702.97  |  |
| 80 0:0007 1424:15 000100 =0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30 | 0.0607  | 1424.15 | 0.0469  |        |                | 779.59  |  |
| 88 0.0008 1000.24 0.0100 200000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38 | 0.0668  | 1599.24 | 0.0468  |        |                | 792.27  |  |
| 89 0.0882 1517:02 0.0100 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39 | 0.0682  | 1517.82 | 0.0468  |        |                | 805.25  |  |
| 90 0.0008 1417.02 010100 District                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90 | 0.0608  | 1417.02 |         |        |                | 710.69  |  |
| 58 0.0515 IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98 | 0.0513  | 1247.35 | 0.0465  | 244.98 |                | 688.19  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99 | 0.0594  | 1396.67 | 0.0465  |        |                | 659.38  |  |
| 100 0.0624 1442.77 010100 211000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00 | 0.0624  | 1442.77 | 0.0466  |        |                | 867.32  |  |
| 108 0:0020 11/0/0/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 08 | 0.0625  | 1479.37 | 0.0464  | 243.21 |                | 1157.74 |  |
| 109 0.0374 1302.90 010100 00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 09 | 0.0574  | 1302.98 | 0.0463  |        |                | 1486.26 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 | 0.0566  | 1317.19 | 0.0463  |        |                | 781.11  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18 | 0.0624  | 1462.36 | 0.0462  |        |                | 778.94  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19 | 0.0623  | 1305.18 | 0.0462  |        |                | 680.53  |  |
| 120 0.0608 1340.81 0.0462 243.92 0.0263 709.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20 | 0.0608  | 1340.81 | 0.0462  | 243.92 | 0.0263         | 709.07  |  |

. -

|     | Delto  | oid     | Trapez | ius    | -Infraspi | .natus  |
|-----|--------|---------|--------|--------|-----------|---------|
| Min | RMS    | MPF     | RMS    | MPF    | RMS       | MPF     |
|     |        |         |        |        |           |         |
| 8   | 0.0498 | 1693.57 | 0.0501 | 404.02 | 0.0391    | 1776.40 |
| 9   | 0.0522 | 1662.91 | 0.0498 | 396.73 | 0.0371    | 1716.50 |
| 10  | 0.0487 | 1666.27 | 0.0488 | 335.61 | 0.0664    | 1931.52 |
| 18  | 0.0484 | 1605.74 | 0.0496 | 404.73 | 0.0609    | 1877.51 |
| 19  | 0.0499 | 1578.97 | 0.0485 | 353.92 | 0.0567    | 1877.66 |
| 20  | 0.0422 | 1457.87 | 0.0484 | 309.05 | 0.0410    | 1692.21 |
| 28  | 0.0506 | 1466.12 | 0.0505 | 446.49 | 0.0448    | 1722.85 |
| 29  | 0.0448 | 1354.19 | 0.0495 | 382.94 | 0.0412    | 1677.76 |
| 30  | 0.0455 | 1353.18 | 0.0480 | 310.19 | 0.0434    | 1696.47 |
| 38  | 0.0562 | 1530.44 | 0.0498 | 401.54 | 0.1083    | 1989.12 |
| 39  | 0.0519 | 1496.01 | 0.0498 | 428.28 | 0.0862    | 1950.23 |
| 40  | 0.0470 | 1331.38 | 0.0483 | 346.41 | 0.1050    | 1975.45 |
| 48  | 0.0436 | 1179.55 | 0.0479 | 313.49 | 0.0755    | 1900.91 |
| 49  | 0.0403 | 1067.13 | 0.0477 | 297.06 | 0.0739    | 1904.05 |
| 50  | 0.0443 | 1207.61 | 0.0474 | 314.99 | 0.1139    | 1972.28 |
| 58  | 0.0474 | 1203.20 | 0.0483 | 330.08 | 0.0979    | 1949.84 |
| 59  | 0.0535 | 1414.23 | 0.0489 | 398.91 | 0.1162    | 1984.25 |
| 60  | 0.0477 | 1220.04 | 0.0484 | 353.85 | 0.1035    | 1954.78 |
| 68  | 0.0431 | 1059.31 | 0.0468 | 292.91 | 0.0883    | 1929.94 |
| 69  | 0.0529 | 1330.81 | 0.0486 | 363.58 | 0.0891    | 1925.53 |
| 70  | 0.0491 | 1154.99 | 0.0486 | 355.13 | 0.0965    | 1949.52 |
| 78  | 0.0557 | 1349.26 | 0.0490 | 444.25 | 0.1085    | 1962.52 |
| 79  | 0.0528 | 1232.52 | 0.0484 | 372.28 | 0.1192    | 1968.93 |
| 80  | 0.0500 | 1123.98 | 0.0472 | 335.95 | 0.1316    | 1983.03 |
| 88  | 0.0533 | 1222.12 | 0.0474 | 364.27 | 0.1051    | 1941.74 |
| 89  | 0.0506 | 1185.92 | 0.0489 | 386.74 | 0.1618    | 2009.80 |
| 90  | 0.0526 | 1212.74 | 0.0471 | 347.63 | 0.1104    | 1952.59 |
| 98  | 0.0517 | 1069.31 | 0.0473 | 351.30 | 0.1871    | 2014.39 |
| 99  | 0.0535 | 1201.92 | 0.0482 | 372.03 | 0.1697    | 2007.76 |
| 100 | 0.0487 | 1059.13 | 0.0486 | 405.06 | 0.0985    | 1936.69 |
| 108 | 0.0540 | 1208.63 | 0.0480 | 378.16 | 0.1365    | 1978.21 |
| 109 | 0.0488 | 988.19  | 0.0469 | 325.08 | 0.1063    | 1937.91 |
| 110 | 0.0585 | 1304.03 | 0.0484 | 433.04 | 0.1091    | 1939.45 |
| 118 | 0.0472 | 842.75  | 0.0465 | 312.94 | 0.1227    | 1960.70 |
| 119 | 0.0499 | 955.49  | 0.0469 | 361.99 | 0.1600    | 1996.00 |
| 120 | 0.0520 | 1072.47 | 0.0478 | 407.51 | 0.1464    | 1995.87 |
|     |        |         |        |        |           |         |

.

Subject: B Board: V-Shaped Pickup: Opposite

|                                         | Delto  | oid     | Trapez | ius    | -Infraspi | inatus  |
|-----------------------------------------|--------|---------|--------|--------|-----------|---------|
| Min                                     | RMS    | MPF     | RMS    | MPF    | RMS       | MPF     |
| • • • • • • • • • • • • • • • • • • • • |        |         |        |        |           |         |
| 8                                       | 0.0509 | 913.92  | 0.0421 | 463.59 | 0.0364    | 839.56  |
| 9                                       | 0.0508 | 1000.65 | 0.0433 | 496.73 | 0.0364    | 848.25  |
| 10                                      | 0.0507 | 1040.42 | 0.0417 | 450.96 | 0.0386    | 946.03  |
| 18                                      | 0.0522 | 988.83  | 0.0423 | 455.68 | 0.0560    | 1458.14 |
| 19                                      | 0.0512 | 977.70  | 0.0440 | 600.27 | 0.0609    | 1561.33 |
| 20                                      | 0.0499 | 939.11  | 0.0424 | 504.18 | 0.0590    | 1530.44 |
| 28                                      | 0.0500 | 884.15  | 0.0421 | 457.95 | 0.0747    | 1739.67 |
| 29                                      | 0.0531 | 1009.96 | 0.0431 | 516.90 | 0.0744    | 1691.07 |
| 30                                      | 0.0544 | 1045.16 | 0.0442 | 605.65 | 0.0878    | 1805.79 |
| 38                                      | 0.0499 | 895.54  | 0.0429 | 519.69 | 0.0911    | 1813.22 |
| 39                                      | 0.0540 | 1035.76 | 0.0447 | 580.00 | 0.0987    | 1845.79 |
| 40                                      | 0.0482 | 820.11  | 0.0417 | 439.78 | 0.0936    | 1767.94 |
| 48                                      | 0.0478 | 776.69  | 0.0500 | 811.65 | 0.0775    | 1752.19 |
| 49                                      | 0.0482 | 784.07  | 0.0421 | 475.10 | 0.0845    | 1770.15 |
| 50                                      | 0.0491 | 794.83  | 0.0411 | 391.20 | 0.0458    | 1271.23 |
| 58                                      | 0.0562 | 1088.26 | 0.0439 | 570.12 | 0.1162    | 1882.79 |
| 59                                      | 0.0482 | 794.51  | 0.0424 | 491.14 | 0.0676    | 1619.05 |
| 60                                      | 0.0543 | 1008.21 | 0.0439 | 627.02 | 0.1151    | 1902.93 |
| 68                                      | 0.0488 | 829.17  | 0.0402 | 313.94 | 0.0528    | 1377.35 |
| 69                                      | 0.0507 | 945.91  | 0.0425 | 482.52 | 0.0880    | 1785.62 |
| 70                                      | 0.0547 | 993.91  | 0.0443 | 596.52 | 0.1325    | 1922.10 |
| 78                                      | 0.0463 | 697.16  | 0.0405 | 385.26 | 0.0522    | 1387.53 |
| 79                                      | 0.0529 | 969.01  | 0.0447 | 614.70 | 0.0964    | 1810.76 |
| 80                                      | 0.0506 | 853.45  | 0.0420 | 465.75 | 0.0974    | 1849.11 |
| 88                                      | 0.0541 | 1024.99 | 0.0534 | 965.27 | 0.1091    | 1852.89 |
| 89                                      | 0.0517 | 896.98  | 0.0411 | 419.38 | 0.0903    | 1784.23 |
| 90                                      | 0.0537 | 960.55  | 0.0417 | 451.02 | 0.0966    | 1826.48 |
| 98                                      | 0.0561 | 1056.78 | 0.0424 | 452.91 | 0.0862    | 1758.08 |
| 99                                      | 0.0518 | 967.09  | 0.0429 | 520.99 | 0.0952    | 1842.00 |
| 100                                     | 0.0550 | 939.05  | 0.0433 | 520.41 | 0.1062    | 1874.65 |
| 108                                     | 0.0537 | 957.73  | 0.0424 | 495.95 | 0.0953    | 1827.46 |
| 109                                     | 0.0588 | 1125.06 | 0.0459 | 663.34 | 0.1137    | 1877.02 |
| 110                                     | 0.0587 | 1169.99 | 0.0450 | 623.65 | 0.1020    | 1841.31 |
| 118                                     | 0.0500 | 806.67  | 0.0461 | 672.39 | 0.0647    | 1556.40 |
| 119                                     | 0.0553 | 991.54  | 0.0432 | 538.96 | 0.0845    | 1741.07 |
| 120                                     | 0.0533 | 903.68  | 0.0445 | 604.54 | 0.0934    | 1817.14 |

Subject: BBoard: V-ShapedPickup: Centre

|     | Delto  | Did     | Trapez | ius    | -Infraspi | natus   |
|-----|--------|---------|--------|--------|-----------|---------|
| Min | RMS    | MPF     | RMS    | MPF    | RMS       | MPF     |
|     |        |         |        |        |           |         |
| 8   | 0.0507 | 2008.43 | 0.0626 | 335.75 |           |         |
| 9   | 0.0415 | 1989.28 | 0.0610 | 287.36 |           |         |
| 10  | 0.0425 | 1959.87 | 0.0608 | 300.22 |           |         |
| 18  | 0.0465 | 1906.34 | 0.0607 | 301.41 |           |         |
| 19  | 0.0702 | 1988.54 | 0.0611 | 328.18 |           |         |
| 20  | 0.0575 | 1926.10 | 0.0608 | 313.41 |           |         |
| 28  | 0.0579 | 1903.15 | 0.0619 | 355.34 | 0.0330    | 2005.42 |
| 29  | 0.0541 | 1877.89 | 0.0633 | 416.13 | 0.0324    | 2001.55 |
| 30  | 0.0542 | 1884.64 | 0.0607 | 297.08 | 0.0325    | 2004.94 |
| 38  | 0.0585 | 1873.47 | 0.0609 | 321.09 | 0.0492    | 2023.18 |
| 39  | 0.0576 | 1835.00 | 0.0611 | 360.67 | 0.0503    | 2014.14 |
| 40  | 0.0502 | 1772.02 | 0.0606 | 291.69 | 0.0444    | 2024.35 |
| 48  | 0.0464 | 1699.53 | 0.0600 | 294.97 | 0.0466    | 1995.12 |
| 49  | 0.0517 | 1744.80 | 0.0600 | 330.90 | 0.0503    | 1977.91 |
| 50  | 0.0585 | 1801.91 | 0.0614 | 349.77 | 0.0608    | 2015.57 |
| 58  | 0.0573 | 1738.69 | 0.0607 | 337.43 | 0.0546    | 1999.56 |
| 59  | 0.0564 | 1726.85 | 0.0597 | 290.85 | 0.0442    | 1971.78 |
| 60  | 0.0538 | 1658.13 | 0.0601 | 319.36 | 0.0511    | 1987.17 |
| 68  | 0.0475 | 1526.76 | 0.0591 | 275.29 | 0.0493    | 1974.59 |
| 69  | 0.0552 | 1654.19 | 0.0599 | 310.60 | 0.0539    | 1978.73 |
| 70  | 0.0545 | 1685.64 | 0.0595 | 302.45 | 0.0587    | 1989.74 |
| 78  | 0.0553 | 1593.34 | 0.0592 | 299.04 | 0.0557    | 1965.47 |
| 79  | 0.0464 | 1427.01 | 0.0589 | 268.35 | 0.0491    | 1972.97 |
| 80  | 0.0511 | 1535.92 | 0.0584 | 270.62 | 0.0514    | 1972.78 |
| 88  | 0.0613 | 1604.27 | 0.0597 | 328.39 | 0.0772    | 2008.13 |
| 89  | 0.0552 | 1590.95 | 0.0595 | 315.74 | 0.0658    | 1985.69 |
| 90  | 0.0581 | 1617.91 | 0.0601 | 365.05 | 0.0785    | 2011.07 |
| 98  | 0.0467 | 1337.90 | 0.0584 | 282.01 | 0.0552    | 1939.85 |
| 99  | 0.0528 | 1436.14 | 0.0583 | 282.27 | 0.0637    | 1959.00 |
| 100 | 0.0604 | 1554.76 | 0.0605 | 356.77 | 0.0778    | 1994.93 |
| 108 | 0.0608 | 1510.53 | 0.0588 | 308.92 | 0.0686    | 1992.72 |
| 109 | 0.0556 | 1430.54 | 0.0586 | 301.86 | 0.0630    | 1933.35 |
| 110 | 0.0510 | 1304.66 | 0.0583 | 279.62 | 0.0614    | 1907.40 |
| 118 | 0.0623 | 1536.26 | 0.0592 | 327.15 | 0.0727    | 1976.09 |
| 119 | 0.0587 | 1447.25 | 0.0591 | 320.03 | 0.0708    | 1983.58 |
| 120 | 0.0553 | 1430.20 | 0.0587 | 291.12 | 0.0616    | 1932.45 |
|     |        |         |        |        |           |         |

Subject: B Board: Inclined Pickup: Opposite

|                 | Delt   | oid     | Trapez | ius    | -Infraspi | natus   |
|-----------------|--------|---------|--------|--------|-----------|---------|
| Min             | RMS    | MPF     | RMS    | MPF    | RMS       | MPF     |
|                 |        |         |        |        |           |         |
| 8               | 0.9126 | 1433.80 | 0.0568 | 310.01 |           |         |
| 9               | 0.0102 | 1099.76 | 0.0565 | 324.44 |           |         |
| 10              | 0.0124 | 1327.29 | 0.0563 | 319.66 |           |         |
| 18              | 0.0136 | 918.66  | 0.0552 | 284.91 | 0.0463    | 2022.69 |
| 19              | 0.0147 | 950.33  | 0.0559 | 302.01 | 0.0409    | 2013.41 |
| 20              | 0.0173 | 1211.59 | 0.0554 | 304.01 | 0.0427    | 2002.96 |
| 28              | 0.0187 | 1036.32 | 0.0559 | 339.02 | 0.0510    | 2004.27 |
| 29              | 0.0173 | 851.81  | 0.0547 | 289.41 | 0.0373    | 1974.47 |
| 30              | 0.0178 | 906.81  | 0.0547 | 308.10 | 0.0455    | 1982.19 |
| 38              | 0.0401 | 1700.79 | 0.0546 | 282.39 | 0.0439    | 1980.62 |
| 39              | 0.0235 | 1111.01 | 0.0540 | 277.15 | 0.0394    | 1949.31 |
| 40              | 0.0195 | 768.03  | 0.0544 | 288.57 | 0.0428    | 1957.68 |
| 48              | 0.0218 | 816.92  | 0.0547 | 309.30 | 0.0616    | 1993.69 |
| 49              | 0.0225 | 843.65  | 0.0548 | 305.98 | 0.0603    | 1995.39 |
| 50              | 0.0220 | 837.04  | 0.0550 | 332.42 | 0.0778    | 2021.28 |
| 58              | 0.0234 | 750.43  | 0.0538 | 319.81 | 0.0873    | 2008.80 |
| 59              | 0.0218 | 573.42  | 0.0536 | 274.49 | 0.0521    | 1965.13 |
| 60              | 0.0233 | 726.93  | 0.0539 | 292.46 | 0.0921    | 2026.13 |
| 68              | 0.0270 | 852.86  | 0.0546 | 332.03 | 0.0933    | 2018.27 |
| 69              | 0.0248 | 666.87  | 0.0536 | 309.59 | 0.0816    | 2005.45 |
| 70              | 0.0256 | 722.95  | 0.0538 | 301.41 | 0.0838    | 2012.07 |
| 78              | 0.0276 | 740.93  | 0.0532 | 296.00 | 0.0566    | 1936.59 |
| 79              | 0.0273 | 775.10  | 0.0528 | 284.89 | 0.0533    | 1943.36 |
| 80              | 0.0264 | 636.19  | 0.0528 | 288.62 | 0.0480    | 1876.77 |
| 88              | 0.0269 | 611.63  | 0.0525 | 286.47 | 0.0571    | 1943.94 |
| <sup>~</sup> 89 | 0.0250 | 408.07  | 0.0521 | 252.59 | 0.0508    | 1901.09 |
| 90              | 0.0286 | 688.33  | 0.0537 | 311.15 | 0.0648    | 1972.68 |
| 98              | 0.0304 | 701.58  | 0.0529 | 315.72 | 0.0709    | 1955.66 |
| 99              | 0.0267 | 498.91  | 0.0524 | 286.60 | 0.0618    | 1934.57 |
| 100             | 0.0289 | 631.62  | 0.0523 | 286.34 | 0.0626    | 1950.82 |
| 108             | 0.0303 | 669.83  | 0.0530 | 328.26 | 0.0556    | 1913.87 |
| 109             | 0.0302 | 635.68  | 0.0518 | 280.59 | 0.0472    | 1902.90 |
| 110             | 0.0290 | 570.49  | 0.0527 | 312.74 | 0.0571    | 1834.48 |
| 118             | 0.0324 | 741.96  | 0.0524 | 294.45 | 0.0581    | 1866.57 |
| 119             | 0.0338 | 833.05  | 0.0528 | 330.92 | 0.0606    | 1889.02 |
| 120             | 0.0310 | 647.62  | 0.0523 | 305.14 | 0.0584    | 1881.89 |
|                 |        |         |        |        |           |         |

Subject: B Board: Inclined Pickup: Centre

|     | Delta  | oid     | Trapez | ius    | -Infraspi | .natus  |
|-----|--------|---------|--------|--------|-----------|---------|
| Min | RMS    | MPF     | RMS    | MPF    | RMS       | MPF     |
|     |        |         |        |        |           |         |
| 8   | 0.0399 | 2042.81 | 0.0628 | 310.65 |           |         |
| 9   | 0.0302 | 2039.71 | 0.0618 | 281.82 |           |         |
| 10  | 0.0304 | 2043.58 | 0.0615 | 280.48 |           |         |
| 18  | 0.0408 | 2046.56 | 0.0617 | 336.69 | 0.0193    | 1984.99 |
| 19  | 0.0500 | 2042.67 | 0.0615 | 330.05 | 0.0213    | 1993.37 |
| 20  | 0.0399 | 2045.68 | 0.0614 | 319.49 | 0.0201    | 2008.35 |
| 28  | 0.0406 | 1987.66 | 0.0611 | 337.89 | 0.0171    | 2032.28 |
| 29  | 0.0365 | 1989.13 | 0.0613 | 314.35 | 0.0174    | 2040.85 |
| 30  | 0.0377 | 2014.56 | 0.0610 | 320.25 | 0.0164    | 2039.44 |
| 38  | 0.0404 | 1961.34 | 0.0613 | 331.32 | 0.0191    | 2047.80 |
| 39  | 0.0335 | 1978.95 | 0.0601 | 302.15 | 0.0159    | 2047.98 |
| 40  | 0.0330 | 1942.44 | 0.0604 | 326.02 | 0.0171    | 2047.53 |
| 48  | 0.0310 | 1854.10 | 0.0596 | 293.55 | 0.0179    | 2028.73 |
| 49  | 0.0331 | 1845.17 | 0.0601 | 309.54 | 0.0161    | 2032.04 |
| 50  | 0.0333 | 1909.92 | 0.0593 | 291.41 | 0.0178    | 2027.50 |
| 58  | 0.0201 | 1394.31 | 0.0585 | 263.47 | 0.0129    | 1966.09 |
| 59  | 0.0267 | 1739.55 | 0.0597 | 315.84 | 0.0172    | 1995.15 |
| 60  | 0.0387 | 1865.15 | 0.0600 | 324.07 | 0.0194    | 1989.95 |
| 68  | 0.0273 | 1629.01 | 0.0588 | 300.82 | 0.0157    | 1941.60 |
| 69  | 0.0263 | 1541.90 | 0.0588 | 289.35 | 0.0147    | 1910.06 |
| 70  | 0.0306 | 1673.00 | 0.0594 | 315.24 | 0.0163    | 1932.17 |
| 78  | 0.0374 | 1747.88 | 0.0603 | 390.09 | 0.0191    | 1934.75 |
| 79  | 0.0284 | 1533.86 | 0.0586 | 304.30 | 0.0157    | 1886.99 |
| 80  | 0.0285 | 1515.81 | 0.0585 | 300.61 | 0.0165    | 1862.68 |
| 88  | 0.0304 | 1540.84 | 0.0584 | 314.00 | 0.0163    | 1793.58 |
| 89  | 0.0314 | 1598.88 | 0.0584 | 319.55 | 0.0174    | 1808.67 |
| 90  | 0.0296 | 1465.75 | 0.0584 | 321.79 | 0.0163    | 1807.61 |
| 98  | 0.0278 | 1370.15 | 0.0578 | 297.55 | 0.0154    | 1723.60 |
| 99  | 0.0325 | 1528.87 | 0.0582 | 326.47 | 0.0182    | 1768.91 |
| 100 | 0.0267 | 1233.68 | 0.0571 | 276.80 | 0.0147    | 1632.26 |
| 108 | 0.0351 | 1513.95 | 0.0584 | 341.71 | 0.0187    | 1761.56 |
| 109 | 0.0313 | 1425.92 | 0.0578 | 308.17 | 0.0168    | 1677.67 |
| 110 | 0.0331 | 1455.30 | 0.0575 | 297.05 | 0.0177    | 1739.35 |
| 118 | 0.0380 | 1581.72 | 0.0579 | 336.30 | 0.0196    | 1741.08 |
| 119 | 0.0324 | 1407.03 | 0.0574 | 323.77 | 0.0182    | 1618.90 |
| 120 | 0.0346 | 1457.54 | 0.0566 | 293.61 | 0.0168    | 1612.24 |
|     |        |         |        |        |           |         |

<u>.</u>

|     | Deltoid |        | Trapezius |        | -Infraspinatus   |                  |
|-----|---------|--------|-----------|--------|------------------|------------------|
|     |         | MPF    | RMS       | MPF    | RMS              | MPF              |
| Min | RMS     | MEE    | 12.00     |        |                  |                  |
| 8   | 0.1322  | 295.77 | 0.0907    | 240.30 | 0.1430           | 238.88           |
| 9   | 0.1322  | 325.82 | 0.0908    | 239.78 | 0.1431           | 239.28           |
| 10  | 0.1323  | 314.28 | 0.0908    | 239.48 | 0.1431           | 239.66           |
| 18  | 0.1325  | 319.79 | 0.0908    | 241.12 | 0.1431           | 239.20           |
| 19  | 0.1345  | 331.78 | 0.0909    | 240.34 | 0.1432           | 239.46           |
| 20  | 0.1342  | 330.31 | 0.0908    | 239.96 | 0.1432           | 239.86           |
| 28  | 0.1324  | 307.40 | 0.0909    | 239.49 | 0.1432           | 239.28           |
| 29  | 0.1333  | 325.15 | 0.0909    | 239.56 | 0.1433           | 239.78           |
| 30  | 0.1333  | 317.15 | 0.0909    | 241.26 | 0.1433           | 239.44           |
| 38  | 0.1316  | 274.52 | 0.0909    | 241.40 | 0.1434           | 239.68           |
| 39  | 0.1334  | 312.14 | 0.0910    | 239.59 | 0.1434           | 238.76           |
| 40  | 0.1361  | 370.99 | 0.0909    | 241.47 | 0.1434           | 239.40           |
| 48  | 0.1334  | 316.93 | 0.0910    | 241.66 | 0.1435           | 240.09           |
| 49  | 0.1317  | 293.86 | 0.0910    | 239.12 | 0.1435           | 239.29           |
| 50  | 0.1322  | 308.21 | 0.0910    | 240.36 | 0.1434           | 239.52           |
| 58  | 0.1327  | 301.99 | 0.0911    | 240.55 | 0.1436           | 239.93           |
| 59  | 0.1373  | 372.68 | 0.0911    | 241.15 | 0.1436           | 239.36           |
| 60  | 0.1340  | 311.31 | 0.0910    | 241.44 | 0.1436           | 239.15           |
| 68  | 0.1331  | 312.18 | 0.0912    | 239.12 | 0.1437           | 239.70           |
| 69  | 0.1367  | 358.83 | 0.0912    | 240.83 | 0.1437           | 239.75           |
| 70  | 0.1331  | 324.86 | 0.0912    | 242.50 | 0.1437           | 239.83           |
| 78  | 0.1322  | 293.64 | 0.0912    | 240.57 | 0.1438           | 239.18           |
| 79  | 0.1345  | 332.52 | 0.0913    | 243.13 | 0.1438           | 240.08           |
| 80  | 0.1340  | 316.93 | 0.0912    | 240.43 | 0.1438           | 239.60           |
| 88  | 0.1352  | 324.18 | 0.0914    | 241.26 | 0.1439           | 239.29           |
| 89  | 0.1325  | 282.65 | 0.0913    | 240.30 | 0.1439           | 239.74<br>239.45 |
| 90  | 0.1389  | 406.57 | 0.0915    | 241.90 | 0.1439           | 239.45           |
| 98  | 0.1348  | 341.65 | 0.0915    |        | 0.1440           |                  |
| 99  | 0.1362  | 335.38 | 0.0916    | 242.74 | 0.1441           | 239.54           |
| 100 | 0.1339  | 315.04 | 0.0916    | 243.81 | 0.1440           | 239.97<br>239.39 |
| 108 | 0.1384  | 386.57 | 0.0915    | 246.93 | 0.1441           | 239.39           |
| 109 | 0.1338  | 316.74 | 0.0917    | 245.68 | 0.1441           | 239.62           |
| 110 | 0.1404  | 404.90 | 0.0917    | 251.69 | 0.1441<br>0.1442 | 239.82           |
| 118 | 0.1339  | 321.89 | 0.0921    | 250.56 | 0.1442           | 239.49           |
| 119 | 0.1380  | 364.67 | 0.0919    | 248.81 | 0.1442           | 239.45           |
| 120 | 0.1391  | 377.64 | 0.0920    | 254.58 | V.1372           | 200.40           |

.

| Delto  | id                                                                                                                                                                                                                                                                                                                                                                                                                            | Trapez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -Infraspi:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | natus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RMS    | MPF                                                                                                                                                                                                                                                                                                                                                                                                                           | RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.1452 | 330.61                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 374.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 249.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1439 | 313.68                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 313.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 250.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1441 | 307.26                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 284.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 251.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1432 | 284.09                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 307.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 246.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1435 | 298.67                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 313.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 249.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1454 | 331.21                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 335.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 246.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1443 | 306.78                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 314.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 251.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1440 | 309.08                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 333.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 251.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1455 | 335.58                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 333.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 253.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1442 | 302.89                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 370.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 246.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1458 | 344.49                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 369.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 256.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1442 | 300.25                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 320.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 251.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1448 | 336.73                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 358.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 255.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1433 | 292.79                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 338.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 252.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1456 | 324.33                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 323.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 247.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1438 | 324.68                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 331.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 250.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1443 | 316.17                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 315.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 255.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1427 | 286.62                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 323.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 250.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1434 | 294.08                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 327.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 244.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1433 | 285.35                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 325.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 248.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1428 | 290.97                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 353.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 243.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1418 | 271.98                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 298.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 250.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1425 | 271.82                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 244.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1428 | 296.91                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 247.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1426 | 306.86                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 248.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1437 | 299.79                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 323.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 255.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1463 | 348.84                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 335.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 255.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1459 | 328.27                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 350.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 252.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1463 | 356.41                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 364.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 251.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1475 | 342.57                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 364.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 252.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1419 | 296.64                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 252.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1489 | 442.27                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 250.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1414 | 294.46                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 332.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 254.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1434 | 329.89                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 260.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1479 | 381.97                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 375.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 265.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1450 | 371.05                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 357.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 251.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | RMS<br>0.1452<br>0.1439<br>0.1441<br>0.1432<br>0.1435<br>0.1454<br>0.1443<br>0.1440<br>0.1455<br>0.1442<br>0.1458<br>0.1442<br>0.1458<br>0.1442<br>0.1433<br>0.1456<br>0.1433<br>0.1456<br>0.1433<br>0.1456<br>0.1433<br>0.1427<br>0.1434<br>0.1428<br>0.1428<br>0.1428<br>0.1428<br>0.1428<br>0.1428<br>0.1428<br>0.1428<br>0.1428<br>0.1429<br>0.1437<br>0.1463<br>0.1459<br>0.1463<br>0.1475<br>0.1419<br>0.1434<br>0.1434 | 0.1452 330.61<br>0.1439 313.68<br>0.1441 307.26<br>0.1432 284.09<br>0.1435 298.67<br>0.1435 298.67<br>0.1454 331.21<br>0.1443 306.78<br>0.1440 309.08<br>0.1455 335.58<br>0.1442 302.89<br>0.1458 344.49<br>0.1442 300.25<br>0.1448 336.73<br>0.1433 292.79<br>0.1456 324.33<br>0.1433 292.79<br>0.1456 324.33<br>0.1438 324.68<br>0.1443 316.17<br>0.1427 286.62<br>0.1434 294.08<br>0.1433 285.35<br>0.1428 290.97<br>0.1418 271.98<br>0.1425 271.82<br>0.1428 290.97<br>0.1418 271.98<br>0.1425 271.82<br>0.1428 296.91<br>0.1426 306.86<br>0.1437 299.79<br>0.1463 348.84<br>0.1459 328.27<br>0.1463 348.84<br>0.1459 328.27<br>0.1463 356.41<br>0.1475 342.57<br>0.1419 296.64<br>0.1434 329.89<br>0.1479 381.97 | RMSMPFRMS0.1452330.610.11180.1439313.680.10900.1441307.260.10880.1432284.090.10920.1435298.670.10940.1454331.210.11080.1454331.210.11080.1443306.780.10930.1440309.080.11090.1455335.580.11030.1442302.890.11170.1458344.490.11130.1442300.250.11000.1448336.730.11070.1433292.790.11040.1446324.330.10980.1438324.680.11030.1434294.080.11030.1434294.080.11030.1433285.350.10940.1428290.970.11250.1418271.980.10950.1425271.820.11020.1426306.860.11050.1437299.790.11130.1463356.410.11240.1459328.270.11100.1463356.410.11240.1475342.570.11290.1414294.460.11050.1434329.890.11180.1479381.970.1131 | RMSMPFRMSMPF0.1452330.610.1118374.320.1439313.680.1090313.270.1441307.260.1088284.370.1432284.090.1092307.110.1435298.670.1094313.370.1454331.210.1108335.220.1443306.780.1093314.750.1440309.080.1109333.310.1455335.580.1103333.680.1442302.890.1117370.490.1458344.490.1113369.840.1442300.250.1100320.550.1448336.730.1107358.050.1433292.790.1104338.210.1456324.330.1098323.550.1438324.680.1103331.060.1443316.170.1094315.760.1427286.620.1090323.250.1434294.080.1103327.810.1433285.350.1094325.570.1428290.970.1125353.860.1428296.910.1097328.780.1426306.860.1105341.510.1427297.990.1113323.560.1428296.910.1097328.780.1426306.860.1105341.510.1427297.990.1113323.560.1428296.910.1097328.780.1426306.860.1105 | RMSMPFRMSMPFRMS0.1452330.610.1118374.320.15830.1439313.680.1090313.270.15850.1441307.260.1088284.370.15860.1432284.090.1092307.110.15810.1435298.670.1094313.370.15870.1454331.210.1108335.220.15830.1443306.780.1093314.750.15810.1440309.080.1109333.310.15900.1455335.580.110333.680.15850.1442302.890.1117370.490.15820.1442300.250.1100320.550.15900.1448336.730.1107358.050.15840.1433292.790.1104338.210.15840.1433292.790.1104332.550.15850.1438324.680.1103331.060.15830.1433285.350.1094325.570.15870.1434316.170.1094315.760.15870.1433285.350.1094325.570.15830.1433285.350.1094325.570.15830.1434294.080.1103327.810.15830.1425271.820.1102336.650.15840.1428296.910.1097328.780.15830.1428296.910.1097328.780.15830.1426306.86 |

.

Subject: C Board: V-Shaped Pickup: Opposite

|     | Deltoid |        | Trapezius |        | -Infraspinatus |        |
|-----|---------|--------|-----------|--------|----------------|--------|
| Min | RMS     | MPF    | RMS       | MPF    | RMS            | MPF    |
|     |         |        |           |        |                |        |
| 8   |         |        | 0.1079    | 264.08 | 0.1603         | 267.43 |
| 9   |         |        | 0.1084    | 267.89 | 0.1611         | 270.14 |
| 10  |         |        | 0.1080    | 268.98 | 0.1603         | 258.67 |
| 18  | 0.1427  | 242.24 | 0.1098    | 315.19 | 0.1608         | 274.83 |
| 19  | 0.1422  | 245.82 | 0.1096    | 311.74 | 0.1607         | 262.61 |
| 20  | 0.1423  | 239.89 | 0.1102    | 299.23 | 0.1602         | 264.28 |
| 28  | 0.1424  | 240.82 | 0.1106    | 321.78 | 0.1602         | 252.37 |
| 29  | 0.1424  | 239.31 | 0.1106    | 318.98 | 0.1601         | 253.80 |
| 30  |         |        | 0.1096    | 322.10 | 0.1602         | 257.55 |
| 38  | 0.1425  | 239.93 | 0.1104    | 324.94 | 0.1602         | 253.53 |
| 39  | 0.1427  | 240.69 | 0.1114    | 371.05 | 0.1610         | 270.39 |
| 40  |         |        | 0.1133    | 400.37 | 0.1601         | 262.27 |
| 48  | 0.1427  | 240.88 | 0.1137    | 407.56 | 0.1607         | 261.18 |
| 49  | 0.1427  | 240.39 | 0.1141    | 408.70 | 0.1605         | 262.95 |
| 50  | 0.1426  | 239.63 | 0.1119    | 366.55 | 0.1602         | 257.83 |
| 58  | 0.1429  | 240.13 | 0.1130    | 379.07 | 0.1615         | 279.62 |
| 59  | 0.1428  | 239.06 | 0.1124    | 380.86 | 0.1609         | 260.22 |
| 60  | 0.1427  | 240.76 | 0.1142    | 426.75 | 0.1613         | 255.68 |
| 68  | 0.1429  | 240.07 | 0.1128    | 388.55 | 0.1598         | 256.30 |
| 69  | 0.1428  | 240.72 | 0.1151    | 400.28 | 0.1603         | 257.43 |
| 70  | 0.1428  | 240.49 | 0.1117    | 353.31 | 0.1600         | 252.50 |
| 78  | 0.1429  | 241.27 | 0.1161    | 459.84 | 0.1613         | 270.60 |
| 79  | 0.1428  | 240.55 | 0.1128    | 407.04 | 0.1610         | 260.71 |
| 80  | 0.1428  | 240.24 | 0.1141    | 439.27 | 0.1607         | 264.30 |
| 88  | 0.1430  | 241.11 | 0.1139    | 399.35 | 0.1610         | 260.20 |
| 89  | 0.1431  | 240.07 | 0.1127    | 383.70 | 0.1608         | 257.81 |
| 90  | 0.1430  | 240.15 | 0.1124    | 382.87 | 0.1601         | 256.34 |
| 98  | 0.1431  | 240.15 | 0.1144    | 434.55 | 0.1606         | 257.19 |
| 99  | 0.1429  | 240.00 | 0.1164    | 469.72 | 0.1604         | 264.63 |
| 100 | 0.1432  | 240.78 | 0.1156    | 424.85 | 0.1609         | 262.78 |
| 108 | 0.1430  | 239.96 | 0.1157    | 417.62 | 0.1606         | 276.03 |
| 109 | 0.1430  | 241.65 | 0.1152    | 403.18 | 0.1616         | 277.67 |
| 110 | 0.1431  | 239.95 | 0.1134    | 389.61 | 0.1611         | 270.12 |
| 118 | 0.1431  | 240.68 | 0.1078    | 256.43 | 0.1613         | 264.68 |
| 119 | 0.1430  | 241.74 | 0.1082    | 255.74 | 0.1605         | 265.70 |
| 120 | 0.1431  | 239.86 | 0.1084    | 252.12 | 0.1603         | 269.24 |
|     |         |        |           |        |                |        |

Subject: C Board: V-Shaped Pickup: Centre

|     | Delto  | id     | Trapez | ius    | -Infraspi | natus   |
|-----|--------|--------|--------|--------|-----------|---------|
| Min | RMS    | MPF    | RMS    | MPF    | RMS       | MPF     |
|     |        |        |        |        |           |         |
| 8   | 0.1391 | 314.05 | 0.1068 | 292.34 | 0.3365    | 1586.19 |
| 9   | 0.1385 | 303.23 | 0.1059 | 288.80 | 0.2260    | 1065.29 |
| 10  | 0.1423 | 371.55 | 0.1069 | 301.36 | 0.3225    | 1545.70 |
| 18  | 0.1472 | 453.92 | 0.1063 | 292.96 | 0.3233    | 1508.56 |
| 19  | 0.1416 | 324.57 | 0.1060 | 285.78 | 0.3771    | 1680.11 |
| 20  | 0.1400 | 300.53 | 0.1062 | 285.61 | 0.5001    | 1828.89 |
| 28  | 0.1407 | 332.53 | 0.1062 | 287.96 | 0.6451    | 1900.42 |
| 29  | 0.1433 | 368.09 | 0.1061 | 287.76 | 0.5802    | 1876.94 |
| 30  | 0.1427 | 329.94 | 0.1067 | 312.23 | 0.6394    | 1908.49 |
| 38  | 0.1432 | 355.92 | 0.1069 | 308.17 | 0.4562    | 1762.49 |
| 39  | 0.1404 | 307.17 | 0.1062 | 280.32 | 0.4272    | 1736.33 |
| 40  | 0.1411 | 314.46 | 0.1060 | 274.11 | 0.3641    | 1635.18 |
| 48  | 0.1418 | 306.68 | 0.1061 | 279.37 | 0.4959    | 1817.26 |
| 49  | 0.1436 | 350.16 | 0.1074 | 303.41 | 0.4461    | 1770.11 |
| 50  | 0.1434 | 338.15 | 0.1073 | 304.16 | 0.4343    | 1739.06 |
| 58  | 0.1515 | 447.68 | 0.1070 | 310.01 | 0.4860    | 1799.82 |
| 59  | 0.1443 | 349.35 | 0.1075 | 299.61 | 0.4117    | 1711.07 |
| 60  | 0.1444 | 335.35 | 0.1069 | 291.21 | 0.4220    | 1710.44 |
| 68  | 0.1481 | 375.22 | 0.1077 | 309.36 | 0.5149    | 1822.85 |
| 69  | 0.1442 | 335.36 | 0.1072 | 313.52 | 0.5252    | 1840.12 |
| 70  | 0.1424 | 315.45 | 0.1073 | 299.81 | 0.4402    | 1747.09 |
| 78  | 0.1441 | 329.98 | 0.1074 | 291.00 | 0.4370    | 1764.70 |
| 79  | 0.1423 | 297.97 | 0.1068 | 280.89 | 0.3938    | 1706.28 |
| 80  | 0.1426 | 335.19 | 0.1080 | 306.69 | 0.4753    | 1780.18 |
| 88  | 0.1416 | 304.18 | 0.1069 | 283.13 | 0.3858    | 1684.34 |
| 89  | 0.1423 | 307.30 | 0.1073 | 285.33 | 0.4967    | 1793.21 |
| 90  | 0.1462 | 353.71 | 0.1079 | 304.26 | 0.5234    | 1825.21 |
| 98  | 0.1443 | 326.58 | 0.1071 | 295.55 | 0.3228    | 1508.36 |
| 99  |        |        | 0.1066 | 284.83 | 0.5174    | 1829.34 |
| 100 | 0.1474 | 380.18 | 0.1074 | 295.55 | 0.4270    | 1724.66 |
| 108 | 0.1387 | 249.23 | 0.1072 | 282.14 | 0.3520    | 1560.12 |
| 109 | 0.1385 | 251.66 | 0.1067 | 274.85 | 0.3899    | 1663.88 |
| 110 | 0.1386 | 246.43 | 0.1072 | 285.88 | 0.3524    | 1578.74 |
| 118 | 0.1392 | 255.19 | 0.1065 | 269.75 | 0.6070    | 1882.44 |
| 119 | 0.1392 | 254.31 | 0.1074 | 295.54 | 0.5880    | 1880.44 |
| 120 | 0.1391 | 258.50 | 0.1075 | 284.79 | 0.5685    | 1872.98 |
|     |        |        |        |        |           |         |

|     | Delto  | id     | Trapez: | ius    | -Infraspi | natus  |
|-----|--------|--------|---------|--------|-----------|--------|
| Min | RMS    | MPF    | RMS     | MPF    | RMS       | MPF    |
|     |        |        |         |        |           |        |
| 8   | 0.1275 | 398.05 | 0.0980  | 451.62 | 0.1430    | 347.98 |
| 9   | 0.1266 | 331.74 | 0.0961  | 405.84 | 0.1394    | 290.52 |
| 10  | 0.1265 | 329.97 | 0.0976  | 469.27 | 0.1448    | 357.14 |
| 18  | 0.1261 | 346.95 | 0.0960  | 423.82 | 0.1403    | 290.66 |
| 19  | 0.1253 | 321.54 | 0.0939  | 385.53 | 0.1397    | 271.71 |
| 20  | 0.1387 | 557.41 | 0.0960  | 399.08 | 0.1394    | 284.98 |
| 28  | 0.1281 | 350.93 | 0.0974  | 457.31 | 0.1408    | 304.16 |
| 29  | 0.1252 | 335.63 | 0.0956  | 416.93 | 0.1390    | 270.60 |
| 30  | 0.1265 | 331.83 | 0.0963  | 437.36 | 0.1395    | 283.12 |
| 38  | 0.1267 | 340.21 | 0.0940  | 376.94 | 0.1400    | 274.95 |
| 39  | 0.1283 | 376.92 | 0.0961  | 437.93 | 0.1391    | 276.08 |
| 40  | 0.1258 | 323.45 | 0.0961  | 436.55 | 0.1395    | 273.09 |
| 48  | 0.1274 | 348.27 | 0.0967  | 440.05 | 0.1401    | 289.61 |
| 49  | 0.1263 | 327.47 | 0.0968  | 444.40 | 0.1386    | 269.79 |
| 50  | 0.1266 | 313.17 | 0.0953  | 395.14 | 0.1398    | 281.39 |
| 58  | 0.1297 | 400.95 | 0.0969  | 472.38 | 0.1410    | 308.79 |
| 59  | 0.1280 | 365.18 | 0.0983  | 452.10 | 0.1403    | 285.02 |
| 60  | 0.1283 | 367.39 | 0.0980  | 481.63 | 0.1391    | 273.32 |
| 68  | 0.1285 | 362.20 | 0.0968  | 447.52 | 0.1407    | 294.43 |
| 69  | 0.1285 | 375.93 | 0.0987  | 481.69 | 0.1402    | 287.06 |
| 70  | 0.1276 | 349.52 | 0.0971  | 454.21 | 0.1406    |        |
| 78  | 0.1288 | 354.93 | 0.0954  | 416.91 | 0.1395    | 271.48 |
| 79  | 0.1282 | 360.56 | 0.0972  | 421.64 | 0.1395    | 281.73 |
| 80  | 0.1293 | 399.74 | 0.0979  | 483.83 | 0.1397    | 287.02 |
| 88  | 0.1272 | 332.87 | 0.0947  | 414.07 | 0.1404    | 290.64 |
| 89  | 0.1280 | 369.59 | 0.0988  | 471.60 | 0.1408    | 308.69 |
| 90  | 0.1266 | 341.34 | 0.0961  | 436.01 | 0.1400    | 279.79 |
| 98  | 0.1283 | 358.93 | 0.0972  | 466.56 | 0.1436    | 339.18 |
| 99  | 0.1276 | 363.04 | 0.0977  | 476.52 | 0.1399    | 272.19 |
| 100 | 0.1283 | 353.94 | 0.0961  | 421.25 | 0.1399    | 280.60 |
| 108 | 0.1268 | 348.22 | 0.0973  | 452.87 | 0.1409    | 298.80 |
| 109 | 0.1296 | 375.71 | 0.0991  | 472.97 | 0.1416    | 332.27 |
| 110 | 0.1261 | 339.32 | 0.0960  | 406.74 | 0.1401    | 284.20 |
| 118 | 0.1242 | 283.50 | 0.0931  | 320.05 | 0.1385    | 261.29 |
| 119 | 0.1291 | 375.96 | 0.0970  | 470.20 | 0.1396    | 276.65 |
| 120 | 0.1257 | 313.99 | 0.0949  | 393.30 | 0.1389    | 271.47 |

Subject: C Board: Inclined Pickup: Centre

|     | Delto  | id     | Trapez | ius    | -Infraspi | natus  |
|-----|--------|--------|--------|--------|-----------|--------|
| Min | RMS    | MPF    | RMS    | MPF    | RMS       | MPF    |
|     |        |        |        |        |           |        |
| 8   | 0.1381 | 239.31 | 0.1035 | 239.40 | 0.1543    | 240.34 |
| 9   | 0.1383 | 239.44 | 0.1033 | 240.47 | 0.1544    | 241.26 |
| 10  | 0.1383 | 239.11 | 0.1035 | 240.23 | 0.1545    | 240.39 |
| 18  | 0.1393 | 239.52 | 0.1034 | 239.97 | 0.1550    | 240.14 |
| 19  | 0.1394 | 239.51 | 0.1033 | 240.12 | 0.1552    | 242.87 |
| 20  | 0.1396 | 240.09 | 0.1033 | 239.60 | 0.1550    | 240.38 |
| 28  | 0.1403 | 239.62 | 0.1032 | 240.80 | 0.1554    | 240.83 |
| 29  | 0.1403 | 239.94 | 0.1032 | 239.24 | 0.1555    | 239.85 |
| 30  | 0.1404 | 240.35 | 0.1032 | 240.52 | 0.1555    | 239.91 |
| 38  | 0.1411 | 240.42 | 0.1031 | 240.70 | 0.1559    | 239.99 |
| 39  | 0.1412 | 241.26 | 0.1031 | 240.50 | 0.1560    | 240.77 |
| 40  | 0.1412 | 240.58 | 0.1032 | 239.25 | 0.1560    | 241.16 |
| 48  | 0.1418 | 240.11 | 0.1032 | 239.92 | 0.1562    | 239.58 |
| 49  | 0.1418 | 240.31 | 0.1032 | 239.71 | 0.1563    | 239.41 |
| 50  | 0.1419 | 240.49 | 0.1031 | 238.70 | 0.1563    | 239.61 |
| 58  | 0.1424 | 239.92 | 0.1031 | 240.71 | 0.1565    | 240.22 |
| 59  | 0.1425 | 240.28 | 0.1031 | 241.14 | 0.1567    | 239.90 |
| 60  | 0.1425 | 239.77 | 0.1031 | 240.05 | 0.1566    | 239.40 |
| 68  | 0.1429 | 239.80 | 0.1032 | 240.72 | 0.1568    | 239.39 |
| 69  | 0.1430 | 238.95 | 0.1032 | 240.30 | 0.1570    | 239.61 |
| 70  | 0.1432 | 240.74 | 0.1033 | 239.75 | 0.1571    | 240.64 |
| 78  | 6.1434 | 239.41 | 0.1033 | 240.02 | 0.1572    | 239.66 |
| 79  | 0.1435 | 239.47 | 0.1033 | 240.39 | 0.1572    | 241.01 |
| 80  | 0.1435 | 239.92 | 0.1033 | 241.86 | 0.1572    | 240.05 |
| 88  | 0.1437 | 241.57 | 0.1033 | 239.99 | 0.1574    | 241.78 |
| 89  | 0.1437 | 240.47 | 0.1034 | 239.85 | 0.1574    | 239.87 |
| 90  | 0.1437 | 240.25 | 0.1033 | 240.85 | 0.1574    | 240.00 |
| 98  | 0.1440 | 240.58 | 0.1034 | 241.96 | 0.1576    | 240.30 |
| 99  | 0.1441 | 239.04 | 0.1034 | 239.32 | 0.1575    | 239.91 |
| 100 | 0.1440 | 240.10 | 0.1034 | 241.08 | 0.1577    | 239.72 |
| 108 |        |        | 0.1034 | 241.85 | 0.1578    | 240.19 |
| 109 |        |        | 0.1034 | 242.18 | 0.1577    | 239.97 |
| 110 |        |        | 0.1034 | 240.56 | 0.1578    | 242.27 |
| 118 | 0.1443 | 239.25 | 0.1034 | 241.91 | 0.1578    | 239.58 |
| 119 | 0.1443 | 240.38 | 0.1035 | 241.28 | 0.1578    | 239.83 |
| 120 | 0.1451 | 254.10 | 0.1036 | 241.44 | 0.1579    | 241.18 |
|     |        |        |        |        |           |        |

Subject: D Board: Straight Pickup: Opposite

|          | Delto  | oid     | Trapez | ius    | -Infraspi | natus   |
|----------|--------|---------|--------|--------|-----------|---------|
| Min      | RMS    | MPF     | RMS    | MPF    | RMS       | MPF     |
| 1.7 7 11 |        |         |        |        |           |         |
| 8        | 0.3023 | 1667.99 | 0.0799 | 352.55 | 0.1329    | 252.38  |
| 9        | 0.2205 | 1327.40 | 0.0794 | 339.60 | 0.1331    | 256.47  |
| 10       | 0.4869 | 1884.95 | 0.0790 | 338.53 | 0.1335    | 258.64  |
| 18       | 0.1681 | 801.01  | 0.0780 | 299.55 | 0.1351    | 280.02  |
| 19       | 0.3076 | 1621.36 | 0.0786 | 315.10 | 0.1382    | 327.40  |
| 20       | 0.2705 | 1600.86 | 0.0783 | 311.46 | 0.1396    | 360.41  |
| 28       | 0.1650 | 785.34  | 0.0786 | 310.45 | 0.1366    | 290.92  |
| 29       | 0.2602 | 1467.32 | 0.0781 | 296.56 | 0.1371    | 296.64  |
| 30       | 0.2059 | 1232.69 | 0.0777 | 297.13 | 0.1360    | 284.86  |
| 38       | 0.2353 | 1357.73 | 0.0775 | 301.10 | 0.1435    | 411.98  |
| 39       | 0.2928 | 1602.75 | 0.0783 | 312.61 | 0.1401    | 351.83  |
| 40       | 0.2040 | 1190.56 | 0.0778 | 309.00 | 0.1369    | 292.29  |
| 48       | 0.1844 | 888.89  | 0.0781 | 301.57 | 0.1753    | 819.53  |
| 49       | 0.1908 | 1059.69 | 0.0787 | 322.30 | 0.1910    | 1026.09 |
| 50       | 0.2680 | 1487.06 | 0.0782 | 306.12 | 0.2104    | 1174.36 |
| 58       | 0.2297 | 1392.98 | 0.0776 | 302.87 | 0.1705    | 764.55  |
| 59       | 0.1737 | 874.33  | 0.0784 | 305.24 | 0.1707    | 760.53  |
| 60       | 0.1786 | 955.59  | 0.0783 | 301.99 | 0.1690    | 790.12  |
| 68       | 0.2971 | 1572.16 | 0.0790 | 311.76 | 0.2137    | 1144.93 |
| 69       | 0.2099 | 1181.42 | 0.0788 | 306.98 | 0.1950    | 979.72  |
| 70       | 0.1886 | 987.58  | 0.0786 | 310.13 | 0.2217    | 1259.27 |
| 78       | 0.3180 | 1627.88 | 0.0790 | 317.62 | 0.2341    | 1298.41 |
| 79       | 0.2705 | 1491.71 | 0.0789 | 308.75 | 0.2392    | 1315.73 |
| 80       | 0.2078 | 1158.31 | 0.0787 | 296.23 | 0.2371    | 1327.22 |
| 88       | 0.1650 | 755.36  | 0.0785 | 297.27 |           |         |
| 89       | 0.2014 | 1100.71 | 0.0787 | 291.29 |           |         |
| 90       | 0.1974 | 1073.97 | 0.0790 | 300.46 |           |         |
| 98       | 0.2724 | 1492.20 | 0.0805 | 347.32 |           |         |
| 99       | 0.1970 | 1061.58 | 0.0802 | 331.56 |           |         |
| 100      | 0.2360 | 1316.76 | 0.0795 | 300.18 |           |         |
| 108      | 0.5366 | 1904.02 | 0.0806 | 355.65 | 0.1389    | 267.94  |
| 109      | 0.5576 | 1922.72 | 0.0803 | 332.50 | 0.1396    | 285.02  |
| 110      | 0.2335 | 1304.56 | 0.0807 | 323.42 | 0.1387    | 280.19  |
| 118      | 0.4197 | 1798.57 | 0.0801 | 326.98 | 0.1422    | 329.59  |
| 119      | 0.2307 | 1292.54 | 0.0793 | 300.92 | 0.1423    | 325.98  |
| 120      | 0.2397 | 1342.47 | 0.0787 | 281.13 | 0.1413    | 307.60  |
|          |        |         |        |        |           |         |

|     | Delto  | id     | Trapez | ius    | -Infraspi | natus  |
|-----|--------|--------|--------|--------|-----------|--------|
| Min | RMS    | MPF    | RMS    | MPF    | RMS       | MPF    |
|     |        |        |        |        |           |        |
| 8   | 0.1341 | 283.65 | 0.1035 | 407.35 | 0.1484    | 254.13 |
| 9   | 0.1339 | 286.72 | 0.1021 | 387.25 | 0.1482    | 248.13 |
| 10  | 0.1338 | 281.59 | 0.1025 | 403.53 | 0.1483    | 251.27 |
| 18  | 0.1350 | 274.59 | 0.1046 | 454.74 | 0.1484    | 259.28 |
| 19  | 0.1342 | 270.81 | 0.1007 | 366.87 | 0.1486    | 256.62 |
| 20  | 0.1347 | 286.16 | 0.1022 | 401.94 | 0.1486    | 257.06 |
| 28  | 0.1344 | 278.75 | 0.1008 | 362.52 | 0.1487    | 264.21 |
| 29  | 0.1352 | 289.89 | 0.1026 | 410.89 | 0.1482    | 255.54 |
| 30  | 0.1352 | 294.41 | 0.1031 | 454.58 | 0.1487    | 257.72 |
| 38  | 0.1336 | 263.77 | 0.1015 | 382.62 | 0.1485    | 255.69 |
| 39  | 0.1342 | 264.24 | 0.1002 | 333.96 | 0.1485    | 257.44 |
| 40  | 0.1352 | 289.95 | 0.1006 | 361.21 | 0.1490    | 267.18 |
| 48. | 0.1341 | 269.87 | 0.1017 | 369.27 | 0.1494    | 266.27 |
| 49  | 0.1345 | 275.64 | 0.1021 | 428.36 | 0.1494    | 270.09 |
| 50  | 0.1342 | 269.37 | 0.1005 | 388.89 | 0.1490    | 265.52 |
| 58  | 0.1355 | 293.18 | 0.1011 | 378.05 | 0.1495    | 267.42 |
| 59  | 0.1345 | 264.45 | 0.1009 | 380.09 | 0.1495    | 271.27 |
| 60  | 0.1339 | 254.85 | 0.0994 | 335.32 | 0.1487    | 257.68 |
| 68  | 0.1344 | 272.41 | 0.1025 | 385.06 | 0.1484    | 252.08 |
| 69  | 0.1347 | 272.78 | 0.1007 | 371.38 | 0.1487    | 257.43 |
| 70  | 0.1341 | 266.64 | 0.0991 | 317.33 | 0.1485    | 251.85 |
| 78  | 0.1345 | 295.52 | 0.1051 | 500.46 | 0.1488    | 262.75 |
| 79  | 0.1367 | 308.71 | 0.1030 | 397.80 | 0.1492    | 264.77 |
| 80  | 0.1344 | 281.41 | 0.1018 | 399.59 | 0.1485    | 255.81 |
| 88  | 0.1340 | 269.49 | 0.1004 | 372.58 | 0.1480    | 246.40 |
| 89  | 0.1337 | 265.02 | 0.1001 | 347.28 | 0.1480    | 243.91 |
| 90  | 0.1331 | 252.30 | 0.0981 | 313.83 | 0.1480    | 244.61 |
| 98  | 0.1345 | 269.68 | 0.0996 | 346.16 | 0.1482    | 246.30 |
| 99  | 0.1344 | 270.09 | 0.0996 | 331.64 | 0.1482    | 249.77 |
| 100 | 0.1341 | 282.38 | 0.1008 | 366.82 | 0.1484    | 247.96 |
| 108 | 0.1340 | 261.68 | 0.1010 | 352.74 | 0.1481    | 245.54 |
| 109 | 0.1348 | 281.71 | 0.1003 | 374.18 | 0.1479    | 245.91 |
| 110 | 0.1338 | 274.40 | 0.1011 | 374.71 | 0.1483    | 245.44 |
| 118 | 0.1346 | 272.94 | 0.1004 | 380.72 | 0.1478    | 246.96 |
| 119 | 0.1347 | 265.15 | 0.1000 | 351.39 | 0.1479    | 245.81 |
| 120 | 0.1344 | 277.90 | 0.1016 | 393.01 | 0.1481    | 248.47 |
|     |        |        |        |        |           |        |

|     | Delto  | id     | Trapez | ius    | -Infraspi: | natus  |
|-----|--------|--------|--------|--------|------------|--------|
| Min | RMS    | MPF    | RMS    | MPF    | RMS        | MPF    |
|     |        |        |        |        |            |        |
| 8   | 0.1414 | 334.36 | 0.0933 | 240.89 |            |        |
| 9   | 0.1415 | 310.06 | 0.0934 | 239.72 |            |        |
| 10  | 0.1416 | 316.18 | 0.0934 | 239.76 |            |        |
| 18  | 0.1402 | 298.19 | 0.0935 | 239.75 |            |        |
| 19  | 0.1416 | 325.33 | 0.0934 | 238.89 |            |        |
| 20  | 0.1409 | 323.85 | 0.0934 | 239.17 |            |        |
| 28  | 0.1409 | 296.31 | 0.0935 | 240.19 | 0.1493     | 242.84 |
| 29  | 0.1399 | 277.91 | 0.0935 | 239.65 | 0.1492     | 241.82 |
| 30  | 0.1432 | 323.78 | 0.0935 | 239.92 | 0.1493     | 243.40 |
| 38  | 0.1420 | 308.99 | 0.0935 | 240.05 | 0.1497     | 247.11 |
| 39  | 0.1405 | 288.76 | 0.0936 | 240.37 | 0.1494     | 244.58 |
| 40  | 0.1409 | 298.74 | 0.0936 | 239.75 | 0.1495     | 242.65 |
| 48  | 0.1404 | 283.02 | 0.0937 | 239.97 | 0.1495     | 243.41 |
| 49  | 0.1397 | 271.40 | 0.0936 | 240.18 | 0.1497     | 243.19 |
| 50  | 0.1413 | 293.06 | 0.0936 | 239.78 | 0.1496     | 243.15 |
| 58  | 0.1404 | 276.02 | 0.0937 |        | 0.1497     | 241.66 |
| 59  | 0.1420 | 296.74 | 0.0937 | 239.71 | 0.1498     | 245.60 |
| 60  | 0.1429 | 328.14 | 0.0936 | 239.80 | 0.1499     | 247.22 |
| 68  | 0.1400 | 274.46 | 0.0937 | 239.78 | 0.1499     | 241.92 |
| 69  | 0.1409 | 278.04 | 0.0937 | 239.36 | 0.1499     | 242.55 |
| 70  | 0.1402 | 271.89 | 0.0938 | 239.88 | 0.1502     | 248.29 |
| 78  | 0.1421 | 303.87 | 0.0939 | 240.16 | 0.1503     | 242.51 |
| 79  | 0.1427 | 304.75 | 0.0938 | 239.37 | 0.1500     | 243.01 |
| 80  | 0.1411 | 282.05 | 0.0937 | 239.62 | 0.1501     | 240.46 |
| 88  | 0.1423 | 298.85 | 0.0939 | 240.10 | 0.1504     | 245.47 |
| 89  | 0.1411 | 272.59 | 0.0939 | 240.78 | 0.1503     | 241.65 |
| 90  | 0.1422 | 307.40 | 0.0940 | 240.11 | 0.1507     | 245.28 |
| 98  | 0.1425 | 297.37 | 0.0940 | 240.55 | 0.1507     | 244.61 |
| 99  | 0.1426 | 285.11 | 0.0940 | 239.70 | 0.1506     |        |
| 100 | 0.1426 | 285.76 | 0.0941 | 240.06 | 0.1507     | 244.16 |
| 108 | 0.1434 | 298.22 | 0.0941 | 239.56 | 0.1507     | 245.50 |
| 109 | 0.1421 | 293.00 | 0.0940 | 239.42 | 0.1506     | 242.57 |
| 110 | 0.1432 | 310.55 | 0.0940 | 239.50 | 0.1510     | 243.05 |
| 118 | 0.1450 | 343.93 | 0.0941 | 240.26 | 0.1514     | 248.68 |
| 119 | 0.1430 | 291.45 | 0.0942 | 241.15 | 0.1508     | 243.23 |
| 120 | 0.1441 | 288.95 | 0.0942 | 240.04 | 0.1512     | 248.96 |

|     | Delto  | id     | Trapez | ius    | -Infraspi | natus  |
|-----|--------|--------|--------|--------|-----------|--------|
| Min | RMS    | MPF    | RMS    | MPF    | RMS       | MPF    |
|     |        |        |        |        |           |        |
| 8   | 0.1367 | 316.72 | 0.0943 | 239.54 | 0.1460    | 239.55 |
| 9   | 0.1362 | 356.09 | 0.0945 | 240.73 | 0.1461    | 239.60 |
| 10  | 0.1347 | 297.51 | 0.0945 | 240.10 | 0.1459    | 240.01 |
| 18  | 0.1358 | 314.32 | 0.0945 | 241.79 | 0.1461    | 239.79 |
| 19  | 0.1342 | 290.76 | 0.0945 | 240.26 | 0.1461    | 239.57 |
| 20  | 0.1328 | 287.65 | 0.0945 | 239.86 | 0.1461    | 239.14 |
| 28  | 0.1327 | 262.31 | 0.0945 | 240.19 | 0.1462    | 240.49 |
| 29  | 0.1351 | 322.95 | 0.0945 | 240.64 | 0.1462    | 239.83 |
| 30  | 0.1347 | 294.48 | 0.0946 | 239.33 | 0.1463    | 239.98 |
| 38  | 0.1337 | 282.07 | 0.0947 | 240.63 | 0.1463    | 239.44 |
| 39  | 0.1343 | 299.68 | 0.0947 | 239.81 | 0.1464    | 238.77 |
| 40  | 0.1340 | 279.76 | 0.0946 | 240.47 | 0.1464    | 239.98 |
| 48  | 0.1355 | 321.07 | 0.0948 | 239.39 | 0.1465    | 239.02 |
| 49  | 0.1342 | 271.65 | 0.0948 | 239.87 | 0.1465    | 239.77 |
| 50  | 0.1348 | 283.18 | 0.0949 | 239.81 | 0.1465    | 239.15 |
| 58  | 0.1373 | 347.92 | 0.0949 | 240.27 | 0.1467    | 240.72 |
| 59  | 0.1354 | 290.97 | 0.0948 | 239.81 | 0.1467    | 239.99 |
| 60  | 0.1360 | 289.69 | 0.0949 | 239.51 | 0.1467    | 239.70 |
| 68  | 0.1362 | 310.37 | 0.0950 | 240.70 | 0.1469    | 240.02 |
| 69  | 0.1346 | 290.31 | 0.0949 | 240.64 | 0.1468    | 239.50 |
| 70  | 0.1356 | 289.43 | 0.0950 | 240.19 | 0.1468    | 239.67 |
| 78  | 0.1347 | 276.54 | 0.0951 | 240.15 | 0.1469    | 239.50 |
| 79  | 0.1356 | 297.43 | 0.0950 | 240.97 | 0.1469    | 240.35 |
| 80  | 0.1343 | 283.87 | 0.0951 | 241.03 | 0.1469    | 239.99 |
| 88  | 0.1370 | 351.57 | 0.0952 | 239.58 | 0.1471    | 240.24 |
| 89  | 0.1362 | 321.27 | 0.0952 | 239.67 | 0.1472    |        |
| 90  | 0.1358 | 281.18 | 0.0952 | 240.59 | 0.1472    | 239.62 |
| 98  | 0.1360 | 305.44 | 0.0953 | 239.61 | 0.1472    | 240.45 |
| 99  | 0.1348 | 279.76 | 0.0953 | 239.85 | 0.1472    |        |
| 100 | 0.1360 | 308.19 | 0.0953 | 239.90 | 0.1473    | 239.95 |
| 108 | 0.1349 | 277.04 | 0.0953 | 241.05 |           |        |
| 109 | 0.1343 | 278.19 | 0.0953 | 239.56 |           |        |
| 110 | 0.1364 | 297.95 | 0.0954 |        |           |        |
| 118 | 0.1347 | 266.07 | 0.0954 |        |           |        |
| 119 | 0.1368 | 313.95 | 0.0955 |        |           |        |
| 120 | 0.1351 | 310.70 | 0.0955 | 239.38 | 0.1474    | 238.84 |
|     |        |        |        |        |           |        |

| MinRMSMPFRMSMPFRMSMPFRMSMPF80.1249286.210.0900289.740.1407305.6790.1256301.530.0912310.630.1419338.89100.1251293.550.0904300.020.1415308.02180.1363565.830.0927344.030.1387272.32190.1307457.250.0919323.310.1385273.44200.1452621.180.0918319.290.1392278.84280.1260308.680.0910324.560.1383265.63290.1249291.220.0906315.120.1387274.05300.1242282.460.0910311.760.1384261.63380.1259312.670.0912307.440.1385269.79390.1248282.810.0914328.730.1381258.90480.1235272.520.0917320.490.1380254.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | Delto  | id     | Trapez | ius    | -Infraspi: | natus  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|--------|--------|--------|------------|--------|
| 8       0.1249       286.21       0.0900       289.74       0.1407       305.67         9       0.1256       301.53       0.0912       310.63       0.1419       338.89         10       0.1251       293.55       0.0904       300.02       0.1415       308.02         18       0.1363       565.83       0.0927       344.03       0.1387       272.32         19       0.1307       457.25       0.0919       323.31       0.1385       273.44         20       0.1452       621.18       0.0918       319.29       0.1392       278.84         28       0.1260       308.68       0.0910       324.56       0.1383       265.63         29       0.1249       291.22       0.0906       315.12       0.1387       274.05         30       0.1242       282.46       0.0910       311.76       0.1384       261.63         38       0.1259       312.67       0.0912       307.44       0.1385       269.79         39       0.1250       296.14       0.0920       337.60       0.1393       273.40         40       0.1248       282.81       0.0914       328.73       0.1380       254.13 | Min |        |        | -      |        |            |        |
| 90.1256301.530.0912310.630.1419338.89100.1251293.550.0904300.020.1415308.02180.1363565.830.0927344.030.1387272.32190.1307457.250.0919323.310.1385273.44200.1452621.180.0918319.290.1392278.84280.1260308.680.0910324.560.1383265.63290.1249291.220.0906315.120.1387274.05300.1242282.460.0910311.760.1384261.63380.1259312.670.0912307.440.1385269.79390.1250296.140.0920337.600.1393273.40400.1248282.810.0914328.730.1381258.90480.1235272.520.0917320.490.1380254.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        |        |        |        |            |        |
| 90.1256301.530.0912310.630.1419338.89100.1251293.550.0904300.020.1415308.02180.1363565.830.0927344.030.1387272.32190.1307457.250.0919323.310.1385273.44200.1452621.180.0918319.290.1392278.84280.1260308.680.0910324.560.1383265.63290.1249291.220.0906315.120.1387274.05300.1242282.460.0910311.760.1384261.63380.1259312.670.0912307.440.1385269.79390.1250296.140.0920337.600.1393273.40400.1248282.810.0914328.730.1381258.90480.1235272.520.0917320.490.1380254.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8   | 0.1249 | 286.21 | 0.0900 | 289.74 | 0.1407     | 305.67 |
| 100.1251293.550.0904300.020.1415308.02180.1363565.830.0927344.030.1387272.32190.1307457.250.0919323.310.1385273.44200.1452621.180.0918319.290.1392278.84280.1260308.680.0910324.560.1383265.63290.1249291.220.0906315.120.1387274.05300.1242282.460.0910311.760.1384261.63380.1259312.670.0912307.440.1385269.79390.1250296.140.0920337.600.1393273.40400.1248282.810.0914328.730.1381258.90480.1235272.520.0917320.490.1380254.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        | 301.53 | 0.0912 | 310.63 | 0.1419     | 338.89 |
| 180.1363565.830.0927344.030.1387272.32190.1307457.250.0919323.310.1385273.44200.1452621.180.0918319.290.1392278.84280.1260308.680.0910324.560.1383265.63290.1249291.220.0906315.120.1387274.05300.1242282.460.0910311.760.1384261.63380.1259312.670.0912307.440.1385269.79390.1250296.140.0920337.600.1381258.90480.1235272.520.0917320.490.1380254.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 0.1251 | 293.55 | 0.0904 | 300.02 | 0.1415     | 308.02 |
| 190.1307457.250.0919323.310.1385273.44200.1452621.180.0918319.290.1392278.84280.1260308.680.0910324.560.1383265.63290.1249291.220.0906315.120.1387274.05300.1242282.460.0910311.760.1384261.63380.1259312.670.0912307.440.1385269.79390.1250296.140.0920337.600.1393273.40400.1248282.810.0914328.730.1381258.90480.1235272.520.0917320.490.1380254.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 0.1363 | 565.83 | 0.0927 | 344.03 | 0.1387     | 272.32 |
| 200.1452621.180.0918319.290.1392278.84280.1260308.680.0910324.560.1383265.63290.1249291.220.0906315.120.1387274.05300.1242282.460.0910311.760.1384261.63380.1259312.670.0912307.440.1385269.79390.1250296.140.0920337.600.1393273.40400.1248282.810.0914328.730.1381258.90480.1235272.520.0917320.490.1380254.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | 0.1307 | 457.25 | 0.0919 | 323.31 | 0.1385     | 273.44 |
| 280.1260308.680.0910324.560.1383265.63290.1249291.220.0906315.120.1387274.05300.1242282.460.0910311.760.1384261.63380.1259312.670.0912307.440.1385269.79390.1250296.140.0920337.600.1393273.40400.1248282.810.0914328.730.1381258.90480.1235272.520.0917320.490.1380254.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20  | 0.1452 | 621.18 | 0.0918 | 319.29 | 0.1392     | 278.84 |
| 200.12191311110.0910311.760.1384261.63300.1259312.670.0912307.440.1385269.79390.1250296.140.0920337.600.1393273.40400.1248282.810.0914328.730.1381258.90480.1235272.520.0917320.490.1380254.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | 0.1260 | 308.68 | 0.0910 | 324.56 | 0.1383     | 265.63 |
| 300.1242282.460.0910311.760.1384261.63380.1259312.670.0912307.440.1385269.79390.1250296.140.0920337.600.1393273.40400.1248282.810.0914328.730.1381258.90480.1235272.520.0917320.490.1380254.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29  | 0.1249 | 291.22 | 0.0906 | 315.12 | 0.1387     | 274.05 |
| 390.1250296.140.0920337.600.1393273.40400.1248282.810.0914328.730.1381258.90480.1235272.520.0917320.490.1380254.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 0.1242 | 282.46 | 0.0910 | 311.76 | 0.1384     | 261.63 |
| 400.1248282.810.0914328.730.1381258.90480.1235272.520.0917320.490.1380254.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38  | 0.1259 | 312.67 | 0.0912 | 307.44 | 0.1385     | 269.79 |
| 48         0.1235         272.52         0.0917         320.49         0.1380         254.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 39  | 0.1250 | 296.14 | 0.0920 | 337.60 | 0.1393     | 273.40 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40  | 0.1248 | 282.81 | 0.0914 | 328.73 | 0.1381     | 258.90 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 48  | 0.1235 | 272.52 | 0.0917 | 320.49 | 0.1380     | 254.13 |
| 49 0.1231 261.53 0.0909 303.42 0.1383 263.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 49  | 0.1231 | 261.53 | 0.0909 | 303.42 | 0.1383     | 263.99 |
| 50 0.1253 301.00 0.0919 341.00 0.1382 265.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50  | 0.1253 | 301.00 | 0.0919 | 341.00 | 0.1382     | 265.68 |
| 58 0.1237 281.66 0.0914 340.37 0.1382 260.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 58  | 0.1237 | 281.66 | 0.0914 | 340.37 | 0.1382     | 260.52 |
| 59 0.1239 285.16 0.0922 346.92 0.1378 255.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 59  | 0.1239 | 285.16 | 0.0922 | 346.92 | 0.1378     | 255.98 |
| 60 0.1246 294.34 0.0916 322.89 0.1384 263.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60  | 0.1246 | 294.34 | 0.0916 | 322.89 | 0.1384     | 263.03 |
| 68 0.1238 282.93 0.0932 362.37 0.1377 253.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 68  | 0.1238 | 282.93 | 0.0932 | 362.37 | 0.1377     | 253.03 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 69  | 0.1244 | 274.59 | 0.0924 | 359.17 | 0.1378     | 259.09 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70  | 0.1239 | 283.10 | 0.0926 | 348.91 | 0.1378     | 253.94 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 78  | 0.1233 | 264.13 | 0.0916 | 329.00 | 0.1377     | 254.03 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 79  | 0.1234 | 282.78 | 0.0919 | 357.06 | 0.1381     | 253.02 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 80  | 0.1230 | 259.24 | 0.0920 | 345.75 | 0.1379     | 252.29 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88  | 0.1225 | 263.47 | 0.0918 | 321.29 | 0.1378     | 248.24 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 89  | 0.1225 | 256.97 | 0.0925 | 319.69 | 0.1377     | 250.43 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 90  | 0.1255 | 299.77 | 0.0987 | 501.74 | 0.1386     | 260.80 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 98  | 0.1255 | 312.55 | 0.0931 | 375.85 | 0.1383     | 256.68 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 99  | 0.1229 | 277.90 | 0.0931 | 339.17 | 0.1375     | 251.88 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100 | 0.1224 | 279.14 | 0.0929 | 357.28 | 0.1374     | 250.49 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108 | 0.1230 | 292.57 | 0.0936 | 371.75 |            | 251.24 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109 | 0.1225 | 266.96 | 0.0945 | 369.43 |            | 251.48 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 110 | 0.1236 | 302.89 | 0.0939 |        |            | 253.77 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 118 | 0.1228 | 295.27 | 0.0928 | 344.86 |            | 250.33 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119 | 0.1219 | 274.79 | 0.0925 |        |            | 258.03 |
| 120 0.1227 284.69 0.0936 356.05 0.1375 253.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120 | 0.1227 | 284.69 | 0.0936 | 356.05 | 0.1375     | 253.15 |

Subject: D Board: Inclined Pickup: Centre

|     | Delto  | id     | Trapez | ius    | -Infraspi | natus  |
|-----|--------|--------|--------|--------|-----------|--------|
| Min | RMS    | MPF    | RMS    | MPF    | RMS       | MPF    |
|     |        |        |        |        |           |        |
| 8   | 0.1333 | 276.31 | 0.0863 | 240.86 | 0.1420    | 240.11 |
| 9   | 0.1337 | 280.79 | 0.0864 | 240.24 | 0.1419    | 239.58 |
| 10  | 0.1342 | 309.53 | 0.0864 | 239.22 | 0.1419    | 238.85 |
| 18  | 0.1342 | 288.40 | 0.0861 | 240.91 | 0.1418    | 239.83 |
| 19  | 0.1332 | 271.57 | 0.0862 | 240.79 | 0.1419    | 239.71 |
| 20  | 0.1342 | 308.21 | 0.0861 | 240.42 | 0.1418    | 239.00 |
| 28  | 0.1349 | 277.59 | 0.0860 | 239.84 | 0.1417    | 239.62 |
| 29  | 0.1343 | 281.87 | 0.0860 | 239.73 | 0.1417    | 240.30 |
| 30  | 0.1367 | 351.45 | 0.0859 | 239.01 | 0.1417    | 240.19 |
| 38  | 0.1337 | 296.12 | 0.0858 | 241.35 | 0.1416    | 239.10 |
| 39  | 0.1331 | 275.22 | 0.0857 | 242.03 | 0.1416    | 238.83 |
| 40  | 0.1343 | 299.70 | 0.0857 | 239.55 | 0.1416    | 239.94 |
| 48  | 0.1334 | 275.03 | 0.0855 | 240.29 | 0.1415    | 240.06 |
| 49  | 0.1334 | 276.78 | 0.0855 | 239.78 | 0.1416    | 239.59 |
| 50  | 0.1331 | 269.16 | 0.0855 | 240.03 | 0.1414    | 239.38 |
| 58  | 0.1338 | 295.35 | 0.0853 | 239.91 | 0.1414    | 238.83 |
| 59  | 0.1334 | 267.89 | 0.0852 | 239.78 | 0.1414    | 239.31 |
| 60  | 0.1361 | 328.94 | 0.0851 | 240.64 | 0.1413    | 239.45 |
| 68  | 0.1341 | 278.09 | 0.0850 | 240.42 | 0.1414    | 239.78 |
| 69  | 0.1341 | 270.89 | 0.0850 | 239.58 | 0.1414    | 240.26 |
| 70  | 0.1331 | 263.04 | 0.0850 | 239.22 | 0.1413    | 239.40 |
| 78  | 0.1342 | 274.34 | 0.0848 | 241.15 | 0.1414    | 241.09 |
| 79  | 0.1335 | 265.45 | 0.0847 | 241.43 | 0.1413    | 239.42 |
| 80  | 0.1332 | 259.40 | 0.0847 | 240.94 | 0.1412    | 239.66 |
| 88  | 0.1353 | 297.26 | 0.0846 | 241.04 | 0.1414    | 240.67 |
| 89  | 0.1345 | 298.73 | 0.0846 | 240.32 | 0.1414    | 242.96 |
| 90  | 0.1333 | 262.26 | 0.0844 | 238.31 | 0.1412    | 238.22 |
| 98  | 0.1363 | 312.36 | 0.0843 | 239.85 | 0.1413    | 241.79 |
| 99  | 0.1343 | 274.77 | 0.0843 | 240.64 | 0.1413    | 243.08 |
| 100 | 0.1334 | 261.80 | 0.0843 | 238.02 | 0.1411    | 239.81 |
| 108 | 0.1335 | 273.73 | 0.0839 | 239.96 | 0.1413    | 241.33 |
| 109 | 0.1343 | 273.30 | 0.0840 | 240.62 | 0.1411    | 239.98 |
| 110 | 0.1353 | 296.09 | 0.0840 | 240.54 | 0.1411    | 241.23 |
| 118 | 0.1354 | 283.70 | 0.0839 | 240.76 |           |        |
| 119 | 0.1368 | 327.76 | 0.0839 | 239.81 | 0.1413    | 242.57 |
| 120 | 0.1361 | 313.55 | 0.0839 | 240.39 | 0.1412    | 242.28 |
|     |        |        |        |        |           |        |

L Confidence Intervals of Slopes for RMS and MPF Values

This appendix contains the calculated slopes of the RMS and MPF curves over the entire two hour period. Calculations were done for time periods from the start of the experiment to all time periods ending after thirty minutes. The charts printed here are for the time period ending at 120 minutes. The time periods ending from 30 to 119 minutes are not reproduced due to the enormous amount of space that would be required.

Each chart shows the subject number and the station and muscle being considered. The confidence intervals of the slopes are calculated at a 95% confidence level. They are calculated at a 99% confidence level only if significant at that level. If the slope is significant (ie. RMS slope is positive or MPF slope is negative), then a single star (\*) is shown beside the confidence level. A double star (\*\*) indicates that the particular muscle had statistical indications of muscle fatigue at that station over the two hour period.

## Subject 1

| Station             | RMS Slope * 10 <sup>3</sup> | MPF Slope                  |
|---------------------|-----------------------------|----------------------------|
| <u>&amp; Muscle</u> | Confidence Interval         | <u>Confidence Interval</u> |
| SO D **             | 99* ( 0.0040, 0.0053)       | 95* (-0.0100,-0.0012)      |
| SO T                | 99* ( 0.0030, 0.0043)       | 95 (-0.0104, 0.0034)       |
| SO I                | 99* ( 0.0035, 0.0049)       | 95 (-0.0058, 0.0018)       |
| SC D                | 99* ( 0.0892, 0.1143)       | 95 (0.1026, 0.3073)        |
| SC T                | 95 (-0.0419,-0.0104)        | 99* (-1.0998,-0.1581)      |
| SC I                | 99* ( 0.0416, 0.0527)       | 95 (-0.0443, 0.0657)       |
| Vo D                | 99* ( 0.1718, 0.2382)       | 95 (2.8470, 3.5731)        |
| Vo T                | 99* ( 0.0063, 0.0173)       | 95 (0.3054, 0.5001)        |
| Vo I                | 99* ( 0.0096, 0.0418)       | 95 (0.2489, 0.6606)        |
| VC D                | 99* ( 0.0087, 0.0235)       | 95 (-0.0910, 0.0723)       |
| VC T                | 95 (-0.0074, 0.0024)        | 95 (-0.0411, 0.2113)       |
| VC I **             | 95* ( 0.0007, 0.0072)       | 95* (-0.0670,-0.0086)      |
| IO D                | 99* ( 0.1112, 0.1421)       | 95 (-0.0114, 0.0203)       |
| IO T                | 99* ( 0.0065, 0.0141)       | 95 ( 0.1108, 0.2374)       |
| IO I                | 99* ( 0.0576, 0.0750)       | 95 (-0.0045, 0.0035)       |
| IC D                | 99* ( 0.0995, 0.1475)       | 95 ( 0.3301, 0.7679)       |
| IC T                | 99* ( 0.0076, 0.0151)       | 95 ( 0.1740, 0.2884)       |
| IC I                | 99* ( 0.0513, 0.0579)       | 95 ( 0.0484, 0.0786)       |

Subject 2

| Stat:<br><u>&amp; Mus</u> |      | RMS Slope * 10 <sup>3</sup><br><u>Confidence Interval</u> | MPF Slope<br><u>Confidence Interval</u> |
|---------------------------|------|-----------------------------------------------------------|-----------------------------------------|
| So                        | D    | 99* ( 0.0091, 0.0173)                                     | 95 (-0.0869, 0.0079)                    |
| So                        | Т    | 99* ( 0.0056, 0.0069)                                     | 95 ( 0.0008, 0.0124)                    |
| So                        | I    | 99* ( 0.0102, 0.0118)                                     | 95 (-0.0043, 0.0113)                    |
| Sc                        | D    | 99* ( C.0600, 0.0943)                                     | 95 ( 0.2963, 0.7808)                    |
| Sc                        | т    | 99* ( 0.0020, 0.0051)                                     | 95 ( 0.0667, 0.1148)                    |
| Sc                        | I    | 99* ( 0.0233, 0.0255)                                     | 95 (-0.0005, 0.0147)                    |
| Vo                        | D ** | 95* ( 0.0005, 0.0722)                                     | 99* (-2.5880,-0.6119)                   |
| Vo                        | Т    | 95 (-0.0108, 0.0057)                                      | 95 (-0.2956, 0.0711)                    |
| Vo                        | I    | 99* ( 0.0577, 0.0708)                                     | 95 (-0.0052, 0.0025)                    |
| Vc                        | D    | 95 (-0.0234, 0.0174)                                      | 95 (-0.4512, 0.2209)                    |
| Vc                        | Т    | 95 (-0.0002, 0.0053)                                      | 95 (-0.0528, 0.0645)                    |
| Vc                        | I    | 99* ( 0.0024, 0.0036)                                     | 95 (-0.0092, 0.0005)                    |
| Io                        | D    | 99* ( 0.0170, 0.0238)                                     | 95 ( 0.1335, 0.2378)                    |
| Io                        | Т    | 95 (-0.0025,-0.0012)                                      | 95 (-0.0051, 0.0076)                    |
| Io                        | I    | 95 (-0.0070, 0.0024)                                      | 99* (-0.1838,-0.0028)                   |
| Ic                        | D    | 99* ( 0.0147, 0.0407)                                     | 95 ( 0.0142, 0.3475)                    |
| Ic                        | T    | 95 (-0.0112, 0.0023)                                      | 95 (-0.1178, 0.1093)                    |
| Ic                        | I    | 95 (-0.0044, 0.0035)                                      | 99* (-0.1954,-0.0265)                   |

<u>Subject 3</u>

| Stati<br><u>&amp; Mus</u> o |                | RMS Slope * 10 <sup>3</sup><br><u>Confidence Interval</u>              | MPF Slope<br><u>Confidence Interval</u>                               |
|-----------------------------|----------------|------------------------------------------------------------------------|-----------------------------------------------------------------------|
| So<br>So                    | D<br>T         | 95 (-0.0028, 0.0164)<br>99* ( 0.0011, 0.0028)                          | 95 (-0.1644, 0.1093)<br>95 (-0.0107, 0.0138)                          |
| So                          | I              | 99* ( 0.0026, 0.0039)                                                  | 95 (-0.0036, 0.0037)                                                  |
| Sc<br>Sc<br>Sc              | D<br>T<br>I    | 99* ( 0.0134, 0.0144)<br>95 (-0.0004, 0.0028)<br>99* ( 0.0049, 0.0062) | 95 (-0.0035, 0.0078)<br>95 (0.1167, 0.1803)<br>95 (-0.0014, 0.0037)   |
| Vo                          | D              | 99* ( 0.0944, 0.1147)                                                  | 95 (0.2314, 0.3693)                                                   |
| Vo<br>Vo                    | T<br>I         | 95 (-0.0065,-0.0037)<br>99* ( 0.0297, 0.0540)                          | 95 (0.1132, 0.1780)<br>95 (-0.0586, 0.2528)                           |
| VO                          |                |                                                                        | · · ·                                                                 |
| Vc                          | D **           | 55 ( 000000, 000000,                                                   | 95* (-0.1860,-0.0049)                                                 |
| Vc                          | Т              | 99* ( 0.0066, 0.0100)                                                  | 95 (0.0666, 0.1148)                                                   |
| Vc                          | I              | 99* ( 0.0473, 0.0572)                                                  | 95 ( 0.0063, 0.0199)                                                  |
| Io                          | D              | 99* ( 0.0226, 0.0251)                                                  | 95 (-0.0090, 0.0039)                                                  |
| Io                          | T              | 95 (-0.0007, 0.0013)                                                   | 95 ( 0.0277, 0.0602)                                                  |
| Io                          | I              | 99* ( 0.0097, 0.0115)                                                  | 95 ( 0.0012, 0.0154)                                                  |
| Ic<br>Ic<br>Ic              | D **<br>T<br>I | 99* ( 0.0795, 0.1041)<br>95 (-0.0029,-0.0002)<br>99* ( 0.0462, 0.0560) | 99* (-0.4020,-0.0199)<br>95 ( 0.0120, 0.0560)<br>95 ( 0.0056, 0.0291) |

Subject 4

| Stat<br><u>&amp; Mu</u> |        | RMS Slope *<br><u>Confidence In</u> |                         | MPF Slope<br>nfidence Interval         |
|-------------------------|--------|-------------------------------------|-------------------------|----------------------------------------|
| So<br>So                | D<br>T | 99* ( 0.0125, (<br>95 (-0.0003, (   | -                       | ( 0.0369, 0.0642)<br>(-0.0036, 0.0159) |
| So                      | I      | 99* ( 0.0017, (                     | 0.0054) 95              | (-0.0429, 0.0008)                      |
| Sc                      | D      | 95 (-0.0259, (                      | -                       | (-0.4927, 0.0312)                      |
| Sc<br>Sc                | T<br>I | 95 (-0.0178, )<br>99* ( 0.0109, )   | •                       | (-0.4672, 0.5989)<br>( 0.0758, 0.1263) |
| Vo                      | D      | 99* ( 0.0329,                       | 0.0432) 95              | ( 0.2450, 0.3586)                      |
| Vo<br>Vo                | T<br>I | 99* ( 0.0125,<br>95 (-0.0228,       |                         | •                                      |
|                         |        |                                     |                         |                                        |
| Vc                      | D      | 99* (0.0932,                        |                         | ( 0.2698, 0.5584)                      |
| Vc                      | Ť      | 95 (-0.0007,                        |                         | ( 0.0058, 0.0146)                      |
| Vc                      | I      | 99* ( 0.0395,                       | 0.0462) 95              | (-0.0041, 0.0030)                      |
| Io                      | D **   | 99* ( 0.1009,                       | 0.1214) 99 <sup>,</sup> | (-0.0264,-0.0027)                      |
| Io                      | T      | 95 (-0.0044,                        | 0.0147) 95              | (-0.0532, 0.3315)                      |
| Io                      | I      | 99* ( 0.0581,                       | 0.0664) 95              | ( 0.1212, 0.2206)                      |
| Ic                      | D      | 95 (-0.0177 <b>,-</b>               |                         | (-0.0153, 0.0104)                      |
| Ic                      | T      | 95 (-0.0217,                        |                         |                                        |
| Ic                      | I      | 95 (-0.0037 <b>,-</b>               | 0.0029) 95              | (-0.0044, 0.0012)                      |

Subject 5

| Stat:<br><u>&amp; Mus</u> |             | 2 |       | S Slope *<br>idence I               |         | MPF Slope<br><u>Confidence Interval</u> |                                                             |  |  |
|---------------------------|-------------|---|-------|-------------------------------------|---------|-----------------------------------------|-------------------------------------------------------------|--|--|
| So<br>So<br>So            | T           | 9 | 99* ( | 0.1327,<br>0.0094,<br>0.0519,       | 0.0296) | 99*<br>95<br>99*                        | (-0.6969,-0.0671)<br>(-0.1990, 0.0352)<br>(-0.8122,-0.0033) |  |  |
| Sc<br>Sc                  | D<br>T      | 9 | 95 (  | -0.0066,<br>0.0026,                 | 0.0120) | 95<br>95                                | (-0.1123, 0.2268)<br>(-0.2363, 0.5625)                      |  |  |
| Sc                        | I           |   |       | 0.0013,                             |         | 95                                      | (-0.0279, 0.0337)                                           |  |  |
| Vo<br>Vo                  | D<br>T      |   |       | ( 0.1072,<br>(-0.0188,-             |         | 95<br>99*                               | (-0.1908, 0.5216)<br>(-1.1285,-0.3064)                      |  |  |
| Vo                        | I           | 9 | 99* ( | 0.0513,                             | 0.0662) | 95                                      | (-0.1198, 0.0459)                                           |  |  |
| Vc<br>Vc<br>Vc            | T           | 9 | 99* ( | ( 0.1156,<br>( 0.0255,<br>( 0.0823, | 0.0511) | 99*<br>55<br>99*                        | (-0.8973,-0.1524)<br>( 0.2531, 0.6862)<br>(-0.2130,-0.0759) |  |  |
| Io<br>Io<br>Io            | D<br>T<br>I | 2 | 99*   | ( 0.1093,<br>( 0.0109,<br>( 0.0707, | 0.0263) | 95<br>95<br>95                          | (-0.4149, 0.0227)<br>(-0.2612, 0.0683)<br>(-0.0121, 0.1453) |  |  |
| IC<br>IC<br>IC            | D<br>T<br>I | 2 | 99*   | (-0.0273,<br>( 0.0073,<br>(-0.0045, | 0.0521) | 95<br>95<br>95                          | (-0.1030, 0.1969)<br>( 0.1809, 1.0120)<br>(-0.0156, 0.0185) |  |  |

.

<u>Subject 6</u>

| Station             | RMS Slope * 10 <sup>3</sup> | MPF Slope                  |  |  |
|---------------------|-----------------------------|----------------------------|--|--|
| <u>&amp; Muscle</u> | Confidence Interval         | <u>Confidence Interval</u> |  |  |
| So D **             | 99* ( 0.0661, 0.1009)       | 99* (-1.0527,-0.1683)      |  |  |
| So T                | 95* ( 0.0005, 0.0203)       | 95 (-0.3283, 0.2221)       |  |  |
| So I                | 99* ( 0.0496, 0.0618)       | 95 (-0.1112, 0.0347)       |  |  |
| SC D                | 95 (-0.0130,-0.0107)        | 95 (-0.0379, 0.0054)       |  |  |
| SC T                | 95 (-0.0604, 0.0060)        | 95* (-1.8501,-0.2406)      |  |  |
| SC I                | 95 (-0.0058, 0.0001)        | 99* (-0.1112,-0.0004)      |  |  |
| Vo D                | 99* ( 0.0687, 0.0989)       | 95 (-0.4289, 0.0925)       |  |  |
| Vo T                | 95 (-0.0107, 0.0206)        | 95 (-0.7180, 0.1761)       |  |  |
| Vo I                | 99* ( 0.0475, 0.0612)       | 95 (-0.0606, 0.0836)       |  |  |
| VC D                | 99* ( 0.0873, 0.1165)       | 95 (-0.1864, 0.1384)       |  |  |
| VC T                | 95 (-0.0187, 0.0103)        | 95 (-0.4827, 0.3255)       |  |  |
| VC I                | 99* ( 0.0510, 0.0598)       | 95 ( 0.0016, 0.0139)       |  |  |
| IO D                | 99* ( 0.0434, 0.3648)       | 95 (1.1030, 4.9645)        |  |  |
| IO T                | 99* ( 0.0952, 0.1293)       | 95 (2.4300, 3.1487)        |  |  |
| IO I                | 95 (-0.0145, 0.0102)        | 95* (-0.5460,-0.0558)      |  |  |
| IC D                | 95 (-0.0832, 0.0022)        | 95* (-1.6081,-0.1729)      |  |  |
| IC T                | 95 (-0.0117, 0.0082)        | 99* (-0.8107,-0.0141)      |  |  |
| IC I                | 99* ( 0.0043, 0.0082)       | 95 (-0.0549, 0.0001)       |  |  |

Subject 7

|   | Station<br><u>&amp; Muscle</u> |      | RMS Slope * 10 <sup>3</sup><br><u>Confidence Interval</u> |           |         | MPF Slope<br><u>Confidence Interval</u> |                   |  |
|---|--------------------------------|------|-----------------------------------------------------------|-----------|---------|-----------------------------------------|-------------------|--|
| S | o D                            | * *  | 99*                                                       | ( 0.0849, |         |                                         | (-2.5278,-1.1102) |  |
| S | о Т                            |      | 95                                                        | (-0.0556, | 0.0115) | 99*                                     | (-3.9259,-1.3413) |  |
| S | o I                            | **   | 99*                                                       | ( 0.0737, | 0.0904) | 99*                                     | (-0.6040,-0.1200) |  |
| S | c D                            | * *  | 99*                                                       | ( 0.0165, | 0.0762) |                                         | (-3.5852,-1.7113) |  |
| S | c T                            |      | 95                                                        | (-0.0356, | 0.0284) | 99*                                     | (-2.4217,-0.0513) |  |
| S | c I                            |      | 99*                                                       | ( 0.0609, | 0.0816) | 95                                      | (-0.4794, 0.0279) |  |
| v | -                              |      |                                                           | ( 0.0313, |         |                                         | (-2.0055,-0.1755) |  |
| v | 0 T                            |      | 95                                                        | (-0.0343, | 0.0229) |                                         | (-0.7333,-0.3229) |  |
| v | 0 I                            |      | 99*                                                       | ( 0.0948, | 0.1971) | 95                                      | ( 1.2940, 3.6777) |  |
| v | c D                            | )    | 99*                                                       | ( 0.1931, |         | 95                                      |                   |  |
| v | C T                            | **   | 99*                                                       | ( 0.0324, | 0.0388) | 99*                                     | (-0.3278,-0.0045) |  |
| v | c I                            |      | 99*                                                       | ( 0.2249, | 1.5533) | 95                                      | ( 0.0069, 1.0160) |  |
| I | o D                            | )    | 99*                                                       | ( 0.1180, | 0.1357) |                                         | (-0.0306, 0.0485) |  |
| I | 0 I                            | **   | 95*                                                       | ( 0.0038, | 0.0462) | 99*                                     | (-1.5221,-1.1045) |  |
| I | 0 I                            | **   | 99*                                                       | ( 0.0419, | 0.0883) | 95*                                     | (-1.2202,-0.1004) |  |
| I | C D                            | ) ** | 99*                                                       | ( 0.0539, | 0.0994) |                                         | (-2.0684,-0.7409) |  |
| I | c 1                            | n    | 95                                                        | (-0.0405, | 0.0052) | 95*                                     | (-0.0986,-0.0004) |  |
| I | c I                            |      | 99*                                                       | ( 0.2832, | 0.5213) | 95                                      | ( 1.9281, 3.9880) |  |

Subject 8

| Stat<br><u>&amp; Mu</u> ; |        |    | RMS Slope * 10 <sup>3</sup><br>Confidence Interval |                        |          |           | MPF Slope<br><u>Confidence Interval</u> |  |  |  |
|---------------------------|--------|----|----------------------------------------------------|------------------------|----------|-----------|-----------------------------------------|--|--|--|
| So<br>So                  | D<br>T | ** | 99*<br>95                                          | ( 0.0836,<br>(-0.0011, | -        | 99*<br>95 | (-5.2815,-2.6997)<br>( 1.9195, 2.8349)  |  |  |  |
| So                        | I      |    | 99*                                                | ( 0.1829,              | 1.0987)  | 95        | (-0.0479, 1.2296)                       |  |  |  |
| Sc                        | D      | ** | 99*                                                | ( 0.0832,              | 0.1525)  | 99*       | (-4.0498,-1.7784)                       |  |  |  |
| Sc                        | т      |    | 95                                                 | (-0.0750,-             | -0.0178) | 95        | ( 0.2333, 0.5931)                       |  |  |  |
| Sc                        | I      |    | 99*                                                | ( 0.0225,              | 0.9262)  | 95        | (-0.6589, 1.9887)                       |  |  |  |
| Vo                        | D      |    | 95                                                 | (-0.0028,              | 0.0699)  | 99*       | (-8.1396,-4.5523)                       |  |  |  |
| Vo                        | Т      |    | 95                                                 | (-0.1155,-             | -0.0447) | 95        | (-0.4567, 0.7685)                       |  |  |  |
| Vo                        | I      |    | 95                                                 | (-0.0182,              | 0.0652)  | 99*       | (-5.8290,-2.2897)                       |  |  |  |
| Vc                        | D      | ** | 99*                                                | ( 0.0911,              | 0.2002)  | 99*       | (-3.2385,-0.0931)                       |  |  |  |
| Vc                        | т      |    | 99*                                                | ( 0.0040,              | 0.0550)  | 95        | ( 2.1196, 3.0247)                       |  |  |  |
| Vc                        | I      |    | 95                                                 | (-0.0222,              | 0.0786)  | 99*       | (-5.7869,-0.9725)                       |  |  |  |
| Io                        | D      |    | 95                                                 | (-0.0048,              | 0.7534)  | 95*       | (-0.7807,-0.0134)                       |  |  |  |
| Io                        | т      |    | 95                                                 | (-0.0096,              | 0.0243)  | 95        | ( 1.4862, 2.1563)                       |  |  |  |
| Io                        | I      |    | 99*                                                | ( 0.4713,              | 1.0344)  | 95        | ( 1.2565, 3.2104)                       |  |  |  |
| Ic                        | D      | ** | 99*                                                | ( 0.1097,              | 0.1499)  | 99*       | (-2.3998,-0.7367)                       |  |  |  |
| Ic                        | Т      |    | 95                                                 | (-0.0045,              | 0.0223)  | 95        | ( 0.8178, 1.1457)                       |  |  |  |
| Ic                        | I      | ** | 99*                                                | ( 0.0350,              | 0.0806)  | 99*       | (-3.2381,-1.0242)                       |  |  |  |

Subject A

| Station             | RMS Slope * 10 <sup>3</sup> | MPF Slope                  |  |  |
|---------------------|-----------------------------|----------------------------|--|--|
| <u>&amp; Muscle</u> | <u>Confidence Interval</u>  | <u>Confidence Interval</u> |  |  |
| So D                | 99* ( 0.0249, 0.0265)       | 95 ( 0.0140, 0.0311)       |  |  |
| So T                | 99* ( 0.0096, 0.0375)       | 95 ( 0.5175, 1.0299)       |  |  |
| So I **             | 99* ( 0.0047, 0.0098)       | 95* (-0.0639,-0.0063)      |  |  |
| SC D                | 99* ( 0.1093, 0.1660)       | 95 (-0.7470, 0.0413)       |  |  |
| SC T                | 99* ( 0.0460, 0.0948)       | 95 ( 0.3761, 1.6151)       |  |  |
| SC I                | 99* ( 0.0687, 0.0841)       | 95 (-0.1900, 0.0224)       |  |  |
| Vo D                | 99* ( 0.0460, 0.0512)       | 95 ( 0.0040, 0.0174)       |  |  |
| Vo T                | 99* ( 0.0082, 0.0139)       | 95 ( 0.1157, 0.2018)       |  |  |
| Vo I                | 99* ( 0.0335, 0.0453)       | 95 ( 0.0820, 0.2508)       |  |  |
| VC D                | 95 (-0.0132, 0.0044)        | 95 (-0.3018, 0.0106)       |  |  |
| VC T                | 95 (-0.0106, 0.0290)        | 95 (-0.3638, 0.7674)       |  |  |
| VC I                | 95 (-0.0015,-0.0006)        | 95 ( 0.0006, 0.0143)       |  |  |
| IO D                | 95 (-0.0121, 0.0041)        | 95 (-0.0918, 0.1509)       |  |  |
| IO T                | 99* ( 0.0091, 0.0254)       | 95 (-0.1321, 0.1371)       |  |  |
| IO I                | 99* ( 0.0055, 0.0123)       | 95 ( 0.0018, 0.0166)       |  |  |
| IC D **             | 99* ( 0.1205, 0.1484)       | 99* (-0.0170,-0.0022)      |  |  |
| IC T                | 95 (-0.0021, 0.0095)        | 95 (-0.2417, 0.0532)       |  |  |
| IC I **             | 99* ( 0.0605, 0.0750)       | 99* (-0.0592,-0.0077)      |  |  |

.

<u>Subject</u>B

| Stat<br><u>&amp; Mu</u> s |        |     |     | MS Slope * 10 <sup>3</sup><br>fidence Interval | Con       | MPF Slope<br>fidence Interval          |
|---------------------------|--------|-----|-----|------------------------------------------------|-----------|----------------------------------------|
| So<br>So                  | D<br>T |     | 95  | (-0.0070, 0.0767)<br>(-0.0219,-0.0211)         | 99*<br>95 | (-3.1974,-1.2163)<br>(-0.0303, 0.0037) |
| So                        | I      |     | 99* | ( 0.0306, 0.1075)                              | 95        | (-2.2305, 0.8631)                      |
| Sc                        | D      | * * | 95* | ( 0.0042, 0.0781)                              | 99*       | (-6.5330,-3.5141)                      |
| Sc                        | Т      |     | 95  | (-0.0256,-0.0108)                              | 95        | (-0.3894, 0.4195)                      |
| Sc                        | I      |     | 99* | ( 0.6252, 1.1929)                              | 95        | ( 1.1308, 2.5468)                      |
| Vo                        | D      |     | 99* | ( 0.0026, 0.0716)                              | 95        | (-0.8307, 1.2130)                      |
| Vo                        | Т      |     | 95  | (-0.0096, 0.0374)                              | 95        | (-0.3942, 1.8724)                      |
| Vo                        | I      |     | 99* | ( 0.1131, 0.6314)                              | 95        | ( 2.2038, 6.8275)                      |
| Vc                        | D      |     | 95  | (-0.0114, 0.0982)                              | 99*       | (-6.2534,-4.5105)                      |
| Vc                        | T      |     | 95  | (-0.0345,-0.0205)                              | 95        | (-0.4856, 0.1034)                      |
| Vc                        | I      | **  | 99* | ( 0.2119, 0.4815)                              | 99*       | (-0.9982,-0.2333)                      |
| Io                        | D      | **  | 99* | ( 0.1073, 0.2046)                              | 99*       | (-7.7594,-2.9723)                      |
| Io                        | Т      |     | 95  | (-0.0410,-0.0312)                              | 95        | (-0.2429, 0.1273)                      |
| Io                        | I      |     | 95  | (-0.0348, 0.2894)                              | 99*       | (-1.7105,-0.7289)                      |
| Ic                        | D      |     | 95  | (-0.1105,-0.0101)                              | 99*       | (-7.8985,-5.1785)                      |
| Ic                        | T      |     | 95  | (-0.0474,-0.0375)                              | 95        | (-0.1882, 0.2529)                      |
| Ic                        | I      |     | 95  | (-0.0294, 0.0082)                              | 99*       | (-4.9051,-3.2793)                      |

<u>Subject C</u>

| Stat<br><u>&amp; Mu</u> |   | RMS Slope * 10 <sup>3</sup><br>Confidence Interval | MPF Slope<br><u>Confidence Interval</u> |  |  |  |
|-------------------------|---|----------------------------------------------------|-----------------------------------------|--|--|--|
| So                      | D | 99* ( 0.0140, 0.0615)                              | 95 ( 0.1008, 0.6601)                    |  |  |  |
| So                      | т | 99* ( 0.0084, 0.0112)                              | 95 ( 0.0544, 0.1028)                    |  |  |  |
| So                      | I | 99* ( 0.0097, 0.0106)                              | 95 (-0.0014, 0.0054)                    |  |  |  |
| Sc                      | D | 95 (-0.0106, 0.0219)                               | 95 ( 0.0100, 0.6228)                    |  |  |  |
| Sc                      | Т | 99* ( 0.0070, 0.0324)                              | 95 ( 0.0659, 0.4923)                    |  |  |  |
| Sc                      | I | 95 (-0.0048, 0.0008)                               | 95 ( 0.0023, 0.0814)                    |  |  |  |
| Vo                      | D | 99* ( 0.0055, 0.0087)                              | 95 (-0.0210, 0.0056)                    |  |  |  |
| Vo                      | Т | 99* ( 0.0022, 0.0611)                              | 95 ( 0.0676, 1.1866)                    |  |  |  |
| Vo                      | I | 95 (-0.0005, 0.0080)                               | 95 (-0.0301, 0.1061)                    |  |  |  |
| Vc                      | D | 95 (-0.0380, 0.0210)                               | 99* (-1.2250,-0.1436)                   |  |  |  |
| Vc                      | T | 99* ( 0.0033, 0.0151)                              | 95 (-0.1757, 0.0411)                    |  |  |  |
| Vc                      | I | 95 (-0.3003, 1.5324)                               | 95 (-0.2609, 2.6825)                    |  |  |  |
| Io                      | D | 95 (-0.0259, 0.0181)                               | 95 (-0.5971, 0.2145)                    |  |  |  |
| Io                      | T | 95 (-0.0114, 0.0153)                               | 95 (-0.2990, 0.3883)                    |  |  |  |
| Io                      | I | 95 (-0.0175, 0.0075)                               | 95 (-0.3219, 0.1045)                    |  |  |  |
| Ic                      | D | 99* ( 0.0502, 0.0637)                              | 95 ( 0.0013, 0.0509)                    |  |  |  |
| Ic                      | т | 99* ( 0.0000, 0.0031)                              | 95 ( 0.0068, 0.0206)                    |  |  |  |
| Ic                      | I | 99* ( 0.0277, 0.0337)                              | 95 (-0.0104, 0.0050)                    |  |  |  |

## Subject D

| Stat<br><u>&amp; Mu</u> |   | RMS Slope * 10 <sup>3</sup><br>Confidence Interval | MPF Slope<br><u>Confidence Interval</u> |  |  |  |
|-------------------------|---|----------------------------------------------------|-----------------------------------------|--|--|--|
| So                      | D | 95 (-0.4510, 1.4046)                               | 95 (-2.5862, 3.6562)                    |  |  |  |
| So                      | Т | 99* ( 0.0044, 0.0227)                              | 95 (-0.1981, 0.1408)                    |  |  |  |
| So                      | I | 95 (-0.1380, 0.6291)                               | 95 (-2.2026, 6.3981)                    |  |  |  |
| Sc                      | D | 95 (-0.0067, 0.0055)                               | 95 (-0.1995, 0.0251)                    |  |  |  |
| Sc                      | T | 95 (-0.0317,-0.0059)                               | 95* (-0.7119,-0.0165)                   |  |  |  |
| Sc                      | I | 95 (-0.0095,-0.0013)                               | 99* (-0.2066,-0.0298)                   |  |  |  |
| Vo                      | D | 99* ( 0.0088, 0.0341)                              | 95 (-0.2972, 0.0528)                    |  |  |  |
| Vo                      | Т | 99* ( 0.0067, 0.0079)                              | 95 (-0.0021, 0.0077)                    |  |  |  |
| Vo                      | I | 99* ( 0.0170, 0.0223)                              | 95 (-0.0087, 0.0475)                    |  |  |  |
| Vc                      | D | 95 (-0.0012, 0.0190)                               | 95 (-0.3082, 0.1238)                    |  |  |  |
| Vc                      | T | 99* ( 0.0091, 0.0101)                              | 95 (-0.0064, 0.0046)                    |  |  |  |
| Vc                      | I | 99* ( 0.0131, 0.0146)                              | 95 (-0.0032, 0.0083)                    |  |  |  |
| Io                      | D | 95 (-0.0983,-0.0272)                               | 99* (-1.8104,-0.0238)                   |  |  |  |
| Io                      | Т | 99* ( 0.0113, 0.0410)                              | 95 ( 0.2458, 0.8243)                    |  |  |  |
| Io                      | I | 95 (-0.0302,-0.0166)                               | 99* (-0.5493,-0.2211)                   |  |  |  |
| Ic                      | D | 95* ( 0.0005, 0.0199)                              | 95 (-0.2303, 0.1819)                    |  |  |  |
| Ic                      | т | 95 (-0.0237,-0.0227)                               | 95 (-0.0094, 0.0066)                    |  |  |  |
| Ic                      | I | 95 (-0.0075,-0.0058)                               | 95 ( 0.0136, 0.0336)                    |  |  |  |

M RMS and MPF Slopes

|                |                | Deltoid          |         | Trap    | ezius   | Infraspinatus- |         |
|----------------|----------------|------------------|---------|---------|---------|----------------|---------|
| <u>Subject</u> | <u>Station</u> | RMS <sup>3</sup> | MPF     | RMS     | MPF     | RMS            | MPF     |
|                |                |                  |         |         |         |                |         |
| 1              | So             | 0.0047           | -0.0056 | 0.0037  | -0.0035 | 0.0042         | -0.0020 |
| 1              | Sc             | 0.1017           | 0.2049  | -0.0262 | -0.6289 | 0.0471         | 0.0107  |
| 1              | Vo             | 0.2050           | 3.2100  | 0.0118  | 0.4028  | 0.0257         | 0.4547  |
| 1              | Vc             | 0.0161           | -0.0094 | -0.0025 | 0.0851  | 0.0039         | -0.0378 |
| 1              | Io             | 0.1266           | 0.0044  | 0.0103  | 0.1741  | 0.0663         | -0.0005 |
| 1              | Ic             | 0.1235           | 0.5490  | 0.0113  | 0.2312  | 0.0546         | 0.0635  |
|                |                |                  |         |         |         |                |         |
| 2              | So             | 0.0132           | -0.0395 | 0.0062  | 0.0066  | 0.0110         | 0.0035  |
| 2              | Sc             | 0.0772           | 0.5386  | 0.0035  | 0.0908  | 0.0244         | 0.0071  |
| 2              | Vo             | 0.0364           | -1.5999 | -0.0026 | -0.1123 | 0.0643         | -0.0014 |
| 2              | Vc             | -0.0030          | -0.1152 | 0.0026  | 0.0059  | 0.0030         | -0.0044 |
| 2              | Io             | 0.0204           | 0.1857  | -0.0018 | 0.0013  | -0.0023        | -0.0933 |
| 2              | Ic             | 0.0277           | 0.1808  | -0.0045 | -0.0042 | -0.0005        | -0.1110 |
|                |                |                  |         |         |         |                |         |
| 3              | So             | 0.0068           | -0.0275 | 0.0020  | 0.0016  | 0.0033         | 0.0000  |
| 3              | Sc             | 0.0139           | 0.0021  | 0.0012  | 0.1485  | 0.0056         | 0.0012  |
| 3              | Vo             | 0.1045           | 0.3004  | -0.0051 | 0.1456  | 0.0419         | 0.0971  |
| 3              | Vc             | 0.0915           | -0.0955 | 0.0083  | 0.0907  | 0.0523         | 0.0131  |
| 3              | Io             | 0.0239           | -0.0025 | 0.0003  | 0.0440  | 0.0106         | 0.0083  |
| 3              | Ic             | 0.0918           | -0.2109 | -0.0016 | 0.0340  | 0.0511         | 0.0173  |
|                |                |                  |         |         |         |                |         |
| 4              | So             | 0.0139           | 0.0506  | 0.0005  | 0.0062  | 0.0035         | -0.0211 |
| 4              | Sc             | -0.0122          | -0.2308 | 0.0087  | 0.0658  | 0.0132         | 0.1010  |
| 4              | Vo             | 0.0380           | 0.3018  | 0.0135  | 0.0068  | -0.0097        | -0.4588 |
| 4              | Vc             | 0.1098           | 0.4141  | -0.0001 | 0.0102  | 0.0428         | -0.0005 |
| 4              | Io             | 0.1111           | -0.0146 | 0.0051  | 0.1392  | 0.0622         | 0.1709  |
| 4              | Ic             | -0.0166          | -0.0024 | -0.0015 | -0.2285 | -0.0033        | -0.0016 |

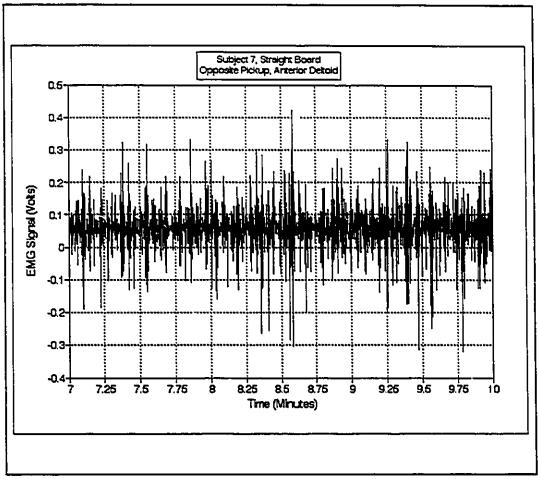
<sup>&</sup>lt;sup>3</sup>All RMS Slopes, for all muscles, are 10<sup>3</sup>

| 5 | So | 0.1625  | -0.3820 | 0.0195  | -0.0819 | 0.0793  | -0.4077 |  |
|---|----|---------|---------|---------|---------|---------|---------|--|
| 5 | Sc | 0.0027  | 0.0573  | 0.0165  | 0.1631  | 0.0039  | 0.0029  |  |
| 5 | Vo | 0.1323  | 0.1654  | -0.0102 | -0.7174 | 0.0587  | -0.0369 |  |
| 5 | Vc | 0.1419  | -0.5248 | 0.0383  | 0.4696  | 0.0898  | -0.1444 |  |
| 5 | Io | 0.1275  | -0.1961 | 0.0186  | -0.0965 | 0.0797  | 0.0666  |  |
| 5 | Ic | -0.0180 | 0.0469  | 0.0297  | 0.5964  | -0.0029 | 0.0015  |  |
|   |    |         |         |         |         |         |         |  |
| 6 | So | 0.0835  | -0.6105 | 0.0104  | -0.0531 | 0.0557  | -0.0382 |  |
| 6 | Sc | -0.0118 | -0.0163 | -0.0272 | -1.0453 | -0.0029 | -0.0558 |  |
| 6 | Vo | 0.0838  | -0.1682 | 0.0050  | -0.2709 | 0.0544  | 0.0115  |  |
| 6 | Vc | 0.1019  | -0.0240 | -0.0042 | -0.0786 | 0.0554  | 0.0078  |  |
| 6 | Io | 0.2041  | 3.0338  | 0.1122  | 2.7894  | -0.0021 | -0.3009 |  |
| 6 | Ic | -0.0405 | -0.8905 | -0.0017 | -0.4124 | 0.0062  | -0.0274 |  |
|   |    |         |         |         |         |         |         |  |
| 7 | So | 0.1045  | -1.8190 | -0.0221 | -2.6336 | 0.0820  | -0.3620 |  |
| 7 | Sc | 0.0464  | -2.6483 | -0.0036 | -1.2365 | 0.0712  | -0.2257 |  |
| 7 | Vo | 0.0669  | -1.0905 | -0.0057 | -0.5281 | 0.1460  | 2.4858  |  |
| 7 | Vc | 0.2164  | 2.3342  | 0.0356  | -0.1662 | 0.8891  | 0.5114  |  |
| 7 | Io | 0.1268  | 0.0089  | 0.0250  | -1.3133 | 0.0651  | -0.6603 |  |
| 7 | Ic | 0.0766  | -1.4047 | -0.0177 | -0.0495 | 0.4023  | 2.9580  |  |
|   |    |         |         |         |         |         |         |  |
| 8 | So | 0.1115  | -3.9906 | 0.0124  | 2.3772  | 0.6408  | 0.5908  |  |
| 8 | Sc | 0.1179  | -2.9141 | -0.0464 | 0.4132  | 0.4743  | 0.6649  |  |
| 8 | Vo | 0.0335  | -6.3459 | -0.0801 | 0.1559  | 0.0235  | -4.0594 |  |
| 8 | Vc | 0.1456  | -1.6658 | 0.0295  | 2.5722  | 0.0282  | -3.3797 |  |
| 8 | Io | 0.3743  | -0.3971 | 0.0074  | 1.8213  | 0.7528  | 2.2334  |  |
| 8 | Ic | 0.1298  | -1.5682 | 0.0089  | 0.9818  | 0.0578  | -2.1312 |  |
| ~ |    | ******  |         |         |         |         |         |  |

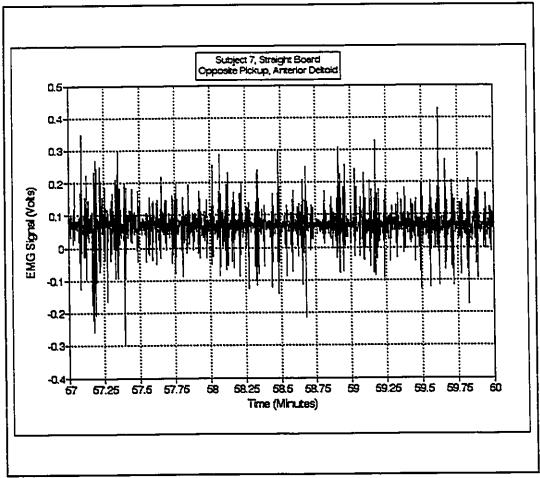
| A | So | 0.0257  | 0.0225  | 0.0236  | 0.7737  | 0.0072  | -0.0351 |
|---|----|---------|---------|---------|---------|---------|---------|
| A | Sc | 0.1377  | -0.3528 | 0.0704  | 0.9956  | 0.0764  | -0.0838 |
| А | Vo | 0.0486  | 0.0107  | 0.0110  | 0.1588  | 0.0394  | 0.1664  |
| А | Vc | -0.0044 | -0.1456 | 0.0092  | 0.2018  | -0.0011 | 0.0075  |
| А | Io | -0.0040 | 0.0296  | 0.0173  | 0.0025  | 0.0089  | 0.0092  |
| А | Ic | 0.1344  | -0.0096 | 0.0037  | -0.0943 | 0.0678  | -0.0335 |
|   |    |         |         |         |         |         |         |
| B | So | 0.0348  | -2.2069 | -0.0215 | -0.0133 | 0.0691  | -0.6837 |
| в | Sc | 0.0411  | -5.0236 | -0.0182 | 0.0150  | 0.9091  | 1.8388  |
| в | Vo | 0.0371  | 0.1912  | 0.0139  | 0.7391  | 0.3722  | 4.5156  |
| в | Vc | 0.0434  | -5.3820 | -0.0275 | -0.1911 | 0.3467  | -0.6158 |
| в | Io | 0.1559  | -5.3659 | -0.0361 | -0.0578 | 0.1273  | -1.2197 |
| в | Ic | -0.0603 | -6.5385 | -0.0425 | 0.0324  | -0.0106 | -4.0922 |
|   |    |         |         |         |         |         |         |
| С | So | 0.0378  | 0.3805  | 0.0098  | 0.0786  | 0.0101  | 0.0020  |
| с | Sc | 0.0056  | 0.3164  | 0.0197  | 0.2791  | -0.0020 | 0.0419  |
| С | Vo | 0.0071  | -0.0077 | 0.0317  | 0.6271  | 0.0038  | 0.0380  |
| с | Vc | -0.0085 | -0.6843 | 0.0092  | -0.0673 | 0.6161  | 1.2108  |
| С | Io | -0.0039 | -0.1913 | 0.0019  | 0.0447  | -0.0050 | -0.1087 |
| с | Ic | 0.0569  | 0.0261  | 0.0016  | 0.0137  | 0.0307  | -0.0027 |
|   |    |         |         |         |         |         |         |
| D | So | 0.4768  | 0.5350  | 0.0136  | -0.0286 | 0.2455  | 2.0978  |
| D | Sc | -0.0006 | -0.0872 | -0.0188 | -0.3642 | -0.0054 | -0.1182 |
| D | Vo | 0.0214  | -0.1222 | 0.0073  | 0.0028  | 0.0197  | 0.0194  |
| D | Vc | 0.0089  | -0.0922 | 0.0096  | -0.0009 | 0.0138  | 0.0026  |
| D | Ic | -0.0627 | -0.9171 | 0.0262  | 0.5351  | -0.0234 | -0.3852 |
| D | Ic | 0.0102  | -0.0242 | -0.0232 | -0.0014 | -0.0066 | 0.0236  |
|   |    |         |         |         |         |         |         |

N Statistical Analysis of Fatigue

| Source of variation | Sum of Squares |            | Mean square |       | -      |
|---------------------|----------------|------------|-------------|-------|--------|
| MAIN EFFECTS        |                |            |             |       |        |
| A:gender            | 0.6944444      | 1          | 0.6944444   | 2.732 | 0.1036 |
| B:board             | 0.0416667      | 2          | 0.0208333   | 0.082 | 0.9214 |
| C:pickup            | 0.0277778      | 1          | 0.0277778   | 0.109 | 0.7456 |
| INTERACTIONS        |                |            |             |       |        |
| AB                  | 0.4305556      | 2          | 0.2152778   | 0.847 | 0.4338 |
| AC                  | 0.0277778      | 1          | 0.0277778   | 0.109 | 0.7456 |
| BC                  | 0.9305556      | 2          | 0.4652778   | 1.831 | 0.1692 |
| ABC                 | 0.0972222      | 2          | 0.0486111   | 0.191 | 0.8264 |
| RESIDUAL            | 15.250000      | 60         | 0.2541667   |       |        |
| TOTAL (CORRECTED)   | 17.944444      | 7 <u>1</u> |             |       |        |


Analysis of Variance for fatigue score - Type III Sums of Squares

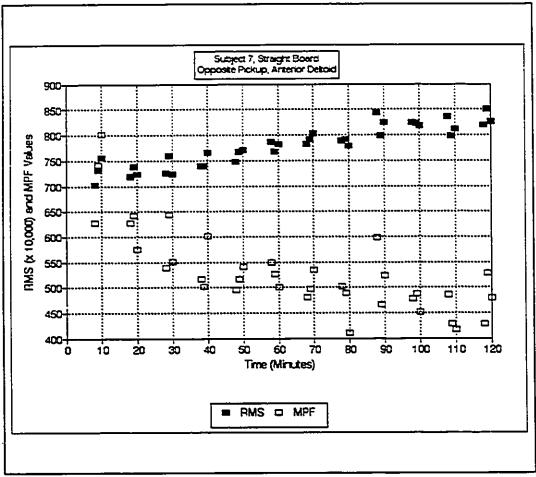
0 missing values have been excluded.


All F-ratios are based on the residual mean square error.

O EMG, RMS, MPF Graphs with Statistical Signs of Fatigue


.

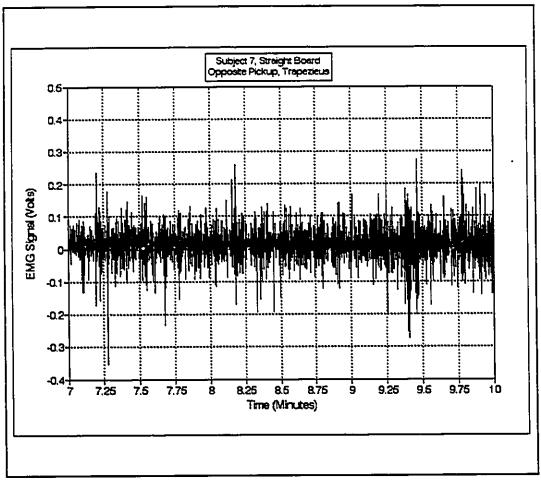



EMG Signal for Subject 7, So, Deltoid, Minutes 8 to 10

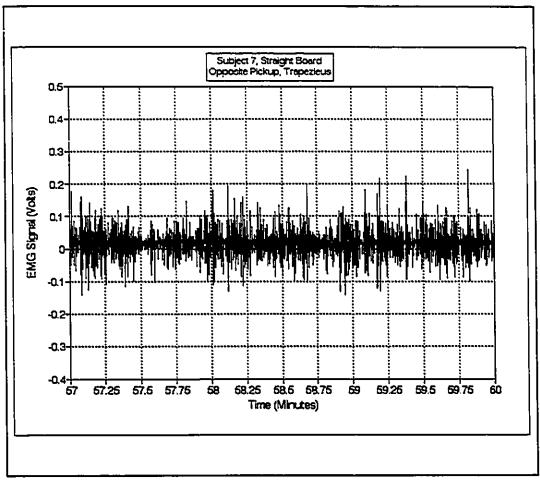


EMG Signal for Subject 7, So, Deltoid, Minutes 58 to 60

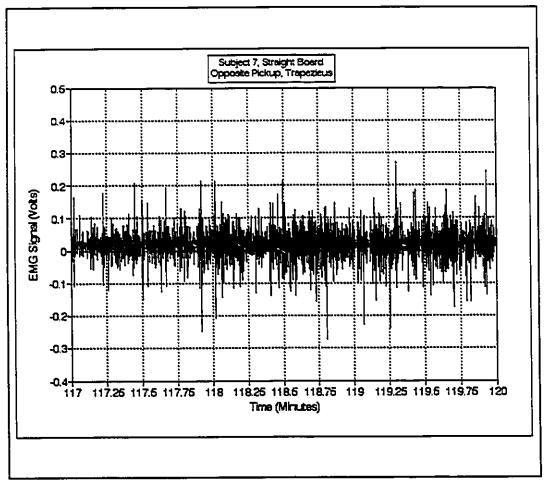



EMG Signal for Subject 7, So, Deltoid, Minutes 118 to 120

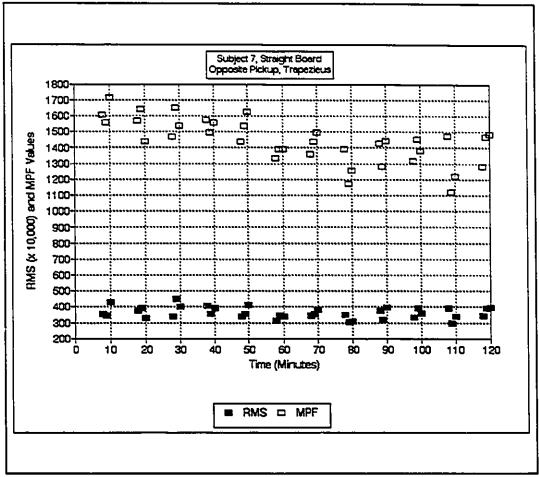



RMS and MPF Plots, Subject 7, So, Deltoid

RMS values are increasing and MPF values decreasing over time, indicating statistical signs of muscle fatigue.


P EMG, RMS, MPF Graphs without Statistical Signs of Fatigue




EMG Signal for Subject 7, So, Trapezius, Minutes 8 to 10



EMG Signal for Subject 7, So, Trapezius, Minutes 58 to 60



EMG Signal for Subject 7, So, Trapezius, Minutes 118 to 120



RMS and MPF Plots, Subject 7, So, Trapezius

RMS values do not increase over time, even though MPF values have a downward trend. This does not indicate signs of localised muscle fatigue during the trial. Q Statistical Analysis of Envelope Count

| Source of variation | Sum of Squares | d.f.   | Mean square | F-ratio | Sig. level |
|---------------------|----------------|--------|-------------|---------|------------|
| MAIN EFFECTS        |                |        |             |         |            |
| A:gender            | 2475.063       | 1      | 2475.063    | 0.017   | 0.8967     |
| B:board             | 24089.431      | 2      | 12044.715   | 0.085   | 0.9186     |
| C:pickup            | 7496.674       | 1      | 7496.674    | 0.053   | 0.8213     |
| INTERACTIONS        |                |        |             |         |            |
| AB                  | 24525.38       | 2      | 12262.69    | 0.087   | 0.9172     |
| AC                  | 91455.84       | 1      | 91455.84    | 0.645   | 0.4335     |
| BC                  | 37156.35       | 2      | 18578.17    | 0.131   | 0.8774     |
| ABC                 | 296717.18      | 2      | 148358.59   | 1.047   | 0.3574     |
| RESIDUAL            | 8502822.9      | 60     | 141713.71   |         |            |
| TOTAL (CORRECTED)   | 9020138.0      | <br>71 |             |         |            |

Analysis of Variance for envelope count - Type III Sums of Squares

0 missing values have been excluded.

|                   | Sum of Squares |     |           |       |        |
|-------------------|----------------|-----|-----------|-------|--------|
| MAIN EFFECTS      |                |     |           |       |        |
| A:gender          | 119.00417      | 1   | 119.00417 | 1.312 | 0.2544 |
| B:pickup          | 37.60417       | 1   | 37.60417  | 0.415 | 0.5278 |
| INTERACTIONS      |                |     |           |       |        |
| AB                | 203.50417      | 1   | 203.50417 | 2.243 | 0.1369 |
| RESIDUAL          | 10522.825      | 116 | 90.714009 |       |        |
| TOTAL (CORRECTED) | 10847.467      | 119 |           |       |        |

Analysis of Variance for envelope pickup - Type III Sums of Squares

0 missing values have been excluded.

## Results of Envelope Pickup Trials

## Males

| Subject | Pickup   |    |    | Trial |    |    |
|---------|----------|----|----|-------|----|----|
|         | Point    | 1  | 2  | 3     | 4  | 5  |
| 1       | Centre   | 40 | 33 | 41    | 35 | 38 |
|         | Opposite | 44 | 31 | 48    | 46 | 50 |
| 2       | Centre   | 61 | 53 | 52    | 52 | 57 |
|         | Opposite | 48 | 59 | 56    | 50 | 54 |
| 3       | Centre   | 36 | 33 | 32    | 32 | 29 |
|         | Opposite | 34 | 31 | 25    | 31 | 31 |
| 4       | Centre   | 33 | 29 | 29    | 34 | 26 |
|         | Opposite | 37 | 33 | 27    | 28 | 29 |
| 5       | Centre   | 44 | 37 | 46    | 47 | 71 |
|         | Opposite | 45 | 44 | 50    | 44 | 50 |
| 6       | Centre   | 31 | 19 | 26    | 22 | 22 |
| *       | Opposite | 27 | 27 | 26    | 27 | 27 |
| 7       | Centre   | 29 | 33 | 32    | 31 | 32 |
|         | Opposite | 35 | 31 | 34    | 33 | 41 |
| 8       | Centre   | 22 | 26 | 28    | 27 | 26 |
|         | Opposite | 37 | 32 | 31    | 28 | 28 |

## Results of Envelope Pickup Trials

## Females

| Subject | Pickup   | Trial |    |    |    |    |  |  |
|---------|----------|-------|----|----|----|----|--|--|
|         | Point    | 1     | 2  | 3  | 4  | 5  |  |  |
| A       | Centre   | 41    | 43 | 40 | 45 | 38 |  |  |
|         | Opposite | 36    | 36 | 40 | 35 | 33 |  |  |
| В       | Centre   | 22    | 27 | 22 | 27 | 30 |  |  |
|         | Opposite | 23    | 27 | 27 | 22 | 21 |  |  |
| с       | Centre   | 41    | 43 | 40 | 45 | 38 |  |  |
|         | Opposite | 36    | 36 | 40 | 35 | 33 |  |  |
| D       | Centre   | 37    | 41 | 41 | 31 | 34 |  |  |
|         | Opposite | 34    | 35 | 33 | 30 | 35 |  |  |

.

R Subjective Scores

| Body Part    |    |    | Sta | tion |    |     |
|--------------|----|----|-----|------|----|-----|
|              | So | Sc | ٧o  | Vc   | Io | Ic  |
| Neck         | 9  | 8  | 7   | 8    | 8  | 8   |
| Shoulders    | 11 | 9  | 10  | 10   | 10 | 11  |
| Upper Back   | 13 | 11 | 10  | 13   | 12 | 11  |
| Elbows       | 11 | 12 | 11  | 9    | 12 | 11_ |
| Lower Back   | 13 | 13 | 17  | 15   | 15 | 15  |
| Wrists/Hands | 11 | 12 | 14  | 13   | 13 | 12  |
| Hips/Thighs  | 15 | 14 | 14  | 15   | 14 | 13  |
| Knees        | 15 | 14 | 15  | 17   | 16 | 15  |
| Ankles/Feet  | 18 | 15 | 18  | 18   | 18 | 17_ |

.

Subject 1

| Body Part    |    |    | Sta | tion |    |    |
|--------------|----|----|-----|------|----|----|
|              | So | Sc | Vo  | Vc   | Io | Ic |
| Neck         | 7  | 7  | 6   | 7    | 7  | 7  |
| Shoulders    | 7  | 11 | 8   | 9    | 11 | 9  |
| Upper Back   | 9  | 11 | 10  | 11   | 13 | 9  |
| Elbows       | 9  | 12 | 10  | 11   | 9  | 11 |
| Lower Back   | 14 | 13 | 13  | 13   | 13 | 13 |
| Wrists/Hands | 7  | 9  | 9   | 7    | 8  | 7  |
| Hips/Thighs  | 13 | 14 | 14  | 13   | 14 | 14 |
| Knees        | 14 | 14 | 14  | 14   | 15 | 14 |
| Ankles/Feet  | 14 | 14 | 14  | 14   | 16 | 14 |

Subject 2

| Body Part    |    |    | Sta | tion |    |    |
|--------------|----|----|-----|------|----|----|
|              | So | Sc | Vo  | Vc   | Io | Ic |
| Neck         | 9  | 10 | 8   | 10   | 11 | 11 |
| Shoulders    | 10 | 12 | g   | 12   | 12 | 10 |
| Upper Back   | ŋ  | 10 | 8   | 10   | 9  | 10 |
| Elbows       | 10 | 12 | 10  | 11   | 10 | 9  |
| Lower Back   | 10 | 12 | 10  | 11   | 11 | 10 |
| Wrists/Hands | 9  | 10 | 9   | 10   | 9  | 10 |
| Hips/Thighs  | 10 | 11 | 10  | 11   | 11 | 10 |
| Knees        | 10 | 11 | 10  | 12   | 12 | 10 |
| Ankles/Feet  | 11 | 13 | 11  | 12   | 12 | 11 |

Subject 3

| Body Part    |    |    | Sta | tion | -  |    |
|--------------|----|----|-----|------|----|----|
|              | So | Sc | Vo  | Vc   | Io | Ic |
| Neck         | 8  | 8  | 7   | 7    | 9  | 7  |
| Shoulders    | 9  | 10 | 8   | 9    | 12 | 8  |
| Upper Back   | 11 | 12 | 11  | 11   | 13 | 12 |
| Elbows       | 13 | 14 | 13  | 11   | 13 | 13 |
| Lower Back   | 15 | 15 | 15  | 14   | 16 | 15 |
| Wrists/Hands | 12 | 14 | 13  | 12   | 11 | 13 |
| Hips/Thighs  | 15 | 15 | 16  | 15   | 14 | 15 |
| Knees        | 14 | 17 | 17  | 16   | 15 | 17 |
| Ankles/Feet  | 16 | 18 | 18  | 17   | 15 | 17 |

Subject 4

-

| Body Part    |    |    | Sta | tion |    |    |
|--------------|----|----|-----|------|----|----|
|              | So | Sc | Vo  | Vc   | Io | Ic |
| Neck         | 10 | 8  | 8   | 8    | 8  | 9  |
| Shoulders    | 11 | 13 | 10  | 12   | 12 | 11 |
| Upper Back   | 12 | 11 | 11  | 11   | 11 | 10 |
| Elbows       | 12 | 12 | 11  | 12   | 12 | 12 |
| Lower Back   | 15 | 15 | 14  | 14   | 14 | 15 |
| Wrists/Hands | 13 | 12 | 11  | 12   | 14 | 12 |
| Hips/Thighs  | 12 | 11 | 10  | 11   | 11 | 12 |
| Knees        | 11 | 9  | 9   | 9    | 10 | 13 |
| Ankles/Feet  | 12 | 10 | 10  | 9    | 10 | 13 |

Subject 5

| Body Part    |    |    | Sta | tion |    |    |
|--------------|----|----|-----|------|----|----|
|              | So | Sc | Vo  | Vc   | Io | Ic |
| Neck         | 13 | 13 | 14  | 16   | 13 | 13 |
| Shoulders    | 16 | 15 | 16  | 17   | 14 | 14 |
| Upper Back   | 11 | 10 | 13  | 13   | 11 | 12 |
| Elbows       | 12 | 8  | 11  | 11   | 9  | 8  |
| Lower Back   | 13 | 12 | 11  | 12   | 12 | 10 |
| Wrists/Hands | 10 | 12 | 10  | 10   | 11 | 9  |
| Hips/Thighs  | 12 | 11 | 12  | 13   | 14 | 15 |
| Knees        | 14 | 9  | 15  | 15   | 14 | 15 |
| Ankles/Feet  | 15 | 14 | 17  | 17   | 17 | 16 |

Subject 6

| Body Part    |    |    | Sta | tion |    |    |
|--------------|----|----|-----|------|----|----|
|              | So | Sc | ٧o  | Vc   | Io | Ic |
| Neck         | 14 | 12 | 13  | 16   | 12 | 13 |
| Shoulders    | 16 | 15 | 14  | 12   | 13 | 16 |
| Upper Back   | 18 | 17 | 15  | 17   | 13 | 15 |
| Elbows       | 13 | 13 | 14  | 13   | 14 | 13 |
| Lower Back   | 13 | 16 | 15  | 17   | 15 | 13 |
| Wrists/Hands | 11 | 12 | 16  | 11   | 14 | 12 |
| Hips/Thighs  | 12 | 11 | 14  | 10   | 13 | 10 |
| Knees        | 10 | 10 | 11  | 11   | 11 | 12 |
| Ankles/Feet  | 12 | 14 | 14  | 17   | 11 | 11 |

Subject 7

.

.

.:

| Body Part    |    |    | Sta | tion |    |    |
|--------------|----|----|-----|------|----|----|
|              | So | Sc | Vo  | Vc   | Io | Ic |
| Neck         | 10 | 10 | 11  | 12   | 10 | 13 |
| Shoulders    | 13 | 12 | 12  | 13   | 12 | 11 |
| Upper Back   | 10 | 10 | 10  | 12   | 11 | 9  |
| Elbows       | 12 | 13 | 13  | 12   | 11 | 9  |
| Lower Back   | 17 | 15 | 16  | 15   | 15 | 15 |
| Wrists/Hands | 14 | 11 | 15  | 15   | 14 | 11 |
| Hips/Thighs  | 12 | 13 | 10  | 12   | 12 | 13 |
| Knees        | 15 | 14 | 14  | 16   | 13 | 15 |
| Ankles/Feet  | 16 | 17 | 14  | 16   | 17 | 14 |

Subject 8

2017 17 - 17

٠.

| Body Part    | Station |    |    |    |    |    |
|--------------|---------|----|----|----|----|----|
|              | So      | Sc | Vo | Vc | Io | Ic |
| Neck         | 12      | 8  | 6  | 13 | 9  | 8  |
| Shoulders    | 11      | 8  | 7  | 9  | 12 | 9  |
| Upper Back   | 7       | 8  | 7  | 8  | 7  | 8  |
| Elbows       | 9       | 8  | 9  | 8  | 9  | 7  |
| Lower Back   | 7       | 10 | 9  | 10 | 7  | 8  |
| Wrists/Hands | 9       | 9  | 7  | 9  | 9  | 9  |
| Hips/Thighs  | 7       | 7  | 7  | 7  | 6  | 10 |
| Knees        | 7       | 8  | 7  | 8  | 7  | 11 |
| Ankles/Feet  | 10      | 8  | 10 | 10 | 8  | 12 |

Subject A

.

| Body Part    | Station |    |    |    |    |    |
|--------------|---------|----|----|----|----|----|
|              | So      | Sc | Vo | Vc | Io | Ic |
| Neck         | 15      | 15 | 9  | 11 | 9  | 9  |
| Shoulders    | 13      | 11 | 13 | 11 | 13 | 11 |
| Upper Back   | 11      | 11 | 11 | 9  | 11 | 7  |
| Elbows       | 9       | 13 | 15 | 9  | 11 | 13 |
| Lower Back   | 9       | 9  | 11 | 11 | 11 | 13 |
| Wrists/Hands | 13      | 15 | 15 | 13 | 13 | 15 |
| Hips/Thighs  | 11      | 9  | 9  | 11 | 11 | 11 |
| Knees        | 9       | 11 | 11 | 9  | 9  | 13 |
| Ankles/Feet  | 9       | 9  | 9  | 11 | 9  | 13 |

Subject B

.

•

| Body Part    | Station |    |    |    |    |    |
|--------------|---------|----|----|----|----|----|
|              | So      | Sc | Vo | Vc | Io | Ic |
| Neck         | 7       | 7  | 9  | 9  | 11 | 11 |
| Shoulders    | 8       | 10 | 12 | 8  | 13 | 12 |
| Upper Back   | 8       | 10 | 11 | 9  | 12 | 11 |
| Elbows       | 8       | 7  | 10 | 7  | 9  | 13 |
| Lower Back   | 9       | 11 | 10 | 10 | 12 | 13 |
| Wrists/Hands | 10      | 10 | 6  | 9  | 7  | 12 |
| Hips/Thighs  | 8       | 7  | 6  | 6  | 7  | 7  |
| Knees        | 8       | 11 | 7  | 7  | 6  | 7  |
| Ankles/Feet  | 7       | 11 | 7  | 10 | 10 | 13 |

Subject C

| Body Part    | Station |    |    |    |    |    |
|--------------|---------|----|----|----|----|----|
|              | So      | Sc | Vo | Vc | Io | Ic |
| Neck         | 11      | 17 | 12 | 16 | 13 | 14 |
| Shoulders    | 15      | 12 | 17 | 14 | 14 | 15 |
| Upper Back   | 15      | 7  | 12 | 12 | 15 | 17 |
| Elbows       | 13      | 7  | 9  | 10 | 9  | 8  |
| Lower Back   | 16      | 20 | 12 | 17 | 13 | 16 |
| Wrists/Hands | 10      | 9  | 12 | 9  | 9  | 6  |
| Hips/Thighs  | 10      | 7  | 10 | 9  | 9  | 14 |
| Knees        | 15      | 12 | 10 | 9  | 10 | 9  |
| Ankles/Feet  | 18      | 15 | 12 | 18 | 16 | 16 |

Subject D

S Statistical Analysis of Subjective Scores

Analysis of Variance for neck score - Type III Sums of Squares

| Source of variation | Sum of Squares | d.f. | Mean square | F-ratio : | Sig. level |
|---------------------|----------------|------|-------------|-----------|------------|
| MAIN EFFECTS        |                |      |             |           |            |
| A:gender            | 16.673611      | 1    | 16.673611   | 1.992     | 0.1633     |
| B:board             | 2.180556       | 2    | 1.090278    | 0.130     | 0.8781     |
| C:pickup            | 10.532500      | 1    | 10.562500   | 1.262     | 0.2657     |
| INTERACTIONS        |                |      |             |           |            |
| AB                  | 4.347222       | 2    | 2.1736111   | 0.260     | 0.7721     |
| AC                  | 3.062500       | 1    | 3.0625000   | 0.366     | 0.5539     |
| BC                  | 16.625000      | 2    | 8.3125000   | 0.993     | 0.3764     |
| ABC                 | 3.791667       | 2    | 1.8958333   | 0.227     | 0.7980     |
| RESIDUAL            | 502.12500      | 60   | 8.3687500   |           |            |
| TOTAL (CORRECTED)   | 553.27778      | 71   |             |           |            |

0 missing values have been excluded.

All F-ratios are based on the residual mean square error.

Analysis of Variance for shoulder score - Type III Sums of Squares

| Source of variation | Sum of Squares | d.f. | Mean square | F-ratio | Sig. level |
|---------------------|----------------|------|-------------|---------|------------|
| MAIN EFFECTS        |                |      |             |         |            |
| A:gender            | 0.0069444      | 1    | 0.0069444   | 0.001   | 0.9746     |
| B:board             | 5.3750000      | 2    | 2.6875000   | 0.407   | 0.6678     |
| C:pickup            | 6.6736111      | 1    | 6.6736111   | 1.010   | 0.3190     |
| INTERACTIONS        |                |      |             |         |            |
| AB                  | 7.097222       | 2    | 3.548611    | 0.537   | 0.5874     |
| AC                  | 11.673611      | 1    | 11.673611   | 1.766   | 0.1889     |
| BC                  | 1.013889       | 2    | 0.506944    | 0.077   | 0.9263     |
| ABC                 | 3.180556       | 2    | 1.590278    | 0.241   | 0.7869     |
| RESIDUAL            | 396.62500      | 60   | 6.6104167   |         |            |
| TOTAL (CORRECTED)   | 427.31944      | 71   |             |         |            |

0 missing values have been excluded.

| Source of variation | Sum of Squares | d.f. | Mean square | F-ratio | Sig. level |
|---------------------|----------------|------|-------------|---------|------------|
| MAIN EFFECTS        |                |      |             |         |            |
| A:gender            | 28.44444       | 1    | 28.444444   | 4.597   | 0.0361     |
| B:board             | 3.597222       | 2    | 1.798611    | 0.291   | 0.7488     |
| C:pickup            | 1.777778       | 1    | 1.777778    | 0.287   | 0.5996     |
| INTERACTIONS        |                |      |             |         |            |
| AB                  | 8.4305556      | 2    | 4.2152778   | 0.681   | 0.5099     |
| AC                  | 4.000000       | 1    | 4.0000000   | 0.646   | 0.4331     |
| вС                  | 2.7638889      | 2    | 1.3819444   | 0.223   | 0.8005     |
| ABC                 | 3.0416667      | 2    | 1.5208333   | 0.246   | 0.7829     |
| RESIDUAL            | 371.25000      | 60   | 6.1875000   |         |            |
| TOTAL (CORRECTED)   | 421.77778      | 71   |             |         |            |

Analysis of Variance for upper back score - Type III Sums of Squares

0 missing values have been excluded.

All F-ratios are based on the residual mean square error.

Multiple range analysis for upper back score by gender

| Method:<br>Level | 95 Percent<br>Count | Duncan<br>LS Mean | Homogeneous Groups |
|------------------|---------------------|-------------------|--------------------|
| female           | 24                  | 10.166667         | x                  |
| male             | 48                  | 11.500000         | x                  |
| contrast         | *                   |                   | difference         |
| male - f         | female              |                   | 1.33353 *          |

\* denotes a statistically significant difference.

| Source of variation | Sum of Squares |    | Mean square |       | -      |
|---------------------|----------------|----|-------------|-------|--------|
| MAIN EFFECTS        |                |    |             |       |        |
| A:board             | 8.5833333      | 2  | 4.2916667   | 0.465 | 0.6353 |
| B:pickup            | 4.1666667      | 1  | 4.1666667   | 0.452 | 0.5171 |
| INTERACTIONS        |                |    |             |       |        |
| АВ                  | 0.5833333      | 2  | 0.2916667   | 0.032 | 0.9689 |
| RESIDUAL            | 166.00000      | 18 | 9.2222222   |       |        |
| TOTAL (CORRECTED)   | 179.33333      | 23 |             |       |        |

0 missing values have been excluded.

All F-ratios are based on the residual mean square error.

Analysis of Variance for male upper back score - Type III Sums of Squares

.

| Source of variation      | Sum of Squares | d.f. | Mean square | F-ratio | Sig. level |
|--------------------------|----------------|------|-------------|---------|------------|
| MAIN EFFECTS             | ·~             |      |             |         |            |
| A:board                  | 0.8750000      | 2    | 0.4375000   | 0.090   | 0.9145     |
| B:pickup<br>INTERACTIONS | 0.3333333      | 1    | 0.3333333   | 0.068   | 0.7980     |
| AB                       | 7.5416667      | 2    | 3.7708333   | 0.772   | 0.4687     |
| RESIDUAL                 | 205.25000      | 42   | 4.8869048   |         |            |
| TOTAL (CORRECTED)        | 214.00000      | 47   |             |         |            |

0 missing values have been excluded.

| Source of variation | Sum of Squares | d.f. | Mean square | F-ratio \$ | Sig. level |
|---------------------|----------------|------|-------------|------------|------------|
| MAIN EFFECTS        |                |      |             |            |            |
| A:gender            | 58.77778       | 1    | 58.777778   | 16.499     | 0.0001     |
| B:board             | 0.097222       | 2    | 0.048611    | 0.014      | 0.9865     |
| C:pickup            | 2.77778        | 1    | 2.77778     | 0.780      | 0.3901     |
| INTERACTIONS        |                |      |             |            |            |
| АВ                  | 3.0972222      | 2    | 1.5486111   | 0.435      | 0.6495     |
| AC                  | 2.7777778      | 1    | 2.7777778   | 0.780      | 0.3901     |
| BC                  | 7.2638889      | 2    | 3.6319444   | 1.019      | 0.3669     |
| ABC                 | 5.9305556      | 2    | 2.9652778   | 0.832      | 0.4400     |
| RESIDUAL            | 213.75000      | 60   | 3.5625000   |            |            |
| TOTAL (CORRECTED)   | 290.61111      | 71   |             |            |            |

Analysis of Variance for elbow score - Type III Sums of Squares

0 missing values have been excluded.

•

All F-ratios are based on the residual mean square error.

Multiple range analysis for elbow score by gender

| Method:<br>Level | 95 Percent<br>Count | Duncan<br>LS Mean | Homogeneous Groups |
|------------------|---------------------|-------------------|--------------------|
| female           | 24                  | 9.583333          | x                  |
| male             | 48                  | 11.500000         | X                  |
| contras          | <br>t               |                   | difference         |
| male -           |                     |                   | 1.91667 *          |
|                  |                     |                   | ,                  |

denotes a statistically significant difference.

..

Analysis of Variance for female elbow score - Type III Sums of Squares

| Sum of Squares | d.f.                                             | Mean square                                | F-ratio                                                                                                                                                            | Sig. level                                                                                                                                                                                             |
|----------------|--------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                                                  |                                            |                                                                                                                                                                    |                                                                                                                                                                                                        |
| 1.5833333      | 2                                                | 0.7916667                                  | 0.138                                                                                                                                                              | 0.8717                                                                                                                                                                                                 |
| 4.1666667      | 1                                                | 4.1666667                                  | 0.728                                                                                                                                                              | 0.4137                                                                                                                                                                                                 |
|                |                                                  |                                            |                                                                                                                                                                    |                                                                                                                                                                                                        |
| 9.0833333      | 2                                                | 4.5416667                                  | 0.794                                                                                                                                                              | 0.4674                                                                                                                                                                                                 |
| 103.00000      | 18                                               | 5.7222222                                  |                                                                                                                                                                    |                                                                                                                                                                                                        |
| 117.83333      | 23                                               |                                            |                                                                                                                                                                    |                                                                                                                                                                                                        |
|                | 1.5833333<br>4.1666667<br>9.0833333<br>103.00000 | 4.1666667 1<br>9.0833333 2<br>103.00000 18 | 1.5833333       2       0.7916667         4.16666667       1       4.16666667         9.0833333       2       4.5416667         103.00000       18       5.7222222 | 1.5833333       2       0.7916667       0.138         4.16666667       1       4.16666667       0.728         9.0833333       2       4.5416667       0.794         103.00000       18       5.7222222 |

0 missing values have been excluded.

All F-ratios are based on the residual mean square error.

Analysis of Variance for male elbow score - Type III Sums of Squares

| Source of variation | Sum of Squares | d.f. | Mean square | F-ratio S | ig. level |
|---------------------|----------------|------|-------------|-----------|-----------|
| MAIN EFFECTS        |                |      |             |           |           |
| A:board             | 1.6250000      | 2    | 0.8125000   | 0.308     | 0.7365    |
| B:pickup            | 0.000000       | 1    | 0.000000    | 0.000     | 1.0000    |
| INTERACTIONS        |                |      |             |           |           |
| АВ                  | 1.6250000      | 2    | 0.8125000   | 0.308     | 0.7365    |
| RESIDUAL            | 110.75000      | 42   | 2.6369048   |           |           |
| TOTAL (CORRECTED)   | 114.00000      | 47   |             |           |           |

0 missing values have been excluded.

| Source of variation | Sum of Squares |        |           |        | Sig. level |
|---------------------|----------------|--------|-----------|--------|------------|
| MAIN EFFECTS        |                |        |           |        |            |
| A;gender            | 87.111111      | 1      | 87.111111 | 13.647 | 0.0005     |
| B:board             | 0.013889       | 2      | 0.006944  | 0.001  | 0.9989     |
| C:pickup            | 11.111111      | 1      | 11.111111 | 1.741  | 0.1921     |
| INTERACTIONS        |                |        |           |        |            |
| AB                  | 1.347222       | 2      | 0.673611  | 0.106  | 0.9000     |
| AC                  | 16.00000       | 1      | 16.000000 | 2.507  | 0.1186     |
| BC                  | 1.097222       | 2      | 0.548611  | 0.086  | 0.9178     |
| ABC                 | 0.541667       | 2      | 0.270833  | 0.042  | 0.9585     |
| RESIDUAL            | 383.00000      | 60     | 6.3833333 |        |            |
| TOTAL (CORRECTED)   | 493.94444      | <br>71 |           |        |            |

Analysis of Variance for lower back score - Type III Sums of Squares

0 missing values have been excluded.

All F-ratios are based on the residual mean square error.

Multiple range analysis for lower back score by gender

| Method:<br>Level | 95 Percent<br>Count | Duncan<br>LS Mean | Homogeneous Groups |
|------------------|---------------------|-------------------|--------------------|
| female           | 24                  | 11.416667         | x                  |
| male             | 48                  | 13,750000         | X                  |
| contrast         |                     |                   | difference         |
| male - 1         |                     |                   | 2.33333 *          |

\* denotes a statistically significant difference.

Analysis of Variance for female lower back score - Type III Sums of Squares \_\_\_\_\_ Source of variation Sum of Squares d.f. Mean square F-ratio Sig. level \_\_\_\_\_ MAIN EFFECTS 0.58333320.2916670.0240.976120.166667120.1666671.6770.2117 A:board B:pickup INTERACTIONS 0.5833333 2 0.2916667 0.024 0.9761 AB RESIDUAL 216.50000 18 12.027778 237.83333 23 TOTAL (CORRECTED) 

0 missing values have been excluded.

All F-ratios are based on the residual mean square error.

Analysis of Variance for male lower back score - Type III Sums of Squares

| Source of variation | Sum of Squares | d.f. | Mean square | F-ratio | Sig. level |
|---------------------|----------------|------|-------------|---------|------------|
| MAIN EFFECTS        |                |      |             |         |            |
| A:board             | 0.8750000      | 2    | 0.4375000   | 0.110   | 0.8950     |
| B:pickup            | 0.3333333      | 1    | 0.3333333   | 0.084   | 0.7763     |
| INTERACTIONS        |                |      |             |         |            |
| АВ                  | 1.2916667      | 2    | 0.6458333   | 0.163   | 0.8502     |
| RESIDUAL            | 166.50000      | 42   | 3.9642857   |         |            |
| TOTAL (CORRECTED)   | 169.00000      | 47   |             |         |            |

0 missing values have been excluded.

| Source of variation | Sum of Squares |    |           |       | Sig. level |
|---------------------|----------------|----|-----------|-------|------------|
| MAIN EFFECTS        |                |    |           |       |            |
| A:gender            | 21,777778      | 1  | 21.777778 | 3.494 | 0.0665     |
| B:board             | 0.930556       | 2  | 0.465278  | 0.075 | 0.9282     |
| C:pickup            | 0.000000       | 1  | 0.00000   | 0.000 | 1.0000     |
| INTERACTIONS        |                |    |           |       |            |
| AB                  | 3.4305556      | 2  | 1.7152778 | 0.275 | 0.7604     |
| AC                  | 2.7777778      | 1  | 2.7777778 | 0.446 | 0.5141     |
| BC                  | 2.0416667      | 2  | 1.0208333 | 0.164 | 0.8493     |
| ABC                 | 3.7638889      | 2  | 1.8819444 | 0.302 | 0.7405     |
| RESIDUAL            | 374.00000      | 60 | 6.2333333 |       |            |
| TOTAL (CORRECTED)   | 410.98611      | 71 |           |       |            |

Analysis of Variance for wrist/hand score - Type III Sums of Squares

0 missing values have been excluded.

| Source of variation |           |    |           |        |        |
|---------------------|-----------|----|-----------|--------|--------|
| MAIN EFFECTS        |           |    |           |        |        |
| A:gender            | 261.36111 | 1  | 261.36111 | 71.361 | 0.0000 |
| B:board             | 7.76389   | 2  | 3.88194   | 1.060  | 0.3529 |
| C:pickup            | 0.25090   | 1  | 0.25000   | 0.068  | 0.7976 |
| INTERACTIONS        |           |    |           |        |        |
| AB                  | 2.9305556 | 2  | 1.4652778 | 0.400  | 0.6720 |
| AC                  | 0.6944444 | 1  | 0.6944444 | 0.190  | 0.6694 |
| BC                  | 9.3750000 | 2  | 4.6875000 | 1,280  | 0.2856 |
| ABC                 | 9.4305556 | 2  | 4.7152778 | 1.287  | 0.2835 |
| RESIDUAL            | 219.75000 | 60 | 3.6625000 |        |        |
| TOTAL (CORRECTED)   | 504.44444 | 71 |           |        |        |
|                     |           |    |           |        |        |

Analysis of Variance for hip/thigh score - Type III Sums of Squares

0 missing values have been excluded.

All F-ratios are based on the residual mean square error.

Multiple range analysis for hip score by gender

| Method:<br>Level | 95 Percent<br>Count | Duncan<br>LS Mean | Homogeneous Groups |
|------------------|---------------------|-------------------|--------------------|
| female           | 24<br>48            | 8.583333          | x                  |
|                  | **********          |                   | differenco         |
| female - male    |                     |                   | -4.04167 •         |

\* denotes a statistically significant difference.

Analysis of Variance for female hip/thigh score - Type III Sums of Squares \_\_\_\_\_ Source of variation Sum of Squares d.f. Mean square F-ratio Sig. level \_\_\_\_\_ MAIN EFFECTS 7.583333323.79166670.8810.43160.6666666710.666666670.1550.7027 A:board B:pickup INTERACTIONS 14.083333 2 7.0416667 1.635 0.2225 AB 77.500000 18 4.3055556 RESIDUAL \_\_\_\_\_ 99.833333 23 TOTAL (CORRECTED) ------

0 missing values have been excluded.

All F-ratios are based on the residual mean square error.

Analysis of Variance for male hip/thigh score - Type III Sums of Squares

|                     | -              | ·    |             |       |            |
|---------------------|----------------|------|-------------|-------|------------|
| Source of variation | Sum of Squares | d.f. | Mean square |       | Sig. level |
| MAIN EFFECTS        |                |      |             |       |            |
| A:board             | 0.8750000      | 2    | 0.4375000   | 0.129 | 0.8792     |
| B:pickup            | 0.0833333      | 1    | 0.0833333   | 0.025 | 0.8778     |
| INTERACTIONS        |                |      |             |       |            |
| AB                  | 0.0416667      | 2    | 0.0208333   | 0.006 | 0.9939     |
| RESIDUAL            | 142.25000      | 42   | 3.3869048   |       |            |
| TOTAL (CORRECTED)   | 143.25000      | 47   |             |       |            |

0 missing values have been excluded.

| Source of variation | Sum of Squares | d.f.           | Mean square | F-ratio S | Sig. level |
|---------------------|----------------|----------------|-------------|-----------|------------|
| MAIN EFFECTS        |                |                |             |           |            |
| A:gender            | 253.34028      | 1              | 253.34028   | 42.179    | 0.0000     |
| B:board             | 1.72222        | 2              | 0.86111     | 0.143     | 0.8667     |
| C:pickup            | 3.67361        | 1              | 3.67361     | 0.612     | 0.4456     |
| INTERACTIONS        |                |                |             |           |            |
| AB                  | 19.388389      | 2              | 9.6944444   | 1.614     | 0.2076     |
| AC                  | 1.173611       | 1              | 1.1736111   | 0.195     | 0.6648     |
| BC                  | 5.555556       | 2              | 2.777778    | 0.462     | 0.6319     |
| ABC                 | 5.555556       | 2              | 2.777778    | 0.462     | 0.6319     |
| RESIDUAL            | 360.37500      | 60             | 6.0062500   |           |            |
| TOTAL (CORRECTED)   | 648.61111      | <br>7 <u>1</u> | • #         |           |            |

Analysis of Variance for knee score - Type III Sums of Squares

0 missing values have been excluded.

•

All F-ratios are based on the residual mean square error.

Multiple range analysis for knee score by gender

| Method:<br>Level | 95 Percent<br>Count | Duncan<br>LS Mean | Нотод     | geneous Groups |
|------------------|---------------------|-------------------|-----------|----------------|
| female           | 24                  | 9.208333          | x         |                |
| male             | 48                  | 13.187500         | x         |                |
| contrast         |                     |                   |           | difference     |
| male - female    |                     |                   | 3.97917 * |                |

\* denotes a statistically significant difference.

| Analysis of Var.    | iance for female | knee sc | ore - Type III | Sums of So | nuares     |
|---------------------|------------------|---------|----------------|------------|------------|
| Source of variation | Sum of Squares   |         | Mean square    | F-ratio    | Sig. level |
| MAIN EFFECTS        |                  |         |                |            |            |
| A:board             | 11.083333        | 2       | 5.5416667      | 1.070      | 0.3639     |
| B:pickup            | 3.375000         | 1       | 3.3750000      | 0.651      | 0.4386     |
| INTERACTIONS<br>AB  | 6.2500000        | 2       | 3.1250000      | 0.603      | 0.5577     |
| RESIDUAL            | 93.250000        | 18      | 5.1805556      |            |            |
| TOTAL (CORRECTED)   | 113.95833        | 23      |                |            |            |
|                     |                  |         |                |            |            |

0 missing values have been excluded.

All F-ratios are based on the residual mean square error.

Analysis of Variance for male knee score - Type III Sums of Squares

| of Squares<br>9.5000000<br>0.5208333 | d.f.<br>2<br>1 | Mean square<br>4.7500000<br>0.5208333 | F-ratio S | Sig. level |
|--------------------------------------|----------------|---------------------------------------|-----------|------------|
|                                      | -              |                                       | •••       | 0.4800     |
|                                      | -              |                                       | •••       | 0.4800     |
| 0.5208333                            | 1              | 0 5000000                             |           |            |
|                                      |                | 0.5206333                             | 0.082     | 0.7792     |
| 4.1666667                            | 2              | 2.0833333                             | 0.328     | 0.7225     |
| 267.12500                            | 42             | 6.3601190                             |           |            |
| 281.31250                            | 47             |                                       |           |            |
|                                      |                |                                       |           |            |

0 missing values have been excluded.

All F-ratios are based on the residual mean square error.

 $\sim 10^{-1}$ 

| Source of variation |           |    | Mean square |        | •      |
|---------------------|-----------|----|-------------|--------|--------|
| MAIN EFFECTS        |           |    |             |        |        |
| A:gender            | 160.44444 | 1  | 160.44444   | 18,284 | 0.0001 |
| B:board             | 4.29167   | 2  | 2.14583     | 0.245  | 0.7838 |
| C:pickup            | 13.44444  | 1  | 13.44444    | 1.532  | 0.2206 |
| INTERACTIONS        |           |    |             |        |        |
| AB                  | 8.180556  | 2  | 4.090278    | 0.466  | 0.6297 |
| AC                  | 11.111111 | 1  | 11.111111   | 1.266  | 0.2650 |
| BC                  | 8.180556  | 2  | 4.090278    | 0.466  | 0.6297 |
| ABC                 | 8.847222  | 2  | 4.423611    | 0.504  | 0.6066 |
| RESIDUAL            | 526.50000 | 60 | 8.7750000   |        |        |
| TOTAL (CORRECTED)   | 729.31944 | 71 |             |        | **-    |

Analysis of Variance for ankles/feet score - Type III Sums of Squares

0 missing values have been excluded.

• \_ •

All F-ratios are based on the residual mean square error.

Multiple range analysis for ankles/feet score by gender

| Method:<br>Level | 95 Percent<br>Count | Duncan<br>LS Mean | Homogeneous Groups |
|------------------|---------------------|-------------------|--------------------|
| female           | 24                  | 11.291667         | x                  |
| male             | 48                  | 14.458333         | x                  |
| contrast         | <br>L               |                   | difference         |
| female - male    |                     |                   | -3.16667 *         |
|                  |                     |                   |                    |

\* denotes a statistically significant difference.

 Analysis of Variance for female ankles/feet score - Type III Sums of Squares

 Source of variation
 Sum of Squares

 MAIN EFFECTS

 A:board
 8.333333

 B:pickup
 18.375000

 INTERACTIONS

 AB
 12.000000

 204.25000
 18

 11.347222

\_\_\_\_\_

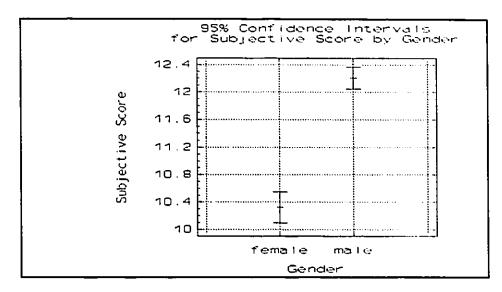
242.95833 23

0 missing values have been excluded.

TOTAL (CORRECTED)

All F-ratios are based on the residual mean square error.

Analysis of Variance for male ankles/feet score - Type III Sums of Squares


| Source of variation | Sum of Squares | d.f. | Mean square | F-ratio | Sig. level |
|---------------------|----------------|------|-------------|---------|------------|
| MAIN EFFECTS        |                |      |             |         |            |
| A:board             | 2.0416667      | 2    | 1.0208333   | 0.133   | 0.8758     |
| B:pickup            | 0.0833333      | 1    | 0.0833333   | 0.011   | 0.9186     |
| INTERACTIONS<br>AB  | 1.5416667      | 2    | 0.7708333   | 0.100   | 0.9046     |
| RESIDUAL            | 322.25000      | 42   | 7.6726190   |         |            |
| TOTAL (CORRECTED)   | 325.91667      | 47   |             |         |            |

0 missing values have been excluded.

| Source of variation | Sum of Squares |     |           |        | -      |
|---------------------|----------------|-----|-----------|--------|--------|
| MAIN EFFECTS        |                |     |           |        |        |
| A:gender            | 510.00694      | 1   | 510.00694 | 89.441 | 0.0000 |
| B:body part         | 423.91821      | 8   | 52.98970  | 9.293  | 0.0000 |
| INTERACTIONS        |                |     |           |        |        |
| AB                  | 377.93056      | 8   | 47.241319 | 8.285  | 0.0000 |
| RESIDUAL            | 3592.3542      | 630 | 5.7021495 |        |        |
| TOTAL (CORRECTED)   | 5091.9861      | 647 |           |        |        |

0 missing values have been excluded.

All F-ratios are based on the residual mean square error.



Analysis of Variance for female subjective scores - Type III Sums of SquaresSource of variationSum of SquaresMAIN EFFECTSA:body part213.14815826.6435193.6280.0006RESIDUAL1520.16672077.3438003TOTAL (CORRECTED)1733.31482150 missing values have been excluded.

All F-ratios are based on the residual mean square error.

| Method:<br>Level | 95 Percent<br>Count | Duncan<br>LS Mean | Homogeneous | Groups |
|------------------|---------------------|-------------------|-------------|--------|
| hips             | 24                  | 8.583333          | x           |        |
| knee             | 24                  | 9.208333          | xx          |        |
| elbow            | 24                  | 9.583333          | XXX         |        |
| uback            | 24                  | 10.166667         | XXXX        |        |
| wrist            | 24                  | 10.208333         | XXXX        |        |
| neck             | 24                  | 10.875000         | XXX         |        |
| ankle            | 24                  | 11.291667         | XX          |        |
| lback            | 24                  | 11.416667         | x           |        |
| shoulder         | 24                  | 11.583333         | x           |        |

Multiple range analysis for female subjective scores by body part

Abbreviations: "hips" for "hips/thighs"; "uback" for "upper back"; "wrist" for "wrist/hands"; "ankle" for "ankles/feet"; "lback" for "lower back"

~

| contra | ast |
|--------|-----|
|--------|-----|

difference

|          |   |       | -0.70833   |  |
|----------|---|-------|------------|--|
| neck     | - | uback | 0.70833    |  |
| neck     | - | elbow | 1.29167    |  |
|          |   | lback | -0.54167   |  |
| neck     | - | wrist | 0.66667    |  |
| neck     | - | hips  | 2.29167 *  |  |
| neck     | - | knee  | 1.66667    |  |
| neck     | - | ankle | -0.41667   |  |
| shoulder | - | uback | 1.41667    |  |
| shoulder | - | elbow | 2.00000 *  |  |
| shoulder | - | lback | 0.16667    |  |
| shoulder | - | wrist | 1.37500    |  |
| shoulder | - | hips  | 3.00000 *  |  |
| shoulder | - | knee  | 2.37500 *  |  |
| shoulder | - | ankle | 0.29167    |  |
| uback    | - | elbow | 0.58333    |  |
| uback    | - | lback | -1.25000   |  |
| uback    | - | wrist | -0.04167   |  |
| uback    | - | hips  | 1.58333    |  |
| uback    | - | knee  | 0.95833    |  |
| uback    | - | ankle | -1.12500   |  |
| elbow    | - | lback | -1.83333 * |  |
| elbow    | - | wrist | -0.62500   |  |
| elbow    | - | hips  | 1.00000    |  |
| elbow    |   | knee  | 0.37500    |  |
| elbow    | - | ankle | -1.70833   |  |
| lback    | - | wrist | 1.20833    |  |
| lback    | - | hips  | 2.83333 *  |  |
| lback    |   | knee  | 2.20833 *  |  |
| lback    | - | ankle | 0.12500    |  |
| wrist    | - | hips  | 1.62500    |  |
| wrist    |   | knee  | 1.00000    |  |
| wrist    | - | ankle | -1.08333   |  |
| hips     |   | knee  | -0.62500   |  |
| hips     |   | ankle | -2.70833 * |  |
| knee     |   | ankle | -2.08333 * |  |

\* denotes a statistically significant difference.

Analysis of Variance for male subjective scores - Type III Sums of SquaresSource of variationSum of SquaresMAIN EFFECTSA:body part776.47685897.05960619.8130.0000RESIDUAL2072.18754234.8987884TOTAL (CORRECTED)2848.66440 missing values have been excluded.

All F-ratios are based on the residual mean square error.

| Method:<br>Level | 95 Percent<br>Count | Duncan<br>LS Mean | Homogeneous Groups |
|------------------|---------------------|-------------------|--------------------|
| neck             | 48                  | 9.854167          | x                  |
| wrist            | 49                  | 11.375000         | x                  |
| uback            | 48                  | 11.500000         | х                  |
| elbow            | 48                  | 11.500000         | X                  |
| shoulder         | 48                  | 11.604167         | х                  |
| hips             | 48                  | 12.625000         | x                  |
| knee             | 48                  | 13.187500         | xx                 |
| lback            | 48                  | 13.750000         | xx                 |
| ankle            | 48                  | 14.458333         | x                  |

Multiple range analysis for male subjective scores by body part

Abbreviations: "wrist" for "wrist/hands"; "uback" for "upper back"; "hips" for "hips/thighs"; "lback" for "lower back"; "ankle" for "ankles/feet"

contrast

difference

| neck     | - | shoulder | -1.75000 |     |   |  |
|----------|---|----------|----------|-----|---|--|
| neck     | - | uback    | -1.64583 | *   |   |  |
| neck     | - | elbow    | -1.64583 | ٠   |   |  |
| neck     | - | lback    | -3.89583 |     |   |  |
| neck     | - | wrist    | -1.52083 | *   |   |  |
| neck     | - | hips     | -2.77083 |     |   |  |
| neck     | - | knee     | -3.33333 | *   |   |  |
| neck     | - | ankle    | -4.60417 | ٠   |   |  |
| shoulder | - | uback    | 0.10417  |     |   |  |
| shoulder | - | elbow    | 0.10417  |     |   |  |
| shoulder | - | lback    | -2.14583 | *   |   |  |
| shoulder | - | wrist    | 0.22917  |     |   |  |
| shoulder | - | hips     | -1.02083 | *   |   |  |
| shoulder | - | knee     | -1.58333 | ٠   |   |  |
| shoulder | - | ankle    | -2.85417 | *   |   |  |
| uback    | - | elbow    | 0.00000  |     |   |  |
| uback    | - | lback    | -2.25000 | *   |   |  |
| uback    | - | wrist    | 0.12500  |     |   |  |
| uback    | - | hips     | -1.12500 | *   |   |  |
| uback    | - | knee     | -1.68750 | •   |   |  |
| uback    | - | ankle    | -2.95833 | *   |   |  |
| elbow    | - | lback    | -2.25000 | *   | , |  |
| elbow    | - | wrist    | 0.12500  |     |   |  |
| elbow    | - | hips     | -1.12500 | ) * | , |  |
| elbow    | - | knee     | -1.68750 | ) * | • |  |
| elbow    | - | ankle    | -2.95833 | 3 * | • |  |
| lback    | - | wrist    | 2.37500  | ) * | • |  |
| lback    | - | hips     | 1.12500  | ) * | • |  |
| lback    | - | knee     | 0.56250  | )   |   |  |
| lback    | - | ankle    | -0.70833 | 3   |   |  |
| wrist    | - | hips     | -1.25000 | ) * | * |  |
| wrist    | - | knee     | -1.81250 | ) 1 | * |  |
| wrist    | - | ankle    | -3.08333 | 3 1 | • |  |
| hips     | _ | knee     | -0.56250 | 0   |   |  |
| hips     | - | ankle    | -1.83333 | 3 1 | * |  |
| knee     | _ | ankle    | -1.27083 | 3 1 | * |  |

denotes a statistically significant difference.

•

T Correlation Coefficients for Subjective Ratings

|           | score   | fatigue | envelopes |  |
|-----------|---------|---------|-----------|--|
| score     | 1.0000  | 0.2066  | -0.3468   |  |
|           | ( 24)   | (24)    | (24)      |  |
|           | 1.0000  | 0.3219  | 0.0962    |  |
| atigue    | 0.2066  | 1.0000  | 0.2426    |  |
| •         | (24)    | (24)    | ( 24)     |  |
|           | 0.3219  | 1.0000  | 0.2446    |  |
| anvelopes | -0.3468 | 0.2426  | 1.0000    |  |
| •         | (24)    | ( 24)   | ( 24)     |  |
|           | 0.0962  | 0.2446  | 1.0000    |  |

Spearman Rank Correlations for Female Neck Scores

Coefficient (sample size) significance level

Spearman Rank Correlations for Female Shoulder Scores

|           | score       | fatigue | envelopes     |              |
|-----------|-------------|---------|---------------|--------------|
| core      | 1.0000      | 0.0837  | -0.4445       |              |
|           | (24)        | (24)    | (24)          |              |
|           | 1.0000      | 0.6882  | 0.0330        |              |
| atigue    | 0.0837      | 1.0000  | 0.2426        |              |
|           | (24)        | (24)    | (24)          |              |
|           | 0.6882      | 1.0000  | 0.2446        |              |
| envelopes | -0.4445     | 0.2426  | 1.0000        |              |
| •         | (24)        | ( 24)   | (24)          |              |
|           | 0.0330      | 0.2446  | 1.0000        |              |
|           | Coefficient | (sample | size) signif: | icance level |

|           | score   | fatigue | envelopes |  |
|-----------|---------|---------|-----------|--|
| score     | 1.0000  | 0.0389  | -0.3529   |  |
|           | (24)    | (24)    | ( 24)     |  |
|           | 1.0000  | 0.8520  | 0.0906    |  |
| fatigue   | 0.0389  | 1.0000  | 0.2426    |  |
|           | ( 24)   | ( 24)   | (24)      |  |
|           | 0.8520  | 1.0000  | 0.2446    |  |
| envelopes | -0.3529 | 0.2426  | 1.0000    |  |
|           | (24)    | ( 24)   | (24)      |  |
|           | 0.0906  | 0.2446  | 1.0000    |  |

Spearman Rank Correlations for Female Upper Back Scores

Coefficient (sample size) significance level

Spearman Rank Correlations for Female Elbow Scores

|           | score   | fatigue | envelopes |
|-----------|---------|---------|-----------|
| score     | 1.0000  | 0.1900  | -0.0937   |
|           | (24)    | ( 24)   | (24)      |
|           | 1.0000  | 0.3623  | 0.6532    |
| fatigue   | 0.1900  | 1.0000  | 0.2426    |
| -         | (24)    | (24)    | (24)      |
|           | 0.3623  | 1.0000  | 0.2446    |
| envelopes | -0.0937 | 0.2426  | 1.0000    |
|           | ( 24)   | (24)    | (24)      |
|           | 0.6532  | 0.2446  | 1.0000    |

|           | score       | fatigue | envelopes      |            |  |
|-----------|-------------|---------|----------------|------------|--|
| score     | 1.0000      | -0.2832 | -0.7188        |            |  |
|           | ( 24)       | ( 24)   | (24)           |            |  |
|           | 1.0000      | 0.1744  | 0.0006         |            |  |
| fatique   | -0.2832     | 1.0000  | 0.2426         |            |  |
| -         | (24)        | (24)    | (24)           |            |  |
|           | 0.1744      | 1.0000  | 0.2446         |            |  |
| envelopes | -0.7188     | 0.2426  | 1.0000         |            |  |
|           | (24)        | (24)    | ( 21)          |            |  |
|           | 0.0006      | 0.2446  | 1.0000         |            |  |
|           |             |         |                |            |  |
|           | Coefficient | (sample | size) signific | ance level |  |

Spearman Rank Correlations for Female Lower Back Scores

Spearman Rank Correlations for Female Wrist/Hand Scores

|          | score       | fatigue | envelopes     |              |  |
|----------|-------------|---------|---------------|--------------|--|
| score    | 1.0000      | 0.4738  | 0.0367        |              |  |
|          | (24)        | ( 24)   | (24)          |              |  |
|          | 1.0000      | 0.0231  | 0.8601        |              |  |
| atigue   | 0.4738      | 1.0000  | 0.2426        |              |  |
|          | (24)        | ( 24)   | (24)          |              |  |
|          | 0.0231      | 1.0000  | 0.2446        |              |  |
| nvelopes | 0.0367      | 0.2426  | 1.0000        |              |  |
| -        | (24)        | ( 24)   | (24)          |              |  |
|          | 0.8601      | 0.2446  | 1.0000        |              |  |
|          |             |         |               | icance level |  |
|          | Coefficient | (sample | size) signii. | TCAUCE TAAAT |  |

|           |         |         |           | <br> |
|-----------|---------|---------|-----------|------|
|           | score   | fatigue | envelopes |      |
| score     | 1.0000  | 0.4324  | -0.0174   |      |
|           | (24)    | ( 24)   | (24)      |      |
|           | 1.0000  | 0.0381  | 0.9335    |      |
| fatigue   | 0.4324  | 1.0000  | 0.2426    |      |
|           | (24)    | (24)    | (24)      |      |
|           | 0.0381  | 1.0000  | 0.2446    |      |
| envelopes | -0.0174 | 0.2426  | 1.0000    |      |
|           | ( 24)   | (24)    | (24)      |      |
|           | 0.9335  | 0.2446  | 1.0000    |      |

Spearman Rank Correlations for Female Hip/Thigh Scores

Coefficient (sample size) significance level

Spearman Rank Correlations for Female Knee Scores

|           | score   | fatigue | envelopes |
|-----------|---------|---------|-----------|
| score     | 1.0000  | 0.0454  | -0.2058   |
|           | (24)    | (24)    | (24)      |
|           | 1.0000  | 0.8277  | 0.3237    |
| fatigue   | 0.0454  | 1.0000  | 0.2426    |
| -         | ( 24)   | ( 24)   | (24)      |
|           | 0.8277  | 1.0000  | 0.2446    |
| envelopes | -0.2058 | 0.2426  | 1.0000    |
|           | (24)    | ( 24)   | (24)      |
|           | 0.3237  | 0.2446  | 1.0000    |

| 2002220000 | score       | fatigue | envelopes     |              |
|------------|-------------|---------|---------------|--------------|
| score      | 1.0000      | -0.0451 | -0.5650       |              |
|            | (24)        | (24)    | ( 24)         |              |
|            | 1.0000      | 0.8289  | 0.0067        |              |
| fatigue    | -0.0451     | 1.0000  | 0.2426        |              |
|            | (24)        | (24)    | (24)          |              |
|            | 0.8289      | 1.0000  | 0.2446        |              |
| envelopes  | -0.5650     | 0.2426  | 1.0000        |              |
| •••• ••••  | ( 24)       | (24)    | (24)          |              |
|            | 0.0067      | 0.2446  | 1.0000        |              |
|            |             |         |               |              |
|            | Coefficient | (sample | size) signifi | .cance level |

Spearman Rank Correlations for Female Ankle/Feet Scores

Spearman Rank Correlations for Male Neck Scores

|           | score   | fatigue | envelopes |  |
|-----------|---------|---------|-----------|--|
| score     | 1.0000  | 0.4675  | -0.0535   |  |
|           | ( 48)   | ( 48)   | ( 48)     |  |
|           | 1.0000  | 0.0013  | 0.7136    |  |
| fatigue   | 0.4675  | 1.0000  | -0.1388   |  |
| -         | (48)    | ( 48)   | ( 48)     |  |
|           | 0.0013  | 1.0000  | 0.3412    |  |
| envelopes | -0.0535 | -0.1388 | 1.0000    |  |
| _         | ( 48)   | ( 48)   | (48)      |  |
|           | 0.7136  | 0.3412  | 1.0000    |  |

|           | score   | fatigue | envelopes |  |
|-----------|---------|---------|-----------|--|
| score     | 1.0000  | 0.3808  | -0.1673   |  |
|           | ( 48)   | ( 48)   | ( 48)     |  |
|           | 1.0000  | 0.0090  | 0.2514    |  |
| fatigue   | 0.3808  | 1.0000  | -0.1388   |  |
|           | ( 48)   | ( 48)   | (48)      |  |
|           | 0.0090  | 1.0000  | 0.3412    |  |
| envelopes | -0.1673 | -0.1388 | 1.0000    |  |
|           | ( 48)   | ( 48)   | (48)      |  |
|           | 0.2514  | 0.3412  | 1.0000    |  |

Spearman Rank Correlations for Male Shoulder Scores

Coefficient (sample size) significance level

Spearman Rank Correlations for Male Upper Back Scores

|           | score  | fatigue | envelopes |  |
|-----------|--------|---------|-----------|--|
| score     | 1.0000 | 0.3573  | 0.0693    |  |
|           | (48)   | ( 48)   | ( 48)     |  |
|           | 1.0000 | 0.0143  | 0.6349    |  |
| fatigue   | 0.3573 | 1.0000  | -0.1388   |  |
|           | (48)   | ( 48)   | (48)      |  |
|           | 0.0143 | 1.0000  | 0.3412    |  |
| envelopes | 0.0693 | -0.1388 | 1.0000    |  |
|           | ( 48)  | ( 48)   | ( 48)     |  |
|           | 0.6349 | 0.3412  | 1.0000    |  |

|           | score  | fatigue | envelopes |  |
|-----------|--------|---------|-----------|--|
| score     | 1.0000 | 0.1928  | 0.1268    |  |
| 000-0     | (48)   | ( 48)   | (48)      |  |
|           | 1.0000 | 0.1863  | 0.3847    |  |
| fatigue   | 0.1928 | 1.0000  | -0.1388   |  |
| ,         | ( 48)  | ( 48)   | (48)      |  |
|           | 0.1863 | 1.0000  | 0.3412    |  |
| envelopes | 0.1268 | -0.1388 | 1.0000    |  |
|           | (48)   | ( 48)   | ( 48)     |  |
|           | 0.3847 | 0.3412  | 1.0000    |  |

Spearman Rank Correlations for Male Elbow Scores

. . .

Coefficient (sample size) significance level

Spearman Rank Correlations for Male Lower Back Scores

|           | score   | fatigue | envelopes |  |
|-----------|---------|---------|-----------|--|
| score     | 1.0000  | 0.0572  | -0.1245   |  |
|           | ( 48)   | ( 48)   | ( 48)     |  |
|           | 1.0000  | 0.6947  | 0.3934    |  |
| fatigue   | 0.0572  | 1.0000  | -0.1388   |  |
|           | ( 48)   | ( 48)   | (48)      |  |
|           | 0.6947  | 1.0000  | 0.3412    |  |
| envelopes | -0.1245 | -0.1388 | 1.0000    |  |
| 0         | (48)    | ( 48)   | ( 48)     |  |
|           | 0.3934  | 0.3412  | 1.0000    |  |

|           | score   | fatigue | envelopes |  |
|-----------|---------|---------|-----------|--|
| score     | 1.0000  | -0.0030 | 0.0025    |  |
|           | ( 48)   | ( 48)   | ( 48)     |  |
|           | 1.0000  | 0.9833  | 0.9863    |  |
| fatigue   | -0.0030 | 1.0000  | -0.1388   |  |
|           | ( 48)   | ( 48)   | ( 48)     |  |
|           | 0.9833  | 1.0000  | 0.3412    |  |
| envelopes | 0.0025  | -0.1388 | 1.0000    |  |
|           | ( 48)   | ( 48)   | (48)      |  |
|           | 0.9863  | 0.3412  | 1.0000    |  |

Spearman Rank Correlations for Male Wrist/Hand Scores

Coefficient (sample size) significance level

Spearman Rank Correlations for Male Hip/Thigh Scores

|           | score   | fatigue | envelopes |
|-----------|---------|---------|-----------|
| score     | 1.0000  | -0.0979 | -0.1486   |
|           | (48)    | ( 48)   | ( 48)     |
|           | 1.0000  | 0.5020  | 0.3085    |
| fatigue   | -0.0979 | 1.0000  | -0.1388   |
|           | (48)    | ( 48)   | ( 48)     |
|           | 0.5020  | 1.0000  | 0.3412    |
| envelopes | -0.1486 | -0.1388 | 1.0000    |
|           | ( 48)   | ( 48)   | ( 48)     |
|           | 0.3085  | 0.3412  | 1.0000    |

|           | score   | fatigue | envelopes |
|-----------|---------|---------|-----------|
| score     | 1.0000  | -0.0443 | -0.1908   |
|           | (48)    | ( 48)   | ( 48)     |
|           | 1.0000  | 0.7612  | 0.1907    |
| fatigue   | -0.0443 | 1.0000  | -0.1388   |
| -         | ( 48)   | ( 48)   | ( 48)     |
|           | 0.7612  | 1.0000  | 0.3412    |
| envelopes | -0.1908 | -0.1388 | 1.0000    |
| -         | ( 48)   | ( 48)   | (48)      |
|           | 0.1907  | 0.3412  | 1.0000    |

Spearman Rank Correlations for Male Knee Scores

Coefficient (sample size) significance level

Spearman Rank Correlations for Male Ankle/Feet Scores

|           | score   | fatigue | envelopes |  |
|-----------|---------|---------|-----------|--|
| score     | 1.0000  | -0.0534 | -0.1773   |  |
|           | (48)    | ( 48)   | (48)      |  |
|           | 1.0000  | 0.7144  | 0.2242    |  |
| fatigue   | -0.0534 | 1.0000  | -0.1388   |  |
| <b>-</b>  | ( 48)   | ( 48)   | ( 48)     |  |
|           | 0.7144  | 1.0000  | 0.3412    |  |
| envelopes | -0.1773 | -0.1388 | 1.0000    |  |
| -         | ( 48)   | ( 48)   | ( 48)     |  |
|           | 0.2242  | 0.3412  | 1.0000    |  |

U Statistical Analysis of RMS Values

| Source of variation | Sum of Squares | d.f. | Mean square | F-ratio | Sig. level |
|---------------------|----------------|------|-------------|---------|------------|
| MAIN EFFECTS        |                |      |             |         |            |
| A:gender            | 0.0073821      | 1    | 0.0073821   | 4.400   | 0.0360     |
| B:board             | 0.0172089      | 2    | 0.0086045   | 5.128   | 0.0060     |
| C:pickup            | 0.0299285      | 1    | 0.0299285   | 17.838  | 0.0000     |
| INTERACTIONS        |                |      |             |         |            |
| AB                  | 0.0969498      | 2    | 0.0484749   | 28.891  | 0.0000     |
| AC                  | 0.0057710      | 1    | 0.0057710   | 3.440   | 0.0638     |
| BC                  | 0.0141725      | 2    | 0.0070862   | 4.223   | 0.0148     |
| RESIDUAL            | 4.2885285      | 2556 | 0.0016778   |         |            |
| TOTAL (CORRECTED)   | 4.4452201      | 2565 |             |         |            |

Analysis of Variance for Deltoid RMS values - Type III Sums of Squares

0 missing values have been excluded.

-

All F-ratios are based on the residual mean square error.

Multiple range analysis for Deltoid RMS values by gender

| Method: | 95 Percent | Duncan    |                    |
|---------|------------|-----------|--------------------|
| Level   | Count      | LS Mean   | Homogeneous Groups |
| <br>F   | 849        | 0.1173720 | x                  |
| м       | 1717       | 0.1209773 | x                  |
| contras | t          |           | difference         |
| F - M   |            |           | -0.00361 *         |

95% Confidence Intervals for Deltoid RMS Values by Gender 0.123 0.121 0.121 0.119 0.117 0.115 male female Gender

\* denotes a statistically significant difference.

\_\_\_\_\_

-----

ſ

| Analysis of Variance | e for Female Delte | oid RMS | values - Type | III Sums c | of Squares |
|----------------------|--------------------|---------|---------------|------------|------------|
| Source of variation  | Sum of Squares     | d.f.    | Mean square   | F-ratio    | Sig. level |
| MAIN EFFECTS         |                    |         |               |            |            |
| A:board              | 0.0655761          | 2       | 0.0327881     | 12.117     | 0.0000     |
| B:pickup             | 0.0227395          | 1       | 0.0227395     | 8.403      | 0.0038     |
| INTERACTIONS<br>AB   | 0.0648215          | 2       | 0.0324108     | 11.977     | 0.0000     |
| RESIDUAL             | 2.2811413          | 843     | 0.0027060     |            |            |
| TOTAL (CORRECTED)    | 2.4352415          | 848     |               |            |            |
|                      |                    |         |               |            |            |

0 missing values have been excluded.

All F-ratios are based on the residual mean square error.

Multiple range analysis for Female Deltoid RMS values by board

| Method:<br>Level | 95 Percen<br>Count |           | Homog | eneous Group | s |
|------------------|--------------------|-----------|-------|--------------|---|
|                  | 285                | 0.1069797 | <br>x |              |   |
| v                | 276                | 0.1168794 | х     |              |   |
| s                | 288                | 0.1283546 | x     |              |   |
| contrast         |                    |           |       | difference   |   |
| s - v            |                    |           |       | 0.01148      | * |
| S - I            |                    |           |       | 0.02137      | * |
| v - 1            |                    |           |       | 0.00990      | * |
|                  |                    |           |       |              |   |

\* denotes a statistically significant difference.

Multiple range analysis for Female Deltoid RMS values by pickup

| Method:<br>Level | 95 Percent<br>Count |           | Homogeneous Groups |
|------------------|---------------------|-----------|--------------------|
| с                | 422                 | 0.1122282 | X                  |
| 0                | 427                 | 0.1225808 | X                  |
| contras          | t                   |           | difference         |
| o - c            |                     |           | 0.01035 *          |
|                  |                     |           |                    |

\* denotes a statistically significant difference.

| Level      | Count | Average   | Stnd. Error | •         | onfidence<br>r mean |
|------------|-------|-----------|-------------|-----------|---------------------|
| GRAND MEAN | 849   | 0.1174045 | 0.0017856   | 0.1138990 | 0.1209101           |
| A:board    |       |           |             |           |                     |
| s          | 288   | 0.1283546 | 0.0030653   | 0.1223368 | 0.1343723           |
| v          | 276   | 0.1168794 | 0.0031313   | 0.1107320 | 0.1230267           |
| I          | 285   | 0.1069797 | 0.0030815   | 0.1009300 | 0.1130294           |
| B:pickup   |       |           |             |           |                     |
| 0          | 427   | 0.1225808 | 0.0025177   | 0.1176380 | 0.1275237           |
| c          | 422   | 0.1122282 | 0.0025328   | 0.1072559 | 0.1172006           |
| AB         |       |           |             |           |                     |
| so         | 144   | 0.1456540 | 0.0043349   | 0.1371436 | 0.1541644           |
| S C        | 144   | 0.1110551 | 0.0043349   | 0.1025447 | 0.1195655           |
| vo         | 139   | 0.1177350 | 0.0044122   | 0.1090729 | 0.1263971           |
| vc         | 137   | 0.1160237 | 0.0044443   | 0.1072986 | 0.1247488           |
| 10         | 144   | 0.1043535 | 0.0043349   | 0.0958431 | 0.1128639           |
| 10         | 141   | 0.1096059 | 0.0043808   | 0.1010055 | 0.118206            |

Table of Least Squares Means for Female Deltoid RMS values

| Source of variation | Sum of Squares |      | -         |        | 2      |
|---------------------|----------------|------|-----------|--------|--------|
| MAIN EFFECTS        |                |      |           |        |        |
| A:board             | 0.0394709      | 2    | 0.0197355 | 17.431 | 0.0000 |
| B:pickup            | 0.0072158      | 1    | 0.0072158 | 6.373  | 0.0117 |
| INTERACTIONS        |                |      |           |        |        |
| AB                  | 0.0194865      | 2    | 0.0097432 | 8.605  | 0.0002 |
| RESIDUAL            | 1.9372516      | 1711 | 0.0011322 |        |        |
| TOTAL (CORRECTED)   | 2.0029517      | 1716 |           |        |        |

0 missing values have been excluded.

All F-ratios are based on the residual mean square error.

Multiple range analysis for Male Deltoid RMS values by board

| Method:<br>Lavel | 95 Percent<br>Count |           | Homogeneous Groups |
|------------------|---------------------|-----------|--------------------|
|                  | <br>570             | 0.1174408 | ×                  |
| s                | 576                 | 0.1177510 | x                  |
| I                | 571                 | 0.1277704 | x                  |
| contrast         | =                   |           | difference         |
| s - v            | -                   |           | 0.00031            |
| S - I            |                     |           | -0.01002 *         |
| v - I            |                     |           | -0.01033 *         |
|                  | ***********         |           |                    |

denotes a statistically significant difference.

Multiple range analysis for Male Deltoid RMS values by pickup

| Method:<br>Level | 95 Percent<br>Count |           | Homogeneous Groups |
|------------------|---------------------|-----------|--------------------|
| с                | 858                 | 0.1189373 | x                  |
| 0                | 859                 | 0.1230375 | x                  |
| contras          | <br>t               |           | difference         |
| 0 - C            | -                   |           | 0.00410 *          |
|                  |                     | *         |                    |

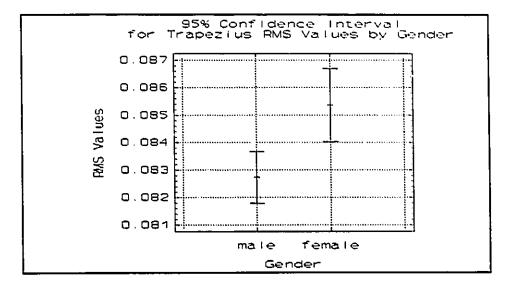
denotes a statistically significant difference.

|            |       |           |             | 95% Confidence |           |
|------------|-------|-----------|-------------|----------------|-----------|
| Level      | Count | Average   | Stnd. Error | foi            | r mean    |
| GRAND MEAN | 1717  | 0.1209874 | 0.0008121   | 0.1193943      | 0.1225806 |
| A:board    |       |           |             |                |           |
| s          | 576   | 0.1177510 | 0.0014020   | 0.1150006      | 0.1205015 |
| v          | 570   | 0.1174408 | 0.0014095   | 0.1146758      | 0.1202059 |
| I          | 571   | 0.1277704 | 0.0014082   | 0.1250078      | 0.1305330 |
| B:pickup   |       |           |             |                |           |
| 0          | 859   | 0.1230375 | 0.0011481   | 0.1207852      | 0,1252899 |
| c          | 858   | 0.1189373 | 0.0011488   | 0.1166836      | 0.1211910 |
| AB         |       |           |             |                |           |
| s o        | 288   | 0.1175761 | 0.0019828   | 0.1136863      | 0.121465  |
| s c        | 288   | 0.1179260 | 0.0019828   | 0.1140363      | 0.121815  |
| vo         | 288   | 0.1169517 | 0.0019828   | 0.1130619      | 0.120841  |
| vc         | 282   | 0.1179300 | 0.0020037   | 0.1139991      | 0.121860  |
| IO         | 283   | 0.1345848 | 0.0020002   | 0.1306609      | 0.138508  |
| IC         | 288   | 0.1209560 | 0.0019828   | 0.1170662      | 0.124845  |

Table of Least Squares Means for Male Deltoid RMS values

| Source of variation | Sum of Squares |      |            |       |        |
|---------------------|----------------|------|------------|-------|--------|
| MAIN EFFECTS        |                |      |            |       |        |
| A:gender            | 0.0039805      | 1    | 0,0039805  | 5.008 | 0.0253 |
| B:board             | 0.0037375      | 2    | 0.0018688  | 2.351 | 0.0955 |
| C:pickup            | 0.0041474      | 1    | 0.0041474  | 5.218 | 0.0224 |
| INTERACTIONS        |                |      |            |       |        |
| AB                  | 0.0120810      | 2    | 0.0060405  | 7.599 | 0.0005 |
| AC                  | 0.000084       | 1    | 0.000084   | 0.011 | 0.9193 |
| BC                  | 0.0029566      | 2    | 0.0014783  | 1.860 | 0.1559 |
| RESIDUAL            | 2.0420519      | 2569 | 7.94882E-4 |       |        |
| TOTAL (CORRECTED)   | 2.0674240      | 2578 |            |       |        |

Analysis of Variance for Trapezius RMS values - Type III Sums of Squares


0 missing values have been excluded.

All F-ratios are based on the residual mean square error.

Multiple range analysis for Trapezius RMS values by gender

| Method:<br>Level | 95 Percent<br>Count |                        | Homogeneous Groups      |
|------------------|---------------------|------------------------|-------------------------|
| м<br>F           | 1715<br>864         | 0.0827329<br>0.0853650 | x<br>x                  |
| contras<br>F - M | t                   |                        | difference<br>0.00263 * |

\* denotes a statistically significant difference.



Analysis of Variance for Female Trapezius RMS values - Type III Sums of Squares Source of variation Sum of Squares d.f. Mean square F-ratio Sig. level MAIN EFFECTS 0.010142120.005071011.3410.00000.001422210.00142223.1800.0749 A:board B:pickup INTERACTIONS 0.0014429 2 7.21449E-4 1.613 0.1998 AB 0.3836575 858 4.47153E-4 RESIDUAL 0.3966646 863 TOTAL (CORRECTED) 

0 missing values have been excluded.

All F-ratios are based on the residual mean square error.

Multiple range analysis for Female Trapezius RMS values by board

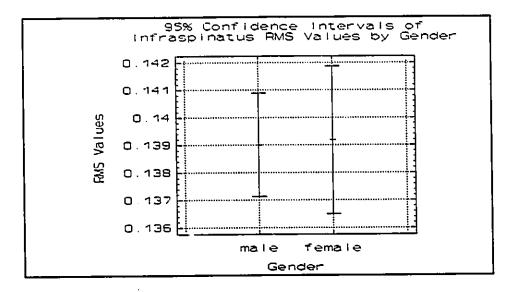
| Method:<br>Level | 95 Percent<br>Count |           | Homogeneous Groups |
|------------------|---------------------|-----------|--------------------|
| S                | 288                 | 0.0805219 | x                  |
| v                | 288                 | 0.0876598 | x                  |
| I                | 288                 | 0.0879134 | X                  |
| contras          | <br>t               |           | difference         |
| s - v            | -                   |           | -0.00714 *         |
| -<br>S - I       |                     |           | -0.00739 *         |
| v - I            |                     |           | -0.00025           |
|                  |                     |           |                    |

\* denotes a statistically significant difference.

| Analysis of Variance | for Male Trapezi |      |            |       | f Squares  |
|----------------------|------------------|------|------------|-------|------------|
| Source of variation  |                  |      |            |       | Sig. level |
| MAIN EFFECTS         |                  |      |            |       | ********   |
| A:board              | 0.0034793        | 2    | 0.0017397  | 1.795 | 0.1665     |
| B:pickup             | 0.0033888        | 1    | 0.0033888  | 3.496 | 0.0617     |
| INTERACTIONS         |                  |      |            |       |            |
| AB                   | 0.0032539        | 2    | 0.0016270  | 1.678 | 0.1870     |
| RESIDUAL             | 1.6566541        | 1709 | 9.69370E-4 |       |            |
| TOTAL (CORRECTED)    | 1.6667618        | 1714 |            |       |            |

0 missing values have been excluded.

All F-ratios are based on the residual mean square error.


~

| Source of variation | Sum of Squares | d.f. | Mean square | F-ratio | Sig. level |
|---------------------|----------------|------|-------------|---------|------------|
| MAIN EFFECTS        |                |      |             |         |            |
| A:gender            | 0.0000181      | 1    | 0.0000181   | 0.006   | 0.9402     |
| B:board             | 0.3511961      | 2    | 0.1755981   | 56.085  | 0.0000     |
| C:pickup            | 0.1909843      | 1    | 0.1909843   | 61.000  | 0.000      |
| INTERACTIONS        |                |      |             |         |            |
| AB                  | 0.2430428      | 2    | 0.1215214   | 38.813  | 0.0000     |
| ЪС                  | 0.0365700      | 1    | 0.0365700   | 11.680  | 0.0006     |
| вс                  | 0.2880467      | 2    | 0.1440234   | 46.000  | 0.000      |
| RESIDUAL            | 7.9024207      | 2524 | 0.0031309   |         |            |
| TOTAL (CORRECTED)   | 8.8226449      | 2533 |             |         |            |

Analysis of Variance for Infraspinatus RMS values - Type III Sums of Squares

0 missing values have been excluded.

All F-ratios are based on the residual mean square error.

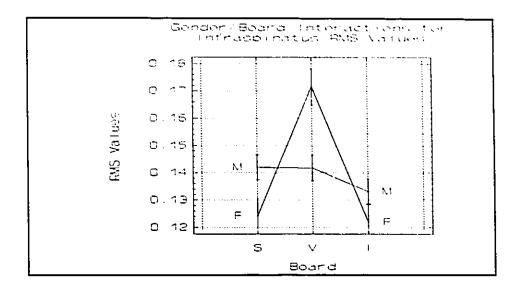


Multiple range analysis for Infraspinatus RMS values by board

| Method:       95 Percent Duncan         Level       Count       LS Mean       Homogeneous Groups         I       955       0.1275531       X         S       856       0.1331116       X         V       823       0.1566313       X         contrast       difference         S - V       -0.02352 *         S - I       0.00556 * |          |            |           |             |          |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|-----------|-------------|----------|--|
| I 955 0.1275531 X<br>S 856 0.1331116 X<br>V 823 0.1566313 X<br>Contrast difference<br>S - V -0.02352 *<br>S - I 0.00556 *                                                                                                                                                                                                           | Method:  | 95 Percent | Duncan    |             |          |  |
| S       856       0.1331116       X         V       823       0.1566313       X         contrast       difference         S - V       -0.02352 *         S - I       0.00556 *                                                                                                                                                      | Level    | Count      | LS Mean   | Homogeneous | Groups   |  |
| S       856       0.1331116       X         V       823       0.1566313       X         contrast       difference         S - V       -0.02352 *         S - I       0.00556 *                                                                                                                                                      |          |            |           |             |          |  |
| v         823         0.1566313         X           contrast         difference           S - V         -0.02352            S - I         0.00556                                                                                                                                                                                   | I        | 855        | 0.1275531 | x           |          |  |
| contrast         difference           S - V         -0.02352 *           S - I         0.00556 *                                                                                                                                                                                                                                    | S        | 856        | 0.1331116 | х           |          |  |
| S - V -0.02352 *<br>S - I 0.00556 *                                                                                                                                                                                                                                                                                                 | v        | 823        | 0.1566313 | x           |          |  |
| S - V -0.02352 *<br>S - I 0.00556 *                                                                                                                                                                                                                                                                                                 |          |            |           |             |          |  |
| S - I 0.00556 *                                                                                                                                                                                                                                                                                                                     | contrast | t          |           | diffe       | erence   |  |
| • •                                                                                                                                                                                                                                                                                                                                 | s - v    |            |           | -0          | .02352 * |  |
|                                                                                                                                                                                                                                                                                                                                     | S - I    |            |           | 0           | .00556 + |  |
| V - I 0.02908 *                                                                                                                                                                                                                                                                                                                     | v - 1    |            |           | 0           | .02908 + |  |
|                                                                                                                                                                                                                                                                                                                                     |          |            |           |             |          |  |

\* denotes a statistically significant difference.

Multiple range analysis for Infraspinatus RMS values by pickup


| Method:<br>Level | 95 Percent<br>Count |           | Homogeneous Groups |
|------------------|---------------------|-----------|--------------------|
| 0                | 1270                | 0.1298615 | x                  |
| С                | 1264                | 0.1483359 | ×                  |
| contras          | <br>t               |           | difference         |
| o - c            |                     |           | -0.01847 *         |
|                  |                     |           |                    |

\* denotes a statistically significant difference.

|                |       |           |             | 95% Confidence<br>for mean |           |  |
|----------------|-------|-----------|-------------|----------------------------|-----------|--|
| Level          | Count | Average   | Stnd. Error |                            |           |  |
| GRAND MEAN     | 2534  | 0.1390987 | 0.0011827   | 0.1367791                  | 0.1414183 |  |
| A:gender       |       |           |             |                            |           |  |
| F              | 835   | 0.1391887 | 0.0019368   | 0.1353899                  | 0.1429874 |  |
| м              | 1699  | 0.1390087 | 0.0013577   | 0.1363457                  | 0.1416717 |  |
| B:board        |       |           |             |                            |           |  |
| S              | 856   | 0.1331116 | 0.0020347   | 0.1291209                  | 0.1371024 |  |
| v              | 823   | 0.1566313 | 0.0020754   | 0.1525608                  | 0.1607019 |  |
| I              | 855   | 0.1275531 | 0.0020351   | 0.1235616                  | 0.1315447 |  |
| C:pickup       |       |           |             |                            |           |  |
| 0              | 1270  | 0.1298615 | 0.0016718   | 0.1265825                  | 0.1331405 |  |
| c              | 1264  | 0.1483359 | 0.0016733   | 0.1450539                  | 0.1516179 |  |
| AB             |       |           |             |                            |           |  |
| FS             | 282   | 0.1242080 | 0.0033325   | 0.1176719                  | 0.1307440 |  |
| FV             | 271   | 0.1714299 | 0.0033993   | 0.1647627                  | 0.1780971 |  |
| F I            | 282   | 0.1219282 | 0.0033320   | 0.1153930                  | 0.1284635 |  |
| <br>M S        | 574   | 0.1420153 | 0.0023355   | 0.1374346                  | 0.1465960 |  |
|                | 552   | 0.1418328 | 0.0023817   | 0.1371615                  | 0.1465043 |  |
| MI             | 573   | 0.1331780 | 0.0023376   | 0.1285933                  | 0.1377628 |  |
| <u>-</u><br>АС |       |           |             |                            |           |  |
| FO             | 417   | 0.1259100 | 0.0027402   | 0.1205356                  | 0.1312845 |  |
| FC             | 418   | 0.1524673 | 0.0027379   | 0.1470975                  | 0.1578372 |  |
| MO             | 853   | 0.1338130 | 0.0019160   | 0.1300551                  | 0.1375709 |  |
| MC             | 846   | 0.1442044 | 0.0019242   | 0.1404305                  | 0.1479784 |  |
| BC             | ••••  |           |             |                            |           |  |
| s o            | 424   | 0.1310323 | 0.0028398   | 0.1254625                  | 0.136602  |  |
| s c            | 432   | 0.1351910 | 0.0028032   | 0.1296929                  | 0.140689  |  |
| vo             | 417   | 0.1322229 | 0.0028558   | 0.1266218                  | 0.137824  |  |
| -              | 406   | 0.1810398 | 0.0028975   | 0.1753569                  | 0.186722  |  |
| vc             | 408   | 0.1263294 | 0.0028192   | 0.1207999                  | 0.131858  |  |
| IO<br>IC       | 425   | 0.1283294 | 0.0028254   | 0.1232353                  | 0.134318  |  |

Table of Least Squares Means for Infraspinatus RMS values

.





2 T

.- '

V Linear Regression Model

1.0

.

|          | Independent   | variable:                          | MPF  | : Fatigue Sco<br>Slope for Delt | oid Muscle |         |
|----------|---------------|------------------------------------|------|---------------------------------|------------|---------|
|          |               |                                    | dard | T                               |            | rob.    |
|          |               |                                    |      | Value                           |            |         |
|          |               |                                    |      | 7.02657                         |            |         |
| Slope    |               | 0.0746958 0.0328747 -2.27214 0.026 |      |                                 |            |         |
|          |               | Analysis                           | of V | ariance                         |            |         |
| Source   |               |                                    |      | Mean Square                     |            |         |
| Model    | 1.2           | 325276                             | 1    | 1.2325276                       | 5.162600   | 0.02615 |
| Residual |               | 711917                             |      | 0.238742                        |            |         |
|          | 17.           |                                    |      |                                 |            |         |
|          | coefficient = |                                    |      | R-squared                       | = 6.87 p   | ercent  |

W Reliability Equations

:

The following equations are taken from Guttman et al. (1982).

The mean time to failure is calculated using Type I censoring, in which testing ends at a fixed time  $t_{o}$ . In the testing of n items, k failures will occur. The mean time to failure is calculated as follows:

$$\hat{\mu} = \frac{\sum_{i=1}^{k} t_i + (n-k)t_0}{k}$$

The  $100(1-\alpha)$ % confidence interval for the mean is:

$$[\frac{2k\hat{\mu}}{\chi^{2}_{2k\alpha/2}},\frac{2k\hat{\mu}}{\chi^{2}_{2k1-(\alpha/2)}}]$$

The reliability for a station, at a time t, can be calculated as:

 $\hat{R}(t) = \theta^{-t \hat{\mu}}$ 

## **VITA AUCTORIS**

Chris Kourtis was born, much to his surprise, on 19 November 1961 in Toronto. He graduated from Royal York Collegiate Institute, in Etobicoke, in 1980. He obtained a B.A.Sc. in Industrial Engineering from the University of Toronto in 1984. From 1984 to 1992, he worked as a Programmer/Analyst, at Dot Plastics Ltd., Computer Methods, Human Services Informatics (HSI) Ltd. and Stone & Webster Canada Limited, all in the Metropolitan Toronto area. In 1992, he entered the University of Windsor in the Department of Industrial Engineering as a M.A.Sc. candidate. He is registered as a Professional Engineer (P.Eng.) in the Province of Ontario. He did very well in Grade 1 (he was brought to the front of the class as one of the three best students), but it has all been downhill ever since then.