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Abstract

An active area of research is to find a logic which models human commonsense
reasoning. Several non-monotonic logics have been proposed. However, each
has deficiencies associated with it. Default Logic is one such non-monotonic
formalism.

We examine some of the problems with Default Logic as pointed out by /Nut83,
Nut87, Isr80, Pea90] and present an approach which addresses some of these
deficiencies.

In our approach, we attach a certainty factor to each statement in the knowledge
base and use this information to give the user the most certain answer to a query.

This gives us a certainty factor default logic (CFDL). We present the syntax
semantics and proof theory for this logic.

A resolution algorithm has been developed and implemented. This implemeata-
tion shows that the proposed logic works with some benchmark examples /Lif89]
for non-monotonic reasoning. It can also be used as a testbed fof different calculi

of uncertainty.
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INTRCCUCTION 1.1

Chapter 1: INTRODUCTION

1 Qur Area of Research

In this thesis we are interested in approaches to commonsense reasoning. For
example, if we are told “most birds fly” and “Tweety is a bird’, we may use
commonsense reasoning to conclude “Tweety flies”. However the conclusion
“Tweety flies” is not certain. There are many different scenarios which would
refute *“Tweety flies”. For example, Tweety may be a penguin or Tweety may be
injured. Despite these possibilities the conclusion “Tweety flies”, based on the
two pieces of information given, can be said to be an intelligent conclusion.

Intelligent behavior rests in the ability to reason in the absence of complete
and certain information. Life by its very pature is uncertain. We drive to work
believing that we have a job, the office still exists, that the car will get us there,
but none of this is completely certain. Our information is incomplete but we are
not paralysed into inaction. We reason, make intelligent decisions and go about
our lives based on the available incomplete uncertain information.

Non-monotonic formalisms are frequently used for commonsense reasoning
since they are more flexible. Default Logic is one such formalism. Default logic
models the human commonsense reasoning process of jumping to conclusions,
based on prototypical or default rules, when information is incomplete. The
logic contains default rules .which are used to make intelligent guesses when the
information available is incomplete. For example, given the information “John
is a Canadian” and the default rule “most Canadians play hockey” then we can

reasonably conclude “John plays hockey”. Of course, this is only a guess. We

7
e

\',\‘



INTRODUCTION 1.2

v

may find out later that John hates hockey and therefore never plays it. However,
the default rule allows us to make a reasonably good guess in the absence of

complete information.

2 The Problems Addressed in this Thesis

Default Logic is one non-monotonic formalism used for commonsense reason-
ing, but there are some deficiencies with it. Two prdblems are specifically of
interest in this thesis.

Firstly, Default Logic does not offer any suggestions when two default rules

are in conflict. For example, we have the following information:

Most Republicans are hawks ({(default rule)
Most Quakers are doves {(default rule)
Nixon is a Republican

Nixon is a Quaker

The two defaults are in conflict and DL cannot tell us if Nixon is a hawk or a dove.
Secondly, Default Logic does not distinguish between “the statement P is true”

and “there is reason to believe P is true”. For example, given the information:
" Typically birds fly
Peter is a bird

Paul flies

then clearly we can conclude “Peter flies”. However, Default Logic makes no

g



INTRODUCTION 1.3
distinction between the statement “Peter flies” and the statement “Pau! flies”, but
there is clearly a difference since the former is derived via a default rule and as
such is only a “best guess™. It is not known for certain that “Peter flies”.

This thesis address these two specific problems.

3 Our Solution

To solve these two problems we propose to attach a certainty factor to each
item of information in the knowledge base. We develop a logic called certainty
factor default logic (CFDL). This is essentially Default Logic augmented with
certainty factors. In the thesis we show how this approach solves some problems
and has some other advantages also.

3.1 Thesis Statement

Default logic is an approach to NMR, but it is deficient in some respects.
: Specifically of concern here is the fact that it can not handle conflicting defaults
and it does nof distinguish between the statements “P is tru¢” and “there is reason
to believe P is true”. The hypothesis here is that these two problems can be
addressed by attaching a certainty factor to each statement in the KB which

represents the certainty that the statement is true or false.

4 Thesis Outline

Chapter 2 provides background for our research area. We discuss some of the
basic concepts such as monotonic and non-monotonic reasoning. We examine
the criticisms of non-monotonic reasoning. We look at Default Logic and give
an example of a system which implements DL. We then examine some methods

for handling uncertainty.

A



INTRODUCTION 1.4

Chapter 3 examines in detail the problems associated with Default Logic. In
Chapter 4 we outline our solution to the problem and give examples to illustrate
how the solution Works.

Chapter 5 presents our proposed certainty factor default logic. We give details
of the syntax, semantics and proof theory. Chapter 6 gives the implementation
details of a system based on our logic. We outline the resolution strategy, data
structures and resolution algorithm.

Chapter 7 has a discussion of our findings and some future work. We also give
some of our conclusions and show how these findings support our thesis statement.

Appendix A is a list of abbreviations. Appendix B is a set of definitions for the
subject area. Appendix C is a survey of non-monotonic reasoning and appendix
D is a bibliography of non-monotonic reasoning. Appendix E gives the source

code for our implementation.
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Chapter 2: BACKGROUND

1 Introduction

In this chapter we give background inf;orrnation on our research area. We de-
scribe what is meant by monotonic reasoning (MR) and nor_x-xponotonic reasoning
(NMR). We show how NMR differs from MR and why we need NMR. We also
look at some criticisms of NMR, give a brief overview of default logic (DL) and
examine some methods of handling uncertainty. (A complete survey of NMR is

given in Appendix C)
2 What is Monotonic Reasoning ?

If the addition of new information to the knowledge base does not block the
derivation of a previously derivable conclusion then our reasoning is monotonic.
Hence, given a set of information P, then if we can conclude q from P, then we
must also be able to conclude q if new information is added to P. For example,
if given “Birds fly” and “Tweety is a bird” we can conclude “Tweety flies”. I1f on
addition of the fact “Penguins do not fly” we are still able to conclude “Tweety
flies”, then our reasoning is monotonic.

In monotonic reasoning the number of conclusions must increase monotonically
with the amount of information available. This follows since no old conclusion
_ can be made false and therefore the number of possible conclusions can only
- increase. More importantly, from our perspective, is the fact that the number of

conclusions can never decrease in monotonic reasoning.

* For formal definitions of NMR and MR see survey pg C.84



BACKGROUND ' 2.6

Monotonic reasoning is clearly inappropriate for commonsense reasoning. Re-
call the Tweety example where our present information is “Birds fly”, *Penguins
do not fly” and “Tweety is a bird". If we were to add the information that “Tweety
is a penguin” then we can conciude “Tweety flies” since Tweety is a bird. We
can also conclude “Tweety does not fly” since Tweety is a penguin. Tweety can
not both “fly” and “not fly”. However if we are reasoning monotonically we can
derive both these conclusions and there is a conflict.

The problem pivots on the fact that we want to say “most birds fly” which is
not possible in classical logic. “Most birds fly” implies that there are some birds
that do not fly. Thus, the conclusion “Tweety flies” from the information “Most
birds fly” and “Tweety is a bird” can not be made with absolute certainty. In
order that our conclusion “7i weety flies” be absolutely certain we would have to
know what exactly is meant by most in the statement “Most birds fly”. In other
words we would need to have complete information on the meaning of “Most™.
We would need to know all the exceptions to “most birds fly” and also that
Tweety is not an exception.

For example, we would have to say “Birds fly if they are not penguins or
emus or have their wings clipped or are dead or . . . . We can never be certain
that our list is complete. For monotonic reasoning it would have to be complete.
In real life our information can never be absolutely certain. Despite this lack of
complete and certain information we continue to make decisions thch seem to be
the best at the time and simply change them, if necessary, when new information
comes to light. A key feature of NMR is that it allows old conclusions to be
revised in the light of new knowledge. |
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3 What is Non-monotonic Reasoning ?

Reasoning is non-monotonic if the conclusions may be revised when new

information comes to light. For example, given:

Most birds fly
Penguins do not fly

Tweety is a bird

we can reason “Tweety flies”. However, if we find out “Tweety is a penguin”
we now have to conclude “Tweety does not fiy”. Our previous conclusion is no
longer true, it has been retracted and a new conclusion is added.

There are different approaches to NMR. One approach uses a closed world
assumption (CWA). In Lthis approach any fact that is not specified or derivable
from information specified is assumed to be false. Thus in the CWA, there is no
need to explicitly represent negative information. The formal approaches to NMR
which use the CWA, such as Circumscription /McC80], use the CWA to define a
possible world which will satisfy the incomplete information. For example, given

A is a’block and B is a block,
then on circumscription we get

if x is a block it must be A or B

otherwise it is not a blbck.
One problem here is that we are unable to differentiate between certain and
possible inferences such as

C is not a block and
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C is possibly a block.

The other approaches to NMR are the non-closed world. They utilize different
strategies to complete the KB with the incomplete information. One such approach
is Default Logic. It adds rules, known as default rules, to the KB, which are used
when there is no specific information. For example, if

A and B are blocks and

C is not known to be a block.
In DL, we can add the default rule “Most objects are not blocks”. We can use
this rule to conclude C is not a block. Thus, default rules give a choice when
there is no conclusive information. However, one problem is that we still unable
to distinguish between answers that are certain and those those that are derived
from default rules.

Some of the non-closed world approaches are Numeric. In the Numeric
approaches, the problem of incomplete information is addressed by assigning
different probabilities, certainty factors or belief measures to the information.
The problem with some of these approaches is the need for prior information
and relationships between the information in the KB. Traditionally, Numeric
approaches have been regarded as suitable for domains in which such prior
information is available. However, in more recent times a more subjective
approach to probabilities has made it possible to use the numeric approaches
even when prior information is unavailable (See survey of NMR in Appendix C).

In our research we look at ways in which we can merge the desirable aspects
of the Numeric and Non-Numeric approaches to NMR. More specifically we look

at merging DL with certainty factors.
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The possible application areas for computers will be endless if they are capable
of commonsense reasoning. They are many ways in which this problem can be
addressed. NMR is one possible approach to the problem. We focus our research

on NMR despite the criticisms this approach has attracted.

4 Critics of Approaches to NMR

There are several criticisms of the approaches to NMR. One [Pea90] criticism
is that the formalisms do not build on traditional logics. Another criticism,
[Pea90] concerns the problem of consistency checking, inherent in NMR, which
is very difficult. Yet another criticism /Nur83] is that the formalisms do not make
provisions for conclusions which are not completely certain. We now look more

closely at these criticisms.

4.1 NMR should build on Traditional logics

One criticism [Pea90] is that NMR formalisms attempt to define a new non-
monotonic logic rather than extending existing approaches to reasoning. The
argument is that existing approaches to reasoning are well-defined and well-
understood. Hence, we should look at ways in which these approaches can be
augmented to allow NMR rather than look for a new non-monotonic logic or new
formalisms which may not be consistent with traditional approaches. An example .
of a formalism which takes this approach is Circumscription where first order
logic is augmented with a form of NMR.

The probabilists [Pea90] similarly argue that an approach to commonsense
reasoning based on probability theory should be pursued instead of NMR since

probability theory is much better understood than the non-numeric approaches.
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4.2 Consistency checking is very difficult

Israel [Isr80] argues that the formal approaches to NMR are in general, non
semi-decidable. This means that if a conclusion follows from the available infor-
mation it may not always be possible to prove that this is the case. Israel argues
that NMR systems are very slow because of the repeated need for consistency
checking.

In reasoning we make conclusions that follow from the available information.
These conclusions must be consistent with the available information. The process
of ensuring that our information is consistent is known as consistency checking.

In monotonic reasoning the information given is consistent. If we add a new
piece of information “p” then to ensure that p and our old information is consistent,
we need only show that “nmot p” is not a possible conclusion. For example, the
information

Tweety is a bird

Birds fly

Penguins don’t fly
is consistent. However, adding “Tweety is a penguin” makes the KB inconsistent
since we can conclude “Tweety flies” (p) and “Tweety does not fly” (not p).

The problem with consistency checking in NMR is that the addition of a new
piece of information “p” may result in inconsistencies other than “not p”. Hence
a proof that “not p” is not derivable is insufficient in this case. For example,
in the Tweety example, when we added the fact “Tweety is a penguin” (p) thé
inconsistency did not aﬁse from “Tweety is not a penguin” (not p) but rather

from “Tweety flies” (q) and “Tweety does not fly” (not q).
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Consistency checking in NMR will require a check to ensure that no pair of
possible conclusions are in conflict. This is a very difficuit task even for a small
KB' . .

We agree that the process of consistency checking in NMR is very difficult.
However, this is a problem with all reasoning formalisms where the information
may be incomplete.

4.3 Only true/false conclusions

It can be argued that meuy uncertain conclusions are made when reasoning
with incomplete information. For instance, in the Tweety example the conclusion
“Tweety flies” is not certain. However present approaches to NMR do not allow
conclusions of the form “There is reason to believe that Tweety flies”.

Nutter [Nut83] notes that non-monotonic approaches do not distinguish between
guarded statements of the form “there is reason to suppose P” and statements
of the form “P” and hence no distinction is made between conclusions which the
premises warrant without reservation and those which the premises only suggest.

We find this criticism of Nutter to be very interesting. One objective of our
research is to overcome these shortcomings.

Despite these criﬁcisms [Nut83, Pea90] research in NMR is very active in
both the theoretical aspects and practical applications. (For further details see
Appendix C)

5 Summary: Default Logic

Default reasoning is an approach to reasoning with incomplete information
where, in the absence of certain information, one makes conclusions based on

what is “normally” expected.
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Reiter’s Default Logic /Rei80] uses a default approach to NMR and is proposed
as a logic for default reasoning. DL provides a representation for commonserse
facts of the form “Most A’s are B’s” where “most” is interpreted in the proto-
typical and not in a statistical sense. For example,

Most elephants are grey and

Most birds fly
are characteristic information for a prototypical or normal elephant and bird
respectively. It is not meant for purely statistical information of the type “Most
voters prefer Clinton” since this does not mean that typically voters prefer Clinton
or normal voters prefer Clinton. DL also explains the process of correct reasoning
when such defaults are present.

DL consists of default rules which in general have the form

a(X) : 5(X)
= (1)

which is normally interpreted as * if for some specific X, a(X) is true and it
is consistent that b(X) is true then conclude ¢(X)”. A subset of all defaults

have the form

a(X) : b(X)

e @
These are referred to as normal defaults. Using the same syntax, the default
“Most birds fly” would be represented as

bird(X) : flies(X)
flies(X) )

which is interpreted as “if X is a bird and it is consistent that X flies then
X flies”.
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The basic strategy in DL if asked “Who flies” will be to search the certain
facts (Reiter’s “hard” facts) for those objects known to fly and if none is found
then to use default rules to find a answer. If there is no certain fact or applicable
default then a “no” answer is given.

In [Par94], DL is classified as a non-closed world non-numeric approach. We
classify DL as non-closed world since it uses a non-uniform completion strategy,
in contrast to the uniform completion strategy of closed world approaches. We
illustrate this point with an example.

Using a CWA, if we can not prove Tweety flies we will assume that Tweety
does not fly. However, in DL we can change the completion strategy by using
the default “typically birds fly” to conclude Tweety flies.

We classify DL as non-numeric since no numeric or statistical information is
explicitly represented in the defaults. Reiter fRC81] notes that his defaults like
“Most birds fly” have both a statistical connotation “The majority of birds fly”
and a sense that a prototypical or normal bird is being described. We found this
point significant and, in our research, look at the possible use of some form of
statistical information with Reiter’s defaults.

In common with all approaches to NMR, DL has some deficiencies. These will

be examined in Chapter 3.

6 An Example System: Theorist

In this section, we examine the approach taken by Ttieorist [P0092] to default
reasoning since our s':vstem also models default reasoning. This enables us to look

at some of the differences between the systems.
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Theorist [Poo88] is a logical reasoning system for defauit reasoning and diag-

nosis. The formulae in the KB are divided into three sets.

+ A set of facts which are intended to be true in the world being modelled

* a set of possible hypotheses, which is any ground instance which can be used

in an explanation if consistent and

« a set of constraints which are closed formulae used to restrict what can be

hypothesized.

In the KB these formulae are represented as:

fact w where w is always true
for example :-
fact bird(tweety)

which means Tweety is a bird.

default d : w where d is a default
for example :-

default birdsfly(X) : flies(X) <- bird(X)
which means there is a default rule named birdsfly which can be used

to conclude X flies if X is a bird.

constraint w where w prevents the use of

the corresponding default.
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for example :-

constraint not birdsfly(X) <- emu(X)
which means the default named birdsfly cannot be used if X is an emu.

I will illustrate how these formulae are used to answer queries with an example.

The KB is as follows:

default birdsfly(X) : flies(X) <- bird{X).
constraint not birdsfly (X) <- not flies(X).
default emusdontfly(X) : not flies(X) <- emu(X).
constraint not emusdontfly(X) <- flies(X).
constraint not birdsfly(X) <- emu(X).

fact bird(X) <- emu (X) .

fact bird(X) <- robin(X).

fact bird(tweety).

fact emu(polly).

fact robin{cohen).

fact not flies{tweetum).

fact robin (tweetrob) .

If the user wants to know who flies then the answers generated would be Tweety

and Tweetrob. The possible answers Polly and Tweetum are prevented by the

constraints. _ -
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Theorist answers the query Who flies ? as follows:
if there a fact flies(X) then
answer yes with the binding to X
else if there is an applicable default
make the default conclusion provided
there are no constraints on that named default.
The addition of the default penguins don’t fly requires that the constraint not
birdsfly penguin be generated. Thus, in Theorist we are forced to represent éll the
exceptions to a default explicitly. This is not des‘rable and our system provides

another approach to encode the exceptions to a default (See chapter 4).

7 Methods of Handling Uncertainty

Conclusions made in NMR may not be certain. Hence, it is reasonable to
ask: “How certain is a given conclusion ?”. Traditionaily, numeric methods
have attempted to deal with this problem. They assign certainty measures to
conclusions. Then they either try to find a model which satisfies all the conclusions
or they look for a set of rules which would give the set of conclusions. We look
more closely at the rule based systems.

The mechanism for deriving conclusions, in a rule based system, can be
implemented using if-then production rules. The problem with these production
tules is that they are not independent of each other. Hence, the difficulty lies in the
proper .propagation of tﬁ? certainty measurss through the proof procedure. Each

type of numerical approach uses a different approach to deal with this problem.



BACKGROUND 2.17
Some of the main approaches to this problem are probability theory, certainty

theory, Dempster Shafer theory of evidence and Zadeh’s fuzzy logic and possi-

bility theory. '

7.1 Probability Theory

Probability theory is the classical means of dealing with uncertainty. However,
a prior knowledge of the events and their interdependencies is required before an
estimate of the various combinations of events can be determined.
For example, if A and B are independent events then, the probability of A and
B occurring is given by the product of the probabilities of A and B. That is
P(A and B) = P(A) * P(B).
Similarly we have,
P(A or B) = P(A) + P(B) — P(A and B).
Bayes rule was developed to help estimate probabilities when they are not
known. However, a clear knowledge of their interdependencies is still required

and this is a problem.

7.2 Certainty Theory

Certainty theory /SB75] is, in effect, an approximation to probability theory, but
it uses incomplete knowledge [Mor87]. The theory was developed in an attempt
to mode] the inexact reasoning processes of medical experts and was implemented
as part of the MYCIN expert system [Sho76]. The approach taken is to maintain
two values for each rule in the system: ._~‘

« MBfh,e] = X
is the measure of the increased belief in hypothesis h given evidence e.
. MD[h,e] =Y
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is the measure of the increased disbelief in hypothesis h given evidence e.
These measures of belief and disbelief correspond to subjective estimates given

by experts. They are related to the Probability theory in the following way:

Liff P(h) =1
IVIB[h‘ e] = { maz|P(hle}|=-P(h) otherwi (4)
Tmaz[10[-P{A) ise
1iff P(k) =0
MDih,e]=1< . 5
[ e] {m:aihifo?_;f'h!—“;l ) otherwise ( )

where Pth) is the expert’s subjective belief in hypothesis h, and P(hle) is the
experts’s subjective belief in hypothesis h given evidence e.
A third measure is the certainty factor which combines the measures of belief
and disbelief and is defined as:
CF[h,e] = MB[h,e] — MD[h,]
The certainty factor is used to rank competing hypotheses. Its advantage is that

if exact probabilities cannot be obtained then it can provide a subjective estimate.
7.3 Dempster Shafer Theory of Evidence

This theory [Sha76] sets up belief functions over sets of objects. Morrissey
[Mor87] notes:
“4 belief function associates a number between zero and one with a
proposition. The number indicates the degree of belief in the proposition
~ given the evidence. The theory concentrates on combining degrees of belief
given different bodies of evidence. It is not concerned with how the numbers

are determined.”
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Shafer [Sha90] notes:

“ The theory of belief functions is based on two ideas: the idea of obtaining
degrees of belief for one question from subjective probabilities for a related
guestion and Dempster's rule for combining such degrees of belief when they
are based on independent items of evidence.”

One problem with Dempster Shafer’s theory of evidence is that it is difficult
to implement.

The Dempster Shafer Theory of Evidence is not considered further in this work
since we are not primarily concerned with belief functions. We do not want to
estimate our belief in a particular conclusion but rather estimate our certainty that

a conclusion is correct.
7.4 Fuzzy Logic and Possibility Theory

Dubois and Prade [DP90] note:

“The expression ‘fuzzy logic’ is used to refer to a variety of approaches
proposing a logical treatment of imperfect knowledge usually referring ex-
plicitly to fuzzy-set theory. However, a distinction among these approaches
can be made between those that deal primarily with vagueness and those
whose primary concern is uncertainty.”

Fuzzy logic {Zad83] is used to present certain statements which other logics
cannot handle. For example, the statement: ‘If a car which is being offered for
sale is old and cheap then it is probably not in good condition’ is rather vague
and uncertain and involves a degree of truth [Mor87].

Possibility theory [Zad78] .is based on earlier work on Fuzzy Set Theory
[Zad65]. The work in this area has been continued by Dubois and Prade. They
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discuss a possibilistic logic /DP90], which is a logic of partial ignorance and note

that the possibility theory captures, in a very simple way, states of knowledge

ranging from complete information to total ignorance.
8 Conclusion

In this chapter we have shown that NMR is needed when knowledge is in-
complete. Despite criticisms research in NMR is very active. We have given an
overview of DL as an approach to NMR and concluded the chapter by looking
at some methods of handling uncertainty.

In the next chapter we examine some of the problems with Default Logic.
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Chapter 3: PROBLEMS WiTH
DEFAULT LOGIC

In this chapter we look at the problems associated with the DL approach to
modelling human commonsense reasoning. We describe some of the proposed

solutions /RC81, Bre91]. We also discuss Nutter’s [Nut83] criticism of DL.

1 Interacting Defaults -

Default rules provide a means of jumping to conclusions. However, these
defaults are not always mumally exclusive. They interact with each other and
although they give intuitively correct results most of the time, they cannot be
guaranteed to do so at all times. Thus, one of the problems with DL is that when
defaults interact they do not always lead to intuitively correct conclusions. One
\#ay in which default rules interact is when the conclusion of one is the same as

the premiss of the other. For example, given the defaults:

Elementary students are children

Children are not employed

we note the conclusion of the first default (children) is the same as the premiss

of the othc;r‘(Children). Hence, these defaults interact and in this case give the
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conclusion

Elementary students are not employved,

In this example, this conclusion is what we would intuitively expect.
Interacting defaults do not always lead to intuitive correct conclusions. For

example, given the defaults:

High school dropouts are adults

2dults are employed
they will interact to give the conclusion
High school dropouts are employed.

This is not the kind of conclusion we would like to make given the original
defaults. It seems more likely that High school dropouts will not be employed.

Also [RC81] we have the problem that:

“ ... the general class of default theories is mathematically intractable.”

This paper also notes that “normal” default theories had the desirable pfoperties
(e.g. extensions always exist, a proof theory, conditions for belief revision) only
when interactions between default rules are ignored.

If we are to maintain a normal representation for default rules then we must find

a way to deal with the interaction between default rules. If we choose a “non-
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normal” representation then we will have to deal with the loss of the desirable
properties of “ normal” default theories. The problems with DL stem from this
conflict.

The problems with DL stem from the interaction of defaults and the need for
a “non-normal” representation for some defaults.

Interacting defaults are not considered any further in this thesis.

2 Conflict with Default and Certain Rules

Default rules are rules in. which the conclusions are most likely, but not certain,
to follow, given the premisses. If the conclusions are certain then the rule is a
certain rule. Default rules may interact with certain rules to give results which
are not intuitively expected. In /RC8I] the problem of default rules interacting
with universally quantified first order formulae’ is examined. ‘

Usually certain rules have the form:

{i} All A’s are B’'s

For example, All cows are animals
and default rules of the form:

(ii) Typically A’'s are B's:

For example, Typically animals do not fly.

The default rules and certain rules can interact in the following ways.
All A's are B's and Typically B’s are C's
thus Typically A’'s are C’s

For example, All Eagles are birds

T We will refer to universally quantified first order formulae as certain rules



PROBLEMS WITH DEFAULT LOGIC 3.24
and Typically birds fly

thus Typically Eagles fly

Typically A’s are B's and All B's are C’'s
thus Typically A’s are C's
For example, Typically American adults own a car
and All cars have wheels

thus Typically American adults have wheels

In both these examples, the conclusions are what is intuitively expected. How-
ever, this is not always the case. For example, if given
All 21 year olds are adults
Typically adults are married
the interaction will give
Typically 21 vear olds are married.
This is not what we would expect since it seems more likely that a 21 year old
person would not be married. Thus the interaction gives a cenclusion which is
not intuitively expected.
DL does not provide a solution to the problem of intuitively wrong conclusions

which result from the interaction between default and certain rules.

3 Conflicting Defaults =

Another problem with DL is that default conclusions may contradict each other.
Defaults can be said to be in conflict if their premisses share a common instance °

and the conclusion of one contradicts the conclusion of the other.
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For example if we are given :

Quakers are pacifists (1)

Republicans are not pacifists (2)

John is a Quaker

John is a Republican.
John is both a Quaker and a Republican and hence defaults (1) and (2) above,
share a common instance. They conflict because selecting the first default will
lead to the conclusion John is a pacifist. However, selecting the second default
will lead to the conclusion that John is not a pacifist.

The answer to the question of John’s warlike nature will depend on our choice
of defaults. This is one of the problems with DL since the choice of defaults
in arriving at the answer should not affect the answer. DL does not provide a
mechanism for dealing with the problem of which default we should choose. This
problem with conflicting defaults is significant, especially if a uniform method of
arriving at answers is to be maintained.

The problem with conflicting defaults is to decide which of the two possible
answers is the better one and if neither is better then what should our answer
‘be. The better answer will be based on the default in which we have a greater
~ degree of confidence.

The main focus of the thesis is to provide a feasible solution to this problem

of conflicting defaults.

4 Solutions to the probiem of iriteracting and conflicting defaults

Several researchers [RCSI, Bre91] have proposed solutions to some of the

problems of DL.
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4.1 The “Patch” Solution

In fRC81] the problem of conflicting and interacting defaults is examined. They
identify different cases which, if the default representation is used, lead to counter-
intuitive results. They then give alternative default representations (*“patches™) for
each case which would block the erroneous couclusion.

For example we can have the following conflicting defaults

republican{z) : -pacifist(z)
—paci fist(z)

b}

quaker(z) : pacifist(z)
paci fist(z)

which states that typically republicans are not pacifists and typically quakers are
pacifists. If we wish no conclusion to be made if John is both a Republican and

a Quaker then we replace (6) with the following non-normal defaults:

republican(z) : —quaker(z) A —pacifist(z)
—pacifist(z)

b

@)
quaker(z) : —republican(z) A pacifist(z)
pacifist(z)

This states that typically Republicans who are not Quakers are not pacifists and
typically Quakers who are not Republicans are pacifists.
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If we know for certain that Republicans are not Quakers and Quakers are not
Republicans then we can replace the default representation (7) with the following

normal defaults

republican(z) : —~quaker(z)

~quaker(z)

quaker(z) : —republican(z) ®)

~republican(z)

republican(z) A —quaker(z) : —pacifist(z)
—pacifist(z) ’

9
quaker(z} A —republican(z) : pacifist(z)
pacifist(z)

which states typically Republicans are not Quakers, typically Quakers are not
Republicans, typically _@publicans who are not Quakers are not pacifists and
typically Quakers who-“;re not Republicans are pacifists.

For each case they [RC8I] -devise alternative default representations
(“patciles“).

Despite the “patches” if John is both a Quaker and a Republican we still cannot

say anything about his warlike nature. The general pattern of defaults which
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conforms to our examplz is

Alz) + Cia) B(z) : C{x)
e S D) (10)

Other pairs of defaults fit this pattern. For example:

Typically full time students are not employed
Typically adults are employed
John is an adult

John is a full time student.

However, in this example, the intuitively correct conclusion would be John
is not employed rather than making no conclusion as was the case with the
Quaker/Republican example.

They [RC81] give another “patch” for the adult/full time student example. The
problem with the “patch” approach is that even if a pair of defaults fits a given
pattern, we still cannot be sure which of the alternative default representations
(“patches”) we should use. The choice in the Quaker/Rgpp_blican example is
different from the choice in the adult/full time student e::mll—;;ie. Thus, it seems
necessary for prior information on the nature of the interacﬁng defaults be known
before the appropriate default representation can be used. The problem will be
more complicated if the addition of new information Ehanges the nature of the ..
interacting defaults. \

4.2 The “Named Defau!t” Solution
Brewka [Bre91] proposes a slightly different solution to the problem of conflict-

ing default rules. This approach is more elegant than Reiter’s since the latter is
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more specific to the conflicting defaults and requires the explicit representation of
the exceptions in the default. In contrast, Brewka’s approach seems more general
and requires no change to the default.

We illustrate the approach with the following example. Given

Typically students are not married (1)}
Typically adults are married (2)
John is a student

John is an adult

‘we note that the two defaults are in conflict.
We can give preference to (1) in the adult/student example by making it a weak

~ exception of (2). One approach /RC81] to achieve this would be to replace (2) by
Typically adults who are not students are married

However, this is a non-normal default and the approach is impractical since it
requires that all exceptions be explicitly mentioned in the default. |

Brewl__ca’S approach is to give each default a unique name and reason about the
applicabilitjr of that default. Brewka’s approach to this example is to name default
rule (2) as R1 and replace default rule (2) with

appl(R1) A adult(z) : married(x)
married(z)

(11
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This reads as “Typically adults for whom default R1 is applicable are married”.
We add the “meta default”

adult(z) : eppl(R1) 12
appl( R1) (12)

This reads as “Zypically default R1 applies to adults”. We then include the
blocking formula

student(z) = —appl( R1) (13)

which says “Default RI is not :applicable to students”.

The advantages of Brewka'’s approach are that the defaults are normal and new
exceptions to défaults will not necessitate changes in the default. The only change
necessary would be the addition of a blocking formula for ea;:h exception to the
default.

One problem with Brewka’s approach, which he points out, is that it will not
work in the case where the weak exception is derived via a default. In this case
a semi-normal representation of /RC8I] must be used.

Any approach which aims to prioritize defaults suffers from inflexibility since
the priority is cast in stone. Ideally we would like to prefer one default over
the other depending on the circumstances. In the adult/student example, if we

know that John is 2 mature student retumipg to school to upgrade his skilis then

we would probably like to conclude that he is married. However, if John is just
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eighteen and in his first term in university we would probably prefer to conclude

that he is not married.

5 Only True/False Conclusions

DL fails to distinguish between conclusions which are known to be certain and
those conclusions which are not certain [Nut83].
For example, if we know
Birds fly
Tweety is a bird
Chiree flies
then we can conclude
Tweety flies

Chiree flies.

However we are certain that Chiree flies but there is a possibility that Tweety
does not fly. We would reason that Tweety is a bird and typically birds fly hence
Tweety flies. The use of the default “bird:s fly” introduces a degree of doubt in
our conclusion. | '

A more reliable conclusion about Tweety would be
There is reason to believe Tweety flies.
However, such distinctions are not possible in DL.

Nutter /Nut83] argues that if a distinction between guarded statements of the

form “there is reason to suppose P” and “P” are made then a monotonic logic
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can deal with reasoning from default generalizations. However, Nutter does not

give an example to illustrate this point, nor elaborates on it.
6 Conclusion

In this chapter we have shown that there are many problems with DL. Default
rules can interact to give intuitively wrong conclusions. Common instances of
default rules, as well as certain and default rules, can contradict each other.

We have shown some proposed solutions fRC81, Bre91]. We also discuss the
problems associated with the lack of distinction between “There is reason to
believe P’ and “P” in DL.

In the next chapter, we present our approach to commonsense reasoning,.
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Chapter 4: SOLUTION OUTLINE

In this chapter we outline our approach to computer based common sense
reasoning. We give details of our solution with examples and describe its

advantages.

1 Introduction

In human common sense reasoning we arrive at conclusions based on the
available information. For example, we know most birds fly and lf Tweety is
a bird then we conclude Tweety flies. However, we are not surprised if later we
find Tweety does not fly since we are aware that our conclusion is not certain.
We know this since the information we use, “Most birds fly”, is not certain. On
the other hand, we would be very surprised if we found out that Daisy the cow
flies since we are certain cows don’t fly. The degree of certainty we have in our
conclusion is dependent on the degree of certainty we have in the information
used to arrive at the conclusion.

It is clear that we can attach some degree of certainty to each unit of information
‘'we have. However, it is not clear what is the nature of this value, nor how we
arrive at its value, nor how we'combine these values.

It is clear that we need some measure of certainty in computer based common
sense reasoning systems. The_refore we propose to have an explicit certainty factor

attached to each statement in our system.
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2 Our Solution
2.1 Add Certainty Factor

In our solution, we use a rule based approach and attach a certainty factor (CF)

to each rule and fact in our knowledge base. The CF allows for the following

different types of information:

» Certain Rules: rules where the conclusion is indisputably true.
For example, all birds are mammals.
» Blocking* Rules: rules where the conclusion is indisputably false.
For example, penguins don’t fly.
« Default Rules: rules where there is some doubt about the certainty of the
conclusion.
For example, most birds fly or typically Canadians play hockey.
« Certain Facts: facts known to be indisputably true.
For example, the earth is round.
» Uncertain Facts: facts where there is some doubt about their truth or falsehood.
For example, cholesterol causes heart disease or there is a god.
« Blocking Facts: facts known to be indisputably false.
For example, the earth is flat.

A certainty factor value represents a degree of certainty in the statement to
which it is attached. In our system, we use a scale from zero to plus or minus
one to represent our degree of certainty in a clause.

We .are certain that 2 clause is true® if has’a CF of plus one or minus one.

! The choice of the name *Blocking” will be made clear when we explain our resolution strategy

¥ The semantics for the clauses with a CF are given in chapter 5.
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For example,

bird(tweety) « : + 1.0

means we are certain Tweety is a bird.

bird(john) +~ : — 1.0
means we are certain John is not a bird. We are certain that a clause is false if it

has a zero certainty factor. For example,

flies(X) — cow(X) : 0
which means we have no certainty in the statement that cows fly.

The degree of certainty in the truth of a clause increases as we approach the
limits (= 1). The degree of certainty decreases as we approach zero and a CF of
zero means no certainty in the truth of the statement, i.e. the statement is false.

We use a calculus to update the CF as we reason about conclusions. Resolution
refutation [Rob65] is used to arrive at a conclusion. The syntax, semantics and
proof theory for our solution are explained in the next chapter. We now give

some examples which illustrate our solution.

2.2 Examples: Representation

In order to make our examples clearer, we give representations for some rules

and facts. The certain fact, Tweety is a bird, is represented as:

bird(tweety) — : 1.0

A4
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The blocking fact, Jasper is not a bird, is represented as:
bird(jasper) «+ : - 1.0

This means that we are certain Jasper is not a bird.

The uncertain fact, Zak is most likely a bird, is represented as:
bird(zak) « : 0.8
However the actual value of the CF will depend on what is meant by most likely.
The uncertain fact, “Jt is unlikely that Jim is a bird”, is represented as:
bird(jim) « : - 0.6
The actual value of the CF will depend on what is meant by unlikely. The certain
rule, “Birds are mammals”, is represented as:

mammal (X) <- bird(X) : 1.0
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and reads if X is a bird then we can conclude with absolute certainty that X is a

mammal. The blocking rule, “Dead things don’t fly”, is represented as:
flies(X) <- dead(X} : - 1.0

and reads if X is dead then we can not conclude that X flies.

The default rule, “Mest birds fly”, is represented as:
flies(X) <- bird(X) : 0.9

and reads if X is a bird then we can conciude with a 0.9 degree of certainty that
X flies. Here we represent the information that most, but not all, birds fly. The
CF varies according to what wé mean by “most”.

It is important to realize that the certainty increases as we approach a limit.

For exaxﬁple, given

bird(bill) — : -0.9
bird(ben) — : 0.8

‘then we are more certain that Bill is not a bird than Ben is a bird. This idea is

an important part of our resolution strategy.
2.3 Examples : Benchmark

In /Lif89], some benchmark i:roblems for non-monotonic reasdm'ng systems
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are presented. In this section we illustrate how our system handles some of
these problems. The assumptions are those given in the problem. The benchmark
conclusions are what the system should be able to derive. The examples have been
modified to the extent that we have added certainty factors to the assumptions for

illustrative purposes.

2.3.1 Basic Default Reasoning
The assumptions are:
Blocks A and B are heavy
Heavy blocks are normally located on the table

2 is not on the table

The benchmark conclusion is:

B is on the table.

In our system, this is represented as
heavy(block-A) « : 1.0
heavy(block-B) « : 1.0
on-table(X) « heavy(X) : 0.75
ontable(block-A) + : - 1.0

If we query the system: What is on the table ? The conclusion we get is:
block-B «— : 0.75 |
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which means that we can conclude that block B is on the table with 0.75 certainty.
Note that the benchmark conclusion is not as realistic as our conclusion since the
latier states it is likely that block B is on the table and the former states block
B is on the table. Our system distinguishes between certain answers and likely

AnsSwers.

2.2.2 Reasoning with Several Defaults
The assumptions are:
Blocks A and B are heavy
Heavy blocks are normally located on the table
Heavy blocks are normally red
A is not on the table
B is not red
The benchmark conclusions are:
B is on the table

A is red

In our system this is represented as
heavy(block-A) + : 1.0
heavy(block-B) « : 1.0
on—table(X) + heavy(X) : 0.75
red(X) « heavy(X) : 0.8
ontable(block-A) « : - 1.0
red(block-B) « : - 1.0
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If we query the system: What is on the table ? The conclusion we get is:

block-B «— : 0.75

If we query the system: What is red ? The conclusion we get is:

block-A « : 0.8

which means we can conclude with 0.8 certainty that block A is red. The answers
generated by our system are more realistic since they indicate that the conclusions

are likely but not certain.

2.3.3 Priorities between defaults
The assumptions are:
Jack asserts that block A is on the table
Mary asserts that block A is not on the table
When Jack asserts something he is normally right
When Mary asserts something she is normally right

Mary’s evidence is more reliable than Jack’s

The benchmark conclusion is:
Block A is not on the table

In our system this is represented as:
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ontable(X) « asserts(mary, not-on-table-A) : - 1.0
ontable(X) « asserts(jack, on-table-A) « : 1.0
correct(X) — asserts(jack,X) : 0.75
correct(X) + asseris(mary,X) : 0.9
The fact that Mary’s evidence is more reliable is very naturally represented in
the certainty factors. It is a very efficient way to represent priorities between
defaults. In fLif89] two approaches to this bechmark example is given, one based
on prioritized circumscription. However, in the paper one approach is said to be
“not quite 'declarative™ and the other noted as noted "as not being sufficient”.
These examples just emphasize the difficulty in representing priorities between
defaults.
Our system is particularly well suited to this type of problem. If we query the
system with: What can vie correctly assert ? The conclusion we get is:
on-table-a : - (?.9
which means it is very unlikely that block A is on the table. This is since Mary’s

evidence is more reliable than Jack’s.
2.4 Example: Conflicting Defaults

In the general case we have
Typically A’s are C’'s
Typically B's are not C’s.
These defaults are in conflict if we have a joint instance of A and B. For example,
the defaults:
Tj,rpically adults are married (1)

Typically students are not married (2)
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are in conflict since we can have a joint instance:

John is an adult

John is a student
In human common sense reasoning, when defaults are in conflict we tend to prefer
the one in which we have a greater degree of certainty. Suppose we are certain
that it is more likely that students are not married than adults are married We
can represent this as:

married(X) « adult(X) : 0.75

married(X) «— student(X) : - 0.85

adult(john) + : 1.0

student(john) « : 1.0
If we query the system with: Who is married ? The conclusion we get is:

John : - 0.85

which means it is very- unlikely that John is married.
3 Conclusion

In this chapter we have outlined our solution to some NMR problems. We have
shown with exampies how certainty factors can be used to solve some benchmark
e AT ”
problems.’ Iri the next chapter we present the syntax, semantics and proof theory

-

for our solution.
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Chapter 5: THE CFDL LOGIC

1 Introduction

One of the problems with Default Logic is that it does not distinguish between
certain and uncertain conclusions. This is directly related to the lack of distinction
between default rules and certain rules.

In our approach, we make the distinction clear by attaching certainty factors
to the rules. This idea is generalized to have a CF attached to every unit of
information in the Knowledge Base.

The precise meaning of the new representation is defined in this chapter. Care
is taken so that the new logic will degenerate to Default Logic. We alss formulate
a proof theory, based on resolution refutation fRob635], which takes advantage of
our new syntax to provide the most certain answer to any query.

We define the syntax, semantics and proof theory for our system. We call this
new logic “certainty factor default logic” (CFDL) since it associates a degree
of certainty with each piece of infonriation in our knowledge base. CFDL
degenerates to DL at the limits (where the certainty factors are either plus or

minus one).
2 Syntax

We have the following:

a set of constants C = {c;, ¢z, ... ,Cn}s
a set of variables V = {v|, v, ..... ,va} ;and

a set of n-ary (n2 1) :predicates P = {p1, P2, -oee , Pn}-
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A term is defined to be either a constant or a variable.

An atom is defined as

p(tl? 1 TR tn)

n 2 1, where p € P and each t; is a term.

A clause is defined as
g = Q1,825 .0ent ,an:cf

wheren20,cfe R, —1 € cf £ +1, and q, ai, a2, ..... , 8p are atoms.

Example : the following is a clause
flies(z) « bird(z), winged(z) : 0.95

Informally, this means that we are reasonably certain that if x is a bird and has

wings then it flies. Similarly,
flies(z) « dead(z) : —0.99

is intended to mean that dead things do not fiy.

Frequently we need to express rules such as
if q then not p (14)
which, in clausal form is written

— Dq (15)
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In our representation we use the equality
pe—gq:—cf= —pqg:cf (15)

as a syntactic mechanism for indicating that the rule is “about p”.
For example, the clause
+— male(x), female(x) : 1
means that nothing can be both male and female. However,
male(x) «— female(x) : —1
says that something is not male if it is female. This is useful in certain situations

as we shall see later.

3 Semantics

An interpretation I = (W, D) for a knowledge base KB consists of W, an non-
empty set of objects and a denotation function D such that for every constant c,

D(c) is an object in W and for every predicate p, D(p) is an n-ary relation in W.

A valuation is a function such that for every constant cvin KB, V(c) = D(c);
for every predicate p in KB, V(p) = D(p); and for every variable v, V(v) is an
object in W.

Given an interpretation I = (W, D) where D is defined for all constants and

predicates in KB and a valuation V then V satisfies the atom

p(tlv 2w s t‘n) if <V(t| )’ v(tZ)! e ,V(tn)> € V(p) in _V_v.__

' - Example: the knowledge base contains the_followiﬁ‘g clauses
N
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flies(bill) « : 1
flies( ben) «— : 1
fiies(tweety) «— : —1

W comprises the objects Bill, Ben and Tweety. D(bill) = Bill, D(ben) = Ben and
D(tweety) = Tweety. D(flies) = {Bill, Ben}. V({flies) = {Bill, Ben}. The atom
flies(bill) is satisfied since V(bill) = D(bill) = Bill and Bill € V(flies).

Given an interpretation I, a valuation V and the clause
C=q«—aja,...,a,: cf,

wheren 2 0,0 <cf <1 and q, 3y, a2, ..., a, are atoms then

V satisfies C with certainty cf if

(a) V satisfies q or

(b) V fails to satisfy at least one a; or both
Otherwise V does not satisfy C.
":*:::_,-_bgi_ven an interpretation I, a valuation V and the clause
C=q—a,a,...,a:cf

wheren 20, —1 £ c¢f <0 and q, ay, ay, .. . , a,are atoms then

V satisfies C with certainty |cf] if

@V fails to satisfy q or

(b) V fails to satisfy at least one a; or both
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Otherwise V does not satisfy C.

A clause C is true with certainty |cf] if every valuation satisfies C. Otherwise

it is false.

Example: We have a knowledge base with the following information

canadian(bill) — : 1
canadian(ben) — : 1
plays-hockey(bill) «— : 1
plays-hockey(ben) — : 1
plays-cricket(bill) «~— : 1
plays-cricket(ben) «— : 1

The clause
canadian(x) «— plays-hockey(x) : 1

is true since every valuation (x = bill, ben) satisfies it. However, the clause
canadian(x) «— plays-cricket(x) : —1

is false since at least one valuation (x = ben) fails to satisfy it.

4 Proof Theory
- The resolution rule comprises two mutually exclusive cases:

Case 1: The certzinty factors of the two input clauses have the same sign,

both positive or negative. In this case, given

P blvbb ''''' sbn_: CfZ
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Case 2:

where m = 0 and n = O then we can deduce
T o4 @), 82, erenes By D1y B2 By 2 3

where cf3 =cf| & cf; and & is defined by the calculus being used
which ensures that |cf3| < min(|cf,|, |cfz]). (That is the resolvant can

never be more certain than either of the input clauses.)

The certainty factors of the two input clauses have opposite signs,
one is positive the other negative. In this case, given

G & Q1,82 e @y ¢f1 and

— A1y 02y enees ,am,b],bz, ..... sbn : Cf3

where ¢fs = ¢f) @ cf; and @ is defined by the calculus being

used which ensures [cf3| < min(|cfi], [cfz]). Note that cfy will be

positive to concur with the usual resolution rule.

Example of Case 1: The knowledge base contains the following clauses

(numbered for reference):

flies(x) +— bird(x), winged(x) : 1 (1)
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bird(tweety) « : 1 (2)
winged(tweety) «— : 1 3)

The query asks “does Tweety fly?” and is expressed as the clause
+— flies(tweety) : 1 4

Resolution” proceeds as follows:

Clauses Resolved Resolvent
(4) & (1) «— bird({tweety), winged(tweety) : 1 (5)
(5) & (2) — winged(tweety) : 1 (6)

6) & (3) Je={:1
The answer is “tweety flies”.
As another example of Case 1 consider the following clauses:

flies(x) « dead(x) : —1 )
dead(bill) — : 1 (2)

In this case we can prove that Bill does not fly by expressing the query as
«— flies(bill) : -1 3)

and resolution proceeds as follows:

3) & (1)_ +— dead(bill) : 1 (€]
@& $e—{:1

* A simple caleulus, which multiplies the two input cf numbers, is shown for illustrative purposes.

549
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In this case the answer is “Bill does not fiy”.
Example of Case 2: Consider the knowledge base

hot(x) « red(x) : 1 (D

hot{coals) « : —1 2)
We can prove that the coals are not red by using the query
red(coals) «— : 1 (3)

Resolution proceeds as
(3) & (1) hot(coals) — : 1 (4)
4) & (2) —{:1

The answer is “the coals are not red”.

Note that because of the way in which the resolution rule is defined we can use

the following equivalence for gueries:
peil=p: -l ‘ (16)

The resolution rule allows for a modified Modus Ponens and Modus Tollens.
Modus Ponens now becomes:

pe— :¢fi

g—p :cfy
(16)

g+ :Cf3
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where |cfy| < min (|cfif, |cf2]). When cf; = cfz = 1 then we recover the usual
Modus Ponens (and cfy = 1).

Modus Tollens becomes:

g+ p:ch

g : —cfa
(16)

— p :cfs

where |cf3| < min ([cfi|, [cf2]). Modus Tollens is recovered when cf; = cf; = 1.
Queries are processed using resolution refutation. The resolution strategy
ensures that the most certain answer is (usually)' derived without evaluating all
possible answers. The strategy chooses the two input clauses which will produce
the most certain resolvent. An assumption is that the resolvent can never be more

certain than the most certain input clause. The strategy is outlined below:

Step 1  The current goal G is the (sub) query
. e R]_-R'z.-........ Rﬂ. : cf (17)

where nzl, cf = 1.

Step2  Find the most certain clause C in the knowledge base which will unify
" with the lefimost atom of G.

Step3 Resolve G and C to produce the resolvent R. In constructing R the
NG

remaining antecedents of the most certain clause (G or C) are placed

to the left of the remaining antecedents of the other clause.

If C does not exist then backtrack.

1 In the worst case all possible answers will be examined but we cxpect that this will not happen frequently.

i

n‘/
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Step4 If R is the empty clause and the most certain answer then stop and

report answer.

Step 5 If R is not the empty clause then find G and C in the knowledge base
such that they produce the most certain resolvent possible. G must be
a previous goal or resolvent.

Repeat procedure from step 3.

Backtrack Go to step 5

If it is not possible to backtrack then report failure to user.
Example: we have the following clauses (numbered for illustration):

flies(x) « bird(x) : 0.8 (1)

flies(x) « bat(x) : 0.5 - (2)
flies(x) + dead(x) : —0.99 (3)
bird(ben) « : 0.7 @)
bat(ben) « : 0.9 (5)
bird(tweety) + : 1 (6)
dead(tweety) « : 1 )]

The query “does Tweety fly” is expressed as the clause

— flies(tweety) : =1  {0)

since resolving with (3) will give the most certain resolvent. Resolution proceeds

as follows:
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Input clauses Resolvent
0 & (3) «— dead(tweety): 0.99 (8)
® & f]1: 059

No other refutation will lead to a more certain answer. Therefore we report

“Tweety does not fly”.

To handie the query “who flies ?” we need the two goal clauses

— flies(z) : =1 (0)
(19)
— flies(z) : 1 (09

o

Resolution proceeds as follows:
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Input
clauses

0) & (3) « dead(tweety): 0.99 (8)

Resolvent action

@ & (7 []1: 099 x=tweety Record
"tweety does not fly: 0.99"
& backtract

(0" & (2) —bat(x): 09 (9 store clause as choice point

0) & (1)  —birdx): 08 (10)

(10) & (6) [1: 0.8 x=tweety answer discarded since more
certain answer available

(10) & (4) []: 072 x=ben report "Ben flies : 0.72"

9 & (5) [1: 063 x=ben more certain pre_viously for
Ben, so this answer is
discarded.

Terminate since backtracking
not possible

5 Properties of Clauses

Given a set of clauses C then for each clause ¢; we have a measure of the
certainty, denoted CF(c;), that ¢; is true. CF(c;) takes its values from the real

interval [—1, +1]. It is not a degree of truth. Each clause is either true or false
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but given the information available, which may be incomplete, it is an estimate

of the certainty that the clause is true. Thus we have the following axioms:
{CF(¢;)| =1 if ¢ 1s logically true 20)
|CFie:}] =0 if ¢ is logically false 21

For example, the statement pV —p is logically true. It is represented as p — p
in clausal form so |CF(p « p)| = 1. The empty clause is logically false so

ICF({} — {Dl =0

For all clauses p and q we have

|CF(pAg)| £ min(] CF(p) I,ICF(q)I) (22)

|CF(pV q)| < max(|CF(p) |.|CF{g) ) (23)

Using the equality
p—gqg:=-1= «pqg:1l (23)

our resolution rule can be expressed as
CF(p V q) =

CF(—'P \% 1‘) = ﬂ

(23)
CF(g v r) <.min{a, B)
We do not insist on the equality
CF(-p) = 1-CF(p (24)

Certain inconsistencies are allowed and handled by using the most certain clause

of any conflicting clauses. Fer example, from



THE CFDL LOGIC 5.56
flies(x) «— bird(x) : 0.95
flies(x) +~— dead(x): —1
bird(tweety) « : 1
dead(tweety) « : 1
we can deduce both
flies(twezety) «— : 0.95
flies(tweety) + : —1
However, we use the latter fact, tweety does not fly, as it is more certain.

Essentially we work with a consistent subset of the knowledge oase.

6 Conclusion

In this chapter we have given details of our CFDL. In the next chapter we give

some of the implementation details of our system.
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Chapter 6: THE RESOLUTION STRATEGY

1 Introduction

To test our hypothesis and to have a testbed for different calculi of uncer-
tainty the CFDL system has been implemented in Quintus Prolog [Qui89a] with
ProWindows [Qui89b].

The knowledge base consists of clauses of the form

g — P1s P2y-veemsPa s Cf (25)

where n = 0, —1< ¢f £ 1 and q, p; are atoms. Queries are of the form
— Ty, PoyenTnt Cf (26)

where n 2 1 and cf is either —1 or +1.

The proof theory is based on resolution refutation. The resolution strategy
ensures that the most certain answer is computed and displayed to the user. This
can usually be done without evaluating all answers. The strategy always resolves
the two clauses which will give the most certain resolvent, thereby ensuring that
the most certain path in the resolution tree is always followed. A basic assumption
here is that the resolvent can never be more certain than—either of the input clauses.

Any calculus which adheres to this assumption can be used with the strategy.
2 The resolution strategy algorithm

The ‘following lists are used to hold information essential to the working of
the algorithm:

Choice-points-list ~ This list stores all the choice points for every goal. It is

an efficient means of remembering where to backtrack to, if

~

-
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Active-list

Answer-list

necessary. In this algorithm, it is necessary to backtrack to
the next most certain clause, not to the next in sequence in
the knowledge base as is the case with Prolog for example.
The list is ordered by decreasing absolute certainty factor
values. The general format for each element is [G. C;, C,.
« » Cp] where G is the goal clause and each C is a clause
that will unify with G.
The active-list provides a one-step-look-ahead guide to the “best™
goal clause at any time. It is ordered so that the top entry is the goal
clause which when resolved will give the most certain resolvent
possible. 1t is this list, together with the choice points list; which
enables the algorithm to produce the most certain answer without
evaluating all possible answers. The general format for each entry
is [G, CFggc] where G is a previous goal or resolvent and GRC
is the certainty factor of G and C resolved. The list is ordered by
decreasing absolute values of G®C.
Because the knowledge base may contain inconsistent and incom-
plete data then it is possible that we may get more than one “an-
swer” for a particular binding. For example, in response to *“who
flies” the algorithm may produce both “Tweety : 0.9” and “Tweety
: 0.75” as answers. We want only to report the most certain an-
swer t0 the user. To do this a list is maintained, containing the
most certain answer for each binding. Whenever an answer is

produced the list is checked to see if a more certain answer has

A5
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already been reported fo the user. If so then the new answer is
ignored.

Ali-answers-list  Every answer produced by the algorithm (for a particular

query) is placed in this list. This list is used mainly for tracing

and debugging purposes.
The resclution strategy is implemented as follows:

Step 1  The current goal, G is the query
— Tp, T2yt €f 27

where n 2 1 and each r; is an atom.

Step2  First, check to see if G is in the choice-points list. If it is then pop
the element [G, C), Cs, ... , Cp]- Go to step 3.

Otherwise, find the most certain clauses in the knowledge base
which will unify with the leftmost atom of G. To do this the
knowledge bese is searched for all such clauses. If there is no
such clause then BACKTRACK. Otherwise order the clauses by
decreasing absolute certainty factor values to get the list [C,, Cy,
- w > Gl
Step3 G is resolved with C, to produce the most certain resolvent, R. In
constructing R the remaining antecedents of the most certain clause
(G or Cy) are placed to the left of the remaining antecedents of the

other clause.

\'&\‘ -~

.
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Next [G, C;, ... ., Cy] is placed on the choice-points list.

Next [G, CFGOCFc2), ... , [G, CFg®CFe,] is placed on the active-
list.

Step4 If R is the empty clause then REPORT. Place binding(s) and
certainty factor on the answer-list, if necessary. Place binding(s)
and certainty factor on the all-answers-list. The user may force

backtracking at this point to get more answers.

If R is not ¢he empty clause then place [R;-CFr] on the active-list

and continue to step 5.

Step5 Find G and C such that the resolvent will be the most certain

possible. G is in the first element of the active-list.

If G is found then repeat the procedure from step 2, otherwise

report “failure” to the user.
BACKTRACK - Repeat the procedure from step. 5.

REPORT " Répoit answer-to-nser;-chiceking with answer-list first.

3 An example

This example illﬁstm_tes some of the features of the algorithm. Clauses are
numbered for illustration. The knowledge base contains the following clauses:
flies(x) « bird(x) : 0.8 (1) h

»"J'f‘
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flies(x) « dead(x) : — 0.99 (2)
bird(tweety) — : 1 (3)

dead(tweety) +— : 1 (4)
bird(ben} + : 0.8 (5)
bird(bill) — : 0.9 (6)

The query is “who flies 7. The query is evaluated as follows:

Step in
Algorithm
1

Action

G is the clause “ « flies(x) : ¢f ™
where cf has not yet been determined.

G is not in the choice-points list.
Search KB to produce list of clauses {(2), (1)].

G is the clause “ « flies(x):—1” . C is the clause (2).
R is the clause "+ dead{x):0.99” .

[« flies(x):1, flies(x) « bird(x) : 0.8]

is placed on the choice-points-list.

[« flies(x):1, 0.8] is placed on the active- list.

[« dead(x): 0.99, 0.99] is placed on the active list.
G is "« dead(x):0.99” .

G is not in the choice-points list. :
Search KB to find clause (4). C is "dead(tweety) « : 1".
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Step in
Algorithm

3

Action

" dead(x):0.99” and "dead(tweety) «— : 1" are resolved to
produce the empty clause, the binding x=tweety and cf =
0.99. ‘

R is empty clause. [tweety, —0.99] is placed on answer-list
and all-answers-list, since we have proved that tweety does
NOT fly. Nothing is reported to the user. The system
automatically backtracks.

G is the first element in the active-list, " — flies(x):1".

G is in the choice-points-list. C is "flies(x) — bird(x) : 9.8".

"+ flies(x):1" and "flies(x) + bird(x) : 0.8" are resolved to
produce R, "+« bird(x) : 0.8".

[« bird(x) : 0.8, 0.8] is placed on the active-list
G is "« bird(x) : 0.8".

G is not in the choice-points list.
Search KB to produce list of clauses [(3), (6), (5)].
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Step in ]
Algorithm Action

3 " bird(x) : 0.8" and "bird(tweety) + : 1" are resolved to
produce the empty clause, the binding x=tweety and cf = 0.8.
[« bird(x) : 0.8, bird(bill) + : 0.9, bird(ben) «— : 0.8 ] is
placed on choice-point-list.

[« bird(x) : 0.8, 0.72, 0.64] is placed on active-list.

4 In REPORT we find that we already have a more certain
answer for the binding tweety. Nothing is reported to the
user. [tweety, 0.8] is placed in all-answers-list. System
automatically backtracks.

G is the clause "« bird(x) : 0.8".

2 G is in choice-points-list. C is "bird(bill) «— : 0.9".

3 " bird(x) : 0.8" and "bird(bill) — : 0.9" are resolved to
produce the empty clause, the binding x=bill and cf = 0.72.
[« bird(x) : 0.8, bird(ben) « : 0.8 ] remains on
choice-point-list. |
[« bird(x) : 0.8, 0.64] remains on active-list.

4 We report the answer " bill flies with certainty 0.72". The
user forces backtracking to produce another answer.

5 "G is the clause "— bird(x) : 0.8".

2 G is in choice-points-list. C is "bird(ben) « : 0.8".
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Step in .
Algorithm Action
3 " bird(x) : 0.8" and "bird(ben) — : 0.8" are resolved to
produce the empty clause, the binding x=ben and cf = 0.64.
4 We report the answer " ben flies with certainty 0.64". The
user forces backtracking to produce another answer.
5 The active-list is empty. Backtracking fails and the failure to

find another answer is reported to the user.

4 Conclusion

In this chapter we have outlined, in some detail, the resolution strategy. In the

next chapter we will give the conclusions and future work.
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Chapter 7: CONCLUSIONS
& FUTURE WORK

In this chapter we discuss some of the findings of our research, outline some

future work and show how the conclusions supports the thesis statement.

1 Discussion
The CFDL system has the following features:

1. Tt gives an efficient way of representing priorities between defaults.
2. It can solve some of the benchmark problems in NMR.

3. The algorithm is “/azy” in the sense that all solutions need not be examined

to get the most certain answer.

4. The system is a test bed for different calculi.

These points are discussed below as well as our rationale behind the choice of

‘one certainty factor.
1.1 Efficient Representation

In some systems [Poo92, RC81] defaults are either labelled or rewritten. The
CFDL allows for efficient representation of defaults without the need for tagging
the default or rewriting the default. Given:

Typically birds fly
) P
Typically emu’s don’t fly “ -
.All emu‘’s are birds

All robin’s are birds
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Tweety is a bird
Polly is an emu

Cohen is a robin

We can derive:
Tweety and Cohen fly
Polly does not fly

In Theorist [Po092] the necessary representation will be:

default birdsfly(X) : flies(X) <- bird(X).
constraint not birdsfly(X) <- not flies({X).
default emusdontfly(X) : not flies({X) <- emu(X).
constraint not emusdontfly(X) <- flies(X).
constraint not birdsfly(X) <- emu(X).

fact bird(X) <- emu(X). ' -

fact bird(X) <- robin(X).

fact bird(tweety) .

fact emu(polly).

fact robin{cohen).

The default rule “Typically birds fly” is represented by
default birdsfly(X) : flies(X) <- bird(X).

with the exceptions to this rule being:
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emus, represent by the constraint

- constraint not birdsfly(X) <- emu(X).

and things known not to fly, represented by the constraint:
constraint not birdsfly{X) <- not flies(X).
Similarly, the default “Typically emus don’t fly” is represented by
default emusdontfly(X) : not flies(X) <- emu(X).
with the exception things known to fly represented by

constraint not emusdontfly(X) <- flies(X).

The certain rules “All emus are birds™ and “All robins are birds” are represented
by
fact bird(X) <- emu(X).

fact bird(X) <- robin(X).

The certain facts “Polly is an emu” and “Cohen is a robin” are represented by
fact emu{polly).
fact robin{cohen).
This representation generates the expected conclusions but note how we can

-

represent the same information in CFDL.

flies(X) <- bird(X) : 0.9
flies(X) <- emu(X) : -0.95
bird{X) <- emu(X) : 1.0
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bird (X} <- robin(X) : 1.0
bird(tweety) <- : 1.0
ema (polly) <- : 1.0

robin(cohen) <- : 1.0
If we query our system with: Who flies ? The conclusions will be:

Tweety : 0.9
Polly : 0.9
Cohen : - (.95

which means that it is very likely that Iweety and Polly fly and very unlikely
that Cohen flies.

In comparison to Theorist, our representation is more compact. The difference
between defaults and facts are encoded in the CF. The need for representing
constraint rules. is eliminated. The effect of the constraints is accomplished by
our algorithm on examining the CF.

QOur representation is compact and provides an elegant way of representing
priorities between defaults. Also, modification to these priorities can be easily

made in contrast to the solutions suggested by /Bre9!, RC81, Lif39].

1.2 Solves some Benchmark problems in NMR

The CFDL system can handle the following benchmark examples: basic de-
fault reasoning, reasoning with several defaults, priorities between defaults and

conflicting defaults (as shown in chapter 4).

. ok
{1

—
T
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Our system also provides a solution to the problem of there being no distinction

between certain and default answers. For example, given

Typically birds fly
Tweety is a bird

Chiree flies

In traditional systems no distinction is made between the conclusions "Tweety
flies” and "Chiree flies”. However, it is clear that we have more confidence that
Chiree flies than Tweety flies. This distinction can be made in our system. Our

representation will be:

flies(X) «— bird(X) : 0.9
bird(tweety} — : 1.0

flies(chiree) — : 1.0

Our answers to the query "Who flies 7" will be:

Chiree 1.0

Tweety : 0.9

which means we are certzin that Chiree flies and it is very likely but not certain

that Tweety flies.
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In our solution, we can also distinguish between negative answers of the forms:
certainly not, unlikely and no bv closed world assumption (CWA). This is possible
since negative information can be explicitly represented. For example, if we know
Tim does not fly, this can be represented as: “flies(tim) : — 1.0”. Hence if we
are asked if Tim flies we can answer certainly not. If we are asked if Tam flies we
cannot say certainly not since there is no explicit representation for “flies(zam)”.
However, we can use the CWA assumption to give the answer no knowing we
are not certain of this answer. Qur KB can also have information of the type
“flies(tony) : 0.4°. In such a case the answer as to if Tony flies will be it is
unlikely tha: Tony flies.

1.3 Lazy Algorithm

Qur algorithm is “lazy™ since it produces the best answer without evaluating
all possible answers. This is possible since our criterion for best answer is the
answer which is most certain and our calculus does not aliow conclusions to be

more certain than either of the premises. For example, if we are given:

flies(X) — bat(X) : 0.95 (1)

flies(X) + bird(X) : 0.9 (2)

flies(X) « parrot{X) :0.7 (3)

bird(X) « robin(X) : 1.0 (4) -
bird(X) « parrot(X) : 1.0 (5)

robin(polly) — : 1.0 (6)

bat(tim) — : 1.0 (7)

® We do not mean *lazy’ in the functional programming sense.

3~
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parrot(pat) «— : 0.5 (8)

Our most certain answer as to who flies is Tim. Our system will generate the
answer without looking at (4) and (5) since we know from (1) that any answer
along that solution path can not have a CF higher than 0.9. We do not need to
examine (5) and (8) either since from (3) any solution along that path will be

smaller than 0.7. Our search tree will be
(Bies02)

—

|

// |

-

(1) flies(X)* bat(X) : 0.95 ! (3) flies(X) = parrot(X) : 0.7
(2) flies(X) =+~ bird(X): 0.9

(7) bat(tim) : 1.0 (5) bird(X) = —parrot(X) : 1.0

(4) bird () =-- robin(X) : 1.0

(6) robin(polly) : 1.0 (8) parrot(pat) : 0.5

Figure 1.1 Seﬂff&_g_‘?_efor —%0 “[&e{
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1.4 Testbed for Calculi

For test purposes, a very simple calculus of uncertainty has been used. Specif-
ically, given:
clause 1 : CFl and
clause 2 : CF2 then
when we resolve we get
clause 3 : CF3 where
CF3 =CFl x CF2
However, the system has been implemented in a modular fashion so that it is
very easy to test any number of different calculi, for example, one based on

information theory as discussed in [Mor87].

2 Future Work

In this section we outline some areas of future work.

2.1 Extension to Non-Horn Clauses

The present implementation is limited to horn clauses. The next step would be
to allow the system to cater for non-horz clauses. However, this would be a major

undertaking given the additional complexities associated with non-horn clauses.

2.2 Experimenting With Calculi

It is very easy, in our system, to test different calculi. It seems rea: »nable that .
different calculi may be eppropriate to different domains. Work needs to be done
in testing different calculi to determine for which domain or applications area

they may be appropriate.
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In a CFDL system the calculus module can be modified so that the Certainty
Factor is a combination of several certainty factors. This issue could be explored

in the future work.

2.3 Update in CFDL

As indicated by [Pea90] and discussed in section 4.2, the problem of consistency '

checking is difficult in NMR. This means that the problem of update in NMR

systems will need to be looked at very closely.

Work needs to be done, in the CFDL system, to ensure that the KB is consistent

when clauses are added or deleted.

2.4 Interacting Defaults

In the thesis we have not addressed the problem of interacting defaults. Work

needs to be done to determine how this problem can be addressed in CFDL.

2.5 Application Areas

We have shown that our system works with some of the benchmark problems
of NMR. Work needs to be done to determine which applications areas are
appropriate for our system. In theory, our system should work for most application
areas. However, many issues will need to be addressed when a system is

implemented for a specific area.

3 Conclusions

The CFDL s;j}stem addresses the problem of conflicting defaults in Default Logic
and allows for the distinction between certain answers and those that are default

or unce_nain ATNISWETS.

s
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3.1 Contlicting Defaults

The problem of conflicting defaults in Default Logic is addressed in CFDL. The
only way in which conflict in defaults can be resolved is if we have a greater degree
of certainty in one of the defaults. This information would have been encoded
in the certainty factor which we attach to each default. We use these certainty
factors to resolve the conflicting defaults. For example, in the Republican/Quaker
example we represent the KB as

hawk(X) « republican(X) : 0.9
dove(X) — quaker(X) : 0.95
republican(nixon) « : 1.0
quaker{nixon) « : 1.0
Since we have more certainty in the second default ow- conclusion will be “Nixon
is a dove”. This does not mean that a conflict cannot arise in our system. If we had
hawk(X) « republican(X) : 0.95
dove(X) + quaker(X) : 0.95
‘republican(nixon) < : 1.0
quaker(nixon) « : 1.0
there would be a conflict even in our representation. However, there is less

chance of a conflict in our system.

3.2 More Than Trué]False Conclusions

The CFDL addresses the problem of the lack of distinction between “there is
reason to suppose P” and “P is true” in Default Logic. We do this by using:
the information encoded in the certainty factors. Our reso]utiq:n strategy allows

us to find the most certain answer with its associated certainty Tactor. Hence we
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can do more than distinguish between statements of the form “there is reason to
suppose P” and “P is true”. We can also give the user the certainty factor with
the answer. These certainty factors can be mapped to more English-like answers
such as very likély, unlikely or certain.
For example, given the KB

flies(X) + bird(X) : 0.9

bird(tweety) « : 1.0

flies(chiree) «+ : 1.0

bird(alf) « : 0.4
we can conclude “Chiree certainly flies”, “Tweety most likely flies” and “It is

unlikely Alf flies”.
4 Conclusion

In this chapter we have discussed some of the findings of our research and

shown how the conclusions support our thesis statement.
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APPENDIX A

ABBREVIATIONS

i)

CF
CFDL
'DL
MR
NML
NMR

Certainty Factor

Certainty factor Defauit Logic
Default Logic

Monotonic Reasoning
Non-Monotonic Logic

Non-Monotonic Reasoning
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APPENDIX B
DEFINITIONS

Definition Default: A defauit is any expression of the form
a(x) 1 MBy(x),..., MBn,(x)
w(x) - (28)
where a(x), B1(xX), - - - ; Bm, w(X) ‘

are well formed formulae (wff) whose free variables are among those of x=x;, .

 Xn. a(x) is called the prerequisite of the default, and w(X) is its consequent.

Definition Monotonic logic:

A logic is said to be monotonic if and only if for any set of premises S and S':

SQS‘-:»{AISP-A}Q{AIS‘I-A}
(29)
where + is the provability relation.
Definition Non-Monotonic logic:

A legic is said to be non-monotonic if and only if for any sets of premises

S and S&:

SCS4{A|SkA}C {A.|S‘ - A} . (30)

~ That is‘it; and only if its provability relation violates the property of monotonicity.

Simply stated, any conclusion of S is not necessarily a conclusion of S'.
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APPENDIX C
NON-MONOTONIC REASONING : A SURVEY

The problem of reasoning when knowledge is incomplete requires a non-
monotonic reasoning system since old conclusions may have to be retracted in
the light of new knowledge. Researchers have approached this problem using
either a computational or a formal approach. In the computational approach,
attempts have been made to implement practical systems with non-monotonic
properties. In the formal approach, a formal logic system is developed upon
which the applications will be based. Many logic systems have been developed
for this purpose (default logic, circumscription, etc.). However, no single logic
system captures all aspects of incomplete knowledge. The debate continues

among researchers as to whether there exists a2 ‘non-monotonic logic’ which can

capture all aspects of non-monotonic reasoning.

This survey classifies various approaches to non-monotonic reasoning. Some

of the important:systems/formalisms in each class are examined and we also

look at the application of non-monotonic reasoning to databases.

1 INTRODUCTION °

1.1 Non-Monotonic reasoning ?

Non-monotonic reasoning is the type of rea-
soning performed when our information is
incomplete. How we arrive at conglusions,
given incomplete information, 1s the main

~ topic of research in non-monotonic reasoning.

BN

A key feature of non-monotonic reasoning is
that new information may invalidate previous
knowledge and we may be forced to retract

e

certain conclusions made earlier.

1.2 Why Non-Monotonic
Reasoning ?

Non-monotonic reasoning is -needed only

.

2



when knowledge is incomplete or inconsistent.
The question is, can knowledge ever be com-
plete and in general, the answer is no. How-
ever, in traditional data base systems (DBS),
the knowledge explicitly represented in the
database is treated as being complete and con-
sistent. In such traditional DBS any new ad-
dition of facts only increases the number of
conclusions ard thus such a system will be
monotonic.

The task of obtaining information from such
traditional databases, though not trivial, did
not require any great deal of intelligence. A
key property of intelligence__i__s flexibility. By
this we refer to the ability of drawing conclu-
sions and then retracting themi=if necessary in
the face of new evidence. It is the retraction of
the previous conclusions that is the basic idea
in non-monotonic reasoning. If our computer

programs are to act intelligently they will need

to be similarly flexible.
Frost [Fro86] states that there are three
types of circumstances in  which non-

monotonic reasoning may be appropriate:

» When knowiedge is incomplete.
» When the universe of discourse is changing.

« In problem solving where temporary as-

sumptions are made.

Uses of non-monotonic reasoning are dis-

cussed by Ginsberg [Gin87] . These include:

» Inheritance hierarchies which have very at-
tractive computational propertics.

« Closed-world databases in which negation is
treated as “failure to prove,”

« Reasoning about uction in which the quali-
fication problem and frame problem arises.

» Logic programming applications,

Computer users today expect the computer

to possess some degree of intelligence. A



proper understanding of non-monotonic rea-
soning is necessary if this expectation is to
be realized. Present computer implementa-
tions of systems that show some degree of in-
telligence require large amounts of code and
are not very efficient. The computational ef-
ficiency of non-monotonic reasoning systems
however, must be viewed in the context of

their increased effectiveness.

1.3 More Effective ?

Traditional reasoning Systems were mono-
tonic and as such there was no need 1o reex-
amine their previous conclusions in the light
of new knowledge. Non-monotonic systems
however, must re-examine the validity of pre-
vious conclusions, in the light of new knowl-
edge, and retract those that are no longer ap-
plicable. Sucﬁ systems will be more effective
since they will have a deductive ability. The

system, with the help of inference rules, will
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be able to deduce more conclusions from a
given set of facts and revise its conclusions
when needed. Thus a non-monotonic reason-
ing system will be much more effective than
traditional reasoning systems.

If computers are to exhibit thc common
sense reasoning that we see in humans, then
the study of non-monotonic reasoning is €s-

sential.

1.4 Layout

The structure of this survey is as follows.
In section 1, we give an introduction to non-
monotonic reasoning and discuss the need for
non-monotonic reasoning systems. In section
2, we discuss monotonic and non-monotonic
reasoning and give formal definitions of both.
In section 3, we look at some classifications of
non-monot;mic reasoning systems and present

our classification scheme. In secction 4, we

look at the computational approaches which



include MICRO-PLANNER, TMS and inher-
itance hierarchics. In section 5, we look
at the formal approaches which are further
subdivided into closed-world and non closcd-
world approaches. The non closed-world ap-
proaches can be numeric or non-numeric. In
section 6, we present some criticisms of non-
monotonic reasoning. In section 7, we dis-
cuss the application of non-monotonic reason-
ing to databases. Here we explain what is a
deductive databasc and explore éomc related
aspects. In section 8, we look at the applica-
tion of non-monotonic reasoning to deductive
databases. In scc_tion 9, we discuss some of

the findings of the survey. An article listings

is given for all articles cited in the survey.

2 WHAT IS NON-MONOTONIC
REASONING?

-2.1 Monotonic reasoning

A logic is said to be monotonic if the ad-

dition of new premises (axioms) never inval-
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idates old conclusions (thcorems). The set of
conclusions is said to increase monotonically
with the set of premises.

Definition Monotonic [ogic:

A logic is said to be monotonic if and only
if for any set of premises S and S':

Scs'—{Aa|SrAYC{A|S'F A}

where + is the provability relation.

(Gn
This definition implies that any conclusion
from S can never be invalidated in 8!, Tradi-
tional logics have always been monotonic. In
his landmark paper McDermott /MD80] notes:

“Monotonic logics lack the phenom-

enon of new information leciing to a

- revision of old conclusions.

However, in many instances, ittis necessary
to make conclusi-ons with incomplete knowl-
edge and it is possible that these conclu-

sions may be invalidated when new knowl-

edge comes to light.



2.2 Non-Mcnotonic reasoning

The type of reasoning, where previous con-
clusions have to be retracted in light of new
knowledge is called non-monotonic reasoning.

Definition Non-Menotonic logic:

A logic is said to be non-monotonic if and

only if for any sets of premises S and S':

ScSA{Aa|SHAYC{A|SH A}
(32)
That is if and only if its provability relation
violates the property of monotonicity. Simply
stated, any conclusion of S is nét necessarily

a conclusion of S'.

3 CLASSIFICATION =
OF NON-MONOTONIC
REASONING SYSTEMS

I

3.1 Some Classifications

Several types of non-monotonic reasoning
can be identified in the literature and several

different approaches have been taken in clas-
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sifying the non-monotonic reasoning systems,
Lukaszwicz [Luk90] classifies them as

1. modal non-monotonic logic,

£

default logic,

L7

. circumseriptive logics,

e

CWA logic,
5. some other formalisms

Brewka [Bre91b ] classifies them as

—

. modal approaches,

%]

. approaches based on non-monotonic infer-

ence rules,

3. circumscription,

4. preferred subtheories,

5. approaches based on conditionals.
Etherington [Eth88] on the other hand,

givc;s the following classiﬁcal;ion:

1. closed world reasoning,

2. default or prototypical reasoning.

3.2 Our Classification

Our classification scheme firstly splits the

£l



approaches into computational and formal.
The computational approaches (e¢g. MICRO-
PLANNER) are those that attempt to imple-
ment non-monotonic reasoning in practical
systems. The formal approaches (eg. De-
fault Logic) are those that develop a formal

léﬁic system upon which the applications will

C.86

be based. The formal approaches are then di-
vided into closed world approaches (eg. Pred-
icate Completion) and non-closed world ap-
proaches. The non-closed world approaches
may be numeric (eg. Certainty Theory) or

non-numeric (eg. Default Logic).

Non-Monotonic Reasoning

COMPUTATIONAL APPROACHES

—— MICRO-PLANNER

— TMS

L Inheritance Heirarchy

FO

Closed World Approaches

Non-Numeric Approaches

APPROACHES

Non-Closed World Approaches

Numeric Approaches

Figure 3.1 Approaches To Non-Monotonic Reasoning

4 COMPUTATIONAL
APPROACHES

In the computational approaches, attempts
have been made to implement practical sys-

tems with non-monotonic properties.

4.1 MICRO-PLANNER

One of the first such systems was MICRO-
PLANNER [SWC7]]. A MICRO-PLANNER

program is a collection of subroutines called




theorems which operate on a database.
MICRO-PLANNER programs admit three
types of subroutines called consequent, an-
tecedent and erasing. Consequent subroutines
are procedural representations of inference
rules. Lukaszewicz [Luk90] gives an example
of a consequent subroutine which represents
*All dogs are mammals’ as
{THCONSEQUENT (Mammal ?x)
(THGOAL Dog(?x}))
which reads ‘To prove an object, say X, is
a fﬁammal, try to prove that it is a dog’.
The antecedent and erasing subroutines are
used to handle the belief-revision pr(;blem.
Lukaszewicz [Luk90j gives an example as
(T HANT‘:":CEDENT (Innocent 7x)
(THERASE (Suspect ?x))}
which reads ‘whenever a proposition of the
form ll‘;;i::ycent(x) enters the database, the

proposition suspect(x), the argument of the
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erasing subroutine, if it exists, is to be re-
moved from it". To heip the process of non-
monotonic reasoning, MICRO-PLANNER
employs a special operater called THNOT
which is implemented as failure to prove and
is the procedural analog of negation. This
means THNOT(A) will succeed if the sys-
tem’s attempts to prove A fails.

The advantage of MICRO_PLANNER's
system is its computational cfficiency which
is due to its specialized inference rules. The
disadvantages are the lack of.a general in-
ference mechanism which forces the user to
be respons{blc for specifying each inference
scheme and the lack of formal semantics
which makes the' system difficult to predict
in complex situations. [Hay77] gives more
details on the latter disadvantage.

4.2 Truth-Maintenance
Systems (TMS)

A second and important class of computa-



tional systems exhibiting non-monotonic be-
havior are truth-maintenance systems, also
called belief revision systems or reason main-
tenance systems [Doy79, deK86] . The task
of a TMS is to record and maintain beliefs.
Truth maintenance systems comsist of a
problem solver, a special database and a truth
maintenance set of procedures (TMS). The
problem solver depends on the TMS to pro-
vide it with the set of current beliefs, based
on the special database. The problem solver
uses its reasoning mechanism and the set of
current beliefs to make new: inferences. Any
new inference may cause the set of beliefs
to change. However, any new inference is
not communicated directly to the TMS but
rather to the special database. After updating
the special database the prob_lem solver passes
control to the TMS. The TMS uses its own

reasoning mechanism, distinct from that of
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the problem solver’s, to realize a new set of
current beliefs and then transfers conirol back
to the problem solver. .

Several approaches have been made to im-
plement truth maintenance systems which
have been organized in a variety of ways.
However they all maintain the fundamental
concepts of a TMS as outlined by Doyle
[Doy79j in his landmark paper. The TMS
Doyle outlines is a justification based TMS.
In fhis approach, statements of beliefs are
called nodes and each node is always in cne
of two states called “in’, if it is believed, and
‘out’ otherwise. A node also includes a set
of justifications which consists of an ordered
pair of lists called inlist and outlist. The inlist
is a list of all the nodes which must be in
the “in’ state and the outlist is a list of all the
nodes that must be in the ‘out’ state if the

specific belief {node) is to be ‘in’. Whenever



the problem solver applies its inference mech-
anism to compute some datum (consequent),
this datum is added to the specialized database
as a potential belief and the TMS is invoked.
The TMS, as outlined before, is responsible
for updating the current set of beliefs based
on the updated special database.

The TMS provides two basic mechanisms
to update the set of beliefs: truth maiutenance
and depedency-directed backtracking. Truth
maintenance is used when a new justification
is to be added or substracted from an existing
belief (node). Depedency-directed backtrack-
ing is used if the current set of beliefs forces a
contradictory node to be ‘in’. A contradictory
node is created by the problem solver when a
new consequent creates a contradiction in the
cusrent state of the database.

Strobel [5ir89] gives an example wuh

depedency-directed backtracking. He con-
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siders the following default theory:

bird(Tweely) ,
' penguin(z) — —~fly(z)

33

{bird(z) : M fly(a)
fly(z)

This theory states that if X is a bird and there
is no iﬁformation to the contrary then x flics,
Tweety is a bird and if X is a penguin then
x does not fly. The truth maintenance system

would record this knowledge as in Figure 4.2.

Numbcr'l Node | Status .lus_tiﬁcations
Inlist Qutlist
1 (l'ali':\(ricety) in
2 ?’gwccgy) in 1 3
3 z%l\iccty) out
o [rmen | o

Figure 4.2 Example: TMS Belief Storage



Number| Node Status Justifications
Inlist [Qutlist
1 Bird in
(Twezty)
fiy
2 (Tweety) out 1 3
'1f1y .
3 (Tweety) | @ 4
penguin .
4 (tweety) | @

Figure 4,3 Example: TMS Beliefs
after dependency-directed backtracking

This is interpreted as bird(Tweety) is currently
belicved and it is an assertion since it has an
cmpty justification list. Fly(Tweety) is also
believed "in") since bird(Tweety) is *in’ and
—fly(Tweety) is *out’. The belief that Tweety
is a penguin is ‘out’.

If the theorem prover gets a dﬁtum that
Tweety is a penguin then, it will enter this as
a contréf:lictory node into the special database,
since penguin(Tweety) cannot be ‘out” and
*in® at the same time. Control.‘ is transferred

to the TMS which notes that there is an
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inconsistency since both fly(Tweety) and
—fly(Tweety) are now derivable and therefore
initiates dependency-direcied backtracking.
The set of beliefs at the end of the process
will look like Figure 4.3.

Note that the new dependency that
—fly(Tweety) is ‘in" if penguin(Tweety)
is ‘in’ has been added and the new set of
beliefs has been generated.

DeKleer [deK86] noted several shortcom-
ings in Doyle’s TMS. One is the computa-
tional complexity of the algorithms used, es-
pecially the dependency-directed bacituacking
which is a very inefficient technique for ensur-
ing consistency. Also, the TMS only allows
onc solution to be considered at a time (single-
state problem). QeKjeer therefore proposed a
more efﬁcienﬁ TMS called assumption based

TMS (ATMS). In this method, each datum is



labeled with the assumptions under which it
holds, rather than the justifications. In cen-
trast to the traditional truth maintenance sys-
tems the ATMS nodes have no states assigned
to them. Lukaszwicz [Luk90] notes that in-
stead with each node there is associated a wable
which (almost) explicitly represents the con-
text under which the node holds. Therefore,
the ATMS will always have to ask the user
the current context and it is this which en-
ables reasoning in multiple contexts. The ad-
vantages of this approach are that the overall
database need not be consistent, dependency-
directed backtracking can be avoided in most
cases and the single-state problem can be over-

come. However, the ATMS suppotts mono-
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tonic justifications only and thus never refers
to what is disbelicved.
4.3 Inheritance Systems

This type of computational system with
non-monotonic properties is based on seman-
tic nets. Such systems combine the deductive
structure of standard logic with non-standard
reasoning facilitics. Non-monotonic behavior
is achieved by a uniform mechanism of pre-
ferring certain types of inferences.

The semantic network consists of nodes and
links. The node may be a predicate node or a
constant node. The links can be between any
two nodes and they can be positive or nega-
tive. Lukaszewicz [Luk90/ gives an cxample

of a semantic net.

Elephant ) <2°C—+ @ Grey Key
f

*
AP
=

Eloohanc
Clyde

@  Comtnl Nodn
2 Prodicat Nodes

——& Puowlive Links
it Negation Links

Figure 4.4 A Contradictory Semantic Network



Fipurc 4.4 has an cxample of a contradic-
tory semantic network. The choice of whether
Clyde is grey or not is dcpcndant on the im-
plementation decisions. In this example, if
we choose the strategy of accepting the more
specific information then Clyde is not grey.
However, if we choose tv accept the more gen-
eral information then Clyde will be grey. The
problem is that, in many systems, this selec-
tion strategy may not be fully specified. This
is a major weakness of the system and as a re-
sult in an under-specified system its behavior
may be difficult to predict.

Etherington /ER83] looks at a class of se-
mantic networks called inheritance hierarchies
with exceptions. He uses default logic to for-
malize the notion of inheritance systems with
exceptions. The inheritance hicrarchy consists
of constant and predicate nodes together with

assertion links (is-a links) and negation links
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(isn't-a links). The links are rclated to de-
fault rules and thus default logic can provide
a semantics for inheritance systems with ex-

ceptions.

ﬁ Grey
141

g‘ Royal.Elephant
CL/ Clyde

Figure 4.5 Inheritance Network

Tlephant

with redundant staternent

Quaker o/

Pacifist
Pro.Defence
Republican

Nixon

Figure 4.6 Ambiguous Inheritance Network

An early system NETL [Fah79] used the
shortest path strategy to resolve ambiguities
such as, ‘what color is Clyde’ in Figure 4.4.
Using the shortest path strategy the answer
would be Clyde is not grey since the path
through the ‘is-a’ link is longer. However

flaws in the shortest path ordering are pointed



out by [7ou84j. Problems occur when han-
dling true but redundant statements (Figure
4.5) and also in ambiguous inheritance net-
works (Figure 4.6). In figure 4.5, before the
tedundant statement , Clyde is an clephant,
is entered NETL would deduce Clyde is not
grey. However, after the redundant statement
is added, NETL would now deduce that Clyde
is grey. This is a problem since the addition of
a redundant statement should not change the
conclusion that a system makes. In figure 4.6,
NETL would coqclude that Nixon is a paci-
fist. However, whether Nixon is a pacifist or
not is totally ambiguous and such a conclusion
should not have been made.

Touretzky uses an inferential ordering
method to order defaults. This ordering sim-
plifies the representation of inheritance in
default logics and solve the problems of re-

dundant statements and ambiguous networks

mentioned before.

Inheritance systems are still important de-
spite the fact that default logic is a more pow-
erful formalism. In fact, Tourctzky notes:

“Default logic is clearly a more
powerful formalism than inheritance

Jfor representing Aknowiedge. but the

latter remains important due to itz
conceptual simplicity and efficient in-

Jerence algorithms".

5 FORMAL APPROACHES

5.1 Introduction

The formal approaches can be categorised
as belonging to two basic types: closed world
and non closed world. The non closed world
approaches can be further divided into the
numeric and non numeric types.

In the closed world approachcs, the assump-
tion is made that all relevant positive infor-

mation is known and hence, all negative facts
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Formal Approaches To
Non-Monotonic Reasoning

Closed World Approaches

Non-Closed World Approaches

Non-Numeric Approac@

@umeric Approache@

. Predicate Completion | —TMS

[McCarthy 1980]

[McDermott & Doyle 1980]

[Clark 1978] [Doyle 1979]
l— Query Evaluation — NML
[Reiter 1978]
____ AEL
. Circumscription [Moore 1985]

 Default Logic
[Reiter 1980]

. Probability Theory

__ Certainty Theory
[Shortliffe et. al. 1975]

|_Dempster Shafer
Theory of Evidence
[Shafer 1976]

L Fuzzy logic and
Possibility Theory
[Zadeh 1583]

Figurc 5.7 Forma! Approaches To Non-Monotonic Reasoning

need not be explicitly represented since they
can be inferred from the absence of their pos-
itive counterparts. This approaci{ thus, uses
the closed world assumption (CWA). Some
approaches in this category are predicate com-
pletion [Cla78] which uses a negation as fail-
ure rule (NAF), the CWA for query evaluation

[Rei78] and circumscription [McC80].

The second formal approach uses a non-
closed world assumption. The assumption
is that instead of assuming that whatever is
unknown is false, attempts are made to fill
the gaps in the knowledge. In the non-
closed world approach two distinct classes

can be identified: numeric and non-numeric

classes. In the non-numeric ciass the gaps in



the knowledge are filled by “default™ or “pro-
totypic” information. Inciuded in this category
are non-monotenic logic (NML) fMDS6], Au-
toepistemic Logic [Moo85], TMS [Dov79]
which is a formalization of the TMS discussed
before in the computational approaches, and
default logic fRei80]. In the non-closed world
numeric approach, statistical information is
used to fill gaps in the knowledge, the idea
being to obtain a statistical model for the data.
The approaches of this type can be further
grouped into four sub-classes: those that use
Probability theory, those that use Certainty
theory, those that use Dempster Shafer the-
ory of evidence and those using Fuzzy logic

and Possibility theory.

5.2 Closed Worid Approaches

introduction CWA  The closed world ap-
proach is motivated by the observation that

the number of negative facts about a given do-
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main is typically much greater than the num-
ber of positive ones. In the CWA fRei78], the
assumption is made that all positive informa-
tion has been specified and that any fact that
is not specified or derivable from the infor-
mation present is assumed to be false. In his
landmark paper, Reiter fRei78] notes
** The implicit representation of neg-
ative facts presumes total knowledge
about the domain being represented.”

It can be argucd that it is the lack of com-
plete information that is the motivation for
non-monotonic reasoning. Thus, how could a
feasible solution be onc that assumes all pos-
itive facts are known. Despite this, however,
the CWA rule proves to be appropriate for
most domains represented in typical databases.
The opposite of CWA is the open world. as-
sumption (OWA). This assumes only the data

explicitly represented in the database.



We illustrate how the CWA would be used

in query cvaluation using an cxample from

[Rei78].

| Teachers | = {a,b,c,d}
| Students | = {A,B.C}
Teach

Figure 5.8 An Example to illustrate
CWA evaluation of 2 Query

There are four teachers, (a,b,c,d), three stu-
dents, (A,B,C), a teaches A and B, b teaches
B and c teaches C. If you consider the query:
“Who does not teach B?” Using the CWA we
can argue the answer is those teachers in the
set of teachers who do not teach B. The teach-
ers who do not teach B is derived using the
open world assumption and the result is sub-

tracted from the set of teachers.

| Teachers|—||< z|Teacher|Teach x,B >|low 4

()
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This gives the intuitive answer {c.d}.
Gallaire [Gal81] notes:
* .. when axioms are used, some

inconsistencies may occur under

CWA.”
He illustrates this with the following exam-
ple:
cat(z) — black(z) V white(z) — — — ariom

with database : {cat(feliz)}
(35}

The fact that Felix is black or white is not in
the extensional data base (EDB), ie. explicitly
represented, nor deducible from it. Therefc;;e,
using the CWA, we can deduce that Felix
is not black or white, ie. —black(felix) and
—white(felix) are derivable. However, this
is inconsistent with the intensional database
(IDB). Fortunately, no such problems arise
when axioms have a restricted form called
Horn Clause form but Horn Clause form is less

exptessive since indefinite knowledge cannot



be represented. The axiom in the example was
non-Horn and this led to the inconsistency.

Over the years many modifications have
been proposed to Reiter’s original CWA since
its strong restriction that knowledge repre-
sented be complete cannot always be main-
tained. These modifications are less restrictive
versions of the CWA nule in the sense that they
allow safe reasoning with different degrees of
incomplete knowledge. Lukaszewicz [Luk90]
gives a good description of these modifica-
tions. He renames Reiter's original CWA as
naive CWA (NCWA),

Definition Naive Closure [Rei78] : The
naive closure of a theory T, denoted by

NCWA(T), is the theory
TU{=A:T ¥ Aaend A€ HB(T)}.

where HB is the Herbrand Universe

The set of theorems derivable from T by
NCWA is identified with the set of all formu-

lae classically derivable from NCWA(T). The
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requirement in NCWA, is that knowledge be
complete.

Lukaszewicz refers to Minker's [Min82
approach as generalized CWA (GCWA). The
GCWA can be applied 1o incompletely speci-
fied worlds with disjunctions. For example, if

we take W as a world with axioms:

Student(Viren) V Teacher(Viren) (a)

Course(c; } A Course(cp) #
(37

Figure 5.9 Axioms specifying incomplete world

The disjunction makes the world incomplete
and thus NCWA is not justified for W but the
GCWA is justified and can be applied to con-
clude that Viren is not a course and c; and c

are neither students or teachers.

Definition Generalized closure [Min82] :

‘The generalized closure of a theory T, denoted



GCWA(T), is the theory
TU{~A: A€ NFREE(T)}. (38)

We say that a formula B is derivable by
GCWA from T ifand only if GCW A(T) + B.
Here NFREE(T) denotes the set of all atoms
from HB(T) which are free for negation in T.

In the example, Figure 5.9

NFREE(W) =

{ Course(Viren), Student(c,),
Student(c2), Teacher(c,), Teacher(ca
) Teacherleds)

The GCWA was further extended by Gel-
fond and Przymusinska [GP86] and referred
to as careful CWA (CCWA). The new feature
of the CCWA was that it allows us to restrict
the effects of closing the world by specifying
the predicate which may be affected by the-
CWA rule. .7

=
Definition CCWA [GP86] : Let T be a the-

C.98

ory and suppose that P,Q" and R* are disjoint

tuples of all predicate constants occurring in

T. A ground atom 4 € HB(T) is free for

negation in T with respect to P,Q and R if

and only if A € P*Sand there is no clause

C=CV---VCqa(n 20),

where cach C; is in P"“ URT UR"™,such that

(7)) TrHAWVC

@) T¥C.
(40)

We denote by NFREE(T;P;Q;R) the set of all
atoms from P* which are free for negation in
T with respect to P,Q aﬁd R.

Gelfond et al.,, fGPP89] give an approach

called extended CWA (ECWA) which is im-

* P represents those aspects of the world which are to
be closed.

T Q refers 1o the predicates which may be arbritarily
varied during the process of closure.

R includes the remaining predicate constants-those
whose extensions must not be affected by the closure.

8 P* (resp. P) is the set of all positive (resp. neg-
ative) ground literals constructible using predicate con-
stants from P and function constants occurring in theory,
T.



portant since it subsumes NCWA, GCWA and
CCWA. ECWA aupments the theory under
consideration with ground sentences, rather
than ground atoms. -

Definition ECWA [GPP89] : Let T, P,Q
and R be as defined in CCWA and supposc
that A is an arbritary ground sentence not
involving predicate constants from Q. A is
free for negation in T with respect to P,Q and

R if and only if there is no clause
C=CV---VCu(n 20,

where each C; is in PT URY UR"™, such that

@y TrRAVC

(i) TFC.
41)

We denote by NFREE,(T;P;Q;R) the set of all
atoms from P* which are free for negation in

Twrt P,Qand R

Predicate Completion In his landmark pa-
per, Clark fCla78] intrdduced the negation as

failure (NAF) inference rule whereby —P can
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be inferred if every possible proof of P fails.
This approach uses the CWA since if P can-
not be proved then —P is assumed. The NAF
rule is a weakened form of the CWA since it
does not fully implement the “¥™ relation. In
Clark's paper a Horn clause theotem prover
is aupmented with the NAF rule for dealing
with negation in the query evaluation process
of a logic database.

The NAF rule has been implemented in
languaées such as Prolog and PLANNER. In
thcselimpleméntations, because of the require-
ment of finite failure, the rule is sometimes
called negation as finite failure (NAFF) and
thus the syntactic form of the database as well
as its logical content can play a role ip what
can be derived by NAF. Shepherdson [1984]

illustrates this point with an example. If DB,

= {P,} and DB; = {~P, — P,} then DB,

and DB; are logically equivalent but Prolog



can only prove P, from DB,. The attempt to
prove P, from DB; leads to an infinite proof
tree since in order to prove P, we must prove
—P, and in order to prove —P, we must prove
P,. Hence NAFF will only work only with
DB;.

The most important contribution of Clark
[Cla78] is to introduce a theory of completion
which is more powerful tha{;__a first-order sys-
tem augmented by NAF. The completion of a
predicate requires the gathering together of all
implied assumptions relevant to that predicate
and making these assumptions explicit. In his
paper Clark [Cla78] shows how the completed
. database (C(DB)) can\‘be created by gathering
together all the completion axioms for each re-
lation of the DB. The advantage of the C(DB)
is that the query evaluation process Clark de-
fines will find every answer that is é logical
consequence of the C(DB). Brewka [Bre915]

e

T—

A
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gives an example of a C(DB), which is the
original DB, together with the completed ax-

ioms for each predicate.

The theory:
Bird(Tweety) (1)
Vz.Penguin(z) D Bird(z) (2)

VYz.Bird(z) A ~Penguin(z) D Flies(z) (3)
{42)

Implications about Bird:
Vz.z = Tweety(s) D Bird(z) (1) (43)

Vz.Penguin(z) D Bird(z) (2')

Completion Axioms:
Bird : ¥z.Bird(z) D
z = Tweety V Penguin (4)
(“44)
Flies : Vz.Flies(z) D
Bird(z) A ~Penguin(z) (5)

Penguin : Yz.~Penguin(z) (6)

Figure 5.10 Example of Completion Axioms

The completion\ axiom (6) states that there



are no penguins in the database. This con-
clusion is possible only if we know that the
database explicitly or implicitly implies this.
The completion of the predicate penguin gives
this result which involves the deduction of
ali relevant details of that predicate from the
complete database. Thus completion axioms
convey information that is deductible from
the complete database. Completion axiom (5)
states that if x flies then x is a bird and X is
not a penguin. Completion axiom (4) states
that any ground atom in the database is either

Tweety or a penguin.

A

Circumscription Circumscription was intro-
duced as a form of non—monotonié reasoning
by McCarthy/McC80] in his landmark paper.
He states:

“Circumscription is a rule of conjec-

ture that car be used by a person or
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program for ‘fumping to ceriain con-
clusions’ "

He also notes:

“The results of applying circum-
scription to a collection 4 of facts is
a sentence schema that asserts that
the only tuples satisfying a predicate
P(x ... z) are those whose doing so
Jollows from the sentences of A.”
Lifschitz fLifPI] notes:

*The main idea of circumscription is
to consider, instead of arbritary models
of a given axiom set, only the models
that satisfy a certain minimality condi-
tion.”

Circumscription consists of adding new
axioms (conjectures) to the underlying incom-
plete theory that force a minimal “closed-
world” interpretation of particular aspects.

Circumscription is not a non-monotonic logic



but rather a form of non-monotonic reasoning
augmenting ordinary first-order logic. Thus
in circumscription, the non-monotonic theo-
rems of a set of premises A, are defined to be
the monotonic theorems of a certain superset
AUB of A. Circumscription is non-monotonic,
in the sense that as A grows, the additional
axioms change. McCarthy [McC80/ gives an
example which illustrates this point.' If the
sentence A is :

isblock A A isblock B A isbleck C (T7)
then circumscribing isblock in (7) gives the

schema (8) and on substitution we get (9).

®(A) A B(B) A®(C) AVz.(B(z) D isblock x)

Dlﬁfz.(isbiock z D ®(z)) (8)

Yaz.(isblock z D (x=AVvz=BVvz=C))(9)

45)

Figure 5.11 Circumscribing a Conjunction

1f we adjoin isblock D to (7), we will no longer

be able to infer (9), thus its non-monotonicity.
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Circumscription tries to apply a minimiza-
tion ciiterion to choose a preference from sev-
eral possible conclusions. Ferreira /FM89] in
his paper describes a method called “inscrip-
tion” which is a dual of circumscription in
théfr;énse that it maximizes the ordering crite-
rion amongst the possible conclusions. In this
sense, circumscription tries to get the small-
est number of conclusions which will be sup-

ported by known facts, whereas inscription

tries to get the maximum number of conclu-

" sions that would be supported by the known

facts.

Over the years, there have been various ver-
sions of circumscription proposed:
Domain circumscription [/McC80], previously
called minimal inference, conjectures that the
‘known’ entities are all there are. The inten-
sion of domain circumscription is to syntac-

tically formalize the domain closure assump-



tion. One problem of the domain circumscrip-
tion is that it is incapable of formalizing the
unique name assumption [Luk90].

Predicate circumscription [McC80] assumes
that entities satisfy a given predicate only if
they have to on the basis of a collection of
facts. Predicate circumscription allows ex-
plicit completion axioms similar to Clark’s
completion axioms, to be conjectured as they
are required. Predicate circumscription is a
first-order axiom schema. McCarthy [McC80]
gives an example of circumscribing a disjunc-
tion. Taking the disjunction (10) and cir-
cumscribing isblock (11) gives on substitution

(12).
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isblock AV isblock B (10)
(P(AV R(BY)) AVe.(P(z) D isblock ) D
Ya.(isblock z D ¢(z)) (11)
Ve (isblock £ Dz = A)V
(isblock 2 D x=B) (12)

(46)

Figure 5.12 Circumscribing a Disjunction

In predicate circumscription only those predi-
cates being minimized are allowed to vary.
Variable circumscription /McC86] is a gen-
eralization of predicate circumscription which
allows certain other predicates to vary during
minimization.
Formula circumscription fMcC86} is an im-
proved vcl;sion of predicate and domain cir-
cumscription. It is a second order a#iom
schema and any predicate expression, rather
than a simple predicate, may be minimized.

Also, the predicates allowed to vary are no

longer identified with those being minimized.



Certain predicates may be specified as vari-
able,

Pointwise circumscription [Lif88] mini-
mizes at one point at a time rather than ev-
erywhere simultaneously. In this approach a
predicate P, may be True or False depending
on the point at which minimization is be-
ing done. The advantage is different points
can be defined with different priorities when
minimizing P.

Perlis /Per87] looks at circumscribing with
sets. He notes:

“There are very pawerful and well-
understood first-order set theories, go-
ing well beyond the power of second-
order predicate logic. A first-order set
theory with first-order (formula) cir-
cumscription gives at least all that
second-order circumscription does.

This includes allowing the use of a
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single formula instead of a schema.”™
Autocircumscription [Per88] is designed to
isolate the features of determining what is
(not) known to the agent itself, rather than

what is (not) true in the outer world.

5.3 Non-Closed World
Non-Numeric Approaches

Non-monotonic logic (NML) NML
[MD80] is an example of a modal non-
monotonic logic. It uses the modal operator
M with the intuitive meaning “is consistent”.
McDermott [MD80] calls M a proposition-
forming modality and notes:
“Informally, Mp is to mean that p is
consistent with everything believed.”
Moore [Moo85] gives an example with the

modal operator, M. If the theory, T is:

Bird(Tweety) (13)

Bird(z) A M(Can—Fiy(z))
Va:( — Can—Fly(x) ) (14{)47)



If P = Can-Fly(x) then MP means that P is
consistent with the non-monotonic theory that
contains only the two axioms.

Fundamental to NML is the concept of a
fixed point. Brewka [Bre9/b] notes:

“The fixed points, intuitively, cor-
responds to belief sets which can be
obtained by applying the standard in-
ference rules of classical logics and
throwing in as many formula of the
Jorm Mp as possible.”

The fixed point consists of a set of all for-
mulae which can be *sanctioned’ by the set of
premises under an intended interpretation of
M. Brewka [Bre91b] also states:

The problem with the fixed point
approach is that in general the fixed
points are hard 1o describe and diffi-
cult to find, since their definition is not

consiructive.
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In the NML approach, if we have found the
fixed points for a set of premises A, then the
derivable formulae are defined as the intersec-
tion of all fixed points.

Definition Set of derivable formulae: Let A
be a set of premises, FP(A) be the set of
fixed points of A, then TH(A), the set of non-
monotonic theorems of A, is the set of for-

mulae

{p|p € SYS e FPA) (48)

McDermott and Doyle [MD80] noted that a
major problem with NML was that the logic
was too weak, in that the modal operator did
not fully capture the meaning of consistency.
The Yale shooting problem [HMD36] demon-
strates that NML does not produce the ex-
pected results in all cises The use of a frame
axiom to solve the frame problem (i.e. the
problem of finding an adequate rcpmscﬁm—

tion of what does not change when an event



occurs) leads to different results in the Yale
shooting problem. The Yale shooting problem
is a problem in the temporal domain. Hanks
[HMDB86] illustrates the problem. The prob-
lem involves a person, say Bob, a gun and
three events: load, wait and shoot. In figure
5.13, at time s0, Bob is alive and the gun is
* empty. At sl, after the load event, Bob is still
alive aqd the gun is now loaded. The problem
is after the wait and shoot event is Bob alive

or dead? In one model (Figure 5.14) Bob dies
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since it is considered not abnormal for the gun
to remain loaded during the wait event and ab-
normal for Bob to live after the shoot event,
In the other model (Figure 5.15) Bob lives
since it is considered abnormal for the gun to
remain loaded in the wait event and not ab-
normal for Bob to live after the shoot event.
Hence, whether Bob lives or dies is now de-
pendant on the choice of minimal models. The
choice will therefore be dependant on the im-

plementaticn strategy and this is not desirable.

s0 LT’d sl

Alive

(@) —

Loaded

Wait Shoot
r 52 T 53

> -

Figure 5.13 Yale Shooting Problem

Alive Alive
Loaded

Alive Dead
-w-—n—’r —’

\ Loaded \

= AB(Loaded, Wait,S1) AB(Live,Shoot,52)

Figure 5.14 Yale Shooting Problem: Model 1



(c)
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Alive Alive Alive :
. Alive
Loaded \ \
AB(Loaded, Wait,S1) ~AB(Live,Shoot,52)

Figure 5.15 Yale Shooting Problem: Model 2

Autoepistemic logic (AEL) Moore
[Moo85] proposed an improved version of
NML called autoepistemic logic which char-
acterizes autoepistemic reasoning. [Moo83]
gives an example of the autoepistemic rea-
soning involved for believing “1 do not have
an older brother”.
“I simply believe that if [ did have
an older brother 1 would know about
it; therefore, since I don't know of any
older brothers, [ must not have any.”
AEL therefore, models the beliefs of agents
who reflect on their own beliefs.
AEL has become by far, the most promi-
nent modal non-monotonic logic. This is

because it is a more accurate interpretation

of NML /MD80]. McDermott and Doyle be-

lieved that the type of non-monotonic reason-
ing they were modelling was default reasoning
and hence their interpretation of the NML ax-

iom of the form:

Yz Bird{x)AM(can — Fly(z)) D Can—Fly(z)

(49)
would be “typical birds can fly". However
Moore [Moo83] showed that NML in fact, in-
terprets the axiom as “the only birds that do
not fly are those known not to fly”. Having
made this distinction, Moore points out that
default and autocpistemic reasoning arc non-
moenotonic for different reasons. Default rea-
soning is tentative and thus defeasibie. The
non-monotonicity of autoepistemic statements
enters due to their context-sensitive or index-

ical nature. This is since MP does not only



mean that P is a theorem consistent with the
non-monotonic theory but rather that it is con-
sistent with the non-monotonic theory that has
the specified number of axioms. Thus if the
number of axioms (“context™) changes then
the autoepistemic statements will change.
AEL is a propositional modal logic. Moore
. argues that the pessible sets of beliefs an ide-
ally rational agent can hold based on a consis-
tent set of premises A, are those sets T, such

that

T=ThAU{LP|PeT}U{-LP|PET})
(50)
L is the modal operator where LP means “P is
believed”. In words, the set, T consists of the
theorems derivable from A, and the beliefs, P

for which there is no reason to disbelieve P.

Default logic (DL} Default togic was orig-
inally introduced by Reiter [Rei80]. He ad-

dresses the problem of incomplete information
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by allowing new inference rules (defaults) to
be added to a standard first-order logic. How-
ever unlike standard logic, the premises are
allowed to refer to what is known and what is
not known. The default rules are used for the
completion of partial knowledge only when
specific information is missing. For exam-
ple, if there is specific information that Tweety
flies, then there is no need to invoke the de-
fault rule: “all birds fly except penguins’.
However, if the only information we have is
that Tweety is a penguin, then the default fule
can be used to deduce that Tweety does not
fly and this gives a basis for the completion
of the partial knowledge. This differs from
closed-world reasoning which employs a uni-
form completion strategy. In DL, the com-
pletion strategy can be modified by the use of
different default rules.

Reiter [Rei80] gives the following defini-



tions.
Definition Default: A default is any expres-

sion of the form

a(x) : M3 (x),...
w(x)

[ ﬂ'jﬁm (x)

G

where a(x), B1(x), ..+ Fm, w(X)

are well formed formulae (wff) whose free
variables are among those of X=X, ... Xa.
a(x) is called the prerequisite of the default,
and w(x) is its consequent.

An example of a default rule is

Bird(x) : MCan— fly(x)

Can-fly(z) (52)

which can be interpreted as ‘For every indi-
vidual, X, if x is a bird and it is consistent to
believe that x can fly, then it is believed that
x can fly.” Thus in the absence of information
to the contrary we will believe that if Tweety
is a bird then she flies. [Lif89] gives dif-
ferent types of problems that involve default
reasoning.

Definition Closed Default: A default is closed
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if none of .31, . . . JFm. W contains free vari-
ables,

Etherington /Eth87] notes that there are two
main classes of defaults, normal and seminor-
mal and virtually all of the defaults occur-
ring in the literature fall into one of these two
classes. Normal defaults are those with 8(x)
= w(x ) while seminormal defaults are those
with B(x) = w(x) or C(x) for some C(x). Of
course, if the prerequisite is empty then the
default may be taken to be any tautology.
Definition Default Theory: A defauit theory,
A, is an ordered pair, (D,W), consisting of
a set of defaults, D, and a sct of first-order
formulac, W.

The DL is a proof-based approach where the
proof required is that of consistency. In DL a
rule such as, “Birds fly”, would be formalized
as : “If x is a bird, and it is consistent that

x can fly, then x does fly”. This can be



expressed using the formulation of Reiter as

b: f
7 (53)

where b denotes “Tweety is a bird” and
denotes “He can fly” and is read as: “If b
is true, and it is consistent that f is true then
assume f is true.

Etherington [Eth87] gives some new re-
sults which enhance the usefulness of Reiter’s
DL. Etherington shows the benefits of his ap-
proach by developing a theory of inheritance
networks. The important contribution is that
the notion of correct infel;cnce and sufficient
conditions for the coherence of networks in-
ference representations could be determined.

Brewka [Bre9/a] notes that there are two
problems with Reiter's default logic. The first
being inconsistencies bétween justifications of
non-normal defaults may lead to resuits that
are not intuitive. [RC8I] gives an example

of defaults which may lead to such an unin-

C.110

tuitive results, If we have the two defaults:
“Typically high school drop outs are adults”
and “Typically adults are employed™ then we
do not want to conclude that “Typically high
school drop outs are employed”, Thus, ‘typi-
cally’ is not necessarily transitive. The prob-
lem is what is to be done with conflicting de-
faults. fRC8I] looks at interacting defaults
and introduces the notion of a semi-normal
default theory as a solution to conflicting de-
faults.

The second problem is that default logic is
not cumnulative. By this we mean that the
addition of theorems to the set of premises
may change the derivable formulas. Brewka
proposes a cumulative default logic (CDL) as

a solution to these two problems.

5.4 Non-Closed World
Numeric Approaches

Introduction In a monotonic reasoning sys-

tem conclusions made cannot be invalidated



and hence there is no need for a degree of cer-
tainty to be associated with conclusions. How-
ever, in a non-monotonic reasoning system
conclusions may have to be retracted when
new information is available. Thus, it is rea-
sonable to ask the question: ‘How certain is
a given conclusion ?°. The approaches dis-
cussed before do not address this question.
For example, if we conclude that Tweety flies,
using some default logic, there is no way of
determining the certainty of this conclusion.

The numetic approaches atiempt to deal
with this problem. They assign c;rtaimy mea-
sures to conclusions. The mechanism for de-
riving conclusions can be implemented using
if-then production rules. These rules can be
of the form:

if <antecedent>

then <consequent> With Certainty X.

Morrissey [Mor87] notes:
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“The certainty measure may be the
probability that ihe antecedent implies
the consequent or it may be a measure
of some human expert's belief that the
antecedent implies the consequent.”

The problem is that thesc production rules
are not independent of cach other. They are
interconnected and hence the difficulty lies in
combining the certainty measures. Each type
of numeric approach uses a different method

to deal with this problem.

Subjectivist vs Frequentist interpretation of
probability In the past, probability has been
associated only with frequentism. This means
that probébilily was regarded as a means to
handie uncertainty only when frequency data
was available. However, a subjective inter-
pretation of probability has the advantage that
it can be used even when frequency data is

unavailable. Using a subjective interpretation



we can cstablish probabilistic norms. Pearl
[Pea%06] notes:

“The benefits for adopting proba-
bilistic norms apply not only to syn-
tactical approaches to non-monotonic
reasoning, but also to semantical ap-
proaches such as those based on pref-

erential models [Sho87].”

Probabilistic semantics for non-monotonic
reasoning A survey on probabilistic seman-
tic; for non-monotonic reasoning was con-
ducted by Pearl fPea90b]. This survey points
out several reasons for the use of numeric ap-
proaches:

1. The well established theoretical results
providé shortcuts beZveen the semantics and

intendcd conclusions,

© 2. The conclusions are less subject to dispute,

3. They represent the empirical facts and not

" the particular reasoner’s set of beliefs, and
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4. Even if the purpose of default statements

is to establish conversational conventions the
process of formulating them should not ignore
their empirical origin.
In such a setting the “birds fly” example would
be represented as P [fly(x) | Bird(x)] = High
and would read as “If x is a bird then x
probably flies”.

Four nurneric approaches: probability the-
ary, certainty theory, Dempster Shafer theory
of evidence and fuzzy logic and possibilistic

theory are discussed here.

Prc;babifity Theory  Probability theory is
the classical means of handling uncertainty.
However, a prior knowledge of the individual
events and the knowledge of hc:)\.\l.r these events
are related is required before an ;stimate of
the probability of the various combinations
of events can be determinéd. For example,

if A and B are independent events then, the



probability of A and B occurring is given by
the product of the probabilities of A and B.
That is

P(A and B) = P(A) * P(B).
Similarly we have,

P(A or B) = P(A) + P(B) — P(A
and B).

Another frequently used rule of probabil-
ity theory is Bayes Rule. It allows you to
estimate the probability of a hypothesis be-
ing true given certain related evidence. Using
Bayes Rule an approach can be developed to
implement non-monotonic reasoning. Shafer
[Sha%90a] notes:

“The Bayesians prefer to assess
prior su&jective probabilities for the
different possible statistical models add
then use the data to updére these prior
pmbabiﬁ?fes fo posteﬁ;r probabilities,

while the frequentist prefer to rely on
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the data alone fo estimate the model,™

Pearl [Pea90aj notes:

... the essence Bayesianism - to
postulate the existence of probabilities
we do not really have to, assess their
magnitude, complete the model, draw
conclusions from that model, and check
whether the conclusion is highly sensi-
tive to the assumptions.”

The problem faced by such systems arc that
the interrelations must be clearly understood
and probability measures updated, whenever
new data is added, for the conclusions to be

reliable.

Certainty Theory Certainty theory [SB75]
is, in effect, an approximation to probabil-
-ity theory, but it uses incomplete knowledge
[Mor87]. The theory was developed in an
attempt to model the inexact reasoning pro-

cesses of medical cxperts and was imple-



mented as part of the MYCIN expert system
[Sho76]. The approach taken is to maintain
two values for each rule in the system:
= MBfh,e] = X

is the measure of the increased belief in
hypothesis h given evidence e.
* MDfhe]l = Y

is the measure of the increased disbelief in
hypothesis h given evidence e.
These measures of belief and disbelief corre-
spond to subjective estimates given by experts.
They are related to the Probability theory in

the following way:

1iff P(h) = 1
MBlh,e] = { P(hle)= :
_LI‘LITFS_m::u (1_0‘_‘_! f B otherwise

54

liff P(h)=0
MDih,e] = { gﬂ@%ﬂ;ﬁ}# otherwise
maz|l,0{—P(

(53)
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where P(h) is the expert’s subjective belief in
hypothesis h, and P(hle) is the experts’s sub-
jective belief in hypothesis h given evidence e,

A third measure is the certainty factor which
combines the measures of belief and disbelief
and is defined as:

CF[h,c] = MB[h,e] — MD{h,e]

The certainty factor is used to rank compet-
ing hypotheses. Its advantage is that if exact
probabilities cannot be obminecj then it can

provide a subjective estimate.

Dempster Shafer Theory of Evidence
This theory [Sha76] sets up belief func-
tions over sets of objects. Morrissey [Mor87]
notes:
“4 belief function associates a num-
ber between zero and one with a propo-

sition. The number indicates the de-

7 gree of belief in the proposition given



the evidence. The theory concenlrates
on combining degrees of belief given
different bodies of evidence. It is not
concerned with how the numbers are
determined.”

Shafer [Sha90b] notes:

* The theory of belief functions is
based on two ideas: the idea of obtain-
ing degrees of belief f.:Jr one question
from subjective probabilities for a re-
lated question and Dempster’s rule for
combining such degrees of belief when
they are based on independent items of

evidence.”

The problem with Dempster Shafer’s theory

of evidence is that it is difficult to implement.

Fuzzy Logic and Possibility . Theory
Dubois and Prade [DP90] note:
“The expression fuzzy logic' is used

- lo refer to a variety of approaches

C.115

propasing a logical rrea_tm'ent of im-
perfect knowledge usuallv referring
explicitly to fuzzy-set theory. Howe.ver,
a distinction among these approaches
can be made between those that deal
primarily with vagueness and those
whose primary concern is uncertainty "
Fuzzy logic [Zad83] is used to present cer-
tain statements which other logics can not han-
dle. For example, the statement: ‘If 2 car
which is being offered for sale is old and cheap
then it is probably not in good condition’ is
rather vague and uncertain and invoives a de-
gree of truth (Mor87].
Possibility theory [Zad78} is based on ear-
lier work on Fuzzy Set Theory [Zad63].
The work in this area has been continued

by Dubois and Prade. They discuss a pos-

sibilistic logic /DP90], which is a logic of °

partial ignorance and note that the possibil-



ity theory captures, in a very simple way,
states of knowledge ranging from complete

information to total ignorance.

6 CRITICS OF NCN-
MONOTONIC LOG!CS

Isracl [Isr80] states that “logic is, by its
very definition, monotonic, and the notion of
“non-monotonic logic™ is a contradiction in
terms.” Isracl states that the formal approaches
to non-monotonic inferences are in general,
non semi-decidable. Non-ﬁonotonic reason-
ir;g systems are very slow because of the re-
peated need for consistency checking. There
is also the multiple extension problem which
arises in a situation in which having applied

- one default rule we can not apply another.

Nutter /Nut83] argues that the problem with
non-monotonic approaches is that they have
not distinguishéd between the guarded state-

ments of the form “There is reason to suppose
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that P and statements of the form “P”. If this
is done the “There is reason to suppose that P
and “—P" do not contradict and hence there is
no need for retraction. If the problem of in-
complete knowledge is approached in this way
then a monotenic logic would be sufficient and
there would be no need for a non-monotonic
logic. She further argues that if the distinction
is not made, vatuable information will be lost.
Nutter notes two cases:

“(a) the system will not know and be
able to report the difference between
those conclusions which its premises
warrant without reservation and those
conclusions which its premises only
suggest, ‘and (b) because the system
will lose access to the reason‘ableras-
sumptions when specific information
overrides them, it will be unable to

detect and state that a reasonable ex-



pectation has failed.”

The probabilists argue that since probabil-
ity theory is much better understood than non-
numeric methods, it should be used to imple-
ment non-monoctonic inference.

Despite these criticisms, the current re-
search effort in non-monotonic logics is very
active, both in the theoretical aspects and

practical applications.

7 APPLICATION OF NON-
MONOTONIC REASONING
TO DATABASES

7.1 Introduction

Traditional database systems are restrictive
since they require comblete information and
are limited to storing facts. The informa-
tion is completed using the CWA. Deductive
database management systems (DDBMS) are
more flexible in that they allow information
and rules for the deduction of new informa-

tion. By their very nature deductive databases
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are non-monotonic and a good application area
for non-monotonic reasoning.

Logic has been used to formalize database
concepts. An excellent survey of logic as it
is applied to databases is given in Gallaire
et. al. [GMN84]. The paper aims “.. to
show that logic provides a convenient formal-
ism for studying classical database problems”.
It looks at the applications to databases, where
logic may be used both as an inference system
and s a representation language. Logic pro-
vides a convenient formalism for traditional
as well as dedustive databases. Kowalski
[Kow78] notes:

* ... logic is useful both for con-
ventional databases and programs as
well as for the compuiational data
bases which lie between the extremes.”

The extremes being determinictic programs

at one end and explicitly described databases



at the other. Frost [Fro86] notes
“since the semantics of logic is well-
defined, if a logical counterpart to a
database concept can be found then the
semantics of that concept may also be
well-defined ™. |
It is very likely that a non-monotonic logic
would be uscful in the formalizing of de-
ductive database concepts. The traditional
databascs are a subset of deductive databases

and therefore such a formalism, based on non-

monotonic reasoning, will be very useful.

7.2 Deductive Databases
Non-Monotonic ?

In a deductive database, inference rules are
present which allow new facts to be deduced
from those explicitly stored. Hence, in some
cases, it may be easier to implement the re-
quired intensional database (IDB) in terms of

a deductive database rather than the traditional
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extensional database (EDB). Gallaire et al.
[GMN84] note:
the facts in the EDB may be
viewed as extensions of the intensional
axioms in the IDB.”

A formal definition of deductive databases
is given in [GMN84].

The deductive mechanism is rule driven and
the number of conclusions deducable may de-
crease when a new fact is added. For exam-
ple, we may be able to deduce that Tweety
is a bird, Tweety flies, Tweety has feathers
etc. However, if the fac; that Tweety is a pen-
guin is entered into the database then many
of the previous conclugions will no longer be
deducable and hence the non-monotonicity of

deductive databases.

Deductive databases may be thought of as

“logic databases”, since they are based on

logic, and knowledge bases (KB), since they



can be thought of as containing knowledge as
opposed to facts only, but essentially they are

the same.

7.3 Choice of Programming
Paradigm for Deductive
Databases

Waugh et al, [Ho90] notes:

“The deductive database model is
seen as a natural progression from the
relational model; the query language
should reflect this.”

They designed SQUIRREL, which is an ex-
tended form of SQL, as a query language for
a Prolog-based deductive system. Note here
the use of the logic programming paradigm
for implementing a deductive database. Many
applications use a logic programming para-
digm. Giovannetti et al. [GLMPII] pro-
pose Kernel-LEAF, a logic plus functional
language which tries to combine the advan-

tages of both paradigms. The object oriented
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paradigm is also being used to implement
databases and could be used in the future for
deductive databases. However, at present, the
logic programming paradigm seems to be the

most useful.

7.4 Query Evaluation in
Deductive Databases

In traditional databases, query evaluation
involves a search of the facts in the database.
Relation algebraic operations are also used to
help evaluate queries. In a deductive data-
base, for query cvaluation, nou only the facts
explicitly represented must be taken into ac-
count, but also those facts that are “deducible™
from them and thus a deductive mechanism
is required. The mechanism often used is a
‘refutation’ technique based on resolution.

Green [Gres9] gives a working computer
program, QA3, which uses a resolution-type
theorem-prover as its deductive mechanism to

implement a question answering system.



8 NON-MONOTONIC
REASONING AND DEDUCTIVE
DATABASES

The fact that non-monotonic logic can be
impiemented in deductive databases has al-
ready been shown. The question is, what ap-
proach should be taken. Clark [Cla78] sug-
gests the use of NAF meta rule and in fact,
it is this rule that is implemented in Pro-
log as NAFF. The problem with NAF is that
the query evaluation process in general is not
complete and the only way to ensure that ev-
ery solution to a query is found is to impose
constraints on the database and its queries. In
Prolog, one limitation is that only hom clauses
be used and this greatly inhibits the type of
knowledge that can be represented. In par-
ticular, disjunqtions and negations cannot be
used.

‘Reiter [Rei78] in his paper looks at the use

of the CWA in deductive question answering-
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systems. However this naive CWA is only
applicable to Horn databases. In his paper
Minker fMin82] extends the CWA toa GCWA
which is applicable to both Homn and non-
Hom databases.

Bossu and Siegel /BS85] identify a system
of non-monotonic reasoning called subimpli-
cation. They [BS83] note:

“.. it is possible to set up a log-
ical model of databases using subim-
plication and two sets of stable formu-
las, This model allows the construc-
tion of a system}'or creating, updating
and querying databases that is totally

transparent to the user.”

9 DISCUSSION

Research in non-monotonic reasoning has
been very active in the last decade and con-
tinues to be so in this decade. The motiva-

tion is to find a formal theory for everyday



commeon sense reasoning. The many differ-
ent formalisms that have been proposed all
seem to capture only some aspects of com-
mon sense reasoning. The problems of rea-
soning about action and time as illustrated by
the Yale shooting problem cannot be solved
by any of the formalisms in the survey. Some
of the formalisms are related, for example,
circumscription and NAF [GPP89], Default
logic and AEL [Kon88]. However, there is no
single formalism that can be regarded as “the”
formal theory of common sense reasoning.
Two approaches has been identified for fur-
ther research. The first, focuses on a compu-
tational approach where available formalisms
are used to represent parts of the knowledge of
realistic domains and to test whether systems
based on these representations wotk as ex-
pected. In the second approach, the problems

of computation are left to be dealt with after
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“the" non- monotonic logic is found. Brewka
[Bre91b] suggests:

“There will probably not be much
progress in the development of formal-
izations, nor any increase in the trust
in the existing ones, without programs
which handle more realistic examples
that those that have been studied so
Jar.”

The logic programming language, Prolog,
has been the choice for many implementa-
tions. Prolog has been used to implement
new systems. such as SQUIRREL: an extended
SQL for a deductive database system [Ho90]
, SATCHMO: a theorem prover fMBS8&] that
is being used in the Japanese fifth generation
project.

General application areas of non-monotonic
reasoning are given in /McC86].  Strobel

[Str89] cites the following application areas:



deductive databases, logic programming, di-
agnosis, reasoning about action and natural
language processing.

The resolution principle fRob85] was a
landmark which made automated deduction
systems practical. Such systems have been
adapted for logic programming. Prolog can
be used to implement deductive database sys-
tems. However, much work needs to be
done on the integration of resolution and non-
monotonic reasoning. This will form a topic
in my thesis.

Much remains to be done in deductive
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databases and other application areas and also
in the finding of “the” non-monotonic logic.
However, due to the need for common sense
reasoning systems, the research in the area
will continue to be active. [ believe that
finding “the™ non-monotonic logic, if at ali

possible, is in the far future. However, the

need and the time for practical application

programs is here.
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APPENDIX E
SOURCE CODE! FOR WINIT

S ewwR R R h kR R R W W
% bl WINIT *
% * Windsor Intellingent Thinker *
% * A Quintus Proleg Implementation *
% L2 222232 R Ll iR dlld sl dd)

% ET2IT RS R3S AL X1 d 21222 d a2 d g}yl )
% * Programmer : VIREN PARASRAM .
% * Email : virenduwindsor.ca "
* W wwRwwRRr kR R Rk ek kR R R RN
% WINIT
% =====

% Winit is a Quintus Prolog implementation of CFDL.
% CFDL [Par94)] is a Certainty Factor Default Loq.‘,;-..
% The documentation is divided into three seqmant;a:
% I. Representation of CFDL in Prolog

% II. WINIT ProWindow interface source code

% III. WINIT source code

% I. Representation of CFDL in Proleg

%

_ % Constants:- any Prolog constant
S
" % Vvariables:- any Prolog constant
% Predicates:- any Prolog predicate

U | would Jike to thank David Poole for emailing me his Theorist [Poo92f source code. | have included his Prolog
code for finding the most genera! unifier with the occurs check into my implementation.
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*

Term:- & constant or a variable

*

Clause:- In CFDL q<-al,a2,...,an : cf
% In WINIT |cf|:sign(cf):qg<- al,a2,...,an

% Examplel:- In CFDL flies(X)<-bird(X),has_wings(X) : 0.55
% In WINIT 0.95: (+) :flies (X)<-bird(X),has_wings (X)

% Example2:- In CFDL flies(X)<-penguin(X) : -0.98
% In WINIT 0.98:(-):£flies (X)<-penguin(X)

% Example3:- In CFDL teacher{joan)<-:1
% In WINIT 1.0: (+):teacher(joan}

% Note in example 3 when there are nc antecedents the inplication
% sign is dropped in WINIT.

% Note also that WINIT uses the prolog command

% unix(system{Command}).

% to execute UNIX commands. These commands are used for:
%

on line help, load and save KB

% IXI. WINIT ProWindow interface scurce rode

%

% I YT XXX RIS 22 2 2 2 d 2 dd )]

% hd WINIT Theorem Prover ¥

% b ProWindows Interface = *
% * Programmer: Viren Parasram *
k tiittittttt**ttiil‘**t.tttttﬁ'*t*ttii

% Note in the documentation to this seétion if a predicate is dafined.:
% in section III a comment "Defined in non-ProWindows code® is added.



% Print_view loaded to allow use of:
% print_view/2 to send cutput to a specified view.
:- ensure loaded(library(print wview}).

% Popup_prompt loaded to use prompt/5 for user input.
1~ ensure_loaded(library(popup_prompt)).

% Term _atom loaded to allow use of:

% atom_to_term/2 to convert prowindows atoms to prolog terms
: -~ ensure_loaded (library(term atom}).

% Location of files

G NMMNBUNHREERWARAN

% You will need to replace the path name

% /home/ucc/perm/parasra/Thesis

% with the path name of the directory where you load

% WINIT's source code. Also the Help files must be placed
% in a Help subdirectery and the bitmap icons in the

% Icons subdirectory. |

% The following file names are used by WINIT:

% help areas, saved_states, saved kbs, winit, winit kb

% Source Code for WINIT in file

% /home/ucc/perm/parasra/Thesis/winit.pl
% Help files in Directory

% /home/uce/perm/parasra/Thesis/Help

% Saved gtates in Directory

% /home/ucc/perm/parasra/Theais/States
% sﬁved Knowledge Bases in Directory

% /home/ucc/perm/parasra/Theeis/KB

% Bitmap Icons in Directory

% /home/ucc/perm/parasra/Thesis/Icons
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% satup_kelp/0

% emzmmzsmEEEx

% setup help copies the names of the files in the Help directory
% into the help_areas file which is used by the help browser.

setup_help :-
name {Cmd, "1s /home/ucc/perm/parasra/Thesis/Help >
help areas"},

unix(system{Cmd)}.

% satup_states/0
%

% Setup_states copies the names of the files in the State directory
% into the saved_states file which is used to remind the user of

% the namas of the saves states.

setup_states :-
name (Cmd, "1s /home/ucc/perm/parasra/Thesis/States >
saved_states"),

unix(system(Cmd)).

'% setup kbs/0
%
% setup_kbs copies the names of the files in the KB directory
% into the sn_vaq_kbs file which is used by the 1o§q_kb browser

satup_kbs :-
name (Cmd, *1s /home/uce/perm/parasra/Thesis/EB > saved kbs*),
unix{system(Cmd}).

% begin/o0

‘ HHBERER

% begin is used to open the ProWindos interface to WINIT

™
L
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begin :-
asserta(state_names([1})).
setup_winit_windows,

open_winit_window.

% setup_winit_windows/0
%

% Creates the window objects.
% The window sizes may be changed depending on your monitor.

% This can be done using the mouse or changing the x-y size values.

setup_winit_windows :-

new(@main, view('WINIT (Windsor Intelligent Thinker)’)),
send {(@main, size, size (595, 420)),
send (@main, editor, cascade{@main,comnands,0)),
send (@main, edit_mode, command),

new (Menu_bar,dialog{'WINIT (Windsor Intelligent Thinker)')},

new (@nain_bar,menu bar{winit}),

new (¢help, popup (' HELP' ,help)),

new(@file,popup(’FILE’,£ile}),

new (@query,popup (' QUERY’ , query) ) .

new (@kb, popup (KB’ , kb)),

new (@change,popup {’ Change clause(s) ’,change}),

new(@add,popup (*Add clause(s)’,addl)),

new(@delete,popup(‘Delete clausa(s)’,delatel)),
send (émain bar,append, [@file,®kb, @query,¢help]),
send (¢help, append, ['Help’, 'Version’, 'hot Keys’'l).
send (@query,append, query),
send (@kb, appand, [*Load’, 'Save’,@changel),
send (@file,append, ['save state’,’Save kb’l),
send (@change, append, [@add, @delate] ),

. send(@add,append, ['add 1’,’add #1,

send (@delete,append, [‘a clause’,’all clauses’]),

-
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aend (Menu_bar,append,@main_ par),
send (Menu_bar,above,@main),
new (@icon,bitmap (64,64,1)},
load_icon({winit),

send {@main, icon,®icon).

% load_icon/1

* (2322212 1Z] ]

% Loads the 64 bit X-bitmap file with name in arg 1

% from the Icons subdirectory intoc the @icon bitmap object.

load_icon(Icon_name) :-
add_prefix(*Icons/",Icon_name, Icon),

send (@icon,load,Icon).

% open_winit window/0

% wRE TR R AR R RN

% Opens the main WINIT window with its menu bar.

cpen_winit_window :-
send {¢main,open,point(2,70)).

commands/2

L1211 32321

commands is used to give the hot key definition.

The main NIﬁIT window can be in command or insert mode.

In command mode entering a single character will cause the

actions defined below. Note all these actions can also be

P B A A

triggered using the mouse and menu bar.

commands (§main, a) :- addl.
commands (¢main, h) :- make_ help.
comuands (émain, k} :- hot_keys msg.



Cr

commands (@main, v) :- version_msg.
commands (@main, escape) :-
send (@gmain, edit_mode, ccmmand),
print_view(@main, ‘In command mode’},
send (@main, newline).
commands (@main, i) :-
send (@main, edit_mode, inserxt),
print_view(eémain, ‘In insert mode. Use control_a instead of
Enter.’).
send (@main, newline),
print_vie<(@main, * Bug in ProWINDOWS 2°),

send (@main, newline).

% This next cption processes user input when in the input mode

% *newline"” should have been used instead of "control_a®™ but there
% is a bug in ProWindods since the @main view’s message is not

% executed when Returr or Line Feed is pressed.

% This bug is not present in newer versions of ProWindows.

% Hence in insert mcde I simply process the Eirst key as a

% Hot key in the command mode as defined above.

commands (@main, control_a) :-
get (@main,line, string{cmd)),
send {¢main, newline),
print_view(@main, !Processing your input: ‘),
print_view(@main, cmd},
send (€main, newline),
name (Cnd, [Key|Rest]),
name (Hot_key, [Rey]),
commands (@main, Hot_key).

% Trap for invalid command key

commands (Viaw,;tay) t-
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print_view({View, 'Command key "’),
print_view{View,Key),
print_view(View,’"not recognised.’),
send (@main,newline) .

*

help/2

% L2 223 2

*

Executes coresponding predicate when help popup selected.

help{@help, ‘Help’) :- make_help.
help (¢help, ’‘Version’) :- version_msg.
help(@help, ‘hot Reys’) :- hot keys mag.

% Open help help windows if they exist. --\‘_»J ,
make_help :- -
object (Shelp_view),
print_view{@main, ‘Help window being opened.‘),
send (&main,newline),

open_help windows.

% Create and open Help Windows
make _help :- i
create_help windows,
open_help windows.

open_help_ windows :-
send (¢help view,cpen,point (500,80)),
. setup_help. % used to get the most recent list of help files
send (Ohglp_browser, load, help_areas),

send (€help_browser,sort).
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create_help windows :-
new{@help_browser,browser ("HELP’)),
new{@help_view,view('HELP’)),
print_view{@main, 'Help Activated’),
sand (émain,newline),
send (@help_view,right,@help browser),
send {@help view,size,size(350,300)),

load_icon{help),

send (@help_view,icon,@icon),

send (@help_browser, selected, cascade (Shelp view,get_help,0}).

% get_help/2
G ek ek .
% Loads the help file selected into the view window.
get_help (2help view,X):-
add_prefix("Help/",X,Path),
send (2help view,load,Path).

version_msg :-
print_view(@main,’This is WINIT version 1.0‘),
send (gmain,newline).

% Open hot key window if it exists
hot_keys_msg :-
- object (@hot_keys} ,
print_view(@main, ‘Recpening window with command keys defi:_:itions')",-
send (dmain,newline),
open_hot_key windows.

% Creates and opens hot key window



hot_keys_mag :-
print view(@main,’'View window has command keys definiticns’},
send (émain,newline),
create_hot_key windows,

open_hot_key windows.

create_hot_key windows :-
new {(@hot_keys,view('WINIT HOT KEYS’)).
send (@dhot_keys,egize,size{400,300)},
load_icon (hot_keys) .,

send {@hot_keys,icon,@icon).

open_hot_key windows :-
send (ghot_keys,open,point (490, 50}),
add_prefix{*Help/",hot_keys,Path),
send {@hot_keys,load,Path). % Load most recent hot key file

% file/2

% EwwwRN

% Executes coraesponding predicate when file popup selected.

file({@file, ‘save state’) :- make_save_state.

€ile(®@file, 'Save kb’) :- save kb.

% make_save_state/(

S wRRERRwh kbR R

% Pops up windows to help save the present execution state of the

% program under a user specified name or as winit by default. .
==

1~ dynamic saved_state/l.

1- dynamic stata{ames/ 1.

—
-
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make_save state :-
print_view(@main, 'Save state Activated’},
send (@Gmain,newline) .,
new{Dialeg, dialog(’save state’)},
new(Label, label (‘Save present state of program’)),
send(Dialog, append, Label),
new(Save, button(’Save’, pressed_save}),
new (Saveas,button(’Save as‘, pressed_save)),
new(List_ pames,button(’list pames’, pressed_save}),
new (Cancel, button(’Cancel’, pressed_save)},
send{Label, above, Save),
send {Save, left, Saveas),
send(Saveas, left, List_names),
send (List_names, left, Cancel),

send (Dialog, open).

pressed_save(Dialog, ‘Save’) :-
saved_state(State), % Use most recent saved state name
save statel (State) ,

send(Dialog, destroy).

pressed_save(Dialog, ‘Save’} :-
asserta{saved_state{winit}), % Use default save state pame
update_state_names(winit),
save_statel (winit),
send{Dialog, destroy).

pressed_save{Dialog, ’'Save as’) :-
new(File_name_box,dialog{(’Enter f£ile name’)},
new(Name, text item(’File
Name’,’’,cascade(Pile_name_box,dummy,0))),
send (File_name_bcx, append,Name) ,
send (File_name box,cpen),
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get (@sys,wait,message (File_name_box,dummy, Input)),
abolish({saved_ state,l),
asserta{saved_state(Input)),

save_statel (Input),

update_state_names (Input),

send(File _name_box,destroy) .

send(Dialog, destroy).

pressed_save(Dizlog, ‘list names’) :-

print_view(@main,’'0ld saved states names being listed.’),

send {émain,newline) .,

new(@state_namec,view(’WINIT SAVED STATES NAMES’)),

send (@state_names,size,size (400,300)),

send (@state_names,open,point (500,90)),
load_ilcon(state_names), L=

.pend (@state_names,icon,@icon),
state names (Names),

send_list_into_view{Names,@state _na;tnes) .

send{Dialog, destroy).

pressed_save (Dialog, ‘Cancel’) :-
print_view(@main, * Save State cancelled’),
send (émain,newline) ,

send (Dialog, destroy).

update_state_names (Name) :-

Vs

state_names (List__ngmes) .
(membexr (Name,list_names) ->
True| e :
(append ('[Name] ,List_names,New_list_names),
retract(state_names{_)), -

asserta(state_names (New_list_names)})).
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% SAVE_STATEL/1

G R ATRENAENNS

% Saves the state of the program in the file name specified in arg 1.

save_statel{File_name) :- save_program(File_name,program_id),
»rint_view(@maim,’ System state saved in the file: ‘),
print_view(@main,File name),
send (@main,newline},
print_view(@main,’ To restart, from UNIX prompt type: ‘),
print_view(@main,File_ name),

send (émain,newline).

% send_list_into_viewl/2
% AARRERRR R AR RN wN
% Prints each member of a list separated by a blank space into a view.
send_list_into_viewl([],View} :- send(View,newline).
send_list_into_viewl ([First|Rest], View) :-

print_view(View,First),

print_view(View,’ *),

send_list into_viewl (Rest,View).

% send_list_into_viewl/2

% [Z A2 1232 123 a sl tlddldls

% Prints each member of a l:i.st separated by a newline into a visw.
send_list_into view{[],View) :- send(View,newline).
aand._list_into_view([Fi;stlnaat], View) :-
print_view(View,First),
send (View,newline},

send_list_ into view(Rest,View).

% kb/2

G whRw i
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% Executes coresponding predicate when @kb popup selected.

kb (@kb, ‘Load’} :- load_kb.
kb (@kb, ' Save’) :- save_kb.

% load kb/1

G whkEAARAN

% Pops up windows to help load a KB previously saved.

load kb :-
print_view(@main,‘Load KB Activated’),
send (dmain.newline),
new (@load_browser,browser{’LOAD EB*))},
new(@load_view,view{’LOAD KB’')),
send (@load_view,right,@load_browser},
send (@load_view,size,size (350,300)),
send (@load_view,open,point (480,90}),
lcad_icon{load_kb},
send (@load_view, icon,@icon),
satup_ kbs,
send (¢load_browser,load,saved kbs),
sand (®load_browser, sort},
ae_nd {@load_browcer,selected .cascade (Oload_view,_ get_load,()).
gat_load (Oloadl,\fiew,X) t-
add_prefix("KB/".X,Path),
send (€load_view,load,Path),
prompt (‘About to load the
file’, ‘Name’,X, ['OK’,’Cancel’],Name,Button,peint (500,320)},"
londl (Name,Button).

loadl {Name, ‘OK‘} :-

“~
-~ N

A

"
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current_input (Oldinput),

add_prefix(*/home/ucc/perm/parasra/Thesis/KB/",Name,File),
open (File,read, Input)},

set_input (Input),

read (T},

read_all{T),

set_input (Oldinput),

print_view({@main,File),

send (@main,newline),

print_view(@main,’ has been added to EKnowledge Base.’),

send (émain,newline),

send (@load_browser, destroy).

loadl (Name, ‘Cancel’) :=:- 1.

% read _all/l

G WewRRhkkRr

% Roads and asserts data from a file until the end of the file.

read_all(end_of_file) :- 1.
read_all (T} :-

assertz (T),

read (Next) ,

read_all (Next).

% save kb/0

G AwwwRwEAN
% Pops up windows to help save all the clauses in the current .

% EB of the form A:B into a file specified or winit kb by default.

:- dynamic saved_kb/1.

i



save kb :-

print_view(@main,’Save KB Activated’),
send(@main,newline),

new(Dialog, dialog{’SAVE EKB")),

new(Label, label(’Save all rules and facts in KB’)},
send (Dialog, append, Label).,

new(Save, button(’Save’, pressed kb)),

new{Saveas,button(‘Save as’, pressed kb)),

new{Cancel, button{’Cancel’, pressed kb)),
send (Labe), above, Save),
send (Save, left, Saveas),
send (Saveas, left, Cancel),

gend(Dialog, open,point(400,100)).

pressed_kb (Dialog, ’‘Save’) :-
saved_kb(State),
abolish(saved_kb,1},
asserta {saved_kb(State)),
save_kb (State) .,
print_view(@main,’ XB saved in file: ‘),
print_view(@main,State),
send(émain,nawline),

\‘\j?send(hialoq. destroy) .

pressed_kb{Dialog, ‘Save’) :-
asserta(saved_xb(winit kb)),
save_kb (winit_kb), ‘ .
print_view(#main,’ KB saved in file: winit kb‘),
send (émain,newline),
send (D:I.a.ldq, dastroy) .

prassed_kb({Dialog, 'sﬁtq as’) :-
new(File_name_box,dialog(’Biter file name’)),

-
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new{Name, text_item(’File
Name’,’’,cascade (File_name_box,dummy,0))},
send {File_name_ box,append,Name),
send {File_name_box,open),
repeat,
get {@sys,wait,message(File_name_box,dummy, Input)),
abolish (saved_kb,1l},
asserta(saved_kb(Input)},
save_kb (Input),
print_view(@main,’ KB saved in file: '),
print_view(@main,Input),
send {@main,newline),
send (File_name box,destroy) .,
send(Dialog, destroy). o

pressed_kb(Dialog, *Cancel’) :-
print_view(¢main, ‘ Save KB cancellad’),
send (¢main,newline) ,

send{Dialog, destroyj.

% addl/2

% wewwwe )
iy

I-——- -Jk Pops up windowu which dirac:t you to add a clnuse

T e et T T

% or aeve:al clausea as selected.

addl(@add,‘add 1°) :-
new(Dialog, dialeog(’Go to Prolog Window’)), _
new(ba:.bel, label (‘Enter clause in prolog window’)),
send{Dialog, append, I:abal).
new (Button, button(’OK’, prompt buttem)},
send (Button, below, Label),
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send(Dialog,open),
repeat, _
get (@sys, wait, message{Dialog, prompt_button, QKR')) .,
send (Dialog, destroy),
add, % Defined in non-ProWindows code
print_view(@main, Control returned to ProWINDOWS') ,
send (@main,newline) . .

add (@add, ‘add #’} :-
print_view(emain,’Add clauses Activated.’}),.
send (gmain,newline),
print_view(@main,* Enter number of clauses to be added, in
Prompter then,’),
send (émain,newline},
print_view(@main,’ - Enter clauses, in Prolog window.’).,
send (@main,newline),
prompt{’ How many clauses to update
?*, ‘Numbexr’,1, [*OK’, 'Cancel’] ,Name,Button,point (520,320} },
atom_to_term(Name,Num),
updatel (Num,Button},
print_view(@main,’Control returned to ProWINDOWS'},
send (¢main,newline) . |

updatel (Num, 'OK’) =z-
add(Num)}. % Defined in non-ProWindows code

updatael(_, ‘Cancel’) :-

print_view{d¢main,’'Update KB cancelled at your request’), N

send (¢main,newline).

deletel (®deleta,’a clause’) :-

4



prompt{* Enter clause to be deleted’,
+Clause’,’’, ['OK’,'Cancel’] ,Name,Button,point {520,320)),
atom_to_term(Name,Num),
delete2 {(Num,Bution},
print_view{@main,” Control returned to ProWINDOWS.'),

send (émain,newline) .

deletel (@delete, ’all clauses’) :-
prompt(’ Warning this option deletes all
clauses’,’’,’’, ['OK’, ‘Cancel’],_,Button,point (520,320)),
delete_all (Button).

delete_all (‘OK’) :-
clean, % Defined in non-ProWindows code
print_view(@main,’All clauses removed from KB.').

send (@main,newline}.

delete_all (‘Cancel’) :-
print_view(@main,’Clause deletion cancelled.’),
send (émain,newline}.

query (@query,query) -
new(Dialog, dlalog{’Go to Prolog Window’}).,
new({Label, label{’Enter queries at WINIT prompt
in prolog window’)}.
send (Dialog, append, Label), =
new(Button, button(’OK’, prompt_buﬁton) ).
send (Button, below, Label),
send (Dialog,open),
repeat,
get (¢sys, wait, message(Dialog, prompt_button, 'OK'))‘,
winit,
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Y,

print_view(émain, ‘Control returned to ProWINDOWS’),
send {@main,newline),

send (Dialog, destroy).

delete2 (Num, *OR’) :--
deletepw (Num) .

delete2 (_, ‘Cancel’) :-
print_view(@main, ‘Update KB cancelled at your recquest’),
send (dmain,newline}.
% Delete a clause if it exists.
deletepw (C£-Clause) :- I, 5
find_clauae(cf-Clause,CEl-siéh),
gsend_list_into_viewl{[’Clause’’ ’,Clause,’ ’,Sign,Cfl1,’’’
about to be removed y/mn: °],@main},

(qat0(121).-> (retract (Cf1l-Sign-Clause},
send list_into_viewl([’Clause’’ ’,Clause,’ ’,Sign,CE1,°"’
has been deleted.’],@main)},
send;q@nin,nawline))l
(print_yigﬁ{amain,' Clause NOT deleted.’),
send (@main,newline))}.
deletepw{Clause) t-
dgletepw(_:clauae).

% Window Utility Predicates

‘ 'Iuﬂll'ﬂ"lIIIIIIIIHHUHII.

‘% Dummy/2

S wREENAR

% Dummy is used to facilitate use of cascade in a dialog box to get

]
s
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input
dummy (_,_).

% Programming Utility Predicate

% ANMUAHHNAHNANARNURHENNNANN NN RN

% These are predicates I found usefull when writing and debuging
the program.

% You can include any objects in the list which you wish to destroy

free :- free win{[@main,@main_bar,@help,@file,@query,@kb,@change]).

free win(1l).

free _win{[Win|Rest]):- object(Win),send(Win,destroy),free_win(Rest).
free win{[Win|Rest]):- free_win(Rest}.

% recompile.
¢ :~[‘winit.pi’).

tttttttt*tttttttﬂ't*tt*tt{fitit**tu** i -f
* WINIT Theorem Frover "

* Source Code Common to Window & *

* Non-Window Versions * —

* Programmer: Viren Parasram hd

%
%
%
%
%
%

:- op(1150,fy.h). % Used to facilitate online help
:- op(1150,£fx,8et). % Set turns flag on/off
1= op (1150, fx,£flag).

AN ERTARRRE R RRAAAT RN RN AN SRR R
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:- op{1150,fx,save_kb).

:- op(1125,xfy,’<-'}. % For representation of clauses
:- dynamic choice_pts/1.

:- dynamic goal/l.

1~ dynamic active _list/1.

;- dynamic resolvant/1.

:- dynamic all_answers/l.

+- dynamic answers/l.

:-compile (library{basics)). /* for member/2 */

WINIT/O
wwwRwRw
This predicate invokes the WINIT interpreter.

The control is put to the theorem prover and remains there until

# £ F £ P

nquit.” is entered at the "WINIT" prompt.

winit :-
initialize_ flags,
unix(system{clear)}},

theorem prover (winit,start).

initialize_ flags :- -
killflags, .
asserta({flag (goal_variable_ free,off))),
asserta{(flag (newclause,on))},
asserta({flag (occurs_check,o0ff)}),
asserta((flag (calculus_type,1))),

asserta((flag (trace,off))).

set Flag,Val :- ratiact((ﬁlgﬁ (Flag,.})).

A

asserta((£lag {Flag,Val))).
set Flag,_ :- format(’"nFlag ““w" does not exist.’, [Flagl).
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flags :- listing(flag).

% THEOREM PROVER/2

96 LA A L L AL Al d Ll s )

% This predicate reads a goal and executes it based on the "xecute"

% predicate’s rule. This loops until the guit goal is entered.

theorem_prover{_,Status) :- Status == quit.
theorem prover(_,_ ) :- format(’ nWINIT : ’,[]),
read (Goal},!,
xecute (Goal,Status),

theorem prover(_,Status).

% XECUTE/2
% TR AR
% This predicate gives the rules on how each goal should be

executed.

% First check if the boundary condition is satisfied.
xecute (Goal, Status) :-

nember (Goal, [quit, g, stop,end, end_of_£ilcl),.

Status = quit.

% Next if goal user defined then execute.

xecute (Goal,_} :-

member (Goal, [save state,add,add(_ ) ,delate(_),update(_ ), h, (b ),c,1
.flags,saet(_),clean,add db{_}]),
Goal.

% Answer Users Query
xacute((Q1,Q2), J):-

~



'

xecuta{Ql,_ ) ,xecute(Q2, ).

xecute{Query,_J -
check {Query),
solve{Query,Ans) .

check (Query) :-
variable_free(Query},
{set {goal_variable free,on}).
check{ ) :-
(set (goal_variable free,off}).

% Resolution Strategy

solve {Goal,Ans) :-
initialize,
retract (goal(_)),asserta{goal{(1.0-’+"}-Goal)}.,
loop_bleck.

loop_block :-
show (loop_block),
choice_pts{Choice_pts) ,goal (C£_goal-Goal),
(pop (Goal,Choice_pts,New _choice_pts,Goals_c_1s)
(retract (choice pts{_}),
asserta (choice_pts (New choice_pts)}},

{set newclause,off),

resolve{Goal,Goals_c_1s,C2_n),sub block(C2_n}) |,

(search{Goal,List),
{List = [1 -> (backtrack) |

{(set newclause,on),

resolve (Goal,List,C2_n),sub block{C2_n}))}).-

sub_block(C2 n) :-

-
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test_C_list(C2_mn),
test_resolvant,

test_active_ls.
backtrack :- show(backtrack),test_active_ ls.

test_active_ls :-
active_list{active ls),
{Active_ls = [] -> check_answer_1s |
{update_goal (Active_1l1s),

test_ans 1s)).

check_answer ls :-
answers (Ans) ,
Ang = [] -> (write(’ NO by CWA")}|
report.

teat_ans_ls :- answers(Ans_ls),
(Ans_1s = [] -> (pop_active_list_loop)|

(compare <f_ans_goal}).

compare_cf ans_goal :-
goal ((Cf_goal-_) -Goal),
answers ([ (C£_ans-_) -Ans|T]),
{Cf_goal @< Cf_ans ->
raport|
pop_active list lecop).
pop_active_list loop :-
retract (active_list([H|T])).
asgserta(active list(T)),
loop _block.
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pop_active_list :- retract(answers([H|T])),

asserta (answers (T}).

update_goal ([H|T]) :-
retract{goal( }),

asserta({goal (H)).

test_resolvant :-

resolvant { { (Cf_res-Res) -Leaf)),

(Res = [] -> {Leaf =.. [_|Binding], test_binding (Cf_res-Binding)) |

{retract (active_list (Active_ls)).,
append( [C£_res-Res] ,Active_ls5,New_active_1s),
cf_sort (New active ls,New},

asserta(active_list(New)})).

test_binding(Cf-Binding} :-
retract {(answers (Ans)},
retract (all_answers(All_ans)),
{member ( {_-Binding) ,Ans) ->
update_ans_bindings ( (C£-Binding) ,Ans,New_ans): |
{append ([ (C£-Binding)],Ans,New_ans))) .,
asserta (answers (New_ans)),
append (New_ans,All_ans,New_all _ans},

:aaaerta (all_answers (New_all _ans)).

update_ans_bindings ( (Cf-Binding), [(C£1-Binding) |Rest], [Better_ans

|Rest]}:-
Cf = Abs_cf-Sign, Cf1 = Abs_cfl-Signl,

{Abs_cof @> Abs_cfl -> Better_ans = CE | Better_ans = Cfl)-.
update_ans_bindings  (C£-Binding) , [ (CE1-01d) [Rest], [ (C£1-01d) |othe

rl) : - -
update_ans_bindings ( (C£-Bindings) ,Rest,Other).
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test_¢ 1ist([]).-
test_C_list(C_list) :-
{£lag newclause,on),
add_choice_pts(C_list,Goal,Cf_goal),
generate_choices {Goal,Cf_goal,C_list,Choices},
update active_ls{Choices).
test_C_list(C_list) :-
(flag newclause,off),

add_choice_pts (C_list,Goal,Cf_goal).

add_choice pts{C_list,Goal,Cf_goal) :-
goal (C£_goal-Goal),
retract (choice_pts{Choice pts)},
append{ [Goal-C_list] ,Choice_pts,New_choice pts),
asgerta{(choice_pts(New _choice pts)}}. S

update_active_ls(Choices) :-
retract {active_list{Active_1ls)),
append (Choices,Active_ls,New_active_1s),
cf_sort (New_active_ls, New),

asserta{active_list (New)).

generate_choices (G,Cf_goal, (1,[1).

generate_choices (G,CE_goal, [CE1-_|T], [C£-G|Rest]) :-
new_cf (Cf_goal,C£f1,Cf),
generate_ choices (G,Cf_goal,T,Rest).

resolve{Goal, [Cf_cl-Clause|T],T} :-
goal (C£_goal-Goal},
{{flag newclause,on) -> new_cf (Cf goal,Cf c¢l1,Cf resolvant) |
(Cf_reaoiirant = CE£_goal}},

retract (raesolvant ()},

{\+(Clause = (Goal <- Antecedents)) ->
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asserta (resolvant{(Cf resolvant-{]l)-Clause)}) |
(Clause = (Goal <- Antecedents),

asserta (resolvant { (Cf_resolvant-Antecedents)-[]1)})}.

a, Q.

% Calculus Module
% You can define different calculi here. The default is Caleculus 1

% You can use any unused number for your calculus.

new_cf(C1,02,Cf) :- (flag calculus_type,l), efl(cl,c2,Cf).
% For a new calculus you would use a line like the one

% commented out below

% new_cf(C1,C2,Cf) :- {flag calculus_type,2), cf2({c1,c2,CE).
% Then add the appropriate cf2 predicate definitions.

% You will also need to set the calculus_type flag

% to the desired calculus

% CALULUS 1

cfl{_-_,1.0-7-’,0.0-"-"}).

cfl(CE1l-"+',CE2-*+! ,CE£3-7+") :~ Cf3 is CE£l = Cf2.
cfl{Cg1-_,c£2-_,CE3-7-*) :- CE3 is CE1 * Cf2.

dD

search (Goal,List} :-
flndnll(clause,get_mntch(Goal,Clause),c1ause_liat),
(Clause_list = [] €> bist = []} -
- cf_sort(Clause_list,Liaﬁ)).
e
get_match (Goal,Clause) :-
¥-X, (unif (X, (Goal<-R}) ;unif (X,Goal)},Clause = ¥-X.

% Initial lists for resolution
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goal([l).
choice_pts([]).
active list([]).
resolvant([]}.
answers ([]}.

all_answers({]}.

initialize :- retractigoal( )},
retract (choice_pts( )},
retract {active list(_ }).
retract (resclvant ()},
retract (answers(_)),
retract {all answers(_)),
asserta(goal([1}),
asserta(choice_pts([1)),
asserta{active_list([1)},
asserta(resolvant ([1)},
asserta(answers([])),

agserta{all_answers([]1}).

% PROGRAM_ID/0

G wHRRRAAE AR

% This predicate is executed every time the program is

% restarted from a saved state.

% It displays welcome,version and help messages.

program_id :- format(‘"n

PYTTTTTE T LTI AL A AL R A A A s b bl gl

. Welcome to WINIT ver 1.0
* For help type ‘'h.’’

*"*i**ttitt******tittttt*ﬁ*'*i*i*-n"[])_

-

L
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% SAVE_STATE/O

% (X2 22222 L] 3] )

% Saves the state of the program in the default filename ‘winit’.
save_state :-save_state(winit}.

% SAVE_STATE/1

% RN RRAT RN RN

% Saves the state of the program in the f£ile name specified in arg 1.

save_state({File_pname) :- save_program{File _name,program_id),
format{‘"n 7
System state saved in the file "*“w’’,
To restart, from UNIX prompt- typE

re-wse ~n¢,[File name,File_name]).

% SAVE_KB/1

B WwhwwaRREd

% Saves the KB into the specified file

(save_kb EKb) :- I,
add_nrefix("/home/ucc/perm/parasra/Thesis/KB/",kb,File_name),
tell (File_name),
1ls,
told.

g www

/ % Used to display help options.

(h) - format{’'"n



This is WINIT version 1.0 (all comments to Viren Parasram).

Help is available in the following areas:’,f{]),nl,

unix(system(’ls /tmp_mnt/home/ucc/perm/parasra/Thesis/Help

| more’}),
format(’"n

Enter your choice followed by <returm>"n’,[])-.

% h H

G wHw

% Displays help in a specific topic

(b H} - 1,
add_prefix("more
/home/uce/perm/parasra/Thesis/Help/",H,Cmd) .
unix(system{Cnd)}.

% Predicates to input clauses with certainty factors.
%

% Add a clause by prompting user for input.
add:- ¢et_clause(Clause),

gat_cf(Cf),

test_cf (Cf,Clause).

test_cf(Cf;Clause) :- Cf @
0.0,assert_if not_present({Cf-’+’)-Clause}.
test_cf {Cf,Clause) :- Cf @< 0.0,

Cf1 is C£ * -1.0,assert_if_not_present((Cfl-’-*) -clause)i

test_cf (C£,Clause) :- Cf =
0.0,assert_if_not_present((Cf-’-’)-Clause).

!
‘

A
N
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assert_if not_present({(Cf-Sign)-Clause) :-

call ({C£-Sign) -Clause),

format (* "nClause exists™n’,[]}.
assert_if not_present({Cf-’+’}-Clause) :-

call((cf-’-’)-Clause},

format{’ “nAddition will cause a direct conflict
Replace old clause ? (y/n)
+,[1).get0 (X),resclve_conflict (X, (CE-"-7) -Clause).
assert_if not_present((Cf-’-*)-Clause} :-

call ({CE-’+')-Clause),

format {* “nAddition will cause a direct conflict
Replace old clause ? (yfh)
+,[1),get0(X),resolve_conflict (X, (C£-’+*) -Clause).
assert_if not_present((Cf-Sign)-Clause) :z-
asﬁerta((Cf-Sign)-C1auaa).

resolve_coenflict {121, (CE-'-*)-Clause) :-
retract ({Cf-'-’)-Clause), assarta{(Cf-’+’) -Clause}.
resolve_gonflict(lZl,(cf-'+'f:c1ause) i-
ratract ( (Cf-7+*) -Clause), asserta((Cf-’-’)-Clause).
resolve_conflict{_,_} :-

format{’ "nNo change to KB.’,[]l).

% Add n number of clauses
add(0}).
add{X) :- add,
Y is X - 1,
adda(y).

/N

% Update an existing clause.
update( {C£-Clause)) :- i,
f£ind_clause (Cf-Clause,Cfl-Si¢m),
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retract{{C£1-5Sign}-Clause),
format(’“n0ld Clause ; "w : "w ~2f
. n’, [Clause,Sign,Cf1]},
aéd.
update{Clause) :- update({_-Clause)).
update( ) :- format{’™nNo such clause in the knowledge base’,[]).

% Delete a clause if it exists.
delete{Cf-Clause) :- 1,

£find_clause (Cf-Clause,Cfl-Sign),

format (" "nAbout to remove the clause: n 5| w : “w “2f . “nRemove
y/n:’, [Clause,Sign,CE£1]),

(get0(121) -> (retract(Cfl-Sign-Clause),format(’"n"w : "w "2f
deleted. n’, [Clause, Sign,C£1])} |

(format (*Clause NOT deleted. n’,[1))).

delete(Clause) :-

delete(_-Clause).

i

£ind_clause{Cfl-Clause,Cf-Sign) :-

number (C£1), abs(Cfl,Sign,Cf).
£ind_clause(Cfl-Clause,Cf) :- var(C£l),l, (call (C£-Clause)
->true| {format(*“n"w not in KB n’, [Clause]),fail}).

find_clause(Cfl-Clause,Cf) :- fail.

abs (Number, Abs_num,Sign) :- Nuwber @>= 0,Abs_num is Number * 1.0,
Sign = "+,

abs (Number, Abs_num, Sign) :- Number @< 0,Abs _num is Number * -1.0,
Sign = *-'. .
% et

% Predicates to help input Clauses and Certainty factors =
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%
get_clause(Clause) ;-
write("New Clause : ),
read (Clause).
get_cf(CE) :-
write(’Certainty Factor : '),

get_real (CEf).

get_real (Real_num) :-‘ :

get_goal (Ascii list), i

check_docimals (Ascii_list,New_ascii_list),

number_chars (Num,New_ascii_list), /* number_chars
built in f'cn */

Real _num is Num * 1.0.

chack_decimals{List,New_list):-
insert_zero_before leading_decimal (List,Listl},
remove_trailing decimal (Listl,New_list).

insert_zero before_leading_decimal {[46|Rest], [48,46|Rest]).
insert zero_before leading_decimal{[45,46|Rest], [45,48,46|Rest]).
insers_zerc_before leading_decimal (List,List).

ramove_trailinﬁ_dacimal (List,Out_list):-
match_last(List,46,0ut_list).
remove_trailing decimal {(List,IList).

match_last([Ele] ,Ele, [1).

match_last { [XI'I‘a:L].:_l +Ele, [X|New_taill) =~
match_last (Tail,Ele,New_tail).

% Process input.

gat_goal {Goal) :- getQ(Char)},



get_input (Char,Goal).

get_input (10, [1).
get_input{32,0thers) :-

get0 (Next) ,get_inpat (Next,Others).
get_input (Char, {Char|Others]):-

getd (Next),get_input (Next,Others).

% Test data

% The code to read clauzses from a file is in the Prowindows sectlon

% Thus these test data can be placed in files

%

birddata :- -
asserta((1.0-’+7)- (bird(X) <- emu(X))),
asserta((1.0-’+’)-(bird(X) <- robin(X)}),
asserta{(1.0-'+') -bird(tweety)),
asserta((1.0-’-')-bird(john}),
asserta({0.0-’+*)-bird{alien)),
asserta{(0.8-'+')-{flies(X) <- bird(X))).

bird :- =
asgerta({0.8-’+')-(flies(X) <- bird(X))),
anserta((0.7-’+’) - (flies(X) <- bat{X))},
asgserta({0.99-’-’)-(flies(X) <- dead(X})),
asserta((0.7-’+)-bird(ben})),
asserta((0.9-’+’) -bat(tan}), . I
asserta{(1.0-'+") -dead({tweety)),
asgerta({1.0-’+’)-bird(twaety}}. -

best :-
aszerta{(0.9-"+")-{a(X) <- b1(X)}), ¢
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asserta{(0.8-’+")-{a{X) <- b2(X))),
asserta((0.7-’+’}-(a(X) <- b3(X))),
asserta((0.9-'+*)-(b2(X) <- ¢l(X))).,
asserta{(1.0-"+')-cl{cl}},
assexta({0.9-7+') - (b3 (X} <- c2(X}))),
asgerta({0.9-*+7)-({c2(X) <- d1{X))),
asserta{(0.8-+)-{c2X} <- d2(X}}}.,
asserta{(l1.0-°+")-41(dl)),
asserta({1.0-*+"}-bl(bl)),
asserta((1.0-'+')-d2{(daz}}.

al :-
asserta{(1.0-+’)-heavy(’A’)),
asserta({1.0-'+’)-heavy(’B")},
asserta({(1.0-’-‘)-on_table(’A’)),
asserta((0.8-’+’) - (on_table (X) <- heavy(X))}.

% Atom building predicates

add_prefix{Prefix, Pred,NewPred) :-
name {Pred, PredName)} ,
append (Prefix, PredName, NewPredName) ,

name {NewPred, NewPredName} .

% Make {(a,...,n) into [a,...,nl]
make_list [ (F,Rest), [F|Rest_ele]} :- make_list(Rest,Rest_ele).
make_list((X),[X]).

variable_free(X) :-
atomic{X),
1.

vari#ble_freo (X) =-



4

i

var{X),

L,

£ail.
variable_free([H|T]) :-

by

variable free(H),

variable_frea(T).
variable free(X) :-

X=..Y%,

variable free(Y}.

% OQutput utility predicates.
S R TR R RN R RN R RN TN TR TN NN
write n{_,N):- N @=< 0.
write n(Char, Num_times) :-
Num is Num times - 1, write(Char), write_n(Char, Numj.

print_list([1).

print_list([H[Taill) :- nl,portray;plause(ﬂ),éiint_;ist{Tail).
% Programming aids

cproj:- [projl.initialize flags.

1s :- listing(-). :

1 :- format(’™n  *ww* Fackts ¥»*%~40| * C.F. **,[]),

format{*"n"8| "43j .11,
1_facts,
format(’“2n  wxw* Rulesg w*v*~4G| * C.F. *’,[])}),
format(’ n"8| “43 |=====",[]),
1_rales,nl.
- - f\‘-\
l_facts::? :\_‘

call {(C£-Sign) -Clause), \+{Clause = (_<-:)}).,

4
\
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format (‘“n"w ~40|: "w "2f£ .’,[Clause,Sign,Cf]l),
fail.

1_facts.

1_rules :- call((Cf-Sign)- (X<-Y)},Clause = (X<-Y),
nl,portray clause(Clause),
format(’ ~40|: "w "2£ .’,[Sign,Cfl).
fail.

1 rules.

% REV/2
G wRwhw
% Arg l: Original list
% Arg 2: Reversed list
% This predicate sets up the arguments to allow for
% a difference list reversal of the list
rav({List,Rev_list) :-
append (List,D,D_list),
di_rev(D_list-D,Rev_list-[1).

% DL_REV/2

9 whRhwkwE

% Raverse a list using difference list
dIL;pv(A-Z.L-L) t~ A==2.

dl;rﬁiag;;xlnl -2,Ra-Rz) :- dl_rev(L-Z,Ra- [X|Rz]).

pop (X, [X-L|T].T.L).

pop (X, (H-L1|T], [H-L1|Rest] ,L) :-
pop (X,T,Rest, L) .

cﬁ_sort(List.Sorted_list) :-
keysort(List,RKey list},
rev(Rey_list,Sorted list).
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print_choice_ls{[]}.
print_choice _ls({[H-L|T]} :-

portray_clause(H},print_list(L), print choice ls(T).

report :-
retract {answers([(C£-Sign} -Ans|T1}),
asgerta (answers(T)),

test_cf_ans((Cf-Sign) -Ans).

test_cf_ans((Cf-’-?)-A) :- (flag goal_variable_free,on),format{’No
~“2f “n’, [C£]).
teast_cf_ans((Cf-’-')-A) :- (flag goal_variable free,off),backtrack.
test_cf ans{{CE-'+)-A) :- (flag goal_variable free,on),
all_answers (All_answers),
\+{contradictory{(Cf-*+')-A,A1]1_ answers)},
\+ (more_certain{{Cf-'+’)-A,All_answers}]},
format(°‘Yes "2f "n’, [Cf]).
test_cf_ans ((C£-+7)-A) :- (flag goal_variable_free,off),
all_answers(All_answers),
\+{contradictory ({(CE-"+")-A,All_answers)),
\+ (more certain((cf-’+’)-A,All_answers)),
write('Yes ') ,write(d) ,write(Cf),walt_user.
test_cf_ans{_) :- backtrack.

contradictory((CE-’+¢) -A,List) :- member((_ -'-’)-A,List).
more_certain((CE-'+’)-A,List) :-membexr({Cf2-_)-A,List),
Cf2 e>Cf.

wait_user :- nl,write(’Continue (y/n) :’),get(X),do(X).
do(121) :- backtrack.

do( ).

clean :- X-Y, retract{X-¥), clean.
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clean.
killflags :- abolish(flag,1).
add_db(X) :- X.

Gig, 7 i o e v o A o o o e e e W W A e e o G

% Unification with occurs check from Theorist codE
unif (X,¥) :-
var(X), var(Y), X=¥,!.
unif (X,¥) «-
var({Xx).!,
\+ é.ppears_in (x,Y),
X=Y.
unif (X,¥) :-
var(Y},!,
\+ appears_in(Y.X).
X=Y.
unif {X,¥) :-
atomic(X),!,X=Y.
unif ([H1|T1], [H2]T2]1) =z- 1,
unif (H1,H2),
unif (T1,T2).
unif (X,¥) :-
\+ atomic(Y),
X=..X%5,
¥=..YS5,
unif (Xs,¥s).

appears in(_, ) :- (flag occurs_check,off),!,fail.
appears in(X,Y) :-

var(Y),l,X==Y. -
appears_in (X, [H|T]) :- I,

(appears_in (X,H) ; appears_in(X,T)).
appears_in(X,8) :-
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\+ atomic(s},
8§ =.. L,
appears_in{X,L).

O‘ittttt't"*i'*ﬁ"ﬂt*t*'*ﬁ*w*iti*ttti%

Programming aids

q :- halt.

DEBUG Aids

% This debug facility can be turmed cn and off by setting the

% trace flag on or off.

F F P P &#

show/1

Wkl ol w

This can be place at any point in the program.

It prints the argqument supplied and then prints a

snapshot of all the lists important to our resclution

show (Pointer) :-

show(_) :-

(fElag trace,on),

write(Pointer),nl,

goal {G) ,choice_pts(C) ,resolvant (R} ,active _list(A),answers (Ans),
all_anawers (All _ans),

write(’goal : ’).write(G),nl,nl,

write(’Choice_pts : *) .nl.print‘_choice__ls {C},nl,
write(’Resolvant : *),write(R) ,hl,nl,

write(’Active list : ) ,print_list(A),nl,

write(’Answers : ’),write(ins),nl,

write{’All anawers : ’),write(All ans).,nl,

get (X),nl. _ o

(flag trace,off).
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