University of Windsor

Scholarship at UWindsor

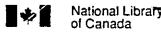
Electronic Theses and Dissertations

Theses, Dissertations, and Major Papers

1987

An experimental study of the dependence of density, viscosity and excess molar volumes of several binary liquid non-electrolytes on composition at several temperature levels.

Mohammad H. Siddique *University of Windsor*


Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Siddique, Mohammad H., "An experimental study of the dependence of density, viscosity and excess molar volumes of several binary liquid non-electrolytes on composition at several temperature levels." (1987). *Electronic Theses and Dissertations*. 1050.

https://scholar.uwindsor.ca/etd/1050

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Bibliothèque nationale du Canada

Canadian Theses Service

Service des thèses canadiennes

Ottawa, Canada --K1A 0N4

NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing; contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30.

AVIS

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction:

S'il manque des pages, veuillez communiquer avec l'université qui a conferé le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, tests publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30.

AN EXPERIMENTAL STUDY OF THE DEPENDENCE OF DENSITY, VISCOSITY AND EXCESS MOLAR VOLUMES OF SEVERAL BINARY LIQUID NON-ELECTROLYTES ON COMPOSITION AT SEVERAL TEMPERATURE LEVELS

bу

Mohammad H. Siddique

A thesis
submitted to the.
Faculty of Graduate Studies and Research
through the Department of Chemical Engineering
in Partial 'Fulfillment of the requirements
for the Degree of Master of Applied Science
at the University of Windsor

Windsor, Ontario, Canada *

1987

Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without his/her written permission.

L'autorisation a été accordée à la Bibliothèque nationale du Canada de microfilmer cette thèse et de prêter ou de vendre des exemplaires du film.

L'auteur (titulaire du droit d'auteur) se réserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation écrite.

ISBN 0-315-39624-5

*

Mohammad H. Siddique
1987
All Rights Reserved

876752

ABSTRACT

The densities and kinematic viscosities of eight-binary liquid non-electrolyte mixtures containing toluene, ethylbenzene and n-alkanes have been measured over the entire composition range at 20.00, 25.00, 35.00 and 40.00 $^{\circ}$ C.

The experimental data obtained in this study have been used in the calculation of absolute viscosities, excess molar volumes of mixing, excess activation energy of wiscous flow, partial molal volumes and excess viscosities over the entire - concentration range and at the aforementioned temperatures.

Several viscosity predictive models, e.g., McAllister, Heric's and Auslander's models, have been tested using the data collected during this investigation. The dependence of McAllister's model parameters on temperature, for systems investigated here, has been determined.

The activation energies of viscous flow for pure components as well as for mixtures have been determined.

ACKNOWLEDGEMENTS

My sincere thanks and gratitude are due to His Almighty, Allah, for His profound benediction and help during the course of my studies in general.

My sincere appreciation and gratitude are due to Professor Abdul-Battah A. Asfour, under his cogent supervision this project has been performed, for his constant interest, valuable guidance and continous inspiration.

My sincere thanks and appreciation are also due to J. Stastna and E. Cooper who worked in this lab. My thanks are also due to Mr. George O. Ryan, the technician of the Chemical Engineering Department, for bis excellent service.

The financial support from the University of Windsor and the Natural Sciences and Engineering Research Council of Canada are gratefully acknowledged.

My thanks are due to Mrs. Linda Breschuk and Mrs. Linda Kennedy for their excellent typing of this thesis and to Mr. Americo Buzzeo for his excellent drafting of the graphs.

The constant encouragement of my parents and friends was always a motivating force in my work. To them I shall forever be grateful.

TABLE OF CONTENTS

• 5075 • 67	•																Page iii
ABSTRACT			· •	•	• •	•	•	•	•	•	•	•	·	•	-		
ACKNOWLE	DGEME	NTS	•. • •	•		•	٠	•	•			•	•	•	•		iv
TABLE OF	CONT	ENTS.			•				•		•		•	•	•	•	v
LIST OF	TABLE	:s			•	•	•		•		•		•	•	•	•	vii
LIST OF	FIGUR	ES			•	•			•		•	•	•	•	•	•	хi
LIST OF	APPEN	DICES				•	•			•	•		•	•		•	xiv
CHAPTER	1	INTROD	UCTION	i .										•		•	1
	1.1	Genera	1 .		•.	•		• (•	•			•		:	1
	1.2	Object	ives.		•	•	•	•		•		•	•	•		•	4
CHAPTER	2	LITERA	TURE, S	SURV	ΕY			•		•		•		•			₱ 6
	2.1	Genera	1		•					٠	•	•		٠		•	6
	2.2	Newton	's Lav	√. .	•	•		• -		٠					•		7
	2.3	Stoke'	s Equ	atio	n.					•					•		9
	2.4	Variat	ion o	f Vi	sco	os i	.ty	w	ith	Te	e m j	pei	rai	tur	ce	•	10
		2.4.1	Theo ture						nt 	for	r 1	te:	npe	ere	a -		12
	,	2.4	.1.1	And	rac	de '	8	fo	rmu	la		•			•		14
		2.4	.1.2	Hil	del	bre	and	i's	Th	eo	гy		•			:	16
	2.5	Kineti	c The	ory	of	L	iqι	ıid	St	at	e	•					17
		2.5.1	Eyri theo					ıte	re	eac	ti.	on •	r.	a t .	e	•	18

ν

				Page 8
	2.6		ctive Equation for Viscosities of Mixtures	25
		2.6.1	McAllister's model	25
		2.6.2	Heric's empirical equation	31
		2.6.3	Auslander's equation	34
	2.7	Expess	B Activation Energy of Viscous Flow.	38
CHAPTER	3	EXPER	IMENTAL EQUIPMENT AND PROCEDURES	41
	3.1	Densi	ty and Viscosity Measurements	41
		3.1.1	Preparation of solutions	41
		3.1.2	Density measurements using the density meter	42
			A. Principle and construction of the density meter	42
		ેંગ	B. Density meter equations	49
			C. Procedure	51
		3.1.3	Viscosity measurement	52
			A. Operation of viscometers	53
			B. Sources of error in viscometry	56
			C. Viscosity equation	56
CHAPTER	4	EXPER	IMENTAL RESULTS AND DISCUSSION	58
		4.1	General	58
			Calibration Data for the Density Meter	61
		4 3	Calibration Data for the Viscometers	67

ŧ.

		\sim	Page
•	4.4	Comparison Between the Literature Density and Viscosity Values of the	
		Pure Components and Those Obtained in This Study	73
	4.5	Density Composition Data	82
		4.5.1 Excess volume of mixing	87
	4.6	Viscosity - Composition Data	106
		4.6.1 Excess activation energy of viscous flow	124
		4.6.2 Excess viscosity	131
		4.6.3 Activation energy of viscous flow	134
	4.7	Predictive Capabilities of the Various Viscosity Models	134
CHAPTER 5	CONC	LUSIONS AND RECOMMENDATIONS	145
	5.1	Conclusions	145
,	5.2	Recommendations	147
NOMENCLATURE			151
REFERENCES		•	154 _.
APPENDICES		,	160

LIST OF TABLES

Table		Page
2.1	Fractional Decrease in Kinematic Viscosity For a Temperature Rise from 20°C to 40°C	11
4.1	Calibration Data for the Density Meter	59
4.2	Viscometer Calibration Data	64
4.3	Physical Properties of Pure Components	68
4.4	Density-Composition Data of the System: Toluene (A)-n-Octane (B)	74
4.5	Density-Composition Data of the System: Toluene (A)-n-Decane (B)	75
4.6	Density-Composition Data of the System: Toluene (A)-n-Dodecane (B)	76
4.7	Density-Composition Data of the System: Toluene (A)-n-Tetradecane (B)	77
4.8	Density-Composition Data of the System: Toluene (A)-n-Hexadecane (B)	78
4.9	Density-Composition Data of the System: Ethylbenzene (A)-n-Octane (B)	79
4.10	Density-Composition Data of the System: Ethylbenzene (A)-n-Tetradecane (B)	80
4.11	Density-Composition Data of the System: Ethylbenzene (A)-n-Hexadecane (B)	81
4.12	Least-Squares Constants for the Equation	83
	$0 = \int_{0}^{i=m} A \cdot x^{i}$	

	•			
Table			Page	
			0.2	
4.13	Least-Squares Constants for the Equation		93	
	$v_{m}^{E} = x_{A} (1 - x_{A}) = \sum_{i=0}^{i=n} A_{i} (2x_{A} - 1)^{i}$			
4.14	Parameters Involved in Kato-Suzuki Model	•	95	
4.15	Viscosity-Composition Data for the System: Toluene () -n-Octane (B)		98	
4.16	Viscosity-Composition Data for the System: / Toluene (A)-n-Decane (B)		99	
4:17	Viscosity-Composition Data for the System: Toluene (A)-n-Dodecane (B)		100	- B
4.18	Viscosity-Composition Data for the System: Toluene (A)-n-Tetradecane (B)		101	. 6
4.19	Viscosity-Composition Data for the System: Toluene (A)-n-Hexadecane (B)	•	102	
4.20	Viscosity-Composition Data for the System: Ethylbenzene (A)-n-Octane (B)		103	
4.21	Viscosity-Composition Data for the System: Ethylbenzene (A)-n-Tetradecahe (B)		104	
4.22	Viscosity-Composition Data for the System: Ethylbenzene (A)-n-Hexadecane (B)		105	
4.23	Least-Squares Constants for the Equation		115	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		*	
4.24	Least-Squares Constants for the Equation		117	
	$ \begin{array}{ccc} \mathbf{i} = \mathbf{n} & \mathbf{i} \\ \mathbf{n} & = & \Sigma & \mathbf{A} & \mathbf{x} \\ \mathbf{m} & \mathbf{i} = \mathbf{o} & \mathbf{i} & \mathbf{A} \end{array} $,		
4.25	Least-Squares Constants for the Equation		125	
	$\Delta^{\star}_{G}^{E} \times 10^{-5} = x_{A} (1 - x_{A}) \stackrel{i=n}{\Sigma} A_{i} (2x_{A} - 1)^{i}$	•	٨	

Та	ble		o	•		Page
4.	, 26 Parameters	Involved in	McAllister's	Model	• •	135
4.		's Parameters = A _o + A _l T .	Fitted to t		on	136
4.	28 Parameters	Involved in	Heric's Mode	1	• •	142
4.	29 Parameters	Involved in	Auslander's	Model	• •	143
				·		
	· .	·		·:		
		•			•	•

LIST OF FIGURES

Figure		Page
2.1	Distances Between the Molecules In a Liquid	19
2.2	Types of Viscosity Interactions in a Binary Mixture, Three-body Model	2
3.1	Pictorial View of the Precision Density Meter .	کنز
3.2	The Cannon-Ubbelohde Viscometer	54
4.1	Density-Composition Plot at 25.00° C	85
4.2	Variation of Excess Volume of Mixing with Mole Fraction at 20.00°C	88
4.3	Variation of Excess Volume of Mixing with Mole Fraction at 25.00 °C	89
4 - 4	Variation of Excess Volume of Mixing with Mole Fraction at 35.00 °C	90
4.5	Variation of Excess Volume of Mixing with Mole Fraction at 40.00°C	, <u>-</u> 91
4.6	Kinematic Viscosity-Composition Plot for Systems with Toluene at 20.00 °C	107
4.7	Kinematic Viscosity-Composition Plot for Systems with Ethylbenzene at 20.00°C	108
4.8	Kinematic Viscosity-Composition Plot for Systems with Toluene at 25.00° C	109
4.9	Kinematic Viscosity-Composition Plot for Systems with Ethylbenzene at 25.00°C	110
4.10	Kinematic Viscosity-Composition Plot or Systems with Toluene at 35.00 °C	111
4.11	Kinematic Viscosity-Composition Plot for Systems with Ethylbenzene at 35.00° C	112

	• ,	Page
4.12	Kinematic Viscosity-Composition Plot for Systems with Toluene at 40.00 °C	113
4.13	Kinematic Viscosity-Composition Plot for Systems with Ethylbenzene at 40.00° C	114
	Variation of Excess Activation Energy of Viscous Flow with Mole Fraction at 20.00 °C	123
4.15	Variation of Excess Activation Energy of Viscous Flow with Mole Fraction at 25.00 °C	121
4.16	Variation of Excess Activation Energy of Viscous Flow with Mole Fraction at 35.00 °C	122
4.17	Variation of Excess Activation Energy of Viscous Flow with Mole Fraction at 40.00 °C	14:3
4.18	Variation of Excess Viscosity with Mole Fraction at 20.00 °C	127
4.19	Variation of Excess Viscosity with Mole Fraction at 25.00 °C	128
4.20	Variation of Excess Viscosity with Mole Fraction at 35.00 °C	129
4.21	Variation of Excess Viscosity with Mole Fraction at 40.00°C	130
4.22	Variation of Activation Energy of Viscous Flow with Number of Atoms of Normal Alkanes	132
4.23	Variation of Activation Energy of Viscous Flow with Mole Fraction	133
4.24	Variation of McAllister's Parameter v _{AB} with Temperature	137
4.25	Variation of McAllister's Parameter v _{BA} with Temperature	138
4.26	Variation of Intercept of the Lines in Figures 4.24 and 4.25 with Number of Carbon Atoms of the n-Alkane Component for Systems with Toluene.	139

4.27 Variation of Slope of the Lines in Figures 4.24 and 4.25 with Number of Carbon Atoms of the n-Alkane Component for Systems with Toluene . . 1-3

xiii

LIST OF APPENDICES

Page		APPENDIX
151	Derivation of the Viscosity Equation	A
165	Partial Molar Volumes Calculated from the Density-Composition Data	В
178	Excess Volume of Mixing Calculated from the Density-Composition Data	С
187	The Excess Activation Energy of Viscous Flow and the Excess Viscosity	D
196	Predicted Experimental Error	E

CHAPTER I

INTRODUCTION

1.1 General

The viscosity of liquid mixtures has attracted a great deal of attention both from a practical standpoint, where there is need for predicting the viscosity of a mixture from the properties of the pure components, and from a theoretical viewpoint where one can gain a clearer insight into the behavior of liquid mixtures [Frenkel, 1946; Partington, 1951; and Reid and Sherwood, 1977].

Viscosities of liquid mixtures provide information for the elucidation of the fundamental behavior of liquid mixtures. They also aid in testing the validity of correlations of mixture viscosities with those of the pure components. A survey of the literature on the subject of viscosities and densities of binary liquid mixtures reveals that viscosity of liquid mixtures are studied by various investigators. Reed and Taylor [1959] pointed out that a familiar approach is the hypothesis that there is a direct correlation between the viscosity and the thermodynamic behavior of a solution. They, however, could not obtain a simple relationship of that type as a result of their work.

Until now a general and global predictive equation for viscosity of liquids and liquid mixtures has not been In the kinetic theory of gases, the momentum obtained. transport which is observed in measuring the viscosity of a is considered to be due to the momentum which a moleclule carries with itself when moving through empty space between collisions. Every molecule is supposed to contribute the product of its momentum and its velocity the case of viscous flow. Viscosity of gases at low density thus be derived in terms of molecular properties assuming that the gas is composed of hard spheres. predict temperature dependence of viscosity accurately one to replace the rigid-sphere model by a more realistic molecular force field, e.g., Chapman-Enskog Theory [Bird et 1960]. Wilke [1950] extended the Chapman-Enskog Theory multi-component systems which is in fairly agreement with experimental results.

For liquids, however, present theoretical knowledge has not yet reached a stage of development where one can predict viscosity of liquids and liquid mixtures from molecular properties of the pure liquids. The biggest hindrance for this is the complexities in liquid state itself. Molecular volumes and other physical properties change with temperature. These changes are interpreted as

changes in molecular packing in liquid due to the onset of specific molecular motions. Three distinct molecular arrangements are considered for liquid state; viz., (i) at low temperatures molecular motion being largely translational, molecular spacing is of crystalline form; (ii) at intermediate temperatures rocking or libration is an added factor; and (iii) at higher temperatures, free rotation of the molecules on their long axes is considered to take place.

Eyring's absolute reaction rate theory is the most popular viscosity model among researchers. This theory is based on partly developed kinetic theory where the motion of liquid molecules is assumed to be confined to vibration of each molecule within a cage formed by its nearest neighbors. This 'cage is pictured as the energy barrier, and for a molecule to escape from its cage into an adjoining site or "hole" the molecule has to overcome the potential-energy barrier related to the activation energy of viscous flow. Eyring's model is remarkably successful with simple molecules.

A reliable and generally valid theory for the quantitative prediction of viscosities of liquid mixtures from the properties of the pure components has not been established.

Arrhenius provided the simplest equation for calculating mixture viscosities for ideal binary mixtures. For non-ideal binary mixtures McAllister's cubic equation is regarded as the best correlating technique available [Reid and Sherwood, 1977]. McAllister's approach is based on Eyring's theory of absolute reaction rates thus satisfactory correlation of viscosity data is achieved whenever the viscosity of the pure components or the interaction viscosities agree with Eyring's viscosity model. model for calculating mixture viscostities is strictly empirical and can be applied to regular solutions. Auslander's approach of prediction of viscosity of binary mixtures is based on relatively elementary methods involving derivatives. differential equations with partial integration he obtained a unitary system of equations which represents, with reasonable precision, the change with composition of the intensive properties of the mixtures (i.e., temperature, pressure, density, viscosity, surface tension... etc.).

1.2 Objectives

The objective of this work is to determine the densities and viscosities of some n-alkanes, toluene and ethylbenzene binary mixtures as accurately as possible. Such data are used in determining some of the thermodynamic

properties of these systems, e.g., excess molar volume and partial molar volume over the complete composition range and at various temperature levels.

The viscosity-composition data are also used in critically testing some of the literature models which describe the dependence of viscosity on concentration.

The systems investigated in this study are: toluene (A) -n-octane (B); toluene (A)-n-decane (B); toluene (A)-n-decane (B); toluene (A)-n-hexadecane (B); ethylbenzene (A)-n-octane (B); ethylbenzene (A)-n-octane (B); ethylbenzene (A)-n-tetradecane (B) and ethylbenzene (A)-n-hexadecane (B). Each of these systems has been investigated at the following temperatures: 20.00°C, 25.00°C, 35.00°C, and 40.00°C, respectively.

CHAPTER 2

LITERATURE SURVEY

2.1 General

viscous properties of the liquid state, contrasted with the gaseous state, and with the solid state certain of its aspects, offers peculiar difficulties. The wide separation of molecules in space in gases leads to relatively little influence on each other. Consequently, the effect of the intermolecular forces can be considered negligible. Therefore, only encounters involving two, not more, \ molecules need be considered; since the relative orientation of two molecules involved in collision is random, the shape of the molecules is of little influence; when mechanical properties are in question it is generally possible to neglect the vibrations and rotations molecules. All these simplifying factors are absent when we come to consider liquids. With solids - that is crystalline solida - matters are simplified by the high degree of order in space of the atoms and molecules. The mechanical behavior is an example of a class of properties known as structure sensitive, for which local lattice irregularities have a supreme significance, involving the complication that the properties depend markedly upon the previous history of the specimen. Here liquids have an advantage, for with homogeneous liquids the constants concerned in flow are uniquely determined by the state-pressure and temperature - of the substance. A study of the viscosity of the liquids, then seems a possible source of significant information concerning the nature of the liquid state which does reveal certain striking general regularities.

This section reveals the study of viscosity of liquid and liquid mixture in a historical fashion. Starting from Newton's work on viscosity where viscosity is explicitly treated as a transport property that offers resistance to flow of liquid, with due consideration of the work of Stoke's and Poiseuille it covers the temperature dependence of viscosity where several hypotheses are presented by different researchers e.g., Duff [1897], Andrade [1930] and Hildebrand [1971]. The kinetic theory is briefly touched; giving detailed description of Eyring's absolute reaction rate theory, it moves to different literature models for predicting mixture viscosities. With a few words for excess activation energy of viscous flow the chapter ends.

2.2 Newton's Law

According to Newton, there is a physical property that characterizes the flow resistance of simple fluids

is termed viscosity. In his second book of the "Principia", he treated fluids maintained in circular motion either by an infinitely long rotating cylinder or by rotating sphere. His objective was to investigate the properties of the Cartesian solar vortex of subtle fluid, which by its motion carried the planets round. purpose of calculation he had to assume a law according to which the motion or more specifically the momentum of layer of liquid is transferred to an adjacent layer. Newton stated in his hypothesis: "the resistance arising from the want of slipperiness in the parts of the fluid is, other things being equal, proportional to the velocity with which the parts of the liquid are separated one from another". fluid in Newton's treatment iв divided into The "innumerable" sheets of equal thickness, assumption meant that the resistance to shearing motion is proportioned to the velocity, i.e.,

$$T_{yx} = -\eta \frac{dv}{dy}$$
 (2.1)

where $\frac{dv}{dy}$ is the velocity gradient and $\frac{dv}{dy}$ is viscous momentum flux.

Newton did not apply to real liquids the consideration of liquid friction in motion of fluids.

2.3 Stoke's Equation

Stokes [1845] created the modern theory of the motion of viscous liquids. He attempted to relate the mobility to molecular properties. He calculated the frictional force F, acting on a hard sphere of radius, r, moving in a continuous medium of viscosity η_B with a terminal velocity V ... β is the coefficient of sliding t f β friction. Thus Stoke's equation is given by:

$$F = 6 \pi r_A \eta_B \frac{\beta_f r_A + 2\eta_B}{\beta_f r_A + 3\eta_B}$$
 (2.2)

Since is the friction coefficient between the surface "of the sphere and the continuum, therefore if the continuum sticks to the sphere surface, then $\beta_f=\infty$, and this condition is called "non-slip condition" and Stoke's equation reduces to

$$F = 6 \pi r_A v_E \eta_B \tag{2.3}$$

Sutherland [1905] pointed out a limitation of Equation (2.3), which corresponds to $\beta_f = 0$. This is expected to apply when the diffusing molecules are considerably smaller than the solvent molecules, when the diffusing molecules can move more freely in the free spaces between the solvent

molecules. Thus Equation (2.2) reduces to:

$$F = 4 \pi r_A v_t n_B$$
 (2.4) ...

In 1845 when Stokes postulated his theory of viscous flow; Pouiseulle published his classical work on the flow of liquids through tubes. He was a doctor of medicine interested in the flow of blood through capillaries, a fact which has the furtunate consequence that, so as to compare with the anatomical vessels, he used much finer tubes. The diameters ranging from 0.14 to 0.03 mm. He worked with distilled water and obtained experimentally the well known formula for the volume V discharged in unit time

$$V = C \Delta p \frac{r^4}{1} \tag{2.5}$$

where C is a constant, Δp is the pressure difference at the two ends of the tube, r is the radius and 1 is the length of the capillary.

2.4 Variation of Viscosity with Temperature

The most striking feature of liquid viscosity is the very marked way in which it decreases with the rise of temperature, whereas the viscosity of gases increases with temperature. A generality seems to be that, roughly speaking, the more complicated the liquid the greater the

TABLE 2.1: Fractional Decrease in Kinematic Viscosity for a Temperature Rise From 20°C to 40°C.

Compounds	Molecular Weight	Fractional Decrease in Kinematic Viscosity
Toluene	92.14	0.813
n-Octane	114.23	0.813
Ethylbenzene	106.17	0.811
n-Decane	142.286	0.7695
n-Dodecane .	170.34	0.733
n-Tetradecane	198.40	0.692
n-Hexadecane	226.45	0.657

influence of temperature. Thus with certain glasses, in the temperature range where they behave as normal, but very viscous liquids, a rise of 100 °C diminishes the viscosity to 1000th or even much less; with a strong sucrose solution the viscosity falls to 1/70 when the temperature rises from 0° to 100° C; with a certain amyl alcohol to 1/18; with one of the octanes 1/3; with bromine to 5/7, for the same temperature interval. The liquid metals and monomolecular liquids in general show a comparatively small variation of viscosity with temperature: with liquid Gallium a change of temperature of over 1000°C, from 80° to 1100 °C reduces the viscosity to 1/3 [Andrade, 1954].

In this work also it is found that this decrease in viscosity is more pronounced with heavy and complex components. Fractional decrease of kinematic viscosity associated with temperature change from 20° to 40° \$\mathcal{L}\$ are listed in Table 2.1.

2.4.1 Theories to account for temperature effect

To represent the variation of viscosity with temperature a variety of formulae are encountered. One class of formulae regards the change with temperature as entirely due to the change of volume. Typical of this class is Bachinski's formula [1913]:

 $r = c/(v - w) \qquad (2.6)$

Here λ is the specific volume where C and w are constants. and wa limiting volume at which becomes infinite. expression v - w is called the free volume: values for it can be derived from other formulae, but the results of The essential methods do not agree well. different objection to formulae of this type is that, as is clear from Bridgman's work [Bridgman, 1949]-on the viscosities of liquid at high pressure, the viscosity is not a function of Nevertheless volume-dependent formulae are volume alone. still occasionally advocated Eisenschitz [1951]. and Rodgers [1897] used Slotte's formula [Hatschek, 1928])

 $\eta = C/(1 + bT)^n$ (2.7)

where T is the temperature in °C and there are three constants, but did not find it very satisfactory and obtained another three constant formula [Andrade, 1954]. Duff [1897] quoted seven formulae which had been proposed and suggested an eighth formula with four constants. After him Brillouin [Andrade, 1954] produced a formula with five constants, somewhat too many if a simple relationship is sought.

2.4.1.1 Andrade's formula

Andrade [1930] suggested the following equation to $\frac{\ell}{2}$ account for viscosity dependence on temperature:

$$r = Be^{b/T} \tag{2.8}$$

where B and b are constants. The above equation was later modified by the same author [1934] to the following form:

$$\nabla v^{\frac{1}{2}} = C e^{C/VT} \qquad (2.9)$$

where v is the specific volume, C and c are constants. Equation (2.9) accounts for the change in volume which accompanies change in temperature.

Andrade [1934] made a systematic comparison of Equation (2.9) with the experimental results of Thorpe and Rodger [1897] and others. Where the range of measurement, expressed as the ratio of the highest measured absolute viscosity to the lowest was 2 or less the agreement was in general within 0.3 percent; for ranges up to 3, within 1, percent; and even in more extended ranges the deviation seldom exceeded 2 percent. In the case of the normal propyl alcohol from -60° to 96°C where the viscosity changes from 0.319 to 0.0047 poise, a ratio of 67, the largest error was 2.2 percent. In general, it is to be remembered that viscosity is not a property that has been measured to a high degree of accuracy, for the liquids in question the

- -

measurements have practically all been made with some form of capillary viscometers, where the fourth power of the radius is involved, and a somewhat uncertain end-correction depending upon the volume passing through per second, is also necessary. It is not only in absolute measurements that these factors are concerned, for both the radius and the end correction change with temperature, especially the latter. Viscosities given to five significant figures are expression of genial optimism.

The general fit of the two constant formula, Equation (2.8), can then be claimed to be good for a variety of liquids including metals, alkyl and alkenyl halides, thioethyl, primary and secondary alcohols, esters, aromatic hydrocarbons and fatty acids. Exceptional liquids are - of course - water and tertiary alcohols which are anomolous in other respects. It looks as if water behaves normally above 70 °C [Andrade, 1930].

Equation (2.8) is widely used to represent the variation of viscosity, since it is very simple to apply.

Equation (2.9) gives, in general, a slightly better fit when the range of viscosity is large, but the best evidence for its validity is offered by the viscosity of the series of liquid alkali metals.

2.4.1.2 Hildebrand's theory

- Hildebrand [1971] criticized the most commonly used assumption of quasi-lattice structure in case of liquids since it ignores clear evidence to the contrary. also criticized the suggestion that there is an exponential dependence of viscosity on temperature. Moreover, objected to the suggestion of the existence of an energy of activation, a notion that disregards the basic distinction between liquid and plastic flow. He valued Bachinski's [1913] volume dependent expression for viscosity, Equation (2.6), where the constant w is similar to the Van der Waal's b. Hildebrand modified Bachinski's formula since he failed to evaluate C as a function of molecular parameters. Hildebrand started with fluidity (1/n) depending on ratio of free volume, V-Vo to intrinsic volume, Vo, molar volume at which fluidity is zero. He plotted against molar volume V and obtained straight lines for simple liquids which yields values of Vo at intercept, where 1/n = 0; the slope of the line gives the value of C. He modified Equation (2.6) so as to recognize the fact that fluidity must depend upon relative expansion. (V - Vo)/Vo:

$$1/\eta = B \frac{V - V_0}{V_0}$$
 (2.10)

It is striking that the values of B for such different liquids as propane and n-heptane are the same within the precision of the data. He further reports that the values of Vo for the normal paraffins are accurately linear with molecular weight, a fact that can serve in interpolating missing values.

2.5 Kinetic Theory of Liquid State

The strict mathematical theory of liquid state aims at deducing the properties of liquids from a molecular mechanism, in particular from the potential \$ (r) from interaction between molecules and the transport phenomena, viscosity distribution. Ιn essentially considered as the distortion of the equilibrium distribution, and the distortion is produced by the velocity The problem has been handled in particular by Kirkwood [1946], Eisenschitz [1951] and by Born and Green [Born and Green, 1949]. Kirkwood starting from fundamental simplified matters by the useful considerations, ingenious assumption that the forces on a molecule at different instants are statistically independent, provided that the time interval between the instant is not too small, but he did not establish any relation between viscosity and Eisenschitz [1951] modified the theory of temperature.

Brownian motion so as to make it apply to a single molecule and is met, of course, with the difficulty as to what is the friction constant (or rather what are the friction constants, for he points out there are two), a matter with which Kirkwood has also dealt [Kirkwood, 1946].

Born and Green [1949] have developed an imposing theory based on distribution functions, which is not always easy to follow, especially in the matter of assumptions made in dealing with viscosity.

Eisenschitz and Born and Green [Eisenschitz, 1951] arrived at an exponential function for the variation of viscosity with temperature. None of these, however, approaching the matter from fundamental considerations of the type indicated has been able to produce results that can be checked quantitatively by experiment. In fact, Born and Green [Born and Green, 1949] say specifically "No attempt will be made to obtain exact numerical values for the physical constant, viscosity, as this will require extended and tedious calculations."

2.5.1 Ryring's absolute reaction rate theory

Eyring [1936] and Moore et al. [1953] adopted a more specialized theoretical viewpoint in developing a formula for viscosity. They considered viscous flow as a

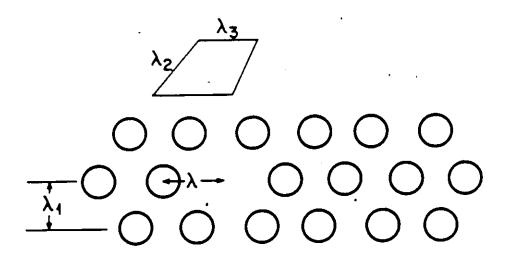


Fig. 2.1 Distance Between the Molecules in a Liquid

_

,,

type of chemical reaction, such as that which takes place in a gaseous reaction or in a dilute solution.

The assumption of holes in the liquid plays an essential part in his work. Eyring's picture of shear between two layers of liquid involves the successive passage of individual molecules from one equilibrium position to another as indicated in Figure 2.1. Such a passage requires either a hole or site becomes available. production of such a site requires the expenditure of energy to push back other molecules. The movement of the molecule may be regarded as the passage of the system over a potential energy barrier, related to A*G. In order to form hole the size of a molecule in a liquid requires almost the same increase in free energy as to vaporize a molecule, the concentration of vapour above the liquid is a measure of such 'molecular' holes in the liquid. This provides for the law of rectilinear diameters explanation Cailletet and Mathias [Byring, 1936].

The perpendicular distance between two neighboring layers of molecules sliding past each other is taken as λ_1 . The motion is assumed to take place by an individual molecule in-a plane (or layer) occasionally acquiring the activation energy necessary to slip over the potential barrier (arising from squeezing against its neighbors) to

the next equilibrium position in this same plane. The average distance between these equilibrium positions in the direction of motion is taken as λ whereas the distance between neighboring molecules in this same direction is λ_2 which may or may not equal λ . The normal to the direction of motion is assumed to be λ_3 . By definition then viscosity can be expressed as follows:

where f is the force per unit area tending to displace one layer with respect to the other and Δv is the difference in velocity of these two layers which are at a distance λ_1 apart. The number of times that a molecule moves in the forward direction in a second may be written as the corresponding specific reaction rate

$$\kappa_{f} = H \frac{F_{a}^{\star}}{F_{n}} \frac{kT}{h} \left[1 + 24 \left(\frac{h^{v}i}{kT}\right)^{2}\right] \exp\left(-\frac{L^{\star}G - \frac{1}{2}f\lambda_{2}\lambda_{3}\lambda}{kT}\right)$$

$$= \kappa_{1} \exp\left(\frac{f\lambda_{2}\lambda_{3}\lambda}{2kT}\right)$$
(2.12)

where F_A^* is the partition function for the activated complex per unit of length calculated by using a zero of energy higher by $\Delta *G$ than for F_n , the partition function for the normal state and H, the transmission coefficient, is

the chance that a system having once crossed the potential barrier will react and not recross in the reverse direction. The rate constant k, is the absolute rate for transition when no force is applied. Similarly for the backward direction:

$$\kappa_{\rm b} = \kappa_{\rm l} \exp \left(\frac{-f \lambda_2 \lambda_3 \lambda}{2kT} \right)$$
 (2.13)

Consequently, \triangle v for each molecule in the fast layer and therefore the layer as a whole is simply

$$\Delta v = \lambda \kappa_1 \left[\exp \left[\frac{f \lambda_2 \lambda_3 \lambda}{2kT} \right] - \exp \left[\frac{f \lambda_2 \lambda_3 \lambda}{2kT} \right] \right]$$
 (2.14)

or

$$\Delta v = \lambda \kappa_1 2 \sinh (f \lambda_2 \lambda_3 \lambda / 2kT)$$
 (2.15)

so that,

$$\eta = \lambda_1 f / [\lambda \kappa_1^2 \sinh (f \lambda_2^2 \lambda_3^2 \lambda / 2kT)]$$
 (2.16)

For ordinary viscous flow, $f\lambda_2\lambda_3\lambda/2<< kT$ so that expanding the exponentials and keeping terms only up to the first power yields:

$$\eta = \lambda_1 kT/(\lambda^2 \lambda 2\lambda 3\kappa_1) \qquad (2.17)$$

i

when the explicit expression for this frequency κ_1 , is substituted into Equation (2.17); then,

$$\gamma = (\lambda_1 h F_n / \lambda^2 \lambda_2 \lambda_3 F_a^* H) \exp(\Delta^* G/kT)$$
 (2.18)

The partition function F_n contains one more degree of freedom than F_a^\star . The simplest assumption then is that all but this one degree of freedom cancels out in the ratio of partition functions and that

$$\frac{F_n}{F_a^*} = \left[1 - \exp(-hv_i/kT)\right]^{-1}$$
 (2.19)

where v_i is a vibration that can be estimated from the specific heat of liquid. In some cases v_i may be fairly large in which case $F_n/F_a^* \sim 1$. Taking the transmission coefficient, H, equal to 1, (which is in general a good approximateion), Equation (2.18) reduces to:

$$\eta = (\lambda_1 h / \lambda^2 \lambda_2 \lambda_3) \exp(\Delta^* G / kT)$$
 (2.20)

For non-associated liquids instead of treating the partition function as a vibration, the liquid molecule may be treated as though it were moving in a box of length d and ${\rm d}^3$ as the free space per molecule. So that

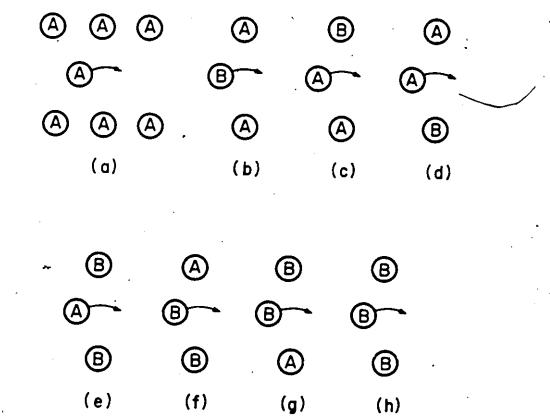


Fig. 2.2 Types of Viscosity Interactions in a Binary Mixture, Three-body Model

$$\frac{F_n}{F_a^*} = (2 - mkT)^{\frac{1}{2}} d/h$$
 (2.21)

$$\frac{1}{2} \frac{1}{\lambda^2 \lambda_2 \lambda_3^2} (2 + mkT)^{\frac{1}{2}} \exp((\Delta^* G/kT))$$
 (2.22)

Eyring [1936] pointed out that reasonable values for d gave agreement with experiment.

If the distance λ between minima for the moving molecule is taken equal to λ_1 , one obtain from Equation (2.20)

$$n = \frac{Nh}{V} \exp \left(\Delta^* G / kT \right)$$
 (2.23)

where N is Avogadro's number and V is the molar volume.

2.6 Predictive Equations for Viscosities of Liquid Mixtures 2.6.1 McAllister's model

McAllister [1960] proposed a model which is based on Eyring's theory of absolute reaction rates. In a study of the viscosity of a mixture of molecules of type A and B a number of different encounters must be considered, some of which are shown in Figure 2.2. The types of interaction considered in this case are only three bodied and are in effect all in one plane. If the two types of molecules are different in size (radius) by more than a factor of 1.5, it

will probably become necessary to take into account other interactions involving more than three molecules, especially on a three dimensional basis (instead of simply in one plane). The ratios of 1.5 to 1 in size is chosen arbitrarily. The three-body model shown in Figure 2.2 seems to describe the situation well for the methanol-toluene system; the ratio of molar volumes for this sytem is about 2.6 resulting in a ratio of the radii of approximately 1.39.

would correspond to a free energy of activation $^{\star}G_A$, that is for pure component A. The interaction shown in Figure 2.2.h, would be characteristic of $^{\star}G_B$, or pure component B. Interactions of types b, c and d all correspond to two molecules of type A and one of type B. One would expect the activation energy for types c and d to be identical. They will be referred to as $^{\star}G_{AAB}$. The free energy of activation for interaction b will be referred to as $^{\star}G_{ABA}$. Similarly energies of activation for types f and g would be equal and designated by $^{\star}G_{ABB}$, whereas type e may be designated by $^{\star}G_{BAB}$.

In any binary mixture of mole fraction, x_A the fraction of the times interactions of type a would be x_A^3 , as long as the number of melecules of types A and B is statistically large. Corresponding occurrences of the

various types of interactions are listed below.

The assumption made here, of course, is that the probability of the interactions is dependent only on the concentration and not on the free energy of activation. This might well be a point to question. Perhaps the rate of each individual interaction is proportional to the energy of activation in much the same manner as the reaction rate of a chemical reaction. It may be assumed that for the mixture there is a free energy of activation $^{\perp}$ G and further that:

$$\Delta^* G = x_A^3 \Delta^* G_A + x_A^2 x_B^2 \Delta^* G_{ABA} + 2x_A^2 x_B^2 \Delta^* G_{AAB} + x_A^2 x_B^2 \Delta^* G_{BAB}$$

$$+ 2 x_A^2 x_B^2 \Delta^* G_{ABB} + x_B^3 \Delta^* G_B$$
(2.24)

Two additional assumptions are made at this point:

$$\Delta G_{ABA} = \Delta G_{AAB} \times \Delta G_{AB}$$

$$\Delta *G_{BAB} = \Delta G_{ABB} = \Delta G_{BA}$$
 (2.26)

Incorporating Equation (2.25) and (2.26) into (2.24) results

in the following expression:

$$\dot{z}^*G = x_A^3 \dot{z}^*G_A + 3x_B^2 \dot{z}^*G_{AB} + 3x_A^2 \dot{x}_B^2 \dot{z}^*G_{BA} + x_B^3 \dot{z}^*G_B$$
 (2.27)

It was necessity to make assumptions (2.25) and (2.26) because with the cubic Equation (2.24) it is not possible to determine four arbitrary constants. Even though \triangle^*G_{ABA} and \triangle^*G_{AAB} are expected to be physically different, it is not possible to differentiate between them, with viscosity composition data alone. Equation (2.24) may be written as follows:

$$\Delta^*G = x_A^3 \Delta^*G_A + x_A^2 x_B (\Delta^*G_{ABA} + 2 \Delta^*G_{AAB}) + x_A x_B^3 (\Delta^*G_{BAB} + 2 \Delta^*G_{ABB}) + x_B^3 \Delta^*G_B$$
(2.28)

in which case

$$\Delta^{*}G_{AB} = (\Delta^{*}G_{ABA} + 2 \Delta^{*}G_{AAB})/3$$
 (2.29)

$$\Delta^* G_{BA} = (\Delta^* G_{BAB} + 2 \Delta^* G_{ABB})/3$$
 (2.30)

For system involving water, the three-body model, does not apply and a four-body three-dimensional interaction has to be employed.

For each type of energy of activation considered here a corresponding kinematic viscosity may be assigned.

For the mixture

$$v_{m} = \frac{hN}{M_{avg}} \exp \left(\frac{1}{2} G/RT \right)$$
 (2.31)

for pure component A

$$v_{A} = \frac{hN}{M_{A}} \exp \left(\frac{L^{*}G_{A}/RT}{A} \right) \qquad (2.32)$$

For interactions of the types b, c and d shown in Figure 2.2:

$$v_{AB} = \frac{hN}{M_{AB}} \exp \left(\frac{A}{2} G_{AB} / RT \right) \qquad (2.33)$$

For interactions of the types e, f, and g shown in Figure 2.2:

$$v_{BA} = \frac{hN}{M_{BA}} \exp \left(\Delta^* G_{BA} / RT \right) \qquad (2.34)$$

and for pure component B

$$T_{B} = \frac{hN}{M_{B}} \exp \left(2^{*}G_{B}, RT\right)$$
 (2.35)

substituting Equations (2.31) to (2.35) into Equation (2.27) and rearranging yields:

$$\ln v_{\text{m}} = x_{\text{A}}^{3} \ln v_{\text{A}} + 3 x_{\text{A}}^{2} x_{\text{B}} \ln v_{\text{AB}} + 3 x_{\text{B}}^{2} x_{\text{A}} \ln v_{\text{BA}} + 4 x_{\text{B}}^{2} x_{\text{A}} \ln v_{\text{BA}} + 4 x_{\text{B}}^{3} \ln v_{\text{B}} + 4 x_{\text{B}}^{3} \ln v_{\text{B}} + 4 x_{\text{B}}^{3} \ln v_{\text{B}} + 4 x_{\text{A}}^{3} \ln v_{\text{B}} + 4 x_{\text{B}}^{3} \ln v_{\text{B}} + 4 x_{\text{B}}^{3}$$

When one recalls that

$$x_A^3 + 3 x_A^2 x_B + 3 x_A x_B^2 + x_B^3 = (x_A + x_B)^3 = 1$$

Equation (2.36) may be written as follows:

$$\ln v_{m} = \theta(x) - \ln M_{avg} + x_{A}^{3} \ln M_{A} + 3 x_{A}^{2} x_{B} \ln M_{AB}$$

$$+ 3 x_{A}^{2} x_{B}^{2} \ln M_{BA} + x_{B}^{3} \ln M_{B}$$
(2.37)

The various expressions for molecular weights can be written as follows:

$$M_{avg} = X_A M_A + X_B M_B$$
 $M_{AB} = (2 M_A + M_B)/3$, and
 $M_{BA} = (M_A + 2 M_B)/3$

Substituting these quantities into Equation (2.37) and condensing the equation results in:

$$\frac{1 \text{ n } v_{\text{m}} = x_{\text{A}}^{3} \text{ ln } v_{\text{A}} + 3 x_{\text{A}}^{2} x_{\text{B}} \text{ ln } v_{\text{AB}} + 3 x_{\text{A}} x_{\text{B}}^{2} \text{ ln } v_{\text{BA}}}{4 + x_{\text{B}}^{3} \text{ ln } v_{\text{B}} - \text{ln } [x_{\text{A}} + x_{\text{B}} M_{\text{B}}/M_{\text{A}}] + 3 x_{\text{A}}^{2} x_{\text{B}} \text{ ln } [(2 + M_{\text{B}}/M_{\text{A}})/3]}{4 + 3 x_{\text{A}}^{2} x_{\text{B}}^{2} \text{ ln } [(1 + 2 M_{\text{B}}/M_{\text{A}})/3] + x_{\text{B}}^{3} \text{ ln } (M_{\text{B}}/M_{\text{A}})}$$
(2.38)

It is noted that the entire equation involves only two undetermined constants. ν_{AB} and ν_{BA} . Other features of the equation include the possibility of having a maximum, a minimum, neither or both for ν_m as a function of x_A .

If $M_B/M_A=1$, the last four terms of the equation vanish.

2.6.2 Heric's empirical equation

4

Several empirical or semi-empirical relations have been used to describe the dependence of viscosity on concentration in binary liquid mixtures [Reid et al. 1977].

One of the most frequently used enations is that proposed by ...
Arrhenius:

$$\ln n_{\rm m} = x_{\rm A} \ln n_{\rm A} + x_{\rm B} \ln n_{\rm B}$$
 (2.39)

where the parameters have their usual meaning. This represents well the data for nearly ideal binary mixtures but does not represent data for non-ideal solutions. The next order of approximation would appear to be a regular solution model. For this purpose Eyring's model for the viscosity of a pure liquid considering interaction between molecules is

$$\eta = \left(\frac{\lambda}{\alpha}\right)^2 \frac{hN}{V} \exp \left(f/RT\right) \qquad (2.40)$$

where f is molar free energy of activation of flow which can be rewritten as:

$$\frac{f}{RT} = \ln \frac{\eta V}{hN} \left(\frac{\alpha}{\lambda}\right)^2 \qquad (2.41)$$

for the mixture it is assumed that:

$$\frac{f_{m}}{RT} = x_{A} \frac{f_{A}}{RT} + x_{B} \frac{f_{B}}{RT} , \quad and \qquad (2.42)$$

$$\ln \left(\frac{\alpha_{m}}{\lambda_{m}}\right) = x_{A} \ln \frac{\alpha_{m}}{\lambda_{A}} + x_{B} \ln \frac{\alpha_{m}}{\lambda_{B}}$$
 (2.43)

so that:

$$\ln n_{\rm m} V_{\rm m} = x_{\rm A} \ln n_{\rm A} V_{\rm A} + x_{\rm B} \ln n_{\rm B} V_{\rm B}$$
 (2.44)

However, Katti and Chaudhri [1964] proposed that for regular solutions $f_{\rm m}$ would not be a linear function of $f_{\rm A}$ and $f_{\rm B}$. Instead, there will be an additional term W given by the relation.

$$\frac{f_{m}}{RT} = x_{A} \ln \frac{f_{A}}{RT} + x_{B} \ln \frac{f_{B}}{RT} + x_{A} x_{B} \frac{W}{RT}$$
 (2.45)

W is defined as the interaction energy for the activation of flow. Equation (2.44) then takes the form

$$\ln v_{m} = x_{A} \ln v_{A} + x_{B} \ln v_{B} + x_{A} \ln M_{A}$$

$$+ x_{B} \ln M_{B} - \ln (x_{A} M_{A} + x_{B} M_{B}) + x_{A} x_{B} \alpha_{12}$$
(2.46)

where α_{12} is a constant.

Heric and Brewer [1967] worked out their empirical formula along the above lines. They started from the following equation:

$$q = f_A q_A + f_B q_B + f_A f_B [A + B (f_A - f_B) + C (f_A - f_B)^2 + D (f_A - f_B)^3 + \dots]$$
(2.47)

where f is a concentration variable (weight, volume or mole fraction) and q and q, q are, respectively, the physical A B property of mixture and pure components A and B. A power series expansion in mole fraction of the form in Equation (2.47) results in an equation extending Equation (2.46), replacing α_{12} by a power series so that

$$\ln v_{m} = x_{A} \ln v_{A} + x_{B} \ln v_{B} + x_{A} \ln M_{A} + x_{B} \ln M_{B},$$

$$- \ln (x_{A} M_{A} + x_{B} M_{B}) + x_{A} x_{B} [A + B (x_{A} - x_{B}) + \dots] (2.48)$$

That order should be selected for a system beyond which additional terms did not significantly improve fitting of data. Thus the order of the fitting varies among systems.

2.6.3 Auslander's equation

Auslander [1964] approached the problem of predicting the viscosities of liquid mixtures by relatively elementary methods which are based on differential equations with partial derivatives involving intensive properties.

ŗ

Generally, the change of an intensive property, L, at constant property L' is

$$\sum_{i=1}^{n} (dL/dn_i)^{L'} = 0$$
 (2.49)

where n is moles of the i component, subscript j refers to constant quantity of all molecules except i. The integral of Equation (2.49) considering Taylor series is given by:

$$\sum_{i} n_{i} K_{i}[f(L) - f(L_{i})] = 0 , or (2.50)$$

$$f(L) = \frac{\sum_{i} n_{i} K_{i} f(L_{i})}{\sum_{i} n_{i} K_{i}}$$
 (2.51)

where, $K_i = dE^{f(L_i)}/df(L_i) = constant.$

E is the energy of component i. Now for mixtures with interaction between molecules a method of successive approximation is proposed. For a binary mixture in the first approximation one distinguishes between molecules A (noted AA) to which the closest molecule is another molecule A, and molecules A (noted AB) to which the nearest molecule is another molecule B. The same distinction is made of

molecules BB and BA. For molecules randomly distributed, if their numbers are n_A , n_B and the mole fractions are x_A , x_B ,, elementary statistical considerations show that the number of molecules AA, AB, BB and BA is $n_A x_A$, $n_A x_B$, $n_B x_B$, and $n_B x_A$, respectively. So that according to Equation (2.51):

$$f(L) = [K_{AA}^{n}_{A} \times_{A} f(L_{AA}) + K_{AB}^{n}_{A} \times_{B} f(L_{AB}) + K_{BB}^{n}_{B} \times_{B} f(L_{BB})$$

$$+ K_{BA}^{n}_{B} \times_{A} f(L_{BA})] / \{K_{AA}^{n}_{A} \times_{A} + K_{AB}^{n}_{A} \times_{B} + K_{BA}^{n}_{B} \times_{B} + K_{BA}^{n}_{B} \times_{A}\}$$

$$(2.52)$$

where L , L , L $_{AB}$, L $_{BB}$, L $_{BA}$ are the properties of pure components AA, AB, BB, BA and K $_{AA}$, K $_{AB}$, K $_{BB}$, K $_{BA}$ are constants.

Substituting K = a, K = a and BB = BB

$$K_{AB} = (a_{AB} [f(L_A) - f(L_{BA})] + a_{BA} [f(L_B) - f(L_{BA})]) / [f(L_{AB}) - f(L_{BA})]$$

$$K_{BA} = (a_{AB} [f(L_A) - f(L_{AB})] + a_{BA} [f(L_B) - f(L_{AB})]) / [f(L_{BA}) - f(L_{AB})]$$

into Equation (2.52), Auslander obtained the following expression:

$$f(L) = [x_{A} (a_{AA} x_{A} + a_{AB} x_{B}) f(L_{A}) + x_{B} (a_{BA} x_{A} + a_{AB} x_{B}) f(L_{B})] / [x_{A} (a_{AA} x_{A} + a_{AB} x_{B} [a_{BA} x_{A} + a_{AB} x_{B}])]$$

$$(2.53)$$

The form of the function f(L) depends on the property considered, but the assumption may be made, justified by its success, that f(L) = L; so that Equation (2.53) assumes the form:

$$x_A (a_{AA} x_A + a_{AB} x_B) (L - L_A) + x_B (a_{BA} x_A + a_{BB} x_B)$$

$$(L - L_B) = 0 \qquad (2.54)$$

or the following alternative form:

$$x_A (x_A + B_{12} x_B) (L - L_A) + A_{21} x_B (B_{21} x_A + x_B)$$

$$(L - L_R) = 0$$
(2.55)

For kinematic viscosity Equation (2.55) becomes

$$x_A (x_A + B_{12} x_B) (v - v_A) + A_{21} x_B (B_{21} x_A + x_B) (v - v_B) = 0$$
 (2.56)

The approximation may be continued and for a multi-component mixture and in the kth approximation one obtains:

$$f(L) = \frac{\sum n_i x_j x_k \dots f(L_{ijk} \dots) K_{ijk} \dots}{\sum n_i x_j x_k \dots k_{ijk} \dots}$$
(2.57)

Auslander [1964] pointed out that Equation (2.56) considers only the first approximation which is generally satisfactory for most of the regular mixtures with a few exceptions.

2.7 Excess Activation Energy of Viscous Flow

The liquid state is considered to be composed of molecules in box or cage. The molecular motion is considered to take place within the cage. This molecular motion may be translational (at low temperature) or rotational (at higher temperature) depending on the free volume in the 'cage'. For a molecule on the boundary of the cage to move to a new site or hole it has to attain an energy to cross the potential-energy barrier which is related to activation energy of viscous flow.

A common approach among researchers is to correlate the thermodynamic behavior with the viscosity behavior of solutions. Reed and Taylor [1959] pointed out that the free energy of mixing (agtivity coefficients) alone is insufficient thermodynamic information in attempting to correlate the thermodynamic behavior with the viscosity

0

behavior of solutions. The excess volume of mixing and the entropy of mixing are also related to separate viscosity effects.

They obtained an expression for excess activation energy of viscous flow that incorporates both the viscosity and molal volume of the mixture and the pure components. They started from Eyring's absolute reaction rate theory of viscosity:

$$\eta = \left(\frac{\lambda}{a}\right)^2 \frac{hN}{V} \exp\left(\Delta^* G/RT\right) \tag{2.58}$$

For ideal solutions in the thermodynamic sense it has been suggested that the viscosity be given by

$$\ln \eta_{\rm m} = x_{\rm A} \ln \eta_{\rm A} + x_{\rm B} \ln \eta_{\rm B}$$
 (2.59)

since the volume of a solution varies with composition, a more reasonable relationship for ideal solution might better be:

$$\ln \eta_{m} V_{m} = x_{A} \ln \eta_{A} V_{A} + x_{B} \ln \eta_{B} V_{B}$$
 (2.60)

and

$$\Delta^{\star} G^{i} = x_{A} \Delta^{\star} G_{A} + x_{B} \Delta^{\star} G_{B} \qquad (2.61)$$

For non-ideal solutions the free energy of activation differs from $\dot{z}^*G^{\dot{1}}$ by a term $\dot{z}^*G^{\dot{2}}$ which is a function of concentration

$$z^*G^E = z^*G_m - z^*G^i$$
 (2.62)

Therefore

$$\int_{-2}^{+} z^{*} g^{E} = z^{*} G_{m} - x_{A} z^{*} G_{A} - x_{B} z^{*} G_{B}$$
 (2.63)

Introducing (2.58) in (2.63) one obtains

$$\frac{2^* G^E}{RT} = \ln \left(\frac{\eta_m V_m}{hN} \right) - 2 \ln (\lambda/a)_m - \left[x_A \left(\ln \frac{\eta_A V_A}{hN} \right) - 2 \ln (\lambda/a)_A \right] + x_B \left[\ln \frac{\eta_B V_B}{hN} - 2 \ln (\lambda/a)_B \right]$$
 (2.64)

and if it is assumed that for a mixture [Partington, 1951]:

$$\ln (\lambda/a)_{m} = x_{A} \ln (\lambda/a)_{A} + x_{B} \ln (\lambda/a)_{B}$$
 (2.65)

then Equation (2.64) simplifies to

$$\frac{\Delta^* G^E}{RT} = \ln \eta_m V_m - x_A \ln \eta_A V_A - x_B \ln \eta_B V_B$$
 (2.66)

and if Δ G E > 0, the viscosity is greater than that of an ideal mixture, [Heric and Brewer, 1967].

CHAPTER 3

EXPERIMENTAL EQUIPMENT AND PROCEDURES

1

3.1 Density and Viscosity Measurements

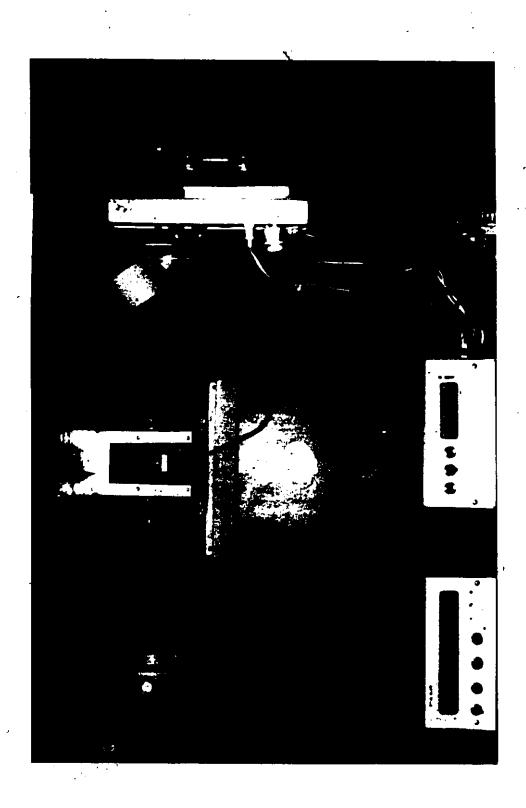
٠, 4

This section deals in detail with the experimental techniques and equipment used in the course of this work to measure density and viscosity.

3.1.1 Preparation of solutions

The solutions were prepared by weighing the individual components. For this purpose a Mettler HK electronic balance was used which has a readability of and a reproducibility of \pm 0.1 mg. The weighing range of the balance is 0 to 160 g. The balance has the special feature of taring which means that the display of balance is reset to zero after a container has been placed on the pan. Thus the weight of the container is no longer taken into account when the weighing object is weighed the balance only indicates the weight of the object. special feature was utilized while measuring the weight each individual component. Another important feature this electronic balance supplied by Mettler Instruments AG. Switzerland is that it offers the possibility of connecting the balance to a simple data receiver (e.g., printer) to a CL system, a calculator or a computer. Thus the balance

becomes a very versatile system module. The balance takes power from an adjustable voltage line of 110/130/220/240 V permitting a voltage fluctuation of \pm 10... - 15%, at a frequency of 50 / 60 Hz.


In order to eliminate evaporation losses, 0.03 liter glass vials supplied by Chromatographic Specialities Ltd. were used with teflon covering discs and aluminum seals also supplied by the same company. The pure components were injected to the vials during sample preparation using 0.01 liter hypodermic syringes fitted with a thin (size G23, 24) needle.

3.1.2 Density measurements using the density meter

A. Principle of operation and construction of the density meter:

The DMA 60 density meter in combination with DMA 602 remote measuring cells, provides a system for liquid or gas density measurement to the highest accuracy. Separating the remote cell and the electronic read-out unit permits a better thermostating of the sample cell. It also facilitates greater flexibility of the system configuration. The sample tube is electomagnetically excited to vibrate at its natural frequency. The electronic instrument (DMA 60 unit) utilizes the principle of variation of the natural frequency of vibration of the vibrating U-shaped sample tube

Figure 3.1 : Pictorial View of the Precision Density Meter

when filled with different liquids. The period of vibration of the U-shaped sample tube is displayed in an eighth decimal place period meter with selectable resolution. The oscillator is a hollow bent tube (U-shaped) made of glass. The frequency of the oscillator is influenced only by that part of the liquid which is between two fixed points on the oscillator. Overfilling of the oscillator is therefore, of no consequence. Since the volume taking part in the oscillations is exactly defined, the dependence of the oscillation frequency can be directly related to the density of the liquid.

The U-shaped sample tube in this model is made of glass (Duran 50) of which the temperature co-efficient of expansion is very small. This tube is fused into a double-walled, thermostated glass cylinder. To ensure quick temperature equilibration the cavity surrounding the sample tube is filled with a gas of high thermal conductivity.

Since the temperature in the remote measuring cell (DMA 602) is not affected by the heat generated in the electronic processing unit (DMA 60) maximum precision measurements are possible. The remote cells generate frequency analog square wave signals in synchronization with the zero amplitude positions of the oscillating sample tube. These signals are transmitted into the DMA 60 processing

45

unit through an optical isolator for the purpose of electrical separation (between remote cell and DMA 60) and then through a noise filter. The processing unit can work, only if the frequency of vibration of the sample tube is within 100 and 850 Hz.

The built-in time base gives clock pulses every 10 The period meter measures the time for the number seconds. of preselected oscillator periods by counting the number of clock pulses for the number of oscillations selected by the "period select switch". For example, if the period of the oscillator is 3.4×10^{-3} sec (DMA 602 filled with water) which corresponds to a frequency of 294 Hz (well within the range 100 - 850 Hz) and if the selector switch, "Period Select", is set at 2 k (i.e., 2000), the digital read out will show after a measurement time of 6.8 sec the value 680000; which is the number of clock pulses taken for 2000 oscillation of the sample 680,000]. By means of the selector switch, higher precision read out can be obtained. By pressing the button marked "start" a new measurement cycle can be started (e.g., after filling of the sample tube). In case of operating the instrument under optimum time considerations, particularly when high values of periods is selected the two digits marked "K" gives percentage values for elapse time in

present counting cycle. The DMA 60 unit also has provisions for digital data output thus, it may be connected to a printer or a computer. The switch marked "Printer" allows printing of either every value, every second, every eighth or every sixteenth value. positions I to 9 of the switch "Mode of Operation" are use in phase locked loop (PLL). In this mode, remote cell 2 will be used as the time base, measurements are made remote cell I and variations in the temperature or in pressure will be automatically compensated. The window on front panel in DMA'602 may be used to look measuring cell during the filling operation to ensure that air bubbles or solids are present in the system and the liquid covers the two marks. The syringe is fitted with a plastic cap during the filling operation to ensure that there is no contact between syringe and measuring cell. a further precaution a filling adapter with PTFE screws are attached to the measuring cell device.

The range of density that can be measured by this model is 0.5 to 2.0 g/cm³. Assuming a thermostat accuracy of \pm 0.01° C the instrument introduces a maximum error of \pm 1.5 x 10^{-6} g/cm³. The error in density of the sample itself due to its thermal expansion within the 0.02° C range has to be added to the instruments error. This leads to a usable

precision e.g., for water of $+3.5 \times 10^{-6}$ g/cm³. Measuring absolute densities in the range of 0 to 3 g/cm³ the reproducible deviation from true density is not more than 1 \times 10⁻⁴ g/cm³.

The DMA 60 instrument is powered by alternating current allowing a frequency range in between 45 and 65 Hz. Standard operating voltages are 115 and 220 volts, depending on the position of the voltage selector switch. It allows a voltage fluctuation of \pm 10%.

DMA 602 can work with a minimum sample size of 0.7 mL within a temperature range of -10° C to $+70^{\circ}$ (controlled by ultrathermostat) and in a pressure range from vacuum to 10 bar. It takes power from standard 110 and 220 v alternating current permitting a fluctuation of \pm 10%, within a frequency range of 40 - 60 Hz. It can operate under ambient condition of 0 to \pm 45°C.

To maintain the liquid within the sample tube at a desired temperature DMA 602 has to be coupled to a circulating thermostatic bath with the two sockets provided at the back of the model.

The N4 electronic temperature controller is a high precision instrument supplied by Haake, West Germany. It has a precision of \pm 0.01°C with the set-point ranging from 30°C to 300°C. It takes power from a 220 V main at a

frequency of 50 - 60 Hz. Deionized water is used as the circulating fluid for this instrument. Since the lowest set point permitted by the instrument is 30°C, this has to be coupled with another cooler in order to obtain temperature control at 20° and 25°C in the DMA 602 remote cells. The subsidiary cooler also takes power from 110V line.

The density meter is placed in a plywood box with The box is provided with an a plexiglass front door. exhaust fan, a 200 watt household bulb (two bulbs were used for temperatures at 40. and 35 C) and a precise temperature controller (thermonitor). The temperature inside the box was to be kept at the working temperature, i.e. 20, 25, 35 and 40 + 0.1°C. The Sargent-Welch Thermonitor is supplied by Sargent-Welch Scientific Co., U.S.A.; it takes power from an 115 V A.C. line at a frequency of 30 - 60 Hz with 15 amp. current and its power rating is 1100 watt maximum. thermonitor is connected to the electric household The box is cooled by a transmission cooler which connected to a refrigeration machine. As the temperature in the box becomes lower than the set-point the bulb lights to bring the temperature to the required level. was temperature approaches the set-point the power supplied by the thermonitor decreases until it is completely cut-off temperature in the box reaches the set-point. An electric fan is placed inside the box to provide the required circulation. The temperature in the box is monitored by a mercury-in-glass thermometer graduated to 0.1 °C. Controlling the temperature in the box in this way has been proven to give extremely reliable results [Asfour, 1979].

With all these arrangements, after several hours of operation, almost constant readings on the density meter, were obtained with a possible error of \pm 1 in the fifth decimal place.

B. Density meter equations [Asfour, 1979]

In order to obtain an equation for the calculation of density, one may consider the oscillating system in DMA 602 equivalent to a system represented by a hollow body of mass m which is suspended on a spring. Its volume V will be filled with a sample of density ρ .

The natural frequency, f of this system is given by

$$f = \frac{1}{2\pi} [S/(\rho V + m)]^{\frac{1}{2}}$$
 (3.1)

where S is the spring constant. Therefore the period T is

$$T = 2\pi \left[(2V + m)/S \right]^{\frac{1}{2}}$$
 (3.2)

The simplified form of Equation (3.2) is

$$T^2 = Ap + B$$
 (3.3)

or

$$z = \frac{1}{A} (T^2 - B)$$
 (3.4)

where

$$A = 4\pi^2 \text{ V/S}, \text{ and } B = 4\pi^2 \text{ m/S}$$
 (3.5)

The parameters A and B are the density meter constants which have to be obtained from a minimum of two calibration measurements on samples of known densities. Since both A and B are temperature dependent it is therefore necessary that the temperature be very well controlled. During this work seven liquids were used for the calibration of the machine constants which adequately covers the range of all the systems of binary mixtures used in this study.

For greater density differences, a deviation from the proportionality between the square of the period and the

 \cap

density results. The following model equation has been suggested by the supplier of the density meter

$$\rho = \frac{AT^2}{1 - BT^2} - C$$
 (3.6)

The values of A, B and C are to be determined from known density values.

C. Procedure

'Before injecting the sample into the remote cell it has to be cleaned, with ethanol. A sample is injected into the cell by means of a 0.002 liter teflon-tipped hypodermic syringe. This operation has to be done slowly and carefully in order not to entrap any air bubbles and also, to prvent the syringe from any effect of lateral force which may destroy the measuring cell. At least 15 to 20 to be allowed for temperature minutes period has equilibration of the remote cell. The "start" button pressed for a second or two. The period meter will display reading according to the preselected resolution. Readings are taken until a stable reading is reached. Following that at least ten readings are taken and the average is used in Equation (3.6) in order to calculate the required density.

3.1.3 Viscosity measurement

The capillary tube method is still considered to be the most widely used technique for measuring liquid viscosities. This method was used throughout this work for viscosity measurement. Cannon-Ubbelohde viscometers designed by Ubbelohde in 1935 and improved recently by Cannon et al. [1960] were employed in this work. These viscometers have the following advantages:

- (i) no significant variation of viscometer constants with temperature,
- (ii) exact control of filling volume is not required, and
- (iii) they are capable of high precision (approximately 0.2%) in routine use.

The range of viscosity of the hydrocarbon liquids used in this work varied from 0.55 to 4.5 cSt; as such two viscometers of size 25A (range 0.5 - 2.cSt), two viscometers of size 50B (range 0.8 - 4 cSt) and one visometer of size 75J) (range 1.6 - 8.cSt) were used. These were supplied by the Cannon Instrument Company. A Model M1-18M constant temperature bath also supplied by the Cannon Instrument Company was used. This case a range of control from approximately 10° above to 100°C. Temperature control is ± 0.01°C below. Using water as bath medium

and ± 0.02°C above 60°C using oil as bath medium. Mercuryin-glass thermoregulator is set by turning magnetic cap
until desired temperature is attained which has to be
checked by another calibrated thermometer. The range was
extended down below 10°C above ambient by means of 9726-C90
cooling coil also supplied by Cannon Instrument Company.
All wetted parts of this instrument are made of stainless
steel or glass.

The control panel has pilot light, on-off switches for preheater, stirrer motor and control circuit, and a switch used to set heater control for operation below or above 130°F. Below 130°F, a relay operates a 200 watt heater to maintain control, above 130°F the same relay operates a 700-watt heater.

The method described in "Designation D445-53T", published by The American Society for Testing and Materials for Newtonian Liquids for the measurement of viscosity formed the basis of the procedures followed in this study.

A. Operation of Viscometers

After ensuring proper cleaning and drying liquid sample or liquid mixture is introduced through tube 1, Figure 3.2. to fill bulb A so that the level of the liquid was in between the upper and lower filling marks on bulb A, with the viscometer mounted in vertical position. While

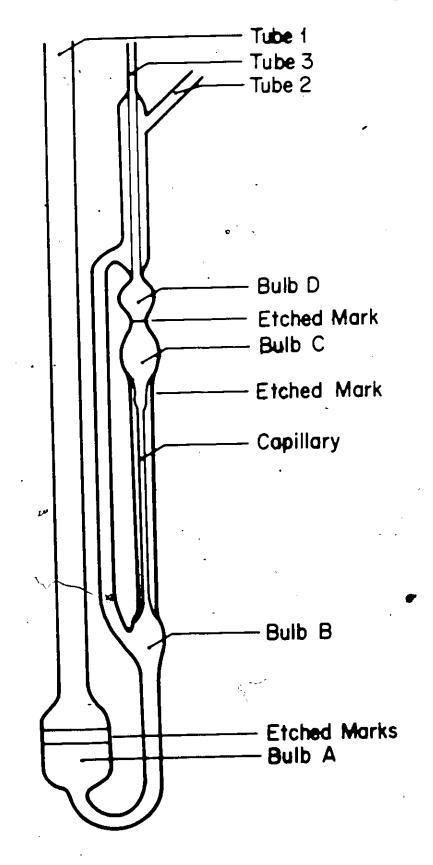


Figure 3.2 Cannon-Ubbelohde Viscometer

the vertical in order not to entrap air bubble in bulb A. The viscometer is then placed in a constant temperature bath, and is supported by a plastic holder supplied by Cannon Instrument Company, so that the viscometer does not shake due to circulating bath water. The solution inside viscometer was allowed to reach thermal equilibrium with the bath; this takes roughly 30 minutes. Therefore, a minimum of 30 minutes was allowed for equilibration before taking any measurements.

Propipettes, a multivalve device for suction supplied by Fisher Scientific Co. was fitted to the opening of tube 3 for suction. Then a one end closed plastic tube was fitted to the opening of tube 2. Thus liquid rises through the capillary. Care was taken so that no air bubbles get entrapped within the capillary. It was reported by Howard and McAll'ister [1958] that sometimes air gets entrapped in the capillary during the process of suction. Once the liquid level crossed bulb D, propipette was removed from tube 3 and the plastic tube was also removed from tube 2. The efflux time was determined by measuring the time taken by the liquid meniscus to travel from the upper to the lower etched marks on bulb C. At least 3 such measurements

سر

were taken with each sample. These various runs always agreed within better than \pm 0.1%.

B. Sources of error in viscometry,

1.0

Several sources of errors involved in viscometry have been discussed extensively in the literature e.g., [Cannon and Fenske, 1935, 1938, Raachou, 1938, Gennent, 1942 and Cannon, 1944].

C. Viscosity equations [Asfour, 1979]

The following equation has been used to calculate the viscosities (for the derivation see Appendix A).

$$v = (Ct - B/t) \tag{3.7}$$

where C is a calibration constant and the term B/t is known as the "kinetic energy correction factor". B was found to be a function of time [Cannon, 1944, Cannon and Manning, 1959]. Cannon et al. [1960] introduced another parameter E, which is supposed to be time independent, resulting in the following equation:

$$v = Ct - E/t^n$$
 (3.8)

where the values of n depends on the shape of the capillary ends; for trumpet shaped ends, n has been estimated to be

7

equal to 2, and this value was used throughout the course of this work.

CHAPTER 4

EXPERIMENTAL RESULTS AND DISCUSSIONS

4.1 General

The binary systems chosen for this work are all of the nonassociating type. Each of these sytems are new in a sense that the densities and viscosities of these binary mixtures are not available in the literature. All these mixtures contain an aromatic component and a Present theoretical straight chain hydrocarbon. about mixtures and solutions has not yet reached a stage of development where solution properties can be expressed in terms which can be calculated completely from the properties of the pure components with any degree of generality. such an extensive amount of data on the physical properties of solutions and mixtures are needed for their own value as well as for use in testing predictive models which are being proposed for calculating the properties of liquid mixtures from the molecular parameters of their pure components.

In this chapter some of the physical properties, viz.; densities and viscosities as well as some of the thermodynamic properties, e.g., the excess volume of mixing and the partial molar volumes of eight binary liquid mixtures over the entire composition range and at various

TABLE 4.1 : 'Calibration Data for the Density Meter

Substance	Density	Density Meter Reading
-Hexane	0.65502 [Timmermans, 1950]	0.245653
Octane	0.69878 [Timmermans, 1950]	0.248598
Decane	0.72608 [Timmermans, 1950]	0.250467
luene	0.86220 [Timmermans, 1950]	0.259461
enzene	0.87363 [Timmermans, 1965]	0.260212
puble Distilled Water	0.99707 [Perry, 1950]	0.268108 0.302848
arbon Tetrachloride	1.58445 [Timmermans, 1950]	0.302848
arameters for the Dens	ity Meter, Equation	
Parameters	Value	
	20. 4707	
	29.6793	
В -	0.0139029	1
\ -	1 17404	•
C tandard Deviation of t	1.13424 he Fit 2.15 x 10 ⁻⁴ (kg/L)	
	he Fit 2.15 x 10 ⁻⁴ (kg/L)	
tandard Deviation of t comperature = 20.00°C	he Fit 2.15 x 10 ⁻⁴ (kg/L)	Density Meter Reading
emperature = 20.00°C	he Fit 2.15 x 10 ⁻⁴ (kg/L) Density	Density Meter Reading
emperature = 20.00°C Substance -Hexane	Density 0.65945 [Timmermans, 1950]	•
Substance -Hexane -Octane	Density 0.65945 [Timmermans, 1950] 0.70279 [Timmermans, 1950]	0.244856
Substance 1-Hexane 1-Octane 1-Decane	Density 0.65945 [Timmermans, 1950] 0.70279 [Timmermans, 1950] 0.72994 [Timmermans, 1950]	0.244856 0.247712
Substance 1-Hexane 1-Octane 1-Decane Toluene	Density 0.65945 [Timmermans, 1950] 0.70279 [Timmermans, 1950] 0.72994 [Timmermans, 1950] 0.86683 [Timmermans, 1950]	0.244856 0.247712 0.249548
Substance -Hexane -Octane -Decane Coluene Senzene	Density 0.65945 [Timmermans, 1950] 0.70279 [Timmermans, 1950] 0.72994 [Timmermans, 1950] 0.86683 [Timmermans, 1950] 0.87903 [Timmermans, 1950]	0.244856 0.247712 0.249548 0.258555 0.259343
Substance 1-Hexane 1-Octane 1-Decane Coluene Benzene Double Distilled Water	Density 0.65945 [Timmermans, 1950] 0.70279 [Timmermans, 1950] 0.72994 [Timmermans, 1950] 0.86683 [Timmermans, 1950] 0.87903 [Timmermans, 1950] 0.9982343 [Perry, 1950]	0.244856 0.247712 0.249548 0.258555 0.259343
Substance -Hexane -Octane -Decane Coluene Renzene Renzene Renzene Renzene	Density 0.65945 [Timmermans, 1950] 0.70279 [Timmermans, 1950] 0.72994 [Timmermans, 1950] 0.86683 [Timmermans, 1950] 0.87903 [Timmermans, 1950] 0.9982343 [Perry, 1950]	0.244856 0.247712 0.249548 0.258555 0.259343
Substance HexaneOctaneDecane Coluene Benzene Double Distilled Water Carbon Tetrachloride	Density 0.65945 [Timmermans, 1950] 0.70279 [Timmermans, 1950] 0.72994 [Timmermans, 1950] 0.86683 [Timmermans, 1950] 0.87903 [Timmermans, 1950] 0.9982343 [Perry, 1950] 1.594 [Timmermans, 1950]	0.244856 0.247712 0.249548 0.258555 0.259343

TABLE 4.1, cont'd

== 0000		
emperature = 35.00°C		
Substance	Density	Density Meter Reading
	0.67104 [Garcia et al. 1986]	0.248618
1-Heptane	n 69042 [Garcia et al. 1980]	0.249942
-Octan e 1.0	n 7818 [Viscosity Standard]	0.256142 0.259246
53	n 8286 [Viscosity Standard]	0.261512
Senzene	0.86296 [Timmermans, 1965]	0.269868
bouble Distilled Water	0.994061 [Perry, 1950]	0.203000
Parameter Val	ue .	1
д 26.037		
B 0.857	218661	
C 1.023	77652	•
	$r = 1.40 \times 10^{-4} (kg/J)$	A .
Standard Deviation of the	F10 1.49 X 10 (RB) =)	· · · · · · · · · · · · · · · · · · ·
		•
	Density	Density Meter Reading
Temperature = 40.00°C	Density	Density Meter Reading 0.249468
Temperature = 40.00°C Substance n-Heptane	Density 0.6668 [Timmermans, 1950]	· · · · · · · · · · · · · · · · · · ·
Substance n-Heptane n-Octane	Density 0.6668 [Timmermans, 1950] 0.6862 [Timmermans, 1950]	0.249468 0.250834 0.252811
Temperature = 40.00°C Substance n-Heptane n-Octane n-Decane	Density 0.6668 [Timmermans, 1950] 0.6862 [Timmermans, 1950] 0.7150 [Marsh et al. 1986]	0.249468 0.250834 0.252811 0.261777
Substance n-Heptane n-Octane n-Decane Toluene	Density 0.6668 [Timmermans, 1950] 0.6862 [Timmermans, 1950] 0.7150 [Marsh et al. 1986] 0.84836 [Timmermans, 1965]	0.249468 0.250834 0.252811 0.261777 0.262414
Substance n-Heptane n-Octane n-Decane Toluene Benzene	Density 0.6668 [Timmermans, 1950] 0.6862 [Timmermans, 1950] 0.7150 [Marsh et al. 1986] 0.84836 [Timmermans, 1965] 0.85763 [Timmermans, 1965] 0.9922497 [Perry, 1950]	0.249468 0.250834 0.252811 0.261777 0.262414 0.271143
Substance n-Heptane n-Octane n-Decane Toluene Benzene Double Distilled Water	Density 0.6668 [Timmermans, 1950] 0.6862 [Timmermans, 1950] 0.7150 [Marsh et al. 1986] 0.84836 [Timmermans, 1965]	0.249468 0.250834 0.252811 0.261777 0.262414
Substance n-Heptane n-Octane n-Decane Toluene Benzene Double Distilled Water Carbon Tetrachloride	Density 0.6668 [Timmermans, 1950] 0.6862 [Timmermans, 1950] 0.7150 [Marsh et al. 1986] 0.84836 [Timmermans, 1965] 0.85763 [Timmermans, 1965] 0.9922497 [Perry, 1950]	0.249468 0.250834 0.252811 0.261777 0.262414 0.271143
Substance n-Heptane n-Octane n-Decane Toluene Benzene Double Distilled Water Carbon Tetrachloride Parameter Va A 28.79	Density 0.6668 [Timmermans, 1950] 0.6862 [Timmermans, 1950] 0.7150 [Marsh et al. 1986] 0.84836 [Timmermans, 1965] 0.85763 [Timmermans, 1965] 0.9922497 [Perry, 1950] 1.55498 [Timmermans, 1965]	0.249468 0.250834 0.252811 0.261777 0.262414 0.271143
Temperature = 40.00°C Substance n-Heptane n-Octane n-Decane Toluene Benzene Double Distilled Water Carbon Tetrachloride Parameter Va A 28.79 B 0.00	Density 0.6668 [Timmermans, 1950] 0.6862 [Timmermans, 1950] 0.7150 [Marsh et al. 1986] 0.84836 [Timmermans, 1965] 0.85763 [Timmermans, 1965] 0.9922497 [Perry, 1950] 1.55498 [Timmermans, 1965]	0.249468 0.250834 0.252811 0.261777 0.262414 0.271143

Standard Deviation of the Fit $1\sqrt{75} \times 10^{-4}$ (kg/L)

temperature levels are presented. These experimental data have also been utilized in testing some of the most commonly used literature viscosity models.

4.2 Calibration Data for the Density Meter

The density meter was calibrated at 20.00°C, 35.00°C, and 40.00°C, using the density values of double-distilled water, n-hexane, n-octane, n-decane, carbon tetrachloride, toluene and benzene. However, at 35° C density values for n-hexane, n-decane, carbon tetrachloride not available in the literature. and toluene were Consequently, two viscosity standards and n-heptane were At 40°C n-hexane was forming bubbles in the used instead. density meter tube, so it was replaced by n-heptane. The density data used for the calibration along with are reported in Table 4.1. Equation (3.6), sources discussed in Chapter 3, was fitted to these data. values of the calculated parameters along with the standard deviation of the fit in kg/L are presented in Table 4.1.

It should be realized that the accuracy of the density meter is subject to the accuracy of the densities of the standard liquids used for calibration. Three highly accurate density values are required since there are three unknowns in the density meter equation, Equation (3.6). Extremely accurate density values were not available except

TABLE 4.2 : Viscometer Calibration Data

(1) Calibration Data for the Viscometer 75329

		Standará Viscosity	. Calculated	Percent	Parameters of the	ne Viscometer
•	Time Sec	cSt .	cSt	1	Cx10 ³ , cSt/sec	E, cSt∙sec ²
empera	ture = 2	0.00°C	·			
N.8 N1.0 ≥3 3	90.15 152.03 489.41	0.7844 1.3280 4.2780	0.7845 1.3277 4.2781	0.01 0.02 0.001	8.741457	28.492583
tandar	d Deviztio	n of the Fit	- 2.85 x 10	۲5 (cSt)		
Tempera	iture • 2	5.80°C				<u> </u>
N.4 N.8 N1.0 S3	54.51 85.447 141.153 431.663	0.4596 0.7416 1.235 3.781	0.45962 0.74152 1.23442 3.78299	0.01 0.01 0.05 0.05	8.76442	53.854
Standa	rd Deviatio	on of the Fit	= 3.49 x 10)-3 (cSt)		
Tempera	ture 1	35.00°C	,			
N1.0 \$3	123.58 348.30	1.0 ⁺ 9 3.038	1.079	0.00	8.722029	-17.721295
Mean A	bsolute Er	ror = 2.26	x 10 ⁻¹⁶ (cSt)			
Temper	ature =	40.00°C				/
N1.0 ST	115.89 312.11	1.013 2.719	1.013	0.00	8.7100872	-48.198533
<u>.</u>			x 10 ⁻¹⁶ (cS1	<u> </u>		

TABLE 4.2 , cont'd /*
(ii) Calibration Data for the Viscometer 50B158

Liquid	Efflux Tume	Standard Viscosity	Calculated Viscosity	Percent Error	Parameters of t	ne Viscometer
	s e c	z\$ t	تSt ·		-x10 ³ , cSt/sec	E, cSt∙sec ²
Tempera	ture = 2	0.00°C				
N1 J	183.06 311.16 1005.01	0.7844 1.3280 4.2780	0.7849 1.3265 4.2784	2.26 3.11 - 2.21	4.2568379	-189.06268
Standan	d Deviatio	n of the Fit	• 1.5 x 10	-3 (cSt)		•
Тепрета	ture = 2	5.00°C				
N.4 N.8 N1.0 S3	109.183 174.207 289.91 887.855	0.7416	0.4598 0.7404 1.2351 3.7850	0.04 0.16 0.01 0.11	4.26327	: 67.960
Standar	d Deviatio	n of the Fit	= 2.96 x 1	0 ⁻³ (cSt)		·
Тепрета	ture = 3	5.00°C			`	
N1.0 S3	253.263 715.74	1.079	1.079	0.00	4.2438242	-269.0818
Mean Ab	solute Err	or = 2,22	x 10 ⁻¹⁶ (cSt)	• • •	
Tempera	ture = 4	0.00°C	· · · · · · · · · · · · · · · · · · ·			-
N.8 N1.0 S3	149.43 238.09 639.34	0.634 1.013 2.719	0.6343 1.0122 2.7192	0.05 0.08 0.01	4.2532982	28.07317
Mean Ab	solute Err	or = 4.58	x 10 ⁻⁴ (cSt)	_1		1

TABLE 4.2 , cont'd ::::) Calibration Data for the Viscometer SCBIS9

Liquid	.Efflux	Standard Viscosity	- Calculated Viscosity	Percent Error	Parameters of th	ne Viscometer
	sec	cSt	_	•	Cx10 ⁻³ , aSt/sec	E, cSt-sec ²
————— Cempera	ture = 20	0.00°C	•	٠,		
N. 8 N1. 0 S3	202.46 342.14 1102.04	0.7844 1.328 4.278	0.7845 1).3277 4.2781	0.01 0.02 0.002	3.8820158	59.423611
Standar	d Deviation	of the Fit	= (3.28 x 10)-4 (cSt)	-	
Tempera	ture = 25	5.00°C			·	
N.4 N.8 N1.0 S3	120.003 191.743 318.493 976.940	1.2350	0.4597 0.7411 1.2337 3.7866	0.02 0.07 0.10 0.15	3.78611	78.385
Standar	d Deviation	n of the Fit	= 4.08 x 10)-4 (cSt)		
Tempera	ture = 3	5.00°C			,	
N1.0 S3	278.59 786.91	1.079 3.038	1.079	0.00	3,8600963	- 279.64623
—	solute Err	or = 1.78	x 10 ⁻¹⁵ (cSt)	,		
Tempera	iture - 4	0.00°C				
N.8 N1.0 53	164.41 261.90 703.83	0.634 1.013 2.719	0.6345 1.0116 2.7194	0.08 0.14 0.01	3.8637558	19.529793
			x 10 ⁻⁴ (cSt)			

TABLÉ 4.2 , cont'd (iv) Calibration Data for the Viscometer 25A483

	Efflux Tume	Standard Viscosity	Calculated Viscosity	Percent Error	Parameters of t	he Viscometer
	sec	, cSt	cSt	İ	Cx10 ³ , cSt/sec	E, cSt-sec
Temperat	ure - 20	0.00°¢		•		
N. 4	266.253	0,4794	0.4796	0.03	1	
N.8 N1.0	435.50 738.057	0,4794 0,7844 1,3280	0.7839 1.3283	0.07	1.79958551	-29.915616
Standard	Deviation	of the Fit	- 6.04 x 10	·4 (cSt)		<u>.</u>
Temperat	ure = 25	5.00°C	····			•
		0.450/	0.45044	0.01		
	255.007	0.4596	0.45964	1 0.01		
N.4 N.8 NI.0	255.007 411.407 685.740	0.7416 1.2350	0.74127	0.04 -	1.80158	-14.700
N.8 N1.0	411,407 685,740	0.7416 1.2350	0.74127	0.04 0.04	1.80158	-14.700
N.8 NI.0 Standard	411,407 685,740	0.7416 1.2350 of the Fit	0.74127 1.23544	0.04 0.04	1.80158	
N.8 N1.0 Standard Temperat	411.407 685.740 Deviation ure = 35	0.7416 1.2350 1 of the Fit 0.00°C	0.74127 1.23544 - 5.51 x 10	0.04 0.04 -4 (cSt).		
N.8 NI.0 Standard	411.407 685.740 Deviation	0.7416 1.2350 1 of the Fit	0.74127 1.23544 - 5.51 x 10	0.04 0.04	1.80158	
N.8 NI.0 Standard Temperat N.4 N.8 N1.0	411.407 685.740 Deviation ure = 35 234.917 370.70	0.7416 1.2350 1 of the Fit 0.00°C 0.4227 0.6669 1.079	0.74127 1.23544 - 5.51 x 10 0.42285 0.66644	0.04 0.04 -4 (cSt).		
N.8 NI.0 Standard Temperat N.4 N.8 N1.0	411.407 685.740 Deviation ure = 35 234.917 370.70 600.497	0.7416 1.2350 1 of the Fit 0.00°C 0.4227 0.6669 1.079	0.74127 1.23544 - 5.51 x 10 0.42285 0.66644 1.07922	0.04 0.04 -4 (cSt).		
N.8 NI.0 Standard Temperat N.4 N.8 N1.0	411.407 685.740 Deviation ure = 35 234.917 370.70 600.497	0.7416 1.2350 1 of the Fit 0.00°C 0.4227 0.6669 1.079	0.74127 1.23544 - 5.51 x 10 0.42285 0.66644 1.07922	0.04 0.04 -4 (cSt).		

TABLE 4.2 , cont'd (v) Calibration Data for the Viscometer 25A498

= 20. 0.763 5.953 1.830 1ation = 25 9.697 2.563 1.260	cSt t .00°C 0.4°94 0.7844 1.3280	0.47960 0.73376 1.32831 - 7.39 x 10 0.45966 0.74107 1.23571	0.04 0.08 0.02	1.8402416	18.129912
0.763 5.953 1.830 iation = 25 9.697 2.563 1.260	0.4794 0.7344 1.3280 of the Fit .00°C	0.79376 - 1.32831 7.39 x 16	0.08 0.02 0.02 0.01 0.01 0.07		
5.953 1.830 iation = 25 9.697 2.563 1.260	0.7844 1.3280 of the Fit .00°C	0.79376 - 1.32831 7.39 x 16	0.08 0.02 0.02 0.01 0.01 0.07		
• 25 9.697 2.563 1.260	.00°C - 0.4596 0.7416	0.45966 0.74107	0.01	1.84088	. 0.209
9.697 2.563 1.260	0.4596 0.7416	0.74107	0.07	1.84088	. 0.209
2.563 1.260	0.7416	0.74107	0.07	1.84088	. 0.209
					; 1
iation	of the Fit	8.88 x 10	0 ⁻⁴ (cSt)		
35	.00°C				\$.
	0.4227 0.6669 1.079	0.42280 0.66658 1.07916	0.02 0.05 0.01	1.8365309	-26.743577
e Erro	r - 1.92	x 10 ⁻⁴ (cSt)	•		
•. 40	.00°C	•			•
4.720	0.4062 0.6340 1.0130	0.40629 0.63372 1.01314	0.02 0.04 0.01	1.8374763	-36.214221
	7.563 e Erro = 40 0.710 4.720 1.310	7.563 1.079 e Error = 1.92 = 40.00°C 0.710 0.4062 4.720 0.6340° 1.310 1.0130	7.563 1.079 1.07916 e Error = 1.92 x 10 ⁻⁴ (cSt) = 40.00°C 0.710 0.4062 0.40629 4.720 0.6340 0.63372 1.310 1.0130 1.01314	7.563 1.079 1.07916 0.01 e Error = 1.92 x 10 ⁻⁴ (cSt) = 40.00°C 0.710 0.4062 0.40629 0.02 4.720 0.6340° 0.63372 0.04 1.310 1.0130 1.01314 0.01	7.563 1.079 1.07916 0.01 e Error = 1.92 x 10 ⁻⁴ (cSt) = 40.00°C 0.710 0.4062 0.40629 0.02 4.720 0.6340° 0.63372 0.04 1.8374763

for water. In order to minimize errors due to uncertainty in the densities of the standard liquids, the substances listed in table 4.1 were chosen for calibration. The sources of the density data used for calibration are also reported in Table 4.1. The error in density measurement is discussed in Appendix E.

4.3 Calibration Data For the Viscometers

Cannon-Ubbelohde type viscometers have been These viscometers were calibrated in work. laboratory. Calibration was done using the standard liquids supplied by the Cannon Instrument Company. The viscosities of these standard liquids ranged from 0.4794 to 4.278 cSt at 20.00°C to 0.4062 to 2.719 cSt at 40.00°C. At least five readings were taken for each standard liquid for the purpose Average values of the calibration constant of calibration. "C" and the kinetic energy correction factor "E" calculated at each temperature by the method Details of the calibration data each squares. viscometers at different temperatures are listed 4.2 along with the standard deviation of the fit. In total five viscometers were used in this work. Two were 25A type, two 50B type and one 75J type. The kinematic viscosities of standard liquids used for the purpose of calibration

: Physical Properties of Pure Components. TABLE 4.3

		Density, kg/L		Kine	Kinematic Viscosity, c5t	, cst	Ahso	Absolute Viscosity, cP	5
Compound	Experimental	Literature Values	e Values	Experimental	Literatu	Literature Values	Experimental Value	Literatu	Literature Values
	value	Minima	Kaxima	, value	Minimin	Maximum		Minima	Max im st
Temperature = 20.00°C	20.00°C								
	0 70,0	0 7022 [23]	0.70267 [22]	0.7697	-	0.7758 [22]	0.5405		0.5479 [24]
n-Octane	0.7022	0.73672 [11]	0.73012 [2]			1.268 [22]	0.9153	0.907 [4]	0.9256 [22]
n-Decane	0.7297	0.72072 [23]	(7) (0)1 0	1 9743		2.008 [22]	1.4778		1.503 [22]
n-Dodecane	0.7485	0.74869 [2]		. 0010 #			2.3037	2.180 [4]	[2.335 [22]
n-Tetradecane	0.7631	0.7596 [11]	0.7628 [2]	5010.0					
n-Hexadecane	0.7737	0.77344 [2]	0.7752 [4]	401				0.5848 [22]	
Toluene	0.8671 -	0.8666 [2]	0.8760 [12]	0.6777	0.6747 1221				
Ethy Ibenzene	0.8672	0.8670 [22]	0.8672 [23]	0.7701	<u>`</u>	0.780 [22]	0.0078		

TABLE 4.3, cont'd

### Experimental Literature Values Experimental Literature Values Faperimental Literature Values Palue Palue			Density, kg/L		Kinema	Kinematic Viscosity, cSt	cSt	Absc	Absolute Viscosity, ch	÷ .
Minima. Maxima. Minima. Mini	Compound	Experimental	Literatur	e Values	Experimental Value	Literatur	e Values	Expérimental Value	Literatu	re Values
84 0.69849 [2] * 0.09862 [22] 0.7298 . 0.7352 [22] 0.5097 0.5083 [4] 80 0.7260 [3] 0.72637 [1] 1.1722 1.182 [22] 0.8527 0.8527 [4] 83 0.7450 [3] 0.7465 [4] 1.8248 2.740 [9] 2.771 [22] 1.3582 [13] 1.3582 [4] 98 0.75918 [11] 0.76032 [9] 2.7373 2.740 [9] 2.771 [22] 2.0799 2.035 [5] 19 0.76994 [22] 0.7709 [10] 3.9762 3.970 [10] 4.008 [22] 3.0630 3.060 [10] 19 0.8610 [19] 0.86232 [24] 0.6413 0.6378 [22] 0.7567 [22] 0.6592 20 0.8621 [8] 0.8650 [25] 0.72998 0.7367 [22] 0.06292		Value	Minimus	Haxima		Minimus	Maximin		Minimum	Kaximan
0.6984 0.69849 [2] 0.69862 [22] 0.7352 [22] 0.5097 0.5083 [4] ne 0.7260 [3] 0.72637 [11] 1.1722 1.182 [22] 0.8527 0.8527 0.8527 [4] necame 0.7443 0.7450 [3] 0.7465 [4] 1.8248 1.843 [22] 1.3582 1.353 [4] ceame 0.7443 0.75918 [11] 0.7603 [10] 2.771 [22] 2.0799 2.035 [5] came 0.7703 0.7709 [10] 3.9762 3.970 [10] 4.008 [22] 3.0630 3.060 [10] came 0.8619 0.8610 [19] 0.6413 0.6378 [22] 0.7367 [22] 0.6592 cene 0.8620 0.8630 [25] 0.72998 0.7367 0.7357 0.7357 0.6592	Temperature *	25.00°C								
ne 0.7260 [3] 0.72637 [1] 1.1722 1.182 [22] 0.8527 0.8527 [4] necame 0.7443 0.7450 [3] 0.7465 [4] 1.8248 1.843 [22] 1.3582 1.353 (1) ccane 0.7798 0.75918 [1] 0.76032 [9] 2.7373 2.740 [9] 2.771 [22] 2.0799 2.035 [5] cane 0.7703 - 0.76094 [22] 0.7709 [10] 3.9762 3.970 [10] 4.008 [22] 3.0630 3.060 [10] seed 0.8619 0.8610 [19] 0.8622 [24] 0.6413 0.6538 [22] 0.7367 [22] 0.7367 [22] 0.6592	n.Ortano	0.6984		0.69862 [22]	0.7298		0.7352 [22]	,	0.5083 [4]	0.5136 [22]
0.7443 0.7450 [3] 0.7465 [4] 1.8248 1.843 [22] 1.5582 1.5582 1.553 .[4] 0.7598 0.75918 [11] 0.76032 [9] 2.7373 2.740 [9] 2.771 [22] 2.0799 2.035 [5] 0.7703 0.7694 [22] 0.7709 [10] 3.9762 3.970 [10] 4.008 [22] 3.0630 3.060 [10] 0.8619 0.86232 [24] 0.6413 0.6378 [22] 0.6421 [7] 0.5528 0.550 [22] 0.8620 0.8621 [8] 0.8630 [25] 0.7298 0.7367 [22] 0.6422 0.6422	or Decision	0,7260		0.72637 [1]	1.1722	,		0.8527	0.8527 [4]	0.8582 [3]
0.7598 0.75918 [1] 0.76032 [9] 2.7373 2.740 [9] 2.771 [22] 2.0799 2.035 [5] 0.7703 • 0.7694 [22] 0.7709 [10] 3.9762 3.970 [10] 4.008 [22] 3.0630 [3.0] 3.0630 [10] 0.8619 0.86232 [24] 0.6413 0.6378 [22] 0.6421 [7] 0.5528 [22] 0.550 [22] 0.8620 0.8620 [25] 0.72998 0.7367 [22] 0.6292	n-tectane	70	_	0.7465 [4]	1.8248				1.353 ,[4]	1.574 [22]
0.7703 • 0.7694 [22] 0.7709 [10] 3.9762 3.976 110] 4.008 [22] 3.0630 3.060 [10] 0.8619 0.8621 [19] 0.86232 [24] 0.6413 0.6378 [22] 0.6421 [7] 0.550 [22] 0.8620 0.8621 [8] 0.8630 [25] 0.72998 0.7367 [22] 0.6292	n-Tetradecane	0,7598	_	0.76032 [9]	2.7373	2.740 [9]		2.0799		2.104 {22}
0.8619 0.8620 [28] 0.6413 0.6378 [22] 0.6421 [7] 0.5528 0.550 [22] 0.8620 0.8630 [25] 0.72998 0.7367 [22] 0.6292	n-Heraclecane	0.7703 •		0.7709 [10]	3.9762	3.970 [10]	4.008 [22]	3.0630		3.086 [22]
0.8620 0.8621 [8] 0.8630 [25] 0.72998 0.7367 [22] 0.6292	Tolliene	0.8619		0.86232 \ [24]	0.6413	0.6378 [22]	0.6421 [7]	0.5528		0.556 [18]
	Ethylbenzene	0.8620	_	0.8630 [25]	0.72998	, 	0.7367 [22]	0.6292	,	0.6354 [22]

		Density, kg/L		Kine	Kinematic Viscosity, cSt	ıSı	Wbsq.	Absolute Viscosity, cP	4	
	Experimental	Literature Values	e Values	Experumental Value	Literature Values	e Values	Experimental Value	miriotil	Literature Values	
		Minimm .	Maximin		Minima	Нахім	:	Hinima	Maximum	
Temperature * 35.00°C	35.00°C		e .							-
n-Octane	0.6901	0.69445 [14]	0.69448 [6]	0.6580		0.6649 [22]	0,4541		0,4591 [22]	
n-Decane	0.7178	0.71892 [1]	0.71915 [11]	1.0293		1.039 [22]	0,73898		0,7465 [22]	
n-Dodecane	0.7376		[1] 79787 [1]	1.5556	•	1.575 , [22]	1.1474		1.163 [22]	
n-Tetradecane	0.7527	0.75212 [1]	0.75253 [11]	. 2.2732		2.305 [22]	1.71096		1.734 [22]	
n-Hexadecane	0.7635	,		3.2199		3.252 [22]	2.4586		2.482 [22]	_
Toluene	0.8517		0.5527 [18]	0.5783	0.5741 [22]	•	0,4925	0.4898 [22]	0.4928 [8]	<u>'</u>
Ethy lbenzene	0.8533	0.8497 [16]	0.8548 [15]	0.6565	٠.	0.6614 , [22]	0.5602		0.5645 [22]	
										-

cont'd

TABLE 4.3,

	•	-					1		
		Density, kg/L ,		Kinem.	Kinematic Viscosity, cSt	ı cSt	Ahso	Absolute Viscosity, cP	CP.
, Compound	Experimental Value	Literatur	erature Values	Experimental Value	Literature Values	re Values	Experimental Value	Literature Values	e Values
· · · · · · · · · · · · · · · · · · ·	,	Hinimin	Махіма		Miniaum	Maximum		Minimus	Haximin
Temperature .= 40,00°C	40,00°C								
n-Oct ane	0.6863	0.68656 [21]	0.69042 [6]	0.6261		0,6343 [22]	0.4297		0,4355 [22]
n-Decane	0.7151	0.7150 [22]	•	0.9652	•	[22] 0776.0	0.6902		0.6489 [22]
n-Dodecane	0.7343	0.7344 [22]	0.73457 [21]	1.4462		1.4650 [22]	1.06195		1,0780 [22]
n Tetradecane	0.7488	,	0.7491 [22]	2.0900	,	2.1180 [22]	1.5651	1.4650 [4]	1.5850 [22]
n-Hexadecane	0.7609	0.7595 [22]	•	2.9292		2.9530 [22]	2.2388	7.1500 [4]	2.2430 [22]
Toluene	0.8482	0.84725 [17]	0.85473 [20]	0.5508	0,5465 [22]	0.5675 [20]	0.4672	0.4636 [22]	0,4851 [20]
Lithylbeniene	0.8495	0.8494 [17]	0.8495 [22]	0.6242	,	0.6286 [22]	0.5303		0.5338 [22]

- 1. Aicart et al., [1981]
- 2.º American Chemical Society, [1959]
- Aucejo et al., [1985]
- 4. Evans, [1937]
- 5. Formiatti et al., [1946]
- 6. Garcia et al., [1986]
- 7, (Chai, [1973]
- 8. Hafez, M. and S. Hartland, [1976]
- 9. Heric, E.L. and J.G. Brewer, [1967]
- 10. Coursey, B.M. and E.L. Heric, [1969]
- 11. Inglese et al., [1983]
- 12. Katayama, H. and I. Watanabe, [1980]
- 13. McAllister, [1960]
- 14. Naidu, G.R. and P.R. Naidu, [1982]
- 15. Puri, P.S. aMi K.S.N. Raju, [1970].
- 16. Bagga, O.P. and K.S.N. Raju, [1970]
- 1°. Rao, Y.P. and S.K. Suri, [1980]
- 18. Mitzoulis et al., [1986]
- 19. Sanni et al., [19"1]
- 22. Singh, R.P. and C.P. Sinha [1984]
- 21. Suri, [1980]
- 22. Thermodynamic Research Center, [1986]
- 23. Timmermanns, [1950] -
- 24. Timmermans, [1965]
- 25. Vitali, G. and G.G. Lobbia, [1983]

cover the range of viscosities of the pure components used in this work as well as the binary mixtures.

4.4 Comparison Between the Literature Density and Viscosity Values of the Pure Components and Those Obtained in This Study

One of the objectives of this work is to measure the density and viscosity of the pure components as accurately as possible. Use of precision density meter provided a high degree of reproducibility of density measurements. While use of Cannon-Ubbelohde viscometers for measuring viscosity did produce highly reproducible results. This is in accordance with the advantages, that these viscometers have over other types of viscometers as mentioned in Chapter 3.

The experimental values for viscosity and density of the pure components obtained in this work are reported in Table 4.3 along with the corresponding literature values for comparison. In general the reproducibility of the viscosities were better than 0.1%. As can be seen from Table 4.3 the agreement between the obtained viscosities and the values reported in the literature where it is available is quite good in almost all cases. However, not many literature values are available at temperatures 35.00° and 40.00°C. Values reported by Evans [1937], were found to be

TABLE 4.4 L : Density-Composition Data of the System: Toluene(A)-n-Octane(B)

Mass Fraction	Mole-Fraction	Density kg/L	Mass Fraction	Mole Fraction	Density kg/L
Temperature =	20.00°C	• .	Temperature	= `25.00°C+7-	
0.0000	0.0000	0.7022	0.0000	0.0000	0.6984
0.0000	0.0584	0.7082	0.040	0.04995	0.7041
0.047	0.1021	0.7128	0.0747	0.0910	0.7087
0.0840	0.2065	0.72497	0.1288	0.1548	ე.7158
0.2609	0.3044	0.7374	0.2179	0.2566	ą. T ZS 1
0.3438	0.3937	0.7496	0.3002	0.3472	0.7399
0.3436	0.5027	0.7659	. 0.3924	0.4447	0.7538
0.54197	0.5946	0.7809	0.4901	0.5437	0.76897
0.54197	0.6979	0.7995	0.58996	0.6408	0.7854
0.7665	V.8028	0.8203	0.7200	0.7612	0.8081
0.8778	0.8990	0.8416	9.8492	0.8747	0.8322
1.000€	1.0000	0.8671	1.0000	1.0000	0.8619
Temperature =	35.00°C	 	Temperature	- 40.00°C	
0.0000	0.0000	0.6901	0.0000	0.0000	0.6863
0.0358	0.0440	0.6944	0.0421	0.0517	0.6909
0.0849	0.1032	0.7008	0.0854	0.1038	0.6965
0.1685	0,2008	0.7115	0.1666	0.1986	0.7074
0.2515	0.2940	0.7226	0.2559	0.29896	0.7199
0.2323	0.3983	0.7362	0.3519	0.4023	0.7339
0.4421	0.4956	0.7504	0.4407	0.4942	0.7472
0.5478	0.6003	0.7673	0.5413	0.5939	0.7631
	1	0.7852	0.6473	0.6947	0.7809
	1 0.6974				1
0.6502	0.6974	0.8060	0.7637	0.8003	0.8013
			0.7637 0.8760	0.8003 0.8976	0.8013

Targer 4.5 : Density -Composition Data of the System Toluene(A)-n-Decane(B)

tass Fraction	Mole Fraction	Density	Mass Fraction	Mole Fraction	Density
~A .	. x ₄	kg, L	-1	, x ⁴	kg/L
Temperature =	20.00°C		Temperature	= 25.00°C	
	.0.0000	0.7297	0.0000	0.0000	ö. 126 0
J.0383	0.05708	0.7333	0.0342	0.0519	0.7299 "
0.0733	0.1088	0.7372	0.0675	0.1005	0.7335
0.1452	0.2078	0.7453	0.1408	0.20197	0.7414
0.22099	0.3046	0.7542	0.2202	0.3037	0.7505
0.3056	0.4047	0.7645	0.3068	0.4060	0.7609
0.38997	0.4968	-0.7752	0.4039	0.5113	0.7729
0.4919	0.5992	0.7887	0.5038	0.6106	0.7860
0.6013	0.6996	0.8038	0.6075	0.7050	0.8004
0.7208	0. 994	0.8213	0.7241	. 0.8021	0.8173
0.8579	0.9031	0.8427	0.8476	0.8957	0.8363
1.0000	1.0000	0.8671	1.0000	1.0000	0.8619
Temperature :	35.00°C		Temperature	- 40.00°C	
. 0.0000	0.0000	0.7178	0.0000	0.0000	0.7151
0.0326	0.0495	0.7211	0.0284	9.0432	0.7189
0.0647	0:0966	0.7241	0.0677	0.1008	0.7230
0.1366	0.1964	0.7316	0.1409	0.2021	-0.7312
0.2155	0.2979	0.7404	0.2167	0.2993	0.7396
0.2954	0.3929	0.7499	0.29596	0.3936	0.74899
0.3894	0.4962	0.7614	0.3880	0.4947	0.7603
0.4890	0.5965	0.7742	0.4856	0.5931	0.7726
0.5996	0.6981	0.7894	0.5971	0.6959	0.7876
0.71995	0.7988	0.8065	0.7226	0.8009	0.8055
0.8506	0.8979	0.8269	0.8483	0.8962	0.8242
0.0300	1 0.05.5	1		1.0000	0.8482

TABLE 4.6 : Density-Composition Data of the System Toluene(A)-n-Dodecane(B)

Mass Fraction	Mole Fraction	Density	Mass Fraction	. Mole Fraction .	Density
~ A	x _A	kg/L	-A	x ₄	kg, L
Temperature =	20.00°C		Ţemperature	- 25.00°C	•
0.0000	0.0000	0.7485	0.0000	0.026	0.7443
0.03597	0.0645	0.751	0.0306	0.0551	0.7472
0.0600	0.1056	0.7540	0.0500	0.0887	0.7489
0.1245	0.2082	0.7604	0.1165	0.1959	0.7553
0.1885	0.3004	0. 669	0.1730	0.2789	0.7609
0.2681	0.4037	0.7753	0.2491	0.3802	0.7686
0.3512	0.5002	0.7841	0.3242	0.4701	0.7765
0.4484	0.6005	! 1 0.79497	0.4183	▼ 0.5707	ò.7867
0.5597	0.7015	0.8079	0.5410	0.6854	0.3008
0.6870	0.8023	0.8236	0.6579	0.7805	0:8149
0.8311	0.90099	0.8427	0.8133	0.8895	0.8349
1.0000	1.0000	0.8671	1.0000	1.0000	0.8619
Temperature =	35.00°C		Temperature	= 40.00°C	<u> </u>
0.0000	0.0000	0.7376	0.0000	0.0000	0.7343
0.0292	0.0527	0.7403-	0.0282	0.0508	0.7366
0.0564	0.0996	0.7429	0.0522	0.0924	0.7387
0.1224	0.2049	0.7494	0.1213	0.2033	0.7450
0.1819	0'.2913	0.7550	0.1884	0.3003	0.7514
0.2667	0.4021	0.7634	0.2702	. 0.4063	0.7594
0.3497	0.4986	0.7720	0.3606	0.5104	0.7685
	0.5944	0.78199	0.4467	0.5988	0.7779
0.4422	1 -	0.7047	0.5597	0.7015	0.7906
	0.69698	0,7947			
0.5544	0.69698	0.7947	0.6838	0.7999	0.8054
	1	1		0.7999 0.89898	0.8054

TABLE 4.7 : Density-Composition Data of the System Toluene(A)-n-Tetradecane(B)

Mass Fraction	Mole Fraction XA	Density kg/L	Mass Fraction	Mole Fraction	Density kg/L
Temperature •	20.00°C	· · · · · · · · · · · · · · · · · · ·	Temperature	- 25.00°C	_
0.0000	0.0000	0.7631	0.0000	0.0000	0.7598
0.0318	0.0661	0.7653	0.0223	0.0469	0.7606
0.0537	0.1089	0.7671	. 0.0528	0.1073	01.7630
0.1082	0.2072	0.7717	0.1022	0.1969	0.7672
0.1678	0.3028	0.77699	0.1565	0.2.54	0.7719
0.2360 .	0.3994	0.7830	0.2259	0.3858	0.7781
0.3201	0.5034	0.7909	0.3100	0.4918	0.7859
0.3927	0.5820	0.7979	0.4049	0.5944	0.79496
0.5232	0.7026	0.8113	0.4984	0.6815	0.8043
0.6569	0.8048	0.8256	0.6400	0.7929	0.8191
0.8100	0.9018	0.8430	0.7978	0.8947	0.8369
1.0000	1.0000	0.8671	1.0000	1.0000	0.8619
Temperature •	35.00°C	<u> </u>	Temperature	- 40.00°C	
0.0000	0.0000	0.7527	0.0000	0.0000	0.7488
0.0245	0.0513	0.7545	0.0240	0.0503	0.7514
0.0486	0.0991	0.7564	0.0479	0.0977	0.7532
0.1027	0.1977	0.7608	0.0957	0.1856	0.7569
0.1638	0.29669	0.7660	0.1627	0.2950	0.7627
0.2266	0.3868	0.7715	0.2284	. 0.3892	0.7683
0.3150	0.4975	0.7794	0.3132	0.4954	0.7756
0.4079	0.5973	0.7880	0.4008	0.5902	0.7837
0. 5180	0.6983	0.7986	0.5092	0.6908	0.7938
0.6448	0.7963	0.8118	0.6566	0.8046	0.8091
0.8052	0.89897	0.8291	0.8029	0.8977	0.8250
*	1.0000	0.8517	1.0000	1.0000	0.8482

TABLE 4.8 : Density-Composition Data of the System Toluene(A)-n-Hexadecane(B)

Mass Fraction	Mole Fraction	Density kg/L	Mass Fraction	Mole Fraction	Density kg/L
	*A	- 	A	XA	
Temperature *	20.00°C		Tempe pature	- 25.00°C	_
0.0000	0.0000	0.7737	0.0000	0.0000	0.7703,
0.0186	0.0444	0.7749	0.0284	0.06697	0.7729
0.0414	0.0959	0.7765	0.0578	0.13099	0.7745
0.0941	0.2033	0.7805	0.0886	0.1927	0.7767
0.1373	0.2811	0.7838	0.1313	0.2708	0.7801
0.2057	0.38898	0.7892	0.2373	0.4333	0.7885
0.2866	0.4969	0.7959 -	0.2914	0.5026	0.7929
0.3794	0.6004	0.8038	0.3763	0.5973	0.8001
0.4843	0.697*	0.8132 -	0.4890	0.7017	0.8099
0.6163	0.7978	0.8256	0.6170	0.7984	Ó.8218
0.7863	0.9004	0.8430	0.781	0.89799	0.8383
1.0000	1.0000	0.8671	1.00	1.0000	0.8619
Temperature =	35.00°C	*	o perature	- 40.00°C	
0.0000	0.0000	0.7635	0.0000	0.0000	0.7609
0.0151	0.0363	0.7646	0.0224 . ;	0.0533	0.7624
0.0427	0.0987	0.7664	0.0415/ G	0.0961	0.7637
0.0984	9 . 2114	0.7702	0.0986	0.2119	0.*679
0.1532	0.3078	0.7738	0.1455	0.2950	0.7712
0.2128	0.3992	0.7781	0.2103	0.3956	0.7762
0.2918	0.5031	0.7843	0.2879	0.4984	0.7823
0.3754	0.5953	0.7912	`0.3786	0.5995	0.7896
.0.4904	0.7028	0.8014	b.4865 -	0.6995	0.7987
0.6149	0.7969 -	0.8131	0.6116	0.7946	0.8099
0.7813	0.8978	0.82995	0.7856	0.9000	0.8266
1.0000	1.0000	0.8517	1.0000	1.0000	0.8482

TABLE 4.9' : Density-Composition Data of the System Ethylbeniene(A)-n-Octane(B)

	-				
Mass Fraction	Mole Fraction	Density	Mass Fraction	Hole Fraction	Density
-'A .	x _A	kg/L	₩A.	*A	kg/L
Temperature =	20.00°C		Temperature	- 25.00°C	sr.
0.0000	0.0000	0.7022	0.0000	0.0000	0.6984
0.0508	0.0544	₽ .7086	0.0525	0.0562	0.7054
0.0962	0.1028	0.7146	0.0943	0.1008	-0.7108
0.1936	0.2053	0.7280	0.18695	0.1983.	0.7236
0.2899	0.3052	0.7419.	0.2768	- 0.2917	0.7363
0.3924	0.40997	0.7574	0.3805	0.3979	10.7517
0.49298	0.5113	0.7734	0.5720	0.5898	0.7823
0.6019	0.6193	0.7916	0.6851	d.7007	0.8017
0.6961	0.7113	0.80795	0.7851	0.7972	0.8197
0.7955	0.8071	0.8261	0.8894	- 0.8964	0.8396
0.8945	0.9012	0.8452	1.0000	1.0000	0.8620
1.0000	1.0000	0.8672		,	
Temperature ;	35.00°C		Temperature	- 40.00°C	
0.0000	0.0000	0.6901	0.0000	0.0000	0.6863
0.0480	0.0515	0.6963	0.04497	0.0482	0.6918
0.0908	0.0971	0.7018	0.0913	0.0976	0.6979
0.1757	0.1865	0.7131	0.1858	0.1971	0.7106
0.2819	0.2969	0.7281	0, 27996	0.2949	0,7238
0.3809	0.3983	0:7428	0.3800	0.3974	0.7386
0.4718	0.4900	0.7568	0.4719	0.4902	0.7527
0.5742	0.5919	0.7734	0.5788	0.5966	0.7700
0.6861	0.7016	0.7926	0.6798	. 0.6955	0.7871
0.78596	0.7980	0.8108	0.7846	0.7967	0.8062
0.8918	₩0.8987	0.8311	0.8895	0.8965	0.8260
1.0000	1.0000	0.8533	1.0000	1.0000	0.8495

TABLE 14 17 Density Composition Data of the System Ethylbeprene A (noTetradecane B

ass Fraction	Mode Praction	ರಿಮಾನಗ	Mass Fraction	Mol8:Fqutim	Density
-1		G.	-1		رد عه
emperature •	ii.gte	<u>:</u>	Temperature	• #3.00°2	
1,200	3,0000	1.7631	1.0000		3,759#
2.2256	1,1521	1,1653	مسر س ² 339	(:3:029	<u> </u>
2.2651	1.1151	7643	13 /65 5	1.1031	
2 1245		77	/i	7,21,09	7. 199
3,151	5.2932		1.1889	1.3033	2.7755
1.1564	7,4040	360	0.058 6	1.3946	7.7515
: 45	0.4963	7. 7935	3.3492	2,500	: 1901
1.4425	7.5 9 76	1.7031	2 4459	2,600*	2. 7997
; 552e	1 5 57	1.8143	7.5555	<u>/</u>	0.8109
1.5798	1.7357	1.8251	T.6783	37.7976	3. 5239
1/8279	1 6900	3450	2.5242	0.8976	3404
1 2000	. — В Т. 1.7500 Ф	56 **	1,0000	1.0000	0.3020
	35.33*1		Temperature	+ 40,00°C	
- 10000	1,,0000	1.7527	0.0000	3.0000	1 2 1455
2.2291	1.1329	1 1547	2.2279	7, 0509	1 279
1.15eT,	1910	3. *S65	2,2516	-0.09 25	1.752
2 1175	2.1997	3.7613	7.1174	0.1391	534
111293	0.2950	3.75 65	0.1559	0.3032	7. 543.
1.1573	3, 3929	3,7734	1 2.2633	7,4505	5,7739
	2,4975	3.7816	013451	9.4961	52
1.3463	2.3814	1.1992	2.4369	7.5915	309
0.4264	2.69*5	.: 5020	0.5558	≎. ⊺≎04 , ∈	5 09 1989
2.55.	2.6 9 5 2. 50 0 5	3.5158	0.6782	0.1915	1,9115
	- , 3-, - 3				2.82799
1.5240	0.5974	.0.8316.	1.5276	‡, \$99 *	2. 2.

right 4 33 Tensity-Composition Data of the System Ethylbeniene Al-n-Hexadecome B

Mole Fraction	Censity	Mass Amaction	Mole Fraction	Dens (T)
x, .	u	-1	/	· .
papie :			• 25.00*0	
: () payon	;	6 2.2500 /	0.000	1.77.3
1.0339		0.0337./	0.0692	2.**23
0.1019	: . ;	1.1577	2.1142	• •••
	0.7 816 -	7.1953	7,2058	, 2.1 1779
	1.7565	: ,1729	0.3084	· :. 75,29
1,4328	. 7.3	/.c421	0.4053	
	0.7984	2.3215	5 532	التوو
	1.8000	7,42394	0.6099	503
		2 5333	0.69799	" 0.8127."
· · · · · · · · · · · · · · · · · · ·	0.5291	0.6564	2,8039	1.5257
	: ,454	0.5098	0.9008	0.8408
1.000	1. 56 71	1,0000	1.0000	0.5010
35.70*0		Temperature	• 40.00°C	
. 1.0000	:. °535	3,0000	5.3000 ₇	0. 1609 1
1 2525	1 143	7 0242	2.2502\	. 5.3
2.5912	0.7657	0,0455	2.0981	
3.1912	0.1698	2) 1039	7.1983	∀
1,2997	: ""19"	3.1695	1.3033	2,7727
0.4026	0,7505	0.2333	2.3935	÷."""\$
1.1995	_3,7873	2.3175	0.4981	2,7845
	0.*949	2.4115	2.5986	0.7921
	2.504	0.5115	0.6995	2,5016
	- :	0.5558	- 0.8015	0.813*
•		0.80599	0.8986	0,5256
1.5000	0.8533	1,0000	1.0000	0.8495
	201,70°C 100000 110539 211029 211953 115021 214028 214028 214028 214020 215953 2169°8 217992 219000 355.00°C 110000 512535 21912 21912 21299° 214026 214095 215968 216994 217991 21898°	20190°C 20190°C 20190°C 20190°C 201939 201933 201933 201933 201933 201932 201933 201932 201933 201932 201933 201932 201933 201932 201933 201932 201932 201932 201932 201933 201932 201933	100000	Temperature

obtained in this work whereas values reported by TRC [1986] were found to be higher than the corresponding experimental values in almost every case.

4.5 Density-Composition Data

The density of each system over the entire composition range at every temperature level was measured. The density values were obtained using the period reading ofdensity meter and the density meter equation, Equation These values are presented in Tables 4.4 to 4.11. (3.6/). The density values reported in these tables are the average of ten measurements. Each density meter reading is hundred times greater than the actual period of the U-tube. therefore a density meter reading 0.260212 (Benzene at 20°C) correspond to a period of 2.60212 x 10^{-3} seconds. reproducibility of the density meter readings was found to be better than 5×10^{-8} seconds in the case of doubledistilled water at temperatures 20.00°C and 25.00°C and \pm \times 10 $^{-7}$ seconds at temperatures 35.00°C and 40.00°C for n-A change of 1×10^{-7} seconds in the density meter reading at 20.00 °C correspond to a change of about 1.59 x 10 kg/L in density value.

System	, < ³ ,	√	*	·	- - -	
	rature 20.00%			'		
	707.0	0.0974	0.18657	0.000	0.0338	n 45 s 30
Toltumer(A) in (Kitand(B)	0 2206	(KA)10	5820'0'.	0.0628	0 (900)	01 4 80 1
Toluenc(A) n Decand(B)	0.7485	2000	0.0733	0.0785	14711.0	1.09 1.10
Tollarne(A) in Ibidecane(B)	0.768	27.50 D	g 11847	H INT	0 (19)	DE 4 24 7
(u)terfor(A) in recommendation	0.7759	87.10.0	2460 0	0.1447	× 0.4253	2 .
_	0.7072	0.1145	7650-0	0.0785	0.0247	-
inhuthanisme(A) is felrade, and (B)	0.7637	0.0 886	0 19683	0.0179	0.0771	B
Liky lbettern (A) n'ibrablet ane (B)	0.7739	0.0283	1 0 000 1	0.0878	0.0865	
Tours	Temperature - 25,007	•	.			
Tollows (A) to (b) mo(B)	0.6980	0,1073	0.0227	Wa'a		= =
Tollowood Alice (B)	0.7259	0.0761	0.0000	0.0602		05 4 HC 5
(A) Solution (A)	0.7438	0.00%	0.0278	/180 0		E + /U s.
College (X) in the college (R)	- 0.7588	0.0486	8150.0	0,0854		8.64 ± 10
Collection of the second of th	0.7696	0.0478	0.0558	1040.0	<u>, </u>	8.71 10
Columnia (National State (Nati	0.6984	0.1213	0.0256	7910 0		7 11 1 10
Thyllen/ene(A) is letradective(B)	B. 7592	9750.0	2.5	0.0652	•	9 9
	0 2698	70.047	SH2(A) O	-: R5/0°0		

Ē

							-
nick.	o _√	₹-	· ·	~ ~ \ 	₹.	the between the same	,
	Imperature, 15.00°C			•	•		<u></u>
	O ACKNO		0 01 K	0.0042	0.0877	01 - 562 3	
Toluene(A) n Octave(§)	200000	6-20 	0.0270	0.0448	0.0497	- er	٠
Toluene(A) in the ario (B)	0.7179	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.0787	0.0042	0.00	, or 1 187	
Tolluena(A) in Exideciane(B)	0.77.0	5,2	6,60 1000 a	#//O B	O DRUS	2 2 2 2 3 3	
Tuluenc(A) n Tetradecane(B)		# 5.70 /	8,1,50 13	0.01899	9550-0	* 01 T SO T	
Tultuene(A) n Heradecane(B)		\$ 00 THE	0.0879	0,0004	0 (M).17	, 01 v 70 v	
Lthylbenione(A) n (Ltank(B) *	0.000	1620 0.	0,070	0.0784	0.0702	7	
Lthylbeniene(A) n Tetradecane(B)	0.76%	0.0143	e 1175.	98651.0	W. II 0	*. G. *	_
			· ·	-2			_
T.	Imperature - 40,00°t	٠ <u>٠</u>		· · ·			
The second secon	0.6861	7740.0	0.0790	R\$\$0.0	0.0455	01 1 650	:
Tollume(A), in U. (wire fin)	0.7152		5100 O	0.0%0		2 -	
	2.75	0.0802	· ·	0 0803		E 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Tollarnd(A) in taxes and (B)	0.7491	0.0300	0.0419	1,000	0.0719	2 7 1 .	
-foluene(A) n intrasector	3		0.0666	0.0939	7360.0	-	
fulument(A) is the sales and (3)	0.6863	0 112%	1950 0	0.0346	0.0286	-	-
	1487	0.0542	1070 0	0.0704		3. 3.	
ithylbeniche(A) n ierakune(B)	11.001.11	n 0201	76.80 O	, e	0.49795	III 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_

. di

*

Figure 4.1 : Density - Composition Plot at 25.00°C.

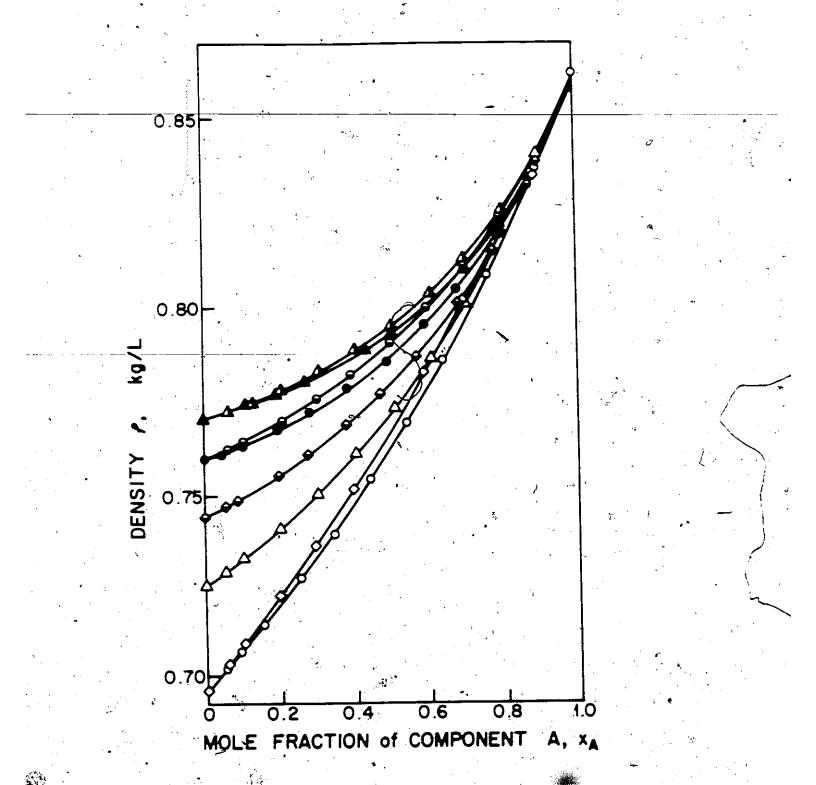
Legend

System

Toluene(A)-n-Octane(B)

Toluene(A)-n-Decane(B)

Toluene(A)-n-Dodecane(B)


Toluene(A)-n-Tetradecane(B)

Toluene(A)-n-Hexadecane(B)

Ethylbenzene(A)-n-Octane(B)

Ethylbenzene(A)-n-Tetradecane(B)

Ethylbenzene(A)-n-Hexadecane(B)

The density values for each system were fitted to

 $= \frac{1\pi n}{2} A_1 x_A^2$ (4.1)

where x is the mole-fraction of component A in the mixture. The values of the parameters A were calculated by the method of least squares and the order of the polynomial was chosen for which standard deviation of the fit is minimum. These values of the parameters are listed in Table 4.12. The standard deviation of the fit is given for each system in the last column of this table.

The use of the precision density meter to measure the densities of the binary liquid systems in this study resulted in high reproducibility of the results. The density meter proved to be able to give density values reproducible with ± 1.0 x 10 kg/L on the average. Since the density of the sample is measured in a closed glass tube the evaporation problem is almost eliminated but at temperatures 35.00° and 40.00°C the samples had to be left in the glass tube for forty-five minutes which is relatively a long, time interval. This may have caused some evaporation losses.

Figure 4.1 depicts density isotherms of all the binary systems of 25.00°C. Density isotherms are all monotonically increasing with the mole-fraction of component A; and the nature of these isotherms was found to be similar at all other temperatures.

The density-composition data were used to calculate the partial molar volume - composition data for each of the binary system at each temperature. The procedure followed in such calculations is given in Appendix B. The values of partial molar volumes obtained are reported in Appendix B.

4.5.1 Excess Volume of Mixing

Handa and Benson [1979] stated that volume changes or excess volumes on mixing two liquids can arise from any one of the following factors: (i) difference in the size of the component molecules, (ii) difference in shape of the component molecules, (iii) structural changes such as changes in the correlation of molecular orientations, (iv) difference in the intermolecular interaction energy between like and unlike molecules, and (v) formation of new chemical species. Normally volume changes occur because of a combination of these various factors. Consequently the complexity associated with the

Figure 4.1 : Variation of Excess Volume of Mixing with Mole Fraction at 20.00°C.

' egend

System

Toluene(A)-n-Octane(B)

Toluene(A)-n-Decane(B)

Toluene(A)-n-Dodecane(B)

Toluene(A'-n-Tetradecane(B)

Toluene(A)-n-Hexadecane(B)

Ethylbenzene(A)-n-Octane(B)

Ethylbenzene(A)-n-Tetradecane(B)

Ethylbenzene(A)-n-Hexadecane(B)

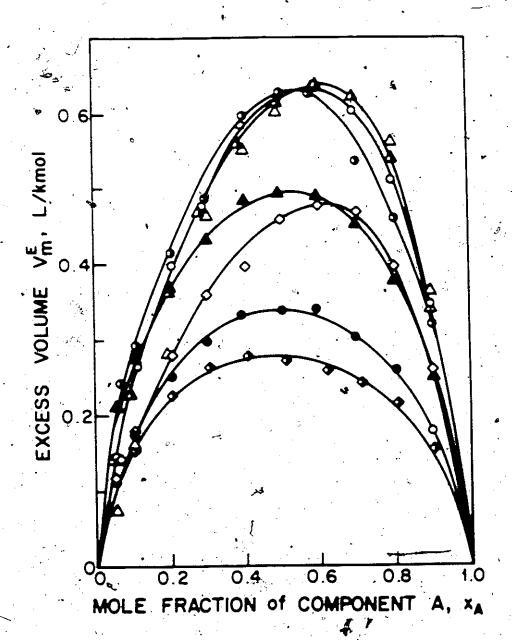


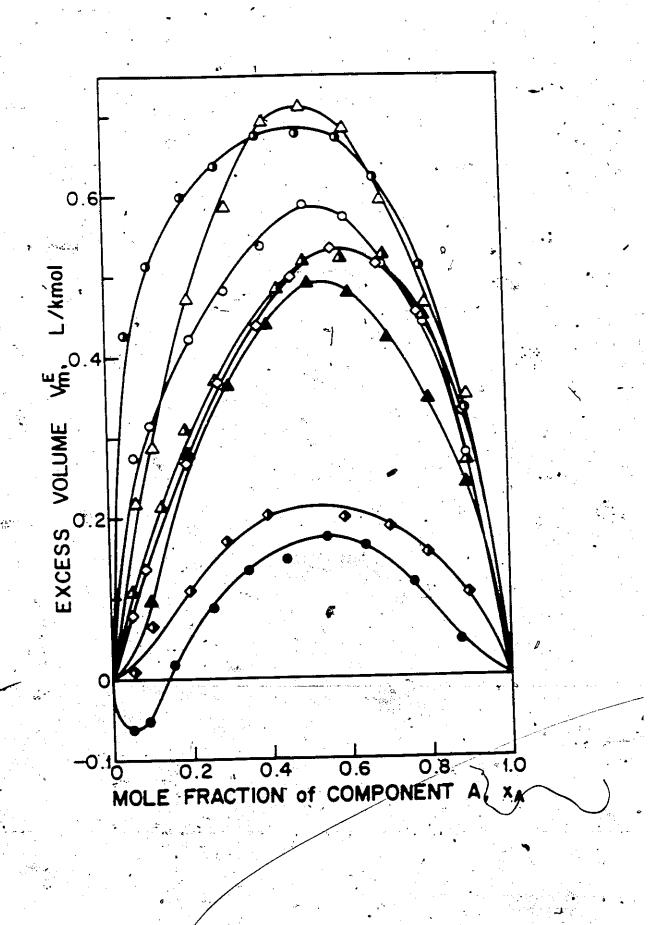
Figure 4.3 : Variabion of Excess Volume of Mixing with Mole Fraction at 25.00°C.

Legend

System

Toluene(A)-n-Octane(B)

Toluene(A)-n-Decame(B)


Toluene(A)-n-Dodecane(B)

Toluene(A)-n-Tetradecane(B)

Toluene(A)-n-Hexadecane(B)

Ethylbenzene(A)-n-Octane(B)

Ethylbenzene(A)-n-Tetradecane(B)

Figure, 4.4 : Variation of Excess Volume of Mixing with Mole Fraction at 35,00°C.

Legend

≜...
...
...
...
...

· **A**

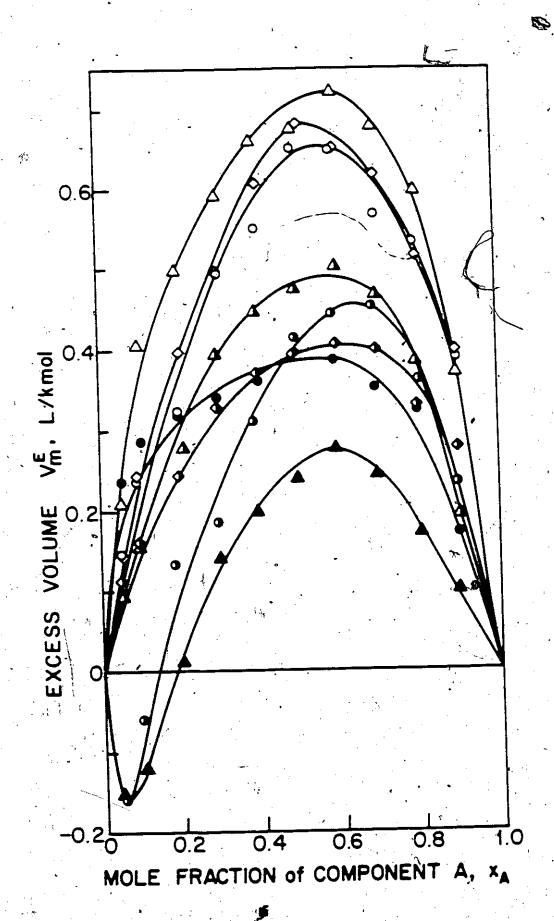
--: -0

 Δ

System

Toluene(A)-n-Octane(B)

Toluene(A)-n-Decame(B)


Tolumne(A)-n-Dodecane(B)

Toluene(A)-n-Tetradecane(B)

Toluene(A)-n-Hexadecane(B)

Ethylbenzene(A)-n-Octane(B)

Ethylbenzene(A)-n-Tetradecane(B)

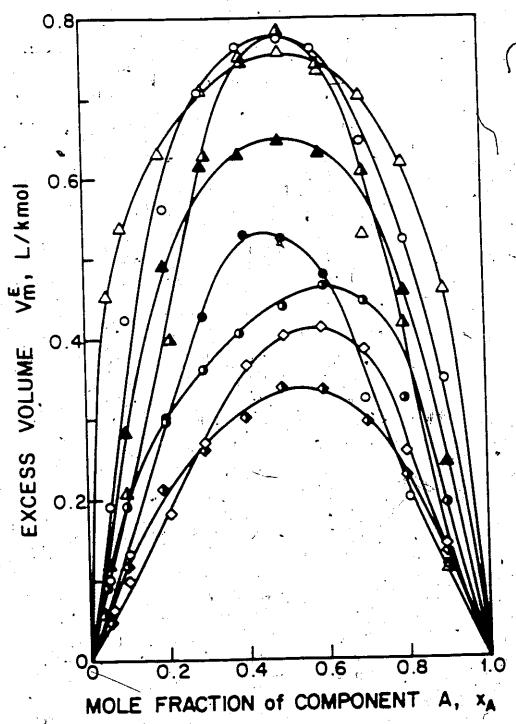
(

Figure 4.5 : Variation of Excess Volume of Mixing with Mole Fraction at 40.00°C.

System

Toluene(A)-n-Octane(B)

Toluene (A) -n-Decane(B)


Toluene(A)-n-Dodecane(B)

Toluene(A)-n-Tetradecane(B)

Toluene(A)-n-Hexadecane(B)

Ethylbenzene(A)-n-Octane(B)

Ethylbenzene(A)-n-Tetradecane(B)

with which the latter can be obtained experimentally with good precision, makes it a sensitive tool for testing the theories of liquid mixtures. Apart from this, excess volume of mixing data are useful in the conversion of excess thermodynamic functions determined at constant pressure to the condition of mixing at constant volume, in determining composition from density measurements on mixtures, and in industrial technology. Thus measurements of excess volumes of mixing continue to be an area of active interest and this is reflected by the enormous amount of data published over the last decade.

binary mixtures have been calculated from the density-composition data and are reported in Appendix C, over the entire composition range at four different temperature levels. The change of excess volume of mixing of all the binary mixtures with mole-fraction of component A are shown in Figures 4.2 to 4.5 at the following temperatures 20.00°, 25,00°, 35.00°, and 40.00°C, respectively.

These excess volumes of mixing-composition data were fitted to a composition dependent polynomial, called the smoothing equation which has the form:

					_	
System	,	¥	¥.			Standard leviation
The second secon	ature - 20.180°C	•				
The state of the s	1 1097	0,040,7	\$25.0	\$ ct 10.0	8696.0	0.0041
Tolumpa(A) in the and (a)	2.0126	0.2285	0.0034	06575-0	11111	10.007
Tollable (A) - n trecking (b)	1 6001	0.7780	0.6764	19697	- -	0.0091
Total of the safet and the safety	27.87.7	0.5505	0.8816.	0.1868	1,61999	HUMBER II
	2.4866	0.8679	0.6794	7 0.1763	0.840	11. (MP15
TOTAL CANADA CAN	(F) (F) (F)		0.44%	0.1208	3.000.3	TPANO B
ichylbenteiw(A) - n 'A' wantul	1,515a	0.5855	0.2666	0.2247	1, 3980	11 (10)84
Linyibeniene(A) is terrane(B)	2.4393	0,8958	5 (PSA) 11	. SWZII 1	•	1110 0
Tackhaa!	 rature = 25.00°c	· ·	3			· · · · · · · · · · · · · · · · · · ·
		37.	0 1687	0.4331	2.4596	5700 0
foluene(A) n Octano(B)		3	0.7511	1 1461	0 7604	n 0143
Tolume(A) in the are (B)	7.04695	0,6538	0.2860	1 6472	0.0003	85.00 0
Toluene (A) in the section	5.04%	0 8069		•	1	0 1107
Manufacture (V)	7.0370	0.7216	1 2278	0.0476	1 0405	11 (1004.6)
	2 # W 8	6250 0 7	1070 0	0.6213		
Lihylbeniere(A) n (A lane(n)		0.4513		2507 1	2 9411	2110 0
Libylbeniere(A) n lettade me(b)	• • •		, , ,	7116 0	7.960§	0.0110

Standard brytafton S178 B 0.011 9070-0 1710 0 0.01531 a utas B 1158 0.0253 0.447 1110 0 0.0216 3 = = 9,01% 96/16-1 A.31. IJ 11111 147.20 1,091 H. 82.4 6,6053 1 8425 1 0141 11:11 121 0.53836.0 16.77 17,0% 0 0.7865 1080-0 1,6071 1 710R 0.7497 N K 0.8715 1.084. CIRI II. #1, K1, 1 1.47698 1 7072 0.5206 0.1776 1975 0 11099 0.0112 1 0#41 L'APM 11.47 /181 n 0.1580 0.0985 70857 96,40,50 0.6197 0.53 0.6075 0,2019 LKKIN 70,1173 11 55.48 0 7162 0.2974 11 7 Inc. E. 20.33 2885 U O, BOXIS 747 10/15 (enteratüre - 40.180%) 55,00*6 \$ 0775 \$ 5.0751 1,7654 1,9467 1175 3 3. E 6174 1 4695 1. V.V. 0.5520 1.8075 1, 1611 2.150 9690 Junie 1 mil Lthylbeniene(A) n Tetrahe and(B) Lity (benzene(A) in Heamler aire(B) Lithyllichitene(A) in Tetradecane(B) Lthylbeniers (A) in Herader and (B) "Ethylbeniene(A) in thinke(B) Tollumbe(A) in Totradecane(B) Lithy Denzene (A) in Octane (B) fuluenc(A) in Heradecare(B) Tolluene (A) n Totrade, and (B) Toluene(A) n Hexadecane(B) foliaeme (A) in Thable aure (B) (o) tuene (A) in (bules and (B) Tolumpe (A) in the ane (B) Tolucine(A) in (k. taume(B) Tulluone (A) - n - Dec ane (B) Tolume(A) n (k tamo(B)

AME. 4.15, cunt'd

Tible | 4.14 | Farmmeterswiphelied in Cato Sumual Model

System		-11	इ.स.	13	Standard Deviation
Temperature + 21 %					•
		<u> </u>			
Tribere A moliciane B		1.3714	1727	1 1545	1 00 07 1 1 343
Totuene 4 in Decime 3		1.0114	-1.1513	1 1585	
Toluene Alinigopeopre Billia	1.1802	1 4511	1469*	: MC15 ::4**3.	333
Tolumne Alum-Tetracecame 3		2.6703	11.1585		
Tollame, Aliminexadecane, B	: 3353	3.2833	1 4535		:3::
Euro Denzene A in Octable B	1.1969	2.3954	1 1 ***	ig 1815 1 555€	.337
Sthilbenzene Ayrn-Tetragecare 3	7945	3.0980	13		1 1193
Ethilbenzene Alimeratecane B	1, 2539	3 t13t,). to 51 	- 1945 	
Temperature • 14_00 to 1			•	•	•
			-: :923	2.4606	: :354
Toluene Alinelotane Black	1.5465	7,9915	****	3215	2 229
Toluene A, in:Décane 3	. 350-	3. 3. T	: 1312	5 503	1.1115
Toluene A inclodecane 3	1.1564	2, 25		148	3
Tolumer Alich Tet gadecine 3	; 7504	11, 2001	2 2008	0329	, 334
Tolluene Asimielexadecane 8	4.43	1,"43"	1.3801	7373	: :::4
Emvioenzene Ajen-Octabe B	1.505	1.0040		2 2521	: ::::
Ethylbenzene A in Tetrapecane E	1,5498	2 3030	7 115 6 3 3574	9523	7 1315
	-41	3 3500 1		, 73+3	
a Sun Ibenzene A In Hexadecane 3					
Sun ibenzene, A. In-riexadecame, B. Temperature: + 1.35-00*T		33.0			0
Temperature • 135-0010				1.6921	2.3454
Temperature - 135-0077 Toluene A -m-Octane 3	1,3771			1.6921	2.3454
Temperature = 135-02°T Toluene & -m-Octane (3 Toluene A.ym-Decane (3)	2,5901 1,9898	1,541* *	2795		7 2.2454 375 - 2.2271 3 2.2338
Temperature * 35-02°T Toluene A -n-Octame 3 Toluene A -n-Octame 3 Toluene A -n-Decame 3 Toluene A -n-Docame 3	1,3801 1,9898 1,9810	1, 541." * 2, 500? 1, 1365."	1,27395	0,07343 9,65783 3,7892	7 2.2454 6 2.2271 6 2.2338 2 2.2338
Toluene A. nOctane 3 Toluene A. nOctane 3 Toluene A. nDecane 3 Toluene A.:-n.Dodecane 3 Toluene A:-n.Tetradecane 3	2,5001 1,9898 1,9810	1, 5417 ** 1, 5007 1, 1769* 1, 2963	1, 27395 1, 8094 1, 86335	2, 27545 3-65785	2, 2454 3 2, 2534 3 2,2534 3 2522 2 3695
Toluene A -n-Octane 3 Toluene A -n-Octane 3 Toluene A -n-Octane 3 Toluene A -n-Decane 3 Toluene A -n-Tetradecane 3 Toluene A -n-Tetradecane 3	2,5001 2,999 2,9810 1,4944 4,3,0060	1,5417 * 2,5007 1,1269 1,1263 3,1741	1.27395 0.8094 1.56035 -0.0405	2, 27343 3, 65783 2, 7892 1, 2039	2,0454 379,02273 3,02338 3,02338 2,0693
Toluene A -n=Octane (3 Toluene A -n=Octane (3 Toluene A -n=Decane (3) Toluene A -n=Decane (3) Toluene A -n=Tetradecane (3) Toluene (A) -n=Tetradecane (3) Ethylpergene (A) -n=Octane (3)	2.5001 2.9895 2.9810 1.4944 3.2260	1, 5417 ** 2, 5007 2, 12557 1, 1363 3, 1742 1, 4464	-1.27395 0 8094 1.56035 -2.2405 5190.5	2, 27585 2-65785 2, 7892 1, 2039 1, 2595	0,0454 0,02534 0,03534 0,0253 0,0253 0,0253 0,0253 0,0353
Toluene A -n-Octane 3 Toluene A -n-Octane 3 Toluene A -n-Decane 3 Toluene A -n-Tetradecane 3 Toluene A -n-Tetradecane 3 Toluene A -n-Tetradecane 3 Ethylbeniene (A) -n-Octane (B) Ethylbeniene (A) -n-Tetradecane (B)	2,5001 2,9995 2,9810 1,4944 3,2260 1,2508 3,4955	1, 5417 2, 5007 1, 2265 1, 2963 3, 1742 1, 4464 2, 6373	-0.27395 0.8094 1.36035 -0.0405 5130.5 0.9438 #	2, 27585 2-65785 2, 7892 1, 2039 1, 2595	2.2454 3.2558 3.2558 3.2558 3.2552 2.2553 2.2102
Toluene, An-Octame (3) Toluene, An-Octame (3) Toluene, An-Decane (3) Toluene, An-Tetradecane (3) Toluene, An-Hexadecane (3) Ethylbentene (A) -n-Octame (3) Ethylbentene (A) -n-Tetradecane (3) Ethylbentene (A) -n-Hexadecane (3)	2,5901 2,9898 2,9810 1,4944 3,2260 1,2508 3,4955 2,6893	1, 5417 2, 5007 1, 2265 1, 2963 3, 1742 1, 4464 2, 6373	-0.27395 0.8094 1.86035 -0.0405 5190.5 0.9438 (0,07545 9-65735 1,7892 1,0039 1,0595 6-0,0861	7,2454 3,2558 3,2558 3,2558 3,2552 2,2655 2,2102 3,2451
Toluene A -n-Octane 3 Toluene A -n-Octane 3 Toluene A -n-Octane 3 Toluene A -n-Tetradecane 3 Toluene A -n-Tetradecane 3 Ethylbeniene (A) -n-Hexadecane (B) Ethylbeniene (A) -n-Octane (B) Ethylbeniene (A) -n-Hexadecane (B) Temperature = 40.00°C	2,5001 2,999 2,9810 1,4944 3,2260 1,2303 3,4955 7,6893	1,5417 ** 2,5007 2,2563 3,1742 1,4464 2,6373 2,6765	1, 27395 1, 8094 1, 86035 -0, 0405 5190, 5 0, 9438 1, 83097 -0, 0433	2 07345 2 65785 2 7892 1 2039 1 12595 3 0 0861 V1 5133	7,0454 6 2,0334 6 2,0334 6 202 7,0695 7,0102 7,01017
Toluene A -n-Octane 3 Toluene A -n-Octane 3 Toluene A -n-Decane 3 Toluene A -n-Tetradecane 3 Toluene A -n-Tetradecane 3 Toluene A -n-Tetradecane 3 Ethylbeniene (A) -n-Decane (B) Ethylbeniene (A) -n-Hexadecane (B) Temperature = 40.00°0 Toluene (A) -n-Octane (B)	2,5001 1,995 1,9810 1,4944 3,2160 1,2308 3,4955 2,6993	1, 5417 ** 2, 5007 2, 2765* 2, 2765* 3, 1742 1, 14464 2, 6373 2, 6*65	1, 27395 1, 8094 1, 8635 -2, 2405 5190, 5 1, 8309; -2, 0433	2,07345 9,65785 2,7892 1,0039 1,0595 6,0,0861 V ₁ ,5153	0.0454 0.0271 0.0258 0.0258 0.0202 0.0255 0.0212 0.0451 0.0217
Toluene A -n-Octane 3 Toluene A -n-Octane 3 Toluene A -n-Decane 3 Toluene A -n-Tetradecane 3 Toluene A -n-Tetradecane 3 Ethylbentene (A) -n-Octane (B) Ethylbentene (A) -n-Hexadecane (B) Ethylbentene (A) -n-Hexadecane (B) Temperature = 40.00°0 Temperature = 40.00°0 Toluene (A) -n-Octane (B)	2,5001 2,999 2,9810 1,4944 3,2260 1,2308 3,4955 2,6893	1, 5417 2, 5007 2, 2269 2, 2963 3, 1742 1, 4464 2, 6373 2, 6765	2.27395 2.8094 1.86035 -0.0405 5190.5 0.9438 / 1.8509; -0.0433	2.07345 2.65785 2.7892 1.2039 1.2595 3.0361 V1.5133	0.0454 0.0271 0.0258 0.0258 0.0202 0.0451 0.0217
Toluene, An-Octave 3 Toluene, An-Octave 3 Toluene, An-Decane 3 Toluene, An-Decane 3 Toluene, An-Tetradecane 3 Toluene, An-Tetradecane 3 Ethylbentene An-Octave 3 Ethylbentene An-Tetradecane 3 Ethylbentene An-Hexadecane 3 Temperature 40.00°C Toluene An-Octave 3 Toluene An-Decane 3	2.5001 2.9995 2.9810 2.4944 3.2260 2.5308 3.4955 2.6893 0.527 1.5011	1, 5417 2, 5007 1, 12697 1, 1263 3, 1742 1, 4464 2, 6373 2, 6765 5, 1, 5041 3, 1, 9262 8, 3, 2150	2, 27395 2, 8094 2, 86335 2, 2405 5190, 5 2, 9438 2, 1, 8309 -2, 2433 2, 7025 2, 6732 2,073346	2,07385 9,65735 1,2535 1,2535 1,2535 7,2555 7,5555 2,0418 2,0418	1.1454 1.2454 1.2338 1.2695 1.2122 1.2451 1.2121 1.2121 1.2327 1.2421 1.2421
Toluene A -n-Octane 3 Toluene A -n-Octane 3 Toluene A -n-Octane 3 Toluene A -n-Decare 3 Toluene A -n-Tetradecane 3 Toluene A -n-Hexadecane 3 Ethylbentene (A) -n-Hexadecane (B) Ethylbentene (A) -n-Octane (B) Ethylbentene (A) -n-Hexadecane (B) Toluene (A) -n-Octane (B) Toluene (A) -n-Octane (B) Toluene (A) -n-Dodecane (B) Toluene (A) -n-Dodecane (B)	2.5001 2.9898 2.9810 2.4944 3.2260 1.2508 3.4955 7.6893 0.527 1.820 0.416	1,5417 2,5007 2,17697 2,0903 3,1742 1,4464 2,6373 2,6705 5 1,5041 5 1,9262 8 3,2341	2, 27395 2, 8094 1, 80335 -2, 2405 5190, 5 0, 9438 1, 8309/ -2, 9433 2, 7025 2,6132 -2010346 1, 2095	2.07385 9.65735 1.7892 1.2039 1.2595 2.0361 2.3697 2.9697 2.8697	1 0.0454 3 0.0274 3 0.0238 3 0.025 3.0222 3.02451 7.02815 7.02815 7.0282 85 0.0342 8 0.0728
Toluene A -n-Octane 3 Toluene A -n-Octane 3 Toluene A -n-Octane 3 Toluene A -n-Decane 3 Toluene A -n-Tetradecane 3 Toluene A -n-Tetradecane 3 Ethylbeniene (A) -n-Octane (B) Ethylbeniene (A) -n-Octane (B) Toluene (A) -n-Octane (B) Toluene (A) -n-Octane (B) Toluene (A) -n-Dodecane (B) Toluene (A) -n-Dodecane (B) Toluene (A) -n-Tetradecane (B) Toluene (A) -n-Tetradecane (B) Toluene (A) -n-Tetradecane (B)	2,5001 2,995 2,9810 1,4944 3,2260 1,2303 3,4955 7,6893 0,527 1,529 2,416 1,484	1,5417 2,5007 1,17697 1,2903 3,1742 1,4464 2,6373 2,6705 5 1,5041 5 1,9262 8 3,2341 9 2,4703	1.27395 0.8094 1.56035 -2.7405 5130.5 0.9438 1.8309 -0.0433 1.7025 2.6732 0.0346 1.2095 1.2095	2.07345 2.65735 2.7892 1.2595 3.0362 V1.5153 2.0418 2.6697 2.8204 2.357	1 0.1454 0.2334 0.2334 0.202 0.2695 0.2122 0.2451 0.1217 1 0.2815 0.2927 1 0.2927 1 0.0726 2 0.016
Toluene A -n-Octane 3 Toluene A -n-Octane 3 Toluene A -n-Octane 3 Toluene A -n-Decane 3 Toluene A -n-Tetradecane 3 Toluene A -n-Tetradecane 3 Ethylbeniene (A) -n-Octane (B) Ethylbeniene (A) -n-Octane (B) Toluene (A) -n-Octane (B) Toluene (A) -n-Doiseane (B) Toluene (A) -n-Doiseane (B) Toluene (A) -n-Tetradecane (B)	2,5001 2,995 2,9810 1,4944 3,2260 1,2303 3,4955 7,6893 0,527 1,520 2,416 1,484 1,049	1,5417 ** 2,5007 2,2963 3,1742 1,4464 2,6373 2,6765 5,1,5041 5,1,5041 6,1,5041 9,1,4703 6,1,96296	2.27395 2.8094 1.8035 -0.0405 5190.5 0.9438 1.8509; -0.0433 2.7025 2.6732 -0.05346 1.2095 -0.0397	2.07385 2.5787 1.2595 1.2595 2.0861 71.5153 2.0418 2.6697 2.977 2.8264 2.357 2.710	1 0.1454 2 1.0271 3 2.238 2 1.095 2.2122 2.2451 2.1217 4 2.2815 4 2.2927 4 2.0726 2 0.0167 5 3.040
Toluene A -n-Octane 3 Toluene A -n-Octane 3 Toluene A -n-Octane 3 Toluene A -n-Decare 3 Toluene A -n-Tetradecane 3 Toluene A -n-Hexadecane 3 Ethylbentene (A) -n-Hexadecane (B) Ethylbentene (A) -n-Octane (B) Ethylbentene (A) -n-Hexadecane (B) Toluene (A) -n-Octane (B) Toluene (A) -n-Octane (B) Toluene (A) -n-Dodecane (B) Toluene (A) -n-Dodecane (B)	2,5001 2,995 2,9810 1,4944 3,2260 1,2303 3,4955 7,6893 0,527 1,520 2,416 1,484 1,049	1, 5417 ** 2, 5007 2, 2765* 3, 1742 1, 4464 2, 6373 2, 6*65 5, 1, 5041 5, 1, 8262 8, 3, 2550 4, 3, 2541 9, 2, 4*03 66, 2, 1, 96296 13, 3, 2400	1.27395 0.8094 1.56035 -2.7405 5130.5 0.9438 1.8309 -0.0433 1.7025 2.6732 0.0346 1.2095 1.2095	2.07345 2.65735 2.7892 1.2595 3.0362 V1.5153 2.0418 2.6697 2.8204 2.357	10.1454 10.271 10.2318 10.2318 10.2310 10.2451 10.1017 10.2815 10.2827 10.2

,;

Ì

The values of the constants, "A of this Equation (4.2) along with the standard deviation of the fit are reported in Table 4.13.

The excess volumes of mixing-composition data were also fixted to an empirical correlation put forward by Kato and Suzuki [1978] which is given by:

$$v_{\pm}^{\Xi} = k_{A} x_{B} (x_{B} x_{B} x_{B} x_{A} y_{A}^{\Xi} + v_{A}^{\Xi}) + x_{A} (x_{B} x_{A} x_{B} y_{A}^{\Xi} - v_{B}^{\Xi})$$

$$= (x_{A} + x_{B} x_{B} x_{B} x_{A} x$$

where $V_A = V_A$ and $V_B = V_B$ are the two partial molar volumes at infinite dilution of components A and B, respectively and A_{AB} are the two non-randomness factors or adjustable parameters of the equation. These values were calculated and reported in Table 4.14 along with the standard deviation of the fit. In general for every system at every temperature level, the fit is better with smoothing equation as can be seen in Tables 4.13 and 4.14.

All, the systems showed positive excess volume of mixing at every temperature except toluene-n-octane at 25.00°C, toluene-n-decame and toluene-n-tetradecame at 35.00°C which showed negative excess volumes at low concentration of

component A. At the lower temperature levels i.e. at 20.00 and 25.00 °C the excess volume of mixing gradually the number of carbon atoms of the second increased with 'component, Pai.e. n-alkanes. At 35.00°C and 40.00°C there were no such trends; but at every temperature level, the excess volume of mixing was higher with systems containing n-tetradecane compared to / n-hexadecane and containing n-octane or n-decame. The shape of the aromatic component, i.e., toluene and ethylbenzene are spheroidal while the shape of the second component, i.e., n-alkanes are all rod-like and, it is this difference in molecular shape of the two components which is probably the primary factor for excess volume of mixing for these binary mixtures. Pena and Delgado [1974] have reported some values of excess volume of mixing for systems containing benzene and n-The excess yolume of mixing alkanes at \$5.00°C. toluene-n-alkane, show somewhat lower values at 25.00°C than the work of Diaz Pena and Delgado [1974]. Same trend is observed with systems containing ethylbenzene. Therefore it may be concluded that a methyl or ethyl group in the benzene ring helps the rodlike n-alkanes to accommodate in a more packed way (in the binary mixture. As the temperature increases the Tree volume of a liquid is increased, as such one would expect a decrease in excess volume of mixing at

TABLE (1913) (Second Composition Data of the System Tolumne & Childrane B.

	<u> </u>	Absolute	Mole Fraction	Communication (Communication)	ಸಿಕ್ಕಾರಿಸ್ (15ಯಾಗಿ)
r,	ಚಿ:	₽.	**3	, <u>s</u> t	<i>ਤ</i>
Terper 1847	• 20.30,*0		Tesperatu	ere + 33.00°C	
		54.35	1 0000	: *331	1.509*
0.000	4.1	3300	2: 24995	1.7151	; 50 5 *
1.354	3.*5**	1.53159	1.0912	1.7299	1,5031
: ::::	. .		1.1545	1. 19 0*	1.4.3
1005	1.7242	3-3-	1. 1566	* ****	1933
2.2344	j 75 74 - S	3217	3472	1.5637	1,4711
393	1.6914	3.5143	: tit.	1.5499	1.4191
j:,5027	. Silbe₹¶	515e '	1.5437	2.5309	1,4913
. 3 94 6	1.6680	3121		3:6321	j, 4964 s. j.
: 27 7	t telis "	1 5289	1 5408	1,6159	: 5:54
0.8034	1 20013	1,5416	7.7612	0,6283	1 5229
3 3993	3 po4"	2.5594	3747	0.6413[%]	1,5525
1,1000	: • • • • • • • • • • • • • • • • • • •) § §⁵ °≎ 	7,0000		
Temperatu	re • 55.20°C	A.*	· Tempera	nare : 41,00°C	
		1441	1 (1000)	1 5201	 1.429* <u>k</u>
.0000	1.6580	4516	1.151	- 1.61°1	1 4265
1440,	3 8503	141779		1.5093	1 1 4243
1.1332	1.63897		: 19 5 e	1,5949	् इ.२०७
0.0008	2.6139	3,4431	2.29994	1,3403	5 4179
2.1342	1.503.	1. 1393	1.40.23	3 Se ā l	1 4169
3943	1.5951	1,4362	3,4942	1.5581	2,4171
], 495¢	7 0.3849	: 4349		2.5495	1 4193
	1.5757	7,4419	2 5939	2.5439	1217
0.6003			: : ; } 4 *		
3.6003 3.6974		11, E4 TS		* 0.150°	1,13,94
		21,44175 21,4572	/ 0.5003	34097	1.4534 1.466
2.6974	:::5541			7,54091 7,5411 7,5508	; 44ee

TABLE | 4 15 | Viscosity-Composition Data of the System Tollette & in-Decame 3

Mole Faction	Eunematic Liscosity	ibsolute (is mail)	To Mode Fraction	(inematic (inematic	Absolute Auscosity
x.	ંલા	£2 <u> </u>	1,	<u> </u>	
Temperature	+ ¥ 22 . 20 * 2		Competitions	= 25.00°C ×	
: . :cob:	1.1543	1.3133	2.0000		2: 5512
1.15799	1,3125	7, 8939	3.3519		.: 955
1.1245	194417 11.1689	1.8617	1,1005	1.1975	3.4051
1.271	1.1955.	1 1105	2 22197	1, 1264	1,1509
1.3046		: ***	2.837	0.9614	1 7119
. 3040 7,424°	1.9013	7,7353	1,4060	2,904\$.: 441
45e4	7.9074	1.7233	1.5113,	1,8450	1 6518
2.5 7 72	1.5488	1.5654	: 4100	: 73%	0.6134
2.3774	1,7991	1.5424	0.7350	2,7496	1,5000
	1.7489	1.0151	1.8021		77.5180
1. 231	1.7272	1 59595.	3.8957	7.6715	1.5616
1 1000	1.6	: 5475	1,0000	2.5413	2,5525
Tesperação	- 55.00°C		Tomperatus	re • 40,00°C	* 1
1.1000	1.,0293	: 13898	0.0000	1.961	1. 13 11
1495	1 00095	1.722	. 2,0432	7,9434	1,5783
.560	; 3°53		1,1004	1.9117	0.5599
304	1.91590	1.6723	7.2221	2,5609	2.5254
1.1979	3.5652	1,5406	1.2993	1.4150	7.5025
1.3929	5151	0.0135	. 2.39≯	2,77%	2.5772
361	1.7637	7.5815	1.494	2.7258	3,5514
1,5965	: 111	2,5565	1.5931	1.5834	1.51%
		: :340	0.0955	- 2.5434	: 50 .50
793	2.63 8 6	:.5151 *	3,3009	0.6065	- : 1885
. 73-3			3. 3 96	5.5750	1 4739
1,19*9	0.6055	0.500*			; 4c · .

. . .

Table (4.5) - Alecosity Composition Data of the System Tolliere Africodecime 3.

	• .			7	
Hole Fraction	Aunematic (1900510)	Colle (1839)	Mole Fraction	Commutation (1500510)	Absolute Viscosity
r _k	:5:	. ಚ	I,	ವೇ	ئة. <u>ئ</u>
Temerature	- 10.00*0 ;		Temperature	• -aslad*c	•
augocy :	1.9743		0.0000	1, 8248	1.3581 ,
1.1641	1.563	1,4114	1,1551	. 1.7356	
1.1150	1 7 3 7	1.3515	: :81.	1.6528	1,0603
1.2092 🚗	1 0.04	3e *	1,1959	, ilsiis 🕟	1,1496
15 3004	1.4801	1.1351	1.1719	y 1, 4067	1.2703
1.403*	1.3409	1.13%	2.3800	1,1730	0.9755
1.5011	* * * * * * * * * * * * * * * * * * * *	2.9425	2,4701	1.1611	sy 11,901#
1.5003	1 1 150	1.15	. :(3 ⁻⁰⁻	1.3439	0.8205
1.7015	51.9 639]		1,5854	3.9195	0.7363
1.5013	1.4532		1, 7905	.: 4:4	2.5713
1.30099	7597	i.6401	1.1595	ं सम्बंध	
1,0000	2.5***	1.5875	1,0000 %	2.5413	1323
Temperature	• 35. X*C		Competition	• • ဆက္က [*] င	
1.0000	1: 555 6	1.14*4	p. 2600	: 4451	1.06195
: :32	1.15599	1.1223	0.0508	1 3891	1,0233
1.0996	1,4313	1. le33	0.0924	2.3435	1.9914
2.2249	1 30e3	2.97896	2 2233	1.11394	-2.9119
	1.1395	1.9134	1,3003	* 1.1242)), (41 *
1,4001	1 0915	3,4333 •	0.4063	₩ 1,020 [™]	5.7751
: 49 1 6	1.9949 →	1,1580	3.5134	1.9139	3. 121
3.3744	1,9031	1,1061). 5 955	: 1489*	1.5605
: 55694	:. 1 054	2.6432	0,7015	. 3.7533	્ ુ ૧. ફ્રુગ્રૅફ
3.7979	2.1243	2.5868	: 0.7999	10.5875	2.5538
•				0.6151	1. 0.5065
2.9991	1,6479	2.536*	2.49894		

TABLE 4.18 / Viscosity-Composition Data of the System Tollene(A)-n-Tetradecane(B)

<u> </u>	•		· 	<u> </u>	_0
Mole Fraction	Kinematic Viscosity	Spolute Viscosity	Mole Fraction	Kinematic Viscosity	Viscosity.
E 3"	ವ:	ਦਾ .	• [*] \		æ .
Tesperature	- 20.00°C	- 1	Temperature	• 15.00°C	
2.000	3.0159	2.303*	5.2000 .	2.7373	1.2799
o. Aci	1,3050	1.1400	. 3.3469 —	L 1.6039	2,9805
	1.0083	1.2469	3.1072	2,4350	\$ 5798
:/2073	1.3681	1.9275	1.19 69	2.1563	1.6773
√.302 3 ·	2.09099	1.5247	0.2854	1.9666	1.5151
. 3 994	1.33599	1,43998	0.3858	1.7245	1.3419
1.3034	1.5879		7,4918	1,4924	1.1729
2.5820	1.4090	1.1243	3.5 944	1.2505	1.01795
3.7036 .	1,1614	3.9431	0.6815 (°	1.12295	0.9032
2.8048	ਹ.9165	. 0. 3062	7.7929	შ.9370 [°]	0.7675
1.9018	0.8177	0.6894	1.3947	0.7 5 07	0.6533
1.0000	3.6*** 3.6***	ેલ્ડક*હ	1.0000	3.5413	0.5528
Temperature	- 35.00°C		Temperatur	e = 40.00°C	
0.0000	2.232	1.71096	3.0000	2.0900	1.5651
3.2513	2 1504	1.6301	<u> 2.25</u> 03	1.9874	1.4934
0.0991	j, 2.0573	1.5561	0.09	1.8893	1,4231/
0.1977	1.3496	1.4071	j. 1356)	1:7329	1.311¢
1.1967	1.5531	11.2663	1.29/2	1.5413	1.175
3.3863	1.4942	1.1450	0.3892	1.3795	1.0600
2.4975	1.2890	1.0047	-0.49 % 4 ′	1.2094	A 1 0.9 <mark>581</mark> .
o.3973	1.1241	0.3858	0.5902	1.2651	0.8348
0.6983	0.9703	77,7749	0.6908	0.5233	0/-359,
J. 963	0.538	3,6809	0.5046	3. ***46	
		F	·	e 3 4434	· /2.5468
1.89897	0.696	0.57*6	0.5977	7 0.6628	13.3400

TABLE 1,19 Viscosity-Composition Data of the System Tolumneth) -n-Heradecane(B)

		1 <u></u>			
Mole Fraction	Kinesatic (iscosit)	Absolute Viscosity	Mole % Exaction	kinematic , Wiscosity	Absolute Viscosity
	ವಃ	₽	, x	: 51:	ੁੱਤ
Temerature	* \$0,00°5°		lemera ture	≈ = (25.00°C	
	1.6.1	3,4525	31,0000	3.9762	3.0650
0.0444	4 2085	7 1011	0.0 669 7 ^{00.0}		1.82495
t.:959	3.9150	3,0406	1.13099	3,3760	1.5151
Ç.1939 ≅.2033	3.3916	1,54*1	1.1917	3,2563	2.35
0.2511	1.9897	1,3433	::: ::::	21,7794	2 1581
38898	2.5301	1.9968	2.4333	1.1675	: 7091
	2.1051	× 1:6750 +	0.5026	.1.93297	1,5326
0.6004	368	1.3901	p. 5973 -	1.6303	1 3045
2.69**	1.4245	1.1586	3.7 51 7.	1.3215	
	1.1435	0.9441	0.7984	1.0661	1.5°c.
1,7978 Charter	0.5881	2.146	3 89799	2.8436	2,727.36
0.9004 1,0000	2.557	2.5 5 * 6 *	1.0000	0.6413	50. 5525
Temperatur	e • 35.00°C		Tesperatur	e e 40,00°C	
5000	3.2199	1,4586	0.0000	,2,9291	2,2288
0.3363	3 5935	1.3641	0.0533	7, 7556	1,1009
.3.0987	2,8747	2 2031	0.0981	7:6168	1.9956
3,2114	2,4990	1 9245	0,2119	1.3011	1.716
2.3273	1.1985	1.7014	3 - 0. 2950 (4)	2.0638	2.591
a. 399 2	1.9281	1.5003	0.3956	\$ 7957	3938
3.5331	1.6401	1.25e3	0.4984	1.5361	er i i i i i i i i i i i i i i i i i i i
31.3903/	1,4038	1.110*	ోం. .5995	7.3125	1, 363
3.70%	1.15297	0.9240	0.6 9 95	1.0903	0.67 09
27.969	0.9124	0.7744	0.1946	0.903*	2.7319
2, \$5.78	0.7543	0.6251	0.9000	ាំ (១.គ រប ៈ)	7.5883
. –	0.5783	0.4925	1.0000	0.5508	0.46
10000	ده ، د د د		a de la companya de		<u> </u>

TABLE 4,20% Viscosity - Composition Data of the System Entylbeniene Alan-Octame B

Mole Fraction	Kinesatio Viscosity	Absolute Viscosity	Mole Fraction (Kinematic Viscosity	Absolute Viscosity
x ,	. ತ:	¢F.		ವ ೇ	÷
Temperature	+ 20.00°C		Temerature	• 23.00°C	· #
	*69	1,5455	0.0000	, 0.7298	5.797
2.2544	3. 7533 -	1.5423	p.25±2	1.7111.	5093
1.111	1 7558	5421	1.1005	1.7155	0.5088
5.2253	÷,7454	5.542*	7.1963	2,7042	1.5096
0.3051	3.7 329	3.5435	2917		1.5133
1.4099*	117273	3509	2.3979	1.58999	2.5.3
3.5113	3,7243	0.5602	5,5898	1.5571	3.5375
0.6193	1.7246	2.5 35	2.7307	2,59099	1.55396
3,7113	3.7276	38*9	านกราช	5.69°6	1.5719
2.5071	:.*3€*	0.5056	5964	1.7091	1.5953
0.9012	2.7 5 59	1.534	1,0000	7.7299	Ni 15292
1.1000	*****	± ∞*5 -			
Temperatur	• 35.00°0	-	Temperatur	e + 40,00°C	• • •
			7. 2000	7 5251	 1 .4291
1.3500	10.6550	1,4541			
0.2000	`∴ 65 50 ⊘ 65 1 9	4541 4539	2.2451	2 6215 4 -	1239
•					2 4298
2.1315	3.6519	, [™]	1.3451	2 621 5 -k = ¹	1 4298 °
0.0915	0.6519 0.6471	**	00 0461 000976	2 6215 k = 17 2 615 T	7.4398 7.4315 7.4352
0.0915 0.0971 0.1865	2.0519 0.6471 0.6384	1.4539 2.4542 2.4553	1.3481 1.0976 1.1971	0.6215 kg/m 0.6157 _1.6071	1,4298 7,4315 5,7,4352 7,4401
0.0918 0.0912 0.1868 0.19 83	0.6519 0.6471 0.6384 0,6304	7,4539 0,4542 1,4553 0,4590	1,0481 2,0976 3,1971 2,1949	0.6215-6, 0.6257 1.6071 0.6013	1 4298 7,4315 1 4352 7,4401 1,4473
0.0315 0.0971 0.1865 0.19 6 9	0.6519 0.6471 0.6354 0.6304 0.6252	2,4555 2,4553 2,4553 2,4550 2,4644	2.0462 2.0976 2.1971 2.1949 2.3974	0.6215 40	1,4298 7,4315 5,7,4352 7,4401
0.1515 0.1971 0.1565 0.29 69 0.23953 0.24500 0.5919 0.	0.6519 0.6471 0.6384 0.6304 0.6252 0.6229	7,4539 0,4542 1,4553 0,4590 0,4644 2,4794	1.0482 3.0976 3.1971 3.1949 2.3974 0.4902	0.6215 - 8 - 67 7 6157 7 6071 0.6013 7 0.5959 0.5942	1 4298 7,4315 1 4352 7,4401 1,4473
0.1515 0.1971 0.1865 0.2599 0.03983 0.14900 0.5919 0.4	0.6519 0.6471 0.6384 0.6304 0.6252 0.6229	7,4539 0,4542 1,4553 0,4590 10,4644 2,4794 0,4810	2.0482 2.0976 3.1971 2.2949 2.3974 0.4902 2.5966	0.6215 - 6.27 2.6071 0.6013 0.3959 0.3942	2, 4298 1, 4315 2, 4352 1, 4401 1, 4473 2, 4575 3, 4690 2, 4847
0.1515 0.1971 0.1565 0.29 69 0.23953 0.24500 0.5919 0.	0.0519 0.0471 0.0384 0.0304 0.0252 0.0229 0.0219	7,4539 0,4542 1,4553 0,4590 0,4644 0,4704 0,4810 0,4952	1.0462 2.0976, 3.1971 2.2949 2.3974 0.4902 2.5966 0.6955	0.6215 - 6.27 2.6071 0.6073 - 0.5959 - 0.5942 - 0.5942 - 0.5959	1,4315 1,4315 1,4352 1,4401 1,4473 10,4575 2,4690

agents of the constant Composition Data of the System Ethylbenzene Alan-Tetracecame E

Mole Fraction	Kinematia Kisoosit	Amediuse Viscosis	Mole Fraction	Kinesatio Viscosity	Absolute Viscosity
1	ے:	<u>ಚ</u>	τ _λ	<u> </u>	, eF
Temperature	• , 20.30*1		Temperature	• 25.22*5	·
5. 203,627	3 2139	: 87	1,0000	2, 7373	1.1799
0.00 % 0.03 %	1.545	1.1795*	2.2623	1,3554	~ =
7 1151	1.13	1 1161	1.125	1,4305	1 8573
	1.3591	1.8245	1.2109	1,1575	1.5617
1931	1,1257	1.5547	1.3033 +	1,9310.	1,4950)
4,4,	540.	1.4515	1,3946	: -1	1.3505
1.49e3	1 5375	1.2995	0.5007	1,5153	1.1975
•	1.4239	1435	0.6007	1 3154	/ 1.3599
31 53,7\$	1.1344	1.2052	1.1002	. 1,1535 /	1.335€
. 1.69**	1 3014	1.8789	1,7976	1.3014 /	1 4231
1 145"	. 0014 1 9008	T. 756.4	3.89 6	0.8581/	1, 7311
- 1. \$999 1. 5001	: #T[1 1		1,0000	2.72995	1.6191
		<u> </u>			
Competature	•1 35.30°C	,	Tesperatur	• • • • ∞°c	· <u> </u>
	: 1:32	1.55	1.000	: /3900	: 5651
1.0000		1.6363	2, 2529	Д: 356 5 °	1,4916
0.4 529	1.0534	1.3533	1:0923	/1.954	-1.4355
	347	1.40e ⁻¹	a 1991	/s 1.7104	1 1971
.90.19 9 *	1,000	::11	5.3032	1.5372	1.1747
1, 1950	1 1384	1.1511	0.4005	,	/ 1.7645
25.3	1.53153	1.0299	0.4961	•1,2363	· / : 302:
1,44 5	1,551.	2.9377	E 5918 /	1,1061	
5 2.5814	1,000	3.5201	2,7004	3.9587	. 1659
2.59*\$	-	77498	3 -343	2.8417	0.6830
3.3005		2 6399	0,599	g. *11** *	2,6036
3.8974	595				

TABLE 4 11 Viscosity/Composition Oata of the System Ethylpentene: A - 1-mexadecame(8

Mole Fraction	(menatic siscusity	Absolute Viscosity	Mole Fraction	Kinematic Viscosity	Absolute Viscosity
* 4	:St	Œ	x .	ವೇ	
Temperature	• 20.30*3		Temperature	• 18.30°I	
1.0000	4,4614	3,4515	0.0000	3 9762	5,3630
4.2539	ा स्थ	5,2163	: .3 69 3)	3,5403	1.8122
1.1229	3 5 5 5 7 5	· 3.2145 🧗	:/-	3 4305	1.65597
1.1953	3,3%5 1	3.6545	::58	3.0187	. 3561
3.3022	1.5%1		3.3084	1.6157	2,7475
1.4028	1.4811	1.9058	0.74053	1.2621	1.7531
2.4927	7.1295	: 7005	: 75027	1.93 90	1.5418
3,5953	1. *9 69	1,1494 .	3.6099	4.6215	1.3032
. 69*5	1,5009	1,1258	0.69799	38399	1.124
2.7991	1,2139	1.0065 .	0.5029	1.1272	: 3 5.7 ,
3.3002	0.9753	0.6245	2.9008	0.9154	3. 7697 1
110000 -	3.7731	3.6675	1,0000	7.72998	3.6292
Temperatus	re' + 35.00°C		Temperatur	e - 40.0010	<u> </u>
3,3000	3.2199	2.458c	0.0000	2.9292	: ::::
3.3505	3.2354	2.3199	0,0502	2. 614	: :.499
0.0912	1.3916	Jan 2, 2151	0,0987	2.6053	1.9 3% ;
3.1912	1,9361	2.5	0.1983	2.3217	1 7516
:	1.2164	11	0.3033	2.3143	1.550
		1,5011	0.393\$	1.50**	1.4058
0.4026	1,9241	1.3000			1 1105
	1,9141	1.3122	0.4981	1.5558	-
3,4026		1	0.4981	1.335e	1.0579
0.4026 0.4995	1.0009	1.3122			1.0579 3.9976
0.4026 0.4995 0.5968	1.6669	1.3122	0.3986	1.335e	1.0579 0.9076 0.7676
0.4026 0.4995 0.6998 0.6998	1.0669 1.4361 1.2063	1.3122 1.1416 0.9706	0.5986	1.335e 1.1322	1.0579 3.9076

confirm this notion in all systems. Similar behavior was reported by Garcia et al. [1986], and Dieter and Heintz [1986]. The relatively small negative values of the excess molar volumes observed in Figures 4.3 and 4.5 at low concentrations of component A in the case of the systems toluene (A)-n-octane (B), toluene (A)-n-decane (B) and toluene (A)-n-tetradecane (B) are probably due to experimental error.

The excess volume of mixing curves fitted well to the "smoothing" equation, Equation (4.2) at lower temperatures but at 40.00°C there were some scattering of data points which may be due to the evaporation losses in the density meter tube since at higher temperatures samples were allowed to stay in the density meter tube for forty-five minutes to attain thermal equilibration.

4.6 Viscosity - Composition Data

The experimental viscosity data are presented in Tables 4.6 to 4.13. For each of these viscosity values, efflux times were measured at least three times and the average value was used in the determination of the viscosities. The kinematic viscosity isotherms at each

Figure 4.6 : Kinematic Viscosity-Composition Plot for Systems with Toluene at 20.00°C.

' edend

0

Δ

Δ

•

System

Toluene(A)-n-Octane(B)

Toluene(A)-n-Decame(B)

r Toluene(A)-n-Dodecane(B)

Foluene(A)-n-Tetradecane(B)

Toluene(A)-n-Hexadecane(B)

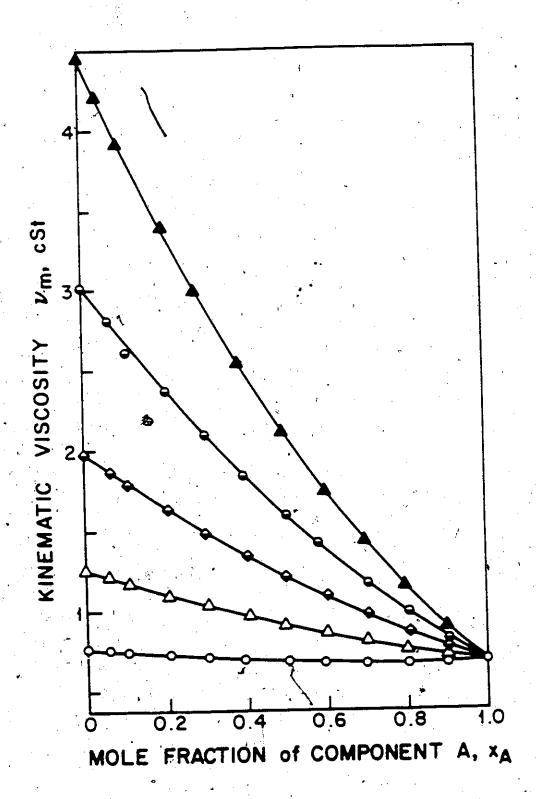


Figure 4.7 : Kinematic Wiscosity- Composition Plot for Wiscosity- Composition Plot for With Ethylbenzene at 20.00°C.

Legend

 \Diamond

.

System

Ethylbenzene(A)-n-Octane(B)

Ethylbenzene(A)-n-Tetradecane(B)

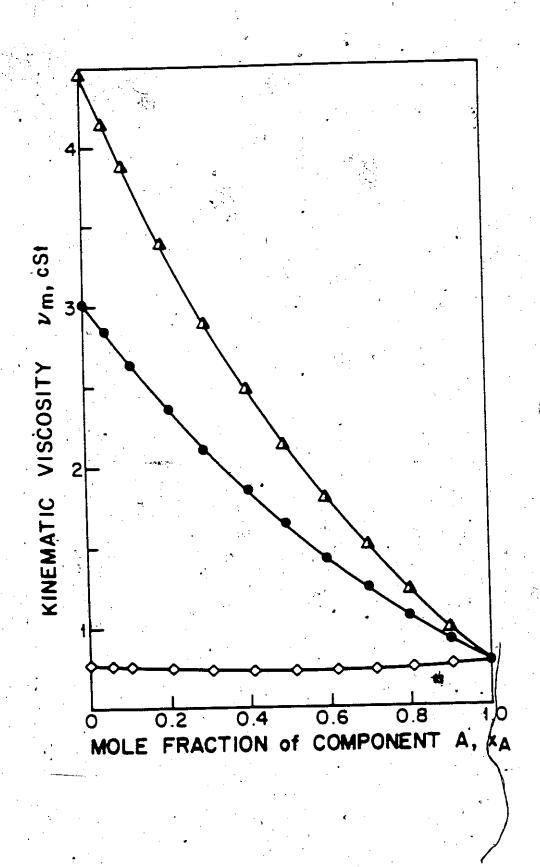


Figure 747.8 .: Kinematic Viscosity-Composition Plot for Systems with Toluene at 25.00°C.

Legend

0

3

دے

 \sim

System

Toluene(A'-n=Octane(B)

Toluene(A)-n-Decame(B)

Toluene(A)-n-Dodecane(B).

Toluene(A)-n-Tetradecane(B)

-Toluene(A)-n-Hexadecane(B)

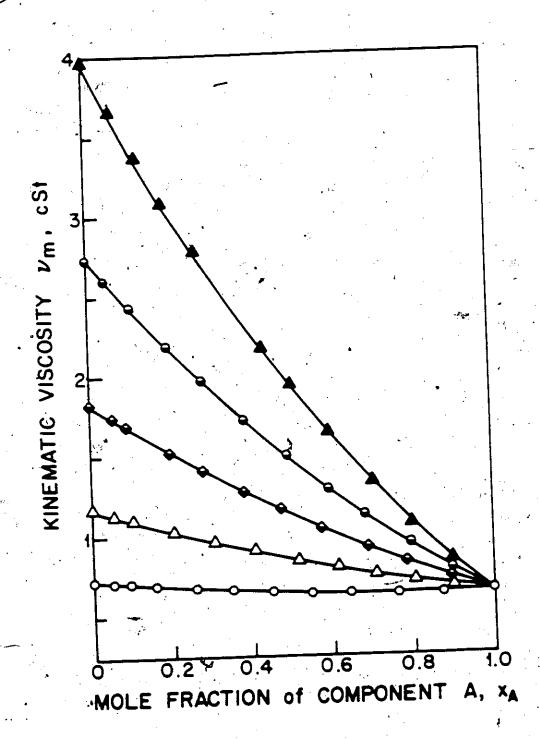


Figure 4.9 : Kinematic Viscosity-Composition Plot for Systems with Ethylbenzene at/25.00°C.

Legend

System

Ethylbenzene(A)-n-Octane(B)

Ethylbenzene4A)-n-Tetradecane(B) .

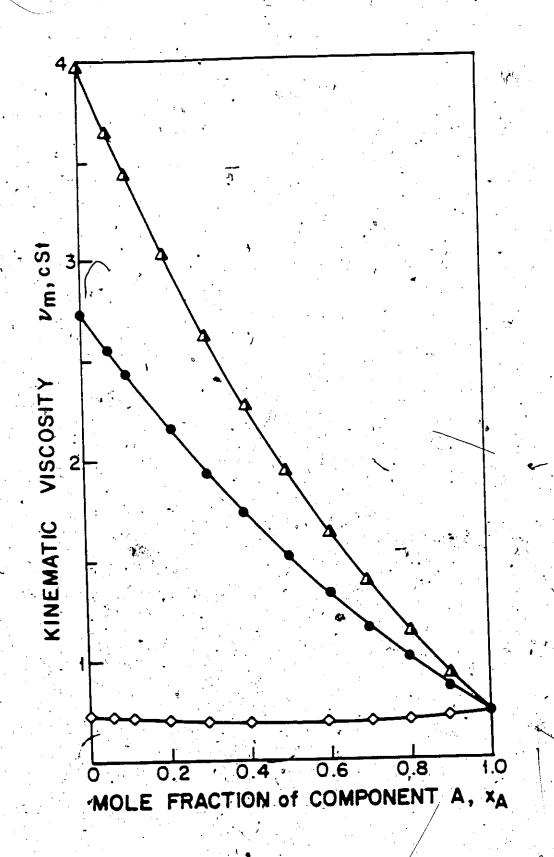


Figure 4.10 : Kinematic Viscosity-Composition Plot for Systems with Toluene at 35.00°C.

egend

O .

V

System

Toluene(A)-n-Octane(B)

Toluene(A)-n-Decane(B)

Toluene(A)-n-Dodecane(B)

Toluene(A)-n-Tetradecane(B)

Toluene(A)-n-Hexadecane(B)

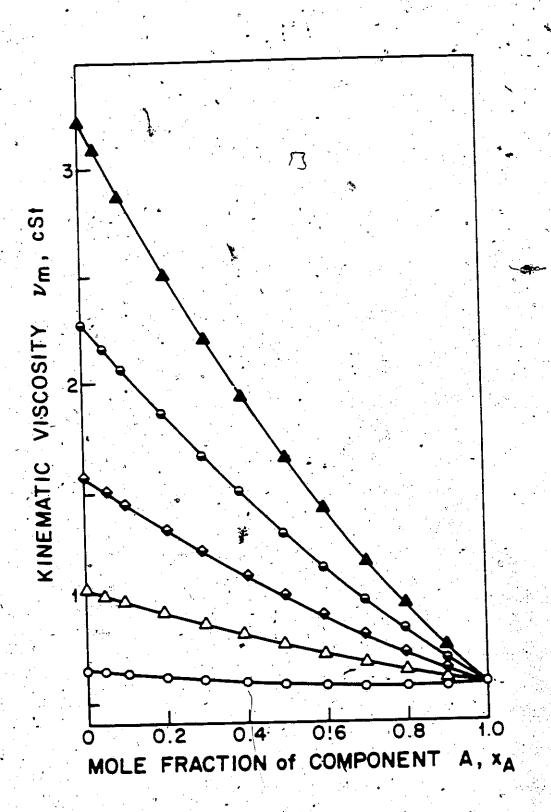


Figure 4.11, : Kinematic Viscosity-Composition Plot for Systems with Ethylbenzene at 35.00°C.

Legend

System

Ethylbenzene(Å)-n-Octane(B)

Ethylbenzene(A)-n-Tetradecane(B)

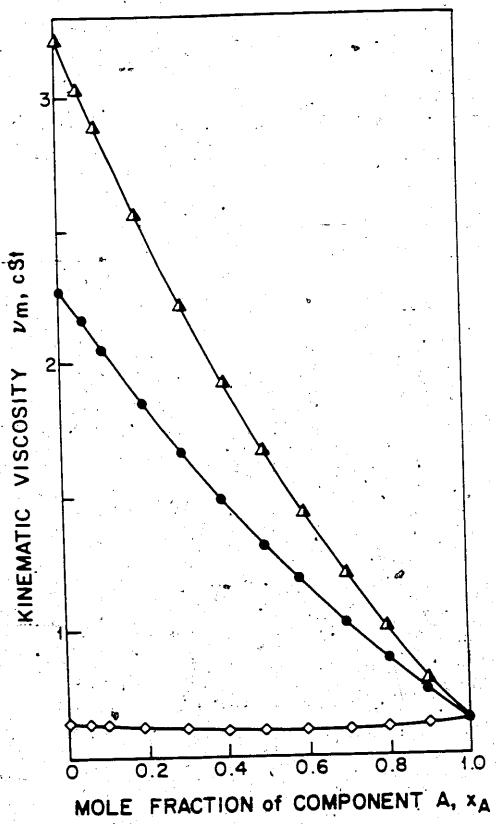


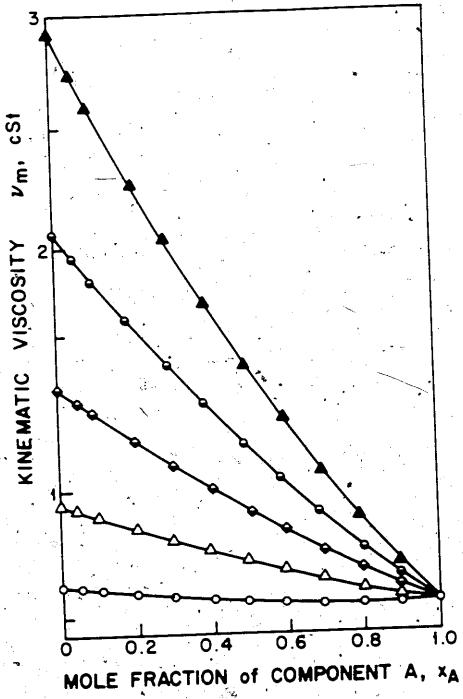
Figure 4.12 : Kinematic Viscosity-Composition Plot for Systems with Toluene at +0.00°C.

Legend

C

G

System

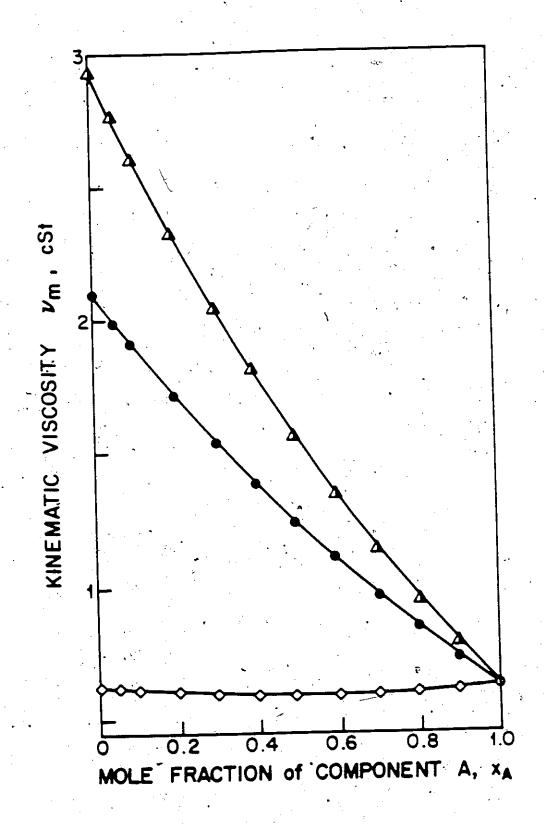

Toluene (Al-n-Octane (B)

Toluene(A)-n-Decame(B)

Toluene(A)-n-Dodecane(B)

Toluene(A)-n-Tetradecane(B)

Toluene(A)-n-Hexadecane(B)


Kinematic Viscosity-Composition Plot for the Systems with Ethylbenzene at 40.00°C.

Legend

System

Ethylbenzene(A)-n-Octane(B)

Ethylbenzene(A)-n-Tetradecane(B)

				•		and the second of the second
System .	.√-	۲.	· ·	*	.* -	
	rature - 70 00°C	<u>:</u>				
Tulterre(A) in (X tane(B)	0.7703	3	971.0°	n 10501 U	187 = 0	01 7 873
Tolumme(A) in the ame (B) Tolumme(A) in Thake ame (B)	1.25895	17.07	\$67 . 0	0.0871	•	7 16 4 10 3
folumin(8) in Tetrade aim (8) Tolumbe(8) in Header aim (8)	0.0200 0.0207	1796	7971 7	2621 0 0 0998	-	# 88 ± 10 ± 88 #
	0, 7697 3, 01999 4, 46.47	3 445.7 5 98006	7 4462	0.2511		1.4 ± 30 ± 10 ± 10 ± 10 ± 10 ± 10 ± 10 ± 10
_	 					<u>-</u>
Tolumene(A) in the tame (B) Tolumene(A) in the tame (B) Tolumene(A) in this have tame (B)		0.2139	161.0	0.0863 0.0173, 0.08868		1 00 1 10 1 10 1 10 1 10 1 10 1 10 1 1
Toluene(A) in Tetrahicane(B) Tuluene(A) in Heradecane(B) Liby Benrene(A) in the Lane(B) Liby Benrene(A) in Tetrahicane(B)		7 9624 4 4 8176 6 1389	1.81	0.000@ 0.0000 0.0034 0.334		7 01 x 10 3 2 10 x 10 3 2 46 x 10 3 1 70 x 10 3
I thy literature (A) in the author and (B)			,		-	

any Lyd to the tent tent the total the form

System	√ 2	~	<u>.</u>	,	, «	
Tageratuse	ture - 55 00't	•		•		
Tacharacte (A) in (K take (B)	0.6585	0407.0	7981 0	: 0.1178	V-66 0	**************************************
Toluene(A) n (be and (B)	1.0791	6195 0	Boto a	1001 0	74.5	901 4 01 4
Tolucine (A) in Italia mine (B)	1.5550	1.29.997	1 464			913
foliame(A) n fetradecane(B)	1.1743	7 7uol 7	1999. C	u 1778	0 1069	1 OF # 10 F
Tulumene(A) n Hezadecane(B)		1881.5 1871.0	76:11 a	0.04899	0 WSW 0	# 3 * 5 · ·
(flythensene(A) n (Atmoc(B)	0.00.0 197.0	18cX 7	0,8182	0.1177		
Ethylbenions(A) in Tetrake aw(B)	3.7199	3,7148	1 7934	0.1483		91 - 52 -
1.7	regerature - 40.00°c					-
The second secon	0.6261	B/T 0	0.0778	0.0458	100.4	DI * 10 1
Tollumne(A) 11 throne(B)	B266.0	9,74,0	0 16.3	0 14:48	=======================================	01 4 6/ 46
Tollucine(A) in [hulocane(B)	1 4404	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 2215 0 5245 0 6545	S Soft	7507 0	3 00 x 10 3
lulume(A) n Tetradorane(B)	7/10 /	5750 7	\$967.0	·/		7 M * M 7
Tolumbe(A) is the author asset (B)	\$ \$76.7	X 71 17 0	0.1415	6980-0	- n net	01 1 76 7
[thy]bentonc(A) n (k tane(B)	\$680 ?	1880 -	0.8798	0.49899	0.2097	1, 11, 1, 11, 1
1.1hy lbentenc(A) is retained in (17).	77.7	1,1149	1.040.1	2401 o	· ·	=

I Verification of the second o	•	0-1		;	•	•
		•		, , , , , , , , , , , , , , , , , , ,		tenstand breatten.
System	√ °		•	•		
The second secon	ure - 20,00°1				•	,
	:					
(1) 100 (A) (A) (A) (B) (B)	0.5410	0.0986	9 134			= 1
	0.9175	105 0	. No.11 ()	6550 H		
Intuene(A) in the and (B)			1,070	0.0573		
Tolurie (A) in Thatecane (B).	1.4783	****			<i>:</i>	2 2 2 7
	7 204:1	7 4016	1447		•	
Tulusta(A) n (ettaket Mietri)	•		1 541	. 11:13		0 T 00 .
Toltaere (A) in Hendeley and (B)	10.1	1 2408			3 3	- 07 1 16 9
A CANAL STATE OF THE STATE OF T	0.5405	0.0100	9/00	1310 0		
Thy live is to be a second at the second at		. (1873.4	1001 1	B/78 0	1943 1943	= -
Lithy then tended (A) in Tetrades and (B)	9.0X			7,7		, al. 1 9; 9 .
Lthylbentere(A) n Heradic and (B)	1,45295	4 4751		:		
				°.		
	inter - almin				• ;	-
	0 5cP31	85900	0.0014.	0.1101	•	07 17 28 1
Tolume(A) in (X taue(B)	i.		. 1056	0.0485		2 1 10 1
Tolume(A) n Detaine(B)						9 9 9
Telegrad (A) in (bules 400 (B)	1,1568	1,101.7	7 :9: 0			91 4 52
(E) see all a see to the	7.090.7	=======================================		0 0019		
(V)	\$ 190 A	. 3165.3	; # /C -	10 (01)		
Toluene(A) is lieuales are (B)		•	7.6 ₁ to to	1760 0		N 74 x 10
Lthylbenteter(A) in (h tane(B)	: 1470			0 144;		, 01 T 70 Z
lthribeniese(A) n fettake asc(B) v	2 (1789		*			145 1 10.3
	5	1447	-		,	· •

Systom	, o		*	۸,	***	
Post Time I	ature - 15 00°C		-			
er en	757 0	9970	1088	0.073	- 20 NO 11	1.43 + 30 4
Tolumo(A) n (X (Are(B)			6540	0.0075	0.0453	8 11 10
folumene(A) in the ane(B)	0.7387			77.00		1 10 1 10
Tulume(A) in Italec and (B)	1.1476	I (NO	OXXXX			
foluenc(A) n letrade and(B)	1,7117 \$	X-610.1	1107			70
Tollowers (A) or the authorized (B)	100.7	7 6441	2 5084	11197 0	97A1 a	6, 98 x 10.
1 shall consume (A) to (A table (B)	0,4542	2110.0	61010	1.00.0	D 186.50	01 1 03 1
tehalbenzene(A) n fetrabetare(B)	1.7152	1.6517	8005-01	0.1013		1 05 x 10
Lthylbentone(A) in Heradec are (B)	1651 7	2.8327	1.527	0.17119	,0 2048 .	- 4 KR # 10
	fragerature, * 40.00°C					
Commence of the commence of th			\ <u></u>			
Tolthers (A) is (A (and (B)	0.4298	0.06.75		5 (80°0)		
Tollaren(A) n (lecane(B)	606.01.01	0, 31,83	0.1006	C u uraku	2000	1 17 a 18
The second of th	1 9613	10 76407	0 1766	0, 0546	. •	01 T 64 W
	5 95	1 4%	n 1855	0.2375	0 13.6	-2.16 x 10
(a) the train of (v) stanto).	7.223	167.7. 7	0.4847	0.0881	*	6,04 + 10
Tolumbo(A) is secured and in	4.487	0.0146	1671 n	0.0965	1780 0	01 x 97°s
Liny (beniene (A) in the (B)		1.6549	0.6492	0.4075	11/11	98 Y HZ 11
thyllenical(A) n cristing		3 3	1.7.73	. 0 7780	0.7779	01 4 85 3

1ABIJ 4.24, cont.'d

temperature are shown in Figures 4.6 to 4.13. All of these isotherms are also smoothly varying functions of mole fraction.

Kinematic and absolute viscosity values for each system were fitted to equations of the form:

$$= \frac{i=n}{i=0} A_i \times_A^i$$
 (4.4)

where $\frac{1}{x}$ is the kinematic viscosity of the liquid mixture in $\frac{1}{x}$ and $\frac{1}{x}$ is the mole-fraction of component A, and

$$\gamma_{m} = \frac{i \pi n}{i = 0} \cdot A_{i} \cdot X_{A}^{i}$$
 (4.5)

where is the absolute viscosity of the liquid mixture in cp. The values of the constants A of Equation (4.4) and Equation (4.5) are calculated by the method of least squares and are reported in Tables 4.23 and 4.24, respectively. The last column in the previous two tables gives the standard deviation of the fit.

As one can see, the standard deviation of the fit is small. The higher values of standard deviation encountered in this work were with systems containing nhexadecane and n-tetradecane where those viscometers had to be used which were calibrated with standard liquids having viscosity values reported up to third decimal place.

Figure 4.14 : Variation of Excess Activation Energy of Viscous Flow with Mole Fraction at 20.00°C.

Legend

O

٠.

-

System

Toluene(%)-n-Octane(B)

Toluene(A)-n-Decane(B)

Toluene(A)-n-Dodecane(B)

Toluene(A)-n-Tetradecane(B)

Toluene(A)-n-Hexadecane(B)

Ethylbenzene(A)-n-Octane(B)

Ethylbenzene(A)-n-Tetradecane(B).

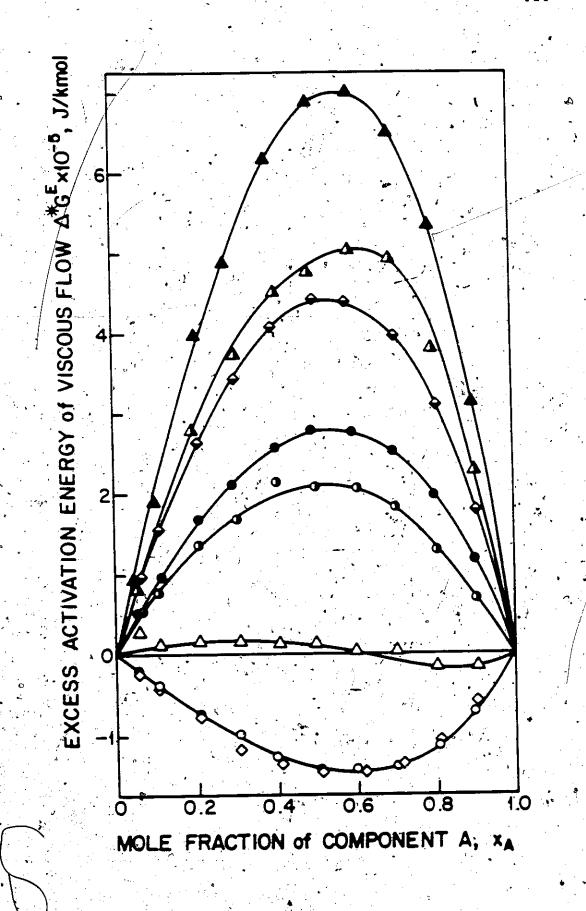


Figure 4.15: Variation of Excess Activation Energy of Viscous Flow with Mole Fraction at 25.00°C.

System

Toluene(A)-n-Octane(B)

Toluene(A)-n-Decane(B)

Toluene(A)-n-Dodecane(B)

Toluene(A)-n-Tetradecane(B)

Toluene(A)-n-Hexadecane(B)

Ethylbenzene(A)-n-Octane(B)

Ethylbenzene(A)-n-Tetradecane(B)

Ethylbenzene(A)-n-Hexadecane(B)

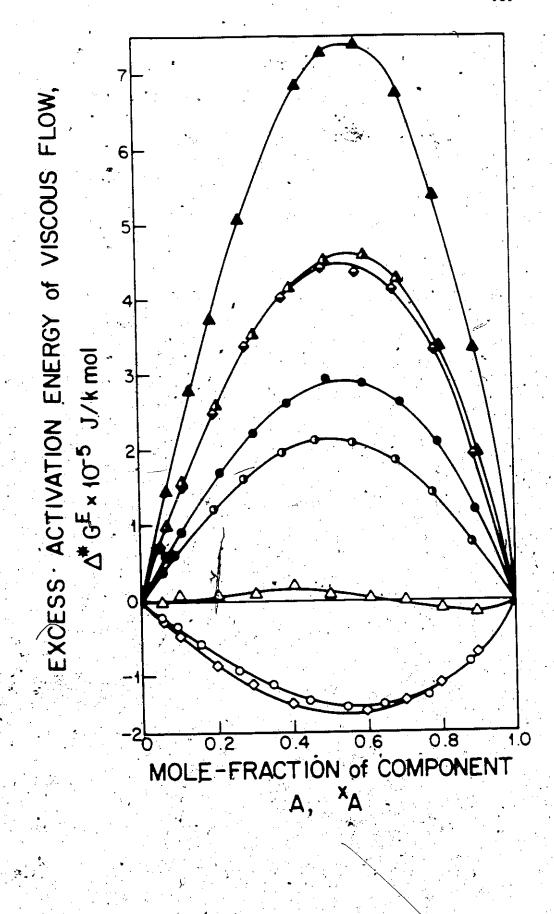


Figure 4.16: Variateon of Excess Activation Energy of Viscous Flow with Mole Fraction at 35.00°C.

· seend

0

Δ

a.

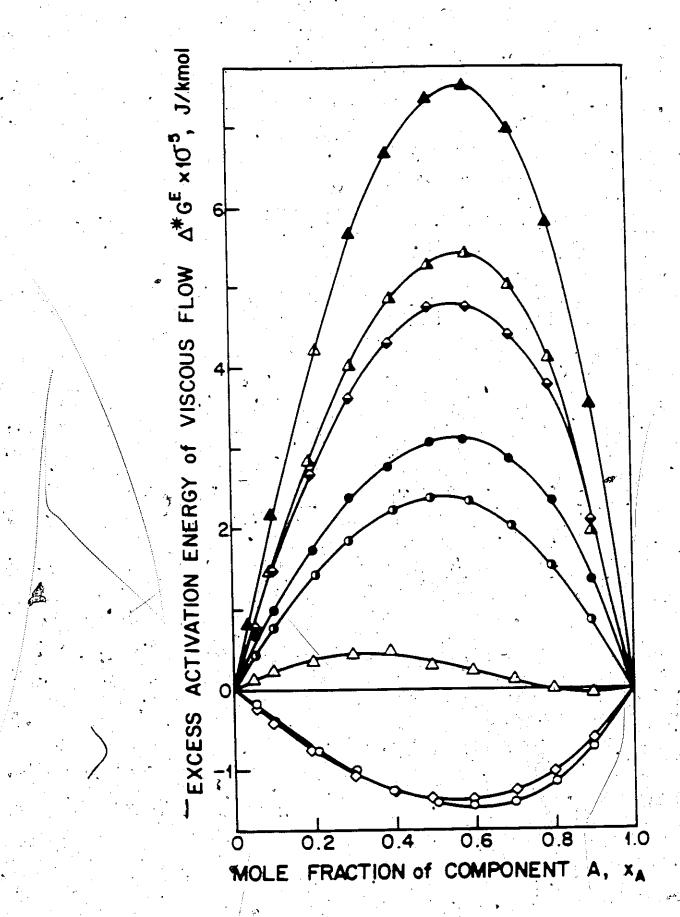
.

• . O.

System

Toluene:(A)-n-Octane(B)

Toluene(A)-n-Decame(B)


Toluene(A)-n-Dodecane(B)

Toluene(A)-n-Tetradecane(B)

Toluene(A)-n-Hexadecane(B)

Ethylbenzene(A)-n-Oc gane(B)

Ethylbenzene(A) -n-Tetradecane(5),

: Variation of Excess Activation Energy of Viscous Flow with Mole Fraction at 40.00°C.

· adend

 \circ

Ż

•

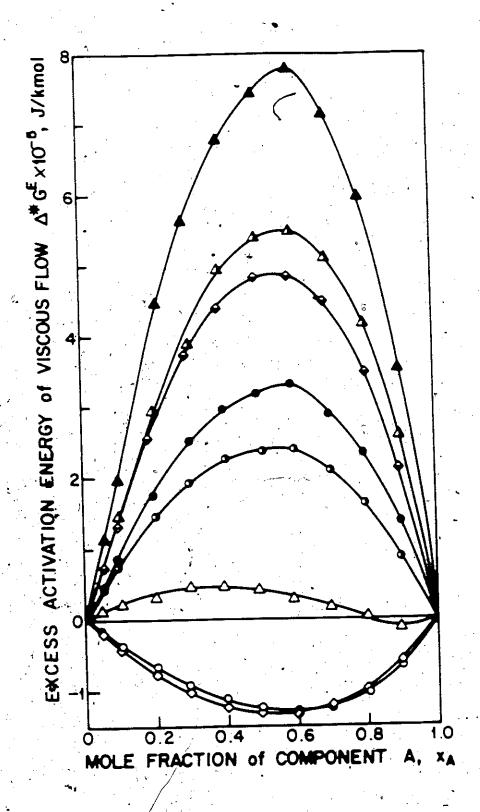
▲.

18

System

Toluene(A)-n-Octane(B)

Toluene(A)-n-Decane(B)


Toluene(A)-n-Dodecane(B)

Toluene(Al-n-Tetradecane(B)

Toluene(A)-n-Hexadecane(B)

Ethylbenzene(A)-n-Octane(B)

Ethylbenzene(A)-n-Tetradecane(B)

4.6.1 Excess activation energy of secons flow

Grunberg, [1954] attempted to relate the excess activation energy of viscous flow to thermodynamic non-ideality. Reed and Taylor [1959] argued that there is no simple relationship between viscosity and the thermodynamic properties of a solution. These authors suggested the following equation discussed in Chapter 2.

$$= \lim_{n \to \infty} \mathbb{V}_{\underline{a}} \otimes_{\overline{a}} \mathbb{V}_{\underline{a}} \otimes_{\overline{a}} \mathbb{V}_{\underline{a}} = \lim_{n \to \infty} \mathbb{V}_{\underline{a}} \otimes_{\overline{a}} \otimes_{\overline{a}} \mathbb{V}_{\underline{a}} \otimes_{\overline{a}} \mathbb{V}_{\underline{a}} \otimes_{\overline{a}} \otimes_{$$

which relates viscosity of a mixture to 1 G. The above equation along with the viscosity-composition data were used to calculate the excess activation energy of viscous flow. The change in excess activation energy with composition for each system at different temperatures is given in Appendix D as well as in Figures 4.14 to 4.17.

Two systems containing n-octane always exhibited negative $\frac{1}{2}^{*}G^{\Xi}$ over the entire composition range whereas the toluene-n-decane system showed positive $\frac{1}{2}^{*}G^{\Xi}$ up to $x_{A}^{-}=0.7$ then at $x_{A}^{-}>0.8$ became negative. The remaining systems have positive values of $\frac{1}{2}^{*}G^{\Xi}$ over the entire composition range.

The values of _ GE were found to increase with the increase of temperature. The excess activation energy of viscous flow was fitted to a polynomial of the form

translants for the legalition

	V	~	٧.	~	**	Standard Invited 1991
	1 rature = 20.00°C	<u>.</u>	•			
	0.0563	. 170 0	2005 (1)	U GRG		0.00 e
Tollers (A) o (Pr. And (B)	9 226	910 0				
Tolume(A) in (bales are (B)	95.00.0	765	0 46.8			2 2
Toltense(A) n Telrados atre(B)	1 4 5 4 5 W	44	155 8			
Tolume(A) n teradecane(B)	118.17	, ner .	7 196.3			9,7
Lity (henrenc(A) is (h. tasic(B)	116.5			0		1,10
Liby Benjeric (A) in Tetrades and (B)	11,073	1 184	\$,	W/11 11
thy then sees (A) is the tasks are (B)	19.302	10/ 0	n 41%	3 •		• • •
) _* (N) '\?' ' ' ' ' (N) _* (,			
			-			5020 0
Toluene(A) is the tase (B)	/05.5	Mineral I -	£ =		•	0 0 8
Tolumbe(A) is the are (A)	0,450	1980	146	0 120		0 0100
[u]ugne(A) n (kales and (B)	15	1,000	1 464			9 0 a
Toluene(A) n Tetrade and (B)	17 65.7.	17.1	1.0	1.71 .0		190 0
Tollamon (A) in the names and (B)	CBC 8.		E		5-1	110 0
Libylbeniene(A) is the (B)	. 188	. *	=		-	8 70 0
Liby thensene(A), is Testanke and (b)	II. FANK	3 =	0 Vol.	-		710 0
tthy lienteneral is becale and (b)	: =	}	:.	·		-

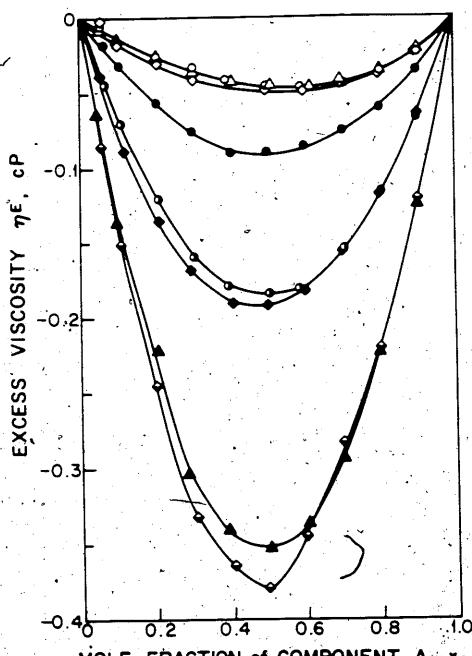
# State	*	A			₹.	Standard besidence
mtersen in	ture - % 00°1				•	
	87	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	47.			N INM II
(c) Land (A) in the adm (B)	1.33	780 7	919 0	-	*	
10 Lucrac (A) n (hadec and (A)	9 510	INOT O		560 1	284 9	- 1.00 - 20 - 20 - 20
Tolume(A) n Totrade are(B)	(MA) #1	959 🛊	T. #		•	110.0
Intueno(A) in Heradocane(B)	10, 1	11 0%		1 1 1 N		H2(H) II
Lity then cone (A) in (A tabe (B)	乗り守 ・	961	9			110 0
Lihy Beniese (A) n ferrades and (B)	11.175	# · · · ·			67 77	, , , , , , , , , , , , , , , , , , ,
Lthylbensene(A) is fermer aw(B)	21.039	, / GAN)	-	•		
	atute = 40,00°c		•			
			- 169. 0	155.0		1,180 (1)
Tolluctue (A) is the table (B)	(E)		W	, not 1	-	170 a
foliame(A), is like asse(B)	S 13. T	5		1 437	. •	770 _{,0}
Tollucin(A) is (balecane(B)		674	11.1	` <u>-</u>	£ .	7.0 o
Tuluene(A) n fetrades ane(B)	<u> </u>		. HIP , 41	- 1 617	6 861	1 WO 12
Tolume(A) n Heradecane(B)			; ;	13.50	•	***************************************
Lthy then reset(A) in the name (B)	()	10.77				130 0
Liby Demission (A) is Terribles asset (B)			<u>:</u>		'	0.079

Figure 4.18 : Variation of Excess Viscosity with Mole Fraction at 20.00°C.

System

. Toluene: A: -n-Octane: B):

Toluene(A)-n-Decame(B)


Toluene(A)-n-Dodecane(B)

Toluene(A)-n-Tetradecane(b)

Toluene(A)-n-Hexadecane(B)

Ethylbenzene(A)-n-Octane(B)

Ethylbenzene(A)-n-Tetradecane (B)

MOLE FRACTION of COMPONENT, A, XA

Figure 4.19 : Variation of Excess Viscosity with Mole Fraction at 25.00°C.

end •

Toluene(A)-n-Octane(B)

Toluene(A)-n-Decame(B)

Toluene(A)-n-Dodecane(B)

Toluene(A)'-n-Tetradecane(B)

Toluene(A)-n-Hexadecane(B)

Ethylbenzene(A)-n-Octane(B)

System

Ethylbenzene(A)-n-Tetradecane(B)

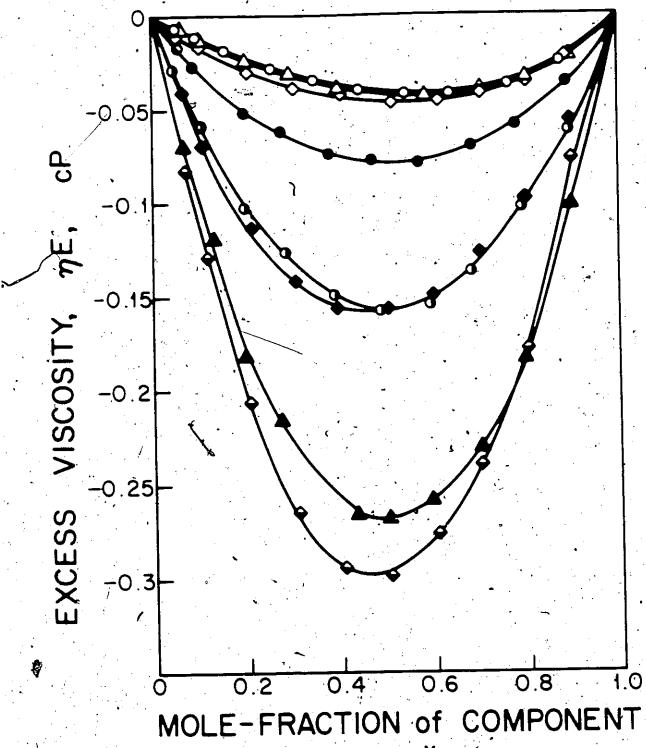


Figure 4.20 : Variation of Excess Viscosity with Mole Fraction at 35.00° C.

Legend

⁸0.

Δ

Ġ

\omega

~__

System

Toluene(A)-n-Octane(B)

Toluene(A)-n-Decame(B)

Toluene(A)-n-Dodecane(B)

Toluene(A)-n-Tetradecane(B)

Toluene(A)-n-Hexadecane(B)

Ethylbenzene(A)-n-Octane(B)

Ethylbenzene(A)-n-Tetradecane(B)

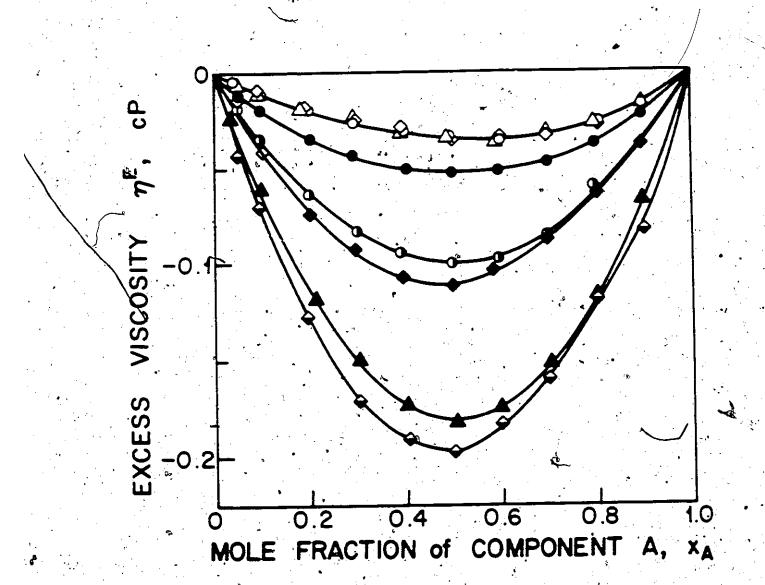


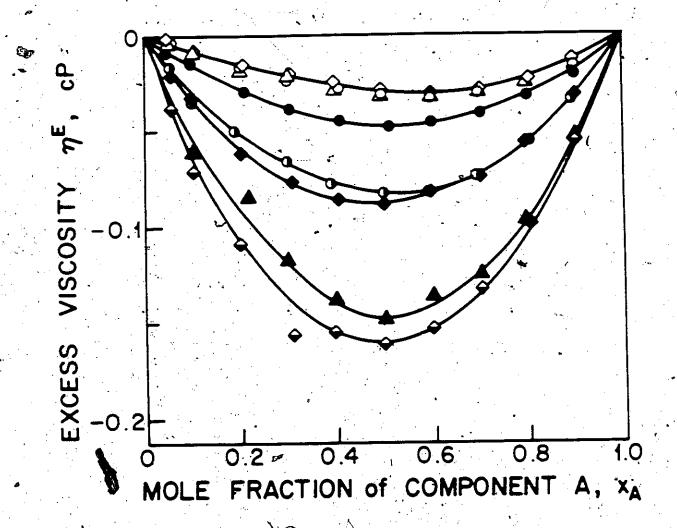
Figure 4.21 : Variation of Excess Viscosity with Mole Fraction at 40.00°C.

System

O Toluene(A)-n-Octane(B)

Toluene(A)-n-Decane(B)

Toluene(A)-n-Dodecane(B)


Toluene(A)-n-Tetradecane(B)

Toluene(A)-n-Hexadecane(B)

Ethylbenzene(A)-n-Tetradecane(B)

Ethylbenzene(A)-n-Tetradecane(B)

Ethylbenzene(A)-n-Hexadecane(B)

 $\sum_{i=0}^{n} a_i = \sum_{i=0}^{n} a_i = \sum_{i=0}^{n$

Values of the parameters A were obtained by the method of least squares. These values are reported in Table 4.25. The standard deviation of the fit is listed in the last column of this table. This equation, Equation (4.6) fitted the data well as can be seen from small values of standard deviation listed in Table 4.25.

4.6.2 Excess viscosity

Viscosity-Composition data were also used to calculate the excess viscosity of the binary mixtures using the following equation:

$$\mathbf{E}^{(1)} = \mathbf{E}^{(1)} = \mathbf{X}_{\mathbf{A}} + \mathbf{X}_{\mathbf{A}} + \mathbf{X}_{\mathbf{B}} + \mathbf{B}$$
 (44.7)

Excess viscosity-composition data for each system at different temperatures are given along with GE in Appendix D and depicted in Figures 4.18 to 4.21. As can be seen from these figures, the system including n-octane and n-decane exhibited almost the same value of excess viscosity in every instance. Another feature of these figures is that excess viscosity is found to increase with temperature. In every system excess viscosity was negative over the entire composition range.

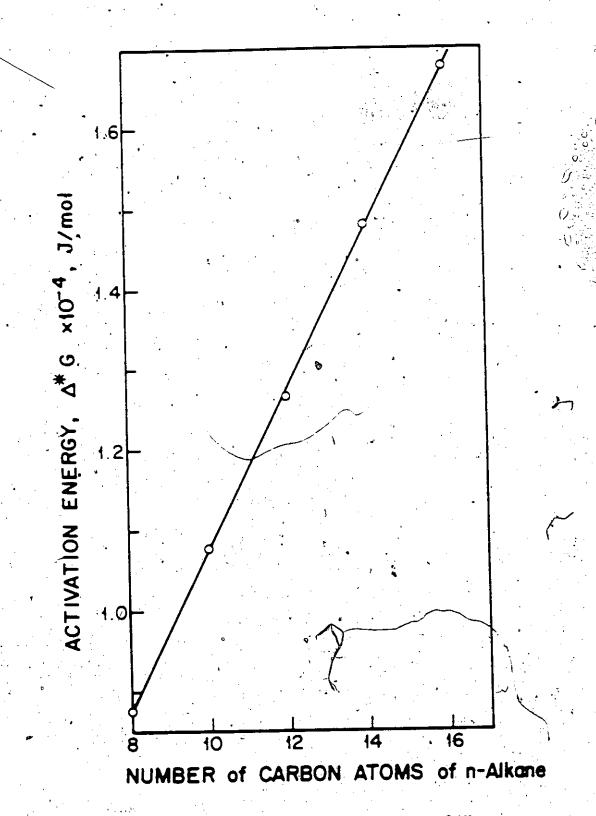


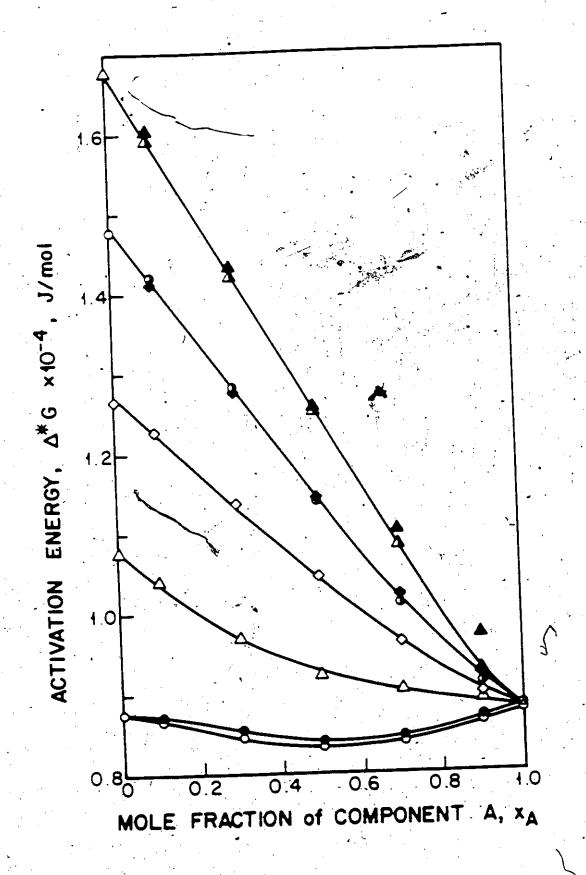
FIGURE 4.22: Variation of Activation Energy of Viscous Flow with Number of Atoms of Normal Alkanes.

Figure 4.13 : Variation of Activation Energy of Viscous Flow with Mole Fraction.

Syst

Toluene Al-n-Octane(B)

Toluene (A) -n-Decane (B)


Toluene(A)-n-Dodecane(B)

Toluene(A:-n-Tetradecane(b)

Toluene(A)-n-Hexadecane(党)

Ethylbenzene(A)-n-Octane(B)

. Ethylbenzène(A)-n-Tetradecane(E)

4.6.3 Activation energy of viscous flow

Viscosity-composition data were also used to calculate the activation energy of viscous flow for pure components as well as that of the mixture.

The activation energy of viscous flow was then plotted against number of carbon atoms of n-alkanes and a straight line relation was obtained as can be seen in Figure 4.22. However, the activation energy of viscous flow did not vary linearly with composition as can be seen in Figure 4.23.

4.7 Predictive Capability of the Various Viscosity Models

reveal the mystery of the liquid structure has received a great deal of attention from researchers. Various models have been proposed for the prediction of viscosity of liquid, mixtures. No satisfactory purely theoretical model has yet been proposed for the prediction of viscosity of liquid mixtures. The existing models are either empirical or semi-empirical and still need a lot of confirmation for their predictive capabilities.

The experimental data obtained in this study were used for testing the predictive capability of three existing literature models: The McAllister's three body model [1960], Heric's empirical equation [1967] with two

Times 4 in . Values of the Parameters implied in McAllister's Mode.

A M Sustem		134 × j	Stmart Derfittion
Temperature -= 10 00%			
			5€1
olumne A. n. Octame 3	1 2 2 2 2 2	700 5e	4 15 x 11 ³ 3 34 x 11 ³
cluene, k. in-Decane, B. 1999	5000	1 :233	2 25 A 44 2 32 A 12 T
There is in-Dozenie 3	2 1417	49.3	3 7 4 4 7
Stage 4 to Tetracecare 3	1131	: ::**	1 2 4 4
plume (A) in riexacecane 3	1543	: :::::	37 4 11 3 3 4 11
the literature A in Contract B	1. 5.9 5.4	2.44	1 1
unvlogenzene Alica Tetranecame 3	1 1854	1 1801	1.41 x 11 2
thelientene A -n-nexadecane 3,	. 1135	: #* *	9 98 x 10 *
Temperature • 15 NOT	•		
	1.5011).ee11	9 1" x 1" *
Taluene An-Octane 3	1.7503	1 7527	
Tollume A. In Decame 3		1.3754	1 55 x 12 3
Tolumne (A) -n-Dodecame: 3	1 3341	1.4%	1.91 4.42
Totuene A, in-Netradecang 3 .			± 19 x 12 .
Toluene (An-mexadecane 3'	46		29 1 4
Eurylbeniene (Agene Octane), E	1. re 13	11.5840	1.32 X 12
Ethylbenzene(§,-n-Tetradecane E	1.5544	1.3175	4.13 x 13 ⁻³
Ethylbenzene, Al-n-resabecane, 3.	1.5429	1.5349	4.13 1 10
Temperature • 35.00°0		1.0	
Tolume, A. No-Detame, B.	: 34*7	1.5013	55. x 12 ./
Tolumne(A) -m-Decame(B)	1.57890	1.5643	
To Limic (A) on - Dodecane (B)	2.1117		1. is 1/1.
Tolume(A)-n-Tetradecase(B)	1.13097	1.84	: // : .: ·
	Y. 5151	1.136e	/s. t. 1.2 2
Tolumne(A) -n-reconcerne(3)	1.5114	: 6205	5.79" x 11"
Ethylbentene(A) -n-Octane(B)	1,147	1.547	/ 4.42 x 42 ⁻³
Ethylbeniene(A) -n-Tetradecane(3) Ethylbeniene(A) -n-Hexadecane(3)	1.4099	1.21179/	\$.75 x 10 ³
Temperature (+ 40.00°C			
	2.52145	0.5****	5.44 x 10
Tolume(A)-n-Octave(B)	2.54703	5.5164	1.39 x 12 3
Tolumne (A) - n - Decame (B)	2.43243	1.1171	8,44 x 13 ⁻⁴
Tolumne(A) -n-Dodecene(3)	,	1.5314	2.49 x 10 ⁻³
Tolumne(A) -n-Tetradecame(B)	1/2860		4.91 x 10 ⁻³
Tolume(人) - a - Hexadecame(名)	1.416	2.04199	4,99 x 10.
Ethylbenzene(A)-n-Octame(B)	/ 2.5*38	0.5513	1.49 x 10 ⁻³
Ethylbenzene(A)-n-Tetradecane(B)	1.09154	1.5258	3.61 x 10 ⁻³
Ethylbenzene(\$) -n-biskadecane(B)	1.39035	2.02474	2'st x'th

" TESTS 4 3" MCALLISTER'S Parameters Fitted to the Equation Parameter + A.

	•		
Sistem S	Intercept	Simple x 22°	Status levilia
MEAGLISTER'S PARAMETER () 13			
Tellene k op lotine 5	1 111	: 3411	1.2011
Toluene A -n-Jecane B	3 : [1	2 **49	: Ass
Toluene A instance and 3	4 111	1.1485	√ : ×n
Tolliene A. n. Tetrasecane B	3 533	; 45e9	• ::: '5
Tolliene A incrementate B	10 E 242 F 2		1 1150
Ethylpenzene kinn-Octabe 3	1,44"	3.3941	1.0003
Entribenzene Al-t-Tetrahecane.Be	5. *\$2 _	4911	5 3111
Eurylbeniene A. o-neustecane B		1 1016	1.1239
McKilister's Parameter, Jak			· · · · · · · · · · · · · · · · · · ·
Toluene A invictane 3	1,7495	*1,* \$131	1 3050
Toluene Alene Recarre 3	3 393	146153	: ::::
affoliume A - 1-Dodecane 8		្រស់ប្រ	2 1149
Toluene A -n-Tetradecame 3		1 93 00	; :15e
Tollege & in-mexadecape 3	15.815	4,4000	7 :::52
Ethylbenzene Alimidetaneiß .	2.650	1 :552	1,0041
Sunvicenzene A on Tetradécase à	20.225	· · · · · · · · · · · · · · · · · · ·	7.71 6 7
Ethylbeniere A. n. nexadecare 3	13.364	4.2553	273204
			

Rigure 4.24 : Varyation of McAllister's Parameter AB

Legend

0 .

د.

3

•

System,

Toluene(A)-n-Octane(B)

Toluene(A)-n-Decame(B)

Toluene(A)-n-Dodecane(B)

Toluene(A)-n-Tetradecane(B)

Toluene(A)-n-Hexadecane(B)

Ethylbenzene(A)-n-Octane(B)

Ethylbenzene(A)-n-Tetradecame(B)

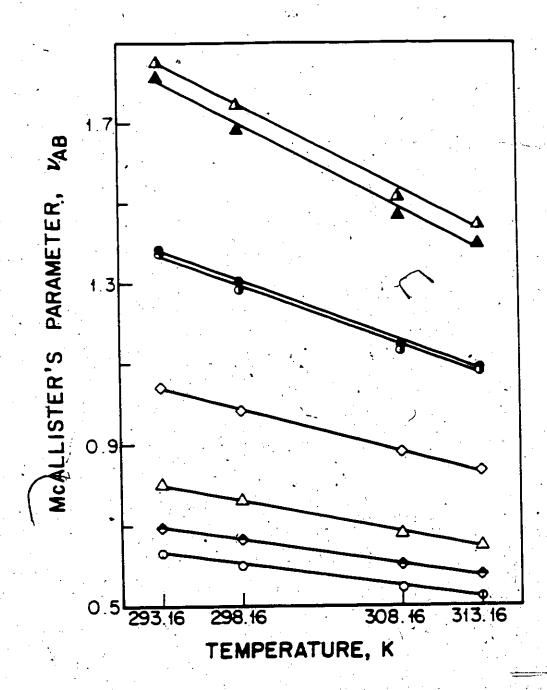


Figure 4.25 : Variation of McAllister's Parameter BA

System

Toluene(A)-n-Octane(B)

Toluene(A)-n-Decane(B)

Toluene(A)-n-Dodecane(B)

Toluene(A)-n-Tetradecane(B)

Toluene(A)-n-Hexadecane(B)

Ethylbenzene(A)-n-Octane(B)

Ethylbenzene(A)-n-Tetradecane(B)

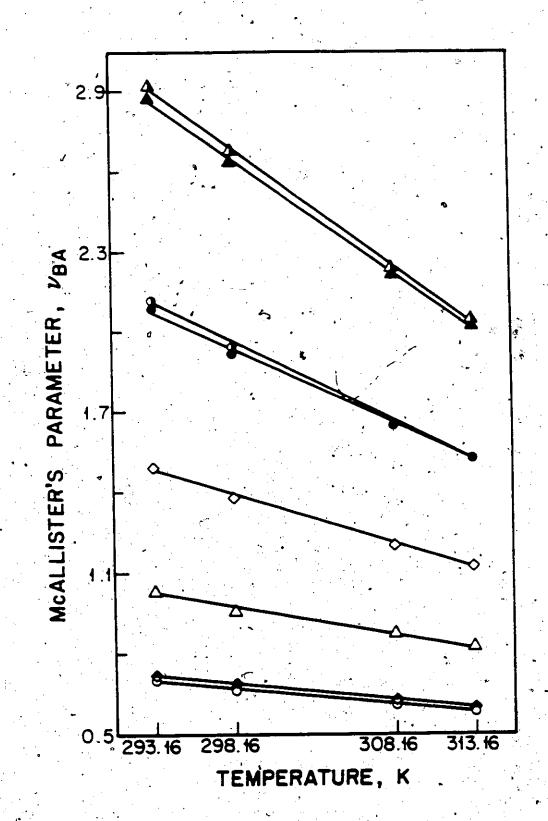
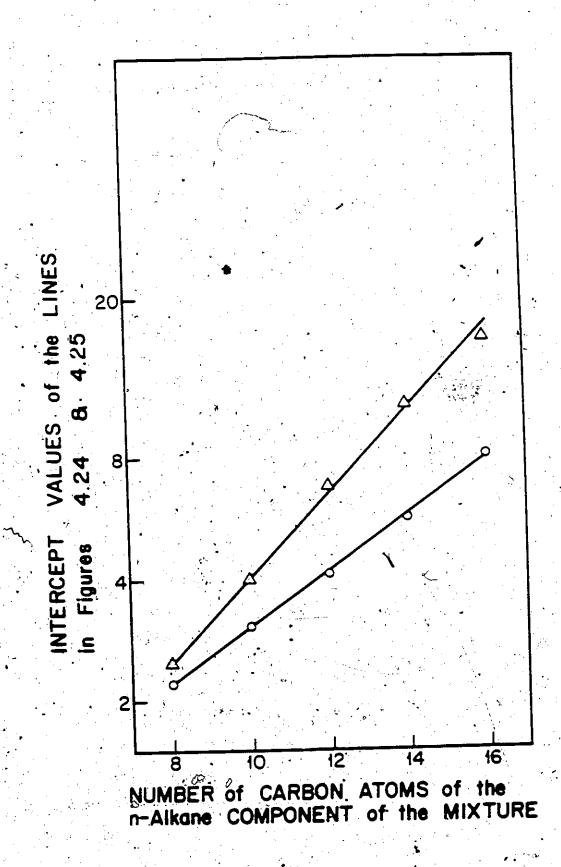
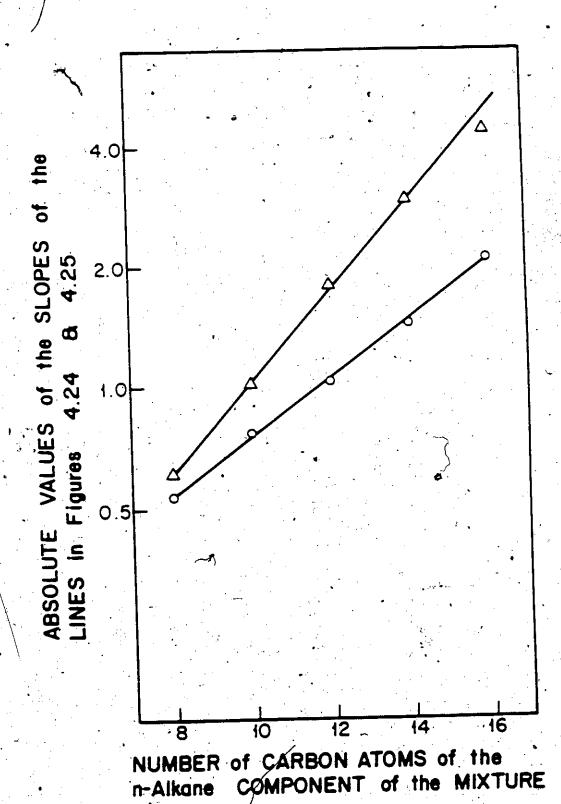



Figure 4.26: Variation of Intercept of the Lines in Figures
4.24 and 4.25 with Number of Carbon-Atoms of the
n-Alkane Component for Systems with Toluene.

Legend.

for the parameter AB

for the parameter vBA


igure 4.27 : Variation of Slope of the Lines in Figures
4.24 and 4.25 with Number of Carbon Atoms of
the Normal Alkane Component for Sytems with
Tolúene.

Legend

0

Δ

for the parameter VBA

parameters and Auslander's model with three parameters [1964].

These models are discussed in detail in Chapter 2.

In general Auslander's three parameter model gave a better fit in more than fifty percent of the system investigated in this study. At 25.00 °C this model did not adequately fit the data of systems with n-octane and n-decane.

The values of the parameters of McAllisters' model are listed in Table 4.26 along with the standard deviation of the fit. As one can see there is a trend in these parameters. Hence the parameters for each system were plotted against temperature and it can be seen from Figures 4.24 and 4.25, those parameters change linearly with temperature in the temperature range 'investigated in this study'. The slope and intercept of these straight lines are reported in Table 4.27. The last column of this table gives the standard deviation of the fit.

The natural logarithm of the absolute value of the slope for both the parameters was found to increase linearly wisth the number of carbon atoms of the n-alkane component of mixtures with toluene. Mixtures with ethylbenzene do not give perfect straight lines. This can be seen from Figure 4.27. The intercept of these two parameters was also found

THREE 4.15' values of the Farameters involved in mergo's Model

· · · · · · · · · · · · · · · · · · ·			
System	# <u>:</u>	ž:	Standard Deviation
* Temperature + 20,00°0		•:	
Tolliene (An-Octane (B)	-1.2353~	1.2952	8.15 x 12 ⁴
Toluene A, n.Decame(8)	7,0134	:esT	3.31 x 12 ³
Toluene, Alika-Dodeczne, Bylinia	2.3465	02046	1.92 x 20 ³
Toluene (A)-n-Tetradecane (B)	1.7224	1,1151	2.6° x 12 ⁻³
Tolumne(A, -n-mexacecame, B)	1.1395	1,2855	9.3° x 13 ⁻³
Ethylbenzene (A) -n-Octane (B	-0.2425	1.36396	7.79 x 12
Stavibenzene (A) - n-Tetradecane (B)	1.4554		2.40 x 10 ³
Ethylpeniene (A) -n-hexadecane (B)	1.31798	1.2018	9.78 x 12 ⁻³
Temperature • 25.30°C			
Toluene(A)-n-Octane(B)	-6, 2278	-0.0798	9.17 x 10 4
Toluene(A)-n-Decane(B)	0. 3016	0.0340	2.17 x 10 3
Tolluene(A) -n-Dodecane(B)	0.33798	J. 3259	1.4" x 13"
Toluene(A)-n-Tetradecape(B)	J. 7169	ે. ∤ૉંલ્ક	1.95 x 10 }
Tolume(A) -n-Hexadecane(B)	1.1728	0.2974	5.19 x 10 ⁻³
Ethylbenzene(A),n-Octane(B)	-0.2431	-0.0503	7.65 x 10 1
Ethylbenzene(A)-n-Tetradecame(B)	1.4663	0.0921	1.92 x 10 3
Ethylpenzene(A) -n-riexadecane(B)	0.8239	2.1904	4.13 x 10 ⁻³
Temperature • 33.00°C	¥		•
Toluene(A)-n-Octane(B)	-C.1998	-3.0765	7.51 x 10 ⁻⁴
Tolumne(A)-n-Decame(B)	0:04824	0.0777	1.12 x 10
Toluene(A)-n-Dodecane(B)	0.36465	0.2348	1.25 x 10 ⁻³
Toluene(A)-n-Tetradecane(B)	0.7501	0.1607	3.46 x 10 ⁻³
Toluene(A) -n-Hexadecane(B)	1.1625	0.3002	5.61 x 10 ⁻³
Ethylbenzene(A)-n-Octane(B)	-0.2175	-0.0453	3.297x 10 ⁻⁴
Ethylbenzene(A) in-Tetradecane(B)	2.4851	0.08463 ~	~\$~ {~~4.82~x~10 ^{√3} ~
Ethylbenzene(A) -n-Hexadecane(B)	0.83405	0.1974	5.75 x 10 ⁻³ , [
Temperature • 40.00°C	• .		
. • · · · · · · · · · · · · · · · · · ·	-0.18856	0.0882	5.48.x 10 ⁻⁴
Toluene(A)-n-Octane(B)	-0.20000	1	
Toluene(A)-n-Octane(B) Toluene(A)-n-Decane(B)	0.3537	-0.06599	1.39 x 10 ⁻³
	1	Š	8.44 x 10 ⁻⁴
Tolume(A) -n-Decame(B)	0.3537	-0.06599	8.44 x 10 ⁻⁴ 2.49 x 10 ⁻³
Toluene(A)-n-Decane(B) Toluene(A)-n-Dodecane(B)	0.3537	-0.06599 0.0345	8.44 x 10 ⁻⁴ 2.49 x 10 ⁻³ 4.91 x 10 ⁻³
Tolume(A)-n-Decame(B) Tolume(A)-n-Dodecame(B) Tolume(A)-n-Tetradecame(B) Tolume(A)-n-Heradecame(B)	0.0537 0.3683 0.74475	-0.06599 0.0545 0.1672	8.44 x 10 ⁻⁴ 2.49 x 10 ⁻³ 4.91 x 10 ⁻³ 4.99 x 10 ⁻⁴
Tolumne(A)-n-Decame(B) Tolumne(A)-n-Dodecame(B) Tolumne(A)-n-Tetradecame(B)	0.0537 0.3683 0.74475 1.1666	-0.06599 0.0345 0.1672 0.3395	8.44 x 10 ⁻⁴ 2.49 x 10 ⁻³ 4.91 x 10 ⁻³

TABLE 4,19 values of the Parameters Involved in Auslander's Model

Syazen	å. <u>.</u> .	3.:	¥2.	Standard Deviation
Temperature + 0.21.2012			•	
	4.8173	- 1. 352 1	1,8800 .	
Tolliene Alin Octabe 3	2.2173	423.27	1.0015	4 19 x 11 2
Columnia or Decare \$	1.3724	: 433c	2.378	1.93 x 12 }
- Toluene AT-n-Dodecane 3 / 14 / 2	1.1091	1,3150	1.7123	1.11 x 12 1
Tolume(A) - n-Tetradecame(B)	1.4795	5.5348	1.5643	8,39 x 12 ¹³
Tolume A) -n-Hexadecame(3)	-324.9	1450.1	1.1259	1,24 x
, Ethylbenzene (A, -n-Octane) 🖟 🦠	1,1958	1,7333	0,1500	. 2,40 x 10 ⁻³
Ethylbenzene (A) -n-Tetradecane (B) Ethylbenzene (A) -n-Hexadecane (B)	ર. 595¢	1,4438	0.3739 /	7,32 x 11 ⁻³
. Temperature • 35:00°C	·			
		1407 4	3.213 x 12 ⁻⁵	1.15 x 10 ⁻¹
Toluené(A)-n-Octane(B)	-3.21 58	4803.5	5.703 x 10 ⁻⁴	5.54 x 10 ⁻³
Tolluene(A)-n-Decame(B)	2.0125 /	986.0	3.94" x 10" 4	1.00 x 10 ⁻¹
: Tolumne(A)-n-Dodecame(B)	0.0258	1536.3		2.34 x 10 ⁻³
Toluene(A)-n-Tetradecane(B)	3.8960	0.9315	0.6463	3:85 x 10 ⁻³
Toluene(A)-n-Hexadecane(B)	2.6154	.3, 2906	2.7565	3.55 X 10
Ethylbenzene(A)-n-Octame(B)	-1150.1	369.1	1,4425	
Ethylbeniene(A) n-Tetradecane(B)	- 2. 9 015	0.3021	1.9211	1.88 x,10 ¹²
Ethylbenzene(A) -n-Hexadecane(B)	1.1384	0,7445	365	1.59 x 10
Temperature - 35.00°C		•		
Toluene(A) -n-Octane(B)	5.1215	-0.7655	2.0996	1 3.45 x 10
	1.6276	0.4052	1.2998	9.95 x 10 1
Tolume(A)-n-Decame(B)	4.6550	0.1745	3.5477	4.52 x 10 1
Tolume(A) -n-Dodecare(B)	0.6133	1.4572	3,4655	2.01 x 10
Toluene(A):n-Tetradecame(B)	1.1101	0.7547	0.8203	7, 9,04.x 10 ⁷⁴
Tolume(A)-n-Hexadecane 3)	125.00	-50.126	1.5255	1:"3 x 10"
Ethylbenzene(A) -n-Octabe(B)	0.264*	3.3342	0.1989	. 3.6" x 10
Ethylbenzene(A)-n-Tetradecame(B)	· .	0.0376	10.0322	4,79 x 10
Ethylbenzene(A)-n-Hexadecane(B)	14.5684			
^ Icmperature = .40.00°C	\$			7
Tolume(A)-a-Octape(B)	1.6854	-0.7306	2.09298	1.56 x 10
Toluene(A)-n-Decame(B)	4.0993	0.1385	3.1945	5.27 x 10
Toluene (A) -n-Dodecane (B)	1:7836	0.4922	1.3981	8.57 x 10
	5.6161	0.236	2.7400	3.10 x 10
Toluene(A)-n-Tetradecane(B)	3.8031	J.2184	7.7981	5.24 x 10
Toluene(A)-n-Hexadecane(B)	30.777	-59.684	1,47315	3.51 x 10
Ethylbenzene(A)-n-Octane(B)		0.1481		1.78 x 10
Ethylbenzene(A)-n-Tetradecame(B)	6.03365	0.2918		4.36 x 10
Ethylbenzene(A)-n-Hexadecane(B)	3,0434	0.2318		

to behave in the same manner as pan be seen from Figure 4.26.

Parameters for Heric's model are given in Table 4.28 along with the standard deviation of the fit. All the systems fitted well to this empirical correlation as can be seen from Table 4.28. The parameter 2' did show a trend to increase with the number of carbon atoms of the second component of a system and it also varies linearly with temperature but there was no such trend with the other parameter, 2".

Parameters for Auslander's model are reported in Table 4.29 along with the standard deviation of the fit. All the systems fitted well to this model except for systems with nootane and nodecane at 25.00°C. The parameters of this model did not show any particular trend of change with temperature as they did in case of the two previous models.

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1. Conclusions

The precision density meter is the most vital instrument used in this work to measure accurate density values of the pure components as well as the binary mixtures. Controlling the temperature of the box where density meter was placed resulted in highly reproducible density measurements; particularly at temperatures 20.00°C and 25.00°C density values could be reproduced to better than ± 1.59 x 10⁻⁴ kg/L. Use of the Cannon-Ubbelohde viscometers also resulted in highly reproducible (better than 0.1%) viscosity measurements.

with proper precaution for evaporation losses, densities and viscosities of binary mixtures containing toluene, ethylbenzene, and n-alkanes were measured at temperature levels 20.00°C, 25.00°C, 35.00°C and 40.00°C, respectively over the entire composition range. From these values of the physical properties were determined some of the thermodynamic properties, viz, excess volumes of mixing, partial molar volumes and excess activation energies of viscous flow for each of the binary systems.

These physical and thermodynamic properties were critically tested to appropriate composition-dependent polynomials. The magnitude of standard deviation of indicate that the systems studied in this work may be well represented by these polynomials. Some of the existing literature models to predict mixture viscosities were also critically tested. These literature models were also found to represent kinematic viscosity of the binary mixtures precision. with reasonable work studied in this McAllister's parameters in particular showed some striking features for these systems. For example, both the parameters were found to vary linearly with temperature. This means that the viscosity-composition relationship may interpolated or even extrapolated in a certain temperature range. The slope and intercept of these "parameter isotherms" showed, an exponential relationship with the number of carbon atoms of the n-alkane components of the mixtures containing toluene. Utilizing this nature of McAllister's parameters, viscosity-composition relations may be predicted for some toluene-n-alkane systems at different temperature levels with a reasonable degree of precision.

Activation energies of viscous flow were also calculated for the pure components. They were found to vary

linearly with the length of carbon chain of the n-alkanes. The activation energies of viscous flow in a binary mixture do not follow a linear relation with the mole-fraction of component A.

5.2 Recommendations

There are a few literature viscosity models and a model for predicting excess activation energy of viscous flow which were not investigated in this study. The experimental data obtained in this work can be utilized to test amd improve these predictive models. Examples of these literature models are given below:

model [1960] discussed in Chapter 2 may further be extended to relate the viscosity of a liquid mixture to both composition and temperature. Kinematic viscosity can be related to enthalpy and entropy of activation for viscosity by the following expressions

$$v_{A} = \frac{hN}{M_{A}} \exp \left(-\Delta^{*} S_{A}/R\right) \exp \left(\Delta^{*} H_{A}/RT\right)$$
 (5.1)

$$v_{AB} = \frac{hN}{M_{AB}} \exp \left(-\Delta^* S_{AB}/R\right) \exp \left(\Delta^* H_{AB}/RT\right)$$
 (5.2)

$$\frac{hS}{BA} = \frac{hS}{M_{BA}} \exp \left(-\frac{1}{2} S_{BA}/R\right) \exp \left(\frac{1}{2} H_{BA}/PT\right)$$
 (5.3)

$$S_{B} = \frac{hN}{M_{B}} \exp \left(-\frac{1}{L} S_{B}/R\right) \exp \left(\frac{1}{L} R_{B}/RT\right) . \qquad (5.4)$$

If the adjustable parameters 2 SAB, 2 SBA, 2 HAB, and 2 HBA in the above equations are assumed to be independent of temperature, a method can be provided for extrapolating viscosity-composition data at two temperatures to other temperatures.

- (ii) Wei and Rowley [1985] provided a model for predicting mixture viscosity in multi-component systems. This model requires data on the excess enthalpies and the NRTL (non-random two liquid) model parameters for the excess free energy which can be obtained from vapor liquid equilibrium data. Wei and Rowley [1985] claimed that the local composition model can predict mixture viscosities more favorably to experimental results than some of the existing statistical mechanical methods, viz., Teja and Rice [1981], Ely and Hanley [1981].
- (iii) Grunberg and Nissan [1949] provided an equation for calculating mixture viscosities involving one adjustable parameters, given by

$$\ln \gamma_{\rm B} = x_{\rm A} \ln \gamma_{\rm A} + x_{\rm B} \ln \gamma_{\rm B} + dx_{\rm A} x_{\rm B}$$
 (5.5)

The above equation may be rearranged to obtain.

$$\frac{1}{x_A} \ln \frac{\pi}{B} = a - dx_A \tag{5.6}$$

where $= \ln \frac{1}{A} - \ln \frac{1}{B} + d = a$ constant. So that if Grunberg Nissan Equation is valid, a plot of $\frac{a}{B} = \frac{1}{B}$ against x_B should be linear whose slope will be -d and the intercept given by "a" in Equation (5.6).

(iv) Tamura and Kurata [1952] provided a model for the calculation of mixture viscosity, assuming that the relaxation time of each collision is proportional to the probability of collision, and that the volume charge on mixing is small. Their equation is given by

$$n_{\rm m} = x_{\rm A} + x_{\rm B} + x_{\rm B} + x_{\rm B} + 2(x_{\rm A} + x_{\rm B} + x_{\rm B})^{\frac{1}{2}} + n_{\rm AB}$$
 (5.7)

where AB is the only adjustable parameter, which depends on temperature.

(v) Reed and Taylor [1959] provided an equation for predicting excess activation energy of viscous flow at different temperatures. Their equation is given by

$$\frac{\Delta^* G_1^E}{RT_1} = \frac{\Delta^* G_2^E}{RT_2} - \ln \frac{v_2}{v_1} + \frac{\Delta^* H}{R} \left[\frac{1}{T_2} - \frac{1}{T_1} \right]$$
 (5.8)

where subscript 1, and 2 refer to two different temperature levels. Thus, values of $\stackrel{*}{=} G^E$ can be predicted at temperature. T_2K if value of $\stackrel{*}{=} G^E$ is known at temperature T_1K provided v_1 and v_2 are available and $\stackrel{*}{=} H$ is evaluated from that of pure components assuming it linear in mole-fraction.

NOMENCLATURE

A	= constant
B	= constant
В	= kinetic energy correction factor
ь	= constant
c	= viscometer constant
C	= constant
E	= kinetic energy correction factor
F	= frictional force
f	= force per unit area
f -	= molar free energy of activation of viscous
	flow
f	= natural frequency
Fn	= partition function at normal state
F*	= partition function at activated state
• ^ G	= activation energy of viscous flow
` Δ* G ^E	= excess activation energy of viscous flow
н	= gransmission co-efficient
, k	= Boltzmann's constant
k	= constant
Ĺ	= intensive property
М	= molecular weight
m	= constant

	= constant
	= number of moles
n N	= Avogadro's number
Ĺp	= pressure difference in a capillary
q	= physical property of liquid
R	= universal gas constant
r	= radius of the capillary
r _A	= radius of a sphere
S	= spring constant
T	= temperature
• • • • • • • • • • • • • • • • • • •	= time of efflux
, ever u	= specific welume
v	= molar volume, unless otherwise specified
v _i	= molar volume of component i, i = A,B
V.	= molar volume at which viscosity is infinite
$\mathbf{v_t}$	= terminal velocity
$\mathbf{v}_{\mathbf{x}}$	x component of the velocity
w	= limiting specific volume at which viscosity
	is infinite
, , ,	<pre>= mole fraction of component i, i = A, B</pre>
β	- constant
- β _f	= coefficient of sliding friction
η	= absolute viscosity
$\lambda_1^{\lambda_1,\lambda_2,\lambda_3}$	= intermolecular distances involved in Eyring's * equations

Ç

= kinematic viscosity

= mass density

T = shear stress

φ. = volume fraction of component i, i = A,B

Subscripts

A,B,1,2,i,j = refer to various components in the mixture

= refers to the mixture

Superscript

= excess over the ideal solution property

o, \ointegration = at infinite dilution

REFERENCES

- ACS Applied Publications, "Physical Properties of Chemical Compounds - II," Number 22 of the Advances in Chemistry Series, American Chemical Society, 1959.
- Aicart, E., G. Tardajos, and M.D. Pena, "Isothermal Compressibility of Cyclohexane-n-Decane, Cyclohexanen-Dodecane, and Cyclohexane-n-Tetradecane," J. Chem. Eng. Data, <u>26</u>, 22-26 (1981).
- Andrade, E.N. DaC., "A Theory of the Viscosity of Liquids," Part I., Phil. Mag., 17, 497-511 (1934).
- Andrade, E.N. DaC., "A Theory of the Viscosity of Liquids,"
 Part II, Phil. Mag., <u>17</u>, 698-732 (1934).
- Andrade, E.N. DaC. and C. Dodd, "Viscosity-Volume Relation for Liquids," Nature, London, <u>163</u>, 101-102 (1949).
- Andrade, E.N.Dac., "The Viscosity of Liquids," Endeavour, 117-127 (1954).
- Asfour, A.A., "Mutual and Intra-(Self-) Diffusion Coefficients and Viscosities of Binary Liquid Solutions at 25.00°C, Ph.D. Thesis, University of Waterloo, 1979.
- Aucejo, A., E. Part, P. Medina, and M. Andhotello, "Viscosity of Some n-Alkane/1-Chloroalkane Binary Liquid Mixtures," 31, 143-145 (1986).
- Auslander, G., "The Properties of Mixtures," British Chem. Eng. 9(9), 610-618 (1964).
- Bagga, O.P. and K.S.N. Raju, "Isobaric Binary Vapor-Liquid Equilibria," J. Chem. Eng. Data, <u>15</u>(4), 531-534 (1970).
- Bachinski, A.J., "Viscosity Law for Liquids," Physik. 2 13, 1157 (1913).
- Bird, R.B., W.E. Stewart, and E.N. Lightfoot, "Transport Phenomenon," Wiley, New York, 1960.
- Born, M., and H.S. Green, "A General Kinetic Theory of Liquids," Univ. Press, 1949.

- Bridgman, P.W., "The Physics of High Pressure," G. Bell, London, 1949.
- Cannon, M.R., "Viscosity Measurements Master Viscometer," Ind. Eng. Chem. Anal. Ed., 16, 708-710 (1944).
- Cannon, M.R., and M.R. Fenske, "Viscosity Standardization of Petroleum Libricating Fraction," Oil and Gas J., 33, 52-55 (1935).
- Cannon, M.R., and M.R. Fenske, "Viscosity Measurement," Ind. Eng. Chem. Anal. Ed., 10, 297-301 (1938).
- Coursey, B.M. and E.L. Heric, "Viscosity of Some Binary Systems of Hexadecane and Normal Chloroalkanes,"
 J. Chem. Eng. Data, 14 (4), 426-430 (1969).
- Dieter, W., and A. Heintz, "Excess Volumes of Binary-Alkanol/ Nonane Mixtures at Temperatures between 293.15 and 333.15K," J. Chem. Eng. Data, 31 483-487 (1986).
- Duff, A.W., "Empirical Formulae for Viscosity as a Function of Temperature," Phys. Rev., 4, 404-410 (1897).
- Eisenschitz, R., "Recent Theories of Transport Processes in Liquids," Nature, London, 167, 216-220 (1951).
- Ely, J.F., and H.J.M. Hanley, "Prediction of Transport
 Properties 1. Viscosity of Fluids and Mixtures,"
 Ind. Eng. Chem. Fundls., 20, 323-332 (1981).
- Evans, E.B., The Viscosities of Hydro-carbons, Parts I-III, J. Inst. Pet. Technologists, 24, 38-53 (1938).
- Eyring, H., "Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates," J. Chem. Phys. 4, 283-291 (1936).
- Forziatti, A.F., A.R. Glasgow, C.B. Wilkingham and F.D. Rossini, "Purification and Properties of Hydrocarbons," J. Res. Natl. Bur. Std. 36, 129-171 (1946).
- Frenkel, Y.I., "Kinetic Theory of Liquids," Oxford University Press, London, 1946.

- Garcia, M., C.Rey, V.P. Villar, and J.R. Rodriguez, "Excess Volumes of n-Octane + n-Undecane between 288.15 and 308.15K," J. Chem. Eng. Data, 31, 481-483 (1986).
- Grunberg, L., "The Viscosity of Regular Solutions, Systems Involving Carbon Tetrachloride, Benzene, and Cyclohexane," Trans. Faraday Soc., <u>50</u>, 1293-1303 (1954).
- Grunberg, L., and A.H. Nissan, "Mixture Law for Viscosity," Nature, Lond., 164, 799-800 (1949).
- Hafez, M., and S. Hartland, "Densities and Viscosities of Binary Systems Toluene-Acetone and 4-Methyl-2-Pentanone-Acetic Acid at 20, 25, 35 and 45°C,"
 J. Chem. Eng. Data, 21 (2), 179-182 (1976).
- Halshek, E., "The Viscosity of Liquids." G. Bell, London, 1928.
- Handa, Y.P., and G.C. Benson, "Volume Changes on Mixing Two Liquids: A Review of the Experimental Techniques and the Literature Data," Fluid Phase Equilibria, 3, 185-249 (1979).
- Heric, E.L., and J.G. Brewer, "Viscosity of Some Binary Liquid Nonelectrolyte Mixtures," J. Chem. Eng. Data, 12, 574-583 (1967).
- Hildebrand, J.H., "Motions of Molecules in Liquids: Viscosity and Diffusivity," Science, 174, 490-492 (1971).
- Howard, K.S., and R.A. McAllister, "Viscosity of Acetone-Water Solutions Up to Their Normal Boiling Points," AICHE J., 4, 362-366 (1958).
- Inglese, A., J.P.E. Grolier, and E. Wilheim, "Excess Volumes of Mixtures of Oxolane, Oxane, 1.3-Dioxolane, and 1.4-Dioxolane with n-Alkanes at 298.15, 308.15 and 318.15K," J. Chem. Eng. Data, 28, 124-127 (1983).
- Jobbling, A., "Viscosity-Volume Relation for Ether," Nature, London, 162, 620 (1948).

.5 4

- Katayama, H., and I. Watanabe, "Isobaric Vapor-Liquid Equilibria of the n-Heptane-Toluene System at Subatmospheric Pressures," J. Chem. Eng. Data, 25, 107-110 (1980).
- Kato, J., and N. Suzuki, "A New Expression for Excess Volumes of Binary Mixtures," Bull. of the Chem. Soc., Japan, 51 (4), 1020-1023 (1978).
- Katti, P.K., and M.M. Chaudhri, "Viscosities of Binary Mixtures of Benzyl Acetate with Dioxane, Aniline, and m-Cresol," J. Chem. Eng. Data, 9, 442-443 (1964).
- Kirkwood, J.G., "The Statistical Mechanical Theory of Transport Processes," III Distribution Function IV Friction Constant, J. Chem. Phys., 14, 180-201 (1946).
- McAllister, R.A., "The Viscosity of Liquid Mixtures," AICHE J., 6, 427-431 (1960).
- Naidu, G.R., and P.R. Naidu, "Excess Volumes of Ternary Mixtures Containing Methyl Ethyl Ketone, 1-Alkanols, and n-Octane," J. Chem. Eng. Data, 27, 57-59 (1982).
- Partington, J.R., "An Advanced Treatige on Physical Chemistry," Volume II, "The Properties of Liquids," Longmans, Green, London, 1951.
- Pena, M.D., and J.N. Delgado, "Volumen De Exceso De Mezclas De Benceno Con n-Alkanes," Anales De Quim. 70, 678-681 (1974).
- Perry, J.H., "Chemical Engineer's Handbook." McGraw Hill Book Company, 1950.
- Prausnitz, J.M., "Molecular Thermodynamics of Fluid Phase Equilibria," Prentice Hall Inc., Englewood Cliff, 4 N.J., 1969.
- Puri, P.S. and K.S.N. Raju, "Vapor-Liquid Equilibria Systems p-Xylene-Furfural and Ethylbenzene-Furfural," J. Chem. Eng. Data. 15 (4), 480-483 (1970).

- Rao, Y.P., and S.K. Suri, "Thermodynamic Properties of Solutions Containing an Aliphatic Amine.l. Excess Volumes of Binary Systems of Triethylamine with Benzene, Toluene, Ethylbenzene, and Isomeric Xylenes at 313.15 K," J. Chem. Eng. Data, 25 (4), 388-390 (1980).
- Reed, T.M. III, and T.E. Taylor, "Viscosities of Liquid Mixtures," J. Phys. Chem., 63, 58-67 (1959).
- Reid, R.C., and T.K. Sherwood, "The Properties of Gases and Liquids," McGraw Hill, New York, 1977.
- Riotzoulis, G., N. Papadopoulos, and D. Jannakoudakis, "Densities, Viscosities, and Dielectric Constants of Acetonitrile 7 Toluene at 15, 25 and 35 °C." J. Chem. Eng. Data, 31, 146-148, (1986).
- Roseveare, W.D., R.E. Powell, and H. Eyring, "The Structure and Dynamics of Liquids," J. Appl. Phys., 12, 669-679 (1941).
- Sanni, S.A., and H.P. Hutchison, "Diffusivities and Densities for Binary Liquid Mixtures," J. Chem. Eng. Data, 18, 317-322 (1973).
- Singh, R.P., and C.P. Sinha, "Viscosities and Activation Energies of Viscous Flow of the Binary Mixtures of n-Hexane with Toluene, Chlorbenzene, and 1-Hexanol," J. Chem. Eng. Data, 29, 132-135 (1984).
- Suri, S.K., "Thermodynamic Properties of Solutions Containing an Aliphatic Amine. 2. Excess Volumes of Binary Mixtures of Trimethylamine with 12 Hydrocarbons at 3.3.15K," J. Chem. Eng. Data, 25 (4), 390-393 (1980).
- Sutherland, W., "A Dynamical Theory of Diffusion for Non-Electrolytes and the Molecular Mass of Albumin," Phil. Mag. 9, 781-785 (1905).
- Tamura, M., and M. Kurata, "On The Viscosity of Binary
 Mixtures of Liquids," Bull. Chem. Soc., Japan,
 25, 32-38 (1952).

- Teja, A.S., and P. Rice, "Generalized Corresponding States Method for the Viscosities of Liquid Mixtures," Ind. Eng. Chem. Fundls, 20, 77-81 (1981).
- Timmermans, J., "Physico-Chemical Constants of Pure Organic Compounds," Volume I, Interscience, New York, 1950.
- Timmermans, J., "Physico-Chemical Constants of Pure Organic Compounds," Volume II, Interscience, New York, 1965.
- "TRC Thermodynamic Tables Hydrocarbons," Supplement Number 92,
 Thermodynamic Research Center, Texas, 1986.
- Ubbelohde, L.J., "The Principle of Suspended Level," Ind., Eng. Chem. Anal. Ed., 9, 85-90 (1937).
- Vitali, G., and G.G. Lobbia, "Ultrasonic Velocity in Binary Mixtures of Alkyl-benzenes at 25°C", J. Chem. Eng. Data, 28, 402-404 (1983).
- Wei, I.C., and R.L. Rowley, "A Local Composition Model for Multi-component Liquid Mixture Shear Viscosity," Chem. Eng. Sci., 40 (3), 401-408 (1985).
- Wilkie, C.R., "A Viscosity Equation for Gas Mixtures," J. Chem. Phys. <u>18</u> (4), 517-519 (1950).

APPENDICES

APPENDIX A

Derivation of the Viscosity Equation

A force balance around a capillary viscometer of any type yield the following equation

$$x_1 - x_2 = F_f + F_c + F_e$$
 (A.1)

where $X_1 - X_2$ is the driving fluid head (vertical distance between the two menisci in the viscometer) and the terms on the right hand side of this equation represent various kinds of frictions encountered in viscometry; F_f is the friction in capillary, F_c is the friction at capillary entrance, and F_e is the friction at capillary exit.

The greatest friction is developed in the capillary. In a properly designed viscometer, flow will always be inertial. F can be calculated from Poiseuille's law.

$$F_{f} = \frac{32 \text{ Lvi}}{\text{gp D}^2} \tag{A.2}$$

where v is the velocity of the fluid in capillary; g is acceleration due to gravity; L is the capillary length, o is the density of the fluid; n is the viscosity; D is the capillary diameter; and t is the efflux time.

^{*} Asfour [1979].

If & is replaced by the efflux volume V, we have

$$F_f = \frac{32 \text{ Ln}}{4 \text{ pgr}^2} \cdot \frac{V}{\pi r^2 t} = \frac{8LV\eta}{\text{pg}\pi r^4 t}$$
 (A.3)

Both F_c and F_e can be correlated as functions of kinetic energy. That is,

$$F_c + F_e = \frac{mv^2}{g}$$
 (A.4)

Combining Equations (A.1), (A.3) and (A.4) one obtains

$$x_1 - x_2 = \frac{8LV\eta}{\pi r^4 \rho gt} + \frac{mv^2}{g}$$
 (A.5)

replacing v in the last term of this equation by V, one obtains

$$x_1 - x_2 = \frac{8LV\eta}{\pi r^4 \rho gt} + \frac{m}{g} \left(\frac{V}{\pi r^2 t}\right)^2$$
 (A.6)

which after rearrangement, becomes

$$\frac{\eta}{\rho} = \frac{\pi r^4 gt}{8LV} \left[x_{1} - x_2 - \frac{mV^2}{\pi^2 r^4 gt^2} \right]$$
 (A.7)

$$\frac{\eta}{\rho} = \frac{\pi r^4 gt}{8LV} \{ x_1 - x_2 \} - \frac{mV}{8\pi LT}$$
 (A.8)

Equation (A.8) is usually written as

$$\frac{\overline{\eta}}{\rho} = Ct - B/t \qquad (A.9)$$

where C and B are given by

$$C = \frac{\pi r^4 g}{8LV} (X_1 - X_2)$$
, and (A.10)

$$B = \frac{mV}{8\pi L} \tag{A.11}$$

It has been experimentally established that, for a given viscometer, C is constant but B is not [Cannon et al. 1960]. B is constant only if m is constant. It has been observed experimentally that m is a function of Reynolds number. The value of m approaches zero as the Reynolds number reaches zero for all types of viscometers, and m increases as Reynolds number increases. It has been suggested by Cannon et al. [1960] that for Reynolds numbers in the range between 80 to 500, which are most usually encountered in capillary viscometry, m for trumpet shaped ends can be written as

$$m = 0.037 \text{ (Re)}^{\frac{1}{2}}$$
 (A.12)

$$m = 0.037 \left[\frac{4VD\rho}{\pi D^2 t \eta} \right]^{\frac{1}{2}}$$

$$= 0.037 \left[\frac{4VD\rho}{\pi D^2 t C t} \right]^{\frac{1}{2}}$$
(A.13)

substituting this result into Equation (A.11), one obtains

$$B = \frac{1.66 \text{ V}^{3/2} \times 10^{-3}}{\text{L (CD)}^{\frac{1}{2}} \text{ t}}$$
 (A.14)

This equation can be written as

$$B = E/t \tag{A.15}$$

where
$$E = \frac{1.66 \times 10^{-3} \text{ v}^{3/2}}{\text{L (CD)}^2}$$
 is independent of time.

Now substitution of Equation (A.15) in Equation (A.9) gives

$$\frac{\eta}{\rho} = Ct - E/t^2 \tag{A.16}$$

which is known as the viscosity equation.

APPENDIX B

Partial Molar Volumes Calculated From Density-

Composition Data

B.l Partial Molar Volume Data

The density-composition data listed in Tables 4.4 to 4.11 have been used to obtain the molar volume of the mixture as a function of composition. Partial molar volume of component A in, say, a binary liquid mixture of components A and B is defined as

$$\overline{V}_{A} = \left(\frac{\partial V}{\partial n_{A}}\right)_{T,P,n_{B}} \tag{B.1}$$

where

 \overline{V}_A is the partial molar volume of component A V is the molar volume of solution n_A and n_B are the number of moles of components A and B in solution, respectively.

Molar volume of the mixture is fitted to a composition dependent polynomial of the form

$$V = \sum_{i=0}^{i=3} A_i x_A^i$$
 (B.2)

These constants were evaluated by the method of least squares and given in Table B.1

Realizing that x_A is the mole fraction component A, one can utilize the fact that

$$x_{A} = n_{A}/n_{T}$$
 (B.3)

where n_{T} is the total number of moles in solution.

substituting Equation (B.3) into Equation (B.2) gives

$$V = A_0 n_T + A_1 n_A + A_2 \frac{nA^2}{n_T^2} + A_3 \frac{n_A^3}{n_T^3}, \qquad (B.4)$$

Differentiation of Equation (B.4) with respect to $n_{\underline{A}}$, keeping n_T constant and realizing that $n_T = n_A + n_B$; one obtains after rearrangement

$$B_1 = 2A_2$$

$$B_2 = 3A_3 - A_2$$

$$B_3 = -2A_3$$

and using Equation (B.5), one obtains

$$\bar{V}_{A} = B_{0} + B_{1} x_{A} + B_{2} x_{A}^{2} + B_{3} x_{A}^{3}$$
 (B.6)

Standard Deviation 0.01960.00 0.049 0.030 0.024 0.012 0.024 0.034 0,040 0,028 0.042 0.032 0.027 0.031 0.027 0.1098 -1.356 -0.247 -0.378-1.306 0.609 -1.698 -1,303 -0.811 -1.034 0.102 -2.358 -0.664 ~ -3,390 -0.039-1,600 -2.438 0.415 .0.477 0.270 -1.343 0.112 -1.199 -0.492 1.092 -1.516 **4**₂ . 696.891 . 39,149 -135.773 87.479 39,655 -136.018 168.138 126.429 -151.538 -125.923 -151:753 -185.662 -, 87,011 184,856 . \$5.155 TABLE B.1: Least Squares Constants for the Equation $V_m = \frac{1-3}{1-0} A_1^{1} A_2$ ¥ 195.946 234.246 261.278 293.979 163.551 261.191 163.504 292.729 162.703 260.030 162.698 232.967 260.053 292,691 195,062 ₽ Ethylbenzene(A) - n - Tetradecane(B)* Ethylbenzene(A)-n-Tetradecane(B) Ethylbenzene(A)-n-Hexadecane(B) Ethylbenzene(A)·n·Hexadecane(B) Ethylbenzene(A)-n-Octane(B) Toluene(A) -n-Tetradecane(B) Ethylbenzene(A)-n-Octane(B) Toluene(A)-n-Tetradecane(B) Toluene (A) - n-Hexadecane (B) Toluene(A)-n-ilexadecane(B) Toluene(A)-n-Dodecane(B) 20.00°C Toluene(A)-n-Dodecane(B) Temperature = 25,00°C Toluene(A)-n-Decane(B) Toluene(A):n-Decane(B) Toluene(A)-n-Octane(B) Toluene(A)n-Octane(B) System Temperature

	ation			•	•														.
	Standard Deviation		0.046	0.031	0.033	0.022	0.064	0.011	0.046	0.118		0.061	0.059	0.039	. 0.058	0.016	0,0396	0.045	0.068
-			<u> *.</u>	<u> </u>					٠.		13		<u>.</u>					•	
				•		>	•					, 							
	A3 .		1.028	0.689	-1.246	-0.602	0.052	-0.216	0.858	0.013	ė	0.203	-1.299	±1.404	-2.837	-0.985	-0.913	-1.702	.0.966
	Å ₂		-3,599	-3,679	0.265	-0.892	-3.278	-1.015.	4.354	-2.702		1.099	0.772	-0.417	2.421	-0.499	-0.136	0,163	-1./246
	- T		- 54.766	- 87.024	-121.799	-153.931	-185.188	39.870	-135.670	-169.566		56.575	- 89.747	-121.524	155.824	-187,502	40.405	-138.431	-170.461
	A ₀		164.495	198.218	230.936	263.617	296.527	165.530	263.633	296.775	٠	166.535	198.878	232.021	264.856	297.616	166.472	264.988	297.697
	展	5.00°C	ve (B)	ne(B)	cane (B)	adecane (B)	lecane (B)	Octane(B)	-Tetradecane(B)	-Hexadecane(B)	40.00°C	ne(B)	ne(B)	cane(B)	adecane (B)	decane(B)	-Octane(B)	-Tetradecane(B)	-Hexadecane (B)
•	Şystem	Temperature = 35.00°C	Toluene(A)-n-Octane(B)	Toluene (A) -n - Decane (B)	Toluene (A) -n-Dodecane (B)	Toluene(A)-n-Tetradecane(B)	Toluene(A) - n-Hexadecane(B)	Ethylbenzene(A)-n-Octane(B)	Ethylbenzene(A)-n-Tetradecane(B)	Ethylbenzene(A)-n-Hexadecane(B)	Temperature = 40.00°C	Toluene(A)-n-Octane(B)	Toluene(A)-n-Decane(B)	Toluene(A)-n-Dodecane(B)	Toluene(A)-n-Tetradecane(B)	Toluene(A)-n-Hexadecane(B)	Ethylbenzene(A)-n-Octane(B)	Ethylbenzene(A)-n-Tetradecane(B)	Ethylbenzene(A)-n-Hexadecane(B)

TABLE B.2 : Partial Molar Volume of the System Toluene(A)-n-Octane(B)

Mole Fraction	V _{m,A} L/kmol	V _{m,B}	Mole Fraction	V _{m.} A L/kmol	Vm,B L/kmol ,
Temperature =	20.00°C		Temperature =	25.00°C	
0.0000	107.5435	162.6982	0.0000	107.4279	163.5038
0.0584	107.4117	162.7022	0.06697	107.4148	163.5041
0.1021	107.3171	162.7104	0.0910	107.3999	163.5053
0.2065	107.1049	162.7492	0.1548	107.3703	163.5095
0.3044	106.9247	162.8111	0.2566	107.3097	163.5255
0.3937	106.7774	162.8902	0.3472	107.2460	163.5533~
0.5027	106.6212	163.0172	0.4447	107.1721	163.6021
0.5946	106.5106	163.1517	0.5437	107.0960	. 163.6769
0.6979	106.4110	163.3338	0.6408	107.0256	163.7796
0.8028	106.3378	163.5540	0.7612	106.9512	163,9553
0.8990	106.2968	163.7887	0.8747	106.9022	164.1773
1.0000	106.2819	164.0696	1.0000	106.8814	164:4956
Temperature •	35.00°C		Temperature =	40.00°C	<u> </u>
0.0000	110.7283	165.4946	0.0000	109.9606	166.5354
0.0440	110.4243	165.5014	0.0517	109.8484	166:5384
0.1032	110.0546	165.5306	0.1038	109,7384	166.5477
0.2008	109.5359	165.6230	0.1986	109.5467	166.5819
0.2940	109.1377	165.7534	0.29896	109.3583	166.6444
0.3983	108.7921	165.9355	0.4023	109.1822	166.7397
0.4956	108.5527	166.1281	0.4942	109.0434	166.8526
0.6003	108.3715	166.3464	0.5939	108.9134	167.00797
0.6974	108.2621	166.5472	0.6947	108.8067	167.2015
0.8019	108.1943	166.74796	0.8003	108.72396	167.4469
0.8979	108.1657	166.9069	0.8976	108.6766	167.7137
1.0000	108.1581	167.0363	1.0000	108.6591	168.0395

TABLE B.3: Partial Molar Volume of the System Toluene(A)-n-Decane(B)

	٠,		<u> </u>		
Mole Fraction	V _{m,A}	V _{m,B}	Mole Fraction	V _{m,A} - L/knol	V _{m,B} £/kmol
x _A	L/kmcl	L/kmol (*A	L/ MINU !	
Temperature =	20:00°C		Temperature	25.00°C	
0.0000	108.0509	195.0621	0.0000	108.4671	195.9457
0.05798	107.8778	195.0672	0.0519	108.3855	195.9479
0.1088	107.73096	195.0806	0.1005	108.3019	195.9548
0.2078	107.4591	195,1319	0.20197	108.1107	195.9894
0.3046	107.21398	195.2165	0.3037	107.9045	196.0598
0.4047	106.9849	195.3425	0.4060	107.6925	196.1770
0.4968	106.7983	195.4958	0.5113	107.4808	196.3573
0.5992	106.6211	195.7109	0.6106`	107.2973	196.5926
0.6996	106.4811	195.9705	0.7050	107.1460	196.8844
0.7994	106.3781	196.2794	0.8021	107.0231-	197.2618
0.9931	106.3123	196.6568	0.8957	106.9439	197.7090
1.0000	106.2917	197.0644	1.0000	106.9111	198.3126
Temperature =	35.00°C		Temperature -	40.00°C	
-0.0000	111.1945	198.2183	0.0000	109.1311	198.8783
0/0495	110.8444	198.2272	0.0432	109.1893	198.8771
0.0966	: 110.5365	198.2514	0.1008	109,2418	198.8731
0.1964	109.9608	198.3498	₹ 0.2021	109.2737	198.8683
0.2979	109.4762	198.5084	0.2993	109.2444	198.8789
0.3929	109,10698	198.7028	0.3936	109.1736	198.9172
0.4962	108.78998	198.9558	0.4947	109.0665	199.0041
0.5965	108.5578	199, 2347	0.5931	108.9462	199.1489
	108.3896	199.5424	0,6959	108.8197	199.3801
0.6981	108.2812	199.8633	0.8009	108.7071	199.7180
0.7988			0.8962	108.6345	200.1286
0.8979	108.2230	200.1866	1	108.6038	200.7045
1.0000	_108.2048	200.5190	1.0000	100.0036	500.043

TABLE B.4: Partial Molar Volume of the System Toluene(A)-n-Dodecane(B)

	*				
Mole Fraction	V _{m,A}	V _{m,B}	Mole Fraction	V _{m.A}	Vm.B
× _A	L/kmol	L/kmol	*A	L/kmol	L/kmc1
Temperature =	20.00°C		Temperature *	25, 00°C	
0.0000	107.3623	227.6241	0.0000	108.0811	228.8759
0.0645	107.3824	227.6236	0.0551	108.1283	228.8747
0.1056	107.3781	227.6241	0.0887	108.1413	228.8737
0.2082	107.3476	227.6362	0.1959	108.1130	228,8796
0.3004	107.2143	227.6722	0.2789	108.0305	228.9060
0.4037	107.0601	227.7571	0.3802	107.8771	228.9827
0.5002	106.8948	227.8946	0.4701	107.7086	229.1084
0.6005	106.7176	228.1130	0,5707	107.5036	229.3327
0.7015	106.54998	228.4277	0.6854	107.2748	229.7226
0.8023	106.4104	228.8534	0.7805	107.1110	230.1750
0.90099	106.3170	229.3941	0.8895	106.9762	230.8640
1.0000	106.2822	230.0762	1.0000	106.9243	231.7729
Temperature =	35.00°C		Temperature =	40.00°C	
0.0000	109.1370	230.9363	0.0000	110.4968	232.0210
0.0527	109.1542	230.9359	0.0508	110.4450	232.0225
0.0996	109.1525	230.9361	0.0924	110.3897	232.0268
0.2049	109.0989	230.9466	0 /2033	110.1940	232.0619
0.2913	109.0133	230.9754	0.3003	109.9804	232.1346
0.4021	108.8649	231.0554	0.4063	109.7200	232.2781
0.4021	108.7150	231.1793	0.5104	109.4560	232.5030
0.4980	108.5610	231.3660	0.5988	109.2397	232.7735
0.69698	108.4055	231.6513	0.7015	109.0137	233.1957
. /	108.2772	232.0334	0.7999	108.8389	233.7249
0.7979	108.27/2	232.5276	0.89898	108.7203	234, 398
0.8981		232.3270	1.0000	108,6760	235.2461
1,0000	108.1559	233, 1032	1.0000		<u> </u>

TABLE B.5: Partial Molar Volume of the System Toluene(A)-n-Tetradecane(B)

Mole Fraction	V _{m,A}	Vm,B	Mole Fraction	Vm,A L/kmol	Vm,B L/kmol
XA . Temperature =	L/kmol 20.00°C	L/kmcl	X _A .	25.00°C	
	108.3004	260.0532	0.0000	109.7077	261.2797
0.0000		260.0594	0.0469	109.4089	261.2866
0.0661	108.1205	260.0708	0.1072	109.0554	261.3161
0.1089 🙃	108.0021	260.0708	0.1969	108.5912	261.3991
0.2072	107.7279		0.2854	108.2011	261.5229
0.3028	107.4647	260.2131	0.3858	107.8343	261.7080
0.3994	107.2087	260.3521	0.4918	107.5276	261.9470
0.5034	106.9534	260.5628 *	8	107.3019	262.2148
0.5820	106.7794	. 260.7697	0.5944	107.1598	262.4643
0.7026	106.5537	261.1765	0.6815		262.8061
0.8048 ',	106.4110	261.6148	d.7929	107.0375	263.1335
0.9018	106.3247	262.1186	0.8947	106.9765	
1.0000	106.2938	262.7234	1.0000	106.9569	263.4799
Temperature =	35.00°C		Temperature =	40.00°C	
0.0000	109.6857	263.6171	0.0000	109.0321	264.8559
0.0513	109.5919	263.6196	0.0503	109.2487	264.8505
0.0991	109.5011	263.6270	0.0977	109.4062	264.8381
0.1977	109.3065	263.6612	0.1856	109.5903	264.8088
0.2967	109.1072	263.78-1	0.2950	109.6545	264.7909
0.3868	108.9283	263,8203	0.3892	109.5948	264.8238
X	108.7198	263.9863	0.4954	109.4372	264.951
0,4975	108.5503	264.1921	0.5902	109.2477	265.179
0.5973	108.4039	264.4621	0.6908	109.0300	265.571
0.6983		264.7907	0.8046	108.8056	266.244
0.7963	108.2932		0.8977	108.6731	267.010
0.89897	108.2176	265.2129		108.6153	268.110
1.0000	108.1913	.265.7134	1.0000	100.0233	

Œ

TABLE B.6: Partial Molar Volume of the System Toluene(A)-n-Hexadecane(B)

Mole Fraction	V _{m,A} - L/kmol	Vm.B L/kmol	Mole Fraction	Vm.A L/kmol	V m,B L/kmol
Temperature =	· · · · · · · · · · · · · · · · · · ·	-			
0.0000	107.8734	292.7292	0.0000	108.3262	293.9777
0.0444	107.8734	., 292.7293	0.06697	108.3005	293.9787
0.0959	107.8500	292.7312	0.13099	108.2474	293.9846
0.2033	107.7323	292.7531	0.1927	108.1735	293.9990
0.2811	107.6004 -	292.7958	0.2708	108.0543	294.0354
0.38898	107.3728	292.9121	0.4333	107.7457	294.2075
0.4969	-107.1161	293.1181	0.5026	107.6024	294.3339
0.6004	106.8663	293.4238	0.5973	107.4092	294.5712
0.6977	106.6491	293.8279	0.7017	107.2141	294.9350
0.7978	106.4631	294.3824	0.7984	107.0659	295.3820
0.9004	106.3337	295.1171	0.89799	106.9615	295.9697
1.0000	106.2876	296.0127	1.0000	106.9219	296.7214
Temperature =	35.00°C		Temperature =	40.00°C	
0.0000	111.3384	296.5268	0.0000	110.1148	297.6164
0.0363	111.1050	296.5311	0.0533	. 110.0548	297.6182
0.0987	110.7245	296.5587	0.0961	109.9978	297,6228
0.2114	110.1049	296.6724	0.2119	109.8114	297.6576
0.3078	109.6429	296.8343	0.2950	109.6568	297.7105
0.50/0			1 ' 1		200 0166
0.3992	109.2620	297.0425	0.3956	109.4571	297.8100
	109.2620	297.0425 297.3433	0.3956 0.4984	109.4571 109.2506	
0.3992	•	1			297.8166 297.9845 298.2207
0.3992 0.5031	108.8961	297.3433	0.4984	109.2506	297.9845
0.3992 0.5031 0.5963	108.8961	297.3433 297.6703	0.4984 0.5995	109.2506 109.0575	297.9845 298.2207 298.5355
0.3992 0.5031 0.5963 0.7028	108.8961 108.6281 108.3908	297.3433 297.6703 298.10996	0.4984 0.5995 0.6995	109.25Q6 109.0575 108.8884	297.9845 298.2207

TABLE B.7 : Partial Molar Volume of the System Ethylbeniene(A)-n-Octane(B)

Mole Fraction	Vm.A 1./kmol	V _{m,B}	Mole Fraction	V _{m,} A L/kmol	V _{m,B}
Temperature •	20.00°C		Temperature =	25.00°C	-
0.0000	123.5546	162.7033	0.0000	123.8560	163.5532
0.0544	123,4286	162.7068	0.0562	123.8128	163.5544
0.1028	123.3239	162.7157	0.1008	123.7763	163.5575
0.2053	123.1241	162.7520	0.1983	123:6915	163.5726
0.3052	122.9573	162.8091	0.2917	123.6068	163.6003
0.40997	122.8105	162.8907	0.3979	- 123.5100	163.6516
0.40337	122.6948	162.9894	0.5898	123.3480	- 163.8118
	122.5984	163.1147	0.7007	123.2708	163,9528
0.6193	122.5370	163.2366	0.7972	123.2185	164.1094
0.7113	122.4923	163.3773	0.8964	123.1830	164.3070
0.8071	122.4566	163.5280	1.0000	123.1695	164.5572
0.9012 1.0000	122.4576	163.6986			÷
	35.00°C		Temperature =	40.00°C	
0.0000	125.6598	165.5301	0.0000	126.0669	166.4722
0.0515	125.5563	165.5329	0.0482	126.0479	166. <u>47</u> 27
0.0971	125.4665	165.5401	0.0976	126.0172	166.4752
0.1865	125,2967	165.5682	0.1971 -	125.9260	166.4915
0.2969	125.1006	165.6309	0.2949	125.8069	166.5309
4	124.9367	165.7184	0.3974	125:6620	166.6084
0.3983	124.8040	165.8246	0.4902	125.5229	166.7201
0.4900	124.6764	165.9753	0.5966	125.3655	. 166.9085
0.5919	124.5655	156.1788	0.6955	125.2325	167.1526
0.7016	124.4932	166,3958	0.7967	125.1208	167.4825
0.7980		166.6630	0.8965	125.0461	167.8980
1.0000	124.4456	166.9765	1.0000	125.0173	168.4352

TABLE B.8 : Partial Molar Volume of the System Ethylbenzene(A)-n-Tetradecane(B)

		<u>· </u>			
Mole Fraction	V _{m,A}	V _{m,B}	Mole Fraction	Vm.A	V _{m,B}
× _A	L/kmol	L/kmol	× _A	[' ['/kwo]
Temperature	20.00°C		Temperature =	25.00°C	•
0.0000	124.2574	260.0299	0.0000	127.9133	261.0129
0.0521	124.1973	260.10316	0.0629	127.2180	261.0354
0.1152	124.1028	260.0404	0.1057	126.7830	261.0754
0.2101	123.9241	260.0758	0.2109	125.8367	261.2527
0.2932	123.7409	260.1379	0.3033	125.1406	261.4931
0.4042	123.4736	260.2824	0.3946	124.0647	262.2017
0.4963	123.2462	260.4696	0.5007	124.0377	262.2284
0.5976	123.0054	260.7618	0.6007	123.6568	262.6943
0.6977	122.7928	261.1545	0.7002	123.3810	263.2060
0.7987	122.6197	261.6715	0.7976	123.2008	263.7419
0.8999	122.5041	262.3274	0.8976	123.0967	264.3175
1.0000	122.4626	263.1280	1.0000	123.0635	264.9219
Temperature =	35.00°C		Temperature	40.00°C	
0.0000	127.9635	263.6332	0.0000	126.5562	264.9877
0.0529	127.5222	263.6451	0.0509	126.5597	264.9877
0.1010	127.1527	263.6758	0.0923	126.5442	264.9890
° 0.1997	126.4873	263.7931	0.1991	126.4393	265.008
0.2950	125.9535	263.9681	0.3032	126.2688	265.06
0.39297	. 125.5075	264.2013	0.4005	126.0608	265.180
0.4975	125.1350	264.4994	0,4961	125.8373	265.363
0.5814	124.9056	264.7676	0.5918	125.6100	265.635
0.6978	124.6779	265.1699	0.7004	125.3700	266.076
0.8008	124.5522	265.5438	0.7975	125.1924	266.609
0.8974	124.4886	265.8990	0.8997	125.0642	267.334
1.0000	124.4680	266.2704	1.0000	125,0180	268.227
1.0000				1 / /	ــــــــــــــــــــــــــــــــــــــ

TABLE . B.9 : Partial Molar Volume of the System Ethylbenzene(A)-n-Hexadecane(B)

Mole Fraction x	Vm.A L/kmol	V _m ,B L/kmol	Mole Fraction	V _{m,A}	Vm,B
Temperature =	20.00°C	•	Temperature =	25.00°C	
0.0000	123.7218	292.6912	0000.0	125.8423	293.2799
0.0539	123.8165	292.6887	0.0692	125.5138	293.9917
0.1029	123.8652	292.6847	0.1142	125.3096	294.0123
0.1983	123.8706	292.6850	0.2058	124.9195	294.0867
0.3022	123.7663	292.7216	0.3084	124.5238	294.2238-
0.4028	123.5849	292 8222	0.4053	124.1925	294.4078
0.4927	123.3797	292.9901	0.5027	123.9034	294.6482
0.5953	123.1230	293.2990	0.6099	123.6388	294.9802
0.6978	122.8720	293.7618	0.69799	123.4656	295.3078
0.7992	122.6590	294.4008	0.8029	123.3138	295.7649
0.9002	122.5102	295.2459	0.9008	123.2279	296.2594
1.0000	122.4560.	296:3147	1.0000	123.1982	296, 8299
Temperature	35.00°C		Temperature =	40.00°C	2
0.0000	127.2092	296.7751	0.0000	127.2365	297.6974
0.0505	126.9432	296,7820	0.0502	127.1074	297.7007
0.0912	126, 7390	, 296.7976	0,0987	126.9764	297.7113
0.1912	126.2760	296,8737	*0.1983	126.6925	297.7614
0.2997	125.8350	297:0172	0.3033	126.3826	297.8659
0.4026	125.4762	. 297.2113	0.3935	126.1178	298.0080
0.4995	125.1903	297.4462	0.4981	125.8241	298.2453
0.5968	124.9547	297.7321	0.5986	125.5672	298.5583
	124.7614	298.0880	0.6995	125.3463	298.9682
0.6994	. [0.8025	125.1712	299.4983
0.6994	124.6277	298.4873	0.00		1.
0.8987	124.6277	298.48/3	0.8986	125.0651	300.105

and similarly

$$\vec{v}_{B} = c_{o} + c_{1} x_{A}^{2} + c_{2} x_{A}^{3}$$
 (B.

where C_o = A_o

 $C_2 = -2A_2$

calculating the values of the constants B_0 to B_3 and C to C from the known values of A to A (given in Table B.1), spartial molar volumes V_m^A and V_m^B were obtained for each system at different temperatures over the entire composition range. These values are given in Tables B.2 to B.9.

APPENDIX C

Excess Volume of Mixing

The density-composition data obtained in this study have been used to calculate the excess volume of mixing for each of the binary mixtures at different temperatures studied in this work. Tables C.1 to C.8 gives the numerical values of the excess volumes of mixing ever the complete composition range for each system. These data are illustrated in figures 4.2 to 4.5.

The excess volume of mixing has been calculated. from the equation

$$V_{m}^{E} = \frac{M_{A} \times A + M_{B} \times B}{\rho_{m}} - \frac{M_{A} \times A}{\rho_{A}} - \frac{M_{B} \times B}{\rho_{B}}$$
 (C.1)

where, M_A and M_B are the molecular weights of the two components, ρ_A , ρ_B and ρ_m are the densities of component A, B and of mixture respectively and V_m^E is the excess volume of mixing of the mixture.

TABLE | C.1 : Excess Volume of Mixing of the System Toluene(A)-n-Octane(B)

Mole Fraction	Excess Volume	Mole Fraction	Excess Volume
x _A	L/kmol	x _A	L/kmol
Temperature =	20.00°C	Temperature = 2	25.00°C
0.0000	0.0000	0.0000	0.0000
0.0584	0.1139	0.04995	-0.0623
0.1021	0.1749	0.0910	-0.0503
0.2065	0.2529	0.1548	0.0164
0.3044	0.2972	0.2566	0.0875
0.3937	0.3323	0.3472	0.1336
0.5027	0.3370	0.4446	0.1469
0.5946	0.3401	0.5437	0.1746
0.6979	0.3016	0.6408	0.1632
0.8028	0.2587	0,7612	0.1168
0.8990	0.1774	0.8747	0.0444
1.0000	0.0000	1.0000	0.0000
Temperature =	35.00°C	Temperature =	40.00°C
0.0000	0.0000	- 0.0000	0.0000
0.0440	0.0915	0.0517	0.2357
0.1032	0.1322	0.1038	0.2855
2008	0.3035	0.1986	0.3197
0.2940 -	0.4274	0.29896	0.3396
		0.4023	0.3597
0.3983	0.5275		1
0.3983 0.4956	0.52/5	0.4942	0.3960
0.4956	.0.5245	0.4942	0.3960
0.4956	0.5245	0.4942	0.3960 0.3874
0.4956 0.6003 0.6974	0.5245 0.4786 0.3218	0.4942 0.5939 0.6947	0.3960 0.3874 0.3514

Mixing of the System Toluene(A)

Mole Fraction	Excess Volume	Mole Fraction	Excess Volume
, x _A	L/kmol	x _x	L/kmol
Temperature =	20.00°C	Temperature = 2	25.00°C
0.0000	0.0000	0.0000	0.0000
0.05798	0.2106	0.0519	0.0125
0.1058	0.2752	0.1005	0.0970
0.2078	0.3621	0.20197	0.2798
0.3046	0.4327	0.3037	0.3637
0.4047	0.4841	0.4060	0.4381
. 0.4968	0.4942	0.5113	0.4911
0.5992	0.4901	0.6106	0.4772
. 0.6996	0.4519	0.7050	0.4200
0.7994	0.3762	0.8021	0.3451
0.9031 _	0.2487	0.8957	0.2389
1.0000	0.0000	1.0000	0.0000
Temperature*	35.00°C	, Temperature	40.00°C
0.0000	0.0000	0.0000	0.0000
0.0495	1	· ·	
	0.1187	0.0432	-0.1765
0.0966	0.2834	0.0432	-0.1765 -0.07099
0.0966	1		
	0.2834	0.1008	-0.07099
0.1964	0.2834	0.1008 0.2021	-0.07099
0.1964 0.2979	0.2834 0.4901 0.6156	0.1008 0.2021 0.2993	-0.07099 0.0121 0.1402
0.1964 0.2979 0.3929	0.2834 0.4901 0.6156 0.6286	0.1008 0.2021 0.2993 0.3936	-0.07099 0.0121 0.1402 0.1980
0.1964 0.2979 0.3929 0.4962	0.2834 0.4901 0.6156 0.6286 0.6464	0.1008 0.2021 0.2993 0.3936 0.4947	0.07099 0.0121 0.1402 0.1980 0.2370
0.1964 0.2979 0.3929 0.4962 0.5965	0.2834 0.4901 0.6156 0.6286 0.6464 0.6294	0.1008 0.2021 0.2993 0.3936 0.4947 0.5931	0.07099 0.0121 0.1402 0.1980 0.2370 0.2761
0.1964 0.2979 0.3929 0.4962 0.5965	0.2834 0.4901 0.6156 0.6286 0.6464 0.6294 0.5282	0.1008 0.2021 0.2993 0.3936 0.4947 0.5931 0.6959	0.07099 0.0121 0.1402 0.1980 0.2370 0.2761

TABLE C.3: Excess Volume of Mixing of the System Toluene(A)-n-Dodecane(B)

Mole Fraction	Excess Volume .	Mole Fraction	Excess Volume
× _A	L/kmcl	x _A	L/kmcl
Temperature =	20.00°C	Temperature = 25	.00°C
0.0000	0.0000	0.0000	- 0.0000
0.0645	0.1433	0.0551	0.0795
0.1056	0.1795	0.0887	0.1373
0.2082	0.2785	0.1959	0.2660
0.3004	0.3590	0.2789	0.3673
0.4037	0.3952	0.3802	0:4386
0.5002	0.4568	0.4701	0.4975
0.6005	0.4755	0.5707	0.5344
0.7015	0.4674	0.6854	0.5131
0.8023	0.3954	0.7805	0.4524
0.90099	0.2563	0.8895	0.3269
. 1.0000	r 0.0000	1.0000	0.0000
Temperature =	35.00°C	Temperature = 40	.00°C
0.0000	0.0000	0.0000	. 0.0000
0.0527	0.0637	0.0508	0.1439
0.0996	0.0984	0.0924	0.2417
• 0.2049	0.1326	0.2033	0.3962
0.2913	0.2606	0.3003	0.4987
0.4021	0.3659	0.4063	0.6085
0.4986	0.4040	0.5104	0.6822
0.5944	0.4124	0.5988	0.6510
0.69698	0_3844	0.7015	0.6184
0.7979	0.2569	0.7999 .	0.5151
0.8981	0.1327	0.89898	0.3969
1.0000	0.0000	1.0000	0.0000

TABLE C.4: Excess Volume of Mixing of the System Toluene(A)-n-Tetradecane(B)

lole Fraction	Excess Volume	Mole Fraction	Excess Volume L/kmol
	0,00°C	Temperature =	25.00°C
	0.0000	0.0000	0.0000
0.0000 .	0.2429	0.0469	0.4275
0.0661	0.2919	0.1072	0.5147
0.1089	0.4156	0.1969	0.59999
0.2072	0.4895	0.2854	0.6385
0.3028	0.5849	0.3858	0.6766
0.3994	0.6287	0.4918	0.67721
0.5034	0.6268	0.5944	-0.6727
0.5820	0.5354	0.6815	0.6229
0.7026	0.4602	0.7929	0.5106
0.8048	0.3191	0.8947	0.3304
0.9018	0.0000	1.0000	0.0000
Temperature =	35.00°C	Temperature =	40.00°C
	0.0000	0.0000	0.0000
0.0000	0.1006	0.0503	-0.1592
0.0513	0.1907	0.0977	-0.0595
0.0991	0.2973	0.1856	0.1291
0.1977	0.3606	0.2950	0.1839
0.2967	0.4050	0.3892	0.3109
0.3868	0.4393	0.4954	0.4144
0.4975	0.4646	0.5902	0.4435
0.5973	0.4444	0.6908	0.5038
0.6983		0.8046	0.3607
	0.3242	i i	0.2347
0.7963	0.1942	0.8977	0.2347

TABLE C.5 : Excess Volume of Mixing of the System Toluene(A)-n-Hexadecane(B)

Mole Fraction	Excess Volume	Mole Fraction	Excess Volume
x _A	L/kmcl	×A	L/kmol
Temperature = 2	0.80°C	Temperature =	25.00°C
0.0000	0.0000	0.0000	0.0000
0.0444	0.1402	0.06697	0.1099
0.0959	0.2268	0.13099	0.2128
0.2033	0.3661	0.1927	0.3082
0.2811	0.4693	0.2708	0.3690
0.38898	0.5597	p.4333	0.4850
0.4969	0.6154	0.5026	0.5189
0.6004	0.6396	0.5973	0.5218
0.6977	0.6221	0.7017	0.5262
0.7978	0.5383	0.7984	0.4480
0.9004	0.3413	0.89799	0.2673
1.0000	0.0000	1.0000	0.0000
Temperature =	35.00°C	Temperature •	40.00°C
0.0000	0.0000	0.0000	0.0000
0.0363	0.0577	0.05333	0.0946
0.0987	0.2080	0.0961	0.1554
0.2114	0.3979	0.2119	0.2764
0.3078	0.6266	0.2950	0.3941
0.3992	0.7504	0.3956	0.4470
0.5031	0.7852	0.4984	0.4749
0.5963	0.7411	0.5995	0.5024
In the second second	0.60696	0.6995	0.4676
0.7028		, ,	
	0.4156	07946	0.3824
0.7028 0.7969 0.8978	0.4156 0.1170	0.7946	0.3824

TABLE C.6: Excess Volume of Mixing of the System Ethylbenzene(A)-n-Octame(B)

Mole Fraction	Excess Volume	Mole Fraction	Excess Volume
*A	L/kmcl ~	x _A	L/kmol
Temperature =	Temperature = 20.00°C		5.00°C
0.0000	0.0000	0.0000	0.0000
0.0544	0.1156	0.0562	0.0084
0.1028	0.1542	0.1008	0.065&
0.2053	0.2261	0.1983	0.1087
0.3052	0.2618	0.2917	0.1700
0.40997	0.2770	0.3979	0.2018
0.5113	0.2705	0.5898	0.1988
0.6193	0.2579	0.7007	0.1858
0.7113	0.2416	0.7972	0.1539
0.8071	0.2139*	0.8964	0.1030
- 0.9012	0.1515	1.0000	0.0000
1.0000	0.0000		
Temperature =	35.00°C	Temperature = 4	10.00°C
0.0000	0.0000	0.0000	0.0000
0.0515			_
0.0213	0.0486	0.0482	0.1131
0.0313	0.0486	0.0482	0.1131 0.1561
•	.1		
0.0971	0.1164	0.0976	0.1561
0.0971 · 0.1865	0.1164	0.0976 0.1971	0.1561 0.2431
0.0971 · 0.1865 0.2969	0.1164 0.2129 0.2687	0.0976 0.1971 0.2949	0.1561 0.2431 0.3269
0.0971 0.1865 0.2969 0.3983 0.4900	0.1164 0.2129 0.2687 0.3001	0.0976 0.1971 0.2949 0.3974	0.1561 0.2431 0.3269 0.3694
0.0971 0.1865 0.2969 0.3983 0.4900 0.5919	0.1164 0.2129 0.2687 0.3001 0.3374	0.0976 0.1971 0.2949 0.3974 0.4902	0.1561 0.2431 0.3269 0.3694 0.3931
0.0971 0.1865 0.2969 0.3983 0.4900	0.1164 0.2129 0.2687 0.3001 0.3374 0.3347	0.0976 0.1971 0.2949 0.3974 0.4902 0.5966	0.1561 0.2431 0.3269 0.3694 0.3931 0.4058
0.0971 0.1865 0.2969 0.3983 0.4900 0.5919 0.7016	0.1164 0.2129 0.2687 0.3001 0.3374 0.3347	0.0976 0.1971 0.2949 0.3974 0.4902 0.5966 0.6955	0.1561 0.2431 0.3269 0.3694 0.3931 0.4058 0.3994

TABLE C.7: Exess Volume of Mixing of the System Ethylbenzene(A)-n-Tetradecane(B)

Mole Fraction	Excess Volume	Mole Fraction	Excess Volume
x _A	L/kme1	*A	L/kmo1
Temperature = 3	0.00°C	Temperature *	25.00°C
0.0000	0.0000	0.0000	0.0000
0.0521	0.1472	0.0629	0.2751
0.1152	0.2648	.0.1057	0.2530
0.2101	0.3979	0.2109	0.4230
0.2932	0.4763	0.3033	0.4826
0.4042	0.5970	0.3946	0.5381
0.4963	0.6172	0.5007	0.5887
0.5976	0.6345	0.6007	0.5729
0,6977	0.6030	0.7002	0.5126
0.7987	0.5108	0.7976	0.4400
0.8999	S 0.3458	0.8976	0.2754
1.0000	0.0000	1.0000	0.0000
Temperature = 3	35.00°C	Temperature	40.00°C
0.0000	0.0000	0.0000	0.0000
0.0529	0.1924	0.0509	0.14596
0.1010	0.4243	0.0923	0.2356
0.1997	0.6121	0.1991	0.3231
0.2950	0.7071	0.3032	0.4961
0.39297	0.7639	0.400\$	0.5518
0.4975	0.7759	0.4961	0.6520
0.5814	0.7620	0.5918	0.6494
0.6978	0.6459	0.7004	0.5673
0.8008	0.5214	0.7975	0.5338
		•	
0.8974	0.3478	0.8997	0.3873

TABLE C.8: Excess Volume of Mixing of the System Ethylbenzene(A)-n-Hexadécane(B)

 	T 1		
Mole Fraction	Excess Volume	Mole Fraction	Excess Volume
$\mathbf{x}_{\mathbf{A}}$	L/kmcl	x _A	L/kmol
Temperature =	20.00°C	Temperature =	25.00°C
0.0000	0.0000	0.0000	0.0000
0.0539	0.0743	0.0692	0.2158
0.1029	0.1606	0.1142	0.2869
0.1983	0.2829	0.2058	0.4713
0.3022	0.46399	0.3084	0.5854
0.4028	0.5502	0.4053	0.6941
0.4927	0.6008	0.5027	0,7107
0.5953	0.6363	0.6099	0.6824
0.6978	0.6208	0.69799	0.5934
0.7992	0.5599	0.8029	0.4625
. 0.9002	0.3629	0.9008	0.3493
1.0000	0.0000	1.0000	0.0000
Temperature =	35.00°C	Temperature =	40.00°C
0.0000	0.0000	0.0000	0.0000
0.0505	0.4578	0.0502	0.2093
0.0912	0.5387	0.0987	0.4053
0.1912	0.6308	0.1983	0.4976
0:2997	0.7091	0.3033	0.5916
0.4026	0.7454	0.3935	0.6607
0.4995	0.7571	0.4981	0.6750
0.5968	0.7330	0.5986	0.7218
0.6994	0.7007	0.6995	0.6758
0.7991	0.6176	0.8025	0.5973
0.8987	0.4578	0.8986	0.3691
1.0000	0.0000	1.0000	0.0000

APPENDIX D

The Excess Activation Energy for Viscous Flow and the Excess Viscosity

The variation of excess activation energy for viscous flow and the excess viscosity with composition for each binary mixture at different temperature levels studied in this work are reported in Tables D.1 to D.8. The variation of these two excess properties are also shown in Figures 4.19 to 4.26.

TABLE D.1: Excess Energy of Viscous Flow and Excess Viscosity of the System Toluene(A)-n-Octane(B)

Mole Fraction	Δ*GE _{x10} -5	Excess Viscosity	Mole Fraction	Δ*G ^E x10 ⁻⁵	Excess Viscosity
× _A	J/kmcl	cP cP	x _A	J/kmol	сP
Temperature = 20.00°C			Temperature = 25.00°C		
0.0000	0.000	0.0000	0.0000	0.000	0.0000
0.0584	-0.174	-0.0067	0.64995	-0.212	-0.0061
0.1021	-0.387	-0.0133	-0.0910	-0.347	-0.0105
0.2065	-0.755	-0.0252	0.1548	-0.582	-0.0176
0.3044	-0.996	-0.0332	0.2566	-0.914	-0.0274
0.3937	-1.2595	-0.0408	0.3472	-1.114	-0.0336
0.5027	-1.424	-0.0456	0.4447	-1.346	-0.0397*
0.5946	-1.4498	-0.0465	0.5437	-1.412	-0.0418
0.6979	-1.404	-0.0445	0.6408	-1.376	-0.0408
0.8028	-1.152	-0.0367	0.7612	-1.260	-0.0367
0.8990	-0.732	-0.0235	0.8747	-0.843	-0.0245
1.0000	0.000	0.0000	1.0000	0.000	0.0000
Temperature =	35.00°C		Temperature = 40.00°C		
0.0000	0.000	0.0000	0.0000	0.000	0.0000
0.0000	0.000	0.0000	0.0000	0.000 -0.148	0.0000
• *					
0.0440	-0,133	-0.0042 -0.0103	0.0517	. 0.148	-0.0048
0.0440 0.1032	-0,133 -0.359	-0.0042 -0.0103	0.2517	-0.148 -0.311	-0.0048 -0.0093
0.0440 0.1032 0.2008	-0.133 -0.359 -0.651	-0.0042 -0.0103 -0.0186	0.0517 0.1038 0.1986	-0.148 -0.311 -0.579	-0.0048 -0.0093 -0.0164
0.0440 0.1032 0.2008 0.2940	-0,133 -0.359 -0.651 -0.925	-0.0042 -0.0103 -0.0186 -0.0259	0.0517 0.1038 0.1986 0.29896	-0.148 -0.311 -0.579 -0.851	-0.0048 -0.0093 -0.0164 -0.0230
0.0440 0.1032 0.2008 0.2940 0.3983	-0.133 -0.359 -0.651 -0.925 -1.112	-0.0042 -0.0103 -0.0186 -0.0259 -0.0312	0.0517 0.1038 0.1986 0.29896 0.4023	-0.148 -0.311 -0.579 -0.851 -1.048	-0.0048 -0.0093 -0.0164 -0.0230 -0.0279
0.0440 0.1032 0.2008 0.2940 0.3983 0.4956	-0,133 -0.359 -0.651 -0.925 -1.112 -1.231	-0.0042 -0.0103 -0.0186 -0.0259 -0.0312 -0.0342	0.0517 0.1038 0.1986 0.29896 0.4023 0.4942	-0.148 -0.311 -0.579 -0.851 -1.048 -1.194	-0.0048 -0.0093 -0.0164 -0.0230 -0.0279 -0.0312
0.0440 0.1032 0.2008 0.2940 0.3983 0.4956 0.6003	-0,133 -0.359 -0.651 -0.925 -1.112 -1.231 -1.283	-0.0042 -0.0103 -0.0186 -0.0259 -0.0312 -0.0342 -0.0352	0.0517 0.1038 0.1986 0.29896 0.4023 0.4942 0.5939	-0.148 -0.311 -0.579 -0.851 -1.048 -1.194 -1.272	-0.0048 -0.0093 -0.0164 -0.0230 -0.0279 -0.0312 -p.0327
0.0440 0.1032 0.2008 0.2940 0.3983 0.4956 0.6003	-0,133 -0.359 -0.651 -0.925 -1.112 -1.231 -1.283 -1.244	-0.0042 -0.0103 -0.0186 -0.0259 -0.0312 -0.0342 -0.0352	0.0517 0.1038 0.1986 0.29896 0.4023 0.4942 0.5939 0.6947	-0.148 -0.311 -0.579 -0.851 -1.048 -1.194 -1.272 -1.219	-0.0048 -0.0093 -0.0164 -0.0230 -0.0279 -0.0312 -0.0327 -0.0311

TABLE D.2: Excess Energy of Viscous Flow and Excess Viscosity of the System Toluene(A)-n-Decane(B)

				•	
Mole Fraction	2*G ^E ×10 ⁻⁵	Excess Viscosity	Mole Fraction	∆ G ^E x10 ⁻⁵	Excess Viscosity
x _A	J/kmol	cР	× _A ·	J/kmol	сР
Temperature =	20.00°C		Temperature =	25.00°C	-
0.0000	0.000	0.0000	0.0000	0.000	0.0000
0.05798	0.282	-0.0024	0.0519	-0.024	-0,0105
0/1088	0.113	-0.0179	0.1005	.0.063	-0.01598
0.2078	0.166	-0.0307	0.20197	0.071	-0.0299
0.3046	0.140	-0.0414	0.3037	0.092	-0.0389
0.4047	0.135	-0.0474	0.4060	0.190	-0.0417
0.4968	0.134	-0.0491	0.5113	0.056	-0.04695
0.5992	0.036	-0.0496	0.6106	0.031	-0.0451
0.6996	0.020	-0.0437	0.7050	-0:028	-0.0407
0.7994	-0.174	-0.0383	0.8021	-0.130	-0.0338
0.9031	-0.189	-0.0234	0.8957	-0.171	-0.0222
1.0000	0.000	0.0000	1.0000	0.000	0.0000
Temperature =	35.00°C		Temperature	• 40.00°C	
0.0000	0.000	0.0000	0.0000	0.000	0.0000
0.0495	0.117	-0.0051	0.0432	0.125	-0.0023
0.0966	0.247	-0.0086	0.1008	0.213	-0.0078
0.1964	0.345	-0.0182	0.2021	0.335	-0.0157
0.2979	0.425	-0.0249	0.2993	0.451	-0.0206
0.3929	0.4799	-0.0286	0.3936	0.452	-0.0252
0.4962	0.283	-0.0352	0.4947	0.410	-0.0281
0.5965	0.206	-0.0354	0.5931	0.279	-0.0299
0.6981	0.100	-0.0329	0.6959	0.151	-0.0283
0.7988	-0.008	-0.02697	0.8009	0.026	-0.0231
0.8979	-0.082	-0.0170	0.8962	-0.1396	-0.0164
1.0000	0.000	0.0000	1.0000	0.000	0.0000
	1				

TABLE D.3: Excess Energy of Viscous Flow and Excess Viscosity of the System Toluene(A)-n-Dodecane(B)

		·			
Mole Fraction	Δ*G ^E x10 ⁻⁵	Excess Viscosity	Mole Fraction	Δ*G ^E x10 ⁻⁵	Excess Viscosity
$\mathbf{x}_{\mathbf{A}}$,	J/kmçl	cP	x _A	J/kmc1	cP .
Temperature =	20.009	**	Temperature =	25.00°C	
0.0000	0,000	0.0000	0.0000	0.000	0.0000
0.0645	0.536	-0.0179	0.0551	0.389	-0.0171
0.1056	0.783	-0.0313	0.0887	0.611	-0.0265
0.2082	1.370	-0.0557 %	0.1959	1.228	-0.0508
0.3004	1.6897	-0.0753	• 0.2789	1.631	-0.0633
0.4037	2.143	-0.0788	0.3802	1.965	-0.0735
0.5002	2.077	-0.0899 -	0.4701	2.135	-0.0771
0.6005	2.056	-0.0855	0.5707	2.089	-0.0780
0.7015	1.815	-0.0754	0.6854	1.852	-0.0698
0.8023	1.280	-0.0609	0.7805	1.425	-0.0578
0.90099	0.688	-0.0356	0.8895	0.755	-0.0354
1.0000	0.000	0.0000	1.0000	0.000	0.0000
Temperature =	35.00°C		Temperature =	40.00°C	•
0.0000	0.000	0.0000	0.0000	0.000	0.0000
0.0527	0.415	-0.0107	0.0508	0.429	-0.0084
0.0996	0.759	-0.01895	0.0924	0.752	-0.0146
0.2049	1.415	-0.0343	- 0.2033	1.468	-0.0291
0.2913	1.851	-0.0433	0.3003	1.930	-0.0386
0.4021	2.220	-0.0508	0.4063	2.264	-0.0452
0.4986	2.377	-0.0529	0.5104	2.376	-0.0483
0.5944	2.331	-0.0519	0.5988	2.392	-0.0453
0.69698	- 2.023	-0.0478	0.7015	2.097	-0.0412
. 0.7979	1.519	-0.0381	0.7999	1.629	-0.0324
0.8981	0.445	-0.0225	0.89898	0.859	-0.0208
1.0000	0.000	0.0000	1.0000	0.000	0.0000
<u></u>			<u> </u>	<u> </u>	L

TABLE D.4: Excess Energy of Viscous Flow and Excess Viscosity of the System Toluene(A)-n-Tetradecane(B)

ole Fraction	Δ*GEx10-5	Excess Viscosity	Mole Fraction	Δ*GEx10 ⁻⁵	Excess Viscosity
.c.XA	J/kmol	сP	x _A	J/kmol	cP.
Temperature =	.20.00°C	_	Temperature =	25.00°C	<u></u>
0.0000	0.000	0.0000	0.0000	0.000	0.0000
0.0661	0.972	-0.0437	0.0469	0.709	-0.0278
0.1089	1.526 `	-0.06999	0.1072	1.528	-0.0582
0.2072	2.632	-0.1207	0.1969	2.494	-0.1019
0.3028	3.420	-0.1595	0.2854	3.384	-0.12599
0.3994	4.064	-0.1782	0.3858	4.024	-0.1488
0.5034	4.423	-0.1841	0.4918	4.426	-0.15597
0.5820	4.395	-0.1807	0.5944	4.3499	-0.1543
0.7026	3.9499	-0.1549	0.6815	4.129	-0.1359
0.8048	3.094	-0.1165	0.7929	3.319,	-0.1015
0.9018	1.781	-0.0668	0.8947	1.925	-0.0603
1.0000	0.000	0.0000	1.0000	0.000	0.0000
Temperature :	35.00°C		Temperature =	40.00°C	•
0.0000	0.0000	0.0000	0.0000	0.000	0.0000
0.0513	0.791	-0.0183	0.0503	0.729	-0.0165
0.0991	1.468	-0.0342	0.0977	1.316	-0.0347
0.1977	2.666	-0.0629	0.1856	2.546	-0.0497
0.2967	3.642	-0.0831	0.2950	3:727	-0.0656
0.3868	4.297	-0.0946	0.3892	4,388	-0.0778
0.4975	4.752	-0.1000	0.4954	4.824	-0.0831
0.5973	4.767	-0:0973	0.5902	4.837	-0.0823
0.6983	4.398	-0.0853	0.6908	4.479	-0.0738
0.7963	3.785	-0.0599	0.8046	3.481	٠٥.0550
	2.068	-0.03797	0.8977	2.126	-0.0327
0.89897					

TABLE D.S: Excess Linergy of Viscous Flow and Excess Viscosity of the System Toluene(A)-n-Hexadecane(B)

					
Mole Fraction	4°CEx10-5	Excess Viscosity	Mole Fraction	Δ*G ^E x10 ⁻⁵	Excess Viscosity
× _A	J/kmol	сP	× _A	J/kmol	сР
Temperature s	20.00°C	G.	Temperature =	25.00°C	
0.0000	0.000	0.0000	0.0000	0.000	6.0000
0.0444	0.940	-0.0635	0.06597	1.446	-0.06998
0.0959	1.897	-0.1366	0.13099	2.787	-0.1191
0.2033	3.981	-0.2223	0.1927	3.723	-0.1820
0.2811	4,872 4	-0, 3033	0.2708	5.068	-0.2151
0.38898	6.174	-0.3409	0.4333	6.855	-0.2661
0.4969	6.897	-0.3531	0.5026	7.281	-0.2687
0.6004	7.013	-0.3360	0.5973	7.384	-0.2593
0.6977	6.498	-0.2949	0.7017	6.735	-0.2311
	5.329	-0.2225	0.7984	5.372	-0.1827
0.7978		-0.1243	0.89799	3.346	-0.1016
1.0000	0.000	0.0000	1,0000	0.000	0.0000
Ţemperature ·	- 35.00°C		Temperature •	40.00°C	
0.0000	0.000	0.0000	0.0000	0.000	. 0.0000
0.0363	19 .836	-0.0251	0.0533	1.140	-0.0340
0.0363	2.167	-0.0614	0.0961.	1.969	-0.0609
	4.245	-0.1181	0.2119	4,471	-0.0838-
0.2114	5.693	-0.1520	0.2950	5.618	-0.1174
0.3078	6,695	-0.1735	0.3956	6.771	-0.1382
0.3992	1	-0.1832	0.4984	7.424	-0.1491
0.5031	7.359		0.5995	7.778	-0.1363
0.5963	7.518	0.1755	0.6995	7.128	-0.1256
0.7028	6.979	-0.15279	0.7946	5.965	-0.0971
0.7969	5.812	-0.1174		3.525	-0.05498
0.8978	3.515	′-0.0675	0.9000	0.000	0.0000
1.0000	0.000	0.0000	1.0000	0.000	

TABLE D.6: Excess Energy of Viscous Flow and Excess Viscosity of the System Ethylbenzene(A)-n-Octane(B)

Mole Fraction	∆*G ^E x10 ⁻⁵	Excess Viscosity	Mole Fraction	4°CEx10-5	Excess Viscosity
, x _A	J/kmol	tpP	x _A	J/kmol	с₽
Temperature =	20.00°C		Temperature =	25.00°C	
0.0000	0.000	0.0000	0.0000	0.000	0.0000
0.0544	-0.234	-0.0073	0.0562	-0.261	-0.0071
0.1028	-0.441	-0.0135	0.1008	-0.473	-0.0129
0.2053	-0.774	-0.02398	0.1983	-0.874	-0.0238
0.3052	-1.183	-0.0356	0.2917	-1.123	0.0313
0.40997	-1.369	-0.0418	0.3979	-1.377	-0.0386
0.5113	-1.471	-0.0454	0.5898	-1.483	-0.0427
0.6193	-1.465	-0.0458	0.7007	-1.344 ,	-0.0395
0.7113	-1.367	-0.0432	- 0.7972 -	-1.111	-0.0331
0.8071	-1.068	-0.0347	0.8964	-0.713	-0.0216
0.9012	-0.608	-0.0206	1.0000	0.000	0.0000 ,
1.0000	0.000	0.0000			
Temperature •	35.00°C		Temperature =	40.00°C	•
0.0000	0.000	0.0000	0.0000	0.000	0.0000
0.0515	-0.232	-0.0856	0.0482	`-0.187	-0.0047
0.0971	-0.415	-0.0102	0.0976	-0.422	-0.0098
0.1865	-0.753	-0.0186	0.1971	-0.775	-0.0181
0.2969	-1.067	-0.0266	0.2949	• -1.016	-0.0242
0.3983	-1.272 -	-0.03197	0.3974	-1.241	-0.0296
0.4900	-1.558	-0.0347	0.4902	-1.308	-0.0318:
0.5919	-1.393	-0.0359	0.5966	-1.298	-0.0322
0.7016	-1.273	-0.0333	0.6955	-1.218	-0.0306
0.7980	-1.023	-0.0273	0.7967	-0.982	-0.0251
0.8987	-0.604	-0.0166	0.8965	-0.5996	-0.0160
1.0000	0.000	0.0000	1.0000	0.000	0.0000

TABLE D.7: Excess Energy of Viscous Flow and Excess Viscosity of the System Ethylbenzene(A)-n-Tetradecane(B)

•			·		
Mole Fraction	4°GEx10-5	Excess Viscosity	Mole Fraction	∆*G ^E x10 ⁻³	Excess Viscosity
x _A	J/kmol	c₽	· A	J/kmol ·	cp .
Temperature *	20.00°C		Temperature =	25.00°C	
0.0000	0.000	00000	0.0000	0.000	0.0000
0.0521	0.515	-0.0386	0.0629	0.596	-0/0411
0.1152	0.956	-0.08899	0.1057	0.906	-0.0690
0.2101	1.683	-0.1355	0.2109	.//1.719	/ ·-0.1130
0.2932	2.111	-0.1693	0.3033	2.228	-0.1419
0.4042	2.568	-0.1909	0.3946	2.612	-0.1568
0.4963	2.786	-0.1924	0.5007	2.938	-0.1561
-0.5976	2.756	-0.1826	0.6007	2.894	-0.1487
0.6977	2.511	-0.1572	0.7002	2.616	-0.1286
0.7987	1.977	-0.1182	0.7976	:2.084	-0.0978
0.8999	1.157	-0.0652	0.8976	1, 177	-0.0567
1.0000	0.000	0.0000	1.0000	0.000	0.0000
Temperature =	35.00°C		Temperature =	40.00°C	
0.0000	0.000 -	0.0000	0.0000	ບ.000	0.0000
0.0529	0.681	-0.0138	0.0509	0.485	ر 0.020 8 -
0.1010	0.996	-0.0414	e.0.0923*	0.878	-0.0341
0.1997	1.748	-0.0745	0.1991	1.759	-0.0619
0.2950	2.385	-0.0933	0.3032	2.518	-0.0766
0.39297	2.780	-0.1077	0.4005	2.963	-0.0862
0.4975	3.064	-0.1096	0.4961	3.188	-0.0897
0.5814	3.1198	-0.1042	0.5918	3.308	-0.0823
0,6978	2.867	-0.0879	0.7004	2.889	-0.0744
0.8008	2.318	-0.0644	0.7975	2.332	-0.0569
0.8974	1.347	-0.0383	0.8997	1.381	-0.0315
1.0000	0.000	0.0000	1.0000	0.000	0.0000
	· · · · · · · · · · · · · · · · · · ·	ļ	<u> </u>	<u></u>	

TABLE D.8: Excess Energy of Viscous Flow and Excess Viscosity of the System Ethylbenzene(A)-n-Hexadecane(B)

•						
Mole Fr	action	ر GE _{x10}	Excess Viscosity	Mole Fraction	- 2 °CE x 10 - 5	Excess Viscosity
x _A		J/kmol	'cP	x _A	J/kmo1	сP
Тетрега	iture = 2	0.00°C		Temperature =	25.00°C	
0.00	00	0.000	0.0000	0.0000	0.000	0.0000
0.05	39	0.810	-0.0854	0.0692	0.981	-0.0824
0.10	29	1.511	-0.15097	2.1142	1.558	-0.1290
0.19	83	2.791	-0.2450	2058	2.597	-0.2061
0.30	22	3.720	-0.3327 -	0.3084	3.5195	-0.2648
0.40	28	4.513	-0.3646	0.4053	4.154	-0.2936
0.49	27	4.774	-0.3797	0.5027	4.519.	-0.2979
0.59	53	5.0498	-0.3451	0.6099	4.5795	-0.2755
0.69	78	4.923	-0.2832	0.69799	4.262	-0.2395
0.79	92	3.782	≥0.2204	0.8029	3.352	-0, 1781
0.90	102	2.251	-0.1212	0.9008	1.954	-0.10096
1.00	000	0.000	0.0000	1.0000	0.000	0.0000
Tempera	iture = 3	S.00°C		Temperature =	40.00°C	ঙ
0.00	000	0.000	0.0000	0.0000	0.000	0.0000
0.05	505	0.829	-0.0428	0.0502	0.774	-0.0385
0.09	112	1.470	-0.0703	0.0987	1.465	-0.0716
0.19	12	- 2.842 · ·	-0.1279	0.1983	2.943	-0.1094
0.29	97	4.016	-0.1719	0.3033	3.869	-0.15699
0.40	126	4.857	-0.1921	0.3935	4.929	-0.1547
0.49	95	5.276	-0.1981	0.4981	5.399	-0.1622
0.59	68	5,440 >	-0.1841	0.5986	5.490	-0.1541
0.69	194	5.013	-0.1602	0.6995	5.107	-0.1331
0.79	91	4.127	-0.1195	0.8025	4.161	-0.0982
0.89	87	1.922	-0.0829	0.8986	2.573	-0.0556
1.00	000	0.000	0.0000	1.0000	0.000	0.0000
					·	

APPENDIX E

Predicted Experimental Error

E.1 Density Measurement

The reproducibility of density meter readings at $20.00\,^{\circ}$ C for organic liquids was 1×10^{-7} seconds which correspond to a change in density of 1.59×10^{-4} kg/L. The average standard deviation of fit of composition-dependent density polynomial Equation (4.1) was 1.5×10^{-4} kg/L at $20.00\,^{\circ}$ C.

E.2 Error with Excess Volume of Mixing

The equation used to calculate excess volume of mixing is given in Appendix C as

$$V_{m}^{E} = \frac{M_{A} \times_{A} + M_{B} \times_{B}}{\rho_{m}} - \frac{M_{A} \times_{A}}{\rho_{A}} - \frac{M_{B} \times_{B}}{\rho_{B}}$$
 (E.1)

where

$$x_{A} = \left(1 + \frac{W_{B} M_{A}}{W_{A} M_{B}}\right)^{-1}$$

and

$$x_{B} = 21 - x_{A} \tag{E.2}$$

where W_A and W_B are mass of component A and B respectively; M and M are molecular weight of component A and B respectively.

Let us consider a particular case, say error expected for V_m^E at $x_A = 0.4$ for toluene (A)-n-octane (B) system at 20.00°C

$$W_A = 7.8358 \pm 1 \times 10^{-4}$$
; $W_B = 14.9576$ 1×10^{-4}

 $M_A = 92.14$

 $M_{B} = 114.23$

 $x_{\Delta} = 0.39374$

expecting maximum error in weighing one obtains

$$\theta \rho_{\rm m} = 1 \times 10^{-5}$$

maximum deviation in density measurement

$$\partial \rho_{m} = 1.59 \times 10^{-4} = \partial \rho_{A} = \partial \rho_{B}$$

Now $V_{\underline{m}}^{\underline{E}}$ is a function of

$$V = f(x_A, x_B, \rho_m, \rho_A, \rho_B)$$
 (E.3)

so that to calculate predicted error in V_m^E due to an error in x_A , x_B , ρ_m , ρ_B , ρ_A one should differentiate Equation (E.1) to obtain

$$\partial V_{m}^{E} = M_{A} \left[\frac{1}{\rho_{m}} - \frac{1}{\rho_{A}} \right] \partial x_{A} + M_{B} \left[\frac{1}{\rho_{m}} - \frac{1}{\rho_{B}} \right] \partial x_{B} + \left[\frac{x_{A} M_{A} + x_{B} M_{B}}{\rho_{m}^{2}} \right] \partial \rho_{A}$$

$$+ \left[\frac{M_{A} x_{A}}{\rho_{A}^{2}} \right] \partial \rho_{A} + \left[\frac{M_{B} x_{B}}{\rho_{B}^{2}} \right] \partial \rho$$
(E.4)

= 0.06 L/kmol

This is the maximum error that can be expected for the toluene-n-octane system at $20.00\,^{\circ}$ C, which will be the worst case. The standard deviation of fit of V_{m}^{E} to the smoothing Equation (4.2) for this sytem was 0.0041. Maximum standard deviation found at $20.00\,^{\circ}$ C was 0.011 for ethylbenzene-n-hexadecane system.

E.3 Viscosity Measurements

The equation used for calculating the viscosities is given by

$$v = Ct - E/t^2$$

To calculate the predicted error in the kinematic viscosity value due to an error in t, the efflux time one should differentiate Equation (3.9) to obtain

$$\frac{dv}{dt} = C + \frac{2E}{t^3}$$

or
$$dv = Cdt + 2(E/t^2)dt \qquad (E.5)$$

Every viscosity value reported in this work was measured at least three times. The time of efflux's scatter was about 0.15 seconds on the average. This scatter when substituted into Equation (E.5) would change the measured viscosity by

$$dv = 1.8168 \times 10^{-3} (\pm 0.15) + \frac{2x (-32.5306) (\pm 0.15)}{(330.9)^3}$$

$$= \pm 2.73 \times 10^{-4} \text{ cSt}$$

In the above calculation the values of the viscometer constants C and E were taken as the average values of C and E for the two 25A type viscometers used in this study at 35.00 C and reported in Table 4.12. The value of t, time of efflux was taken as the average value of all efflux time for toluene-n-octane system at 35.00 C where these two viscometers were only used. The standard deviation for the composition dependent kinematic viscosity for this system as can be seen from Table 4.23 was 2.67 x 10 cSt. This is in good agreement with the predicted error.

E.4 Excess Activation Energy of Viscous Flow

The equation used for calculation of excess activation energy for viscous flow is given in Chapter 3 by

$$\frac{\Delta^* G^E}{RT} = \ln \eta_m V_m - x_A \ln \eta_A V_A - x_B \ln \eta_B V_B$$

This equation after substitution of by x and rearranging becomes

$$\Delta^* G^E = RT \left[\ln \nu_m + \ln_m (M_A x_A + M_B x_B) - x_A \ln \nu_A M_A - x_B \ln \nu_B M_B \right]$$

$$= F \left(\nu_m, \nu_A, \nu_B, x_A, x_B, T \right)$$
(E.6)

Thus $\Delta^*G^E = F(v_m, v_A, v_B, x_A, x_B, T)$ Predicted error can now be obtained by differentiation of Equation (E.6) which is given by

$$\partial (\Delta^* G^E) = RT \left[\frac{\partial v_m}{v} + \left\{ \frac{M_A}{M_A} \frac{x_A + M_B}{x_B} \frac{x_B}{x_B} - \ln v_A M_A \right\} - \partial x_A + \left\{ \frac{M_B}{M_A} \frac{x_A + M_B}{x_A} \frac{x_B}{x_B} \right] \right]$$

$$\ln v_B M_B \partial x_B - \frac{x_A}{v_A} \partial v_A - \frac{x_B}{v_B} \partial v_B + R \left\{ \ln v_m + \frac{1}{v_B} \frac{x_B}{x_B} \right\} - R \left\{ \ln v_m + \frac{1}{v_B} \frac{x$$

Taking absolute value where necessary and after rearrangement the above equation reduces to

$$\partial (\Delta^* G^E) = RT \left[(\frac{1}{\nu_m} + \frac{1}{\nu_A} + \frac{1}{\nu_B}) \partial \nu + \{ \frac{M_A + M_B}{\kappa_A M_A + \kappa_B M_B} - \ln M_A M_A - \ln \nu_B M_B \} \partial \kappa_A \right] + R \left[\ln \nu_m + \ln (\kappa_A M_A + \kappa_B M_B) - \kappa_A \ln \nu_A M_A - \kappa_B \ln \nu_B M_B \right] \partial \Gamma$$
(E.7)

Now taking a particular data, say values at $x_A \simeq 0.4$ for toluene-n-octane system at 35.00°C $x_A = 0.3983$; $v_m = 0.5952$; $v_B = 0.658$; $v_A = 0.5783$ $\partial x_A = 1 \times 10$; $\partial v = 2.73 \times 10^{-4}$; $\partial T = 0.02K$ R = 8.3136 J/mol; T = 308.16 K

we get

$$\partial (\Delta^* G^E) \times 10^{-5} = 0.0246, J/kmo1$$

Standard deviation for this particular system when excess activation energy of viscous flow was fitted to the polynomial

$$\Delta^* G^E \times 10^{-5} = x_A (1 - x_A) \sum_{i=0}^{i=n} A_i (2x_A - 1)^i$$

was found to be 0.009 which proves that the experimental data fitted the polynomial Equation (4.6) well.

VITA AUCTORIS

MOHAMMAD HANIF SIDDIQUE

Department of Chemical Engineering

University of Windsor

Windsor, Ontario, Canada N9B 3P4

February 15, 1961 Born in Chittagong, Bangladesh

1979 Completed Higher Secondary
School Certificate Exam,
Camilla Board, Bangladesh

Received Bachelor of Science (B.Sc.)
in Chemical Engineering from the
Bangladesh University of Engineering
and Technology,
Dhaka, Bangladesh

1987 Currently, a candidate for the degree of Master of Applied Science (M.A.Sc.) in Chemical Engineering at the University of Windsor Windsor, Ontario, Canada, N9B 3P4