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Abstract

In distributed database query processing, the database management system (DBMS)
may consider all alternative queries and choose the one with the least cost.
However, the number of alternative queries follows the number of relations,
attributes, and distributed sites to increase exponentially. Therefore, the problem of
finding an optimal query is a well-recognized NP-hard problem [CL84, OV99).
Applying heuristic algorithms to this kind of problem is a commonly used strategy.
There are two basic steps in query processing. First, enumerate alternative plans for
evaluating a query. Second, estimate the cost of each enumerated plan and choose
the plan with the least estimated cost from the result of cost evaluation. In the area
of distributed querying processing, the semijoin is a well-recognized operator,
which provides efficient query results. There are some heuristic algorithms
proposed to solve query-processing problems in distributed database systems.
Unfortunately, most of these algorithms do not guarantee the optimality of the
result. Therefore, some researchers have been motivated to identify some optimality
properties for semijoin programs and have proposed a set of algorithms to improve
a non-optimal semijoin program for satisfying those optimality properties. The
performance and limitations of this set of algorithms will be evaluated in this thesis.
There are some modifications on the algorithms which can improve the
performance of improvement algorithms in this thesis. The research work includes
the study of modification of the essential operations, such as semijoin, and the
interrelationship between the sub-procedures in the algorithms. Different

implementation approaches to the algorithms also have been explored.

Keywords :Distributed, Database, Join, Optimization, Optimal Query,
Semijoin, Strategy
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Chapter 1. Introduction

Distributed query processing is a process to transform a high-level query language of
distributed databases to a low-level database language for retrieving the database in an
efficient and effective strategy. Query processing is required in distributed database
system (DDBS) due to the dynamic conditions in distributed system and the requirements
changing in business environment. Distributed data processing provides cost-effective
solution to satisfy the adaptive situation and also considered some business issues: cost,
scalability, integration of different software modules, integration of legacy systems, new
applications, and market forces [KOS00]. A good design of a query processing system is
including many difficulties as mentioned above. The system needs to handle all
data/query communications in a distributed computer network. In recent ten years, the
size of many networks becomes huge and each site in the network may have different
networking configuration. As mentioned before, the adaptive distributed environment

becomes one of the most challenging issues.

Query internal internal execute  Output

L repr. repr. plan plan ?

Query Query Plan Query Execution
Parser | Rewrite | Optimizer | Refinement | Engine

Figure 1.1 Phases of query processing {KOS00]



A general query processing architecture has been shown in figure 1.1. This
architecture can be applied in any database system, such as parallel, centralized, and
distributed. The query processor, parser, receives a query then translates the high-level
query language into low-level database language. In the next step, the query will be
optimized and generate a query execution plan. The plan passes to the query execution
engine to execute and produce the query result [KOS00]. The other commonly accepted
distributed query processing architecture includes three phases: local processing,
reduction, and final query processing. Local process in first phase includes the selection
from the relation and projection on the joining and target attributes. In the reduction
phase, semijoin is commonly used to eliminate the relation size and to reduce the
communication costs. In the last phase, final query processing, the query site will collect

and reassembly the reduced relation for producing the result of query [YC84, KR87].

The other important issue, the processing evaluation/cost estimation, should be
considered in the distributed query processing architecture. In order to determinate the
performances of DDBS, there are three measurable criteria: local processing cost,
communication cost, and total cost. Local processing costs refer to disk access time, CPU
processing time. In a network, the communication is one of the main sources of the cost.
The total cost measures the sum of the costs of transferring data [YC84]. Beside the cost-
base evaluation, we also can use some other aspects to evaluate a DDBS: such as
overhead, accuracy, and complexity. Overhead is expressed in terms of delay and the
number of message throughout during the strategy execution. Accuracy of query strategy
means the strategy whether or not to correct or eliminate the non-beneficial operations.

Complexity refers to how much computational resources have been consumed [BRJ89].

2



In order to provide a cost effective solution for the query processing, there are many
different techniques, semijoin is one of the most popular used in distributed environment,

and algorithms have been developed that based on different criteria assumption.

However, finding an optimal query is commonly recognized as an NP-hard
problem [CL84, OV99] in distributed query processing. The number of query follows the
number of relations, attributes, and distributed site to increase exponentially. Therefore,
finding an optimal query plan is a significant challenge. Applying heuristic algorithms to
solve this kind of problem is a commonly used strategy. [CL84] identified four optimality
properties of a semijoin query program and a set of algorithms to improve a non-optimal
semijoin program. There are some limitations behind the algorithms and also some
implementation issues did not discuss in the paper. Therefore, a sequence of research

works will be extended form [CL84] in this thesis.

The rest of this thesis will be divided in five chapters. The literature review on
query  processing strategy planning and evaluation query  processing
techniques/operators, and query processing optimization algorithms are described in
chapter 2. Chapter 3 introduces the improvement algorithm for semijoin query program.
The improved algorithm will be illustrated in chapter 4. The evaluation of the algorithms
will be discussed in chapter S. Chapter 6 will concludes this thesis work and discusses the

future works.



Chapter 2. Literature Review

2.1. Distributed Database System

A Distributed Database System (DDBS) combines two computer technologies, database
system and computer network, to provide an information management mechanism. A
formal definition from [OV99] is “a distributed database is a collection of multiple,
logically interrelated databases distributed over a computer network”. A DDBS supports
the information management in an organization and minimizes the geographic limitation
on information exchange between offices or subsidiaries within the organization. It
should provide stable and reliable data communication environment for data exchanging

in transparent system [KOS00].

There are many lower level implementation details of database system and computer
network in a DDBS. In a transparent system, the lower level implementations should be
hidden from users. Users do not need to consider these implementations details when
using or developing their applications. In different DDBS, the combinations of different
types of transparencies and other criteria should be handled in the development processes.
The followings are the most important transparencies that should be provided by a DDBS

[OV99, SAL96].

Data independence: It refers to logical data independence and physical data
independence. Logical data independence means the external schema is shielded

from any modification of conceptual schema of a relation. Physical data



dependence refers to the conceptual schema being shielded from changes to the
physical schema or physical implementation of relation or database.

Distribution transparency: It does not require users to know the location of data and the
topology of the database system. It means there is no difference between the data or
database application located, for example, in centralized and distributed database.

Replication transparency: Users need not to handle how and where to get and/or modify
data in a single or multiple sites. DBMS takes the responsibility of these jobs.

Fragmentation transparency: It is similar to replication technique for performance,
reliability, and availability of the database system. It is not the responsibility of a
user to know which fragmentation technique has been applied in the system. The
data retrieval method will be taken care of by the database application and the
DBMS.

Reliability: It refers to the correctness and consistency of the results of requests provided
by the DBMS. It relates to the access coordination, communication control, and
query processing strategies. There are some techniques to increase reliability:
transaction, distributed reliability protocol, two-phase commit, and distribued
recovery protocol.

Scalability: In a distributed environment, there are many dynamic elements in the system.
Therefore, a DDBS should have ability to increase or decrease the number of sites
and users. The dynamic change may also cause the movement of data from one

database or site to another.



Distributed systems can be built in many networking topologies. There are two
main categories of computer network, Local Area Network (LAN) and Wide Area
Network (WAN). The communication cost exists in the network due to the computer
nodes or database systems physically distributed in different locations. Therefore, the
data/message takes time to travel across the network from the sender to receiver.
Different combinations of query operations, algorithms, and network results in
communication cost differences. There are many research related to the relationship
between distributed database, query operations and algorithms, and network topologies.
For example, [LC85] did some research work on the performance of distributed join
algorithms in a LAN and [SAL96] proposed an economic paradigm as the solution to

solve the problems in WAN.

The experiment in [LC85] concluded some characteristics in a LAN. First of all,
communications costs are not the primary dominant factor that affects performance of the
distributed database system in LAN. Secondly, the pipelined nested loop join provides
better performance for a small size of relation while large relations benefit from pipelined
sort-merge methods in local network. On the other hand, the higher selectivity of a join
attribute introduces fewer data storage accesses, read or write. As a consequence, fewer
data pages are accessed in indexed nested loops join operations and fewer accesses from

remote sites. Therefore, the communication costs have been reduced.

In WAN, different sites may have different accessing algorithms, site-specific data
type, and constraints on servicing remote requests. These factors introduce difficulties in

scheduling distributed actions in a large system with the large number of combination of

6



actions. The dynamic environment of each site increases the complexity of a distributed
database system. The proposed economic model in [SAL96] reduces the scheduling

complexity of distributed interaction without using global synchronization.

Directory Management
&

Query Processing Pﬁ Distributed DB Design | .I Reliability

vy

Concurrency Control

'

Deadlock Management

Figure 2.1 Relationships Among Research Issues [OV99]

In order to understand the problems associated with distributed database system.
A DDBS can be divided into distributed DB design, directory management, concurrency
control, deadlock management, query processing, and reliability. The relationships
between components of a DDBS are shown in figure 2.1. The critical section is the
distributed database design. It affects directory management, concurrency control, query
processing, and reliability directly. The definition of fragmentation, placement policies,
and management strategies of directory management and query processing strategies can
be affected by the distributed database design. The decision of directory management also
affects the query performance and system’s reliability. In the same manner, concurrency
control based on the different inputs, of DB design, query process, and reliability of

system, to decide the concurrency control policies and strategies. The deadlock



management definitely depends on the employment of concurrency control policies and

strategies [OV99].

2.2. Query Processing Strategy Planning and Evaluation

2.2.1. The Strategy Planning During Query Processing

A good distributed query processing strategy should accommodate many DDBS criteria

or transparencies in its distributed environment. It also should be able to provide an
optimal plan(s) for executing the query. The basic requirements of a good strategy are

that the query plans be effective, efficient, and as simple as possible to implement. In
order to achieve these goals, the strategy should able to reduce the communication costs

and redundancies, at least using redundant relations to reduce the communication cost. In
addition, the strategy needs to support different data placement techniques: such as

fragmentation, replication, and caching [KOS00]. Different query operators have its
characteristics and optimization power. Therefore, the strategy should choose
appropriated operator and technique for query processing that satisfy different

requirements. Besides providing the ability to use the optimization techniques, there are
many problems that need to be handled during the strategy planning process. In the rest of

this section, an overview of these problems would be discussed.

The Copy Identification Problem

In a distributed database, the relations are possibly fragmented, replicated, or cached. It
depends on the placement policies. If replication has been employed, then the selectionof
which copy of the relation to access is very important. The selection affects the cost of the

query and maintenance of the relation/database. The query must ensure all replicated

8



relations have been updated correctly. In some cases, there may exist a wade-off between
query cost and maintainability. Algorithm Pre-Processing and Algorithm Opt-Site are
proposed in [YC83). Algorithm Pre-Processing used to eliminate the dominating sites,
relations, and selects the essential relation. It should be executed before the Opt-Site
which is used to find a primary copy and a number of secondary copies of each
unfragmented relation that is referenced by the given query. The set of primary copies of
the relations are contained in the minimum number of sites. If relaton, R;, is to be
reduced, then the primary copy of R; should be used. No secondary copy of the relation is
used to reduce other relations. If R has not been reduced, a secondary copy of R; may be

used to reduce another relation.

Elimination of Unnecessary Relations

In general, many query algorithms consist of two processing phases: semijoin process and

join process. Semijoin operations are used to reduce the relations’ size and join operations

are used to join the result from pervious phase one for answering the query. Not all results

from phase one are beneficial to the join operations in phase two. Transmission of
unnecessary relation(s) to phase two will increase the communication cost. Therefore,

these relations should be eliminated.

Replacement of Semi-joins and Identification of Useless Semijoins
Some semijoins are redundant or can be replaced by another optimal semijoin(s) and
provide better result, reduction of the cost. In some cases, the rearrangement of execution

order of the semijoin helps to improve the performance [BGWS8I1] and the useless



semijoins should be discarded. The rearrangement techniques of semijoin operation and

reassembling site would be discussed in chapter 3.

Transmission of Complement

The cost of a query refers to the amount of data needed to be transferred. If the amount of
the possible attribute values of a query is more than half of that attribute, then
transmitting the complement of the possible values should be considered. It reduces the
cost of transmission. Of course, the query strategy needs to handle the complement data.
[YC83] indicates the improvement from twenty percent to a few hundred percent for
simple queries of two or three relations but the improvement depends on the selectivity of

the relations.

2.2.2. Dynamic Query Strategies

A single query plan cannot cover the entire possible range of dynamic query constraints,
data distributions, and resource situations in distributed environment. If the plan used for
an extended period of time, re-optimization of the plan is required. In traditional query
optimization, the compiled optimization application/plan is activated by procedure call
and the plan reflects the situation of database at compile time only. This approach reduces
the optimization overhead during execution and provides higher transaction rates. In
consequence, it provides faster query evaluation. Unfortunately, it also is a major
drawback because the query strategies cannot reflect the dynamic constraints of
distributed environment during executing period. There are two main categories of
dynamic constraints: program variable and system load. Program variable includes

cardinality of the relation and selectivity of selection predicate. System load includes

10



many system resources: such as buffer pages, and number of processor. The situation of
the database may be changed during the time between compilation and execution. The
plan cannot accurately estimate the optimal plan for the query at execution time.
Therefore, the dynamic query evaluation and re-optimization system is very important for

a distributed database system.

The simplest method to build an effective query strategy is including all query
execution plans together as a complete strategy. It is an inefficient method and not
possible for large amounts of complex queries, even simple queries. Therefore, [GW89]
has suggested two simpler methods. First, a subset of all query execution plans can be
selected. Second, we can store the elements of the plans instead of the complete plans.

When the plan is called then link the elements together.

2.2.3. Dynamic Query Evaluation Techniques

Each query strategy execution should proceed through three phases: monitoring phase,
decision making phase, and corrective phase [BRJ89]. In monitoring phase, a processor
monitors the progress of the strategy execution. Decision making phase, decides which
non-optimal strategies produced in the formulation process need to be corrected because
of inaccurate estimation. Finally, the current strategies will be discarded and the corrected

strategies will be applied during the corrective phase.

Monitoring
The query strategies are monitored to guarantee consistency, accuracy, and correctness

during the execution. The monitoring processor may also involve monitoring the program



variable and system load [GW89) mentioned in pervious section. There are three
monitoring methods suggested in [BRJ89]. First, distributed monitoring, any partial
information, such as cost, size, and overhead, of strategies execution will be broadcasted
to all processors. It helps to decide the non-optimal strategy. In centralized monitoring, a
master processor collects the progress information of the strategies execution from other
processors and decides which strategy needs to be correct. Individual monitoring means
each processor uses local information to decide whether the strategies are optimal or not.

The information will be sent to neither master nor all processors.

Decision Making

The incorrect strategies were determined during monitoring phase. The actual cost is far
from the estimated cost due to the inaccurate estimation used in the formulation of the
strategies. There are two techniques, reformulation and thresholds, described in [BRJ89]
for improving these problems. In reformulation process, the un-executed portion of the
query strategies will be reformulated to produce new strategies which have less cost than
the original strategies. The thresholds technique formulates and sets up the upper and
lower limits for each parameter. If the actual value of the parameter falls between upper
and lower limits, then the strategy is incorrect. There are some issues needed to consider
during the development of the correction policies. First, the correction processes,
including reformulation and threshold checking, introduce overhead cost. Second,
estimated value is always different from actual value. Therefore, the monitoring and
decision-making process needs to reserve some space for this fact. Finally, the difference
between actual value and estimate value does not mean that strategies are non-optimal. It

may because the strategy already is the best in all strategies.
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Corrective Action

Similar to monitoring phase, there are three correction methods: distributed, centralized,
and individual [BRJ89]. In distributed correction, all processors will pass around their
own result and finalize a final strategy to be executed. The master of centralized
correction method will release the new corrective strategies to all other processor to
execute. In individual correction scheme, the individual processor will abort the old
strategies and broadcast the new strategies to all other processors. Synchronization is
required for the distributed and individual corrective action because the corrected
strategies are affecting the whole distributed database. Therefore, the updating processor

needs to be synchronized with others to make sure only one is updated at a time.

2.3. Query Processing Techniques

2.3.1. Join

Join operation is one of the most useful operations in relational algebra and is the most
commonly used way to combine information from two or more relations. Although a join
can be defined as a cross-product followed by selections and projections. Furthermore,
the result of a cross-product is typically much larger than the result of a join. The most
general version of the join operation, R Mc S, accepts a join condition, c, and a pair of
relation instances, R and S, as arguments, and returns a relation instance, R’. The join
condition is identical to a cartesian product of the pair of relation, R x S, followed by

selection with the same condition, 8c. The operation is denoted as follows [RG00]:

Rpg cS=8c(RxS)=R’
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Example: R (a>c)S2R

R S R’
A B C D A B C D
1 2 2 5 3 4 2 S
3 4 4 6
0 null

Figure 2.2 Join Operator

Figure 2.2 shows a join operation between relations, R and S, with a join condition, A
> C. In this operation, the values of attribute A, in R, and attribute C, in S, will be
compared. All tuples that fulfill the joining condition then forms a new relation, R’. In
distributed database environment, join operation can reduce the local processing cost.
Moreover, join operation minimizes the overhead message during the processes. A
general procedure is described in [LPP91] to optimize the join queries in distributed
environment with non-fragmented relations. The general procedure is divided in to four
main steps.

a) Sequencing optimization: the best sequence of binary joins is selected to

execute n-ary joins.

b) Optmal materialization: for each relation to be retrieved, which may exist in
multiple copies in the system or may be fragmented horizontally or vertically
the optimal site for materializing it is chosen.

c¢) Distribution: the optimal allocation of binary join executions as well as the
storing of intermediate result relations amongst the available sites is

determined.
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d) Execution strategy: a binary join can be implemented by means of a number of
techniques. at different costs; for instance it can be implemented as a nested

loop join or as a merge scan join.

During the optimization process, we need to consider which site(s) will take place to
execute the join operation(s) and also all execution sequences. The decisions of both
problems affect the processing cost. An algorithm i proposed in [LLP91] which helps to
optimize the join operations in distributed environment. It constructs an Adomed binary
Query Tree (AQT) structured solution and helps to reduce the search space. An AQT is a
Binary Query Tree (BQT) with labels to specify the execution site and storing site of join
operations. A BQT is a Query Tree (QT) that has two nodes only for each non-leaf node.
In a QT, the leaves represent the relations to be joined and each leaf has a list of relation’s
site that can be used for the materialization. Each node represents a join operator and it
will send the result back to the corresponding root to prepare the final result that sending

back to the query site.

2.3.2. Semijoin

Semijoin is one of the most popular operators used in distributed database environment
for combining information of two relations over the set of attributes. It can decrease the
number of tuples that need to be handled to form the join. As a results, it can reduce the
data transmission between sites for the query. A semijoin operation, R, S, take two
relation instances, R and S, as arguments over a predicate, P, and returns a relation
instance, R’. Semijoin is denoted as follows:

rRPd,s=R’
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Example: R>q RP¥=sp: S 2R’ [MOROI]

S R’
24t Name P# Status P# Status
3 Adams 1 250 2 300
Smith 2 300
o] Kell 4 450
6 275

Figure 2.3 Semijoin Operator
In figure 2.3, it takes two relations R and S, and does the semijoin operation with
the predicate, R.P# = S.P#. There are four steps for a s..iijoin operation. First, project R
over the joining attribute P#. Second, ship R[P#] to the site of S, and ship the relation R to
query site when the query require some information not exist in S. Third, execute R[P#]

pq S. Finally, ship the result, R’, from the site of S to query site.

In a distributed database system, semijoins have to be performed in relation-to-
relation or a relation-to-fragment manner to avoid eliminating contributive tuples.
Semijoin cannot apply to two fragments because it may eliminate some tuples before the

comparisons with all tuples of the operations [CL90].

2.3.3. 2-Way Semijoin

2-way Semijoin is an extended version of the semijoin, more cost-effective operator to
reduce relation size. 2-way Semijoin can be seen as two semijoins, such as R, € A 9 R;
={ R [A]® R;, R;'[A]? R;}, during the process because they have some functionality
and result. It enhances the semijoin with backward reduction capability for more cost-

effective query processing.
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Example: R€ A R

Ri[A] A R; A B R/ A B
B Caveay 2 2 2 2
2 4 4 4 4
Asiioek, 5 6 5 6
4 6 8 6 8
5 8 10
6 10 12

Ri [A] matching = (2,4,5,6)
Ri [A] not matching = (1,3) -> used for backward reduction

Figure 2.4 2-Way Semijoin

Figure 2.4 shows the general procedures of 2-way semijoin. First, send the
projection R[A] from site i to j. Second, reduce R by eliminating tuples whose attribute
A are not matching any of R[A] and result in R'. During reduction of Rj, partition R[A]
into R[{A]m and R;[A]Jnm where R[A]m is the set of values in Ri[A] which match one of
Ri[A] and R[A]nm is Ri[A] - R{{A]m. Third, send either R[A]m or Ri{A]Jnm whichever is
less in size from site j back to 1. Finally, reduce R using either R{A]Jm or Ri{A}nm. If
Ri[A]m is used, then tuples whose attribute A are not matching any of Ri[A)Jm are
eliminated. If Ri{A]nm is used, then tuples whose attribute A are matching one of

Ri[A]nm are eliminated.

The proofs in [KR87] shows the 2-way semijoin having more reduction power and
propagation of reduction effects than semijoin by applying backward reduction technique.
The data sending back is smaller and always guaranteed to remove tuples in R. Even if
the number of “not matching” is 0; then the cost and bene fit both are 0. It still is a cost
effective method. The simulation in [KR87] also has demonstrated the possibility of

replacing or combining two operators can provide better result for a query.



2.3.4. Pipeline N-way Join

A pipeline N-way join algorithm is based on a 2-way reduction strategy, described in
pervious section, combining the cache technique. The main idea of this algorithm is
reducing the /O cost (time) and the transmission cost across the network. It helps query
site to minimize the frequency of disk access, read and/or write, during the N-way join
processes. In the process, there is no intermediate results. Tuple connectors are used to
replace the reduced relation and stored in main memory. Therefore, it does not require
accessing the disk. The connectors can join together to produce a pipeline cache planner

that used to synchronize the generation of query results.

There are three phases proposed in N-way pipeline algorithm: local processing
phase and forward reduction, backward reduction and ollecting phase, and pipeline

execution phase.

Relation: R1 Relation: R2 Relation: R3 Relation: R4

Rl |Ja |b R2 [b |c R3 |c |d R4 |d e
R11 b R21 | a X R31 ]z m R41 | 1 1.2
R12]3 a R2]c y R32 |t n R42 { k 3.5
RI13 |1 a R23| b w R33 |y n R43 | n 6.4
Ri4] 1 b R24| b z R34 | x n

RIS|O a R25| a y R35]y k

Figure 2.5 Relations for N-way Pipeline Join

Connector: C1 Connector: C2 Connector: C3 Connector: C4
Rl b b R2 |c c R3 |d d R4
R11 b a R21 |x z R3]l | m k R42
R12 a b R23 | w y R33 | n n R43
Ri13 a b R24 |z X R34 | n

R14 b a R25 |y y R3S | k

R15 a

Figure 2.6 Tuple Connectors



For example, a query executes a sequence of 2-way semijoin for four relations of
figure 2.5. In the forward reduction and local processing phase, the projection of join
attribute will be transferred for forward reduction and the tuple connector will be
constructed at the end of this phase (see figure 2.6). The tuple connector is a projection of

the relation on all the joining attributes and a tuple identifier (TID).

Rl R2 R3 R4

R12 R25 R35 R42
RI13 R25 R35 R42
RIS R25 R35 R42
R12 R25 R33 R43
R13 R25 R33 R43
RIS R25 R33 R43
R12 R21 R34 R43
RI3 R21 R34 R43
R1S R21 R34 R43

Figure 2.7 The Pipeline Cache Planner

Connector: Cl Connector: C2 Connector: C3 Connector: C4
Rl b B R2 [c c R3 |d d R4
R12 a A R21 | x R33 | n k R42
R13 a A R25 |y X R34 | n n R43
R15 a y R35 | k

Figure 2.8 Tuple Connectors Reduced by the Backward Reduction

In second phase, the tuple connectors are used for backward reduction and joined
together to construct the pipeline cache planner (see figure 2.7). The planner is a N-ary
relation with all joinable tuples of N relations and used to synchronize the generation of
the result. Figure 2.8 shows how the tuple connectors are reduced during the backward
reduction. The pipeline cache planner provides the information to reduce the size of the
connectors of each relation. Figure 2.9 shows how the pipeline cache planner is

constructed. It provides all information for required pieces of the query. In last phase,
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pipeline execution phase, the query site receives the pipeline cache planner and used to

synchronize the assembly process of query result from N sites.

Built at Site | Built at Site 2 Built at Site 3

Rl |R2 [{R3 |R4 b R2 IR3 |R4 c R3 | R4
R12 | R25 | R35 | R42 a R21 | R34 | R43 X R34 | R43
R12 | R25 | R33 | R43 a R25 | R35 | R42 y R33 | R43
R12 | R21 | R34 | R43 a R25 [ R33 | R43 y R35 | R42

R13 | R25 | R33 | R43
R13 | R25 | R35 | R42
R13 | R21 | R34 | R43
R15 ] R25 | R33 | R43
R15 [ R25 | R35 | R42
R15 | R21 | R34 | R43

Figure 2.9 The Construction of the Pipeline Cache Planner

2.3.5. Hash-semijoin

Hash-semijoin tends to provide more cost effective distributed query processing by using
search filter and semijoin replacement techniques. It can minimize the transmission cost
of a semijoin operation because the hash-semijoin operation transfers a search filter
instead of the projection of a joining attribute of the relation. A search filter uses a bit
array to represent the semijoin projection and a hash function to hash a bit address for
each projection element. In some case, the search filter may accept a false drop due to the
collision in hash function. The probability of false drop depends on the size of the bit

array. The search filter is optimal when the bit array is half full.

The procedures of using a hash-semijoin described in [TC92). First, we need to
initialize a bit array of F bits to all be 0 and the size of the array is calculated by the

equation, F = (d / In2) [R;|. Second, use the hash function to probe a bit address for each
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join attribute and set the corresponding bit to 1. Third, transmit the filter, bit array, to the
requesting site. Finally, use the same hash function to hash the join attribute value to bit

addresses. If the bit array’s value is not correct, then discard the tuple.

The followings are the general steps for a backward replacement with Hash-Semijoin:

1. Remove the first element from the queue that used to record the nodes having no
SUCCESSOrs.

2. Cakulate the potential cost of the traditional semijoin and hash-semijoin.

3. If hash-semijoin is beneficial to the query then replace semijoin with hash-
semijoin.

4. Update the potential cost.

5. Insert the element into the queue according to its level.

6. Repeat the processes until the queue is empty.

2.3.6. Domain-Specific Semijoin

As mentioned before, semijoin is limited to be used in relation-to-relation or relation-to-
fragment manner to avoid eliminating contributing elements. To solve this problem,
Domain-Specific Semijoin is proposed in [CL90]. It can be performed individually
without loss of tuples in fragment-to-fragment manner. It enhances distributed query
processing to be more flexible. In domain-specific semijoin, Ri (A = B] Rm, A and B are
joining attributes, and Ry and Ry, are two fragments of joining relations R; and R. The
following is the definition of the domain-specific semijoin:

Ri (A = B) Rin = {r|r € Ry ; .A € Rjm [B] U (Dom[R: .B] - Dom[Rim .B})}
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In a sequence of domain-fragment semijoins within a fragmented relation, the order of

execution of domain-specific semijoins on the fragments is not affecting the result. The

following steps are proposed in [CL90] for performing each domain-specific semijoin:

1.

|Rel= Rata=BIR,, =|R.(l-

Calculate the estimate benefits and costs.

Cardinality of the fragment after domain-specific semijoin:

|Dom[lT AN Doni[R 31 ]+|R,(| _ lDom[Ri AlnDomiR ,, .B]
Dom(R,.A

[pom{ R, .4)

The number of tuples reduced by domain-specific semijoin:

-l -

IDom[R‘ Aln Dom{R,, .81 .
IDom[R,,, .Ai

[R,.[B]]
| Dom(R,.B]|

|

2. If it is found to be profitable, include it in the current query-processing
strategy; otherwise, ignore it.
3. Update the related information in the database profile.
Example:
Rl R11]=2K; IR12] = 1K
X | S=Dom[RIl.x] [|S] | wRIl.x) i R1i[x]| T=Dom[Rlix] [|T}|
A J{v|1<v<2K} |2K (10 1 ] 600 Same as R1.A
2 400 Same as R1.A
Cl{v]|]1<v<|IOK[2 1 |2K {v|1<v<4K} |4K
10K} 2 |IK {v | 4K < v <|6K
10K}
R2 |R21| = 25K; |R22| = 40K
X | S=Dom[R1.x] }IS] | w(R2.x) i IR2i[x]| T =Dom[R2i.x] ||T]|
B|{vilsv<2K} [2K [10 1 ]300 {vl1<v<iIK} 1K
2 | 700 {v|IK<v<2K} | IK
D |{v|1<sv<500} |500 |5 1 ]300 Same as R2.D
2 | 400 Same as R2.D
EJ{fv |1l <£v<|50K]|6 1 | 25K Same as R2.E
SOK} 2 | 40K Same as R2.E

Figure 2.10 Database Profile for Relations R1 and R2 [CL90]

[ R.a[B]]
DOM[RI,'.B”




From the information of figure 2.10, the benefits and costs can be calculated by using
pervious formulas.

|Dom{R11.4)~ Dom{R21.8) —05 |R1[B]| _
|Dom{R11.4] ] | Dom{ R21 .B) |

IR’11| = [R11(A+B]R21| = (2K)(1-0.5) + (2K) x 0.5 x 0.3 =1.3K

R11(A=B]R21:

Benefit: Ctran(R11|- [R’11[) x w(R11) = 0.7K x 12 = 8.4K

Cost: Ctran [R21| x w(R11) = 0.3K x 10 =3K (profit = 5.4K)
R11(A=B]R22: Benefit = 3.6K Cost = 7K ( not profitable)

R11<A=B]R2 (semijoin):
Benefit: 8.4K +3.6K = 12K Cost: 3K + 7K = 10K (profit = 2K)

From above calculation, it shows R11(A=BJR21 providing more profit. Therefore, the
domain-specific semijoin will replace semijoin. The last step is updating the database

profile according to the estimation formulas.

The domain-specific semijoin is based on many assumptions. First, it assumes all
values of each attribute, A, in fragment, Ry, are randomly selected from Dom[Ry.A].
Second, all tuples of Ry are uniformly distributed over values of Ri.A. Third, it assumes
the values of each attribute are independent. Finally, the cardinality of each fragment,
each attribute of each fragment, the domain of each attribute of each fragment, the
domain of each attribute of each relation, and the width of each attribute of each relation

should be available for the calculation.



2.3.7. Generalized Semi-join

The other problem of semijoin is not being able to handle a cyclic query alone. Cyclic
query have cycles in their join graph and for which full reducers cannot be found.
Therefore, the concept of “Generalized Semi-join” is proposed in [KYY82] to handle an
arbitrary cyclic query. The basic idea of generalized semi-join is applying spanning tree
technique to form a non-cyclic graph and use generalized semi-join to process the query.
In [KYY82], it assumed X be an attribute set satisfying (R N R; ) ¢ X ¢ Rand defined
generalized semijoin, R; (X R; , as following:

Ri X Rj =R R;[X]

There are two basic steps for generalized semi-join. First, add new attributes with
null value to each relation scheme in order to convert the query into a tree query. Second,
apply generalized semi-join to the tree query. In the rest of this section, an example will
been used to explain the procedures for a query processing using generalized semi-join
(see figure 2.11). In the figure, every edge represents a semijoin between two relations
and every circle represents a relation. Figure a shows a cyclic graph of a set of semijoin
operations. First of all, we identify the spanning tree and the edges that involved in the
cycle(s) from the cyclic graph (figure b). Edges F, G and H cause cycles in the graph.
Second, replace the edges that not in spanning tree by a set of edges that goes along other
edges from the source node to destination node (figure c). Edge F is replaced and merged
by the edges between R2 and R3, R1 and R2. Edge G is replaced and merged by edges
between R2 and R3, R1 and R2, Rl and RS. Edge H is replaced and merged by edges
between R4 and R2, R1 and R2, R1 and RS, RS and R6. The final spanning tree is shown

in figure d. The last step is applying generalized semi-join to each edge on the
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corresponding attribute(s). The major drawback of generalized semi-join is the increment

of communication cost for tree queries.

(c) Merge edges (d) Spanning tree

Figure 2.11 Generalized Semi-Join

2.3.8. Composite Semijoin

Many distributed query algorithms involving many operations, such as semijoins, have
same source and destination sites. As a result, the cost, response time, will be increased
and the performance becomes not efficient. It is because of retransmission of the same
overhead for different operations with same source and destination sites. Composite
semijoin is proposed in [PC90] to handle these problems by combining multiple semijoins
to be a composite semijoin. A composite semijoin is a semijoin with a projection of
multiple attributes involved in some operations with same source and destination sites. In
some case, semijoin may not provide any benefit to query (see figure 2.12). There is no
reduction when the single attribute semijoin is used, either sending D11 or D12 to relation

2. However, composite semijoin can reduce the cost by saving the repeated transmission
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of overheads and increasing the reducing power of the operation(s) (see figure 2.13).
There is a significant reduction when a composite semijoin is used, sending composite

attribute (D11 and D12) to relation 2.

Example [PC90]:

Semijoin

Relation 1 Relation 2 Relation 2’

D11 D12 D21 D22 D21 D22

1 a 1 c 1 c

1 b > |1 a > 1 a

2 c 2 b 2 b

3 c 3 b 3 b
Figure 2.12 Semijoin

Composite Semijoin

Relation 1 Relation 2

DIl D12 D21 D22 Relation 2’

1 a 1 c D21 D22

1 b > |1 a 2> 1 a

2 c 2 b

3 c 3 b

Figure 2.13 Composite Semijoin

In [PC90], Composite semijoin has been applied in different algorithms, algorithm
General (response time) [AHY83), algorithm W [PERS85], and algorithm S [BGW+81].
The testing shows significant improvement from the original algorithms by using
composite semijoin. It also points out algorithm General and some similar algorithms
have ignored the reducing power of non-joining attribues. The strategy of composite
semijoin is not guaranteed the reducing power, even the testing examples shows
significant improvement in some case for composite semijoin. In some situations,
composite semijoin may result in greater response time. Furthermore, this strategy is

tested in static environment. Therefore, the dynamic constraints should be considered in
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development of the query processing with this technique. Combining traditional semijoin

and composite semijoin is an option for improving both techniques.

2.3.9. Data Placement Strategies

Distributed database system, always involves multiple local databases. The distributed
multi-database system provides full global database function with interactions between
local databases. A distributed multi-database system has a global schema or global query
system to query the distributed data. Data placement strategies refer to data allocation in
distributed environment. One of the most concerned issues of data placement strategy
development is the placement dependency. It is a data allocation constraint that can be
used to increase the performance of query processing. Executing an update operation on a
relation or fragment may violate global referential and placement dependency. In
consequence, the correctness of query may be affected. Therefore, the violation must be
handled [HCL98). In order to handle these violations, we need to understand some
placement techniques. There are two commonly used placement techniques,

fragmentation and replication, will be described.

Fragmentation technique

Fragmentation breaks a relation into smaller relations or fragments, and stores at different

sites. It increases the possibility of concurrent access the database system. There are two

methods of fragmentation technique: horizontal fragmentation and vertical fragmentation.

Horizontal fragmentation breaks relation into fragments that consists a subset of rows of
the relation. The union of horizontal fragments must be equal to original relation (see

figure 2.14). The fragments of vertical fragmentation consists a subset of columns of the
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relation. The collection of vertical fragmentation should be lossless decomposition (see
figure 2.15). During the development of the data placement policies, there are some rules
that must be enforced: completeness, reconstruction, and disjointness. Completeness
refers to lossless decomposition property of normalization, no tuple loss in horizontal
fragmentation and no attribute loss in vertical fragmentation. Reconstruction means the
relations’ constraints will be preserved during the fragmentation process. Disjointness
ensures the horizontal fragments are disjoint and disjointness only defined on the non

primary key attributes of a fragment.

R = Fl1 + F2
A B C A B C A B C
1 S 6 1 5 6 2 7 8
2 7 8 3 9 2 4 3 4
3 9 2
4 3 4

Figure 2.14 Horizontal Fragmentation
R = Fl + F2
A B C Tia B C Tia A
1 S 6 1 5 6 1 1
2 7 8 2 7 8 2 2
3 9 2 3 9 2 3 3
4 3 4 4 3 4 4 4

Figure 2.15 Vertical Fragmentation

Replication technique

Replication means a relation has more than one copy stored in one or more sites. It can
increase the availability of data and supports faster query evaluation. Replication helps
users to reduce the cost for accessing the data and also allows parallel processing of
query. The major drawback is replication requiring huge overheads for updating and

synchronizing the data in every site.
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In distributed database system, updating operation can be divided in local update
and global update. There are three kinds of updating operations: insertion, deletion, and
modification. In local environment, insertion is an inserting operation of a new data into a
relation or local fragment of a relation. Deletion or modification of an item is removing or
modifying an item in a relation or a fragment of a relation. The replicated item in other
site will not be removed or updated when the fragment or the relation is replicated in
other site. In global environment, inserting a new item involves inserting the item into at
least one fragment of relation in the whole distributed database system locally or inter-
site. In the same manner, deletion and modification of an item involves deleting or
updating all replicated items in all fragments of a relation in the database system
[HCL98]. The placement policies and placement dependency definitely affect the
updating processes and database management. Therefore, the above issues must be

handled very carefully during the development processes of placement strategies.

2.4. Query Processing Optimization Algorithms

2.4.1. Optimization Algorithms for Distributed Queries

In order to optimize que-y processing in distributed environment, the methods commonly
used are minimizing the response time and total tine. Decomposing a query into sub-
queries and executing in parallel help to reduce the response time and total time. The
different situations in distributed environment may have different requirements of the
performance, minimum response time or total time, of query strategies. Therefore,
algorithm GENERAL is proposed in [AHY89] to deal with this problem. Algorithm
GENERAL has three versions to handle different requirements: Response Time version,

Total Time version, and Collective version. To minimize response time of a processing
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strategy, Algorithm GENERAL response time version emphasized the parallel data
transmission. To minimize total time of a processing strategy, Algorithm GENERAL total
time version emphasized the serial data transmission. To minimize data transmission
redundancy, Algorithm GENERAL collective version produces strategies leading to a

further reduction of the total time of a query.

There are four general steps in algorithm GENERAL. First, finish all local
processing. Second, generate candidate relation schedules; Isolate each of the joining
attributes, and define a simple query with an undefined result node. Algorithm
PARALLEL helps to minimize response time for each simple query and Algorithm
SERIAL helps to minimize total time for each simple query. This results in one schedule
per simple query. Third, integrate the candidate schedules. For each relation, the
candidate schedules are integrated to form a processing schedule. The integration is done
by procedure RESPONSE, procedure TOTAL, or procedure COLLECTIVE. Procedure
RESPONSE is used for response time minimization. Procedure TOTAL is used for total
time minimization. Procedure COLLECTIVE also is used for minimizing total time and
handling redundant data transmission. Finally, remove schedule redundancies. Eliminate
relation schedules for relations which have been transmitted in the schedule of another

relation. [AHY83]



Procedure RESPONDE Procedure TOTAL Procedure
COLLECTIVE
1. Candidate  schedule | 1. Adding candidate
ordering, in ascending order schedules 1. Select candidate
of arrival time 2. Select the best candidate schedule with
2. Schedule integration, schedule minimum cost and
construct an integrated | 3. Candidate schedule selectivity < 1
schedule for the relation | ordering 2. Build
that consists of the parallel | 4. Schedule integration, processing  strategy
transmission. Select the construct an integrated schedule for parallel
schedule with minimum for the relation that consists of transmission
response time. the parallel transmission. Select | 3. Test variations
the schedule with minimum of strategy
total time.

In algorithm GENERAL, it has adopted algorithms, PARALLEL and SERIAL,
which developed by Hevner and Yao. Algorithm PARALLEL can minimum response
time schedules for a simple query, the relation contain only one attribute. It has employed
in algorithm GENERAL (response time version) and responds to compute the minimum
response time for each schedule. Algorithm SERIAL produce minimum total time
schedule for a simple query. Algorithm GENERAL (total time and collective version)

both use algorithm SERIAL to produce strategies to handle data transmission redundancy.

In algorithm PARALLEL, only parallel data transmission has been considered but
the serial data transmission may also benefit to the query. Therefore, the combination of
serial data transmission and parallel data transmission should be used to improve the
performance. During construction of candidate schedule, algorithm PARALLEL suggests
to have parallel transmission of the relation R and all schedules of relation R (k < j).
Some schedules may be not benefit to the query and it will increase the cost. Therefore,
we should the best candidate schedule to perform the parallel transmission. In algorithm

GENERAL, only forward reduction has been considered but the backward reduction
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technique also should be considered. We also should consider the possibility of
combining other technique with semijoin, such as 2way semijoin, hash-semijoin, and

composite semijoin.

2.4.2. Response Time and Total Time Reduction

The idea of SDD-1 algorithm in [BGW+81] is employing semijoin to perform the
reduction phase efficiently and minimize the transmission cost, data. The optimization
idea of this algorithm is translating the query into a relational calculus form called an
envelope. In this algorithm, there are three main steps (see figure 2.16). First step, maps a
query, Datalanguage employed in SDD-1, into an envelope. An envelope is a relational
calculus expression that maps a database into a sub-database. A good envelope tightly
delimits the data needed by query. Second step, evaluates the envelope and translates it
into reducer. A program contains relational operations and performs the reduction of the
relation size. A reduction operation reduces the size of the database by eliminating data
not specified by the envelope. It reduces the cost, inter-site data transfer, for the operation
computation. [BGW+81] employs semijoin to implement the reduction operation. Third
step, executes query at a site using the data assembled by second step. The following is

graphical representation of above three steps:
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Step 1 . _
o Translate Datalanguage e
to relation calculus

Step 2 - ) Distributed
— Compile envelope into reducer [Reduc execution of reducer
and select assembly site

Assemble distributed
data at assembly site | @—i

Local processing of
Datalanguage guervy

Figure 2.16 SDD-1 Query Processing Algorithm

Besides the basic algorithm, [BGW+81] proposed an optimization algorithm. This
algorithm compiles envelop into a reducer, which is estimated to be profitable in any
database modeled by database profile. It selects an assembling site and appends to reducer
commands to move the reduced database to the site. This algorithm has three parts:
initialization, main loop, and termination. In initialization section, reducer will be
initialized to contain all local operations permitted by the envelope. In main loop, all non-
local semijoins permitted by the envelope will be tested and selects the all profitable

semijoin appending to reducer.

Figure 2.17 First Enhancement
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There are two enhancements for the algorithm Opt has been mentioned in
[BGW+81]. First enhancement permutes the order of semijoins in reducer to decrease the
cost of some semijoins without increasing the cost of any others. In figure 2.17 a,
semijoin 1 uses Y to reduce relation P, and semijoin 2 reduces Y. Since semijoin 2
reduces Y, the cost of semijoin can be decreased by delaying it until semijoin 2 executes
(see figure 2.17 b). This permutation increases the effect of semijoin 1 and selectivity of
semijoin 2. It also reduces the cost of subsequent semijoin. Second enhancement, prunes
semijoins from reducer that are rendered unprofitable by the choice of assembly site. For
example, figure 2.18 showing relation A and B have a semijoin operation over attribute
S# and sent the result to query site, as assembly site, directly with cost 11 (3 data of the
projection sending to site B + 6 data sending to query site + 2 data of the semijoin result

sending to query site = 11 data).

B

A

S# | Name St S# | Status
i ) 1 250
l Project | 2 N S# | Status
3 Smith 0 3 2 300 > # To query site
4 450 2 300 Cost: 11

5 Kelly s

# 6 275 f

Figure 2.18 Semijoin Result Send to Query Site Directly
If we sent the semijoin result back to site A, at assembly site, and sent the final
result of the query to query site, then the cost is reduced to 8 (3 data of the projection
sending to site B + 2 data of the semijoin result sending to query site + 3 data of final
result sending from site A to query site = 8 data). In figure 2.19, site A is selected as an
assembly site. Therefore the semijoin result will sent back to site A and do the join with

the relation. Finally, the final resuit of the query will send to the query site.
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A
S# Name S# S# Status
. | 250
2 Adams Project | 2 N S# | Status
. ) 2 300 >
3 Smith 3 2 300
5 | Kelly 5 4 | 450
6 275
>4
A
S# Name
To
query S# | Name | Status < 2 Adams
::'::;,8 2 | Adams | 300 3 | Smith
5 Kelly

Figure 2.19 Semijoin with Backward Reduction

2.4.3. Two-steps Optimization

Two-Step query optimization reduces the overall complexity of distributed query
optimization. It is also useful to exploit caching in a hybrid shipping system because
query operators can dynamically be placed at client. For distributed systems, two-step
optimization has two basic variants. First, generate a plan that specifies the join order,
methods, and access paths during the compile time. Second, it transforms the plan and
carries out the site selection to determine where the operator to be executed. Two-step

query optimization can result in plans but introduce high communication cost [KOS00].

The join ordering carried out in the first step of two-step optimization is shown in
figure 2.20(a). (b) shows site selection in step two of optimization. An optimal plan for
the query is show in (c). Relation A and D are located on same site, B and C are located

in other site. The query result will be displayed on client. The second plan that employed
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2-step optimization, has a higher communication cost because the first step of 2step
optimization was carried out ignoring the location of data and join ordering on

communication cost in a distributed system.

( Display ) Dlsplay

join Jjoin

Cjoin) Cloin) Goin) CGoin)
LW OO OO OO OW

a) 2-step plan at compile time b) 2-step plan at run time ¢) Optimal plan

Figure 2.20 Increased Communication Cost Due to Two-step Optimization

2.4.4. Dynamic Query Re-Optimization

A new triggering approach is proposed in [NWMN99] for improving evaluation
performance of long-running queries in distributed databases. In dynamic distributed
environment, system configuration and resources availability may be changed during the
quires execution period. It causes the query becoming inaccurate. The update statistics
information enables to have an up-to-date dymamic cost estimation and query re-
optimization for the long-running queries. The basic idea of triggered dynamic re-
optimization method is the optimizer can promptly react to change to the dynamic
environment during the execution period. The statistical information mainly base on
performance instrumentation and performance analysis. Performance instrumentation
includes system instrumentation, such as CPU workload and network traffic, and query

instrumentation which is the estimation of query characteristics [NWMN99).
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In INWMN99], some triggers are suggested to implement in the system: system
triggers, query execution plan (QEP) triggers, operator triggers, and events triggers. They
are classified by different system parameters and query characteristics. System triggers
are independent of any query plan execution and react with the change of system
resources. QEP triggers deal with the changes of query processing environment. Operator
triggers include built-in operator triggers and user-defined operator triggers. Built-in
operators deal with the changes of usage of library operators in the system. User-defined
operator triggers allow the dynamic optimizer to re-optimize the QEP. Event triggers
handle the events that defined in performance detector and/or the events issued by

external administrator.

The components of the query processing with dynamic triggered re-optimization
are described in [NWMN)]. The detector dynamically monitor system parameters and
query characteristics and sent information to trigger manager. The query agents monitor
the external re-optimization command and report it to trigger manager. The trigger
manager is responsible for the synchronization of the execution of different trigger events
and performance measurement. The dynamic optimizer considers QEP configuration and

re-configuration that instructed by trigger manager.

The triggering approach used to re-optimize the query execution plan in the
dynamic distributed environment. The triggers monitor system and query changes and
report to triggers to organize the re-optimization during the execution of a long-running

query plan. In consequence, it increases the accuracy of queries.
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Chapter 3. Improvement Algorithm for Semijoin Query Program

3.1. Introduction

In distributed database systems, there are three steps/processes that are commonly
recognized; initial local processing, semijoin pre-processing, and final jc;in processing
[AHY83, BER8!, BL82). Local processing includes the operations of selection and/or
projection. One of the important operations in this area is semijoin which involves joins
between relations in different databases that are located in distributed sites. Semijoin also
helps to reduce the size of the final relation. The result(s) from the local process will be
sent to the query site to perform the final join to produce the query result. In distributed
database system, the number of queries will be increased exponentially by the number of
relations, attributes, and distributed sites. Therefore, finding an optimal query in this
environment is well recognized as an NP-hard problem [CL84, OV99] and heuristic
algorithms are commonly used to handle an optimal query problem. There are some
heuristic algorithms proposed to provide an efficient and effective, optimal or close to
optimal, solution for the optimal query problem in distributed database systems.
[BGW+81] and [AHY83] are well known heuristic algorithms in this area. However,
those algorithms cannot guarantee the optimality of the solution due to the complexity of

the problem.

3.2. Description of Algorithms

In [CL84], four optimality properties are identified and used to check the
optimality of a semijoin program for processing tree queries. It also proposed four
algorithms to improve a non-optimal semijoin programs to satisfy those four properties

and requires the least total data transmission cost to process the query. In [CL84], an
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optimal semijoin program is represented by an execution graph. An execution graph is a
directed acyclic graph whose nodes represent relations (or sites which contain that
relation), and whose directed edges represent semijoins. In figure 3.1, the first serial
semijoin program and execution graph show that no redundant semijoins occur in the
program. The second semijoin program and execution graph show that a non-serial

program and include redundant semijoin occurrences.

Semijoin program: R2 <> R3,R3 < R2, R2 - R1,R1 2 R2, R2- R3,R3
<> R4,R4->R3,R3> R2,R2 RI
Execute graph: R2 > R3 > R22R1 2 R22R3> R4 R3>R2->RI

Semijoin program: RS - R2,R2-> R1,R1 2> R3,R3-> R1, R1 2R3,
R3 2 Rl1, R4 2> Rl,R1 > R4,R2 2 RS, R5 - Rl,
R2 > R1,R2> R6

Execute graph: R4 R4

RS —P R2 PRI —R3 —P"R{ —P R3 —P RI

e —

RS ——®» R —® R¢

Figure 3.1. Execution Graph of Semijoin Program [CL84]

A profitable semijoin occurrence cannot be deleted from the executed graph;
otherwise, the transmission cost will be increased. Multiple semijoin occurrences may
exist in a semijoin program and some of them are redundant. These redundant
occurrences are increasing the total data transmission cost. Those four semijoin optimality
properties adopted two rearrangement techniques, early binding and late forking,
proposed by Luk and Luk [LL83]. These two techniques used to rearrange the execution
sequence of a group of semijoin occurrences in the execution graph and remove the

redundant semijoin. The rearrangement helps to reduce the transmission cost. Property 1
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and the algorithm are used to identify and remove the redundant semijoin; and then pass it

to algorithm 2 for checking the rearrangement property.

The following four properties are used to identify an optimal semijoin program [CL84]:
1. In an optimal program, every semijoin occurrence has to satisfy the reduction set
constrain. In other words, there are no redundant semijoins in the optimal program.
2. Each necessary semijoin associated with the execution graph has to be properly
embedded in the optimal semijoin program.
3. Each end node of the execution graph of an optimal program must be a final relation.
4. The execution graph of an optimal semijoin program cannot be rearranged by the

rearrangement techniques.

In order to understand these four properties, the semijoin program in fgure 3.1,
will be used to illustrate each property of an optimal semijoin program. The algorithms
proposed in [CL84] will be applied on this semijoin program to obtain an optimal

semijoin program with four optimality properties.
R4 R4

RS —P R2 — PRI —R3 >‘(\1/—'>R3———DR1

RS —®» R2 —P R¢

Figure 3.2. Redundant semijoin in a Semijoin Program

Figure 3.2 shows the semijoin program containing some redundant semijoins, RS
= R2, R2 2 R1, Rl © R3, and R3 > R1. The repeated semijoins definitely
increase the cost/time of the query. According to the first property, algorithm P1 is used
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to remove the redundant semijoin and reconnect the isolated graph that caused by the

deletion.

Algorithm P1 [CL84] (* Based on Optimality Property 1 *)
Begin
Check the redundancy of each semijoin occurrence inp;
If there exist redundant semijoin occurrences then
Begin
Delete all redundant semijoin occurrences and resultant isolated nodes;

If some node u(x) becomes a start node and not in sequence with some other occurrences of u
then

Begin

delete node u(x) and each edge u(x) > v;;

add u(x-) -> v, for each v, where u(x-) is the previous occurrence of u(x)
End;

If some node v(y) becomes an end node and not in sequence with some other occurrences of v
then

Begin
delete node v(y) and each edge w - v(y);
add u; -> v(y+) for each w where v(y+) is the next occurrence of v(y)
End
End
End;

Removing repeated semijoins might cause the isolation of some other semijoins,
such as the example shown in figure 3.3a. Algorithms P1 used to connect the start/end

node to its pervious/next occurrence respectively. The resultant graph is shown in figure

R4 R4
RS — R2 — PRI —PR3 >‘m/'

\RSRZ —® Ré6

R4 R4
RS — R2 — PR —PR3 >‘Rl/'
RS Ré

Figure 3.3. Resultant Graph by Algorithm P1

3.3b.

(a)

(®)
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The second property indicates that including all necessary semijoins (NSJ) in leaf
to-root order can result in a full reduction at the root node of the join tree. A necessary
semijoin is defined as a backward semijoin from a non-final relation node [CL84]. The
following figure shows the corresponding join tree, with two target relations R1 and R2,
for the semijoin program in the figure 3.3. According to this property, the join tree

including R7 > R5, R5 > R2, R6 > R2,R2 > R1,R3 > Rl, and R4 > R1

are NSJ and should be embedded in the optimal semijoin program.

Figure 3.4. Join Tree

Algorithm P3 checks the existence of all NSJ in the semijoin program. If an

expected NSJ is absent in the program, then this NSJ will be created and connected to the
corresponding relation node. According to the join tree, R7 = RS, and R6 = R2 are

missed in this program. Therefore, these two semijoins have been created and integrated

into the semijoin program. Figure 3.5 shows the program after the integration.
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Algorithm P3 [CL84] (* Based on Optimality Property 2 *)
Begin  Fork=1 to tree height of Ydo
Begin If u-> vis an NSJ where v is of height k, and it is not properly embedded in p then
Begin  If no occurrences of u and v are in E(p) then
Create u and v, add u-> v to E(p);
If some occurrence of u but mo occurrences of v are in E(p) then
Create v and add u(l)-> v to E(p) where u(l) is the latest occurrence of u;
If some occurrences of v but no occurrences of v are in E(p) then
Create u and add u <> v(e) to E(p) where v(e) is the earliest occurrence of v:
If some occurrence of both u and v are in E(p) then
Begin If there exist some occurrences of v not in sequence with u(l) then
Choose the earliest such v, say v(i) and add u(l)-> v(i) to E(p)

Else create a new occurrence of v, say v(j) and add u(l) > v(j) to E(p)
End

End
End;

R4

R7 — RS — R2 —PR1—PR3 \b‘m-—bm

P

Ré —P R2
Figure 3.5. NSJ Embedded Semijoin Program

As mentioned before, the target relation in this semijoin program are R1 and R2.
Therefore, R1 and R2 should be the end nodes in the execution graph. However, some
end nodes in the graph are not the target node. It means that the transmission cost to those
nodes are not necessary and should be avoided. This is the main idea of the third property
and algorithm P4. It will delete all end nodes and corresponding semijoins which are not

final/target relations. Figure 3.6 shows the result of algorithm P4.

Algorithm P4 [CL84] (* Based on Optimality Property 3 *)
Begin

Ifeach NSJ associated with Y is properly embedded in p then

Repeat delete the semijoin occurrence (and the resultant isolated node) whose successor node is an
end node in E(p) and is a nonfinal relation

Until every end node in E(p) is a final relation
End;
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R4

R7T—™ P Rs—P R PRI PR3 \>‘m

h

R6 P R
Figure 3.6. Semijoin Program with Final Relation as End Nodes

The reduction effect of semijoin occurrences is affected by execution sequence in
a semijoin program. There are some rearrangement techniques developed in past research
works, such as “early binding” and “late forking” proposed by Luk and Luk [LL83], and
[BGW+81]. Consider figure 3.7, RS, R6, R2(2) have same successor node R1(2). Ri(1)
-> RS is upstream of R5 - R1(2), but not R6 > R1(2) and R2(2) & RIQ2). R6 >
R1(2) and R2(2) <> RI1(2) have the reduction effect on successor node R1. Therefore, R6
- RI(2) and R2(2) > RI1(2) can be propagated earlier by using early binding technique.
This technique increases the reduction effect of those semijoins and reduces the total data
transmission cost. In the following example, semijoins R6 < R1(2) and R2(2) > R1(2)
will be moved from R1(2) to the earlier successor node R1(1).

R4(1) R6
R2(1) —® RI(IT—®Rs—® RI(2)
R3 RIQ— R2Q2)

Figure 3.7. Early Binding
After the rearrangement, there may be cycks in the graph. Therefore, we need to

break the cycle in the graph because the cycle is not allowed in an execution graph (see



figure 3.8). First, a new node, R1°, be created into the graph. Second, remove the edge of

RI(1) = R6 and add an edge from R1’ b R6. Third, remove all edges that are

connected to R1(1) and add new edges to the new node from the corresponding nodes.

R4 ___w» R6

i 4
R2(1) “RI(1) T ® Rs —®RI(2)

R3 R4Q)™ P R2(2)

Figure 3.8. Break the cycle in execution graph

The second technique that can be applied in rearrangement is “late forking” which
may reduce the total transmission cost for a semijoin program. It will be applied on two
edges which have the same predecessor node. Choosing a later occurrence of a relation in

the execution graph may have a smaller relation size, if the later occurrence is chosen.

Consider the case shown in figure 3.9. R4(2) >R2(2) is downstream from R2(1) =
R4(2), but not from R2(1) <> R1’. These two semijoins can reduce the relation size of
R2. Therefore, removing R2(1) <> R1’ and adding R2(2) = R1 can reduce
transmissioncost. After this rearrangement, there is a duplicated edge betweenR2(2) >

R1(1) and one of them can be deleted.

R4(1)
s\ /{;

/Rz { /X\ ¥ RI'—®R6—® RI(1)™® RS~ RIQ)
R3 R42) —PR2(2)

Figure 3.9. Late Forking
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Algorithm P2 [CL84) (* Based on Optimality Property 4 *)
Begin

While p can be rearranged do
apply rearrangement techniques
End;

According to fourth property, algorithm P2 used to detect the possibility of
applying rearrangement techniques on a semijoin program. In the perivous example, it
shows that the reduction effect can be increased by applying late forking techniques on

R2 -> R1 and reduces the transmission cost of R4 <> R1 by early binding technique.
Therefore, R2 <> R1 is moved to the later occurrence of R2 and R4 = R1 is re-located

to the early occurrence of RI (see figure 3.10a). After applying the four algorithms, an
optimal semijoin program with four optimal semijoin program properties is produced (see
figure 3.10b).
@) R\ R474“

RT—® Rs—P R X RI—PR— Ri

NN

R6 —P R2

(b)
R

R7—® RS —P R2 —PRs PrR2—P R — R3 —P Ri

Figure 3.10. Rearrangement Techniques and Final Optimal Semijoin Program

The other main concept introduced in [CL84] is “join in two steps”. The main idea
is to process joins at both step 2 and 3. This approach process the non-final joins in the
pre-processing stage, executes a semijoin program which properly embeds all necessary
semijoins. The effects of all non-final joins will be achieved at final relations after a
semijoin program. The result will be sent to the final site for performing the final join to
produce the query result. In the traditional one step approach, all joins are performed at

the final site. The forward and backward semijoins are also considered in this approach.
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Chapter 4. Improvement Algorithm Analysis

4.1. Rearrangement Techniques and Including all NSJ

As described in the last chapter, rearrangement techniques are used to rearrange the
execution sequence of semijoin occurrences in a semijoin program. The goal of the
rearrangement is to improve the performance of the program. In other words, it tries to
reduce the transmission cost by arranging the execution sequence to obtain an efficient
semijoin. In some case studies, an individual semijoin or a segment of a semijoin program
may provide the cost reduction after the re-arrangement/algorithms; however, the total

response time may be increased.

Considering the example in figure 4.1, statistical information i the table is used
to calculate the cost of the semijoin program in this example. Figure (a) repersents the
semijoin program before applying improvement algorithms; the response time is 784.
Figure (b) shows the first step of improvement algorithms for removing the redundant
semijoins. Figure (c) contains the semijoin program before applying the last improvement
algorithm for rearranging the semijoin program which has a response time of 975. F igure

(d) indicates the rearrangement introducing benefit to semijoins R1 < R3 and R2
R1. However, the total response time is increased to 1103. In an ideal case, the

rearrangement of the executing sequence of semijoins should provide a benefit to the
whole semijoin program. However, the rearrangement may only benefit a particular
semijoin segment in the program. In the meantime, it also reduces the reduction power of
some other semijoins while expecting the new benefit plan to overcome the undesired

cost increment.
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Relation Size Selectivity
Rl 150 0.2
R2 100 0.3
R3 300 0.5
R4 50 04
RS 400 0.6
R6 200 0.1
R7 500 0.7

a)

R4 R4
RS — R2 —PRI —PR3 >'a/—>m—>m

RS —®» R2 —P R¢
b) R4 R4

RT =784

RS —® R2 — PRI —PR3— P

~ X

R5-—;r—b R2 —® R¢

<)

R4
500 280 60 45 &
R7 —P RS  R2 —PR) Ppr3;— R L

\
60
60

—) RT =975
R6 R2

d) R4
™., 50

-

500 280 60 60 10 S8 60
R7 —P RS — R2 —PR6—PR2—<3 R| —P R3 —P R P

RT =1103

Figure 4.1 Non-beneficial Rearrangements



The improvement algorithms also suggest that a semijoin program should include
all NSJ in the join tree. However, it may include some non-profitable semijoins in the
program for answering a query. For example, another semijoin query use the same
statistical information and join tree as the pervious example, and tries to retrieve records
in R2, target relation. Figure 4.2a, is one possible semijoin program for this query but
does not satisfy all optimal semijoin program properties. It has 609 units of cost to answer
the query. But according to the optimal semijoin program properties, all NSJ should be
included in the program. Therefore, semijoin R7 = RS should be embedded in the
semijoin program and it results in an increment of the cost, from 609 to 989 (see figure

4.2b). Therefore, including all NSJs may not be beneficial to the program.

500 280
RS R7 —® RS

R2 —» R2 —
R6 R6

a) RT = 609 b) RT =989

Figure 4.2 Non-beneficial NSJ
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4.2. Benefit from Other Operator

The improvement algorithms assumed only one joining attribute in each relation and
ignored the reduction effect of other non-joining attributes (as the example in figures 2.12
and 2.13). However, many distributed queries may involve multiple semijoins having
common/multiple target relations. Therefore, there may be a cost benefit in performing
two semijoins as one composite semijoin, in which the two joining attributes are treated
as one composite joining attribute. The reduction effect will be amplified by the
composite joining attribute. It also enables a composite semijoin to eliminate some tuples
that cannot be accomplished by a single joining attribute. The composite semijoin is
proposed in [PC90] to handle these problems by combining multiple semijoins to be a
composite semijoin, as described in chapter 2. The main idea of a composite semijoin is
to posit a semijoin with a projection of multiple attributes involved in some operations

with the same source and destination sites.

Consider the following table and figure which show a composite semijoin
providing much more benefit than a regular semijoin. In this example, the response time
for semijoin operation is 800 (see figure 4.2a) and composite semijoin is 661 (see figure
4.2b). There is a significant improvement of response time by using a composite semijoin
operator for this query. In [PC90), the researcher applied a composite semijoin on many
versions of algorithm AHY, W, and S [AHY83, PER8S, BGW+81] and discussed many
examples and simulation experiments to support this argument. Extending the idea from
[PC90), if one applies improvement algorithms to a composite semijoin querying program

then there is greater chance of obtaining anoptimal - or close to optimal - query program.



It is very easy to adopt a composite semijoin to replace a semijoin as they share the same

basic characteristics of semijoin.

Semijoin Composite Semijoin
R Si |ba |pafbe [po Si_ Ibu |pin |bi2 | pi2|bic |Ppi
Rl 1000]1400104] 100] 0.2 1000|400 0.4 | 100] 0.2 | 600 | 0.0012
R2 2000[400]0.4] 450 0.9 2000|400 0.4 | 450] 0.9 | 966 | 0.00193
R3 3000/900]09( --- | —- 30001900109} -- | - |-— |-
R: Relation Si: Relation size  b: Attribute size  p: Selectivity
a) b) a1 120 110
—P d22
di2 120 110
—P d22 a1 420 Q
l . 380
d21 420 d1 420 344
164 RI —
PPN
RT =800 a2 420
dlc 620 21
e 2 —
RT =661

Figure 4.2 Benefit of Composite Semijoin [PC90]

4.3. Serial And Parallel Semijoin Programs

Distributed query processing is defined as the retrieval of data from different sites in a
network. The difference between query processing in a centralized database and a
distributed database is the potential for decomposing a query into sub-queries which can
be processed in parallel. The intermediate results can also be sent in parallel to the
required node in a distributed database environment [AHY83]. The decomposition
introduced the independence of each paralleled segment of a program. During the
processes of the improvement algorithms, it is possible to add and/or remove, and

rearrange semijoins in a program to reduce the cost. However, these changes may only
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provide benefit to a particular segment in a parallel program, but not to the total response
time of the whole program. In a serial semijoins program, semijoins are executed one by
one. Therefore, adding or removing a semijoin causes a significant effect on the serial
program rather than parallel program. Moreover, the independence also reduces the effect
of rearrangement techniques in a parallel semijoin program. In some situations, if total
time instead of response time is the main concem of a query, then fulfilling the properties
of an optimal semijoin program definitely helps to reduce the total time. Removing
redundant semijoins and rearranging the execution sequence are two key operations for
reducing total time in a semijoin program. The following figure shows the cost reduction
power of removing redundant semijoins in a parallel program. In figure 4.2a, it shows an
original parallel semijoin program with the total time, 20123.7. After applying
improvement algorithms, the total time is reduced to 8719.67 and shown in figure 4.2b.
There is a 57% improvement on the total time. The result also indicated many non
optimal semijoin programs including a large amount of redundant semijoins, especially
those occurring happening in the program composed by a large number of relations and

attributes.
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Figure 4.2 Parallel Semijoin Program
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Chapter §. Evaluation

S.1. Performance of Improvement Algorithms

In order to study the performance and characteristics of the improvement algorithms, the
algorithms have been implemented, tested and evaluated. The relation generator that
developed by the database research group in the University of Windsor is usedl to generate
the statistical data for forming a semijoin program. The generator is modified to fit the
requirements of improvement algorithms and this thesis. The statistical data includes the
relation size, attribute size, and attribute selectivity. The semijoin program could be
generated by any algorithm for tree query. In this thesis, the AHY algorithm (respond
time version) [AHY83] has been chosen to generate a set of semijoin programs as input
of the improvement algorithms from the statistical data. The AHY algorithm already has
been described in chapter 2. It is used for the query optimization in a distributed
environment. It means that the semijoin program provided by this algorithm already
contains an optimal or near-to optimal semijoin program. Therefore, it provides a very
suitable testing sample for improvement algorithms [CL84] to test the optimality of a
semijoin program and to improve non-optimal semijoin programs. The evaluation focuses
on the change of response time and total time of a semijoin program before and after

applying improvement algorithms.

The relation generator has generated a large set of statistical data tables for the
testing. Tables are andomly generated and based on the range of selectivity to be
categorized in four groups, 0.100 - 0.3669, 0.367 — 0.6429, 0.643 — 0.901, and 0.100 —

0.901. Two extreme bias ranges, 0.000 — 0.009 and 0.901 — 0.999, are not considered. The



combination of relations and attributes are limited to (3 - 6) relations and (2 - 4)
attributes. The attribute size domain is from 500 to 1500 and relation size domain is from
500 to 6000. The generator produced 200 tables for each combination. Therefore, there
are 9600 (4 relations x 3 attributes x 200 tables x 4 selectivity segments) tables that have
been generated. It provides a total of 43200 (10800 schedules x 4 selectivity segments)
semijoin schedules/programs to test the performance of improvement algorithms. The
following figures (figure 5.1 — 5.4) are the statistical summary for the testing result. Each

figure represents one particular segment of selectivity.
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lectivity 2 Attributes 3 Attributes 4 Attributes
.100- Response Response Response
.3669 Total time time Total time time Total time time
(600 Relation Schecules for Each Combination)
Relations
ncreased 72 61 52 46 63 54
12 10.16667 |8.666667 7.666667 10.5 9
reased 0 0 0 0 0 0
’ 0 0 0 0 0 0
(800 Relation Schedules for Each Combination)
Relations
ncreased 144 169 129 138 108 116
18 21.125 16.125 17.25 135 145
reased 127 0 69 0 64 0
15.875 0 8.625 0 8 0
(1000 Retation Schedules for Each Combination)
Relations
ncreased 164 233 178 198 113 148
) 164 23.3 17.8 19.8 11.3 148
ecreased 318 0 151 0 206 0
31.8 0 15.1 0 20.6 0
(1200 Relation Schedules for Each Combination)
Relations
ncreased 149 271 138 203 150 232
o 12.41667 22.58333 115 16.91667 125 19.33333333
ecreased 417 0 315 0 253 0
34.75 0 26.25 0 21.08333 0
Total Number of Relation Schedules: 10800
Total % Increased Total Cost: 13.52% Increased Response time: 17.31%
Decreased Total time: 17.18% Decreased Response time: 0%
Sedectivity 0.100-0.3669
—<— increased Total Time —&—Increased Response Time

—&— Decreased Response Time —X—Decreased Total Time

e *«%’Wg W e

yﬁ
=~ A

3x2  3x3 3x4 4x2  4x3 “& " §x2 5x3 S5x4 6x2 6x3 6x4

Figure 5.1 Testing Result with Selectivity 0.100-0.3669
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ivity 2 Attributes 3 Attributes 4 Attributes
.367 - Response Response Response
.6429 Total ime time Total time time Total time time
(600 Relation Schedules for Each Combination)
Relations
ncreased 0 2 0 4 0 2
0 0.333333 0 0.666667 0 0.333333333
reased 0 0 0 0 0 0
0 0 0 0 0 0
(800 Retation Schedules for Each Combination)
Relations
ncreased 0 5 0 2 0 2
0 0.625 0 0.25 0 0.25
reased 132 0 104 0 95 0
) 16.5 0 13 0 11.875 0
(1000 Relation Schedules for Each Combination)
Relations
ncreased 0 2 0 5 0 1
0 0.2 0 0.5 0 0.1
reased 475 0 355 0 299 0
47.5 0 35.5 0 29.9 0
(1200 Relation Schedules for Each Combination)
Relations
ncreased 0 12 0 2 0 3
0 1 0 0.166667 0 0.25
reased 792 0 670 0 577 0
66 0 55.83333 0 48.08333 0
Total Number of Relation Schedules: 10800
Total % Increased Total Cost: 0% Increased Response time: 0.39%
Decreased Total time: 32.40% Decreased Response time: 0%
Seclectivity 0.367-0.6429

oB8EBBEZEE

—&— Increased Total Time

—— Increased Response TN:J

Figure 5.2 Testing Result with Selectivity 0.367-0.4629
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ectivity 2 Attributes 3 Attributes 4 Attributes
Response Response Response
.643-0.901] Total time time Total time time Total time time
(600 Relation Schedules for Each Combination)
Relations
ncreased 0 0 0 1 0 2
0 0 0 0.166667 0 0.333333333
eased 0 0 0 0 0 0
0 0 0 0 0 0
(800 Relation Schedules for Each Combination)
Relations
ncreased 0 0 0 0 0 0
0 0 0 0 0 0
ecreased 70 0 35 0 63 0
8.75 0 4.375 0 7.875 0
(1000 Relation Schedules for Each Combination)
Relations
ncreased 0 3 0 2 0 4
0 0.3 0 0.2 0 04
reased 178 0 144 0 162 0
17.8 0 14.4 0 16.2 0
(1200 Relation Schedules for Each Combination)
Relations
ncreased 0 2 0 3 0 2
o 0 0.166667 0 0.25 0 0.166666667
ecreased 421 0 363 0 341 0
35.08333 0 30.25 0 28.41667 0
Total Number of Relation Schedules: 10800
Total % Increased Total Cost: 0% Increased Response time: 0.18%
Decreased Total time: 16.45% Decreased Response time: 0%
Seclectivity 0.643-0.901

—&— increased Total Time
— — Decreased Total Time

—&— Increased Response Time
—X— Decreased Response Time

3x4  4x2 4x3

4x4

5x2

Relation

Figure 5.3 Testing Result with Selectivity 0.643-0.901

58



lectivity 2 Attributes 3 Attributes 4 Attributes
Response Response Response
.100-0.901 Total time time Total time time Total time time
(600 Relation Schedules for Each Combination)
Relations
ncreased 83 50 59 48 61 51
8.833333 8.333333 ]9.833333 8 10.16667 8.5
eased 0 0 0 0 0 0
0 0 0 0 0 0
(800 Relation Schedules for Each Combination)
Relations
ncreased 138 169 113 130 140 125
17.25 21.125 14.125 16.25 175 15.625
ecreased 126 0 76 0 54 0
15.75 0 9.5 0 6.75 0
(1000 Relation Schedules for Each Combination)
Relations
ncreased 173 235 144 174 158 172
17.3 235 14.4 174 15.8 17.2
reased 288 0 175 0 133 0
28.8 0 17.5 0 13.3 0
(1200 Relation Schedules for Each Combination)
Relations
ncreased 146 259 154 231 166 215
17.916666
12.16667 21.58333 |12.83333 19.25 13.83333 67
eased 419 0 337 0 269 0
34.91667 0 28.08333 0 22.41667 0
Total Number of Relation Schedules: 10800
Total % Increased Total Cost: 13.94% Increased Response time: 17.21%
Decreased Total time: 17.38% Decreased Response time: 0%
Seclectivity 0.100-0.901
—&— Increased Total Time =@= increased Response Time
— — Decreased Total Time === Decreased Response Time{

Figure 5.4 Testing Result with Selectivity 0.100-0.3669
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The testing results are summarized in four groups according to their selectivity
range. The results indicated that there is no improvement on the response time in any
parallel semijoin program. On the other hand, improvement algorithms provided a
significant improvement on total time in most schedules but not the schedules with a

small numbser of relations and attributes, such as 3 x 2 and 3 x 3.

In the first segment of the selectivity (0.100 — 0.3669), there are 17.78% of total
10800 schedules improved on total time. However, 13.52% of schedules have increased
cost of total time and 17.31% of schedules have extended their response time. On
average, the improvement of total time follows the increment of the number of relations

and attributes (see figure 5.1).

The improvement algorithms have the best performance in the second selectivity
segment (0.364 — 0.6429). The algorithms reduced the total time of 32.4% of schedules.
The algorithms almost did not increase the cost of total time and response time. In fact,
only 0.39% of schedules increased response time (see figure 5.2). The behaviour in the
third segment (0.643 — 0.901) is very similar to the previous segment. It has half the
number of all results of the second segment. 16.45% of schedules have total time reduced

and 0.18% of schedules are increased the response time (see figure 5.3).

The last group of schedules are distributed on the whole range of selectivity from
0.100 to 0.901. The performance is concluded in the same way of the first segment. The

increased total time of the schedules has been shown in 13.94% of the population.



17.38% of schedules decreased total time. 17.21% of schedules increased in response

time (see figure 5.4).

According to the experiment results, the performance of the schedules which
within the selectivity range of 0.100 — 0.3669 is frequently oscillated but there is no effect
of improvement algorithms in other selectivity segments, except the improvement on total
time. The significant improvement on the total time of a parallel semijoin program is
caused by the semijoin formation structure that provided by AHY algorithm. The final
schedule provided by AHY algorithm that accumulated the some candidate schedules in
parallel. Therefore, it contains many redundant semijoins that can be eliminated by
improvement algorithms. On the other hand, the independency between the sub-
schedules/sub-programs minimized the improvement performance of rearrangement
techniques. Therefore, the execution orders of sub-schedules do not cause a big impact on
response time of the whole semijoin program. The natural characteristics of AHY
semijoin program are the main reason of the improvement algorithms’ power cannot be
fully demonstrated. Although, the response time is not improved at all in the experiments

but the optimality properties of AHY semijoin program have been verified.

S.2. Implementation Approaches of Improvement Algorithms

Message Passing Interface (MPI)

Message passing is a paradigm used widely on certain classes of parallel machines and
distributed memory system, including workstation clusters and heterogeneous networks.
MPI includes a large set of collective communication operations, virtual topologies, and

different communication modes. In a rapidly changing environment of high performance
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computer and communication technology, portability is one of the most important aspects
of computer application development. Programs using MPI runs on any platform, which
has a MPI implementation without any need to modify the codes. The programs are
independent of machine architecture and type of network employed to transfer data from
one processor to another. Distributed and/or parallel computing models also increase the
computational power and performance for the system. In ideal case, the system with n

computers/processors is expected to have n times computational power/performance.

In distributed database systems, databases are distributed on a computer network.
This configuration allows distributed query processing to take the advantages that
provided by MPI model. Each node/relation site in the system can take the responsibility

for one relation or its own relation of the queries (see figure 5.5).

Figure 5.5 MPI Approach for Distributed Query Processing
This approach maximizes the computational power usage of the system and
provides better performance for executing a query. In the experiment for this approach, a
paralleVmulti-processors system is used to simulate a distributed environment, and handle

the production of semijoin programs and optimization by applying improvement



algorithms. There are 100 batches of semijoin program, each batch contains 43,200
schedules/programs, have been tested. The unsurprised testing result shows that the
average execution time of a query optimization in the system is reduced from 105 seconds
running on one processor to 40 seconds with 4 processors. The result does not match the
ideal case because the communications between processors increase the cost. The
implementation is very easy to be modified and fit into real distributed environment
because the MPI model supports both systems. And also, it can be extended to support
dynamic query optimization. The figure also shows that the nodes/processors can
communicate with its neighbours. Each processor can transfer the most updated
information of each relation during the optimization. Therefore, it is possible to provide

much more precise query plan dynamically.

Nested Improvement Approach

One-shot approach of improvement algorithms is to apply the improvement algorithms on
a semijoin program without the consideration of its size and complexity. However,
handling a simple and smaller semijoin program is easier and faster than a bigger and
complex one by intuition. Therefore, the nested approach is proposed in this thesis and
expected to provide benefit for improvement algorithms in terms of execution time. This
approach applies the improvement algorithms on semijoin sub-programs during the
semijoin program production of AHY algorithm. Improvement algorithms optimize the
sub-programs, and try to provide optimized sub-programs for the final program
integration. It reduces the chance of optimization for the final semijoin program. The
experiment result shows the implementation of this approach has same average execution

time, 105 seconds, as one-shot approach. The cause of the disappointment is that the
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nested approach implementation re-uses the original one-shot approach program to check
the optimality of the final semijoin program. The original one-shot approach program
checks the optimality of all sub-programs. Nested approach should skip this step because
the sub-programs are already optimized. Therefore the implementation of nested
approach should not re-use the one-shot approach program for checking the optimality of
the final semijoin program. It is believed that the nested approach still able to provide

benefit for the improvement algorithms on a semijoin program.



Chapter 6. Conclusion and Future Work

Query optimization in distributed database system becomes an NP-hard problem due to
the number of altemnative queries is increased exponentially by the number of database
sites, relations, and attributes. This fact is well recognized in this research area. Therefore,
some researchers have proposed many heuristic algorithms in the past, such as AHY and
SDD-1. All these heuristic algorithms are trying to provide an optimal or near-to optimal
solution for answering a query. However, there is no algorithm which can guarantee the
optimality of a query due to the complexity of the problem and the lack of properties of
an optimal query. This reason motivated some researchers to do some researches for
identifying the optimality properties of semijoin query program. The properties and
corresponding algorithms had been proposed in [CL84] but there is no publication which
has been found for evaluating the performance and limitation of these properties and
algorithms in accessible resources during the proceeding of this thesis. Therefore, this
thesis has done some research studies on the performance and limitation of the
improvement algorithms and the properties that proposed in [CL84] for an optimal

semijoin query program in a distributed database system.

This thesis takes a semijoin schedules/programs that produced by AHY algorithms
(response time version) [AHY83] as the inputs of improvement algorithms for testing its
performance and limitation. According to the experiment result, the improvement
algorithms cannot provide improvement of performance, in terms of response time for a
parallel semijoin program. But algorithms have a significant improvement on total time of

parallel program. Although, there is no improvement on response time of the parallel
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semijoin program in the experiment but the study shows AHY semijoin program already
satisfy most of the properties of an optimal semijoin program that was proposed in
[CL84). Based on the characteristics of parallel and serial semijoin program, the study
also indicated the execution sequence of semijoin operations is affecting the results of
improvement algorithms. The results also depend on the input semijoin program and its
size, and the parallelism of the program. The execution independence of paralleled
semijoin segments/sub-program reduces the improvement power of the algorithms. On
the other hand, the dependence in serial semijoin program enhances the performance of

the improvement algorithms.

The other uncertainty bonded with the improvement algorithms is the benefit that
provided by rearrangement techniques. The counter example shown in chapter 4 indicated
that the rearrangement might only benefit to some particular semijoins. In the mean time,
the rearrangements also increase the cost of some other semijoins and hope the new

benefit can cover the cost increment on other semijoin.

Every research will set some assumptions to narrow down the scope of the
research. However, it may also limit the benefit that provided by the ignored factor. In the
improvement algorithms, only one joining attribute is assumed existing in a relation and
only semijoin operator has been used. Multiple joining attributes are commonly occurred
in the relations of real distributed database systems. These assumptions ignore the benefit
that can be provided by other query operators, such as composite semijoin, for multiple

joining attributes.



There are couple issues related to improvement algorithms have been discussed in
this thesis. Some studies, such as the reduction power of composite semijoin and the
dependence in serial semijoin program enhancing the performance of improvement
algorithms, are based on the natural characteristics to state their effect in distributed query
processing. Some simulations and experiments can be done in the future to consolidate

some ideas stated in this thesis.

Besides the performance evaluation, some performance improvement researches
also can be constructed in the future. As mentioned in the discussion of composite
semijoin in chapter 2, the proposed composite semijoin cannot guarantee that the benefit
will be provided. Even, there are lot of examples and simulation showing the reduction
power of composite semijoin. However, the research still not guarantees the benefit of
composite semijoin. Therefore, it is a good research direction to adopt a combined
operation of composite semijoin and traditional semijoin for maximizing and providing

confidence of the benefit in the improvement algorithms for semijoin program.

One of the main limitations of the improvement algorithms is the query structure
that limited to tree queries only. Therefore, the other very good research direction in
distributed query processing is to extend improvement algorithms to handle general
queries. One of the challenges behind the general queries is how to handle the cycle in the
query/execution graph (or called as cyclic query/graph) and finding an efficient semijoin

program [BC81, BG81, GS82].
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In past ten years, dynamic query optimization follows the rapidly development of
computer network to become much more important. The MPI approach studies show the
potential computational power of MPI model. It can be extended for dynamic query

optimization to provide an efficient dynamic query plan.

In a semijoin program, if a particular node/rektion is a successor node of multiple
semijoins then the waiting time for completing all semijoins should be considered, not
only focusing on the amount of data to be transferred and/or the time required for the
transmission, in finding an optimal semijoin program. In some extreme cases, the waiting
cost may be highly over the benefit that provided by a semijoin itself. This situation may
also relate to the physical computing network problem. These two issues should be stated

in the optimizing process for a non-optimal semijoin program.



Glossary

Backward semijoin: Semijoin directed
toward to root node.

Cost: Resource(s), including time and
storage, required for answering a
query.

Distributed database system: A
collection of multiple, logically
interrelated databases distributed over
a computer network.

Distributed query processing: A process
to transform a high-level query to a
low-level query for retrieving the data
in an efficient and effective way from
the distributed database.

Execution time: The time between
receiving a command of executing a
corresponding program(s)/query(s) and
the arrival of the output to the expected
destination.

Execution graph: A directed acyclic
graph whose nodes represent relations
and directed edges represent semijoins.

Final relations: The union of target
relations and related relations.

Final join: Both joining relations are final
relations.

Forward semijoin: Semijoin directed
away from the root node.

Heuristic algorithm: An algorithm will
generate  solutions  which  are
guaranteed to be close to the optimal
solution in polynomial time.

Necessary semijoin (NSJ): A backward
semijoin with its predecessor node
being a non-final relation.

NP-hard problem: Problems are at least
as hard to solve as any NP problem.

NP problem: A set of all decision
problems, which can be solved by non
deterministic algorithms in polynomial
time.

Optimal query: The best or most
efficient query which requires the least
total data transmission cost to process

the query.

Optimization problem: A problem that
secks for the best solution among many
possible solutions, according to a
simple cost criterion. It corresponds a
decision problem.

Related relations: Relations which are
intermediate nodes in the paths between
any two target relations.

Response time: Time required for
providing information to answer a
query

Selectivity: the number of different values
occurring in the attribute divided by the
number of all possible values of the
attributes

Semijoin program: A query only contains
a set of semijoin operations and
constructed by including all backward
semijoins in a breadth first leafto-root
order.

Total time: The sum of the time of all
transmissions required in the schedule.

Tree query: A query embedded in a tree
structure.

Tree structure: A data structure whose
node can have two or more
branches/children. There is no any
connection between each branch.



Appendices (Sample Test Data and Result)
e The indicated cost beside an attribute or a relation number means the
cost required to transfer that particular attribute or relation.
e Some results of improvement algorithms are same as the schedules that
produced by AHY algorithm. It means that no improvement has been

occurred on that particular schedules.

Statistical table for 6 relations with 4 attributes:

Rel. Att. 1 Select. Att. 2 Select. Att. 3 Select. Att. 4 Select.
size Size size size size
3400 132 0.207 149 0.194 197 0.185 0 0.000
1600 0 0.000 0 0.000 0 0.000 336 0.261
1700 108 0.169 230 0.299 0 0.000 227 0.176
1100 0 0.000 188 0.245 349 0.327 0 0.000
3000 128 0.201 0 0.000 0 0.000 0 0.000
2900 0 0.000 206 0.268 0 0.000 187 0.145
AHY Algorithm (Response Time Version) Result:
Schedule R1 Cost: 48.2962 Schedule R4 Cost: 30.5804
I |
<--- d31 Cost: 128 <--- dl12 Cost: 169
<--- d51 Cost: 148 <--- dl3 Cost: 217
<--- d42 Cost: 208 <--- d62 Cost: 29.7912
| | <--- 412 Cost: 169
Total time = 532.296 | | <--- d42 Cost: 208
Total Response time = 256.296 Total time = 823.372
Total Response time = 268.372
22222 X2 REEEE R EEEE R R ERES I X222 2222222222222 X2 XN
Schedule R2 Cost: 60.832 Schedule R5 Cost: 124.949
I I
<--- d64 Cost: 207 <--- d31 Cost: 128
<--- d34 Cost: 247 <--- dll1 Cost: 24.4839
| | <--- d31 Cost: 128
Total time = 514.832 | | <--- d51 Cost: 148
Total Response time = 307.832 Total time = 553.433
Total Response time = 297.433
22 2R X Z SRR RS R R RE R R R XX 222222222 R X2 R 2R RS RN N
Schedule R3 Cost: 33.722 Schedule R6 Cost: 27.2535
l l
<--- d51 Cost: 148 <--- dl12 Cost: 169
<--- dl2 Cost: 169 <--- d42 Cost: 208
<--- dll1 Cost: 24.4839 <--- d34 Cost: 247
| | <--- d31 Cost: 128 <--- d32 Cost: 20.1393
| | <--- d51 Cost: 148 | | <--- dl12 Cost: 169
| | <--- d42 Cost: 208
Total time = 651.206 | | <--- d62 Cost: 29.7912
Total Response time = 206.206 | | <---d12 Cost: 169
| [ <--- d42 Cost: 208
Total time = 1455.18
Total Response time = 285.184
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Improvement Algorithms Result

LA A S S SR ASEAR SRR SR NN R RTY

Schedule R1 Cost: 48.2962

|
<--- d31 Cost: 128

<--- d51 Cost: 148
<--- d42 Cost: 208

Total time = 532.296
Total Response time = 256.296

LA SRR S SRS ERERRR R RN ERY

Schedule R2 Cost: 60.832

|
<--- d64 Cost: 207

<--- d34 Cost: 247

Total time = 514.832
Total Response time = 307.832

LA S A SRS EERE R R R R X R R IR R I
Schedule R3 Cost: 33.722

<--- d51 Cost: 148

<--- dl2 Cost: 169

<--- dll1 Cost: 24.4839

| | <~-- d31 Cost: 128
| | <--- d51 Cost: 148

Total time = 651.206
Total Response time = 206.206

2222 X222 R R AR RS RE]

Schedule R4 Cost: 30.5804

~

[
<--- dl12 Cost: 169

<--- d13 Cost: 217

<--- d62 Cost: 29.7912

| | <--- d12 Cost: 169
| | <--- d42 Cost: 208

Total time = 823.372
Total Response time = 268.372

1A 22X EAEEZER RS RS EEE R R
Schedule R5 Cost: 124.949

|
<--- d31 Cost: 128

<--- dl1 Cost: 24.4839
| | <--- d31 Cost: 128
| | <--- 851 Cost: 148

Total time = 553.433
Total Response time = 297.433

LA RSS2 2 2R R R EERE RS RERE]
Schedule R6 Cost: 27.2535

|
<--- dl2 Cost: 169
<--- d42 Cost: 208
<-~- d34 Cost: 247
<--- d32 Cost: 20.1393
| | <--- dl2 Cost: 169
| | <--- d42 Cost: 208
| | <--- d62 Cost: 29.7912

Total time = 1078.18
Total Response time = 285.184
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Statistical table for 6

1200 0 0.000 256
1600 198 0.177 0
3700 319 0.285 0
5200 0 0.000 418
1800 224 0.200 0
1600 0 0.000 276

AHY Algorithm (Response

LA A S ARl RS SRR REJESE

relations with 3 attributes

0.200 115 0.116
0.000 151 0.152
0.000 0 0.000
0.327 312 0.312
0.000 194 0.195
0.216 0 0.000

Time Version) Result

LA AR A SRS SRS SRR RS RS RR SRR

Schedule R1 Cost: 31.0972 Schedule R3 Cost: 150.98
I |
<--- d23 Cost: 171 <--- d21 Cost: 218
<--- d53 Cost: 23.4206 <--- d51 Cost: 244
| | <--- d13 Cost: 135
| | <--- 423 Cost: 171 Total time = 612.98
<--- d43 Cost: 20.0189 Total Response time = 394.98
| | <--- d13 Cost: 135
l l <--- d23 Cost: 171 L R 2 T Y
| | <--- 453 Cost: 23.4206 Schedule R4 Cost: 37.8788
| | <--- d13 Cost: 135 ~
] | <---d23 Cost: 171 |
<--- dl13 Cost: 135
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~ Total time = 673.299
| Total Response time = 232.299
<--~- dl3 Cost: 135
<-=-- d53 Cost: 23.4206 (2 Z 2R R R EEE R R R
| | <--- d13 Cost: 135 Schedule RS Cost: 51.7376
| | <--- d23 cCost: 171 ~
<--- d43 Cost: 20.0189 |
| | <--- d13 Cost: 135 <--- d13 Cost: 135
| | <--- d23 Cost: 171 <--- d23 Cost: 171
| | <--- 353 Cost: 23.4206
| | <--- d13 Cost: 135 Total time = 357.738
[ | <--- d23 cCost: 171 Total Response time = 222.738
Total time - 1151.15 A2 22222 dlS 2R LR RAl R &4
Total Response time = 245.731 Schedule R6 Cost: 124.64
|
<--- dl2 Cost: 276
<-~-- d42 Cost: 38.0576
| | <--- dl2 Cost: 276
| | <--- d62 Cost: 296
Total time = 1010.7
Total Response time = 458.698



Improvement Algorithms Result

LA AR ERERE R R R R R RE R R R RERIPP I

Schedule R1 Cost: 31.0972
I
<--- d23 Cost: 171
<--- d53 Cost: 23.4206
| | <--- d13 Cost: 135
| | <---d23 Cost: 171
<--- d43 Cost: 20.0189
| | <--- d13 Cost: 135
| | <--- d23 Cost: 171
| | <--- d53 cCcost: 23.4206
Total time = 880.957

Total Response time = 245.537

LA A AR AR R SRS RS R RS R R IRPRTY

Schedule R2 Cost: 31.2919

<--- d13 Cost: 135
<--- d53 Cost: 23.4206
| | <--- d13 cCost: 135
|
| | <---d23 cCost: 171
<--- d43 Cost: 20.0189
| | <--- d13 cCost: 135
| | <--- d23 cost: 171
| | <--- d53 Cost: 23.4206
Total time = 845.152
Total Response time = 245.731
LA R AL R R ERERER R R K FRPPI I
Schedule R3 Cost: 150.98
[
<--- d21 Cost: 218
<--- d51 Cost: 244
Total time = 612.98
Total Response time = 394.98
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Schedule R4 Cost: 37.8788

l

<--- d13 Cost: 135

<--~- d23 Cost: 171

<--- d53 Cost: 23.4206

| | <--- d13 Cost: 135

|

| | <---d23 Cost: 171
Total time = 673.299

Total Response time = 232.299

LA A2 22X E X EERE R R X X R E R IR IR
Schedule RS Cost: 51.7376
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<--- d23 Cost: 171
Total time = 357.738

Total Response time = 222.738

A AR AR SRS SRR TSRS RE XS

Schedule R6 Cost:

~

<--- d12 Cost: 276

124.64

<--- d42 Cost: 38.0576

| | <--- d12 Cost: 276

| | <--- d62 Cost: 296
Total time = 1010.7

Total Response time = 458.698



Statistical table for 4 relations with 3 attributes

800 469 0.540000 0 0.000000
500 0 0.000000 0 0.000000
1600 0 0.000000 324 0.532000

2400 432 0.497000 270 0.444000

0 0.000000
499 0.442000
0 0.000000
600 0.531000

AHY Algorithm (Response Time Version) Result

LA SR 2RSSR R R RE R R

Schedule R1 Cost: 417.6

l
<--- d41 Cost: 452

Total time = 869.6
Total Response time = 869.6

(2222222 2 28R E 2 R R R R RR RS

Schedule R2 Cost: 285.5

A

I
<--- d43 Cost: 620

Total time = 905.5
Total Response time = 905.5

A2 AR LR ERE 2R R XXX R R 1

Schedule R3 Cost: 730.4

[
<--- d42 Cost: 290

Total time = 1020.4
Total Response time =

1020.4

A2 A2 AR 2SS RSS2SR R R}

Schedule R4 Cost: 324.747

|
<--- d32 Cost: 344

<--- dll Cost: 489
<--- d23 Cost: 519

Total time = 1676.75
Total Response time =

843.747

Improvement Algorithms Result

LA 22 2RSS RSSRRERE R R ERRREY

Schedule R1 Cost: 417.6
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|
<--- d41 Cost: 452

Total time = 869.6
Total Response time = 869.6

L2 2R 2R X2 S8R R R R R R R BRI I
Schedule R2 Cost: 285.5

I
<--- d43 Cost: 620

Total time = 905.5
Total Response time = 905.5
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A A AR R R LRSSl R A RE XN

Schedule R3 Cost: 730.4

{
<--- d42 Cost: 290

Total time = 1020.4
Total Response time =

1020.4

LA A SRR S RS2 R XXX X B

Schedule R4 Cost: 324.747

I
<--- d32 Cost: 344

<--- dl1 Cost: 489
<--- d23 Cost: 519

Total time = 1676.75
Total Response time =
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