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Abstract

In this thesis, we undertake an harmonic analysis of the Banach algebra L(B)

of bounded linear operators on a homogeneous Banach space B of functions on a
topological abelian group G. Our analysis is divided into two major parts. In the
first, we examine the case where G is compact, particularly G = T (the circle group),
and in the second G is locally compact. In both cases, we define the classes of invariant
and almost invariant operators in £(B) and investigate their properties. With each
T € L(B), we associate a Fourier series and show that this series converges to T' in
a certain specified sense. For G = T, we show that formal properties of the usual
Fourier series hold and also obtain a generalization of the classical F. and M. Riesz
theorem for B = €(T). For locally compact G, we investigate a subspace of the class

of almost invariant operators, namely the almost periodic operators.
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CHAPTER 1

Introduction

Just as the study of Fourier series involves investigating periodic functions which
are translation invariant under the additive integer group translations, Abstract Har-
monic Analysis involves studying objects (functions, measures, etc.) defined on locally
compact groups which are invariant under the group translations.

In this thesis, we engage the study of a harmonic analysis for bounded linear
operators on homogeneous Banach spaces (including the classical L,-spaces with
1 < p < o) defined on a compact abelian group or a locally compact abelian group.
This particular study was initiated by Karel DeLeeuw [6] in 1975 when he investi-
gated homogeneous Banach spaces of functions on the compact abelian group T. In
1992, U. B. Tewari and S. Somasundaram [15] extended this study to general locally
compact abelian groups. Our attempt in this thesis is to study and relate the results
presented in these two papers.

The body of this thesis is composed of three chapters. In the first, we introduce
fundamental concepts relevant to our study in set theory, measure theory, topological
spaces, linear spaces and algebraic spaces of operators. This is followed by the chapter
that gives an exposition of [6], focusing on compact abelian groups. The final chapter,

based on [15], deals with locally compact abelian groups.
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Indeed in Chapter 3, following DeLeeuw (6], we define the concept of a homo-
geneous Banach space B on T and denote by £(B) the Banach algebra of bounded
linear operators on B. We then define some interesting subalgebras of £(B), consist-
ing of the space Ly of invariant operators, the space £, of almost invariant operators,
and the space L, of simple operators, and demonstrate their individual and related
properties. We define the projection operator =, on £(B) with which we define the
Fourier series of an operator ' € L£(B) as >.> _m(T). The Fourier series of any
operator T € L(B) is C-1 summable to T in the strong operator topology of L(B).
But if T € L,, the Fourier series of T is C-1 summable to T in the operator norm.
To prove this, we employ the the properties of summability kernels as presented by
Katznelson ([11], (2.2)). We define the Fourier transform of T as T = m(T) and
demonstrate that it takes operator multiplication into convolution. We also define a
convolution p * T of a finite Borel measure p with an operator T' € £L(B) and show
that the Fourier transform takes this convolution into /- T. To conclude the chapter,
we give a generalization of the F. and M. Riesz theorem in terms of compact operators
and show its connection with the classical one.

In Chapter 4, the homogeneous Banach space is defined on any locally compact
abelian group G. In this case, a subspace L4 of L,, called the space of almost
periodic operators, is studied. When G is compact, we show that L4, = L£,. The
central theorem of the chapter is the approximation theorem (Theorem 3.4) which

shows that £4 can be approximated by finite sums of operators of the form M,U,

where M., is multiplication by the character v of G and U € £;. An invariant mean
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is defined and studied on £ 4. Properties of Banach x-algebras are employed. Finally,
we define the Fourier series and transform of an operator T € L4 and show that the

Fourier series converges to T in a norm constructed by Arveson in [3].



CHAPTER 2

Preliminaries

Abstract Harmonic Analysis requires acquaintance with several concepts from the
fields of Topology, Group Theory, Linear Spaces, Algebraic Spaces, Measure Theory,
and Abstract Integration. This chapter is intended to give an overview of notions from
these fields that serve as underlying concepts in subsequent chapters. We discuss each

of these areas briefly.

1. Sets and Topological Concepts

Let X be any set, and M a nonempty collection of subsets of X. M is called an
algebra of sets in X if it satisfies (1) @ € M; (2) if A,B € M, then AU B € M;
(3) if A € M, then the complement A° of A in X is in M. If M is also closed under
countable unions of its members, then M is called a o-algebra (in X).

Let X be a non-empty set. A topology on X is a collection 7 of subsets of
X satisfying (1) @, X € T; (2) if {Us}aca is a collection of elements of T, then
Usen € T (3) if Unh,--- U, € T, then (N, U; € T. The members of the topology
T are called open sets and their complements are closed. The pair (X,7) is called a
topological space. The largest open subset of a set A C X is called the interior of A.
Its elements are the interior points of A. If z is an interior point of A, then A is a

neighborhood of . The closure A of A is the smallest closed set containing A. A is
4
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dense in X if A = X. If to every distinct pair z1,z, in X, there are corresponding
neighborhoods U; of z; and U, of z, with empty intersection, then X is called a
Hausdorff space.

A set A is a directed set if there is a relation < on A satisfying:

(1) a < «a for each a € A;
(2) if a; X ap and @y < a3, then o < as;

(3) if a1, as € A, then there exists a3 € A such that oy < a3 and oy < as.

The relation < is referred to as the direction on A.

A net in a set X is a function ¢ : A — X from some directed set A to X. The
point ¢(c) in the net is denoted by z, and the net is written as {Z,}qaea, or simply
{zo}. A net {z,} in a topological space X is said to converge to x € X (written
zo — ) if for every neighborhood U of z, there exists ay € A such that z, € U
whenever o > ayg.

If X and Y are topological spaces, then a function f : X — Y is continuous if for
each open V C Y, f~1(V) is open in X. A subset K of X is called compact if every
family of open sets covering K has a finite subfamily covering K. If each z € X
has a compact neighborhood, then X is locally compact. The continuous image of
a compact set is compact. A subset of a topological space is said to be relatively
compact if its closure is compact.

Let X be a set and let d: X x X — R. d is called a metric and (X,d) a metric

space if the following conditions are satisfied.
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(1) d(z,y) >0forall z,y € X.
(2) d(z,y) =0 if and only if x = y.
(3) d(z,y) = d(y,z) for all z,y € X.

(4) d(z,z) < d(z,y) +d(y, 2) for all z,y,2 € X.

For zy € X and r > 0, the set B(zg,r) = {x € X : d(zg,z) < r} is called the open
ball of X with centre zy and radius r. A sequence {z,} in the metric space X is
called a Cauchy sequence if for every € > 0, there exists N € N such that, if m > N
and n > N, then d(zn,z,) < e. (X,d) is complete if every Cauchy sequence in X
converges. X is compact if every sequence in X has a convergent subsequence. A
subset S of a metric space is totally bounded if for any given € > 0, S can be covered
by a finite number of open balls with radius ¢.

A subset S of a metric space which can be covered by a finite number of open balls
is said to be totally bounded. A metric space is compact if and only if it is complete
and totally bounded. A metric space is said to be separable if it contains a countable
dense subset.

Let X be a topological space. We denote by €(X) the set of all bounded complez-
valued continuous functions on X and by €(X) the set of all f € €(X) such that
for every € > 0, there exists a compact subset K of X such that |f(z)] < & for
all z € K° Let €y(X) denote the set of all f € €(X) such that there exists a
compact subset K of X such that for all x € K¢, f(z) = 0. For f € €(X), we define
| £l = sup{|f(z)| : z € X}. If X is compact, then €(X) = €(X) = Cpo(X).

References: [4], [8], [17].
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2. Linear Spaces

Let F be a field and X an additive abelian group (see §4 for definition) such
that for each a € F and z € X, the product ax € X is defined and the following
conditions hold: a(z + y) = az + ay; (a + B)z = az + Bz; (af)x = a(Bz); where
z,y € X and o, B € F. Then X is said to be a linear space (or vector space) over F.

Let X be a linear space over C. A norm on X is a non-negative real-valued
function whose value at an z € X is denoted as ||z|| with the following properties:

(1) ||z|| = 0 if and only if x = 0;
(2) ||az|| = |o|||z|| for all z € X and a € C;

3) llz +yll < izl + lly[| for all 2,y € E.

The pair (X, || - ||) is called a normed space. For simplicity, we write X for (X, || - |]).
If X is complete with respect to the metric d(z,y) = ||z — y||, then X is called a
Banach space. The set {z € X : ||z|| < 1} is called the unit ball of X.

Let X and Y be normed spaces over the same field. A map T from X to Y is a
linear operator if T(azy + fr2) = oT (1) + BT (x2) for all 21,29 € X, o, € C. A
linear operator T is bounded on X if there is an M > 0 such that ||[Tz|| < M||z|| for
all z € X. A linear operator is continuous if and only if it is bounded. The operator

norm of a linear operator 7': X — Y is given by

IT|| = inf{M > 0 : || Tz|| < M||z|| for all z € X} = sup{||T=| : ||z|| < 1}.

If X and Y are normed spaces, we denote by £(X,Y) the linear space of all

continuous linear operators from X into Y. It becomes a normed space under the
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operator norm. If Y is complete, then so is £(X,Y"). £(X) will be written for £L(X, X)
and X* for the space L£(X,C) of continuous linear functionals on X, which is called
the dual of X.

An operator T € L(X,Y) is compact if for every bounded subset of E of X,
the image T(E) is relatively compact, that is, T(E) is compact. T € £(X,Y) is of
finite rank if its range is of finite dimension. Every finite rank operator is compact.
If A e L(X), Be LY) and T € L(X,Y) is compact, then TA : X — Y and
BT : X — Y are compact. If {T,,} is a sequence of compact operators converging
to T in the norm topology, then T is also compact. Thus, the family of compact
operators is closed under the operator norm.

A scalar function (-,-) : X x X — C is said to be an inner product on X if it
satisfies ‘the following conditions:

(1) (z,z) > 0 for all z € X with equality if z = 0;
(2) (z,y) = (y,z) for all z,y € X;
(3) (azx,y) = alz,y) for all z,y € X and a € C;

(4) (.’171 + $2,y> = (xlay> + <£L'2,y> fOI' all T1,T2,Y S X.

We say that X is an inner product space if X is a linear space equipped with an
inner product. By setting ||z|| = (z,2)'/2, X becomes a normed linear space. If
X is complete, then X is called a Hilbert space. The Cauchy-Schwartz inequality
Hz,y)| < ||z|llly|] holds for every z,y € X. To each T € X*, there corresponds a
unique y € X such that Tz = (z,y) for all z € X. A family of elements {z,} in X

is said to be orthogonal if (x4, zs) = 0 whenever a # . An orthogonal family in a
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Hilbert space is orthonormal if (z,, z,) = 1. Every Hilbert space contain orthonormal
families {xo} such that 2 = ) _(z,z,)z, for each z € X. An orthonormal family
that satisfies this property is called an orthonormal basis.

For further details and proofs, see [4] or [5].

3. Measure Theory

We restrict our discussion here to measures and integrals on locally compact
Hausdorff spaces X.

Let B be the o-algebra generated by the family of open subsets of X. The members
- of B are called the Borel sets in X. Let E be the union of any countable family { F;} of
pairwise disjoint Borel sets of X. A (Borel) measure on X is a set function y, defined
for all Borel sets in X, which is countably additive (i.e., p(U,_; Ei) = >; u(E;)), and
for which p(E) is finite if the closure of F is compact. The total variation |u| of u
on X is defined by |u|(E) = sup ), |u(E;)|, where the supremum is taken over all

partitions {E;} of E. Then |u| is also a measure on X. If
lw|(E) = sup{|p|(K) : K C E, Kis compact} = ir‘}f{|u|(V) : ECV, Vis open},
K

then 4 is called regular. We put ||| = |p|(X) and define M(X) to be the set of all
complez-valued regular measures on X for which ||y is finite. Let p € M(X) and A
a non-negative measure on X. If y(F) = 0 whenever A\(E) = 0, then u is said to be
absolutely continuous with respect to A.

A complex function f defined on X is called a Borel function if f~Y(V) is a

Borel set for every open set V' in the complex plane. If 4 € M(X), all bounded Borel
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functions on X are integrable with respect to pu, and the inequality
| [x £ dul < |lpll - supex | £(z)] holds.

If X is a non-negative measure on X and if 0 < p < oo, we denote simply by L,(X),
the set L,(X,)) of all Borel functions f on X for which the norm
I fllz, = (Jx |f|pd)\)1/p (1 < p < o0) is finite. Lo (X) is the space of all essen-
tially bounded Borel functins on X equipped with the norm || f|| = esssup |f(z)| =
inf{t > 0 : p({z : |f(z)| > t}) = 0}, referred to as the essential supremum of
|f|. If we identify functions which differ only on a set F C X with A\(E) = 0,
Ly(X) (1 < p < 00) becomes a Banach space under the defined norms. And Ly(X)
is a Hilbert space the with inner product (f, g) = f fgdA.

THE RADON-NIKODYM THEOREM. Let 4 € M(X), and A a non-negative
measure on X. If y is absolutely continuous with respect to A, then there ex-
ists f € Ly(G) such that u(E) = [, fdA for all Borel sets E in X. In addition,
lell = fx 1f1dA =[£Iz

Suppose A > 0,1 < p < oo, and 1/p+1/g = 1. The bounded linear functionals T'
on L,(X) are in one-to-one correspondence with the members g of L,(X). That is,
each T' € (L,)* is of the form T'f = [ fgd) (f € Ly(X)). Moreover, ||T|| = ||g|\,-
Thus Ly = (Lp)*.

References: [4], [8], [14].



4. TOPOLOGICAL GROUPS 11

4. Topological Groups

In this section we focus our discussion on topological abelian (commutative)
groups as these are the groups discussed throughout this thesis. Expositions of the
concepts presented here can be found in Hewitt and Ross [8] and Rudin [14].

An abelian group is a set G in which a binary operation, +, is defined with the

following properties:

(1) z+y=y+zforal z,y € G
2)z+(y+2)=(x+y)+2foral z,y,2 € G;
(3) there is an element 0 € G such that z + 0 = z for all z € G;

(4) to every x € G, there corresponds an element —z € G such that z+(—z) = 0.

If A, B C (G, A+ B denotes all the elements of the form a + b with a € A, b € B and
—~A denotes all —a with a € A. We call A + z the translate of A by z.

A topological abelian group is a Hausdorff space (G,+,T) in which (G, +) is an
abelian group and (G, T') a topological space such that (i) the mapping (z,y) = z+y
is a continuous map from the product space G x G onto G (ii) the mapping x — —z
of G onto G is continuous. The latter condition asserts that for every neighborhood
U of —z, there is a neighborhood V' of x such that —V C U. A neighborhood V in
G is said to be symmetric if ~V = V. On every locally compact abelian group G,
there exists a non-negative regular measure A, called the Haar measure of G, which

is not identically 0 and satisfies the following:

(1) X is translation invariant, i.e., for every z € G and every Borel set E in G,

ME + ) = \(E).
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(2) If V is a non-empty open subset of G, then A(V) > 0.

(3) If K is a compact subset of G, then A(K) < oo.

(4) For every Borel set E € G, A(—F) = A(E).
A is unique up to a multiplicative constant, i.e., if A; and A, are two Haar measures
on (G, then there exists £ > 0 such that A\, = kX,.

The total measure A(G) is finite if and only if G is compact. If G is compact,
we take A to be normalized so that A(G) = 1. If G is noncompact, then A(G) is
infinite. Indeed, let U be any relatively compact neighborhood of 0 in G. Then
no finite collection of sets {U + z;}I-, covers G, for if so, G will be compact. Now
choose an infinite sequence {z,}72; in G such that z,, ¢ J_, (U + z;) foralln € N.
Let V be any symmetric neighborhood of 0 such that V' + V' C U. Then the sets
V+z1,V+5s,...,V+zs,... are pairwise disjoint. Hence A(G) > 370 AV +1;) =
n - A(V) for all n. That is, AM(G) = +o0.

Let f and g be any pair of Borel functions on a locally compact abelian group G

with the Haar measure. The convolution f * g of f and g is defined on G by

o) = [ 1o it

provided
/|fx— V)| dy < oo. (4.1)
The following properties hold if f * g is defined on G.

(1) (f*x9)(z) = (g* f)(z) for all z € G.

(2) If f, g € L1(G), then (f * g) € Ly(G) and ||f * gl|z, < [Ifl|z, llgllz,-
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(3) If f,g,h € L1(G), then (f+xg)*xh= fx(g*h)and f«(g+h)= fxg+ f*h.

Thus L;(G) with convolution operation as multiplication is a commutative Banach
algebra (see §5).

Similarly, for p,v € M(G), if convolution p * v is defined by
pxv(E) = / p(E —z)dv(z) (E C G a Borel),
G

then the following properties hold:

(1) pxv e M(G);

(2) the convolution * is commutative and associative;

() Ml * wfl < flelll]]-
Thus M (G) is also a commutative Banach algebra with convolution as multiplication.

Let G be a locally compact abelian group. A complex-valued function v: G — C

is called a character on G if

(1) Iy(z)l=1forallz € G

(2) v(z 4+ y) = v(z)y(y) for all 2,y € G.
The set of all continuous characters of G form a group @, called the dual of G, if the
operation on G is given by (11 + 7)) = 11(z)72(z) (z € G, 1,12 € G) . We write

(z,7) in place of y(x) so that (z+y,7) = (z,7)(y,7) and (z, 71 +72) = (z, 1) (2, 12).

Combining these, we have (0,7) = (2,0) = 1 and (-z,v) = (z,—7) = (z,7)™* =

(z, 7).
For each r > 0, let U, = {z € C: |1 — z| < r}. If K is a compact subset of G,

then we set N(K,r) = {y € G : (z,7) € U, for all z € K}. Then the family of sets
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{N(K,r)} and their translates form a basis for a topology on G. With this topology,
G becomes a locally compact abelian group.
If f € Li(G) and p € M(G), then the Fourier transform f of f and the Fourier-

Stieltjes transform ji of u are respectively defined as

() = / (—o,f@)dz and  ply) = / (~2,7) du(z) (v € ).

These transforms are complex homomorphisms in the sense that if f,¢g € L;(G) and
v € M(G), then(f * g) = f§ and (u* v) = jib.

Given a locally compact abelian group G with its dual @, let @d be the group G
equipped with the discrete topology. The dual group of @d is then a compact abelian
group which we call the Bohr compactification of G and denote by G. There exists a

continuous isomorphism of G onto a dense subgroup of G.

5. Algebraic Spaces

A Banach Algebra is a complex Banach space 2 together with an associative and

distributive multiplication such that
a(AB) = (ad)B = A(aB) and ||AB| < | A]lllB]

forall A,B € A, o € C. An element I € 2 is called a unit (or identity) of Aif[A = A
for every A € . 2 is said to be unital if it possesses a unit.
2A is a called a Banach *-algebra if it is equipped with an involution * : % — 2

satisfying, for all A, B € 2, a € C,

(i) (A+ B)* = A* + B*,
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(i) (@A) = aA”,

(iii) (AB)* = B*A*,

(iv) (A*)* = A.

A Banach *-algebra 2 is called a C*-algebra if, for all A € 2, ||A*A|| = ||A|]>. By
applying (iv) we see that ||A*|| = || A for all A € 2.

A C*-algebra of operators is a subset of the algebra L(H) of all bounded operators
on a Hilbert space H which is closed under algebraic operations on £(H), closed in
the norm topology of L(H), and closed under the adjoint operation T' +— T* in L(H).
Every C*-algebra is isometrically *-isomorphic with a C*-algebra of operators on a
Hilbert space.

Let 2 and B be C*-algebras, and let 7 be an homomorphism of 2 into B (i.e.,
m(ad) = an(A), (A + B) = n(A) + n(B), n(AB) = w(A)x(B) for a € C and
A, B € ). wis called a x-homomorphism if m(A*) = w(A)* for all A € Y. Every

For further details and proofs, see [1].

6. Vector Valued Integration

We shall dwell here on vector-valued functions F(s) defined on some topological
space S with values in a Banach space X. F(s) is said to be strongly continu-
ous at sg if lim, s, ||F'(8) — F(so)|| = 0; and F(s) is weakly continuous at sy if
limg s, [f*[F(8) — F(s0)]| = 0 for each f* € X*. In the case where the Banach space

is £(X,Y), we speak of the function as an operator-valued function and denote it
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by T(s). T(s) is said to be continuous on S in the strong operator topology at sg
if limgys [|[[T(s) — T'(50)](z)|| = 0 for each z € X, and continuous in the uniform
topology at so if lim,_,s, [|T(s) — T'(sp)|| = 0. See Hille and Phillips [9] for further
details.

Let (P, T) be a tagged partition of an interval [a, b] in R; that is, let P = {so,..., 8.}
be a finite collection of points such that a = sg < s; < --- < s, = b and 7, a set of
points ¢; satisfying s;_1 < t; < s;. For such P, set |P| = max;(s; — $;-1).

Let B be a Banach space and F': [a,b] — B be a vector-valued function. Define
R(F,P,T) =Y. F(t;)(si — si—1). Then F is (Riemann) integrable if, in the norm
topology on B, the limit I = limp|o R(F, P, T) exists. I, denoted as f; F(t)dt,
is called the (Riemann) integral of F' over [a,b]. The proof of the existence of I
is patterned on the classical case. Suppose F' is strongly continuous on the com-
pact interval [a,b]. Then we have uniform strong continuity. That is, given £ > 0,
there exists § > 0 such that for every s1,s2 € [a,b], ||F(s1) — F(s2)|| < € when-
ever |s; — so| < 0. Now consider the tagged partitions (Pp,7;) and (P, T3) with
|P1| < §/2 and |Py| < /2 such that R(F,P,71) = Y7, F(ty,)(sj — s}_;) and
R(F,P,13) = Y 1o F(ts,)(s? — s2_,). Then by comparing either sum to the sum

corresponding to a common refinement of {s;} and {s;}, we have

m

IR(F, P, 71)=R(F, P, m3)| = || ) F(ty,)(s}=s51) = Flta)(si~si_1)|| < e(b—a).

So every strongly continuous function is Riemann integrable.
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Let T : [a,b] = L(X) be an operator-valued function that is continuous in the
strong operator topology, i.e., T, : t — T'(t)g is continuous for all g € X. (Note that
{T'(t) : t € T} is bounded by the principle of uniform boundedness (see [5], 14.1).)
Then, there exists and operator W € £(X) such that fab T(t)gdt = Wgforall g € X.

That W is bounded follows from

Woll =1 [ 7@ < [ Im@glae< [ ir@iglae,

We define the integral f: T'(t)dt to be that W. Hence limp|o R(Ty, P, T) = fab T(t)gdt.

Fix V € £(X). Then [P VT(t)dt = V [ T(t)dt. Indeed,

R((VT g, , T ZVT — Si—l) = VZT(tz) - 8- 1 — V/ gdt

Let F' and H be strongly continuous Banach space valued functions on [a, b]. Then

following properties of the Riemann integral are obvious.

(i) If @, 8 € C, then

/ab(aF(s) + BH(s))ds = a/abF(s) ds+5/abH(3) ds

(i) If @ < ¢ < b, then

/abF(s)dsz/:F(s)ds—l—/ch(s)ds.

[ Foa| < [Iras

(iii)

References: [11], [16].



CHAPTER 3

Harmonic Analysis on T
1. Definitions and Basic Properties

Let T be the circle group, defined as the quotient R/27Z with characters €™ (n € Z).
T can also be thought of as the set {z € C: |z| = 1} and functions on T are naturally
identified with 27-periodic functions on R. We define the translation operator R; on

a function f defined on T by

(Bef)(s) = f(s=1) (s,t€T)

and denote by L(T) the space of all complex-valued Lebesgue integrable functions
on T equipped with the norm || f||z, = & [7_|f(t)| dt.

The following definitions and results for T are valid for any compact abelian group.

DEFINITION 1.1. A homogeneous Banach space on T is a dense linear subspace

B of L(T) with a norm || - || 5 satisfying the following:

(i) (B,] - ||B) is a Banach space and ||f||r, < ||f||s for all f € B;
(ii) (B, || ||B) is translation invariant, i.e., for all f € Bandt € T, R;f € B and
1B flls = 11 £]l5;
(ili) functions in B translates continuously, i.e., for all f € B, limy ¢ ||R:f — f|lz = 0;

(iv) B is closed under multiplication by the characters of T.

18
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ExaMpPLES. The following spaces are homogeneous Banach spaces on T:

(i) The subspace L,(T), 1 < p < 00, of L;(T) comprising of all functions f such
that [, |f()|P d¢t < oo with the usual || - [|z,-norm.

(ii) The space €(T) of all continuous 27-periodic functions with the norm

[1flloo = max, | £(2)].

(iii) The subspace €*(T) of €(T) of all n-times continuously differentiable func-

tions with the norm || fler = Y _p_o & max; | f*(t)].

Let (L(B),]| - ||c) denote the Banach algebra of bounded linear operators on B.

We define invariant, almost invariant and simple operators in £(B) as follows:

DEFINITION 1.2.

(i) An operator T' € L(B) is called invariant if T commutes with translation.
That is, TR; = R,/ T for all t € T. We denote by L, the set of invariant
operators in L(B).

(ii) An operator T' € L(B) is said to be almost invariant if, for all t € T,
%I_I)I(} ||TRt - RtT”L = (.

(Note that R; is an isometry, i.e., ||R:T||zc = ||T||¢ for all ¢t € T.) We denote
the set of almost invariant operators in £L(B) by L,.

(iii) An operator T' € £(B) is called simple if there exists an integer n such that

TR, = ¢™RT  forallteT.
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The set of simple operators in £(B) satisfying the above equation is denoted

by L,.
PROPOSITION 1.1. Ly and L, are closed subalgebras of L(B).

PRrROOF. Let T1,T5 € Ly. Then for scalars «, 8,
(T + BT)Ry = aRT + BRT, = Ri(oTy + BT3).

Thus aT1 + ,BTQ € Eo. AlSO, (Tng)Rt = TlRtTg = Rt(Tsz) shows that T1T2 € Eo.
Hence L, is a subalgebra of £(B). To show that Lg is closed, we take T,, € Lq such
that 7,, — T € L(B). Now T,, = T implies T,R; — TR; and R,T,, - R,T. Since
T,R, = R,T, for all n, we have, by uniqueness of limit, that TR, = R;T. Hence
T € Ly and Ly is closed.
Suppose 11,15 € L,. Then
%1_1}6 ”(T1 + TQ)Rt - Rt(Tl + T2)||L - %I_I)I& ||T1Rt — RtTl + TgRt - RtTQH[,
<lim||TyR; — Ryl + lim | T2 R, — R To|c = 0.
t—0 t—0
Thus T} + T, € L,. Similarly, o17 € L, for all scalars a. Also, T1T, € L, since
11_% \ VT2 R — RV = %l_f)% \T\TLR, — 1 R/T> + TV R, T, — RV T3
= %g% Ty (T2R; — RT») + (TiR, — RT3\
< |Tille Bm [ ToR: — RTslc + [Tl lim (173 R, - RT3l
=0.

(1.1)
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Thus T1,T5 € L, and L, is a subalgebra of £(B). We now show that L, is closed.

Let T,, € L, such that T, = T € L(B). Now, for all n € N, we have
”TRt - RtT”[, = ||(T - Tn)Rt e Rt(T - Tn) + TnRt - RtTn”E

S2T - Talle + | TaRy — RTo| .
Since T,, = T, given € > 0, there exists N € N such that |T" — T||c < /4. There

is also a § = &(e, V) > 0 such that for every |t| < 6, ||[TwR: — R:Tn||c < €/2. Thus

|ITR; — RT||c <eforalle >0and T € L,. O

LEMMA 1.2. Let T € L(B). Then the following are equivalent:
(i) limy ||TR: — R:T ||z = 0.
(ii) The mapping t — R_,TR; is continuous from T to the norm topology of

L(B).

PROOF. Let s,t€ T. Then R_STRS - R_tTRt = R_S(TRs_t — RS_tT)Rt.

Since R_, and R, are isometries, |R_;TR; — R_+TRy||c = ||TRs—s — Rs_+T||z so that
lim|[|R_;TR, — R_yTR:||c = lim ||TRs_y — Rs—:T|| .
s—t s—t

Hence (i) and (ii) are equivalent.

The following two lemmas demonstrate important properties of £,,.

LEMMA 1.3. Let M, be the multiplication operator by the character €™ of T. Then

M, € L,.
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PRroOF. Let f € B and s,t € T. Then

[(MuRo)£1(s) = [Ma(Ref)(5) = €7 f (s — 1) = ™[0 f (s — 1)]

— einth[einSf(S)] — ei"th[Mnf](s).
Thus M,, € L,.

LEMMA 1.4.
(i) Each L, is a closed linear subspace of L(B).
(i) £, C L. for each n.

(iii) L, N Ly, = {0} for m#n.

(iv) IfU € Ly, and V € L, then UV € Ly py.

PROOF.

(1) Suppose U,V € L,, and «, B are scalars. Then

22

(OfU + BV)Rt = CYURt + ﬂVRt = aei"thU + ,BeinthV = emth(aU + ,BV)

Thus (aU + V) € L, and L, is a linear subspace of £L(B). To show that

L, is closed, let T € L,, such that Ty — T € £L(B). Now, Ty — T implies

TyR; — TR; and Ty R; = ™R, T}, — €™ R,T. Therefore TR, = e R,T, and

soT € L,.

(ii) Suppose T € L,,, then

. _ — 1 int _ — 1i int _
%L{%“TRt RT||c %1_{%”6 RT — RT||, 11_{%”(6 DRT||c

_ 1 int _ —
= lim " ~ 1[|T]|c = 0.

Thus T € L, and L,, C L,.
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(iii) For m # n, suppose T' € L,, N L,. Then T € L, and T € L,. That is,
TR, = e™R,T and TR; = e™R,T so that (e™ — ¢™)R,T = 0. Hence
RT =0, ie, T=0.

(iv) Let U € £, and V € L,. Then
R_tUVRt — (R—tURt)(R_tVRt) — eitheintV — ei(m+n)tUV

Thus UV € Lyin.

COROLLARY 1.5. Let T € L(B). Then the following are equivalent:
i) T e L,
(ii) There exists U € Ly such that T = UM,

(iii) There exists V € Ly such that T = M, V.

PrOOF. Let T € L,,. Then by (iv) of Lemma 1.4 and Lemma 1.3, TM_,, € L,.
Since T = (T'M_,)M,,, we choose U = TM_,, so that (i) implies (ii).

Now suppose U € Ly such that T = UM,. Taking V = M_,UM,, we have
Ve Lyand T = M,V. Thus (ii) implies (ii).

Finally, if V € Ly and T = M, V, then
TRt = (MHV)Rt = MnRtV = ei"th(MnV) = ei"thT.

Thus T € L, showing (iii) implies (i).
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2. The Fourier Series

In this section, we develop a Fourier series for operators in £(B) and show that
the series thus obtained has properties analogous to that of the familiar Fourier series.
We prove that if T' € L,, then its Fourier series is C-1 summable to T in the operator
norm. By this we see that that £, is the normed closed subalgebra of £L(B) generated
Ly and M,,. We also show that the Fourier series of an arbitrary operator T' € L(B)
is C-1 summable to T in the strong operator topology of L(B).

The following lemma is useful for further results.

LEMMA 2.1. Let T € L(B) and f € B. Then the mapping s — R_,TR,f is

continuous from T to the norm topology of B.

PRroOF. Let t € T. We show that the map s — R_,TR,f is continuous at t. We

have

R_,TR,f — RL{TR,f = [R_,TR,f — R_,TR.f] + [R_,TR.f — R_,TR,f]

= R—STRS [f - Rt—sf] + R—S[TRtf - Rs—tTRtf]-

Hence, ”R—STRSf - R—tTRtf”B < ”THEHf - Rt~sf“B + ”(TRtf) - Rs—t(TRtf)”B-

Since f € B and (T'R;f) € B, by applying Definition 1.1 (iii), we have

lim | R_,TR,f - R4TR:f|l5 =0

and thus the mapping s — R_,TR,f is continuous at ¢. O
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Now for each T' € L(B), each integer n, and each f € B, we define =(T)(f) € B

by

w(T)(f) = / " emR_TR.f dt

= % o
This definition makes sense because of Lemma 2.1. We also see that if T is almost

invariant, then the vector-valued integral

TI'n(T) L / e—intR..tTRt dt

:% .

exists since the integrand is continuous from T to the norm topology of L£L(B) by
virtue of Lemma 1.2. The map m(T') : B — B is clearly linear. For boundedness, for

all f € B, we have

1 o i 1 T
Il < o= [ N RaTRS s de < 5= [ ITel Sl de < W s
| (2.1)

That is,

Tl < T - (2.2)
Therefore m(T) € L(B) and m,:L(B) — L(B). Clearly, m, : £L(B) — L(B) is linear
and (2.2) shows that m, is bounded and ||m,| < 1.

PROPOSITION 2.2. m, is a projection of L(B) onto L.

PROOF. Since 7, is linear, we only need to show that

(a) m, takes £L(B) into Ly;

(b) for every T € L, m(T) = T.
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(a) Let s be any point of T. For any T € £L(B) and f € B, we have

1 [ 1 /M _.
[ﬂ'n(T)}Rsf = 5‘7?/ e"mtR_tTRtRsf dt = %/ em’mtR_tTRs_{_tf dt
eins " —in(s ins
= 5—R, / e ™Ry TR(syn) f dt = €™ R,m(T)f.

Thus [m(T)]Rs = €™ R,m(T), and [m(T)] € L,,.

(b) Suppose T € L, and f € B. Then

T ™

[Wn(T)]f = '2%/ 6~intR_tTRtf dt = "2—17?/ C_intR_teinthTf dt

_ L / Tfdt=Tf.
2m J
Therefore m(T) =T.

Hence , is a projection of £(B) onto L,. g

To every T € L(B), we assign the series

+o0
> m(T)

and call it the Fourier series of the operator T.
Using the assignment above, we demonstrate a fundamental property of Fourier
series, showing that our definition gives an extension of the usual Fourier series con-

cept.

PROPOSITION 2.3. Suppose B = €(T) and ¢ € B. Let M, be the multiplication
operator defined by M,(f) =¢-f, f € B. Then the Fourier series of the operator
M, is

400 T
Z(ﬁ(n)Mn, where @(n) = —L/ e M p(t) dt.

2m J_,
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PROOF. Let s € T and f € B. Then

m(MN(NE) = |5 [ MRM RS di) (5) = [5} | Rt Rug) a0
= % e"""'*(R_tso)-fdt] (s) = [%f /_ e"™R_yp dt|(s)
=S [ gl 4 ) di £5) = €901 (9
2r J_,
= G(n) (Mo f)(s)
(2.3)
Therefore, m,(M,) = ¢(n)M,. O

Before stating and proving some important features of the Fourier series, we give

some definitions and useful resﬁlts.

DEFINITION 2.1. Let X be a Banach space. Consider the series

0
Y a  (weX) (2.4)
k=—-00
and its partial sums
N
Sp = Z ag
=—N

The average

I S CpL (2.5)
NT=NF1&T N1 % '

n=0 k=—N

is called the Nth Cesdro (C-1) sum of the series (2.4).
The series (2.4) is said to be Cesdro (C-1) summable to L if the partial sums in

(2.5) converge to L in the || - ||x-norm.
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DEFINITION 2.2. A summability kernel {k,} is a sequence of continuous 27-

periodic functions satisfying the following:
(i) For every integer n,

1 T
8 kn(t) dt = 1. (2.6)

(i) There is a constant C such that

=/ lka(®)] dt < C (27)

for all n.
(iii) Forall 0 < 7 <,

1 20 —T

lim — |ka(t)] dt = 0. (2.8)

n—oo 27 ,

The following lemma, proved by Katznelson ([11], 2.2) in terms of vector-valued

integrals, is useful for further results.

LEMMA 2.4. Let X be Banach space, ¢ a continuous X -valued function on T, and

{kn} a summability kernel. Then

lim — [ k(®)et) dt = o(0). (2.9)

n—oo 27 [

PrROOF. For 0 < § < 7, we have

a /_ a(t)o(#) dt = (0) = - / " Ea®)le(t) — 0(0)] dt (2.10)

-

é 2r—§
=57 | e - e dt+ 5o [ Blelt) - o(0) at

—4
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By (2.7), there is a constant C' > 0 such that ||k,||z, < C for all n. And the
continuity of ¢ at 0 implies for every € > 0, there exists 4 > 0 such that, for all

lt] < 4, |le(t) — ¢(0)]] < e/C. Consequently,

H_/"" lelt) = (0) dtH<—/ [kn (@)l () — (0)]] dt

< max|{[o(t) — (0)||x[|£nll, (2.11)

|t|<d

<e.

Since ¢ : T — X is continuous and T is compact, there exists a constant M >
0 such that ||¢(¢)|| < M for all t € T. By (2.8), there is an N € N such that

- 2 |kn(t)| dt < e/2M for all m > N. So for n > N, we have

1 2r—4 1 2m—46
\ = [ OO -e0ld <5 [ k@@ <o (212
2w Js 21 Js
Therefore (2.10) is bounded by 2¢ for all n > N, and the proof follows. O

We denote by Kpy, the Nth order Fejér’s kernel, defined by

Kyt)= ) (1— N|Z|1)eim' (2.13)

n=—N

The Fejér’s kernel, { Ky}, is a summability kernel. To prove this, we need the follow-

ing.

LEMMA 2.5.

sin[L(N + 1)¢]|°

tn b
Sll’l2

1
Ent) = 57
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ProoOF. For r # 1,

N N
S (N=In|+1)"=r"" ( > (N-Inj+ 1)r"+N>
n=—N n=—N
) ) (2.14)
~-N s w1
=7 gr =7 1 . .
Hence if ¢ # 0, then
N . 2 oo } 2
) ] 1— W(N+1)t —i(N+1)t/2 1— (N+1)t
Z (N _ |n| 4+ 1)emt — e—th 6—lt _ € —it/z( eit )
Rt 1—e e"#/2(1 — ett)
. . ., (2.15)
e—iHNH/2 _ i(N+1)t/2 sm[ (N + 1)t]
= o—it/2 _ git/2 = sin £
So for t # 0,
1 |sin[3(NV+ 1)t]
K t 1 mt )
M) 1 Z ~Inl+  N+1 sin &
n=—N 2
For t = 0, we have
1 N
Ky(it) = —— N — 1
MO = g 30 (V= + )
1
:N—H[1+2+---+(N+1) 4241 =N+1
and
1 |sin[3(N + 1)t]
li =N+1.
150 N+1 sm z +
Therefore
2
1 |sin[i(NV + 1)¢]
Knt) = 2
M) N+1 sin £
for all ¢. O
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LEMMA 2.6. {Ky} is a summability kernel.

PRrROOF. For each N € N, we have

N N
n in n —in n
KN(t):Z(l—-]v'_il)et:1+2(1—N+l>(e Lt e™)

2.1
i (216)

:1+2;(1_N 1)cosmt.
Therefore,

1 [" 1 (" 1 & n ™

— = — — 1-— t

5 ~7rKN(if)dt 27r/_,r1dt+7rn2:;( N+1) /_Wcosn dt

=1,

showing (2.6) holds. By Lemma 2.5, Kn(t) > 0 for every ¢, so (2.7) is satisfied. Now

if 0 < 7 < 7, then, for 7 <t < 27 — 7, we have

1
vt < (N ey

So,

27 —T7

lim — Kn(t) dt =0

Nooo 27 T

for all 0 < 7 < w. Thus (2.8) holds.

We now return to our discussion on Fourier series with

PROPOSITION 2.7. Let T € L. Then the Fourier series of T is C'-1 summable to

T in the operator norm.
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Proor. The Nth C-1 sum of the Fourier series of T is

- 7] 4 nl Y1 /"
_ — I il B el —int
Z(l N+1)7rn(T) Z(1 N+1) 27r/_,re R_/TR, dt
L s (e L) e e a
or J_,| = " N+1 e
1 i

where Kx(t) is the Nth order Fejér’s kernel. Since Kx(t) is a summability kernel and
¢(t) = R_¢TR; is continuous, we compare (2.17) with (2.9) of Lemma 2.4 to conclude

that

N
. n Sk _
;:f%onZ__N(l—NH )= g | HR) 4 = p0) =T

Therefore, the Fourier series % m(T") is C-1 summable to 7" in the norm topology.

d

As an immediate consequence of Proposition 2.7, we have the following:

COROLLARY 2.8. L, is the normed closed subalgebra of L(B) generated by Ly and

the M, (n € N).

PRrROOF. That L, is a normed closed subalgebra of £(B) is seen in Proposition 1.1.
Now let K be the normed closed subalgebra of L£(B) generated by Lo and M,. We
show that K = L,.

Obviously, £ C L, by Lemma 1.3 and Lemma 1.4.
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Conversely, let T € L,. Then by Proposition 2.2 and Corollary 1.5,

7T) € Lo = LoM, C K,

and by Proposition 2.7

N
[n|
2(1 o ™I —T s N-oo

n=—N

SoT € K. Thus L, C K. 0

The following is an analogue of the Riemann-Lebesgue lemma (see [11], 2.8).

COROLLARY 2.9. Let T € L,. Then

lim ||m(T)|lc = 0.

|n]—>00

ProOF. Suppose m € Nand T € L,,. Then for n > |m|,

T

1 [ 1 o T
m(T) / e"™R_, TR, dt = o e M ™T dt = (—1- / ellm=—nt dt)T:O.

27T -7 w —1T 27T -7

If T is a finite sum of a simple operators, say
T=Tn +Tm, +---+Tp,, where T € Lpn,...., T, € L, (m; €Z).

Let M = max; |m;|. Then for n > M, m(T) = 0.
Now suppose T' € L, is an arbitrary operator and £ > 0. By Proposition 2.7, we
can choose a finite sum S of simple operators such that ||T — S||; < . Hence when

|n| is large enough, by applying (2.2), we have

[Tl = [l (T = S)llc < IT = Slle <.
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Therefore, limn|_so0 || (1)} = 0. O

COROLLARY 2.10. Let T € L,. Then T is a compact operator if and only if m(T)

is a compact operator for each n.

ProoOF. Suppose T € L, is compact. Then R_;TR; is also compact for all ¢ € T.
Let K be the normed closed linear subspace of £(B) spanned by R_;TR;. Then each

operator in K is compact. Since

m

1 [T .
m(T) = - / e RTR, di = o lim 3 (e "R, TR,)(h— i), (21

- i=1

where t, = —m+ 2% (0 < k <m), m(T) € K and hence m,(T) is compact.
Conversely let m(T) be compact for each n. Then 3 (1 — TvlnT|1)7"n(T) is com-

pact and (by Proposition 2.7) converges to T' in the operator norm. Therefore, T is

compact. O

Generally, for an arbitrary T € L(B), we have the following weaker version of

Proposition 2.7.

PROPOSITION 2.11. Let T € L(B) and f € B. Then the series Y o __ m(T)f is

n——oo

C-1 summable to Tf in the norm of B.

PRrROOF. Analogous to the proof of Proposition 2.7. d

We also have a parallel of the Riemann-Lebesgue lemma in the strong operator

topology of L(B).
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COROLLARY 2.12. Let T € L(B) and f € B. Then

lim ||m(T)(f)l|z = 0.

|n}—o00

PrOOF. Analogous to the proof of Corollary 2.9. a

3. The Fourier Transform and Convolution

For every T € £(B) and every integer n, we define T(n) to be the operator m,(T).
We therefore have a map T : Z — £(B) which is called the Fourier transform of the

operator T'. As already seen, f(n) € L, for each n, and from (2.2),
1Tz < |IT)|¢ for each n.
Also if T € L,, by Corollary 2.9, we have

lim ||T(n)]|; = 0.

[n| =200

The following shows how the Fourier transform takes operator multiplication into

convolution.

PROPOSITION 3.1. Let S,T € L,. Then the series

> S(n—m)T(m)

m=-—-00

is C-1 summable to the operator ST (n) in the operator norm.
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PROOF. By definition, we have

(§’T)(n) = ﬂ'n(ST) = 2i‘/ e_intR_tSTRt dt

T -7
~ (il
dm, 2 N( - m) i)

o).

ehintR_tS Rt dt

(due to Proposition 2.7)

N
— 1 1 " —int |mi
=g ) e [ 2 ( - m) RSBl T) Ry

m=—N

dt.

Since m(T) € L, R_ymo(T)R; = ™ m,(T) so that (3.1) becomes

N
: |m| 1 " —int mi
1}1_{1;0 m=Z_N (1 - N——|—1 5‘7; € R_tSRte Wm(T) dt

-

N
Y Z Im| )1 /7r —i(n—m)t

O

This result, with Proposition 2.3, shows that the Fourier transform of the product
of two functions is the convolution of their transforms. An analogue of Proposition 3.1

for an arbitrary operator in £(B) follows.
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PROPOSITION 3.2. Let S,T € L(B) and f € B. Then the series

Z S(n—m)T(m)f

is C-1 summable to [ﬁ’(n)]f in the norm topology of B.

ProOF. Analogous to the proof of Proposition 3.1. O

Let M(T) be the Banach space of bounded complex valued regular Borel measures

on T equipped with the total variation norm || - ||, i-e., for p € M(T),

e = p{\ [ 0 du(t)\ . f € €T) and ||l < 1}. (33)

For p € M(T), T € L(B), and f € B, we define the convolution u * T by

(uT)(f) = / " RTR_.f du(t).

The integral is a well defined element of B since ¢ — R,TR_.f is continuous (by

Lemma 2.1). p*T:B — B is clearly linear, and bounded since

[ T)HI < /7r BT R fI} dlul(2) < /7r T dlpel (2)

—r -

= (/7r dlu(t)l) ITIAN = el I Tl ]l f 1L

-

For T € L., p+T is defined directly by the integral

/ RtTR_t d[,t(t)

-7
due to Lemma 1.2. Hence if T' € L,, then yx T € L, since L, is normed closed in

L(B).
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In what follows, we present a justification of our definition of convolution.

LEMMA 3.3. Let B = €(T), ¢ € B, and T the operator of multiplication by .

Then p T is the operator of multiplication by u * @, where p * @ is the function

defined by

(e o)) = [ ols—0) duto).

-

ProOOF. Let f € B and s € T. Then

[(u*T)11(5) [/ RTR_.f du(t ] /Rt[TR S 1(s) dus(t)

:/W[TR of (s — ) dp(t) / [¢- B_tf (s — 1) du(t)

-

= (/_ﬂ p(s —1) du(t))f(S) =[uxp](s)- f(s).
Thus [pxT](f) = [p*e]- f. O

We now show that the defined Fourier transform takes convolution into multipli-

cation.

PROPOSITION 3.4. Let T € L£(B) and p € M(T). Then [+ T|(n) = a(n)T(n)

for all n, where fi is the function defined by j(n) = [T e™™* dpuf(t).
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PRrooOF. For f € B, we have

(@) = [mlar D0 = 5 [ "R (ux TR f ds

Z% .

1 ™ . T
= [ ™R, / R.TR_.f du(t) | R.f ds
=L [ gins /WR TR,_.f du(t)| ds
= o . o —(s—t)d fls—¢J AU

7r .
—_ / e—mt
-

= [ et duto) = ( [ e du(t)) (Fw) 1)

-

1 [ _.
- / e ™ OR_(,_yTR,_.f ds] du(t)

-7 -

am)T(n)f.

Thus m =f- T
O
Indeed, the preceding result shows that for every T € £(B) and y € M(T), we

can find S € L(B) such that S(n) = (n)T(n) for every n.

4. A Generalization of F. and M. Riesz Theorem

In this section we will present a generalization of the classical F. and M. Riesz The-
orem. To prove our result, we apply the characterization for compactness of almost
invariant operators as given in Corollary 2.10 and the fact that compact invariant
operators on €(T) are given by convolution by L;(T) functions.

For convenience, we let B = €(T) and define €(T),. and &(T)_ as follows:

&T)y = {f: f € &(T), f(n) =0ifn < 0}
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¢T)- = {f: fe€T),f(n)=0ifn> 0}

where f(n) = & [T f(t)e~™ dt.

T m

THEOREM 4.1 (F. and M. Riesz). Let p € M(T) be such that

a(n) = /7r e” ™ du(t) =0 for all n < 0. (4.1)

-7
Then p is absolutely continuous with respect to the Haar measure on T, i.e., u €

Ly(T).

PROOF. See Katznelson ([11], 3.13). O

We now introduce our generalization of Theorem 4.1.

THEOREM 4.2. Let T be an almost invariant operator on €(T) such that
T[E(T)-] € ¢(T)4 (4.2)
Then T is a compact operator.

Before we prove Theorem 4.2 and show that it is a generalization of Theorem 4.1,

we present some definitions and relevant results.

For p € M(T),s,t € T, we define the convolution operator C,, on €(T) by

(Cur)) = (s ) = [ St dts) (4.3)



4. A GENERALIZATION OF F. AND M. RIESZ THEOREM 41

and the translated measure u, by

[ﬂmmm="ﬂwﬂwm (f € &(T)).

-

DEFINITION 4.1. Let yu € M(T) and v a non-negative measure on T. We say that

u is absolutely continuous with respect to v, and we write u << v, if for all E C T,

p(E) = 0 whenever v(E) = 0.

Equivalently, ;1 << v if and only if for each € > 0, there exists § > 0, such that
forall E C T, v(E) < 6 implies u(F) < e.

We denote by M,(T) the Banach space of all 4 € M(T) such that p is absolutely
continuous with respect to the Haar measure A on T. Then M,(T) is a closed two-

sided ideal in M (T) (see [8], 19.18).

LEMMA 4.3. Let € M(T). Then pu € M,(T) if and only if py — p ast — 0 in

the || - ||ar-norm.

PROOF. Suppose p << A. Then by the Radon Nikodym Theorem ([8], Appendix

E9), there is a g € L1(T) = L{(T, \) such that

mm=Agw and IMW=AMMA

for all Borel sets A in T. Now, for all f € &(T), [, f(z) du(z) = [} f(z)g(z) dM\(z),

i.e., du = gd\. We call g the density function for u.
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For this g and ¢ € €(T), we have

[ 6(a) duio) = [ 6@ +0) du@) = [ ¢lo+09a) A

(4.4)
/ 6(z) g(x — 1) dA(z).
Hence the density of u; with respect to A is g:(z) = g(z — t). So,
e = silhe = [ 1=l . (45)

Note that €(T) is || - ||z,-dense in Li(T). So, for every € > 0, there exists f € €(T)
such that ||g— f]|z, < &/3. Since T is compact, each f € €(T) is uniformly continuous.
Hence there is a 6 > 0 such that |f(z —t) — f(z)| < /3 for all z,t € T with || < é.

Thus for every || < 9,

1o = fllz = / fom fldr= / (@ — 1) — f@)] dA(z) < /3.
Now

/Tigt—m A= llge = glles = lge = fo+ fo— F + f — gl
= “gt - ft”Ll + Hft - fHLl + “f - gI|L1 (4'6)

=2/|f = gllp, + Ife = £, <e.
Thus by (4.5) and (4.6), ||zt — pllsr < €. Therefore, p; — p in the || - ||ar-norm as
t — 0.
Conversely, suppose pu; — ¢ as t — 0 and F is any compact subset of T such that

A(F) = 0. Then

u(F—t) = u(F) as t—0. (4.7)
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Since A € M,(T) and M,(T) is a two-sided ideal of M(T) under convolution,

0=+ AP = [ 1a(F 1) ae> [ ju(F =) a.

Hence p(F —t) = 0 for almost all ¢ € T. In particular, there exists a sequence ¢, — 0

such that u(F —t,) = 0. So, by (4.7),

p(F) = lim p(F —-t,) =0.

n—oo

Since F' is any compact set in T and pu is a regular Borel measure on T, u << A. O

LEMMA 4.4. Let u € M(T). Then the following are equivalent:

(i) p is absolutely continuous with respect to the Haar measure \;

(ii) the convolution operator C,, on €(T) is compact.

PROOF. Suppose p << A. We show that C, takes the unit ball B; of €(T)

into a bounded, equicontinuous subset of €(T) so that (ii) follows from Arzela-Ascoli
Theorem ([7], IV.6.8).

Let f € B;. Then

|Cuf ey = Il fllery < lelimllfllery < llella-

So Cy(B4) is bounded. The equicontinuity of C,(B;) follows from

[(Cuf)(s) = (Cul)O] = [ * f)(s) = (1 O] = [[(ts—2 — ) * f1(2)] ws
4.8

st = pllaell flleery < lps—t — pllae - (f € By)

by virtue of Lemma 4.3. Hence C,, is compact.
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Conversely suppose C,, is a compact operator on €(T). For each f € €(T), we

define the function
f@t)=f(-t), teT.

By Arzela-Ascoli Theorem, we can find a § > 0 such that for any ¢ > 0 and f € B;,
1(CL.F)(s) = (Cuf)(®)| <& whenever |s — t| < 4.

Now suppose s,t € T such that |s —t| < § and f € B;. Then

(Cuf)(s) = (Cuf)( ‘—‘ f(s — ) du(z / F(t — z) du(z)
- (4.9)
l £ (@) dpe(o / £(@) diu(a
Since
s = sl = sup / £(5) dpso(w / £(&) dpue(a
4 << A by Lemma 4.3. O

LEMMA 4.5. Let E and F be closed translation invariant linear subspaces of

B(=¢&(T)) and T € L(B). Then m(T)(E) C F for alln if T(E) C F.

PROOF. Suppose T(E) C F. Let g € F and n € N. Then

1 M _.
-— / C_ZntR__tTRtg dt. (410)

"Tn(T)g = o
-7

Now since E and F' are translation invariant subspaces of B, for each t € T, R;g € E,
subsequently R_;TR;g € F for each ¢t € T. Since F is a closed linear subspace of B,

the integral (4.10) is in F'. O
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In the following theorem, we give some equivalent conditions for an operator on
L(G) to be invariant, where G is any locally compact abelian group, as presented
by Larson ([12], 0.1). By this we see that invariant operators on L;(G) are basically
the convolution operators C,. For our current application, however, €(T) will replace

L,(G) and T will serve in the place of G.

THEOREM 4.6. Let G be a locally compact abelian group and T: L(G) — L(G)

a continuous linear operator. Then the following are equivalent:

(i) TRs = R,T for all s € G.
(i) T(fxg)=Tf*g for all f,g € L1(G).
(iii) There exists a unique function ¢ defined on G such that (7’?) = @f for all
f € Li(G).
(iv) There exists a unique measure p € M(G) such that (7"?) = jif forall f €
L(G).
(v) There exists a unique measure p € M(G) such that Tf = f * p for all

f e Li(G).

PROOF. (i) = (ii). Suppose TR; = R,T for all s € G. Let k € Ly(G). Then
the mapping f +— [, Tf(t)k(—t) dA(t) defines a bounded linear functional on L,(G)

since for all f € L,(G),

/GTf(t)k(—t)d/\(t)’ S/GITf(t)IIk(—t)IdA(t) < NTflly koo < 11BNl ITNALL S
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where ||T|| is the usual operator norm of T. By the isometric isomorphism between

L, (G)* and Ly (G), we can find a function h € Lo (G) such that

[ Trer-0ae = [ rop-naxe (7 e L))
G
For f,g € L1(G), we have

/GTf*g( /G[ TF(t — 8)g(s) dA(s )]k(—t)dk(t)
[

g(s) dA(s >] K(—t) dA()

:/Gg [/ TR, f(£)k(— t)d)\(t)] dA(s)

= /G g(s) [ /G R, f(t)h(—1) dA(t)] dX(s) (4.11)
[ 1] 16¢= 51906 x| -ty e
= [ 7+ a)On-5axe)

- /G T(f + g)(£)k(~t) dA(t).
Since (4.11) holds for all £ € Ly(G), we conclude by Hahn Banach Theorem ([7],
11.3.11) that Tf x g =T(f * g) for all f, g € Li(G).

(ii) = (iii). Suppose that T'f x g = T(f % g) for all f,g € L;(G). Then by the
commutativity of L; (G) with convolution operation, it follows that T fxg = T'(g* f) =
fxTgforall f,g € L1(G). Hence forall f,¢g € L,(G), 6?)9 = f@ For each vy € @,
choose a g € L1(G) such that g(vy) # 0 ([9], 4.15) and let ¢(y) = (/Tg\)(fy)/g(fy) With

¢ so defined, the equation (T'f)§ = f@ shows that @ = of for each f € L(G).

Thus ¢ is independent of the choice of g. Suppose now that v is another function on
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G such that (7’7) = o f for each f € L;(G). Then ¢f = ¢ f for all f € L;(G) implies
that ¢ = 9.

(i) = (iv). Now let (7’]‘\) = of for all f € Ly(G). Then of € L/lia) for
each f ¢ m We set ||f]| = ||f]l; so that m becomes a Banach space and
Sf = ¢f defines a linear mapping from L/l(E) to IT(E) Let (fn) be a sequence and
f,9 € Li(G) such that f, — f and ¢f, — § in the norm. Since for each f € L,(G),
1l < I£1l, ([14], 1.2.4(d)), we have, for each v € G, §(y) = limn p(x)falr) =
©(7)f(7). Thus S is a closed mapping. By the closed graph theorem ([7], I1.2.4), we
conclude that S is continuous and hence bounded. That is, we can find a constant
K > 0 such that ||of|| = ||Sf|| < K||f]| for all f € L(G).

Suppose Y1,z -+, € G, € > 0, and f € Ly(G) such that ||f]| = [|f|l. < 1+¢
and f(v;)=1,i=1,2,...,n ([14], 2.6.1). Then for all ¢;, ¢y, ... ¢, € C and § = ¢f,

we have

n

ZWP(%‘)

i=1

n

> o) f

=1

/ [Xn: ¢i (-, %-)] g(t) d)\(t)‘

i=1

<[ Z (t,—)|lo ()] a1
< lllh | = llefl gq(-,—-»ﬁ-)
< KIS e

K(1+¢) ch , —i)




4. A GENERALIZATION OF F. AND M. RIESZ THEOREM 48

Since ¢ is arbitrary, it follows that |3 7, cipo(vi)| < KD, i (-, —%)ll,, for any
choices of v; € Gand ¢ € C, i = 1,2,...,n. Note that, for each f € Li(G),
S f and f are continuous functions on G. And for every open subset U of G with
compact closure, there exists an f € Li(G) such that f is 1 on U (see [14], 2.6).
So, ¢ is continuous on G and we conclude by the characterization of Fourier-Stieltjes
transforms ([14], 1.9.1) that there exists a unique p € M(G) such that ¢ = ji.

Now suppose (iv) holds. Then (7’?) =pf = (m) for all f € L1(G) and hence
Tf=upx*f=fxupforall fe L (G), establishing (v).

Finally, (v) implies (i) since if Tf = f * p for all f € L,(G), then for each s € G,

(TR,)f =T(Rsf) = Rsf xpp= Ry(f x p) = Ry(Tf) = (RT)f. O

The foregoing clearly shows that the convolution operator C), is an invariant op-
erator,i.e., C, € Lo. Finally, we need the following result to complete the proof of

Theorem 4.2.

LEMMA 4.7. Let T be a bounded linear on €(T) such that
TTe(T)-] € (T4

Then for each integer n, m(T) is an operator of the form M,C, where M, is multi-
plication by €™ and C,, is convolution by a measure yu which is absolutely continuous

with respect to the Haar measure.

PROOF. Let n be an integer. Then m(T) € L, (see Proposition 2.2). By

Lemma 1.5 and Theorem 4.6, m(T') = M,,C, for some p € M(T). From Lemma 4.5,
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choosing F = €(T)_ and F = €(T),, we have
[MnCu)(€(T)-) € (T (4.12)
Now for each n,
Cu(e™) = p* e™ = i(m)e™ so that M,C,(e™) = ju(m)emm),

Therefore fi(m) = 0 for m+n < 0 because of (4.12). Thus p is absolutely continuous

with respect to the Haar measure by Theorem 4.1. O

As a direct consequence of the preceding result, we have the following:

COROLLARY 4.8. The operator norm closure of the set of finite sums of the form

Zf:r:_ v MRU,,, where U,, € Ly, is the class of almost invariant operators L.

We are now in a position to establish the main result of this section.

PROOF OF THEOREM 4.2. Given T[€(T)_] C €(T),. Let n be any integer. By
Lemma 4.7, m(T) = M,C,, where pu is absolutely continuous with respect to the
Haar measure. By Lemma 4.4, C,, is compact. So, m,(T’) is compact for each n. Thus

T is compact by Corollary 2.10. O

To end this section, we show that the classical F. and M. Riesz Theorem (Theo-
rem 4.1) is a special case of Theorem 4.2. We first show that C,[€(T)_] C €(T), if
and only if fi(n) = 0 for all n < 0.

Suppose f € €(T)_. Then f(n) = 0 for n > 0. Hence if f € €(T)_, then

— p—

CulH)(n) = iix F(n) = fn)f(n) =0 forn > 0.
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But u * f € €(T), implies /i(n)f(n) = 0 for all n < 0. Hence C,[€(T)_] C &(T), if
and only if i(n) =0 for n < 0.

Now by Theorem 4.2, if C,[€(T)_] C &(T)4, then C, is compact and so, by

Lemma 4.4, u is absolutely continuous with respect to the Haar measure.



CHAPTER 4

Almost Periodicity in Operator Algebras

In Chapter 3, our harmonic analysis was concentrated on the circle group T, or
any compact abelian group. In this chapter, we extend our study to any locally
compact abelian group. In addition to the classes of operators in £(B) mentioned
in Chapter 3, we introduce another class of the operators, called almost periodic
operators, and investigate its properties. We prove an approximation theorem for
these operators. Then we show the existence of an invariant mean for almost periodic
operators and discuss some functional properties of the invariant mean. And we
conclude the chapter by defining a Fourier series on almost periodic operators and
studying its convergence.

In what follows, we present definitions parallel to those in Chapter 3 for the

homogeneous Banach space B, but on a locally compact abelian group G.

1. Homogeneous Banach Spaces on G

DEFINITION 1.1. A homogeneous Banach space B on a locally compact abelian
group G is a Banach space of functions or equivalence classes of functions on G

satisfying the following:

(i) (B,||-|lB) is translation invariant, i.e, for all f € B and z € G, R,f € B and

|1 Bz fll5 = [ fl|3, Where (Rof)(y) = f(y — @) fory € G;
51
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(ii) functions in B translate continuously, i.e., for all f € B, lim,o ||R.f — fllz = 0;

(iii) B is closed under multiplication by the characters of G.

Examples of Homogeneous Banach spaces on G include the function spaces L,(G),

1 < p < 00, and the space €(G) of continuous functions vanishing at infinity.

2. Almost Periodic Operators

Before we present our definition of almost periodic operators, we define almost

periodic functions and give an illustrative theorem to express our idea.

DEFINITION 2.1. An almost periodic function on a topological group G is a
bounded continuous complex valued function f whose set of translates Sy = {R,f : = € G}

is relatively compact under the uniform norm.

THEOREM 2.1. A bounded continuous function f on R is almost periodic if and
only if for every € > 0 there exists a positive number L such that in every interval of

length L, there is a number t such that ||f — Ry f|| <e.

ProOF. Let f be a bounded continuous function on R. The theorem can be
restated as: f is almost periodic if and only if for every € > 0, there exists L such
that, for every z, there exists y € [—L, L] such that ||R.f — R, f|| < ¢.

Suppose f is almost periodic and {z,2s,...,2,} € R such that {R,, f}~, is an
e-net in Sy. Let [—L, L] be the smallest interval containing the points {z;}. Then for
every x, there is an z; such that ||R,f — R, f|| < €. And putting y = z; satisfies the

stated condition.
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Conversely, suppose for every € > 0, there exists L such that, for every x, there
is a y € [-L,L] such that ||[R.f — Ryf|| < /3. We first show that f is uni-
formly continuous. Let ¢ > 0. Then there exists 0 < §(¢) < 1 such that for all
21,20 € [-L—1,L+1], |21 — 22| < ¢ implies that |f(21) — f(22)| < €/3. Then for
each a, we can choose y € [—L, L] such that ||R,f — R, f|| < /3. Hence, if |t| < 6,

then

[fla+1) = fla)| < [fla+t) = Fly+D+[fy+1) - FW)+1fy) ~ fla)l <e. (2.1)

That is |R:f — f|| < € whenever |t| < §. Now let {z1,%2,...,2,} be a d-net in
[-L,L]. Given z, we choose y € [-L, L] such that ||R,f — R,f|| < ¢ and z; such
that |z; — y| < 6, so that [|Rg, f — Ry fl| = ||Re—y; f — fll < e&. Thus |Ry,f — Rof|| <
|Re,f — Ry fll + || Ryf — R f|| < 2¢, which shows that {R,, f}1, is a 2e-net in Sy and

so f is almost periodic. d

In the following, let B be a homogeneous Banach space on a locally compact

abelian group G and L(B) the Banach algebra of all bounded linear operators on B.

DEFINITION 2.2. An operator T' € L(B) is called almost periodicif {R_,TR, : z € G}

is relatively compact in £(B) in the operator norm topology.

We denote by L4 the class of almost invariant operators in £(B). Ly and L,
retain their definitions as given in Chapter 3 except that they are now defined on a
locally compact abelian group G.

We demonstrate some remarkable properties of £4 in the following results.
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PROPOSITION 2.2. L4 is a closed subalgebra of L(B).

PRrROOF. Let A7 = {R_,TR;:z € G} foreach T € L. ForT\,T; € L4, Aq,, Ar,
are compact and so the images of Ar, x Ap, under the continuous mappings (X,Y) —

X +Y and (X,Y) = XY are compact. Now

Arir, ={R_.(Th + TL)R,} ={R_,T1R, + R_,ToR,}

C {R_leRw} + {R_szRz} = AT1 + AT2 and

AT1T2 - {R—xT1T2Rm} g {R—:chR:c} {R—zT2Rm}

Thus, Ar 11y, AnTy, and obviously A,7, (o € C) are also compact so that L4 is a
subalgebra of £(B).

To show L4 is closed in L(B), let T, € L4 such that T, —» T € L(B). Let £ > 0.
Then there is an integer N such that ||T'— Ty|| < €/3. Let {R_,,TnR;,}, be a
¢/3-net in {R_,TvR, : © € G}. For each x € G, there is a k, 1 < k < m, such that

|R-zTn Ry — R_g, Tn Ry, || < €/3. Therefore,
|R-zTRy; — R_;,TR,,|| < ||R-zTR; — R-oTnRs|| + ||R_zTnRy — Ry, Tn Ry, ||
+ |R-2, TN Rz, — Rz, TRy, ||
<|T —Tnll + |R-zTn Rz — R0, Tn Ry || + | Tv = T||
<E&.

Thus T € L4 and L4 is closed. O

In what follows, we prove that every almost periodic operator is almost invariant.
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ProPOSITION 2.3. L4 C L, .

Proor. Let T € L4. Then {R_,TR, : z € G} is totally bounded. Let
{R_;, TR, }, be a ¢/2-net for {R_,TR, : = € G}. For k = 1,---,N, let
Ay={z € G:||R-;TR; — R_;, TR,,|| < g/2}. We show that A is closed.

Let z, € Ay and z, = = € G. For f € B,

|R-zoTReo f — RosTRof|| = || Reg (T Ry f — R(za-w)Tsz)”
= ”TRﬂvaf - R(wa—x)Tsz”
< “TRmaf - TRacf” + ”Twa - R(xa——m)TRxf“

< HT“”R(za—w)f - f” + ”TRmf - R(za—x)(Twa)“ —0

by (ii) of Definition 1.1.

For § > 0 and ||f|| < 1, choose « such that |R_;, TR, f — R_,TR,f|| < 4. Then

|R_eTR.f — Ry, TRy || < |RosTRof — Ry, TRy, || + | Rz, TRoo f — R0, TRa,f|

<d+¢e/2.

Since ¢ is arbitrary, we have |R_;TR,f — R_;, TRy, f|| < €/2. Thus z € A; and A
is closed.
Now G = |JI_, Ax, where each A is closed. By Baire category theorem (see[8],

(5.28)), there exists some Ag,, o € Ag,, and a neighborhood U of 0 in G such that
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9+ U C Ayg,. Therefore, for x € U,

|R—sTR, = T| = “R—(wo+w)TR(zo+m) — Rz, TRy|

< “R—(aco+w)TR(zo+w) - R—xko TkaO ” + ”R—wko TR% - R—moTRa:o” <e

Hence T' € L, and L4 C L.. d

In the following, we show that if G is compact, then the almost periodic operators

are precisely the almost invariant operators.
COROLLARY 2.4. If G is compact, then L4 = L,.

PRrOOF. It suffices to show £, C L4. Let T € L,. Then, by definition, the
mapping r — R_,T R, is continuous. Therefore, as a continuous image of the compact

space G, {R_,TR, : € G} is compact. Hence T' € L. O

For a locally compact abelian group G, let UC(G) be the space of all bounded
uniformly continuous functions f on G (i.e., given £ > 0, there exists a neighborhood

U of the unit 0 of G such that |f(z) — f(y)| < € whenever z,y € Gandz —y € U ).

LEMMA 2.5. Let G be a locally compact abelian group and ¢ € Lo.(G). Then the

following are equivalent:

(1) limyyo | Ry — ¢]|oo = 0.

(2) ¢ is equivalent in Lo (G) to a function in UC(G).

PROOF. (2) = (1). It is obvious.
(1) = (2). Suppose lim; o ||[R:p — ¢||loc = 0. Then, given £ > 0, there exists a

neighborhood U of 0 such that ||Ryp — ¢||c < € whenever ¢t € U.
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Let {U;}ic1 be a basis at 0 € G such that each U; is compact. For every i € I, let

1

fi= mXUp

where A(U;) is the Haar measure of U; and xp, is the characteristic function of U;.

Then
(fixp)(z /fz ﬁ/u(p(x—t)dt
and hence
5+ )@) = (@) = 75 | | lota =) = w(@) | < 55 [ 1ot —1) - wto)l

So, if U; C U, then |(fi * ¢)(z) — p(z)] < e for all z € G, ie., |[(fi*x ) — ¢l < €
whenever U; C U. Thus lim; f; * ¢ = ¢ in the || - || -norm.

Note that f; x ¢ € UC(G) (see [8], (20.19)) and {f; * ¢}ia is Cauchy in
(UC(G), ||*|lso)- Therefore, there exists a function g € UC(G) such that g = lim; f;*¢

in the || - |lo -norm since (UC(G),|| - ||) is complete. It follows that ¢ = ¢ in

Loo(G). 0

We denote by M, the operator of multiplication by an appropriate function ¢.

PROPOSITION 2.6. Suppose B = L,(G) (1 < p < o0) and ¢ € Loo(G) or
B = &(G) and ¢ is a bounded continuous function on G. Then
(1) M, is almost invariant if and only if ¢ is equivalent in Lo (G) to a uniformly
continuous function on G;
(2) M, is almost periodic if and only if ¢ is equivalent to an almost periodic

function.
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PRrROOF. For f € B and z € G,
(RzMwR—z)f = Rzan(R—mf) = Rz[(p ) (R—mf)] = Rm(p : f = MR;csof-

Thus R,M,R_o = Mp_,.

(1) follows from the identity
[ReMyR_g — My|| = MR, — My|| = [MR,4—oll = | Rap — ¢l and Lemma 2.5.
(2) follows from || Re MRz —RyMyR_y|| = [| MR,o— MRl = [ Rep— Ryl O

PROPOSITION 2.7. Let G be compact and B = Ly,(G), 1 < p < co. Then any

compact operator on B is almost periodic.

PRrROOF. Since G is compact, it suffices to show that any compact operator is
almost invariant. We show that any rank one operator T' on B is almost invariant.
Suppose T € L(B), g € L,(G) and h € Ly(G) such that Tf = (f, g)h for all
f € Ly,(G), where ;7-{— % =1and (f,9) = [, fgdz. For ||f|| <1,
”Rsz - TRmf” = ||<fa g>Rmh - (Rxf’ g)h”
< {f> 9)Rah — (f, 90l + [{f, 9)h — (Raf, )|l
< K MIRR — B+ [I(f, 9) — (F, B—eg) || 2]

< llgllliBzh = hll + llg — B-zglll|A]l-

So, ||R;Tf — TR, f|| — 0 uniformly for ||f|| < 1 as x — 0 by (ii) of Definition 1.1.

Thus lim,_,¢ ||R,T — TR,|| = 0 so that T' is almost invariant, hence almost periodic.
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Therefore every finite rank operator T on B (being linear combination of rank one
operators) is almost periodic. Since compact operators are norm limits of finite rank

operators and L4 is closed, compact operators on B are almost periodic. a

3. An Approximation Theorem

In Chapter 3 (Theorem 4.7), we showed that almost invariant operators on a
Homogeneous Banach space defined on a compact group G can be approximated by
finite sums of the form Y. , M, U;, where M, is multiplication by the character ~;
of G and U; is an invariant operator for each 7. In this section, we show that if G
is not compact, then the norm closure of these finite sums yield the class of almost
periodic operators.

At this point, we demonstrate two important properties of M,,.
LEMMA 3.1. Let z € G and vy € G. Then MR, = (z,7)R.M,.

ProOF. Let f € B and y € G. Then

[MyR: f1(y) = (y, M) f(y = 2) = (2,7)(y — 2,7) f(y - 2)
(3.1)

= (z,7)[RaM, f1(v)-

LEMMA 3.2. IfV € Ly and v € G, then M,V M_, € L,.

PRrROOF. Let x € G. Then, by Lemma 3.1,

R,M,VM_,R_, = (—z,7)M,R,VR_,M_.(z,v) = M,V M_, (3.2)
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so that M,V M_, € L. a

The following result is useful in the proof of our main theorem of this section.

LEMMA 3.3. Let (X, p) be a compact metric space. Then the set of isometries on
(X, p) defined by I(X, p) = {S:X — X|p(S(x1), S(22)) = p(x1,72) Vz1,72 € X} s

also compact in the topology given by the uniform metric

d(S1, S2) = sup p(S1(z), Sa(z)). (3.3)

reX

PRrOOF. Clearly, d is a metric on I(X, p). Since X is a compact metric space, it
is separable. So X has a countable dense subset, say {z1, %2, -}

Let {Sn} be a sequence in I(X, p). Since X is compact, using the ”subsequence
of a subsequence” argument and the Cantor diagonalization argument, we can get a
subsequence {Sy, }2, of {S,} such that {S,,(z¢)}32, is convergent for all k. Now, let
z € X. We claim that {Sy, ()}, is also convergent. In fact, given € > 0, we can
choose a k such that p(zx,z) < &/3. For this k, since {Sy,(xx)}$2, is convergent, there

exists an 49 such that p(Sy; (), Sn;(7r)) < €/3 whenever i, j > 4. It follows that

p(Sni (37), S"j (CL’)) < p(Sni ($)7 Snz ("Ek)) + p(Snz (xk)v Snj (xk)) + p(Snj (wk)7 Snj (:E))

3 £ €
= p(.’l:,:l?k) + p(Sm‘(xk)’ S"j (xk)) + p(xk,x) < '?; + 5 + 5 =E&.

Therefore, {Sy,(z)}2; is Cauchy and hence it is convergent since X is compact. Let

S(z) = lim;y00 Sp;(z) (z € X). For all z1,z, € X, we have

p(S(21), S(x2)) = lim p(Sp,(21), Sn;(2)) = p(21, T2).

1—00
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Therefore, S:X — X is an isometry, i.e., S € I(X,p). Since X is compact and
Sni(z) — S(z) for all z € X, we have S,,(z) — S(z) uniformly for z € X, ie.,

d(Sn;,S) — 0 (as i — oco). Consequently, I(X, p) is a compact metric space. O

THEOREM 3.4. Let G be a locally compact abelian group and B a Homogeneous
Banach space on G. If T € L4, then T is the norm limit of finite sums of the form

Yo M, U; where v; € G and U; are invariant operators on B.

ProOOF. We divide the proof into three segments: first, we develop the Bohr
compactification G of G. Secondly, we show that for y € G, y*T = M,U,, where U,
is invariant. We then conclude the proof by showing that 7 can be approximated in

the norm by a finite linear combination of ~; x T

Let T € L4 and Fr = {R_,TR, : x € G}. By definition, Fr is a compact metric
space with the operator norm. For each g € G, we define the translation operator p,
on £(B) by p,(S) = R_4SR, and denote by p] the restriction of p, to Fr. Then pT
is an isometry on Fr. Let Gr be the uniform closure of {p] : g € G} in I(Fr, || - ||¢).
We show that the homomorphism g +— pg from G to G is continuous. In fact, for

all z, g € G,

|R-sTR; — p;(R—mTRw)” = ”R—zTRw - R—($+H)TR(Z+9)”
(3.4)
= |B_alT — R_yTRJR,|| = |T = R_,TR,|.

Let € > 0. Since T is almost invariant, there is a neighborhood V' of 0 in G such that
IT — R_4TRy|| <& forge V. Thus forall S € Frand g € V, ||S — pL(S)| < ¢,

ie., d(pg,p,) < € forall g € V. It follows that the map g — pI is continuous at 0.
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Therefore, the map g — pg is continuous from G to G since it is a homomorphism.
By Lemma 3.3, isometries on a compact metric space form a compact metric space
under the uniform metric. Thus Gr is a compact group (with composition of operators
as the group operation) and so is the cartesian product [[;¢., Gr. Each g € G
corresponds to a point in [, Gr whose T'th co-ordinate is p} € Gr. Let G be
the closure of G in [, ¢, Gr. Since g — pg is continuous from G to G for every
T € L4, the map g = (P )rec, from G to G is also continuous. In fact, G is the

Bohr compactification of G (see [14], (1.8)).

Let v € G. Note that ?; = (@)d, the group G equipped with discrete topology.
Then v € L1(G). For ¢ € L1(G), define ¢ x T by the integral [¢(—g)g,(T)dy,
where g — g,(T) (g € G) is the extension of the map g = R_,TR, (g € G) and dg
is the normalized Haar measure on G. We show that v * T = M, U,, where U, is an

invariant operator. Now,

R—m(7 * T)Rm = /C_:R—w’Y(—g)Qg(T)Ra: dg = /

G

7(_9)R—(w+g)TR(z+g) dg
- / (=0,7)@usy(T) dg = (2,7) / (-2 — 9, 7)0us,(T)dg  (35)

G

= (z,7)(y*T) by the translation invariance of dg.

Also,

M_,(y*T)Ry; = M_yR,R_,(y*T)Ry; = M_,Ry(z,7)(y+T) (by(3.5))

= R M_y(v+T) (by(3.1)).

Hence U, = M_,(y * T) is invariant and M, U, =y T.
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Finally, we show that 7' can be approximated in the norm by finite sums of
the form Y, a;(7; * T') where a; are scalars. Let ¢ > 0 and choose a symmetric
neighborhood V' of 0 in G such that for g € V, ||@,(T)—T|| < &/2. Choose ¢ € L(G)
such that ¢ > 0, ¢ is supported in V, and [, = 1. Note that T' = [;v(g)T dg =

Jz4(—9)T dg since G is compact. Then

|wquWW[wem%@%Twﬁs/wvwm@rwwm

G
__2/1/1 )dg < 5 /w(g)d9=§

By the Stone-Weierstrass Theorem and using the fact that €(G) is || - ||z,-dense in
Li(G), we can take an h = Y i a;y; such that |h — ¢z, < ¢/2(||T|| +1). Then
fhxT — ¢ xT||< ||h = Y|l |7l < €/2. Thus |h*T — T|| < e. Since h+ T =

Y iy ai(vi * T), the proof is complete. O

4. The Invariant Mean

Let T € L4. Define m, : Lo = La by m(T) = v+ T = [5(—g,7)p,(T)dg,
where dg is the normalized Haar measure on G, v € @, and p, is as defined in the
foregoing proof. It is interesting to note that when G = T and v(¢) = e™, m,(T) can

be identified with m(T") defined in §2 of Chapter 3. For v = 0, m(T') € Ly since

Rom(T)Re = [ Reo(-0.0)0,DFsds = [ puy(T)da= [ p,(0)dg = m(1)

for all z € G. We call the map m(T) : L4 — Ly the invariant mean of the operator

T. In what follows, we obtain m(7") by a standard limiting process. To do this, we
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present the following three lemmas, the first one being a special case of Lemma 18.12

of [8].

LEMMA 4.1. Let G be a locally compact abelian group with Haar measure \. Let
V' be a neighborhood of 0 with compact closure in G, and ¢ > 0. Then there is a
relatively compact open subset H of G such that V C H and AKII:\F(%C_I < g, where

He¢ is the complement of H in G.
PROOF. See page 254 of [8]. O

LEMMA 4.2. Let G be a non-compact locally compact abelian group with Haar

measure A. There are relatively compact neighborhoods H, of 0 in G such that

(1) Uper Ha =G;

(i) the indez set I can be ordered so that

lim A[(Hq + z) N HE)
o A(H,)

=0 for everyzx € G.

PROOF. (i) Let {V, : a € I} be the set of all relatively compact open neighbor-
hoods of 0 in G. Then |J,; Vo = G (Indeed, for any open neighborhood U of 0 in
G, (U +z) UU is an open neighborhood of 0 and of z.). Make I into a directed set
by setting a > B if and only if V,, D V. By Lemma 4.1, for every « € I, there is a

relatively compact open subset H, D V, such that

)\[(Ha + Va) N Hg] 1
Ao A(Va)

Since Uyeq Vo = G, Uneg Ha = G is also true.
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(ii) Let € G. Choose B € I such that z € V. Then for alla > 8, x € V, C H,

so that

A(Ho+ )0 He)  N(Ho+ Vo) NHE) 1
NHS S MH) AV

By the regularity of A, for every N € N, there is a compact subset K of G such that
A(K) > N. By the compactness of K, there exist ay,...,a, € I with |J_; Vo, 2 K.
Choose o € I such that o > «; for ¢ = 1,...,n. Then for every « > a, Vi, D
Va 2 U Va, 2 K, 50, A(V,) > MK) > N. Therefore, A\(V,) — oo and so
lim, AHet2)0Ha] _ g O

MHa)

LEMMA 4.3. Let G be a locally compact abelian group with Haar measure \. Let

{Hy}ac1 be as in Lemma 4.2. Then

1 ify=0
lim ! /(m,’y) dz = o . (4.2)

0 #fv#0

ProoF. For v = 0, we have

: 1 ) 1
lim L /al dz = lim AL ‘A(Hy) =1
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For v # 0, choose zy # 0 so that (zg,7) # 1. Then

1

VAT (z,v d:v—/ (z,7) dz
I)\(Ha) Hq /I;a+z0 ) a
=l
S @) do- [ (,7) da
MHa) |J (Ho+oo)nHe (Ha+20)°NHa
= el | (7)o
(Hatoo)OHS MHa) J(Hyta0)y0Hs
o =
= — lde + ———~ 1dzx
MHa) J(Hotzo)nmE MHo) J(Hatz0)enH,
1

(Ha)
T AH)

1
MHa)

(= + z0,7) — (,7)] dz

<

>

()\[(Ha +20) N HY] + M(Hy + x0)° N Ha]) : (4.3)

Now, A[(Ha + 20)¢ N Ha] = N[(Ha + 20)° N Ha] — @] = A[HE N (Ha — 20)] so that

(4.3) becomes

1

) (A[(Ha + @0) N HE) + AHE N (Ho - xo)]) ~0

by Lemma 4.2. Hence limq 57 [y, (%,7) dz[(z0,7) — 1] = 0. Since (zo,7) # 1, the

result follows. O

For easy application in further results, we present the limit form of the invariant

mean in the following.

PROPOSITION 4.4. Let ®(a,T) = T\TP'I'Ia—)fHa R_,TR, dx for every T € L, and

o € 1. Thenlim, ®(a,T) exists and is equal to m(T) = [ p,(T) dg.
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PROOF. For U € Lo, v € G, let T = M,U. Then

lim ®(a, T) = lim / R_o(M,U)R, do = lim —— / (R_oM, Ro)U da
H, @ Ha

z o A(Ha,) (Ha)
= lim %/ (z,7v) de M,U (by Lemma 3.1)
U ify=0
= (by Lemma 4.2).
0 ify#0

(4.4)

Thus lim, ®(a, T) exists for T = M,U and so lim, ®(«a, P) exists for every finite sum
of the form P = )" M, U;. Let T € L4 and € > 0. Then by Theorem 3.4 we can
find a corresponding finite sum P, such that ||T" — P.|| < /3. Since lim, ®(c, P.)
exists, there exists oy € I such that if o, 8 > a, then ||®(«, P.) — ®(8, P.)|| < ¢/3.
Note also that ||®(a, W)|| < ﬁfm |R-sWR,|| dz = RI%I_,,JIHQ W dz = |W]|

for all W € L 4. Hence
[®(c, T) — @8, T)|| < [|®(ex, T = B + ||®(ex, P) — (B, Pe) || + | ®(8, T — Po)||
<|T - P + [|®(a, P2) — (8, P)|| + IT — P||
+5=c.

(B ELE
3 3

Wl M

Thus {®(c, T')} is a Cauchy net and converges since L4 is a complete normed algebra.
So lim, ®(a, T) exists for all T € L4.
We now show that lim, ®(«, T') = m(T') forevery T' € L4. Forz € G, p,(M,U) =

R_ .M\ UR, = R_,M,R,U = (z,7)M,U by Lemma 3.1. Consequently, since G is
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dense in G and g — p, is continuous, p,(M,U) = (g,v)M,U for all g € G. Therefore,

U ify=0
m(M,U) = /G p,(M,U) dg = /G (9,7) dgM, U = . (4.5)

0 ify#0
By the previous paragraph, m(T) = lim, ®(a,T) for T' = M,U. Hence, it holds for
every T of the form T = ) .| M, U;, and therefore for every T € L4 by Theorem 3.4.

O

PROPOSITION 4.5. Let B = Ly(G). Then Ly, L4 and L. are x-subalgebras of

L(B).

PRrROOF. We only have to show that £Lg, L4 and L, are closed under the involution .

Let z € G and f, g € Ly(G). Then

(Rof, ) = / £t - )g(@) dt = / F(tglE+ ) dt = / FOE9)(t) dt = (f, R_s)

Thus (f, (Rs)*9) = (R.f,9) = (f, R—z9). So, (R;)* =R_, for allz € G.

If T € Ly, then T*R, = T*(R_;)* = (R_,T)* = (TR_;)* = R,T* for all z € G,
ie., T* € L.

Note that for all T € L(B), ||T*R, — R,T*|| = ||(R-.T)* — (TR_,)*|| =
[(R—zT — TR_;)*|| = |R-sT — TR_;||. Therefore, if T' € L,, then T* € L,.

Also note that if A C L£(B) is relatively compact, since the involution * : £L(B) —
L(B) is an isometry and hence continuous, then 2* = {T*|T € A} C L(B) is also

relatively compact. It follows that £4 is closed under the involution *. ]
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Before proceeding to the next result, we give some key definitions as follows:

DEFINITION 4.1. Let 2 and B be x-algebras of bounded linear operators on some
Hilbert spaces and let w : % — B be linear a map. w is said to be positive if
w(A*A) > 0 for all A € 2; w is said to be fasthful if for all A € A, w(A*A) = 0 implies
that A = 0. If w is a positive linear functional on 2 with norm 1, then w is called a
state on A. If A has identity I, then w is a state if it is a positive linear functional

such that w(l) = 1.

Before we prove the next result, we collect a few generalities. Let Y be a Banach
space. Let CB(G,Y) = {F:G — Y|F is bounded and continuous}. For F € CB(G,Y),
let ||F'|| = sup,¢q ||F(%)]|. Then under the pointwise operations and the norm || - ||,
CB(G,Y) is a Banach space.

For F € CB(G,Y) and z € G, let (R,F)(9) = F(g—1z) (9 € G). Then
R.F € CB(G,Y) and ||R,F| = ||F||. A function F € CB(G,Y) is called almost
periodic if the orbit O(F) = { R, F'|z € G} of F is relatively compact in (CB(G,Y), || - |).
Let AP(G,Y’) be the set of all almost periodic functions in CB(G,Y). Then AP(G,Y)
is a closed linear subspace of CB(G,Y).

If Y is a C*-algebra, for F1,F, € CB(G,Y), let (FiF,)(z) = Fi(z)Fy(x) and
Fi(z) = Fi(z)* (z € G). Then (CB(G,Y),|| -||) is a C*-algebra and AP(G,Y) is a

C*-subalgebra of CB(G,Y).

PROPOSITION 4.6. Let B = Ly(G). Then m : L4 — Ly is a positive faithful

*-map.
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PROOF. Recall that an operator A on a Hilbert space H is positive if (Af, f) >0

forall f € H. For T € L4 and f € Ly(G), we have
. 1 . 1
(m(Df, f)= hcr!n G /HQ(R_xTsz, f)dz = h;n—}\(Ta)-/Ha(Tsz, R.f) dx

Thus if T > 0, then m(7T) > 0 and so m is positive. That m is a x-map follows from

(m(T)f,9) =lim 5> / (RTR.f,g) dr = lim i ), BT Reg) e

= (f,m(T")g) -

To prove m is faithful, we follow a method used by Arveson in [3] to prove faithfulness.
To apply apply this method, we need a C*-algebra C, a positive faithful linear map w :
C — Ly and a *-homomorphism 7 of C onto £ 4 such that myon = w. Indeed, suppose
T € L, such that m(T*T) = 0 and S € C such that 7(S) = T. Then w(S*S) =
(mom)(S*S) = m(w(S*)n(S)) = m(T*T) = 0 because 7 is a *-homomorphism. And
since w is faithful, S = 0, so that T'= #(S) = 0. Now we prove the existence of such
C*-algebra C.

Let C; = AP(G,L(L2(G))) with the norm ||F|| = sup,¢q ||F ()| for F' € C.
Since L£L(L,(G)) is a C*-algebra, then C; is also a C*-algebra. It is obvious that ,
defined on C; by n(F) = F(0), is a *-homomorphism of C; into £{Ls(G)). Now define

= [5 F(z)dz (F € Cy), i.e., w(F) is the operator in £L(L2(G)) satisfying

(W(F)f,g) = / (F(z)f,g) dx for all f,g € La(G).

Note here that, for all f,g € Ly(G), (F(-)f, g) is an almost periodic function on G

and hence it can be extended uniquely to a continuous function on G which is still



4. THE INVARIANT MEAN 71

denoted as (F'(-)f, g). For every f € Ly(@G), the fact that

(W(F*F)f, f) =/G(F*(w)F(-’v)f,f) dfv=/é<F(w)f,F(w)f) dw:/GIIF(w)fIde

shows that w is a positive linear map of C; into £L(Ly(G)). And if w(F*F') = 0, then
F(z)f =0 for all f € Ly(G) and z € G. That is, F' = 0 and so w is faithful.

Now let C be the norm closure of all functions F € C; of the form
F(z) = 32 ca(z, 7)MyU,, where v € G and U, € Ly,. We claim that C is a C*-
subalgebra of C; containing the identity. Clearly, C is closed under linear operations
and the involution *. For multiplication we have M, UiM.,, U, = M, ., U, where
U=M_,UM,U, By Lemma 3.2, M_.,,UiM,,U, € Ly and thus U € Ly. Thus C
is a C*-algebra. Now if F(z) = >_ .s(2,7)M,U,, with finitely many non-zero 7’s.
Then, by (4.5),

w(F) = /G F(z)dz =) /G (z,v) M, U, dz = U,
v€G

and

m o m(F) = m(F(0)) = / R_,F(0)Rydg =) / R_,M,U,R, dg
G ~J G
veG

= Z/G(x;’)’)MvU'y dg = Uy,

veG
ie, w(F) = Uy = m o7n(F). By continuity, w = m o7 on C. We also see that
w(C) C Ly since m maps into Ly. Since m : C — L4 is a *-homomorphism of the
C*-algebra C into the C*-algebra L4, 7(C) is closed in L4 and contains all finite sums

of the form ) ., M, U;, U; € Ly. Hence 7(C) = L4 by Theorem 3.4. O
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To conclude this section, we present another property of the invariant mean that

is required to prove the convergence result in the next section.

PROPOSITION 4.7. (i) m : L4 — Ly is idempotent, i.e., m o % = my;

(ii) Let B = Lo(G). Then for all T € L, m(T)*m(T) < m(T*T).

PROOF.

(i) By definition, m(T) € Lo for every T € L4. Also if V € Ly, then

11'0(V) = llén ﬁ /H R_;,;VR;E dx = h;nﬁ /H Vde=V.

Hence my(m(T)) = m(T') for all T € L4.

(ii) For T € L4 and U € Ly,

1 1
7T()(UT) = llén W /H R_EUTR:,; dxr = llzn 'A'(TI—S /}‘I UR_z-TRx dx

(4.6)

) 1
= Uh;nm/}[a R_,TR, dz = Um(T)

and, in the same way, m(TU) = m(T)U. Since m is positive, then for all T € L4,
(T — m(T))* (T — m(T))] > 0. That is,
wo(T*T) — mo(T*m(T)) — mo(mo(T)*T) + mo(mo(T Y mo(T)) > 0.
Since my(T") € Lo for all T € L4, and 7 is an idempotent *-map, we have
m(T™T) — m(T*m(T)) — m(m(T)*T) + m(m(T)*m(T))
= m(T*T) — m(T*)m(T) — m(T)* m(T) + mo(T)*m(T)
= m(T*T) — m(T)*m(T) > 0.

Hence my(T)*m(T) < m(T*T) . O
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5. Fourier Series on L4

In a similar manner as in Chapter 3, we define the Fourier series of an operator
T € L4 as the series > 5™ (T). Throughout this section, we assume that Ly(G)
is separable. We now study the convergence of ) 5 m,(T’) on Ly(G) in the norm
constructed by Arveson [2]. To define this norm, we need a faithful state, say p, on
L 4 which preserves the invariant mean in the sense that po m = p. Since Lo(G) is a
separable Hilbert space, it admits a countable orthonormal basis, say {,}.

Define ¢ on Lo by o(T) = Yoot =(Tén,&n), T € Lo. Then ¢ is positive
since 9(T*T) = Y02 o=(T&n, Tép) = Yomey 3 ITE|* > 0; ¢ is faithful since if
o(T*T) = 0, then T¢, = 0 for all n and hence T = 0; and ¢ is a state because
o) =30 5= (&n,€n) = 1. Let p = pom. Then pis a faithful state on L4 since ¢
is a faithful state on £y and m : £4 — Lo is a positive faithful map with m(I) = L.
We therefore make £, an inner product space with the inner product defined by

(T,S), = p(S*T) for T, S € L4 and denote the induced norm on L4 by || - [|,. We

now present the convergence result as follows:

PROPOSITION 5.1. The Fourier series Y s m (1) of any T € L4 converges to T

in the || - || ,-norm.

PRroor. Let H be the Hilbert space completion of £4 with respect to the the
inner product (:,-),. For each v € G, let H., be the || - ||,-closure of the subspace

{M,U : U € Ly}. We first show that if 7, # 72, then H,, and H,, are orthogonal.
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Suppose U,V € Ly and 7,7, € G such that Y1 # 2. Then
(MU, My, V), = p(V* M_y, My U) = p(V* My, -3, U) = p(V*Uo My, ),

where Uy = M,,,_,,UM,,_., € Ly by Lemma 3.2. Now, using the fact that p preserves

7, and by applying (4.6), we have
p(V*U0M71—72) =po “O(V*UOM’Yl—’Yz) = p(V*UOﬂ'O(M’Yl—’Yz)) =0

since m(M,) = 0 if v # 0 by (4.5). Thus if v, # 2, H,, and H,, are orthogonal.
By Theorem 3.4, the linear space generated by M, U is operator norm dense in L4.
And for T € Ly, T2 = (T,T), = p(T*T) < [|pllIT*T|| = |IT||*>- So the subspace
generated by the M,U’s is || - || ,-dense in £4. Thus the ,’s span a dense subspace of
‘H. Hence, ‘H can be decomposed into orthogonal subspaces H,’s. For every v € @,
let P, : H — M, be the orthogonal projection. We show that for T € L4, P,(T) is
precisely 7, (7). For this purpose, we make the following claims.
Claim 1. If T € L4, then = (T) = lim, ﬁ S, (=2,7)R_;TR,dx :
Suppose T' = M., U for a fixed vy € Gand U € L. Then using the definition of m,

given at the beginning of §4, along with the invariance of U and (4.5), we have
m(T) = [ (~0.7)0,(00) dg = [ (=07)Ro00, V)R dg
= /C_;(-g,v)(g,%)M%U dg = (/G(g, Yo — ) dg) M, U

MU ify =10

0 ify # 7
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~tim i [ @) de MU (by (44)

) 1
= hgn N(H,) / (_x77)[(x’70)M70U] dz

= lim ! /(—x,'y)[R_x(M,mU)Rz]dx (by Lemma 3.1)

=1 —z,v)R_;TR, dx .
ST /Ha( 7)

So the formula holds for T'= " | M., U; and hence for all T € L 4.
Claim 2. If T € L4, then 7, (T) = M,m(M_,T):

By Claim 1 we have

. 1
m,(T) = hén G

/ (—z,7)R_,TR, dx

@

1
=M lim—/ —z, 7y M_,R_,TR, dx)
v ( X J, M

1
= li —z(M_,T)R, L 1
M, <1;n L) /a R_(M_,T)R dx) (by Lemma 3.1)

(5.1)

= M,YTI'()(M_,YT).

Claim 3. =, is an idempotent linear transformation of £4 onto {M,U| U € Lo}:

Let T € L£4. Then by applying Claim 2, we have
(my 0 ) (T) = 0y (Mymo(M_,T)) = Mymy(M_ Mymo(M_,T))

= Mym(m(M_T)) = Mym(M_yT) = m(T)
by the idempotence of m. Hence m, is idempotent.

Continuing the proof, for T € L4, we have

Iy (T = ol (T)]*m,(T)) = p((mo( My T)]* My Mymo(M_,T))  (by Claim 2)



5. FOURIER SERIES ON L4 76
= p([m(M_T)|*m(M_,T)) < p[m(T*M,M_,T)] (by Proposition 4.7(ii))

= plm(T*T)] = p(T*T) = ||T2,

which shows that ||m,||, < 1. Hence, by continuity, there is a unique extension 7, of
7, of % onto H. which is also idempotent. So, &, = P,.
Now, for every S € H, the finite sum 3 P,(5) converges to S in the [|-|| ,-norm.

In particular, for T € L4, 3, 5 m(T") converges to T in the || - ||,-norm. O

For T € L4, v € G, we define T(y) to be the operator m,(T) and call it the

Fourier transform of the operator 7. Note that T is bounded since for every vy € @,

~ 1 1
T(v glimsup——-/ —z,7)R_;TR,; dleimsup——/ T\ dz = ||T||.
TN < imsup gz | (= TRl do = limsup 3y | [T = 7]

In the following, we prove that the Fourier transform takes operator multiplication

into convolution. Note that this is an analogue of Proposition 3.1 in Chapter 3.

PROPOSITION 5.2. Let S, T € L4 and~y, € G. Then the series > e §(’yo - fy)ff(fy)

converges to S/T(f)/o) in the || - || ,-norm.

Proor. We have

— . 1
ST (70) = 74 (ST) = lim NI /Ha(—x,’Yo)R_xSTRm dz

) 1
= llglm/Ha(—%’Yo)R—wS (Z W’Y(T)) R, dz (5.2)

'yeé

= Z (1%“ —(_llﬁI—J /Ha(‘"93,’Yo)[R-xSRxR_xm,(T)Rx] dm) .

vyeG
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By Claim 2 of Proposition 5.1 and Lemma 3.1,

R_ym,(T)Ry = R_o(M,m(M_,T) Ry = R_y M, Ry(m(M_,T))

= (z,7)Mym(M_,T) = (z,7)m(T)

so that (5.2) becomes

Z <liyﬁ/fh(—w,%)&x5m(x, ¥)m, (T) dz)

Ye

= Z (liénﬂ}{:j /Ha(—x,% —Y)R_zSR, dz) m(T) (5.4)

Hence the proof is complete. O

Let G be a locally compact abelian group and H,’s as in Lemma 4.2. Let T € L4
and p a finite Borel measure on the H,’s. For each f € B, we define the convolution
u* T by the integral

lim [ R,TR_,du(t). (5.5)

« H,

Note that p * T is also almost periodic since R,TR_; is in L4 and L4 is operator
norm closed in £(B). Just as in §3 of Chapter 3, the Fourier transform defined takes
convolution g * T into /i - 7. Indeed, Proposition 3.4 of Chapter 3 holds for T € L4

with T replaced by G, using our definition of convolution in (5.5).
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