University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2002

An implementation of a dynamic negotiation model for
competitive and cooperative agents.

Osmand N. A. Christian
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Christian, Osmand N. A., "An implementation of a dynamic negotiation model for competitive and
cooperative agents." (2002). Electronic Theses and Dissertations. 1086.
https://scholar.uwindsor.ca/etd/1086

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1086?utm_source=scholar.uwindsor.ca%2Fetd%2F1086&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

@

UMI

An Implementation of a Dynamic Negotiation
Model for Competitive and Cooperative Agents

by
Osmand Christian

A Thesis
Submitted to the Faculty of Graduate Studies and Research
through School of Computer Science in Partial
Fulfillment of the Requirements for the Degree of
Master of Science at the
University of Windsor

Windsor, Ontario Canada
2002

i~

National Library
of Canada

uisitions and
Bibliographic Services

395 Wellingion Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et

services bibliographiques
395, rue Wellington

Ottawa ON K1A ON4

Canadis Canads
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant i la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

maybeprinteflorotherwise de celleci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-77209-8

(7"(

972

<7
S

Osmand Christian
©All Rights Reserved

Abstract

Agent technology evolved from number of disciplines such as object technology,
distributed computing and artificial intelligence. Agents are supposed to autonomously
engage in several types of dialogues to attain their design objectives. With the emergence
of highly dynamic and uncertain e-commerce, there is currently a growing interest to
develop negotiating software agents that can engage in buying and selling in a virtual
marketplace. In this thesis report we propose a framework for automated dynamic
negotiation among competitive and cooperative software agents. These agents are
facilitated with BDI model of agency capabilities to accomplish dynamic negotiation.
They make use of Case Based Reasoning techniques to learn from their previous
experiences over a period of time. This framework also uses Ontology to equip agents
with domain specific knowledge for reasoning purposes during dynamic negotiation. Our

proposed framework suggests that it is possible to build software agents, which model
limited aspects of dynamic negotiation.

iv

To my Parents Arokiam Christian and late John Christian

Acknowledgements

[am thankful to my advisor Dr. Walid S. Saba for introducing me to intelligent agents,
for his guidance and advices. I specially thank my committee members Dr. Alioune
Ngom, Dr. Diana Kao and Dr. Xiaobu Yuan for their suggestions and supports. [also
thank my brother Betram Christian, my friends Mr. Pratap Sathi, Mr. Nantha Kumar, Ms.
Prafulla Kashireddy, Mrs. Hong Guan, Mr. Sanjay Chitte, Mr. Kannan Achan and all

other friends who supported me in so many ways during my study period at the

University of Windsor.

Contents

Abstract
Acknowledgements
List of Tables
List of Figures
1 Introduction
I.1 Software Agents in Electronic Commerce
1.2 Principle of Automated Dynamic Negotiation
1.3 The Problem Domain
1.3.1 Problems in e-commerce negotiation
1.3.2 Thesis Contribution
1.4 Outline of the Proposed Model
1.5 Structure of the Thesis
2 An Overview of Existing Negotiation Models
2.1 KASBAH
2.2 Negotiating with experience
2.3 MAGALE - Multi-Agent Architecture for Adaptive
Leamning Environment
2.4 Negotiation Model for Multiple Transaction Factors
and Learning in E- commerce
2.5 Agent Negotiation in a virtual marketplace
2.6 Negotiating with an attitude in a virtual marketplace
2.7 Computational model for online agent negotiation
2.8 Agent Negotiation as Fuzzy Constraint Processing
29 Belief-Desire-Intention model of agency
3

Dynamic Negotiation for Competitive and Cooperative Agents

3.1 Negotiation Protocol
3.2 Negotiation Issues
33 Decision Making Model
3.4 Overview of the Framework
3.4.1 Basic components of the Framework
3.4.2 Overview of the dynamic negotiation process
3.5 Definitions used in Dynamic Negotiation Model for
Competitive and Cooperative Agents
3.5.1 Agent’s Attitude
3.5.2 Public Price Range
3.5.3 Supply Demand Ratio

iv

B,

N ONWn A RN

(-

11

13
14
15
17
19
20

23

24
24
24
25
25
26

31
31
31
31

3.6
3.7

3.8

3.9

3.5.4 Negotiation
3.5.5 Agent Experience
3.5.6 Agent’s Price Range
Dynamic Negotiation Process in detail
Competitiveness and Cooperativeness of
Dynamically Negotiating Agents
Learning from Experience in the framework
3.8.1 Matching Cases
3.8.1.1 Product similarity
3.8.1.1.1 Price Similarity
3.8.1.1.2 Conceptual Similarity
3.8.1.2 Attitude Similarity
3.8.1.3 Public Price Range
3.8.2 Adjusting Attitude
3.8.3 Bid Increment
3.8.4 Saving Experience For Future Use
3.8.4.1 Negotiation similarity
3.8.4.2 Updating Case Base
Conclusion

Design and Implementation Details

4.1
4.2
4.3

4.4

4.5
4.6
4.7
4.8
4.9

4.10

E-Commerce Environment
Object Diagram of the Framework
Creating Agents and Clones
4.3.1 Creating an Agent
4.3.1.1 Retrieving Similar Products from Ontology
4.3.1.2 Retrieving Relevant Experience
4.3.1.2.1 Representing Cases (Experience)

4.3.1.2.2 Choosing Best Relevant Experience
4.3.2Creating Clones

Disposing Agents and Clones
4.4.1 Disposal of an Agent

4.4.1.1 Updating a Relevant Experience
4.4.2 Disposal of Clones
Implementing Functionalities of the EnvironmentWatcher
Implementing Functionalities of the BuyerSellerList
Implementing Functionalities of the Ontology
Implementing Functionalities of the Case Base
Implementing the Functionalities of the Agents
49.1 Buyer Agent
4.9.2 Seller Agent
4.9.3 Buyer Clones
494 Seller Clones
Challenges in Implementation

32
32
32
33

35
35
36
36
37
37
38
38
38
40
40
41
41
42

43
43

45
45
46
47
48
48
48
49
49
49
49
50
50
51
51
52
52
53
54
54
54

Evaluation of the proposed Model

5.1 Behaviour of agents in the model

5.2 Experiments and results provided in 43
5.2.1 Experiments
5.2.2 Results

5.3 Need for Dynamic Negotiation

5.4 Scenarios considered for experiments
5.4.1 Scenarios with internal changes
5.4.2 Scenarios with external changes

5.5 Experiments and Results
5.5.1 Experiments testing internal changes
5.5.2 Experiments testing external changes

5.6 Computational issues

Conclusion and Future work
6.1 Future Work
Bibliography

Electronic Commerce

A.1 Concept of E-Commerce

A.2 Properties and Requirements of E-commerce transactions
A.3 Consumer Buying Behaviour
A4 Challenges in e-commerce

Agents

B.1 History of Software Agents
B.2 Definition of an Agent

B.3 Types of agents

B.4 Implementation of Agents

Automated Negotiation

C.1 Negotiation Theory
C.2 Parameters of Negotiation
C.2.1 Cardinality of the Negotiation
C.2.2 Agent Characteristics
C.2.3 Environment and Goods Characteristics
C.2.4 Event Parameters
C.2.5 Information Parameters
C.3 Negotiation Process
C.4 Challenges In E-Commerce Negotiation

Case Based Reasoning

BDI1 model of Agency

55

55
56
56
57
58
58
59
59
60
60
61
62

63
64
65
69

69
69
70
70

73

73
74
74
75

76

77
79
80
80
81
81
82
83
83

85
86

Results

F.1 Experiments when agents dynamically enter and leave
F.2 Experiment when external changes occur

Documented Code

VITA AUCTORIS

89
94

98
148

List of Tables

Table 4.1: Database tables representing the Conceptual hierarchy
Table 4.2: Table representing buyers’ experiences
Table F.1 Buyer Experiences in database

Table F.2 Seller Experiences in database

47
48
88
88

List of Figures

Figure 2.1: Price change in time for selling agents in Kasbah
Figure 2.2: Influence Diagram for the decision model in MAGALE
Figure 2.3: Effect of commitment level for buyer

Figure 2.4: Effect of commitment level for seller

Figure 3.1: Basic components in of the framework

Figure 3.2: Conceptual Similarity

Figure 4.1: Object Diagram for the framework

Figure 4.2: Object interactions in the framework

Figure 4.3: Ontology for Consumer Electronics

Figure B.1: Evolution of Intelligent Agents

12
16
17
25
37

45
46
73

Chapter 1

Introduction
1.1 Software Agents in Electronic Commerce

Agent based computing is a recent approach to problem solving in complex
heterogeneous systems. It has been attracting great deal of attention, especially among the
Artificial Intelligence (AI) community. The idea of software agents however evolved
from three main areas of computer science such as Artificial Intelligence, Object
Technology and Distributed Systems. Since the inception of agent technology,
researchers have been working on systems that could automatically perform human tasks.
Software agents by being autonomous, situated in an environment, proactive and reactive
with the ability to communicate among them, move from place to place, negotiate for
resources and to learn makes them a suitable software for accomplishing this task in a

dynamic environment [33].

Electronic Commerce, which takes place in a heterogeneous, distributed, and dynamic
environment is one of many areas where software agents are used!. As the world looks
for faster and more efficient ways of accommodating rapid and long-term solutions to
everyday commercial issues, especially in business transactions, electronic commerce
tends to be the best solution for number of ordinary people as well as multi-billion dollar
and multi-national corporations. This awareness among customers and corporations of

faster and efficient solution in commerce gave way to exponential growth of e-commerce

during the past seven years.

Most of the electronic purchases today are non-automated. They can only support non-
interactive buying and selling retail market or auction based systems. Although the
information on products and vendors are easily accessible and orders and payments are

dealt with electronically, humans are still involved in the loop at every stage of the

'See Appendix A for details on Electronic Commerce

University of Windsor 2002 1

buying process. Buyers are still responsible for collecting and interpreting information on
products, evaluating merchants, involving in negotiation process with merchants and
ultimately finishing the deal by providing purchase and payment information [28].
Furthermore, customers of today’s e-commerce are faced with problems of too much

information on products and frequent change of site content.

There are few applications available over the Internet to assist customers on ‘what to buy’
and ‘whom to buy the product from’ [28]. However, there are no applications available
yet that could perform ‘automated negotiation’ for customers in e-commerce. Buying and
selling agents can be used to eliminate most of the problems in today’s e-commerce.
These software agents can collect and filter product information, evaluate merchants
based on user’s preferences, negotiate in an uncertain buying-selling environment and
finally finish the deal for the user on his/her behalf and save time for the user [34]. In
research, there are few models attempted to simulate automated negotiation in buying and
selling environment. However, none of these models had taken into consideration of the
environment changes that could affect the on going negotiation process in the system. An
environment change that could affect the negotiation process for instance is supply and

demand ratio of a product for which agents are negotiating in the marketplace.
1.2 Principle of Automated Dynamic Negotiation

When faced with the need to reach agreements on a variety of issues, humans make use
of negotiation process. Similarly, automated negotiation can become a fundamental
operation for shopping agents in e-commerce. Negotiation is defined as the form of
decision-making where two or more parties jointly search a space of possible solutions
with the goal of reaching a consensus for their own benefits. Real world negotiations in
general accrue transaction costs and time that may be too much for both merchants and
consumers alike. A good automated negotiation can both save time and find better deals

in the complex and uncertain business environment [39].

University of Windsor 2002 2

Research area that merges negotiation with software-agents is the broad field of Multi
Agent System (MAS)’. MAS and Distributed Problem Solving (DPS) are part of
Distributed Artificial Intelligence (DAI). Early DAI work modeled negotiations as DPS
and assumed a high degree of joint cooperation among agents in order to achieve a
common goal. In MAS, there is no global control, no globally consistent knowledge, and
no globally shared goals. They are concerned with coordinating intelligent behaviour
within a collection of autonomous (possibly heterogeneous) intelligent agents. MAS
assume total self-interest and a high degree of competition among agents during
negotiations for limited resources [28]. The agents in a cooperative model, in general,
share at least one aspect of their goal. In contrast, agents in a competitive model hide
their goal from the opponents [37]. This competitive behaviour of MAS seems to best

suites our needs during negotiation in e-commerce environment.

There are two important theorems exists on negotiation, viz., Game theory and Epistemic
Logic®. Although various disciplines have proposed different theorems on negotiation, it
is clear that negotiation theory" covers a wide range of phenomena encompassing
different approaches such as Artificial Intelligence, Social Psychology, and Game theory
[29]. Negotiation research can be considered to deal with three broad topics [4],

1. Negotiation Protocol: set of rules, which govern the negotiation processes.
2. Negotiation Objects: range of issues over which agreements are to be reached.
3. Decision Making Model: Decision-making apparatus used to achieve

negotiation objectives.

However, the relative importance of these three topics may vary according to the

negotiation and environmental context.

? See Appendix B for details on MAS
3 See Appendix C for details on Game theory and Epistemic Logic
4 See Appendix C for details on Negotiation Theory

University of Windsor 2002 3

The minimum capabilities required for an automated negotiation process is to propose
some part of the agreement space as being acceptable and to respond to such a proposal
indicating whether it is acceptable. That is a proposer makes a proposal to the recipient
and in turn the recipient responds with feedback about the proposal in the form of critic
or a counter proposal. When electronic buying-selling agents are equipped with
negotiation tactics, reasoning capabilities and adaptability to uncertain environment
changes, they can negotiate without any human interaction at any virtual marketplace.
The autonomous, proactive and reactive nature of software agents makes them suitable
candidates for automated negotiation in dynamic and complex e-commerce transaction.
To be competitive in today’s e-commerce marketplace, buying and selling agents need to

act rationally and intelligently, taking into account of the environmental changes that

OCCuUrs in e-commerce environment.

1.3 The Problem Domain

1.3.1 Problems in e-commerce negotiation

Formalization of a negotiation process can be very complex as there are many protocols
and properties to be considered. The general properties desirable for negotiation
mechanism are computational efficiency, communication efficiency, distribution of
computation and individual rationality. The former three issues above pose major
software engineering challenges. Individual rationality however is more complex and

challenging as it depends on the following parameters [24]

1. Cardinality of negotiation (one to one, one to many and many to many)

2. Agent characteristics (role, knowledge, commitment)

3. Environment and goods characteristics (static or dynamic’®, private-public
value)

4. Event parameters (importance of time, schedules)

Information parameters (price quotes, transaction history (experience))

3 dynamicity of the environment itself

University of Windsor 2002 4

These parameters may vary from domain to domain and as a result, in most cases,
negotiation strategies and tactics are completely domain dependant. Besides the

challenges faced in negotiation mechanism, challenges in automating negotiation in e-

commerce includes [15]:

1. It is difficult to expect an automated negotiation process that reflects the real
world.

2. There is no negotiation based on diverse attributes.

3. There is no multi-negotiation that considers and is adapted to all counterparts

participating in negotiation process simultaneously

4, There is no personalized negotiation

In summary, involvement of many parameters makes automated negotiation a complex
process and there is no universally accepted negotiation technique. Some of the important
negotiation models for e-commerce in research include [S, 15, 30, 37, 38, 41, 42].
Especially, [37 and 38] presents a unique solution to automated negotiation in e-
commerce. Agents in this model takes into account of prior experiences of purchasing
similar products, domain specific information of products and attitude of buyers and
sellers during negotiation process. Although the above models present interesting
approaches towards solving the automated negotiation problem that exist in e-commerce
systems, none of them have considered the effect of dynamicity of the environment on

those negotiation processes they have presented.

1.3.2 Thesis Contribution
The thesis that we defend in this report is the following:

“It is possible to build dynamic negotiation for competitive and cooperative autonomous

agent systems with the limited aspects of negotiation using current software
technologies.”

University of Windsor 2002 S

This thesis proposes a framework for automated dynamic negotiation among competitive
and cooperative software agents in e-commerce environment. The agents in this
framework are equipped with Belief, Desire and Intention decision-making model for
dynamic negotiations. Moreover, the agents in this framework tend to learn from their
experience over a period of time. Learning from experience in these agents is modeled
using case based reasoning (CBR)’. This framework also uses Ontology to equip buyer

and seller software agents with domain specific knowledge for reasoning purposes during

negotiation.

1.4 Outline of the Proposed Model

The framework proposed in this thesis is a prototype of a virtual marketplace where
buying and selling agents autonomously engage in negotiation on behalf of their clients.
Although this negotiation framework shares several common features with number of
existing approaches to negotiation as in [21, 36, 37, 41], this framework uniquely

explores dynamic negotiation capabilities of agents when the environment change affects

the negotiation process itself.
The work in this thesis is original in the following respect:

“Agents make dynamic decisions during the negotiation based on BDI model of

agency to compensate the changes that occur in the uncertain e-commerce

environment”.

Analysis of this framework shows that this virtual marketplace prototype is a promising
step towards exploiting the advantages of automated dynamic negotiation in today’s

uncertain, dynamic e-commerce environment.

% See Appendix E for details on BDI model of agency
7 See Appendix D for details on CBR

University of Windsor 2002 6

1.5 Structure of the Thesis

The remainder of the thesis is structured as follows: In chapter 2, a review of related work
is discussed. In chapter 3, the process of negotiation and dynamic negotiation of this
framework is presented. Chapter 4 discusses the implementation details of the proposed
model. In chapter 5, evaluation of the proposed model is discussed. Chapter 6 discusses

the conclusion and future work.

University of Windsor 2002

Chapter 2
An Overview of Existing Negotiation Models

This chapter reviews some of the important related models and approaches that enable
automated negotiation in e-commerce. Automated negotiation has become a promising
area with the exponential growth of e-commerce during the past few years. Parameters
involved in negotiation and the high degree of uncertainty that exist in a virtual
marketplace pose many challenges when creating an e-commerce system. Researchers
have presented several e-commerce models, taking into account of number of negotiation

parameters and the dynamics of the e-commerce environment.

Current approaches suggested by researchers in automated negotiation for e-commerce
include KASBAH [5], Negotiating with experience [37], MAGALE [41], Negotiation
model for multiple transaction factors and learning in e-commerce [15], Experienced
agents with attitude in virtual marketplace [36], Negotiating with an attitude in a virtual
marketplace [38], Computational model for online agent negotiation [42] and Agent
negotiation as fuzzy constraint processing [17]. Surprisingly, none of these models pay
close attention to e-commerce environment changes, even when these changes may affect
the negotiation process of the participating agents. This chapter briefly reviews and
evaluates the above approaches and finally presents a dynamic decision making theorem
called BDI model of agency [21]. This BDI model of agency theorem is of high
importance in solving dynamic environment negotiation problems in an uncertain e-

commerce environment.

2.1 KASBAH

Kasbah is an electronic agent marketplace, born in MIT Media Laboratory. It is a Web-
based multi-agent classified ad system where users create buying and selling agents to
help transact products. Buying and selling agents in Kasbah negotiate to buy and sell

goods and services on behalf of their users. This e-commerce system has three major

University of Windsor 2002 8

components. They are Front-end, Back-end and Auxiliary components. Front-end is a
web interface that handles user interface, Back-end is the actual marketplace engine

where agents operate and interact with each other and the last component is the generator

of display files and notification for the user [5].

Negotiation strategies in this model are predetermined and a user is allowed to select a
negotiation strategy when he/she creates an agent. A buyer or a seller also defines the
goal of the respective agent by specifying desired price, lowest acceptable price and
desired date to buy or sell. There are three predetermined strategies in Kasbah. They are
anxious, cool-headed and greedy which are linear, quadratic and cubic decay functions

respectively as shown in figure 2.1 [30]:

Y

Price Price Price

Time Time Time
Figure 2.1: Price change in time for selling agents in Kasbah
(Left to right: anxious, cool-headed and greedy)

During the process of negotiation, if the opponent accepts the offer, the negotiation is
terminated. Otherwise, in case of seller agent, the agent would lower the price till it
reaches the lowest acceptable price by following a chosen negotiation strategy.
Intuitively, a buyer agent would work the opposite way till it reaches the maximum

acceptable price with a chosen negotiation strategy.

Kasbah was one of the first systems that tried to imitate real world negotiation using time,
money and various negotiation strategies. Although it was a novel start that was to
revolutionize business in the near future, it had its own drawbacks. Agents in Kasbah are
simple and there is no learning mechanism in the system. Furthermore, their decision
strategies are limited and decision selection is not autonomous. Moreover, only price

drives negotiation in Kasbah [15, 26]. Negotiation can be done over multiple parameters,

University of Windsor 2002 9

where agents can make concessions over one or more issues [4]. In summary, Kasbah
doesn’t support negotiation on multiple attributes, it doesn’t have autonomous negotiation

strategy and there is no learning mechanism in this system.

2.2 Negotiating with experience

This model uses Case-Based Reasoning techniques to develop negotiation strategies for
current situation. This experience based negotiation framework provides adaptive
negotiation strategies that can be generated dynamically and are context-sensitive.
Architecture of this system consists of three main parts. The first part is a Case-Based
Negotiator, which assists the user while negotiating with opponent agents. It matches
current negotiation scenario with previous successful negotiation cases and provides
appropriate counter-offers for the user based on the best-matched negotiation case.
Second part is a Case Browser that allows user to browse a previous negotiation case
repository using various queries and the third part is a Case Maintenance component that
allows negotiation experts to moderate, maintain and to update case repository [37]. The

agents in this model are rational and the negotiation process here is strictly monotonic.

A web-based used car-trading negotiation model is presented as an example in this
model. Initially, the case base system of this model is populated with number of cases
that are relevant to the product domain of the application. A user creates an agent in the
system by selecting the car, buy/sell information, budget, sex, age etc. Once the agent is
created, negotiation starts with the opponent agent. A concession match filter is used in
finding the best-matched case. This concession matcher tries to find matches between the
offer and counteroffer of the previous negotiation cases in case base and the offer and
counteroffer of the current negotiation. During a decision-making moment in the
negotiation process, the case base negotiator retrieves relevant cases from the case based
system with the help of concession filter and adapts strategy from the best-matched
negotiation case to generate an offer or counter-offer. If there is no match found in the

case base that is similar to present case, a predefined strategy is used [37].

University of Windsor 2002 10

This model presents a very interesting approach that tries to imitate the aspects of human
buying process. However, the work is limited tc only one particular domain (used car-
trading) and negotiation in this model is based on single attribute, namely price.
Moreover, the attitudes of the buyers and sellers are not taken into consideration. Attitude
of a user may include many factors. Some of the obvious factors are importance of time
(urgency), importance of price (price consciousness) and commitment of the user for the
given transaction. Attitude of the user plays a major role in transactions along with
experiences. The work is mostly concentrated on matching of cases using the concession
filter technique with less focus on and no consideration of actual proposal generation.

Also, learning from failure is not considered in this model.

2.3 MAGALE - Multi-Agent Architecture for Adaptive Learning
Environment

Marketplace for learning resources such as advice and tutoring are the main focus of this
model. A user who possesses knowledge or resources becomes seller and a user who
seeks help or advice becomes buyer in this marketplace. The agents in this system decide
how to increase or decrease price for resources based on their user’s preferences. Some of
the user’s preferences considered in this model are urgency of the user’s current work,
impotence of money to the user and the user’s risk behavior [41]. There is asynchronous
and synchronous information exchange in this system. Asynchronous information
includes web pages and FAQ entries where a buyer would pay to access a site to obtain
needed recourses. Synchronous information may include an online help session via chat,
telephone or collaboration environment, where real-time live contact is made between the
buyer and a seller. Synchronous information exchange needs negotiation since many
factors may play a role in dynamically determining the price of the service. How urgent
the buyer needs help and how busy the helpers in the system are some of the factors that

dynamically determine the price of the service.

University of Windsor 2002 11

The agents in MAGALE represent users. They maintain information about user’s goals,
preferences and knowledge. When user needs help, the user’s agent contacts a centralized
matchmaker who knows which users are online. These agents negotiate with each other
about the price and when a deal is made they inform their users. Agents make decisions
on behalf of their users to find a better deal. They involve in offer and counteroffer
iteratively based on users’ preferences. As the negotiation is iterative, it allows the
negotiating agents to change their preferences dynamically between each offer and
counteroffer. This creates a high degree of uncertainty in the marketplace. An influence

diagram is used to model uncertain variables and the decision making process of this

system as in figure 2.2.

@ey Importance @ Risk Attitude
Decision @onent’s ac@

<G>

Figure 2.2: Influence Diagram for the decision model in MAGALE [41]

An influence diagram with decision node representing the choices available to the user,
chance (circle) node carrying probabilistic information of the uncertainty in the
environment and opponent, and value (diamond) node representing utility, help find the
optimal solution for the problem. Moreover, influence diagram in this model helps agents

to predict the opponent’s reaction during negotiation process.

User’s preferences such as importance of money, urgency and risk behavior plays a major
role in the decision-making process in MAGALE. For instance, a risk-seeking agent will
try to counter propose an offer rather than accepting it. On the other hand, a risk-averse

University of Windsor 2002 12

agent will accept whatever minimum price is offered and refrain from counter proposing
in fear of losing the deal. The state of a negotiating agent in this system could be in any
of the following states: Accept, Reject or Counter propose [41].

Probabilistic influence diagram that helps model opponent agents to predict their
behavior during the negotiation process and the idea of user’s preferences used in
decision making are genuine in this model. However, the accuracy of the probabilistic
influence diagram, in terms of the utility users may receive, is still questionable. Besides,
the complexity of this process may be very expensive when there is large number of
participants involved. Moreover, this system doesn’t consider simultaneous negotiations

when multiple buyers and sellers are present in the system for the same resources.

2.4 Negotiation Model for Multiple Transaction Factors and Learning
in E-commerce

This model presents a flexible negotiation system for agent-based e-commerce systems.
Agents in this model negotiate with number of opponents simultaneously over several
attributes. Negotiation process takes place between CAs (Customer Agents) and SAs
(Seller Agents) in this model. They both negotiate to obtain a better deal on behalf of the
user’s goal. To enable CA to negotiate with more than one SA and vise versa, replicas of
CAs and SAs are created in this model. Each replica of a CA negotiates with a unique SA
replica and each replica of a SA negotiates with a unique CA replica. CA replicas and SA
replicas negotiate by passing offers and counteroffers to reach a deal in the system. The
replicas in this model learn by means of Black Board approach during negotiation. All
replicas of an agent notify their progress in negotiation to their parent agent (CA/SA).
Parent agents keep all their replica’s progress information in a Black Board. All replicas
of an agent have access to the progress information of other replicas of the same parent
agent, through their parent agent’s Black Board. This Black Board approach helps
replicas to learn and negotiate better in two ways. First, it enables replicas to compare and
analyze negotiation strategies of all the Sellers in the marketplace. Second, it enables

University of Windsor 2002 13

replicas to understand and analyze a negotiation trend of all the SAs in real time. Using
this knowledge, agents can come up with new negotiation strategies from time to time

and also it helps agents to select its own strategy safely and conveniently [15].

An ontology describes objects in a way that is semantically meaningful and non
ambiguous to software agents [15]. This system uses ontology to represent knowledge
and it is made open to both buyers and sellers to handle negotiation process. It means
both CAs and SAs in this system can easily add item-specific attributes and their
personalized values for those attributes. This makes it possible for agents to consider not
only price but also other attributes during their negotiation in this model. CAs and SAs
input rules for all the attributes they consider during negotiation. These rules are stored in
a history component of this model. Note that learning in this system takes place by means
of rule-based learning strategy. The rule-based knowledge from history is referred by
CAs and SAs during negotiation process so that the system becomes automated and

adaptable to any attributes considered during negotiation.

Creation of replicas (agent cloning) makes execution of tasks faster in this model.
However, in real time e-commerce negotiations where the negotiation attributes are very
dynamic and where agents tend to hide their information, the agents in this model would

fail to learn form opponent’s strategies.

2.5 Agent Negotiation in a virtual marketplace

Automated negotiation in dynamic environment is the main concern in this model. This
model consists of buyers and sellers, Ontology and a Case Base Reasoning system. It
presents a virtual market place with experienced based buying and selling negotiating
agents. Importance is stressed on the mental attitude of the user and in turn it reflects on
the automatically negotiating buying and selling agents in finding the price range for the
product. Mental attitude is comprised of importance of price, importance of time and

commitment of the user. Just as in real world negotiation how a buyer or a seller would

University of Windsor 2002 14

hide his/her mental attitude to get the best deal, these agents in this marketplace also hide
their information from opponent agents to find the best deal [36].

Each existing product in the virtual marketplace has a public price range in the ontology.
This is to equip the buying and selling agents with the domain specific information they
need for negotiation. Moreover, the Case Based Reasoning system holds the unique past
experiences in the form of negotiation records. A best matched past negotiation record
from the case based reasoning system is used to assist the negotiation in this model by
adjusting the actual attitude provided by a buyer or seller. An agent enters the market
place with a maximum and minimum price range, finds the seller and negotiates on
behalf of the user. Notably, agent’s attitude plays an important role in determining how a
negotiation will proceed in this model. Given an agent, it can be either in Done" or Done™
or in Done’ state representing, negotiation terminated successfully, agent failed to reach

an agreement or negotiation is in progress, respectively. Regardless of the outcome, the

results are saved as experiences in a case base for future use [36].

Mental attitude of the agent and the use of past negotiation experience makes this model a
unique e-commerce system. However, parameters that can be considered for mental
attitude may be numerous. Accordance with the parameters considered, the functions
used to arrive at the minimum-maximum price range should be given a thorough study to
bring this model into a real world e-commerce environment. Moreover, the change in the

e-commerce environment such as supply demand ratio change or public price range

change is not handled in this model.

2.6 Negotiating with an attitude in a virtual marketplace

The focus of this model is to create competitive and corporative negotiating agents in a
single mental state model. In a competitive dialogue type such as in negotiation between
buying and selling agents, participants have a fixed goal and a well-defined utility
function that is used to measure their progress towards achieving their goal. In a

cooperative dialogue type, where agents corporately decide on a course or courses of

University of Windsor 2002 15

action, participating agents have no fixed initial commitment to any potential course of
action. This model proves that regardless of the dialogue type, agent dialogues are a
function of participants’ mental state, i.e., the participants’ goals and attitude.

This virtual marketplace model assumes agent’s mental attitude as a tuple that contains
three attributes. They are importance of time, importance of price and commitment of a
user, which takes numerical values between intervals of zero and one. A model becomes
cooperative when all participants agree on at least one of these attributes. But a
competitive model does not assume any such constrain [37]. In fact, it hides its mental
attitude from the opponent agent to gain maximum utility. However, a competitive
model’s participants may agree on their mental attitude. For instance, if b is a buyer agent
with the mental attitude of <x1, x2, 1.0> and s is the seller agent with the mental attitude
of <x3, x4, 1.0>, they both are highly committed towards buying and selling the product

as their commitment level is 1.0.

In the above scenario, the negotiation process becomes more cooperative than
competitive because both the buyer and seller are highly committed to buying and selling
the product. This claim is mathematically proved in this model using the buyer and seller

agent’s maximum and minimum price range functions as follows:

APR b(PPR(product), (x1, x2, 1.0), SDR)
= [< pmin + (t)(pmax-pmin)/10 >, < pmax — (pmax)(p)(1-c)/10 + pmax(1-SDR)e >]
= [< pmin + (t)(pmax-pmin)/10 >, < pmax + pmax(1-SDR)e >]

| |t

lmin max lnew'max——-——->

Figure 2.3: Effect of commitment level for buyer

APR $(PPR(product), (x3, x4, 1.0), SDR)

University of Windsor 2002 16

= [< pmin + (pmin)(p)(1-c)/10 + pmin(1-SDR)e >, <pmax—(t)(pmax-pmin) / 10 >]
= [< pmin + pmin(1-SDR)e >, <pmax—(t)(pmax-pmin) / 10 >]

TC | I

e — o
new min| min

max

Figure 2.3: Effect of commitment level for seller

where APR is the Agent’s Price Range,

PPR is the public price range for a product,

pmin is the public minimum price for the product,

pmax is the public maximum price for the product,

C is the agent’s commitment to buy the product,

t is the agent’s importance of time,

p is the agent’s importance of price, and

SDR is the supply demand ratio in the market for the product.

As we can also see in the figures above, the more the agents agree on the commitment
attributes, the more buyer agent would increase the maximum price and the seller agent
decrease the minimum price. This can be interpreted as agents cooperating as this leads to

more successful deals [38]. Therefore, agents cooperate when hidden mental attitudes of
the agents agree in this model.

2.7 Computational model for online agent negotiation

The negotiation process of this model is based on the internal beliefs of the participating
agents. Unlike other proposed models, negotiation process is considered to be a
sequential decision-making process in this mode!. In every negotiation iteration (offer
and counter-offer), an agent checks the history of the negotiation process, updates its
beliefs about its opponents and then tries to maximize its expected payoff based on its

own subjective beliefs. Opponent agent’s action set is the basis for an agent’s belief in

University of Windsor 2002 17

this model. However, agents can be uncertain about what action their opponents might
take. Therefore uncertainty in this model is in the process of negotiation itself. This
model uses BDI model of agency to solved uncertainty in opponent agents action set.

Admittedly, the only observable action of an opponent in this system is the price offer
[(42].

The buyer and seller have their own reservation prices for a product in this model. In each
negotiation iteration, if the buyer’s offer is no less than the seller’s then the negotiation
ends. Otherwise the negotiation goes on to next iteration until the maximum time of the
agent to negotiate is reached. Uncertainty in the opponent agent’s next action is taken into
consideration when an agent updates its belief at the end of every iteration. The next offer
or a counter offer of an agent is based on which uncertainty of the opponent agent was
chosen after the last negotiation iteration. These uncertainties are based on the time left
for the agent to finish negotiation. In case of a buyer agent, its belief may be one of the
following [42]:

o the less the time left, the more buyer may believe that the seller will not change
the current offer.
e the buyer may not believe that the seller is offering a reasonable price.

o the less the time left, the more buyer may believe that the seller will decrease the

current offer.

One of the difficulties presented to a negotiation agent on the Internet is that it has little
information about its opponents. This is the main reason behind incorporating belief
mechanism in this model. This model shows that depending on different internal beliefs
an agent may behave differently, just like human beings. However, there is an obvious
problem attached to this model. Based on the belief selection, an agent may choose to be
hard on the opponent which could result in making no profit or it may be too easy on the
opponent and make less profit when making a deal. If this model could somehow

incorporate some trade-off mechanism to handle this problem, it could produce very
interesting results.

University of Windsor 2002 18

2.8 Agent Negotiation as Fuzzy Constraint Processing

A general framework for agent negotiation based on fuzzy constraint processing is
presented in [17]. As an example, a negotiation process between Police institution (CA)
and Badge makers (SA) are also presented in this paper. Negotiation in this example
considers issues like price, time of delivery and the quality of Badge. The attributes
involved in this negotiation may be clear or fuzzy. When a customer agent doesn’t have
an exact idea of the price he/she prefers or the quality he/she requires, the customer will
give an implicit requirement of “short delivery time”, “cheap price”, and “high quality”.
A user can input these fuzzy predicates, which are “short”, “cheap” and “high” in

numerical form to start the negotiation.

Agent negotiation is formulated as a Distributed Fuzzy Constrain Satisfaction Problem
(DFCSP) in this framework. Solution to a DFCSP is achieved by fining the consistent
solution that satisfies all constraints in DFCSP network. Solution to agent negotiation
problem is closely related to DFCSP, as agent negotiation also has to come up with a
mutually acceptable agreement among two or more agents with the fuzzy attributes in
mind. When modeling negotiation problem in DFCSP, the goal of the negotiation and the
utility function are represented as constraints. Moreover, the problem of agent negotiation
in this model is looked at as finding a consistent solution that satisfies all constraints with
maximum satisfaction between buyer and seller agents. Any negotiating agents usually
aim for the maximum profit. However, agents in DFCSP also need to find the consistent
solution with maximum satisfaction in all the fuzzy constraint attributes. This could
produce conflicting interests in finding the maximum profitable solution. Therefore,
negotiation strategy in this model is viewed as fuzzy constraint processing that resolves
conflict and generates optimal solution [17]. When there is a conflict during negotiation,

agents use concession relaxation or reconfiguration to find a solution.

This model incorporates three types of concession strategy to determine the offer and

counter offer to move the negotiation forward. They are:

University of Windsor 2002 19

e Fixed Concession Strategy: where the next offer is assigned by considering the
urgency of the negotiating agent

® Reaction Concession Strategy. where negotiation agent computes the next offer
based on the last offer and the one before of the opponent agent.

o Flexible Concession Strategy: where the negotiation agent computes the next

offer based on combination of Fixed Concession strategy and Reaction

Concession Strategy.

This is a very interesting approach that tries to model fuzzy requirements and fuzzy
preferences involved in negotiation into a Distributed Fuzzy Constraint Satisfaction
model. However, there is no learning provided to the buying and selling agents in this

system and the fuzzy constraints considered in the model are limited to just three
attributes.

2.9 Belief-Desire-Intention model of agency

Most of the conventional software applications are designed for static world. These
conventional software are assumed to work with perfect knowledge, meaning that they
have all the information they need to make their decisions. However, in the real world,
these systems are embedded in dynamic environments. Therefore, when it comes to real
world issues, they have only partial information available for them to make any decision
i.e., their access to dynamic information is limited. Moreover, the systems in existence

don’t have unlimited computational recourses [21].

Belief, Desire and Intension (BDI) decision-making model is interested in solving
dynamic and uncertain environment problems. BDI model has become the best-known
and best-studied model of practical reasoning agents. There are several successful
applications exist based on BDI model. Fault diagnosis system for space shuttle and

factory process control system are two examples where BDI model of agency is used [2].

University of Windsor 2002 20

Belief represents the knowledge of the world. Computationally, Believes are some way of
representing the state of the world. For example, belief in a BDI system could be a value
of a variable or tupples of a rational database. Hence, Belief represents information about
the world. Belief is needed because the world changes and we need to remember the past
events. The reason why we need to remember the past events is because if I want to get

somewhere for example, I need to know where I am right now in order to find out how I

can get there.

Desire, or more commonly, the Goal. Computationally, it may be a value of a variable or
a symbolic expression in some logic. The important point is that a Goal should represent
some desired end state. Conventional systems also have desired end state but they are
‘task oriented’ than goal oriented. This means the system cannot automatically recover
from failures. For example, the reason we recover from a missed train is because we
know where we are (through our believes) and we remember to where we want to go

(through our Goals). Task oriented conventional software would fail in this above
situation but BDI model would not.

Belief and desire enables to decide on a plan to achieve the goal. However, in a dynamic
environment, where there can be a change in the environment that could affect the
achievement of the goal, what should we do? Classical decision theory states that we
should always replan when there is a change in the environment. In contrast, the
conventional system goes on executing the tasks with no consideration to the changes in
the environment. There are problems associated with both the ideas. A system cannot
ignore the changes and execute the tasks in a dynamic environment nor it can replan for

every single change in the environment because of the limited resources.

The third component of the BDI model, Intention states that ‘the system needs to commit
to the plans and sub goals it adopts but it must also be capable of reconsidering these
adopted plans at appropriate (crucial) moments. Computationally, Intensions may be
simply be a set of executing threads in a process that can be appropriately interrupted

University of Windsor 2002 21

upon receiving feedback from the possibly changing world. For example a Flight
Scheduler agent which schedules arrival time of the flights on the runway in an airport
may have number of threads running for each flights. As the weather changes
(environment changes) the process should be appropriately interrupted so that the process
can replan and inform the respective flight to make sure that flight can still reach the
runway at the expected time [2].

A negotiation in a real world, either cooperatively or competitively, takes place in an
uncertain and dynamic environment. This BDI model of agency theory gives us a realistic

decision solution to such dynamic environment negotiation problems.

University of Windsor 2002 22

Chapter 3
Dynamic Negotiation for Competitive and Cooperative Agents

A framework for automated dynamic negotiation in e-commerce is presented in this
chapter. The software agents involved in this framework are both competitive and
cooperative. An agent’s mental attitude towards buying or selling a product, general price
range, buying-selling experience with similar product and supply-demand ratio are few

important parameters that determine how a negotiation should proceed in an e-commerce

environment.

In today’s e-commerce environment, buyer and seller agents can dynamically enter and
leave the marketplace with external knowledge® of a certain product. The agents that are
already negotiating for the same product in the system should somehow become aware of
any external change occurred for that product. Becoming aware of the changes that
happened inside’ or outside the system would affect the negotiation process of the agents
who are already negotiating for that product. Capturing and compensating for the changes
by changing the strategy of the agents who are already negotiating in the system is what

is considered as dynamic negotiation in this model.

A negotiation model, either it is static or it is dynamic, needs a negotiation protocol. A
negotiation model should know the issues over which the agreements are to be reached
and should also have a decision making model to reason during the negotiation process
[4]. The negotiation protocol and the negotiation objects considered in this framework are
same as in [37]. The decision making model in this framework however is more
sophisticated and handles dynamic events that happens inside and outside the e-

commerce environment by using the BDI model of agency principle.

¥ An external knowledge of a certain product can be of sudden price drop for a product due to war on
terrorism.

% An inside or internal change for instance is the supply demand ratio change due to agents entering and
leaving the marketplace.

University of Windsor 2002 23

As explained in Chapter 1, this research is concerned with dynamic negotiation model for

competitive and cooperative agents in an e-commerce system.

3.1 Negotiation Protocol

Agents negotiating for goods need to interact or communicate with each other in an e-
commerce marketplace. A negotiation protocol is required to handle the communication
safely and efficiently among these agents. Interactions between agents are modeled as
offers and counteroffers in this framework. Offers and counteroffers terminate when a
deal is made successfully or unsuccessfully between buyer and seller agents. A deal is
made successfully when buyer agent’s maximum price is grater than or equal to seller

agent’s offered minimum price. An unsuccessful deal occurs when buyer’s maximum

falls short of seller’s minimum.

3.2 Negotiation Issues

Unlike many other proposed e-commerce models, [37] explores negotiation over multiple
issues. Negotiation issues considered in this framework include price, warranty, supply-
demand ratio and attitude of the user. Attitude of a user is composed of importance of
time, importance of price and commitment attributes representing urgency of the user,
importance of money and user’s level of commitment towards buying or selling the
product, respectively. Along with the importance of price and warranty, other factors
such as urgency and commitment also play a major role in negotiating for a product.
Among many other factors that could affect the negotiation, dynamic and uncertain
factors like change in supply-demand ratio and general raise or fall in price range of a

product is also considered in this dynamic negotiation model.

3.3 Decision Making Model

Previous similar buying-selling experiences, market conditions, general price range of a
product, user’s mental attitude and what maximum or minimum a user is willing go are
taken into consideration when deciding an agent’s maximum-minimum price range.

Moreover, the decision-making model we employ in this framework takes into account of

University of Windsor 2002 24

the dynamic changes that affects the negotiation process. We follow the idea of BDI
model of agency to accomplish this dynamic decision making task in our system.
Intention mechanism of the BDI model is used to re plan (re compute the maximum and
minimum price of an agent) when there is a change inside or outside the system so that

the agents will be competitive in the marketplace.

3.4 Overview of the Framework

The interaction between agents in this e-commerce model is many to many; one buyer
may simultaneously negotiate with as many sellers and one seller may simultaneously
negotiate with as many buyers in the marketplace for a product. Buying and selling
agents dynamically negotiate on behalf of their users in this model. This section briefly

discusses the basic components and negotiation process of this dynamic model.

3.4.1 Basic components of the Framework
This framework consists of list of buyers and sellers (list of Buyeers&Sellers), Ontology
and a Case Base Reasoning system. List of Buyers&Sellers helps buyer or seller agents

to find their opponents. It also enables the system to dynamically find the supply demand

ratio for any product in the market.

List of Buyers&Sellers -_.-_,-..,- Users

Buyer | Seller

Clone Clone
—>

Buyer Seller

Clone |« »{ Clone

= T

Figure 3.1: Basic components in of the framework

University of Windsor 2002 25

Each buyer and seller agent in this system has a unique name to identify each other
during the negotiation process. Ontology provides the domain specific knowledge of a
product in the market. Both buyer and seller have access to this domain specific
information of products that are available in the marketplace. Case based reasoning
technique is used in this model to learn from past negotiation experiences and to use them
in current negotiation situation. Buyers and sellers are given access to their past

negotiation experiences to learn and to reuse those experiences. Figure 3.1 shows the high

level view of this framework.

3.4.2 Overview of the dynamic negotiation process

Negotiation process starts when a user creates a buyer or a seller agent in the
marketplace. This agent enters the marketplace with user’s mental attitude, his/her
maximum and minimum price range and the expected or givable warranty. Once the
agent enters the marketplace, it gets registered with the list of Buyers&Sellers. All the
agents in the marketplace are maintained dynamically'® in the list of Buyers&Sellers. It is
buyers who initiate the negotiation with sellers in this framework. To maintain low level

of complexity, the scenario where a seller initiates the negotiation is avoided in this

framework.

An overview of this process, where a buyer is entering the marketplace is described

bellow:

e A buyer creates buyer agent b with attitude, warranty and max-min price

¢ b enters the marketplace and registers in list of Buyers&Sellers

e b retrieves the publicly available price range from the Ontology for the product in
question

e Then b retrieves the relevant experience from the case base reasoning system

1% Agents may enter and leave the marketplace at anytime and up-to-date information should be maintained
in the buyer-seller list to find the supply demand ratio at any point in time.

University of Windsor 2002 26

e Based on its attitude, public price range, supply-demand ratio from list of
Buyers&Sellers, and the relevant experience, b computes its own price range as a
complex function (will be discussed in the following sections)

e If the actual buyer’s maximum is less than b’s calculated maximum, then actual
buyer’s maximum becomes b’s maximum

o b gets the list of sellers who are selling the same product in the marketplace

e For each relevant sellers, b creates a buyer clone be and sends a message to the
seller requesting for negotiation

e Seller creates a seller clone sc for the respective be

e Negotiation starts between each pair of be and sc

e bc starts bidding with the minimum price and the sc starts counteroffer with its
maximum price (here the agents price range are hidden)

e A deal is reached when the be’s maximum reaches s¢’s minimum

e No deal is made if the be’s maximum is less than the s¢’s minimum

¢ Now both the sellers and buyers experiences are saved to the case base for future

use.

The process we described above becomes more complicated for buyers and sellers who
are already negotiating in a dynamic marketplace. As the buyer agent (above) enters the
marketplace, demand for the product increases. At this point in time, only the last buyer
who just entered the marketplace knows the actual supply demand ratio for that product.
The agents who were already in the market would not have the correct information of the
product’s supply-demand ratio anymore. [37] doesn’t address this problem. In fact, it acts
like a task oriented conventional system by negotiating for the product with inaccurate
information without giving any consideration to the changes that occurred in the

environment. This may lead to a variety of problems.

In a scenario where a buyer agent enters the marketplace when there are other buyer and
seller agents already negotiating for the same product, the newly arrived buyer agent will
calculate the supply-demand ratio lower than the other buyer agents. In this situation, the

University of Windsor 2002 27

last entered buyer agent will calculate its maximum price slightly higher than the other
buyer agents''. Since the maximum price of the last buyer agent is higher, it has higher
probability of making a better deal than other buyer agents. One could imagine other
scenarios. For instance, when a seller agent enters the marketplace it may calculate the
minimum price it is willing to accept lower than the other seller agents. This may lead the

last entered seller agent to sell the product faster than other seller agents who are selling

the same product.

An e-commerce system can be affected by many other external factors. A company’s
reputation or the quality of the product may play a major role in the general price range of
a product. An external factor such as change in general price range of a product should be
appropriately validated in the system so that the agents can be competitive during the
negotiation process. Whenever there is a change for a product, internally or externally as
in supply-demand ratio or in general price range, the e-commerce system should notify

all the relevant participants in the system to avoid any inconsistencies among them.

An overview of the above process, as a buyer agent enters the marketplace when there are

other buyers and sellers already negotiating for the same product in that system is
described bellow:

e A buyer accesses the marketplace’s interface and provides the information to
create a buyer agent b with the product name, his/her attitude, warranty and
maximum and minimum price for the product

e Environment Watcher, the central controller of the system, asks the list of
Buyers&Sellers to create, register the agent and to return all the relevant buyers
and sellers who are in the market for the same product

e List of Buyers&Sellers registers the agent b in its list of buyers and sellers

e b retrieves the publicly available price range from the Ontology for the product in
question

! Provided that the attitudes of the other agents are similar and even if its not it is not fair for the last agent.

University of Windsor 2002 28

e Then b retrieves the relevant experience from the Case Base Reasoning system

e Based on its attitude, public price range, supply demand ratio and the relevant
experience, b computes its own price range as a complex function (will be
discussed in the following sections)

e If the actual buyer’s maximum is less than b’s calculated maximum, then actual
buyer’s maximum becomes b’s maximum

e List of buyers and sellers returns Environment Watcher with buyers and sellers
who are negotiating for the same product as b

¢ Environment Watcher sends the new supply-demand ratio to each buyer and seller
agents who are negotiating for the same product in the marketplace

e All the buyers and sellers who’s clones are still negotiating for the product
recalculate their price range and pass their new maximum and minimum price
range to their negotiating clones

e Clones continue to negotiate for the product without any interruption in the
negotiation process with the new maximum and minimum price range

e Now b gets the list of sellers who are selling the same product in the market

e For each relevant sellers, b creates a buyer clone be and sends a message to the
seller requesting for negotiation

e Each seller creates a seller clone sc for the respective be

e Negotiation starts between each pair of be and sc

e bc starts bidding with the minimum price and sc starts counteroffer with its
maximum price (here the agents price range are hidden)

e A deal is reached when the be’s maximum reaches s¢’s minimum

e No deal is made if the bc’s maximum is less than the s¢’s minimum

e Now both the sellers and buyers experiences are saved to the case base for future

use.

University of Windsor 2002 29

Moreover, when agents leave the market place, a similar procedure is followed to ensure
that all negotiating agents have the up-to-date information about the product’s supply-

demand ratio in the marketplace.

At any given time, an external factor such as public price range may change outside the e-
commerce system for a product. Any external changes that might potentially affect the
agents’ negotiation process should immediately be updated in the system so that the e-
commerce system will be consistent with the dynamic and uncertain real world. We
consider the change in general price range for a product as one of the external factors that
affects the agents’ negotiation process in this dynamic negotiation model. The following
process is executed when there is a change in general price range outside the e-commerce
system:
¢ Administrator of the system will notify the e-commerce environment that there is
a change in price range for product X through the Environment Watcher
e Environment Watcher will update the Ontology where the domain specific
information of the product X is kept
e Environment Watcher will ask the list of Buyers&Sellers to return all the relevant
buyers and sellers who are negotiating for the product X, if any, in the
marketplace
e List of Buyers&Sellers will return Environment Watcher with buyers and sellers
who are negotiating for the product X
e Environment Watcher will send the new minimum and maximum general price
range to each buyers and sellers who are negotiating for the product X
e All the buyers and sellers who’s clones are still negotiating for the product X will
recalculate their price range and pass their new maximum and minimum price
range to their negotiating clones
e Clones will continue to negotiate for the product without any interruption in the
negotiation process with the new maximum and minimum price range

The processes described above subsume the dynamic negotiation process in this model.

University of Windsor 2002 30

3.5 Definitions used in [37 & 43]

3.5.1 Agent’s Attitude
An agent’s attitude is a hidden mental state comprised of triple (IOTime, IOPrice,

Commit) representing the importance of time, the importance of price, and the

commitment level of an agent.

Urgency and commitment reflects the desperateness to purchase or sell the product.
Importance of Price determines the maximum a user can spend for the purchase. I[OTime,
[OPrice and Commit take on values in the open interval of [0, 1]. For instance,
An agent with attitude of (1.0, 0.2, 0.8) represents,

e Time is priority

e Price is not important

e Commitment level is rather high

Note that these agents’ mental attitude attributes are hidden from opponent agents.

3.5.2 Public Price Range (PPR)
All agents in the marketplace are assumed to have access to a product price range, which
is the general public price range for a product that can be obtained from the Ontology.
Ontology'? returns a public price range of min and max for the given product.

PPR (prod) = [pmin, pmax]

3.5.3 Supply Demand Ratio

Supply and Demand Ratio represents the number of buyers and sellers present in the

market during negotiation for certain product.

SDR =S|/ |B|

3.5.4 Negotiation

2 Ontology, as in [Saba & Sathi, 2001], is a hierarchy of concepts. It supplies the domain specific
knowledge for the agents.

University of Windsor 2002 3

Negotiation is a process of offers and counter offers that can be in any of the following

states,

DONE * : Negotiation completed Successfully
DONE - : Negotiation completed Unsuccessfully
DONE ° : Negotiation is still in progress

A negotiation record ({ (offer, counteroffer) }, DONE *) is an ordered list that contains,

offers and counteroffers and an outcome of the negotiation.

3.5.5 Agent Experience

A new agent experience results after every negotiation. In addition to the negotiation
record, an agent experience record contains information about the product, the agent’s
attitude, the public price range, the agent’s price range and the market condition (supply-

demand ratio). The following is an example of a buying agent experience.

PCat | PN | Warr| PPR | Price | Attitude | SDR NegRec Res

Helec j 36"TV 2 1200-2000 { 1500 | 1.0,0.2,0.8 2 1250/1800/1400/ 1

1600/1500/1500

The above experience represents a buyer agent’s experience in buying a 36” TV, when
the supply demand was 2 is to 1, the agent was highly committed to buying, the price was
not much of a factor, but time was crucial. Under those circumstances, the negotiation
was successfully completed after six exchanges of offers and counter offers. This

experience could be used in the future when buying similar products.

3.5.6 Agent’s Price Range (APR)
An agent’s price range is a function of agent’s attitude, public price range, supply

demand ratio, warranty and prior experiences.

APR ™" (PPR(product), (t,p,c), SDR, War.,, War.,,)
= [<pmin + (t)(pmax-pmin)/"¥ >,

< pmax — (pmax)(p)(1-c)/ ¥+ pmax(1-SDR)e + pmax(War,, - War.,)y>]

University of Windsor 2002 32

where, SDR - Supply Demand Ratio in the current market,
War,,, - Warranty in current situation,
War,,, - Warranty in experience,
pmin and pmax are minimum and maximum price from PPR, and

W, € and y are constraints which vary based on the domain.

seller

APR "~ (PPR(product), (t,p,c), SDR, War,,,, War.,)
= [< pmin + ((pmin)(p)(1-c)"¥') + pmin(1-SDR)e + pmin(War,- Warep)y >,
< pmax — (t)(pmax-pmin)/ ¥>]

3.6 Dynamic Negotiation Process in detail
A Buyer b with an attitude (bt, bp, bc) and a Seller s with an attitude (st, sp, sc) enter the
marketplace. Consequently,

e b computes its price range: [bprmax, bprmin] € APR™™ ([pmin, pmax], (bt, bp,
bc), SDR, Warr)

e s computes its price range: [SPrmax, SPrmin] € APR*'™ ([pmin, pmax], (st, sp, sc),
SDR, Warr)

e Buyers and Sellers who are already in the marketplace and negotiating for the
same product are notified of the change in the environment by the Environment
Watcher

e Agents which are already in the environment recalculate their price ranges with
the new SDR and pass the new minimum and maximum to their clones

e b hides its bprysx and starts its bidding with byig € bprmin

e s hides its sprmi and starts its bidding with Sig € SpPrmax

e With each successive offer and counteroffer, buyers and sellers update their

respective biddings as follows: byig € (byig + @) and Spia € (Sbia - B)

University of Windsor 2002 33

e o and B are the buyer’s step increment and the seller’s step decrement,
respectively. a and B are calculated using their similar buying or selling
experiences and present market conditions.

e A negotiation is always in one of the following states:

o DONE" if byig > Spia
o DONE' if bprmax < sprmin (these are hidden from each other)
o DONEO if (bbig < Sbid) A (bpl'max < sprmin)

Moreover, a buyer may concurrently negotiate with as many sellers and a seller may also
concurrently negotiate with as many buyers in the marketplace using their buyer and
seller clones. The best seller for a buyer would be the seller with lowest agreed price
among the successful negotiations. Similarly, the best buyer for a seller would be the
buyer with highest agreed price among the successful negotiations. When all the clones
of a buyer finish negotiation with their respective seller clones, buyer will request the best
seller to sell the product. However, a seller (seller’s clones) may not be done negotiating
with all other buyers in the marketplace. It is important for a seller agent to wait till it
finishes negotiation with all the buyers in the marketplace since there may be other

buyers who might be willing to pay a higher price for the product.

In a scenario where a seller agent is not done negotiating with all the buyers and yet a
buyer wants to buy the product, the seller agent will ask the buyer to wait. The buyer
however will query the best seller to sell the product again and again till he gets a result
of either ‘No Deal’ or ‘Done Deal’ from the seller. When the seller finishes negotiation
with all the buyers, it will select the best buyer to sell the product. Again, the seller may
give a wait note to any buyers who are asking it to sell the product, if none of those buyer
agents are best buyer for this seller. Otherwise, the seller will sell the product to the bes?

buyer, notify all the buyers with whom it had successful negotiations and then remove
itself from the marketplace.

University of Windsor 2002 34

There may be another situation where a seller may wait for the best buyer by giving wait
message to any other buyers who are requesting to buy the product. If that best buyer has
another seller, who is offering lower price than this seller, it will finish the deal with the
other seller. Once the buyer finishes the deal, it will notify all the sellers, including
waiting seller that it doesn’t need the product anymore. At this point, the seller agent will
remove the best buyer and choose the next best buyer agent from successful negotiation
list. When the best buyer asks for the product again, seller will sell the product, notify all

the buyers with whom it had successful negotiations and remove itself from the

marketplace.

3.7 Competitiveness and Cooperativeness of Dynamically Negotiating
Agents

Dynamically negotiating agents in this model shares the same views and ideas described
in section 2.6. Our model creates dynamically negotiating agents with competitive and
cooperative settings in a single negotiating model. Buying and selling agents have
competing interests because they both want to gain more profit (refer to section 2.6). Yet,
they indirectly cooperate with each other when their hidden mental attitude agrees (refer

to section 2.6). In this sense, we have both competitive and cooperative dynamic

negotiation in our framework.

3.8 Learning from Experience in the framework

The agents in this model, as in [37, 38,43] learn from their experience over a period of
time and they reason accordingly during negotiation. Successful and unsuccessful
negotiations are stored in the case based reasoning system for future use since learning
can occur from both successful and failed negotiations. Specifically, prior experiences are
used to adjust agents’ attitudes slightly and calculate price ranges, bid increments and bid
decrements for offers and counteroffers of buyer and seller agents. A relevant negotiation
experience is found from the Case Based Reasoning system and it is used to slightly

adjust an agent’s mental attitude. The reason behind this process is to bias the agents

University of Windsor 2002 35

towards successful negotiations. However, the attitude adjustments are done within

certain range to ensure that the agents do not deviate from their needs and goals.

3.8.1 Matching Cases

When searching for a relevant case a perfect mach cannot be expected. Process of finding
a relevant case starts with finding all the experience records from the Case based
Reasoning system for a product. This may contain both successful and unsuccessful

negotiations. When searching for a relevant experience, cases are matched as follows:

Match (c;, cz) = 1/3 (PS(prod(c;),prod(c;)) + AS(att(c;).att(cy)) + RS(ppr(ci).ppr(cz)))
where PS: Product similarity,

AS: Attitude similarity,

RS: Public price range similarity and

c), C2: are present scenario and similar experience respectively,

The range similarity falls between [0, 1.0] intervals. The attributes to be matched include
product, attitude, and public price range of the product. The most relevant case to the

current scenario is the highest match found by the above function from the Case Based

Reasoning system for the product in question.

3.8.1.1 Product similarity

The product similarity consists of both conceptual similarity and price similarity. The
reason behind considering both price similarity and conceptual similarity can be
explained as follows:

“When buying a scanner, one might recall their experience of buying a printer. In this
case conceptual similarity seems to be sufficient. However, one may not recall buying a
computer monitor when buying a computer mouse, although they are conceptually

similar. Clearly, here the price range also plays an important role in finding the product
similarity.”

University of Windsor 2002 36

Therefore, similarity between two products can be a function of both price similarity and

conceptual similarity as follows.

ProductSimilarity PS (r1, pr2, prodl, prod2) = (PrS(prl, pr2)) * (CS(prodl,prod2))

where, PrS and CS are defined as follows

3.8.1.1.1 Price Similarity (PrS)
The following function is used to find the price similarity.

PriceSimilarity(prl, pr2) =| 1 - 225PF1=Pr2)
max(prl, pr20

Where Prl and Pr2 are the average price range for productl and product2 respectively.

3.8.1.1.2 Conceptual Similarity (CS)

The conceptual similarity for two products is measured from the Ontology. Agents in the
virtual market place have access to Ontology where the domain specific information of a
product is kept. Using the notion of semantic distance in a semantic network, the simple

measure of conceptual similarity between two products may be measured as follows:

ConceptualSimilarity CS(prod1,prod2)
=1 / (dist(prod1, lub(prod1, prod2))*0.5 + dist(prod2, lub(prod1, prod2))*0.5)

where ‘lub’ is the least upper bound of two concepts in the ontology and the distance
between two concepts, dist(C;, Cy), is the number of ‘isa’ links from C, to C;. For
instance, assume that a monitor and printer are Computer products as shown in figure 3.2

and the least upper bound between them is 1.

Computer
products

Figure 3.2: Conceptual Similarity

University of Windsor 2002 37

Then the distance from printer to Computer products is 1 and the distance from monitor

to Computer products is also 1. Conceptual similarity between these two products are

computed as follows:

CS (monitor, printer)

=1/(dist(printer, lub(printer, monitor)) * 0.5 + (dist(monitor, lub (printer, monitor)) * 0.5)
= | / (dist (printer, Computer products) * 0.5 + dist (monitor, Computer products) * 0.5)
=1/(1*0.5)+(*0.5)

=] (that the is printer and the monitor are very similar conceptually)

3.8.1.2 Attitude Similarity
Attitude of a buyer or a seller defines the buying or selling behavior of an agent. The
similarity between the attitudes of two agents is computed as follows:

AS (<t1,p1,e1>,< t2,p2,62>) = ((1 - |ty - to)+(1 - | pr - p2D+(1 - | e1-€e2)) / 3

where <t;,p1,¢1>,< tp,p2,¢2> are attitudes of agentl and agent2 respectively.

3.8.1.3 Public Price Range (RS)
Computing RangeSimilarity is important in matching cases as price range is a very
important attribute in purchasing decisions. The similarity between two public price

ranges is computed as follows:

RS([min 1, max 1],{min 2, max 2]) = (1 _ 8bs(min1—min2))(1 _ abs(max1-max2))
max(min 1, min 2) max(max | + max 2)

where minl and max1 are the public price range of product]l and min2 and max2 are the

public price range of product2.

3.8.2 Adjusting Attitude

The attitude of an agent is adjusted based on previous experience. The experience we use
here is the best-matched case received from the function in section 3.8.1. Finding optimal
attitude is an important part of the learning process, as it leads to more successful

negotiations. While calculating optimal attitude for a given situation, agents should not

University of Windsor 2002 38

deviate completely from their clients needs. Following function is used to adjust the

attitude of a buyer agent using both successful and unsuccessful exp%riences for a

negotiation:

In case of using a successful experience, Importance of Time in current situation (tcur)

could be adjusted as,
tcur = texp if outcome(Neg) = DONE™* & abs(texp— tcur) < 0.1
teur = teur + 0.1 if outcome(Neg) = DONE+ & texp > tcur
tcur = teur — 0.1 if outcome(Neg) = DONE* & texp < tcur

where texp is the Importance of Time attributes in the best relevant experience.

Similarly, the Importance of Price in current situation (pc.r) could be adjusted as,

Peur = Pexp if outcome(Neg) = DONE™* & abs(pexp — Peur) < 0.1
Peur = Peur- 0.1 if outcome(Neg) = DONE* & pexp < Peur
Peur=Peur+0.1 if outcome(Neg) = DONE* & Pexp > Peur

where pexp is the Importance of Price attributes in the best relevant experience.

Similarly, commitment could also be adjusted based on previous experience. It can be
observed from the above functions that a threshold of 0.1 bounds the difference between

adjusted attitude and initial attitude. This is to control the agents from deviating from
their clients’ goals.

In case of using a negative experience the Importance of Time in current situation could

be adjusted as,
tcur = tcur + 0.1 if outcome(Neg) = DONE ~ & texp > tcur

Similarly, Importance of Price in current situation could be adjusted as,
Peur= Peur— 0.1 if outcome (Neg) = DONE ~ & pexp < Peur

In contrast to what we observed in using successful experience, the agents tend to behave

completely different in using negative experiences.

University of Windsor 2002 39

Therefore, agents in our model adjust their attitude to find an optimal attitude using

previous experiences. Then they calculate their price range to reflect the experience and

their adjusted attitude.

3.8.3 Bid Increment

The following function was suggested to calculate bid increments.

BidIncrement(Att',APR) = <APR max; APRmin . *(t'(APR H;ZX: 1;\PR min))>
P

where Att’ is the adjusted attitude of an agent, p’ = 0.1, if p’ = 0.0 and APR = [APRuin,
APR,]

This function assumes an average of 20% increment and it also takes into account of
Importance of time and Importance of Price while calculating the bid increments. After
calculating the bid increment, the value is added to the AprMin and sent as proposal to
the opponent in case of a buyer. Intuitively, it works opposite for a seller. They continue

negotiation until buyer’s proposal matches or exceeds the seller’s AprMin.

3.8.4 Saving Experience For Future Use
Agents save their experience from time to time for future use. When a negotiation
terminates, a search is done in the case base and a new experience is matched with the

one in the Case Base. When searching for updating or adding a new experience, a match

between two cases is done as follows:

1 (w1*PS(prod(cl), prod(c2)) + w2 * AS(att(cl), att(c2))+)

Match(cl,c2)=—
4| w3*RS(ppr(cl), ppr{c2)) + w4* NS(neg(cl),neg(c2))

where NS is Negotiation Similarity, AS is Aftitude Similarity, RS is Price Range
Similarity, and PS is Product Similarity.

University of Windsor 2002 40

3.8.4.1 Negotiation similarity
Negotiation similarity is measured in terms of number of offer exchanges and negotiation
result. Number of exchanges can be looked as the time taken for the negotiation. Equal

priority is given to both result of the negotiation and number of exchanges occurred in

calculating negotiation similarity.

NS((L1,outcomel),{L2,outcome2))

1 -((abs(N1-N2)/max(Ni,N2))*0.5+0.5) if outcomel < outcome2
1 —abs(N1- N2)/max(N1,N2) otherwise

where L1 and L2 are the list of offers and counter offers, N1 and N2 are the number of
exchanges in Negotiationl and Negotiation2 respectively. The above function assigns a

weight of 0.5 to outcome and number of offer exchanges, there by it adds 0.5 if the

outcome is not the same.

3.8.4.2 Updating Case Base

Efficiency of the system depends on how the agent experiences are stored in the case base
system. One has to be careful in storing new cases, so that case base is not populated
exponentially. Method of storage should take into consideration both conceptual and
computational gain. Conceptual gain is when the agents refine their memory by adding
new cases to what they already know. Computational gain is that the system would be

faster as the retrieval of cases is reduced.

When matching new experience with the old ones in the Case Base, if a strong match is
not found then the new experience is saved as a novel experience in the Case Based

system. Otherwise, new experience is merged with the strong matched old experience as

follows:

Merge(<pl,pnl,pprl,wrl,prl,attl, sdrl,negl>,< p2,pn2,ppr2,wr2,pr2,att2,sdr2,neg2>)

University of Windsor 2002 41

_ lub(pl, p2), (pnl = pn2),avg(wrl, wr2),(pprl = ppr2),
avg(prl, pr2), avg(attl, att2), avg(sdrl,sdr2) min(negl, neg2)

Merging of two cases occurs only when both products are same and the price range is
similar. When merging, price average, attitude and supply demand ratio of the two cases
are computed. Negotiation that took the minimum offer exchanges is also selected. Then

the above attributes are replaced in the old case to refine the old experience.

3.9 Conclusion

In this chapter, we proposed a framework for automated dynamic negotiation in e-
commerce based on the principle of BDI model of agency. The buying and selling agents
in this framework as in [37] autonomously negotiate on behalf of their clients with a
given mental attitude and previous similar negotiating experiences. Furthermore, we
presented the effect of dynamicity inside and outside the marketplace that could affect the
negotiation process of the buying and selling agents in an e-commerce environment and

illustrated how to handle this problem with the use of a decision making model, BDI

model of agency.

The agents in this framework are goal oriented and they negotiate competitively and
cooperatively for their own benefits [36, 38]. Buyer and seller agents in this framework
negotiate simultaneously with as many opponents in the marketplace to find the best deal
among all participants. The framework proposed in this chapter attempts to model the
human negotiating behavior into buying and selling agents in an e-commerce

environment even when there are uncertainties in the marketplace.

University of Windsor 2002 42

Chapter 4

Design and Implementation Details

The model discussed in the previous Chapter attempts to automate dynamic negotiation
in an e-commerce system. This Chapter presents design and implementation details of the
ideas discussed in the last Chapter. The framework is implemented in Java programming

language with approximately three thousand lines.

4.1 E-Commerce Environment

The e-commerce environment consists of the following parts:
¢ an Environment Watcher which acts as the controller of the system
e list of Buyers&sellers who are currently in the marketplace
¢ Ontology with the domain specific information on products and

¢ Case Based Reasoning System with prior buying-selling experiences

A buyer or a seller provides the following information to create an agent in the system:
¢ name for the agent
e name of the product
e type of the agent (buyer or seller)
¢ attitude towards buying or selling the product
e warranty expected (buyer) or provided (seller)

¢ maximum and minimum price range he/she is willing to go

Users create agents at their own will and send them to the marketplace for negotiation.
Creation or disposal of an agent is always carried out through the Environment Watcher
in this dynamic e-commerce system. Environment Watcher is also responsible for
notifying negotiating agents of any changes that occurs inside or outside the marketplace.
The list of Buyers&Sellers keeps the up-to-date references of all the buying and selling
agents. Ontology is made public to all the agents to access the product domain-specific

University of Windsor 2002 43

information. Case Based Reasoning system allows buyer agents to retrieve buyers’ prior

experiences and seller agents to retrieve sellers’ prior experiences separately.

4.2 Object Diagram of the Framework

' Environment Watcher
AN
List of Buyer&Sellers Agent
ActualAgent CloneAgent
| '
A
1 |
SellerAgent BuyerAgent
C g! 1
= Qatolo ‘ SellerClone BuyerClone

Figure 4.1: Object Diagram for the framework

Major Objects in this model include EnvironmentWatcher, BuyerSellerList, Agent,
ActualAgent, CloneAgent, Case and Ontology. ActualAgent and CloneAgent are an

extension of type Agent. BuyerAgent and SellerAgent are an extension of ActualAgent

and BuyerClone and SellerClone are an extension of CloneAgent. Basically, all the

agents in this model are an extension of type Agent as shown in the Figure 4.1.

EnvironmentWatcher interacts with BuyerSellerList, BuyerAgent and SellerAgent in two

University of Windsor 2002

44

situations. One situation is when there is a need to create or dispose an agent and the
other is when there is a change in Public Price Range for a product. Furthermore,
ActualAgents interact with Case and Ontology to compute their respective maximum and
minimum prices. They also interact with EnvironmentWatcher when a deal is done
successfully or unsuccessfully in order to remove themselves from the marketplace.
BuyerAgents and SellerAgents interact with each other in order to buy or sell the product.
Interaction between BuyerAgents and their BuyerClones are mutual as there is exchange
of messages during the process of negotiation. SellerAgents also interact with their
SellerClones for the same reason. Moreover, there is a heavy interaction between the

BuyerClones and SellerClones when Clones they try to find the best deal in the

marketplace.

Environment Watcher
List of Buyers&Sellers
Buyer Agent | p| Seller Agent
Case Ontolo
Buyer Clone <€ > Seller Clone

Figure 4.2: Object interactions in the framework

4.3 Creating Agents and Clones

4.3.1 Creating an Agent

Agents in this model learn from prior experiences by adopting relevant experiences from
the Case Base System. They also use the domain specific information from Ontology

when calculating their maximum and minimum acceptable prices. Agents on creation

University of Windsor 2002 45

retrieve similar product information from the Ontology and they also retrieve relevant

experience from Case Based Reasoning System.

4.3.1.1 Retrieving Similar Products from Ontology
Ontology serves two purposes in this framework as mentioned in the previous Chapter.

e Agents retrieve public price range from the Ontology and

e When matching cases Ontology is used to match conceptual similarity of two

products

Domain specific knowledge assumed in this framework is very limited. In case of large-
scale implementations, one needs to supply vast amount of domain specific knowledge
for efficient results. This framework uses a very basic Ontology just for testing purposes.
The Ontology assumed in this model is represented in a database. There are two tables
representing the Ontology in this model. One is to retrieve the public price range and the
other is to capture the conceptual similarity between two products. For example, a

consumer electronics domain is represented conceptually as shown in figure 4.3.

Computer Household Home
Products Electronics Appliances
Monitor | Printer Mouse VCR | Camera | TV Fridge Stove

Figure 4.3: Ontology for Consumer Electronics

Conceptual similarity of two products ranges between intervals of <0.0, 1.0>. The
conceptual similarity between two products under the same concept takes the value of
1.0. For example, Monitor, Printer and Mouse are under the same concept, i.e. Computer
Products. Therefore, conceptual similarity of Monitor and Printer or Monitor and Mouse
will take the value of 1.0. When comparing Monitor and TV, the conceptual similarity

between them is 0.5 because Monitor and TV are under two different concepts and those

University of Windsor 2002 46

concepts are under the same concept, i.e. Consumer Electronics. The Ontology that is

assumed in figure 4.3 is represented in the form of database tables as shown in the table

bellow:
Prod Prod Min | Max Product Product Value
Category | Name | Price | Price Category 1 Category 2
CompProd | Monitor | 300 400 CompProd CompProd 1
CompProd | Printer | 200 | 350 | CompProd | HomeElec 0.5
CompProd | Mouse | 10 15 | CompProd | HomeAppl 0.5
HomeElec | Camera | 500 900 HomeElec CompProd 0.5
El HomeE]l 1

HomeElec | TV 300 | 500 HomeElec omerree

HomeElec | HomeAppl 0.5
HomeElec | VCR 100 200

HomeAppl CompProd 0.5
HomeAppl | Fridge | 500 750

| HomeAppl | HomeElec 0.5
HomeAppl | Stove 350 500

|_HomeAppl | HomeAppl 1

Table 4.1: Database tables representing the Conceptual hierarchy

The table on the left represents the public price range. Minimum and Maximum price of a
product is retrieved using the key ProdName. Table on the right represents the conceptual
similarity between products considered. Conceptual similarity value is retrieved using the
combination of ProductCategoryl and ProductCategory? as key.

4.3.1.2 Retrieving Relevant Experience

Buying and selling agents explore the Case Base on entry into the marketplace to retrieve
relevant experiences. As discussed in the previous Chapter, this framework uses Case
Base Reasoning techniques to learn from past experiences. Each cases in the Case Base
represents a unique experience. They contain specific problem situation, solution to

problem under that situation and result of applying that solution to problem in that

situation.

University of Windsor 2002 47

4.3.1.2.1 Representing Cases (Experience)

A buyer’s negotiation experience with the result of negotiation is represented in a

database table as follows:

Pcat
Pname | War | PPR Price | Attitude | SDR | NegRec Res

EleEnt | 36"TV | 2 1200-2000 | 1500 | 1.0,0.2,0.8 | 2 1250/1800/1400/1600/1500 | 1

CmpPro | Monitor | 1 200-300 260 05,0808 |05 200/310/220/290/260 0

Table 4.2: Table representing buyers’ experiences

Attribute NegRec in the above table represents the offers and counteroffers between the
buyer clone and the seller clone. Res attribute represents the outcome of the negotiation.

Result ‘1’ implies successful negotiation and ‘0’ implies unsuccessful negotiation.

4.3.1.2.2 Choosing Best Relevant Experience
The function presented in section 3.8.1 of chapter 3 is directly implemented to find the

relevant matching experience. We used a minimum threshold of 0.7 to choose the best

relevant case.

4.3.2 Creating Clones

A buyer agent is responsible for creating buyer clones and a seller agent is responsible for
creating seller clones. Initially, buyer agent creates a buyer clone for each seller present
in the market. When a buyer clone is created, it requests the corresponding seller for
negotiation. Seller agent in turn uses the buyer clone’s information to find who is the
buyer agent and then creates a seller clone for that buyer clone; finally, seller clone

returns its reference to the buyer clone for further communication during the negotiation.

Clones in this model propose and counter-propose to their opponent clones to find a
successful deal. On creation, a clone receives negotiable price range from its parent
agent. Using the function suggested in 3.8.3 in Chapter 3, clones calculate their bid

increment or decrement prices. Even though clones actually do the negotiation, clones’

University of Windsor 2002 48

parent agents make the final purchasing decision in this model. Although clones are

equipped with the negotiation strategies, parent agents of this model hold the final
decision making capabilities.

4.4 Disposing Agents and Clones
In order for the e-commerce system to be efficient and fast, all the agents and their clones

should be disposed once the negotiation process is successfully or unsuccessfully ended.

4.4.1 Disposal of an Agent

A buyer or seller agent’s disposal process starts when an agent requests the Environment
Watcher to remove itself from the marketplace and it ends when the Environment
Watcher removes the agent from the list of Buyers&Sellers. However, before an agent

requests the Environment Watcher to remove itself from the marketplace, it updates its

experience to the Case Base System.

4.4.1.1 Updating a Relevant Experience

[t is necessary to update the Case Base after each negotiation so that the experience could
be used in future endeavors of these agents. As discussed in section 3.8.4 of Chapter 3,
the new solution is evaluated and matched with the existing cases in Case Base. If the
new solution matches to a certain threshold with any existing cases in Case Base, then
that case in the Case Base is updated using the function presented in section 3.8.4.2 of

chapter 3. Otherwise the new solution is stored as a novel experience.

4.4.2 Disposal of Clones

Each clone’s negotiation with its opponent must end successfully or unsuccessfully.
When a negotiation is over, information to contact the opponent agent and information
regarding the negotiation process is passed to the parent agent. Parent agent saves the
clone’s negotiation information for future use and then disposes the corresponding clone.
During this process, parent agent checks for negotiating clones. If there are no more

clones negotiating for the product, parent agent finds the best buyer or seller out of all

University of Windsor 2002 49

successful negotiations to make the final deal. The procedures discussed so far subsume

the dynamic negotiation process of this framework.

4.5 Implementing Functionalities of the EnvironmentWatcher

The functionalities of the EnvironmentWatcher discussed in section 4.1 are implemented
in class EnvironmentWatcher. EnvironmentWatcher has methods AddBuyerSeller,
RemoveBuyerSeller and PublicPriceRangeChangeForProduct for registering an agent to
the environment, disposing an agent from the environment and changing the public price
range of a product in the Ontology. When AddBuyerSeller or RemoveBuyerSeller method
is invoked, it dynamically finds the supply-demand ratio and also the buyers and sellers
in the marketplace for the product in question using class BuyerSellerList. When there is
at least one buyer and seller negotiating for a product and when the change in supply-
demand ratio is higher than 0.1, AddBuyerSeller or RemoveBuyerSeller notifies all
buyers and sellers who are negotiating for that product about the change that occurred in
the marketplace. Method PublicPriceRangeChangeForProduct is invoked whenever the
public price range for a product changes. It uses the class BuyerSellerList to dynamically
find the buyers and sellers negotiating for a product. Then it updates the new public price

range in the Ontology and notifies all relevant agents about the change in public price

range.

4.6 Implementing Functionalities of the BuyerSellerList

The functionalities of the dynamic list of Buyers&Sellers are implemented in class
BuyerSellerList. BuyerSellerList has methods AddBuyerSeller, RemoveBuyerSeller and
WhoAreTheBuyersSellers for adding an agent, removing an agent and collecting the
references of all relevant'® agents from the list of Buyers&Sellers. Before adding an agent
to the list, AddBuyerSeller method checks to see if the agent name already exists in the
list. If it exists, it sends message ‘Name Exists’ to EnvironmentWatcher. Otherwise, the

agent is added to the list of Buyers&Sellers and references of all agents who are

13 Relevant agents’ references for the product in question.

University of Windsor 2002 50

negotiating for the same product is returned to the EnvironmentWatcher. Before
removing an agent from the list, RemoveBuyerSeller method checks to see if the agent
name exists in the list. If it exists, the agent is removed from the list of Buyers&Sellers.
Otherwise, it sends a ‘None’ message to EnvironmentWatcher. When method
WhoAreTheBuyersSellers is invoked, it returns references of all the agents who are

involved in buying and selling the same product to the EnvironmentWatcher.

4.7 Implementing Functionalities of the Ontology

The functionality of the Ontology discussed in section 4.3.1.1 is implemented in class
Ontology. Table ‘RANGE’ and ‘SIMVALUE’ in Oracle database represent Domain
Specific Knowledge and Conceptual Similarity, respectively. Public price range for a
product is retrieved from table ‘RANGE’ using GetProdDetails method. Method

ProductSimilarity in class Ontology is used to find the similarity between two products.
Connection to Oracle database is established with JDBC Bridge.

4.8 Implementing Functionalities of the Case Base

Agent experiences are modeled in two separate tables as discussed in section 4.3.1.2.1.
Table BUYEREXP in database represents buyers’ experiences and table SELLEREXP
represents sellers’ experiences. Cases in both tables are indexed based on their product
name. Class Case returns best relevant record from the Case Base for a given situation.
Method GetBestCase of class Case returns the best relevant experience record as a string.
It uses method ProductSimilarity to find the similar products from class Ontology.
Method AttitudeSimilarity and RangeSimilarity are used to find the similarity between
two attitudes and price ranges respectively. Method UpdateOrAddNegotiation compares
the similarity between the current case and the cases in the Case Base with the additional
similarity check, NegotiationSimilarity. If the match threshold is above 0.7 it updates the

exiting case. Otherwise it stores the case as new case as discussed in section 3.8.4 of
Chapter 3.

University of Windsor 2002 51

4.9 Implementing the Functionalities of the Agents

Class Agent is an abstract class that defines the most common characteristics and
functionalities of all the agents in the system (refer to figure 4.1). Although, all agents are
of type Agent, ActualAgent and CloneAgent differ substantially because of their
subclass’ functionalities. Therefore, two types of constructors are provided in class
Agent, one to create ActualAgent and the other to create CloneAgent. ActualAgent and
CloneAgent are also abstract classes since the common characteristics and functionalities
of BuyerAgent and SellerAgent, BuyerClone and SellerClone are implemented in
ActualAgent and CloneAgent, respectively. The relevant experiences for both

BuyerAgent and SellerAgent are retrieved and the mental attitudes are adjusted using the
method AdjustAttitude in ActualAgent.

4.9.1 Buyer Agent

Class BuyerAgent uses method FindMaxMinPrice to find the price range. When
EnvironmentWatcher notifies arrival of new seller agents in the marketplace and the
change in supply-demand ratio, Notify method invokes CreateClone method to create
new BuyerClones. Now CreateClone method sends message to the new SellerAgent and
receives a SellerClone reference for further negotiation. Method FindMaxMinPrice is
invoked at this point to recalculate the price range of the BuyerAgent. Once the new price
range is found, it is broadcasted to all the BuyerClones of this BuyerAgent. When
EnvironmentWatcher notifies change in public price range, another Notify method is
invoked in BuyerAgent. This Notify method in turn invokes FindMaxMinPrice again to
recalculate the price range. At this point, new price range gets broadcasted to all the
clones of this BuyerAgent. When all the clones of a BuyerAgent finish negotiation
successfully or unsuccessfully, method WantToBuy is invoked to contact the best seller
agent. Method WantToBuy finds the best seller by invoking SuccessfulDealByClone
method. If a SellerAgent is not done negotiating with all the BuyerAgents in the
marketplace, it will send a message ‘wait’ to any BuyerAgent requesting to buy the
product. When a ‘wait’ message is received in WantToBuy method of a BuyerAgent,

University of Windsor 2002 52

method WantToBuy invokes CallWait method. CallWait method in turn periodically
requests SellerAgent to sell the product. If the BuyerAgent looses a deal with its best
seller, method WantToBuy finds the next best seller by invoking method
SuccessfulDealByClone again. Otherwise, when BuyerAgent finds a deal with a
SellerAgent, method SetStringForUpdation is invoked to update the Case Base System.
Once the Case Base is updated, BuyerAgent will send a reject message to all the other
SellerAgents with whom it had successful negotiations and then it will send a message to

EnvironmentWatcher to be removed from the marketplace.

4.9.2 Seller Agent

Class SellerAgent uses method FindMaxMinPrice to find the price range. When
BuyerClone requests for negotiation, SetBuyerClone method in SellerAgent is invoked to
create a new SellerClone. Method SetBuyerClone also saves the reference of the
BuyerClone and returns newly created SellerClone’s reference to the BuyerClone. When
EnvironmentWatcher notifies arrival of new agents in the marketplace with the new
supply-demand ratio or the change in public price range, Notify method of a SellerAgent
invokes FindMaxMinPrice again to recalculate new price range. Once the new price
range is found, it is broadcasted to all the SellerClones of this SellerAgent. Method
WantToBuy of a SellerAgent may be periodically invoked by BuyerAgents. However,
SellerAgent decides whom to sell the product only when all its clones are done
negotiating with their corresponding BuyerClones. If a SellerAgent’s clones are not done
negotiating with corresponding BuyerClones, it will send a ‘wait’ message to any
BuyerAgents who is requesting to buy the product. Method WantToBuy is also
responsible for finding best seller and to finish the deal with BuyerAgent. When a deal is
done, method SetStringForUpdation is invoked to update the Case Base System. Once
the Case Base is updated, SellerAgent will reject all the BuyerAgents who are still
requesting to buy the product and then it will send a message to EnvironmentWatcher to

be removed from the marketplace.

Universiiy of Windsor 2002 53

4.9.3 Buyer Clones

The functionalities of a BuyerClone are finding bid increment, calculating offer and
counter offer, recalculation of bid increment when there is a change in marketplace and
notifying BuyerAgent when the negotiation is over. Method BidIncrement is used to
calculate and recalculate the bid increment for the negotiation. Method Offer and
CounterOffer are controlled by method RunNegotiation to appropriately offer and
counteroffer bids to the seller clone. Method CloneNegotiationAcceptReject of

BuyerClone is used to notify BuyerAgent any information about the negotiation process.

4.9.4 Seller Clones

Functionalities of a SellerClone are very similar to the functionalities of the BuyerClone.
The functionalities include finding bid decrement, calculating offer and counter offer,
recalculation of bid decrement when there is a change in marketplace and notifying
SellerAgent when the negotiation is over. Method BidDecrement is used to calculate and
recalculate the bid decrement for the negotiation. Method Offer and CounterOffer are
controlled by method RunNegotiation to appropriately offer and counteroffer bids to the
buyer clone. Method CloneNegotiationAcceptReject of SellerClone is used to notify

SellerAgent any information regarding the negotiation process.

4.10 Challenges in Implementation

Controlling the flow of communication between agents and their clones as well as the
communication between the clones is the toughest part of the implementation. Any
agents in the marketplace need to keep track of their clones and opponents till the
negotiation process is over. Moreover, the dynamicity that we adapted in this framework
by allowing agents to enter and leave the marketplace at their own-will, increased
considerable complexity to the application. Another challenge in creating this system
appeared in the testing phase. Finding data that reflect the real world events and mental

attitudes that replicate human buying behavior were another hardest part while testing
this system.

University of Windsor 2002 54

Chapter S

Evaluation of the Proposed Model

This Chapter discusses the evaluation phase of the proposed framework. The proposed
research methodology in this work defines and formalizes the dynamic negotiation aspect
for experienced agents with attitude in a virtual marketplace. First, we investigate and
analyze the behavior of agents that support the dynamic negotiation in this framework.
This analysis lays foundation for the experimental results. Second, we summarize the
results presented in the previous model. Third section presents the need for adaptation of
dynamic negotiation and evaluates [43]. Then we evaluate our model, taking into account
of the dynamicity of an e-commerce environment. Finally, we present the computational

issues involved in the proposed framework.

5.1 Behavior of agents in the model
The major issue of this research work is in representing dynamic negotiation capabilities
into attitude and experienced based buying and selling e-commerce agents. The behavior

of these agents is modeled based on mental attitude, previous buying-selling experiences

and dynamic decision-making capabilities.

According to 43, human buying behavior heavily depends on attitude and experience.
Further they believe importance of time, importance of price and commitment, which are
the attributes of an agent’s mental attitude, are very crucial in human buying behavior as
they effect purchasing decisions of humans in real life. This is the rationality behind

considering attitude when modeling agents in this framework.

The next important aspect presented in 43 is the use of previous experiences by the
buying and selling agents. Humans make purchasing decisions based on their previous
experiences. They tend to learn from both successful and unsuccessful experiences. In
case of using successful experience they tend to follow the same strategy they used

before. Whereas in using an unsuccessful experience, they refine the strategy to improve

University of Windsor 2002 55

it so that the result is a success. Similarly, agents in this framework, as in 43, use previous

experience and adjust their attitude in order to gain successful negotiation.

Another important aspect borrowed from 43 into this model is the use of Ontology.
Before making a decision on purchasing a product, humans tend to do some background
work to obtain information about the product. This background work may include
knowing details of product in general by window-shopping, through ads, or from friends.
Since the agents in an e-commerce system cannot have these facilities, they should rely
on some external resources. Ontology used in this model provides agents with
background information in the form of public price range so that these agents can make

decisions bounded by those price ranges.

Another important aspect of this framework includes the dynamic decision making model
that enables agents to readjust their negotiation strategies when there is a change inside or
outside the e-commerce environment. Humans’ negotiation tactics tend to adjust
dynamically with respect to the changes that occur in the real world. Just like humans
change their negotiating price range when there is a change in supply demand ratio, buyer
and seller agents in an e-commerce marketplace should also dynamically change their
negotiating price range when there is an increase or decrease in number of agents in the

marketplace. Incorporation of BDI model of agency into this model accomplishes such

task in this framework.

The analysis of this framework discussed so far in this section suggests that the proposed
framework handles some of the crucial issues involved in human buying behavior in
terms of representing attitudes, using world knowledge, using previous experiences and

making dynamic decisions during negotiation process.

5.2 Experiments and Results Provided in 43
5.2.1 Experiments

The experiments and results provided in 43 focuses on how the agents behave in familiar

situations (similar situations encountered earlier) and in multiple interactions using their

University of Windsor 2002 56

experience and attitude. There are two categories of scenarios considered in testing the
behavior of the agents. One category of scenarios is various experiences and the other is
various degrees of interaction. In testing the use of experience, following scenarios ware
considered to evaluate the model:

o Using a successful experience of buying or selling the same product

e Using an unsuccessful experience of buying or selling the same product

e Using a successful experience of buying or selling a similar product, not the same

product in question

e Using an unsuccessful experience of buying or selling a similar product, not the

same product in question.

Negotiating participants’ decisions are affected by number of participants involved
during the negotiation. Therefore, degree of interaction is an important factor that affects

agent behavior with respect to their attitude. In testing the use of degree of interaction,

following scenarios ware considered:
¢ One buyer and one seller
e One buyer and many sellers
e Many buyers and one seller
e Many buyers and many sellers

According to 43’s believes, the above two categories subsume the most plausible

situation in human buying behavior.

5.2.2 Results

In 43, various scenarios of experiences and various degrees of interactions are
experimented. The claim that an agent with buying or selling relevant experience should
be able to use that experience when buying or selling a similar product is proved with
their presented experiment results. Results in 43 show that the above claim is true.
Moreover, their results show that agents pick up the best possible experience from

successful and unsuccessful experiences in solving a similar problem. Furthermore,

University of Windsor 2002 57

changes in Case Base system suggest that agents update or refine their experiences

accordingly.

Another observation given in 43 is that many-to-many interactions may help agents to
finish their negotiation faster. When there is one-to-one negotiation these agents don’t
have many choices, so they continue to negotiate until an agreement is reached or they
abandon the negotiation if their interest are not met. Whereas in many-to-many

interactions agents have more choices and they tend to be more selective in making deals,

for their benefit.

5.3 Need for Dynamic Negotiation

In today’s e-commerce environment, buyer and seller agents can dynamically enter and
leave the marketplace with external knowledge of a certain product. The agents that are
already negotiating for the same product in the system should somehow become aware of
any external change occurred for that product. Becoming aware of the changes that
happened inside or outside the system would affect the negotiation process of the agents
who are already negotiating for that product. The ideas, experiments and results
considered in 43 fail to consider the above dynamic environment situation. In fact, 43
acts like a task oriented conventional system by negotiating for the product with
inaccurate information without giving any consideration to the changes that occurred in
the environment. Therefore, there is a need to extend 43 to handle dynamic changes that
happens inside or outside the system so that the agents in the system can be competitive

in today’s uncertain e-commerce marketplace.

5.4 Scenarios considered for experiments

Evaluation of this framework is complex as there are many parameters, including
dynamic environment changes to be considered. The experiments chosen to test this
framework should reflect the simulation of agent’s behavior, so that one could evaluate
the performance of this framework in comparison with real world buying and selling

situations. The focus of this framework is on how the agents behave to internal and

University of Windsor 2002 58

external dynamic changes with their attitude and experience. Testing these issues in
experiments needs careful selection of buying and selling scenarios and cases, so that
they satisfy constrains in the proposed model and also reflect real world situations. We
consider two scenarios in our experiments towards the aim of testing the behavior of

these agents in making successful or unsuccessful deals.

5.4.1 Scenarios with internal changes (SDR)

Users create agents at their own will and send them to the marketplace for negotiation.
Agents on the other hand leave the marketplace when they finish their negotiation. This
involuntary process of both users and agents create high uncertainty in supply demand
ratio for a product in the marketplace. Dynamic change in supply demand ratio is an
important factor in the negotiation phase of an agent. When testing such dynamic factor

that takes place inside the e-commerce system, one should consider the following

scenarios:

e Effect of increase in SDR for a buyer agent

o Effect of decrease in SDR for a buyer agent

e Effect of increase in SDR for a seller agent and

e Effect of decrease in SDR for a seller agent
We believe that above scenarios address the entire possible dynamic supply demand ratio
changes in an e-commerce marketplace. Experiments involving these combinations are

good measure of evaluating the behavior of dynamically negotiating agents in this
framework.

5.4.2 Scenarios with external changes (PPR)

Negotiation process of agents in an e-commerce system can be affected by many external
factors. A company’s reputation or the quality of a product for example may play a major
role in changing the public price range of a product. Such uncertain change that can
happen outside the e-commerce system may create high degree of uncertainty in the price

range within which agents negotiate in an e-commerce system. Therefore, such external

University of Windsor 2002 59

changes that can affect the negotiation process of agents in an e-commerce system should
be considered as an important factor in the negotiation phase of an agent. When testing

such dynamic factor that takes place outside the e-commerce system, one should consider

the following scenarios:

e Effect of increase in PPR for a buyer agent

e Effect of decrease in PPR for a buyer agent

e Effect of increase in PPR for a seller agent and

e Effect of decrease in PPR for a seller agent
We believe that above scenarios illustrate how to compensate for one of many external
factors that can affect a negotiation process of agents in an e-commerce system.
Experiments involving these combinations are good measure of evaluating the behavior

of dynamically negotiating agents in this framework.

5.5 Experiments and Results

The experiments considered here relate to two important issues on which the dynamic
negotiation process of human buying behavior is dependent in general: 1) scenarios with

internal changes 2) scenarios with external changes as discussed in last section.

5.5.1 Experiments testing internal changes

Our assumption about internal changes that affects the negotiation process can be stated

as follows:

“Agents that are negotiating with attitude and relevant experience should be able to

adjust their negotiating strategies to compensate for internal changes”

To evaluate this assumption we need to allow agents to enter and leave the marketplace
when there are other agents negotiating for the same product. The agents who are already
in the marketplace, recalculate their negotiating price range when a new agent enters or
leaves the marketplace. The result of the experiment presented in Appendix F proves the
above claim. Note that we allowed negotiating agents to recalculate their price ranges
only when supply demand ratio changes by at least 10%. In the real world, minor changes

University of Windsor 2002 60

in supply demand ratio doesn’t affect the negotiation strategies of human negotiators.
This is the why we did not allow negotiating agents to recalculate their price ranges when

the change in supply demand ratio is less than 10%.

The assumption that “Agents that are negotiating with attitude and relevant experience
should be able to adjust their negotiating strategies to compensate for internal changes”
is valid as the above discussion supports it. The result from the experiment also supports
that these agents do change their negotiating price range to compensate and be

competitive to any supply demand changes that occurs in the marketplace.

5.5.2 Experiments testing external changes

Our assumption about external changes that affects the negotiation process can be stated

as follows:

“Agents that are negotiating with attitude and relevant experience should be able to

adjust their negotiating strategies to compensate for external changes”

To evaluate this assumption we need notify the external changes, such as public price
range change, to the negotiating agents of the e-commerce system. The negotiating agents
in the marketplace recalculate their negotiating price range when they are notified of

change in public price range. The result of the experiment presented in Appendix F

proves the above claim.

The assumption that “Agents that are negotiating with attitude and relevant experience
should be able to adjust their negotiating strategies to compensate for external changes”
is valid as the above discussion supports it. The result from the experiment also supports
that these agents do change their negotiating price range to compensate and be
competitive when there is a change in public price range outside the system. The
observation of this experiments infer that the agents in this framework use attitude,

relevant experience and dynamic negotiation strategies to perform dynamic negotiation.

University of Windsor 2002 61

5.6 Computational issues

Complexity of the proposed framework can be verified at several stages of the execution
phase. The stages that we consider in calculating the complexity of the framework are i)
retrieval of domain specific information ii) retrieval of experience from Case Base iii)
creation, interaction of clones and negotiation process and iv) recalculation during the

dynamic changes in the environment.

Retrieval of domain specific information from Ontology takes a cost of an SQL query as
the Ontology is implemented directly in a database. However, in case of a formal
Ontology, the complexity of retrieving domain specific information will be the number of
accesses to the information in the Ontology hierarchy tree. Retrieval of relevant
experience from Case Base in this system is linearly proportional to the number of cases
existing in the Case Base. However, if there is vast number of cases in a Case Base,
indexing can be used to reduce this complexity considerably. Complexity of the entire
process of negotiation is m X n, where m is number of unique buyers and 7 is number of
unique sellers for the same product in the marketplace. This is because each buyer creates
as many clones as unique sellers and each seller creates as many clones as unique buyers
in the marketplace. Since finding offer and counteroffer in our implementation do not
take heavy computation, they are considered as done in constant time. Recalculation of
price ranges as well as broadcasting new price ranges to the clones are also considered to

be done in constant time as they do not take considerable computation in the

implementation of the framework.

University of Windsor 2002 62

Chapter 6
Conclusion and Future Work

In this thesis, we proposed a framework to automate dynamic negotiation among
competitive and cooperative software agents. The purpose of this work is to investigate
the thesis, possibility of building a framework which models limited aspects of dynamic

negotiation among competitive and cooperative software agents.

The agents in this framework, as in 37, 38 and 43, have attitude that represents few
aspects of mental state of its clients. They learn from experiences using Case Based
Reasoning techniques and reason accordingly during the negotiation process. Moreover,
these agents are capable of dynamically handling uncertain changes that happens inside
and outside the application environment while they participate in negotiation. The
interaction among these competing and cooperating agents can be one-to-one, one-to-
many or many-to-many. Java programming language is used as the language of
implementation. The most important aspect of this framework lies in its compensating
capability to uncertain changes in e-commerce environment during negotiation by using

the BDI model of agency principle.

The experiments presented in Appendix F demonstrate that it is possible to build a
framework with limited aspects of dynamic negotiation among competitive and
cooperative software agents for an e-commerce system. Further, it shows that it is
possible to incorporate few important aspects of mental state of the clients and also to
make use of previous experiences in this dynamic negotiation model. The adjustments
took place in Case Base during the experiments suggests that agents in this framework

learn and also refine their experiences as they involve in dynamic negotiation.

University of Windsor 2002 63

7.1 Future Work

Currently, implementation of this proposed framework is done in a single sequential
machine. This should be extended to a distributed environment, where agents from
different marketplaces could negotiate in parallel, in order for this e-commerce
framework to become a reality. Moreover, the weights assigned in the fuzzy functions of
this and the previous model [37] needs a through study before it can be used in the real
world. There is a need to focus on the offer and counter-offer techniques of this model.
Perhaps the ideas presented in [15] (Black Board approach) or the ideas presented in [42]

(using internal Beliefs) may improve the negotiation tactics of this system.

University of Windsor 2002 64

Bibliography

1. Abdel-Illah Mouaddib. 1997. Progressive Negotiation For Time-Constrained
Autonomous Agents. Agents'97 Conference Proceedings, ACM.

2. Anand S. Rao, Michael P. and Georgeff. 1995. BDI Agents: From Theory to
Practice. Proceedings of the First International Conference on
MultiagentSystems, Technical Note 56, ICMAS 1995.

3. Anand R. Tripathi, Neeran M. Karnik, Ram D. Singh, Tanvir Ahmed, John
Eberhard, Arvind Prakash. 1999. Development of Mobile Agent Applications

with Ajanta. Technical Report. Department of Computer Science, University of
Minnesota, Minneapolis.

4. Alessio Lomuscio, Michael Wooldridge, Nicholas Jennings. 2000. A
classification scheme for negotiation in electronic commerce. Journal of
Group Decision and Negotiation 19 — 33.

5. A. Chavez and P. Maes. 1996. Kasbah: An Agent Marketplace for Buying
and Selling Goods. Proceedings of the First International Conference on the

Practical Application of Intelligent Agents and Multi-Agent Technology (London,
UK).

6. Charles J. Petrie. 1996. Agent Based Engineering, the Web, and Intelligence.
IEEFE Expert (December 1996).

7. Damir Horvat, Dragana Cvetkovic, Veljko Milutinovic, Petar Kocovic, Vlada
Kovacevic. 2000. Mobile Agents and Java Mobile Agents Toolkits.

Proceedings of the 33rd Hawaii International Conference on System Sciences
(Maui, Hawaii, USA).

8. David Kotz, Robert S. Gray. 1999. Mobile Agents and the Future of the
Internet. ACM Operating Systems Review, 33(3), Pages 7-13.

9. David Wong, Noemi Paciorek, Dana Moore. 1999. Java-Based Mobile Agents.
Communications of the ACM vol.42, No.3.

10. E. Oliveira, J. M. Fonseca, N. R. Jennings. 1999. Learning to be Competitive in
the Market. 4441 Workshop on Negotiation: Settling Conflicts and Identifying
Opportunities(Orlando, FL, 30-37).

11. H. Vogler, A. Buchmann. 1998. Using Multiple Mobile Agents for Distributed
Transactions. 3rd IFCIS Conference on Cooperative Information Systems
(CooplS'98) (New York City, USA, August 1998).

University of Windsor 2002 65

12. Hyacinth S. Nwana, Jeff Rosenschein, Tuomas Sandholm, Carles Sierra, Pattie
Maes, Rob Guttmann. 1998. Agent-Mediated Electronic Commerce: Issues,
Challenges and some Viewpoints. Autonomous Agents '98, Proceedings of the
Workshop on Agent Mediated Electronic Trading (AMET ’98).

13. Hyacinth S. Nwana. 1996. Software Agents: An Overview. Knowledge
Engineering Review, Vol. 11, No 3, pp. 1-40, Sept 1996.

14. J.D. Tygar. 1998. Atomicity in Electronic Commerce. Mixed Media, April/May
1998, pages 32-43.

15. Jae-Yeon Kang, Eun-Seok Lee.1998. A Negotiation Model in Electronic
Commerce to Reflect Multiple Transaction Factors and Learning.

Proceedings of the 13th International Conference on Information Networking
(ICOIN '98).

16. Jonathan Bredin, David Kotz, Daniela Rus. 1998. Market-based Resource
Control for Mobile Agents. Autonomous Agents '98, Minneapolis, MN, USA.

17. Lai, R. and Meng-Wen Lin. 2002. Agent negotiation as fuzzy constraint

processing. In Proceedings of the 2002 IEEE International Conference on Fuzzy
Systems, 2002, pages 1021 - 1026

18. L. Esmahi and P. Dini, J.C. Bernard. Toward an Open Virtual Market Place
for Mobile Agents. Proceedings of the IEEE 8th International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises.

19. Mario Lenz, Brigitte Bartsch-Sporl, Hans-Dieter Burkhard, Stefan Wess. Case-
Based Reasoning Technology From Foundations to Applications. Lecture
Notes in Artifcial Intelligence 1400. ISBN 3-540-64572-1.

20. Mehdi Jazayeri and Wolfgang Lugmayr. 1998. Gypsy: A Component-Based

Mobile Agent System. Proceedings of the 8th Euromicro Workshop on Parallel
and Distributed Processing.

21. Michael Georgeff, Barney Pell, Martha Pollack, Michael Wooldridge. 1998. The
Belief-Desire-Intention Model of Agency. Proceedings of the 5th International
Workshop on Intelligent Agents 5: Agent Theories, Architectures, and Languages.

22.N. R. Jennings. 1999. Agent-Oriented Software Engineering. Proceedings of

the 12th Int Conference on Industrial and Engineering Applications of Al, Cairo,
Egypt, 4-10.

23.N. R. Jennings, S. Parsons, C. Sierra and P. Faratin. 2000. Automated
Negotiation. Proceedings of the 5th International Conference on the Practical

University of Windsor 2002 66

Application of Intelligent Agents and Multi- Agent Systems (PAAM-2000),
Manchester, UK, 23-30.

24.N.R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, C. Sierra and M.
Wooldridge 2001. Automated negotiation: prospects, methods and challenges.
International Journal of Group Dexision and Negotiation 10 (2) 199-215.

25. P. Faratin, C. Sierra, N. R. Jennings and P. Buckle. 1999. Designing Responsive
and Deliberative Automated Negotiators. Proceedings of the AAAI Workshop

on Negotiation: Settling Conflicts and Identifying Opportunities, Orlando, FL, 12-
18.

26. P. Faratin, C. Sierra and N. R. Jennings. 2000. Using similarity criteria to make
negotiation trade-offs. Proceedings of the 4th International Conference on
Multi-Agent Systems (ICMAS-2000), Boston, USA, 119-126.

27. Prithviraj Dasgupta, Nitya Narasimhan, Louise E. Moser, P.M. Melliar-Smith.
1999. MAGNET: Mobile Agents for Networked Electronic Trading. /EEE

Transactions on Knowledge and Data Engineering, Vol.1l, No.4. july/august
1999.

28. R. Guttman, A. Moukas, and P. Maes. 1998. Agent-mediated Electronic
Commerce: A Survey. Knowledge Engineering Review, Vol. 13:3, June 1998.

29.R. Guttman and P. Maes. 1998. Cooperative vs. Competitive Multi-Agent
Negotiations in Retail Electronic Commerce. Proceedings of the Second

International Workshop on Cooperative Information Agents (CIA'98), Paris,
France, July 3-8, 1998.

30. R. Guttman, P. Maes, A. Chavez, and D. Dreilinger. 1997. Results from a
Multi-Agent Electronic Marketplace Experiment. Proceedings of Modeling

Autonomous Agents in a Multi-Agent World (MAAMAW'97), Ronneby, Sweden,
May 1997.

31. Robert J. Glushko, Jay M. Tenenbaum and Bart Meltzer. 1999. An XML
framework for agent-based E-commerce. Communications of the ACM,
Volume 42, No. 3 (Mar. 1999).

32. Sebastian Abeck, Andreas Koppel, Jochen Seitz. 1998. A Management
Architecture for Multi-Agent Systems. Proceedings of the IEEE Third
International Workshop on Systems Management.

33. Stan Franklin, Art Graesser. 1996. Is it an Agent, or just a Program?: A
Taxonomy for Autonomous Agents. Proceedings of the Third International

Workshop on Agent Theories, Architectures, and Languages, Springer-Verlag,
1996.

University of Windsor 2002 67

34. Thomas Tran, Robin Cohen. 1999. Hybrid Recommender Systems for
Electronic Commerce. Knowledge-based Electronic Markets a AAAI'00
Workshop (KBEM'00) Monday, July 31, Austin TX, USA.

35. Vulkan N., Binmore K. 1997. Applying game theory to automated negotiation.
DIMACS Workshop on Economics, Game Theory and the Internet, 1997.

36.Walid S. Saba and Pratap Sathi. 2001. Agent Negotiation in a Virtual
Marketplace. In Proceedings of the 2nd Asia-Pacific Conference on Intelligent
Agent Technology, 2001, pages 444-453. IAT.

37. Walid Saba. 2001. Modeling Mental States in Agent Negotiation. Negotiation

Methods for Autonomous Cooperative Systems 2001 Fall Symposium, Pages 142
— 147, AAAI Press.

38. Walid S. Saba. 2002. Negotiating with an attitude in a virtual marketplace.
International Journal of Computational Intelligence and Organizations (to
appear)

39. W.Y.Wong, D.M.Zhang, and M. Kara-Ali. 2000. Towards an experience-based
negotiation agent. Proceedings of the 4th International Workshop on
Cooperative Information Agents, CIA-2000, Boston.

40. Wong, W. Y., Zhang, D. M., and Kara-Ali, M. 2000. Negotiating with
experience. Knowledge-Based Electronic Markets, Technical Report WS-00-04,
PP. 85-90. AAAI 2000.

41. Mudgal C. and Vassileva J. Multi-Agent Negotiation to Support an Economy
for Online Help and Tutoring. Proceedings the 5 International Conference
on

Intelligent Tutoring Systems, Pages 83-92, Springer LNCS 1839.

42. Pu Huang and Katia Sycara. 2002. A Computational Model For Online Agent

Negotiation. Proceedings of the 35th Annual Hawaii International Conference,
Pages 363 — 369, IEEE '02.

43, Pratap R. Sathi. 2001. Experienced agents with attitude in a virtual
marketplace. Thesis, University of Windsor, 2001.

University of Windsor 2002 68

Appendix A
Electronic Commerce

Electronic Commerce (e-commerce) is defined as the conduct of commerce of goods and

services with the assistance of existing technologies over the Internet [12].
A.1 Concept of E-Commerce

E-Commerce concepts include Business-to-Business e-commerce (B2B), Business-to-
Consumer e-commerce (B2C) and Consumer-to-Consumer e-commerce (C2C). B2B is
the use of private networks on the Internet to automate business transactions between
companies. B2C e-commerce is a retail sale model or a web market. Amazon.com is an

example of B2C. It enhances business models by offering:

¢ A global audience
¢ Unlimited product selection
 Portal sites that refer consumers to the actual purchasing site

¢ Focused marketing that can be quickly tailored to consumer

C2C e-commerce is an auction based or bargain-based systems [28]. It often provides low
cost consumer-to-consumer refurbished goods to reduce transaction cost. Some popular

examples of C2C e-commerce sites are eBay.com, uBid.com and eWanted.com.

A.2 Properties and Requirements of E-commerce transactions

Different conferences on Principles of Distributed Computing (PODC) have agreed on
certain concepts that are heavily used in electronic commerce [14, 18].
e Atomic transactions.
e Providing support for a variety of transaction type including simple buying and
selling, auctions and complex multi-agent contract negotiation.

e Cryptographically secure protocols.

University of Windsor 2002 69

e Providing language in which the rich array of semantic content about commerce is
expressed.

e Being extensible, by third parties, so providing multi-agent contract and dynamic
mediation.
e Providing a secure and private credit and payment mechanisms.
e Interoperating with other new and existing E-commerce service and
e High reliability.
Apart from the issues mentioned above, electronic commerce encompasses a broad range

of issues like reputation, law, advertising, ontology, intermediaries, multimedia shopping
experiences and back office management [28].

A.3 Consumer Buying Behavior (CBB)

In commerce and in tern e-commerce, different models of CBB share a similar list of six

fundamental stages in guiding consumers [28]. The six stages can be summarized in the
following:

e Need Identification: consumer becoming aware of some unmet need.
® Product Brokering: Retrieval of information to help determine what to buy.

e Merchant Brokering: Merchant specific information to help determine who to buy
from.

e Negotiation: How to determine the terms of transaction including price bargains,

warranties etc.

o Purchase and delivery: It can be a signal to the termination of negotiation stage or
occur sometime after the negotiation is done.

e Service and Evaluation: this phase involves product service, customer service etc.
A.4 Challenges in e-commerce

There are many systems in existence with different models for Product Brokering,
Merchant Brokering and Purchase stages. Recommender systems as discussed in [34] use

collaborative filtering and knowledge-based approach to make recommendations to the

University of Windsor 2002 70

users in purchasing decisions. There are other Recommender systems, like Personalogic
and Firefly that help consumers find the products. Firefly recommends products using
automated collaborative filtering approach. Systems like BargainFinger, Jango, and
Kasbah helped in the Merchant brokering stage. But there are not many systems, which
could support the negotiation stage. MIT’s Kasbah [5] was one of the first systems to
support the automated negotiation stage. Though it had its own drawbacks, Kasbah led
the other researchers to work in this negotiation aspect more actively.

There are several challenges or reasons for not many automated negotiation systems in e-

commerce. The challenges of automated negotiation in E-Commerce applications as
discussed in [15] are:

1. It is very difficult to expect an automated negotiation process that reflects the
real world.

2. There is no negotiation based on diverse attributes for item.

3. There is no multi-negotiation that considers and is adapted to all counterparts
participating in negotiation process simultaneously.

4. There is no personalized negotiation.

Reaching the challenges mentioned above brings in the issues like interoperation and
automation. For example, to automate negotiation in buying and selling a car, there needs
to be a semantically interoperable language and protocol coordinating the parties (agents)
involved. Unfortunately, there is still lack of common language and ontology for e-
commerce interoperation. Although HTML web-scraping may get us by for certain
problems, for instance, product information retrieval in retail markets, it is not
sufficiently robust to base important business processes upon [12]. Extensible Markup
Language (XML) came as a good tool in differentiating products from more than just
their prices. It helped merchants to describe various services offered with the product
sold, eliminated the need for web scraping by the use of XML parser and brought in the
XML/EDI message format reducing the cost of transactions in e-commerce [31].
Nonetheless, there are still problems, which will take much more effort on business

corporations in agreeing on Meta Tags in XML to specific semantics in accomplishing

University of Windsor 2002 71

the tasks mentioned above. Business ventures are coming up with Business Interface
Definitions (BDI) and Common Business Library (CBL) as domain specific ontologies to

accomplish this cumbersome task [31].

University of Windsor 2002 72

Appendix B
Agents

Agent based computing is a recent approach to problem solving in complex
heterogeneous systems that has been attracting great deal of attention among the
Artificial Intelligence (AI) community. People have been fascinated about the idea of
artificial agencies for a long time. Especially, with the inception of Al and distributed

systems, computer scientists have been working on systems which could automatically

perform tasks for humans.

B.1 History of Software Agents
Since the beginning of Artificial Intelligence, Object technology and Distributed

Artificial Object Distributed
Intelligence (AI) Technology Computing
Intelligent behavior Encapsulation Mobility
Reasoning capability Modularity Navigation

Learning Re-use Distribution

Intelligent
Agents

Figure B.1: Evolution of Intelligent Agents

Systems, as illustrated in Figure B.1, momentum has shifted from hardware to software.
Researchers have been working extensively to build intelligent software agents to
perform tasks that are only performed by humans.

Even after two decades of research, some of the key concepts in agent-based computing

lack universally accepted definitions. Embarrassment comes as no surprise to the Agent

University of Windsor 2002 73

community, as they still cannot agree on “what is an agent”. There are two main reasons
why it is difficult to precisely define what an agent is. First, agent is a term that is widely
used in everyday parlance as in travel agents, estate agents, etc. Second, even in the
software fraternity, the word agent is really an umbrella term for a heterogeneous body of
research and development. The confusion about agents led researchers to invent more
synonyms including knowbots (knowledge-based bots), softbots (software robot),
taskbots (task-based robots), userbots, robots, personal agents, autonomous agents
(mobile agents), auctionbots and personal assistants [13].

B.2 Definition of an Agent

One of the most acceptable definitions for agents by two prominent researchers Jennings
and Woodridge in Software Agent Technology states [22]:
“an Agent is an encapsulated computer system that is situated in some
environment, and that is capable of flexible, autonomous action in that
environment in order to meet its design objectives.”
As per this definition, Agents are: (i) clearly identifiable problem solving entities with
well-defined boundaries and interfaces; (ii) situated in a particular environment and they
observe the state of the environment; (iii) designed to fulfill a specific role; (iv)
autonomous, have control on both their internal state and over their own behavior; and (v)

capable of exhibiting flexible problem solving behaviors [22].

B.3 Types of agents

Agents may be classified based on the mobility factor, i.e., static or mobile. Another way
of classification is deliberative or reactive. Deliberative agents process an internal
symbolic reasoning model and they engage in planning and negotiation in order to
achieve coordination with other agents. Reactive agents do not have any internal
symbolic models of their environment, and they act using a stimulus or response-type of

behavior by responding to the present state of environment in which they are embedded
[13].

University of Windsor 2002 74

Agents interact with its environment, sometimes even out of its environment (in case of
mobile agents) for enhancing collaboration among them. Combing several of such agents
pursuing the same goal leads to the multi-agent systems (MAS) [32]. Multi-agent systems

allow for scalability, permit software reuse and handle software evolution.

There is a close relationship between multi-agent systems and mobile agents. Mobile
agents are programs that can migrate from host to host in a network, at times to places of
their own choice. The state of the running program is saved, transported to the new host,
and restored, allowing the program to continue where it was left off [8]. Mobile agents
are an effective choice for many applications, since they improve latency and bandwidth
of client-server applications and reducing vulnerability to network disconnection. They
support transactions in massively distributed environments, support systems which
involve electronic cash and banking systems [16], support activities in dynamically
changing environments, support mobile devices and coordination of different types of

applications and resources [11].

B.4 Implementation of Agents

Java is known to be an effective implementation language for mobile agents. Most of the
present Mobile agent frameworks like Ajanta [6], Concordia, Odyssey, JAFMAS (3],
Voyager, MAgNET [27], Gypsy [20] and IBM’s Aglets [7] are all implemented in Java.
Muiti platform support and the promise of write-once and run-anywhere operation make
Java extremely suited for mobile agent technology [9]. Java’s object serializations
accomplish the conversion of an agent and its state into a form suitable for network
transmission and allow the remote system to reconstruct the agent. Some Java- based
mobile agents systems also provide persistent agent state information. Java also facilitates
the migration of code and state via its class-loading mechanism. Java based mobile agent

systems are the best choice for e-commerce applications [9].

University of Windsor 2002 75

Appendix C
Automated Negotiation

Automated negotiation is becoming an integral and important part of e-commerce. Real
world negotiations in general accrue transaction costs and time that may be too much for
both merchants and consumers alike. A good automated negotiation can both save time
and find better deals in the complex and uncertain business environment [39]. However,
current e-commerce environment only supports non-interactive buying-selling types of

auction and there are no models yet for automated negotiation in E-Commerce.

Research area that merges negotiation with software-agents is the broad field of Muiti
Agent System (MAS). In MAS, there is no global control, no globally consistent
knowledge, and no globally shared goals. They are concerned with coordinating
intelligent behavior within a collection of autonomous (possibly heterogeneous)
intelligent agents. MAS assume total self-interest and a high degree of competition

among agents during negotiations for limited resources [28]. This behavior of MAS best

suites our needs in e-commerce environments.

Agents have a high degree of self-determination, since they decide for themselves what,
when and under what conditions their actions should be performed. In an e-commerce
environment such agents need to interact with other autonomous agents to achieve their
objectives. Since agents do not have direct control over one another, they must persuade
other agents to act in particular ways to achieve their goals. This concept of persuasion is

called negotiation; a process by which agents come to a mutually acceptable decision on
some matter [24].

When faced with the need to reach agreements on a variety of issues, humans make use
of negotiation process. Similarly, automated negotiation can become a fundamental
operation for shopping agents in e-commerce. This automation of negotiation can

significantly reduce the time it takes to negotiate, making large volume of transactions

University of Windsor 2002 76

possible in a small amount of time. This can also remove some of the discretion of
humans to engage in negotiation, for example, embarrassments and personality
manipulations. For these reasons, the formalisation of negotiation has received a great

deal of attention from the multi agent systems community throughout the past two
decades.

C.1 Negotiation Theory

Negotiation is a form of decision-making where two or more parties jointly search a
space of possible solutions with the goal of reaching a consensus for their own benefits.
Game Theory in economics describes such an interaction in terms of protocols and

strategies [108]. There are two important theorems exists on negotiation. One is Game
theory and the other is Epistemic Logics.

Game Theory

Game theory views an agent as an individual, a firm or some complex organization where
the functionality of the agent is profit maximizing. Game theory models do not describe
how the world is or must be, but they describe how the world could be. An out come of a
game is usually decided by the information in the structure and the strategy used in the
game. Various criteria of individual optimality in game theory include Dominance, Nash
Equilibrium, Bayesian Nash Equilibrium, trembling hand equilibrium, and sequential
equilibrium. Nash equilibrium is the best-known strategy for negotiation. This theory
predicts a unique solution to each game chosen by the agent. The predicted strategy of

each agent must be the best response to the predicted strategies of other agents and it
should maximize the utility or profit [35].

Epistemic Logics

Distribution and transfer of information among autonomous agents are essential
characteristics of many environments. Representing the information and reasoning the
state of the information while taking into account of the dynamics of the information is
the core idea behind analyzing environments. The formalism that support such
representation and reasoning are called ‘epistemic logic’ or ‘logic of knowledge.

University of Windsor 2002 77

Dynamics of distributed systems can be characterized in terms of transfer of information
among the processors through communication. In building distributed environments for

software agents, there is a need to focus on epistemic logics to represents the knowledge
about the system.

Another definition for automated negotiation by Jennings et al. [23] is ‘the process by
which a group of agents communicate with one to try and come to a mutually acceptable
agreement on some matter’. Negotiation underpins and attempts to cooperate and

coordinate and is required both when both agents are self-interested and are cooperative.

Although various disciplines have proposed different theorems on negotiation, it is clear
that negotiation theory covers a wide range of phenomena encompassing different
approaches such as Artificial Intelligence, Social Psychology, and Game theory.

Negotiation research can be considered to deal with three broad topics [23].

1. Negotiation Protocols: These are the set of rules that govern the interaction. These
rules cover permissible types of participants, the negotiation states, the events, what
can cause negotiation states to change and the valid actions of the participants’ in
particular states.

2. Negotiation Objects: The range of issues over which agreement must be reached. At
one extreme, the object may contain a single issue, while on the other hand it may
cover hundreds of issues, which makes the negotiation process complex.

3. Agents’ Decision Making Models: The decision-making apparatus the participants
employ to act in line with the negotiation protocol in order to achieve their
negotiation objectives. The sophistication of the model, as well as the range of
decisions which have to be made, are influenced by the protocols in place, the nature

of the negotiation object and the range of operations which can be performed on it.
Given a wide variety of possibilities, including game theory and epistemic logics given

above, there are no universally accepted approach or technique for agent negotiation. The

minimum capabilities required for an automated negotiation is: (1) to propose some part

University of Windsor 2002 78

of the agreement space as being acceptable; and (2) to respond to such a proposal
indicating whether it is acceptable. However, if agents can only accept and reject others
proposals, then negotiation can be very time consuming and inefficient. This results in the
proposer having no means of ascertaining whether the proposal is unacceptable or
whether the agent is neither close to an agreement nor in which direction of the

agreement space it should move next.

Negotiating strategies to reach an agreement often depend on the specific issues or
parameters under consideration. For instance, whether merchandise has a common value
or whether it differs from agent to agent may call for different negotiation strategies to
reach an agreement. Negotiation mechanism consists of a negotiation protocol coupled
with the negotiation strategies for the agents involved. There are some properties that are

generally considered desirable for negotiation mechanism {4]:

e Computational efficiency: Concerned with the need a negotiation mechanism
that is computationally efficient. In other words, computational costs carried out
at run-time must be manageable.

e Communication efficiency: Concerned with having a mechanism that handles
communication among the agents in an efficient way.

¢ Individual rationality: Mechanism that satisfies individual rationality for all the
agents involved in negotiation. In other words, agent’s independent interest to
participate in negotiation.

e Distribution of computation: Mechanisms that distribute the computation over
the agents are preferable to the ones in which one server is performing all the
computation for the whole system. This is due to the desire to avoid the disruptive
effects of a single point of failure and performance bottlenecks.

C.2 Parameters of Negotiation

We have seen in the last section that negotiation deals with negotiation protocols,
negotiation objects and negotiation decision models. Negotiation objects or number of

issues involved in a negotiation can play a crucial role in determining negotiation

University of Windsor 2002 79

strategy. There has been a tremendous amount of effort put in identifying the parameters
on which any type of negotiation can take place [4].

C.2.1 Cardinality of the Negotiation
There are two important issues in cardinality of negotiation parameter, namely
negotiation domain and the interaction type.

¢ Negotiation domain: single-issue or multiple-issue; and

¢ Interactions: one-to-one, many-to-one, many-to-many.
Domain of negotiation can be visualized as set of tuples over which the agents negotiate
to reach agreement. Each elements of this tuples may represent an issue such as price,
quality, warranties, delivery time, and so on. When we have only one issue in a
negotiation, for example price, the tuples are singletons. In multiple issue negotiation,
different issues might be related by some publicly agreed utility function [4].

Interactions between agents can be classified based on a number of agents involved in the
negotiation. One-to-one negotiation in which one agent negotiates with exactly one other
agent becomes important due to the business-to-business e-commerce scenarios. Many-
to-one negotiation where many agents negotiate with one agent is exactly same as auction
setting. In this case, one agent plays the role of the seller and the rest play the buyer’s
role. Many-to-many negotiation where many agents negotiate with many other agents

creates the most complex scenario of all interactions [4].

C.2.2 Agent Characteristics
In a sense we can agree that agents are nothing but computational entities that participate
in negotiation processes that must be capable of rating its preferences to evaluate and

choose between number of deals. Further characterizations of agents are:

e Role: Agent’s types are the role that they play in the negotiation (buyers, sellers,
or both). Usually buyers and sellers are the important roles but in case of auction

negotiation, intermediaries can have an important role as well.

University of Windsor 2002 80

o Rationality: Rationality can be perfect or bounded. Game theory (discussed later
in this Chapter) assumes perfect rationality meaning that large computations can
be performed at a constant time. However, in practice, agents are forced to bid or
withdraw because they do not have the computational power. Thus, negotiation
models that assume perfect rationality have to use approximations in practice,
whereas models that explicitly assume bounded rationality are more realistic in
this sense [4].

e Knowledge: Private information such as internal deadline and utility functions
are important parameters for agents. Whether an agent holds private information
or not will directly affect the agent’s bidding strategy.

e Commitment: When an offer is made, agents may wait until an acceptance or
counter-offer is received. Alternatively, the agent can bid to other agents without

waiting. Thus, there can be various levels of commitment placed in the protocol

(4].

C.2.3 Environment and Goods Characteristics

The negotiation environment can be either static or dynamic. Dynamicity of the
environment can affect the utility function of the agents in a delicate way. Utility function
reflects the preference of an agent. While in a static environment an agent does not learn
during the process and maintains a fixed utility function, this behavior would be less

likely to produce a positive payoff in a very dynamic environment.

The characteristics such as private or public value of the goods also crucially define the
negotiation protocol. The values of goods depend on whether it will be used for private
(e.g., a cake) or public (e.g., bonds). For example, when buying a car, both the buyer’s
preferences and how the car will preserve its value over time should be considered if one
is interested in selling the car.

C.2.4 Event Parameters

The negotiation protocol is mainly influenced by the ways in which the events take place
during the negotiation.

University of Windsor 2002 81

Clearing schedule and timeouts: is an event producing a temporary allocation
between buyer and seller. Clears can be scheduled at random or following other
events. For example, during the bidding phase of an auction each round
terminates with a temporary allocation of the good being auctioned to the
prospective buyer that meets the auctioneer’s call. Timeouts determine the closing
of the negotiation; therefore, they transform clears into “final clears”, i.e., a final
agreement between buyer and seller about the transaction.

Quotes Schedule: Often third-party quotes are generated through the
Recommender systems and they need to be regulated. Otherwise, too many

requests for quotes can significantly slow down the negotiation mechanism.

C.2.5 Information Parameters

Information or messages other than bids can be passed between agents before and during

negotiation to help buyers and sellers reach an agreement. Such messages can be

beneficial in order to save computational time of the agents. Among many useful

messages, we will look at two important such messages.

Price quotes: Quotes generated by potential buyers requesting an analytical price
from a seller before starting a negotiation can be useful to all parties as they
reduce negotiation time.

Transaction history: History of transactions given or requested by buyers and
sellers can increase the credibility involved in negotiation. Together with the
trusted third party quotes, transaction histories can form the basis for
argumentation-based negotiation. Expert human negotiators often focus on the
reasons why an offer is not acceptable and try to persuade their counterparts to the
characteristics an agreement will have to include in reaching the deal. Artificial
negotiators propose offers to counterpart but they do not try and motivate them to

reach an agreement. This is often seen as a severe limitation that can limit the
flexibility of the negotiation.

University of Windsor 2002 82

C.3 Negotiation Process

Additional feedback on a proposal that indicates more than whether an agent agrees with
the proposal or not can improve the efficiency of the negotiation process. This feedback
can take the form of a critique or a counter proposal. From such a feedback, the proposer
should be able to bring the recipient more close to the agreement space. Achievement of
reaching the agreement quickly in tern depends on the intelligence (reasoning) of the
agents involved. These agents will have to follow different strategies and negotiation
algorithms and a family of negotiation tactics. When we equip these agents with these
negotiation techniques and tactics, they can negotiate at any place such as classified
negotiation, stock market negotiation and retail auction negotiation [29]. There have been
impressive results from MIT’s Kasbah Agent market place [30] and Agents with attitude

in a Virtual Marketplace [36], where some of the negotiation strategies have been
modeled and implemented.

There have been different approaches proposed for integrating intelligence factors like
negotiation strategies, tradeoff mechanisms [25] [26], different negotiating functions [1]
and tactics in these agents. Reinforcement learning is one approach based on rewarding
actions that turn out to be positive and punishing those that are negative [10]. Rule based
learning is another approach for negotiating agents in a virtual market place [18] which is
based on particular rules in the system that is proved to be effective. Case-Based

Reasoning (CBR) is yet another approach for negotiation where we capture and reuse
successful negotiating experiences.

C.4 Challenges In E-Commerce Negotiation

As we have seen before, the general properties desirable for a negotiation mechanism are
computational efficiency, communication efficiency, distribution of computation, and
individual rationality. The former three issues pose major software engineering
challenges but the last one seems to be more complex and it depended on cardinality of
negotiation, agent characteristics, environments and goods characteristics, event
parameters and information parameters. These parameters may vary form domain to

domain. Therefore, in most cases negotiation strategies and tactics are completely domain

University of Windsor 2002 83

dependant. In e-commerce set up, negotiation gets even more complex, as the parameters
here are fuzzy, dynamic and vary diverse. The challenges for automated negotiation in e-

commerce applications include the following [15]:

1. It is very difficult to expect an automated negotiation process that reflects the
real world.

2. There is no negotiation based on diverse attributes.

3. There is no multi-agent that considers and is adapted to all counterparts

participating in negotiation process simultaneously.

4, There is no personalized negotiation.
In summary, involvement of many parameters makes automated negotiation a really

complex process and there is no universally accepted negotiation technique. Simply put,

there is a need for development of better domain suited negotiation techniques.

University of Windsor 2002 84

Appendix D
Case Based Reasoning

Case-Based Reasoning (CBR) helps solve new problems by remembering a previous
similar situation and by reusing those information and knowledge of that situation. When
a new problem is presented, a CBR system solves the problem by finding a similar past

case, and reusing it in the new problem situation.

CBR is based on Theory of Dynamic memory proposed by R. Schank. This theorem states
that understanding takes place by integrating of new things encountered with old
experiences or what is already known (experience). Also it states that Understanding
causes us to remember old experiences, consciously or unconsciously, as we process the
new ones. Moreover the theorem states that remembering, understanding, experiencing

and learning cannot be separated form each other.

There are many successful case-based reasoning systems existing and some of them have
been put to commercial use. They include [19]: (1) Clavier, a shop floor assistant, (2)
SMART, an integrated call-tracking system and problem solving system, (3) Prism,
classifies route bank telexes, (4) CAROL intended to use class descriptions in object
oriented programming.

From the theory of Dynamic memory we can infer that ‘case-based reasoning’ is both
cognitively plausible model of reasoning and a method for building intelligent systems.

This system integrates problem solving, understanding, learning and memory in to one
framework.

University of Windsor 2002 85

Appendix E

Belief, Desire and Intention model of Agency

Most of the conventional software applications are designed for static world. These
conventional software are assumed to work with perfect knowledge, meaning that they
have all the information they need to make their decisions. However, in the real world,
these systems are embedded in dynamic environments. Therefore, when it comes to real
world issues, they have only partial information available for them to make any decision
i.e., their access to dynamic information is limited. Moreover, the systems in existence

don’t have unlimited computational recourses [21].

Belief, Desire and Intension (BDI) decision-making model is interested in solving
dynamic and uncertain environment problems. BDI model has become the best-known
and best-studied model of practical reasoning agents. There are several successful
applications exist based on BDI model. Fault diagnosis system for space shuttle and

factory process control system are couple examples where BDI model of agency is used

[2].

Belief represents the knowledge of the world. Computationally, Believes are some way of
representing the state of the world. For example, belief in a BDI system could be a value
of a variable or topples of a rational database. Hence, Belief represents information about
the world. Belief is needed because the world changes and we need to remember the past
events. The reason why we need to remember the past events is because if I want to get

somewhere for example, I need to know where I am right now in order to find out how I
can get there.

Desire, or more commonly, the Goal. Computationally, it may be a value of a variable or
a symbolic expression in some logic. The important point is that a Goal should represent
some desired end state. Conventional systems also has desired end state but they are ‘task

oriented’ than goal oriented. This means the system cannot automatically recover from

University of Windsor 2002 86

failures. For example, the reason we recover from a missed train is because we know
where we are (through our believes) and we remember to where we want to go (through

our Goals). Task oriented conventional software would fail in this above situation but
BDI model would not.

Belief and desire enables to decide on a plan to achieve the goal but in a dynamic
environment, where there can be a change in the environment that could affect the
achievement of the goal, what should we do? Classical decision theory states that we
should always replan when there is a change in the environment. In contrast, the
conventional system goes on executing the tasks with no consideration to the changes in
the environment. There are problems associated with both the ideas. A system cannot
ignore the changes and execute the tasks in a dynamic environment nor it cannot replan

for every single change in the environment because of the limited resources.

The third component of the BDI model, Intention states that ‘the system needs to commit
to the plans and sub goals it adopts but it must also be capable of reconsidering these
adopted plans at appropriate (crucial) moments. Computationally, Intensions may be
simply be a set of executing threads in a process that can be appropriately interrupted
upon receiving feedback from the possibly changing world. For example a Flight
Scheduler agent which schedules Arrival Time of the flights on the runway in an airport
may have number of threads running for each flights. As the wind or weather changes
(these are the environment changes) the process should be appropriately interrupted so
that the process can replan and inform the respective flight and make sure the flight can
still reach the runway at the expected time [2].

A negotiation in a real world, either cooperatively or competitively, takes place in an

uncertain and dynamic environment. This BDI model of agency theory gives us a realistic

decision solution to such dynamic environment negotiation problems.

University of Windsor 2002 87

Appendix F
Results

Testing the framework starts with creating data for Ontology and Case Base. First, we
populate the Ontology database with information on products and conceptual similarity.
Then we populate buyer and seller experience databases with number of cases. Following
two tables are used in testing this framework:

PCat PN Warr | PPR Price | Attitude | SDR NegRec Res
comprods | printer 2 300-450 400 9,.5,9 1 320/360/400 1
comprods | mouse .5 8-15 13 9,.2,.9 1 10/13 1

homeappl | fridge 2 400-550 | S20 9,.1,9 33 415/455/490/520 1

homeappl | fridge 2 400-550 435 .1,9,4 33 405/415/425/435 1

homeelec vV 1 300-500 | 420 .7,.5,.7 1.5 310/345/380/420 1

comprod | printer 1 300450 | 335 2,.8,.3 5 305/320/335 0

Table F.1 Buyer Experiences in database

PCat PN Warr | PPR Price | Attitude | SDR NegRec Res
comprods | printer 1.5 300-450 360 .3,.3,.9 2 420/390/360 1
comprods | mouse 1 8-15 10 4,.1,.8 3 15/13.5/10 0

homeappl [fridge 2 400-550 | 515 2,.9,.5 2 545/535/525/515 0

homeappl | fridge 3 400-550 | 465 .8,.6,.8 1 540/515/490/465 1
homeelec v 2 300-500 | 405 5,.5,.5 1 495/475/455/435/405 1
comprod | printer 1 300-450 | 420 .1,1.0,.3 2 450/440/430/420 0

Table F.2 Seller Experiences in database

To test agents’ dynamic negotiation capabilities, we assumed certain real time situations
and certain data for participating agents in those assumed situations. The experiments are
presented in the following subsections.

University of Windsor 2002 88

F.1 Experiment when agents dynamically enter and leave
Assume a situation where number of buyers and sellers want to buy or sell Printers. We
consider the following buyers and sellers to dynamically enter or leave the market place.

Note that italic lines are the output given by the application during the testing phase.

A seller named Sellerl enters the marketplace to sell a printer with the attitude of
<0.6,0.8,0.6>, and warranty 2.0.

Sellerl retrieves the public price range from the Ontology and then retrieves the best
relevant case from table SELLEREXP. Seller1 uses the relevant case to slightly adjust
the attitude and then calculates the negotiating price based on adjusted attitude, public
price range and supply demand ratio as:

Change In Environment: Seller] Max Price: 441.0 Min Price: 362.0

No Buyer for this Product yet... # of Sellers in market: 1.0

No need to notify agents anywhere

A buyer named Buyerl enters the marketplace to buy a printer with the attitude of
<0.7,0.8,0.5>, and warranty 2.0.

Buyerl retrieves the public price range from the Ontology and then retrieves the best
relevant case from table BUYEREXP. Buyerl uses the relevant case to slightly adjust the
attitude and then calculates the negotiating price based on adjusted attitude, public price
range and supply demand ratio as:

Change In Environment: Buyerl Max Price: 397.5 Min Price: 312.0

Notify all agents buying or selling the product of new SDR from EW class...1.0

Change In Environment: Seller! Max Price: 441.0 Min Price: 347.0

Seller1’s clone and Buyerl’s clone start negotiating for the printer from now on. Note

that Sellerl changes negotiating price range as the supply demand ratio changes
drastically.

University of Windsor 2002 89

A seller named Seller2 enters the marketplace to sell a printer with the attitude of
<0.5,0.9,0.8>, and warranty 2.0.

Seller2 retrieves the public price range from the Ontology and then retrieves the best
relevant case from table SELLEREXP. Seller2 uses the relevant case to slightly adjust
the attitude and then calculates the negotiating price based on adjusted attitude, public
price range and supply demand ratio as:

Change In Environment: Seller2 Max Price: 442.5 Min Price: 318.0

Environment Watcher at this point notifies the change in supply demand ratio to all the
negotiating agents:

Notify all agents buying or selling the product of new SDR from EW class...2.0

Both Sellerl and Buyerl changes negotiating price range as the supply demand ratio

changes drastically.
Change In Environment: Seller! Max Price: 441.0 Min Price: 332.0

Change In Environment: Buyerl Max Price: 375.0 Min Price: 312.0

Note that Sellerl decreased minimum price from 341.0 to 332.0 and Buyerl decreased
maximum price from 397.5 to 375.0 as the supply increased. Now Buyer1 crates a clone
for Seller2 and Seller2 creates a clone for Buyerl and they start negotiating from this

point on. Sellerl’s clone and Buyerl’s clone continue to negotiate without any
interruption.

A buyer named Buyer2 enters the marketplace to buy a printer with the attitude of
<0.3,0.8,0.4>, and warranty 2.0.

Buyer2 retrieves the public price range from the Ontology and then retrieves the best
relevant case from table BUYEREXP. Buyer2 uses the relevant case to slightly adjust the

attitude and then calculates the negotiating price based on adjusted attitude, public price
range and supply demand ratio as:

Change In Environment: Buyer2 Max Price: 387.0 Min Price: 306.0

University of Windsor 2002 90

Environment Watcher at this point notifies the change in supply demand ratio to all the
negotiating agents:

Notify all agents buying or selling the product of new SDR from EW class...1.0

Seller1, Buyerl and Seller2 changes negotiating price range as the supply demand ratio
changes drastically.

Change In Environment: Seller] Max Price: 441.0 Min Price: 347.0

Change In Environment: Buyer! Max Price: 397.5 Min Price: 312.0

Change In Environment: Seller2 Max Price: 442.5 Min Price: 333.0

Note that Sellerl increased minimum price from 332.0 to 347.0, Buyerl increased
maximum price from 375.0 to 397.5 and Seller2 increased minimum price from 318.0 to
333.0 as the demand increased. Now Buyer2 crates two clones, one for Sellerl and the
other for Seller2. Sellerl and Seller2 each in turn create a clone for Buyer2 and they
start negotiating. Seller1’s clone and Buyer1°’s clone, Seller2’s clone and Buyer1’s clone

continue to negotiate without any interruption.

A buyer named Buyer3 enters the marketplace to buy a printer with the attitude of
<0.4,0.9,0.3>, and warranty 2.0.

Buyer3 retrieves the public price range from the Ontology and then retrieves the best
relevant case from table BUYEREXP. Buyer3 uses the relevant case to slightly adjust the
attitude and then calculates the negotiating price based on adjusted attitude, public price

range and supply demand ratio as:
Change In Environment: Buyer3 Max Price: 373.5 Min Price: 307.5

Environment Watcher at this point notifies the change in supply demand ratio to all the
negotiating agents:

Notify all agents buying or selling the product of new SDR from EW
class...0.6666666666666666

Sellerl, Buyerl, Seller2 and Buyer2 changes negotiating price range as the supply
demand ratio changes drastically.

University of Windsor 2002 91

Change In Environment: Seller] Max Price: 441.0 Min Price: 352.0
Change In Environment: Buyer! Max Price: 405.0 Min Price: 312.0
Change In Environment: Seller2 Max Price: 442.5 Min Price: 338.0
Change In Environment: Buyer2 Max Price: 394.5 Min Price: 306.0

Note that Sellerl increased minimum price from 347.0 to 352.0, Buyerl increased
maximum price from 397.5 to 405.0, Seller2 increased minimum price from 333.0 to
338.0 and Buyer2 increased maximum price from 387.0 to 394.0 as the demand
increased. Now Buyer3 crates two clones, one for Sellerl and the other for Seller2.
Seller1 and Seller2 each in turn create a clone for Buyer3 and they start negotiating.

Seller1’s clone and Buyerl’s clone, Seller2’s clone and Buyerl’s clone, Sellerl’s clone

and Buyer2’s clone and Seller2’s clone and Buyer2’s clone continue to negotiate

without any interruption.

Buyerl1 finishes negotiation with Seller1 and Seller2:

Buyer1's Negotiation record with Sellerl: 312.00/441.00/331.49/419.19/350.99/397.38
Buyerl's Negotiation record with Seller2: 312.00/442.50/331.49/412.56/350.99

Buyer2 finishes negotiation with Sellerl and Seller2:

Buyer2's Negotiation record with Seller2: 306.00/442.50/323.33/416.17/340.67

Buyer2's Negotiation record with Sellerl:
306.00/441.00/323.33/419.19/340.67/397.38/358.00

Buyer3 finishes negotiation with Sellerl and Seller2:
Buyer3's Negotiation record with Seller2:

307.50/442.50/322.02/417.37/336.54/392.24/351.06
Buyer3's Negotiation record with Sellerl:
307.50/441.00/322.02/420.35/336.54/399.70/351.06/379.06/365.58

Seller2 sold the product to Buyer3
Seller2 rejects Buyerl
Seller2 rejects Buyer2

University of Windsor 2002

92

match found 0.7647916666666666 updating CaseBase

Buyer3 Removes himself from the Market

match found 0.8154761904761905 updating CaseBase
Seller2 Leave the Marketplace

Environment Watcher removes Seller2 and Buyer3 from the marketplace and checks for
the new supply demand ratio. Since the new supply demand ratio differs more than 0.1
from the old supply demand ratio, any agents who still didn’t make a deal are notified.
Note that there is no effect by this procedure in this situation. However, if the agents are

still in the process of negotiation, agents will recalculate their negotiating price range.
Notify all agents buying or selling the product of new SDR from EW class...0.5

Change In Environment: Sellerl Max Price: 441.0 Min Price: 354.5

Change In Environment: Buyerl Max Price: 408.75 Min Price: 312.0
Change In Environment: Buyer2 Max Price: 398.25 Min Price: 306.0

Sellerl sold the product to Buyerl

Sellerl rejects Buyer2

match found 0.85 updating CaseBase

Buyerl Removes himself from the Market

Now the buyer agent experience record of a printer shows the following in the

BUYEREXP table:
Pcat

Pname | War | PPR Price Attitude SDR NegRec Res
CmpPro | printer | 2 300-450 | 397.38 | 0.75,0.68,0.55 | .583325 | 320/360/400 1

match found 0.8154761904761905 updating CaseBase
Seller! Leave the Marketplace

Now the seller agent experience record of a printer shows the following in the
SELLEREXP table:

University of Windsor 2002

93

Pcat
Pname | War | PPR Price | Attitude | SDR NegRec Res

CmpPro | Printer | 2 300-450 397.38 1 0.5,0.8,0.8 | .583325 420/390/360 1

No Seller For this Product anymore...# of Buyers: 1.0

No deal from any Seller for this Buyer: Buyer2
Buyer2 Removes himself from the Market

No agents negotiating for this product anymore from EWNEW.....

From the above results we can clearly see that agents in this framework dynamically

negotiate to compensate the changes that happens in the system.

F.2 Experiment when external changes occur

Assume a situation where number of buyers and sellers want to buy or sell a rv. We allow
some buyers and sellers to dynamically enter or leave the market place, as we did in the
previous experiment. Initially the public price range of a #v is set to 300 to 500 dollars.
When the agents are negotiating in the system, we will change the public price range to
400-600 dollars and study the agents’ behavior. Note that italic lines are the output given
by the application during the testing phase.

A buyer named Sellerl enters the marketplace to buy a tv with the attitude of <
0.4,0.8,0.5>, and warranty 1.0.

Buyerl retrieves the public price range from the Ontology and then retrieves the best
relevant case from table BUYEREXP. Buyerl uses the relevant case to slightly adjust the
attitude and then calculates the negotiating price based on adjusted attitude, public price
range and supply demand ratio as:

Change In Environment: Buyerl Max Price: 466.66666666666663 Min Price: 310.0
No Seller For this Product yet...# of Buyers: 1.0

University of Windsor 2002 94

A seller named Sellerl enters the marketplace to buy a v with the attitude of <
0.8,0.6,0.7>, and warranty 1.0.

Sellerl retrieves the public price range from the Ontology and then retrieves the best
relevant case from table SELLEREXP. Sellerl uses the relevant case to slightly adjust
the attitude and then calculates the negotiating price based on adjusted attitude, public

price range and supply demand ratio as:

Change In Environment: Seller! Max Price: 486.0 Min Price: 300.0
Notify all agents buying or selling the product of new SDR from EW class...1.0
Change In Environment: Buyerl Max Price: 441.66666666666663 Min Price: 310.0

Buyerl’s clone and Sellerl’s clone start negotiating for product from now on. Note that

Buyerl changes negotiating price range as the supply demand ratio changes drastically.
Now we change the public price range of v from 300 - 500 to 400 — 600:

CHANGE IN PPR FOR THE PRODUCT: v

Change In Environment: Buyer! Max Price: 530.0 Min Price: 410.0

Change In Environment: Seller] Max Price: 586.0 Min Price: 400.0

As we can see above the negotiating agents’ negotiating price ranges change drastically.
Once Agents calculate their new price range they broadcast the new negotiation price

range to their respective clones. Clones continue to negotiate for the product without any
interruption.

A buyer named Buyer2 enters the marketplace to buy a tv with the attitude of <
0.7,0.5,0.8>, and warranty 1.0.

Buyer2 retrieves the public price range from the Ontology and then retrieves the best
relevant case from table BUYEREXP. Buyer2 uses the relevant case to slightly adjust the

attitude and then calculates the negotiating price based on adjusted attitude, public price
range and supply demand ratio as:

University of Windsor 2002 95

Change In Environment: Buyer2 Max Price: 599.0 Min Price: 412.0

Environment Watcher at this point notifies the change in supply demand ratio to all the

negotiating agents:
Notify all agents buying or selling the product of new SDR from EW class...0.5

Both Sellerl and Buyerl changes negotiating price range as the supply demand ratio
changes drastically.

Change In Environment: Buyer! Max Price: 545.0 Min Price: 410.0
Change In Environment: Seller! Max Price: 586.0 Min Price: 410.0

Again clones of Sellerl and Buyerl continue to negotiate without any interruption.

From the results bellow we can see that Buyerl and Sellerl finished their negotiation
just before the public price for &v has been changed. As a result, Sellerl accepted
Buyerl’s 310 dollars bid. However, when the Sellerl finished its negotiation with

Buyer2, it chooses to sell the product to Buyer2 as Buyer2 is willing to pay more for the
tv.

Buyerl's Negotiation record with Sellerl: 310.00
Buyer2's Negotiation record with Sellerl: 412.00
Seller] sold the product to Buyer2

match found 0.7229166666666668 updating CaseBase
Buyer2 Removes himself from the Market

Now the buyer agent experience record of a tv shows the following in the BUYEREXP
table:

Pcat

Pname | War | PPR Price | Attitude SDR NegRec Res
homeelec | tv 1 400-600 | 412 0.65,0.45,0.75 | .75 412.00 1
Seller! rejects Buyerl

University of Windsor 2002 96

match found 0.7375 updating CaseBase

Seller] Leave the Marketplace

Now the seller agent experience record of a v shows the following in the SELLEREXP

table:
Pcat

Pname | War | PPR Price | Attitude SDR NegRec Res
homeelec | tv 1 400-600 | 412 0.6,0.5,0.6 .75 412.00 1

No Seller For this Product anymore...# of Buyers: 1.0

No deal from any Seller for this Buyer: Buyerl

Buyerl Removes himself from the Market
No agents negotiating for this product anymore from EWNEW.....

From the above results, it is clear that agents in this framework can dynamically negotiate

and compensate for the change that happens outside the e-commerce environment.

University of Windsor 2002

97

Appendix G
Documented Code

All the classes and database schema for this application are shown bellow.

/*****i***i*****i****fitti***'ki***t*it*

This class EWNEW serves as the main class where we input the information of buyers and

sellers for a product. It is the controller/mediator of the entire system.

*t**i**it********k****t****t**i****ti*/

import java.util.*;
import java.sql.*;
import java.io.*;

import java.lang.*;

public class EWNEW
{
static BSLNEW bslnew = new BSLNEW();
Case C = new Case();
public static void main (String([] args)(
EWNEW test = new EWNEW();
test.AddBuyerSeller("Buyerl*, "tv*, "buyer*, "0.4,0.8,0.5°, "1.0*, "315", "200");
test.AddBuyerSeller("Sellerl”, "tv", "seller", °0.8,0.6,0.7*, "1.0", "500", *315"});
test.PublicPriceRangeChangeForProduct("tv", 600.00, 400.00);
test.AddBuyerSeller("Buyer2", "tv", "buyer*, *0.7,0.5,0.8*, "1.0", "500", "315%);
}//end of main

//This method enables collecting the references of all agents (buyers and //sellers)for a
//certain product and notify them of the change in Public Price Range

public void PublicPriceRangeChangeForProduct(String Pname, double pprMax, double ppxMin) {
System.out.println("CHANGE IN PPR FOR THE PRODUCT : * + Pname);
Vector VecBuySell = new Vector(10);
C.UpdatePPRinCaseBase (Pname, pprMax, pprMin};
VecBuySell = bslnew.WhoAreTheBuyersSellers (Pname);
for(int i = 0; i< VecBuySell.size(); i++){
ActualAgent AA = (ActualAgent)VecBuySell.get(i);
AA = (ActualAgent)VecBuySell.get(i):;
AA_.Notify(VecBuySell, pprMax, pprMin);
}

}// BEnd of class PublicPriceRangeChangeForProduct

University of Windsor 2002 98

//This method enables adding a buyer or seller to the dynamic BuyerSellerList and to collect
//references of buyers and sellers for a certain product after adding the new buyer or

//seller. Then it notifies the agents of the change that happened in the Marketplace
//Environment.

public void AddBuyerSeller(String AName, String PName, String BuySell, String Attitude,
String Warranty, String MaxPrice, String MinPrice) (
Vector VecBuySell = new Vector(20);
VecBuySell.clear();
ActualAgent AA = null;
double NumBuyer = 0, NumSeller = 0;
double SDR = -1.0;
String AgentNameBxist="";
VecBuySell = bslnew.AddBuyerSeller (AName, PName, BuySell, Attitude, Warranty, MaxPrice,
MinPrice);
if (VecBuySell.size()==1) {
Object ob = VecBuySell.elementAt(0);
if (ob instanceof String)AgentNameExist = (String)ob;
if((AgentNameExist) .equals("Exists")) {
System.out.println(*Agent name already Exists in B/S list...");
System.out.println("Notify the interface that given agent Will not be
created becase agent name already exist in the system...");
}
else{
AA = (ActualAgent)VecBuySell.elementAt(0);
if ((AA.BS) .equals("buyer"))NumBuyer++;
else NumSeller++;

try(
if (! (NumBuyer == 0)) SDR = (double) (NumSeller/NumBuyer) ;
else{
System.out.println{"No Buyer for this Product yet... " + *#
of Sellers in market: " + NumSeller+ " Or send SDR = 0");
System.out.println("No need to notify the agents anywhere®);
}
}

catch (ArithmeticException e)(
System.out.println(*No Buyer for this Product yet... ®* + "# of Sellers in
market: " + NumSeller+ ® Or send SDR = 0°);

}

if (SDR==0) System.out.println("No Seller For this Product yet..."+ "# of Buyers:*

+ NumBuyer + ® SDR = * + SDR);

else System.out.println("SDR = 0 - only one Buyer or Seller..."};

}//else ends
}//if ends

University of Windsor 2002 99

else{
Enumeration enu = VecBuySell.elements();
while(enu.hasMoreElements()) {
AA =(Actualigent)enu.nextElement();
if ((AA.BS) .equals(*buyer*®)) NumBuyer++;
else NumSeller++;
}//whlie ends
try(
if (! (NumBuyer == 0))SDR = (double) (NumSeller/NumBuyer) ;
}
catch (ArithmeticException e) (
System.out.println("Devided by zero at EW class in agent adding method..");
}
if (NumBuyer == 0)System.out.println("No Buyer for this Product yet..."+ "# of Sellers
in market: ® + NumSeller+ " Or send SDR = 0");
if (SDR==0) System.out.println("No Seller For this Product yet..."+ "# of Buyers:"
+NumBuyer+ "seller:" + NumSeller+" SDR = " + SDR);
else if (SDR > 0){
System.out.println("Nortify all agents buying or selling the product of new SDR
from EW class...” + SDR);
for(int i = 0; i< VecBuySell.size(); i++){(
AA = (ActualAgent)VecBuySell.get(i);
AA.Notify(SDR, VecBuySell);
}
for(int i = 0; i< VecBuySell.size(); i++)(
AA = (ActualAgent)VecBuySell.get(i);
AA.startNegotiation() ;

}
}//end of else
}//End of method@ AddBuyerSellerAgent

//When an Agent (Buyer or Seller) finishes a deal or gets rejected by all the opponents we
//want to remove them from the buyer seller list. Since It will be always the same I have
//given a Static class ForAgents and the RomveBuyerSeller Method inside the static class!!
//This enables me to freely have access to EnvironemtWatcher class(this) and yet not to pass
//reference of this main class to all the buyers and sellers.

public static class ForAgents
{

//1.This method RemoveAnAgent is responsible for Removing a buying or selling agent from the
//BuyerSellerList

University of Windsor 2002 100

//2.Nortifying all the buying and selling agents of the same product regarding the changes
//in the Environment because the removal of the agent ie, Change of SDR to all buying and
//selling agents.

public void RemoveBuyerSeller (String PName, String AName, String BuySell)
{

Vector VecBuySell = new Vector (20);

VecBuySell.clear()

~

ActualAgent AA;
double NumBuyer = 0, NumSeller = 0;
double SDR = -1.0;
String NoAgentExist="*;
VecBuySell = bslnew.RemoveBuyerSeller (PName, AName, BuySell);
if (VecBuySell.size()==1){
Object ob = VecBuySell.elementAt(0):;
if (ob instanceof String)NoAgentExist = (String)ob:;
if ((NoAgentExist).equals("None"))

{System.out.println(*No agents negotiating for this product anymore from

AA = (ActualAgent)VecBuySell.elementAt(0);
if ((AA.BS) .equals ("buyer")) NumBuyer++;
else NumSeller++;

try({
if (! (NumBuyer == 0)) SDR = (double) (NumSeller/NumBuyer) ;
else({
System.out.println("No Buyer for this Product Anymore... " + "# of Sellers

in market: * + NumSeller+ * Or send SDR = 0");
System.out.println(*No need to notify any agents anywhere®);
}
}
catch (ArithmeticException e){
System.out.println("No Buyer for this Product yet... * + "# of Sellers in
market: " + NumSeller+ " Or send SDR = 0");
}
if (SDR==0) System.out.println("No Seller For this Product anymore..."+ *# of
Buyers:" + NumBuyer + " SDR = " + SDR);
else System.out.println(*SDR = 0 - only one Buyer or Seller...");
}//else ends
}//1if ends
else(
Enumeration enu = VecBuySell.elements():;

while(enu.hasMoreElements()) {
University of Windsor 2002 101

AA =(ActualAgent)enu.nextElement();
if ((AA.BS) .equals ("buyer")) NumBuyer++;
else NumSeller++;
}//whlie ends
ery(
if (! (NumBuyer == 0))SDR = (double) (NumSeller/NumBuyer) ;
}
catch (ArithmeticException e) {
System.out.println("Devided by zero at EW class in agent adding method..");
}
if (NumBuyer == 0)System.out.println("No Buyer for this Product Anymore..."+ *# of
Sellers in market: " + NumSeller+ " Or send SDR = 0");
if (SDR==0) System.out.println("No Seller For this Product Anymore..."+ "# of Buyers:"
+NumBuyer+ "seller:" + NumSeller+" SDR = " + SDR);
else if(SDR > 0){
System.out.println(*Nortify all agents buying or selling the product of new
SDR from EW class..." + SDR);
for(int i = 0; i< VecBuySell.size(); i++){
AA = (ActualAgent)VecBuySell.get(i);
AR .Notify (SDR, VecBuySell) ;
}
for(int i = 0; i< VecBuySell.size(); i++){
AA = (ActualAgent)VecBuySell.get(i);
AA.startNegotiation();

}
}//end of else
}//end of method RemoveBuyerSeller
}//END OF STATIC CLASS FOR-AGENTS
}//End of class EWNEW

/**i*t*t***t**f***********t*****i******

This class is used to model the DYNAMIC BUYER SELLER LIST where information about the

AGENT NAME and the reference to all agents are KEPT UNIQUELY IN ORDER TO ASSIST ENVIRONMENT
WATCHER.

*-kit*t'k*i**t**'k***ii*****t*ttt*t****i*l

import java.util.*;
import java.sql.*;
import java.net.URL;

import java.io.*;

public class BSLNEW
University of Windsor 2002 102

{

Vector API = new Vector(100);

Vector VecBuySell = new Vector(20);

//AddBuyerSeller is responsible for adding new agent (buyer or seller) to the dynamic list
//of buyers and sellers, ie API Vector. Also it is responsible for returning list of
//buyers and seller for the product in question to the EnvironmentWatcher so that
//EvnvironmentWatcher can calculate the NEW SDR for the product. ** If an agent name is
//already found a fake object will be send to Environment where the AgentName of the

//object will contatin "Exists® string to indicate agent object will not be created with
//the given agent name.*/

public Vector AddBuyerSeller(String AName, String PName, String BuySell, String Attitude,

String Warranty, String MaxPrice, String MinPrice) (
boolean AnameExists = false;

VecBuySell.clear():;

ActualAgent AA;

double NumBuyer = 0, NumSeller = 0
double sdr = 0.0;

String SDR = **;

.
’

if (API.isEmpty()) {
SDR = "0.0";
if (BuySell.equals(*buyer"))
AA = new BuyerAgent (AName, PName, BuySell, Attitude, Warranty, MaxPrice, MinPrice,
SDR, VecBuySell):
else AA = new SellerAgent (AName, PName, BuySell, Attitude, Warranty, MaxPrice,

MinPrice, SDR, VecBuySell);
API.addElement (AA) ;

VecBuySell.addElement (AA) ;
return VecBuySell;
}//if over
else(
Enumeration enum = API.elements();
while (enum.hasMoreElements()) {//For each buyer or seller in the list
AA =(ActualAgent)enum.nextElement();
if (! (AA.AN) .equals {AName)) {
if ((AA.PN) .equals (PName)) {
VecBuySell.addElement (AA) ;
if ((AA.BS) .equals ("buyer")) NumBuyer++;
else NumSeller++;

}

else if ((AA.AN).equals (AName)) {
AnameExists = true;

}//else if inside while over

University of Windsor 2002 103

}//while over
}//Main else over
if (AnameExists == false){
if (BuySell.equals("buyer"))NumBuyer++;
else NumSeller++;
if (NumBuyer==0)SDR = "0.0";
if (NumSeller==0)SDR = *0.0";
if (! (NumBuyer==0) &&! (NumSeller==0))
sdr = (double) (NumSeller/NumBuyer) ;
SDR = Double.toString(sdr);
if (BuySell.equals("buyer”))AA = new BuyerAgent (AName, PName, BuySell, Attitude,
Warranty, MaxPrice, MinPrice, SDR, VecBuySell);
else AA = new SellerAgent (AName, PName, BuySell, Attitude, Warranty, MaxPrice,

MinPrice, SDR, VecBuySell):;
VecBuySell.addElement (AA) ;

API.addElement (AA) ;
}//if over
else {
VecBuySell.clear();
String AgentExists = new String("Exists");
VecBuySell.addElement (AgentExists) ;
}
return VecBuySell;
}//Method AddBuyerSeller is over

//RemoveBuyerSeller is responsible for removing an agent (buyer or seller) from the dynamic
//1list of buyers and sellers, ie API Vector. Also it is responsible for returning list of
//buyers and seller for the product in question to the EnvironmentWatcher so that
//EvnvironmentWatcher can calculate the NEW SDR for the product. ** If an agent name is
//doesn’'t exists, a fake object will be send to EnvironmentWatcher where the AgentName of

//the object will contain "None" string to indicate that agent doesn’t exist in List of
//Buyers and Sellers.

public Vector RemoveBuyerSeller(String productName, String AName, String buyerseller)
{
VecBuySell.clear();
boolean PnameExists = false;
ActualAgent AA;
if (API.isEmpty()) {
String AgentExists = new String(*None");
VecBuySell.addElement (AgentBExists) ;
return VecBuySell:;
}//if over

University of Windsor 2002 104

else{
Enumeration enum = API.elements();
int removeIndex = -1;
for(int i=0; i<API.size(); i++){//For each buyer or seller in the list
AA = (ActualAgent)API.elementAt(i);
if ((AA.AN) .equals (AName) && (AA.PN) .equals (productName)) {
removeIndex = i;
}
else if ((AA.PN).equals(productName)) {
PnameExists = true;
VecBuySell.addElement (AA) ;
}//else if inside while over
}//for is over
if (! (removeIndex==-1))API.remove(removelndex) ;
}//Main else over
if (PnameExists==false) (
String AgentExists = new String("None");
VecBuySell.addElement (AgentExists) ;

}
return VecBuySell;

}//end of mehtod RemoveBuyerSeller

//WhoAreTheBuyersSellers is responsible returning all the agents' who are involved in buying
//or selling a certain product.

public Vector WhoAreTheBuyersSellers(String Pname) {
Vector VecBuySell = new Vector(10);
for(int i=0; i<API.size(); i++){//For each buyer or seller in the list
ActualAgent AA = (ActualAgent)API.get(i):;
if (Pname.equals (AA.PN))
VecBuySell.addElement (AA) ;
}
return VecBuySell;
}
}//end of class BSLNEW

/*****ttt*ttt**i*t*******fif************

This class is used to model the ontology where information about the products is returned
from the database, using JDBC. Table ®range" contains PPR for each product and table
*simvalue” contains the similarity between product categories

******i*t*t***t**************i*******ti*/

import java.util.*;

University of Windsor 2002 105

import java.sql.*;
import java.net.URL;

import java.io.¥;

public class Ontology
{
//The product similarity computed here

public double productSimilarity(double value, double pricel,double price2)
{

double prodsimilairty;

prodsimilairty = value * (1- Math.abs(pricel-price2)/Math.max(pricel,price2));
return prodsimilairty;

//This method returns a vector of similar products
public Vector RetSimProducts(String pname)
{
Connection conn;
String url = *"jdbc:odbc:orawinds*;
String uname = "scott*;
String upwd = "tiger";

Vector Similarproducts = new Vector(10); //To return the similar Products

try
{
try
{
Class. forName(*sun. jdbc.odbc.JdbcOdbecDriver”) ;
}

catch (ClassNotFoundException cnfex) {

System.err.println(*Failed to load JDBC/ODBC driver.");
cnfex.printStackTrace();

}

conn = DriverManager.getConnection(url, uname,upwd) ;

Statement stmt = conn.createStatement();

//To find the avearge price prl of Price Similarity

ResultSet rs = stmt.executeQuery(*Select * from range where

prodname = '‘"+pname+"' *);

.

double Pmaxactu=0;
double Pminactu=0;
String Productcatl ="*;
while (rs.next())
{
Productcatl = rs.getString("Productcat*);
Pmaxactu = rs.getPFloat("minprice®);

University of Windsor 2002 106

University of Windsor 2002

Pminactu = rs.getFloat("maxprice");
}
double Averpriceactu;
//Found prl for Price Similarity function
Averpriceactu =(double) (Pmaxactu + Pminactu)/ (double)2.0;
//To find the conceptually similar products
ResultSet rsim = stmt.executeQuery(®Select Prodcat2, value from
simvalue where prodcatl = '*+Productcatl+"' and value >= 0.9");
Vector Simcats = new Vector (10);
Concepsim consim = new Concepsim();
while (rsim.next())
{
consim.prodcatl = Productcatl;
consim.prodcat2 = rsim.getString(*Prodcat2");
consim.simvalue = rsim.getInt("value");
Simcats.addElement (consim) ;
}//Conceptually similar products found.
Enuneration simcat = Simcats.elements();
//To find avearage price pr2 of PriceSimilarity
//function needed a Concepsim object
Concepsim prosim;
while (simcat.hasMoreElements())
{
prosim = (Concepsim)simcat.nextElement();
String Prodcatl;
Prodcatl = prosim.prodcatl;
ResultSet simpro = stmt.executeQuery("Select prodname, maxprice,
minprice from range where productcat = ‘'*+Prodcatl+"' ");
double Match;
while (simpro.next())
{
String Prodnameother;
Prodnameother =simpro.getString("prodname®);
double Pmaxother;
Pmaxother = simpro.getFloat(*maxprice®*);
double Pminother;
Pminother =simpro.getFloat("minprice*);
double Avgpriceother ;
//pr2 for PS function is found
Avgpriceother = (Pmaxother + Pminother)/(double)2.0;
Match = productSimilarity (prosim.simvalue,Averpriceactu,
Avgpriceother);
double threshold = (double)0.5;//0.75
if (Match >= threshold)

107

(

Simproduct similarpro = new Simproduct();

//Place the similar product info in object similarpro
similarpro.Pname = Prodnameother;

similarpro.Pcat

Prodcatl;
similarpro.Pmax = Pmaxother;
similarpro.Pmin = Pminother;
similarpro.PSim = Match;

//Similar Products in a Vector to return
Similarproducts.addElement (similarpro) ;
}

}
conn.close();
}catch (SQLException sglex) (
System.err.printin("Failed to load JDBC/ODBC driver.");
sqglex.printStackTrace() ;
}
return Similarproducts;

//This function returns the Public price ranges for a given product in the ontology

public Product getProdDet (String Pname)
{

Product produ = new Product():

Connection conn;

String url = *"jdbc:odbc:orawin9s";

String uname = "scott";

string upwd = "tiger";

try

{
try
{
Class. forName("sun. jdbc.odbc.JdbcOdbeDriver®) ;
}
catch (ClassNotFoundException cnfex) {
System.err.println(*Failed to load JDBC/ODBC driver.");
cnfex.printStackTrace() ;

}
conn = DriverManager.getConnection(url,uname,upwd);
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(*Select * from range where prodname =

. .+Pr1ame+- L) ;
University of Windsor 2002 108

String Pmaxactu;
String Pminactu;
String Productcatl;
while (rs.next())
{
produ.Pcat = rs.getString("productcat”);

produ.Pname = rs.getString("prodname”);

produ.Pmin rs.getFloat ("minprice*);

produ. Pmax rs.getFloat ("maxprice");
}
conn.close() ;
} catch (SQLException sqglex) (
System.err.println("Failed to load JDBC/ODBC driver."):;
sqglex.printStackTrace() ;
}
return produ;
}

}// End of calss Ontology

/***it*ti*’ttiit’fi*i*f***#*******f*

This is a data structure used by Ontology class to keep the information about two product's
Conceptual Similarity. The product's conceptual similarity Catogory and their similarity

value is kept here to be used by ReturnSimilarity function in Ontology class.

*i**ii**i****'****it**t*ii*i***ti***/

import java.io.*;

import java.util.*;

public class Concepsim

{
public String prodcatl;//One product's Product Catogory
public String prodcat2;//Other product's Product Catogory
public double simvalue;//Similarity between above two

}//end of class Concepsim

/*t***********i***ti**t*********ff******i

This class's responsibility is to find the best similar case from the case base for a given
situation. It uses class ontology to get the similar products first and then looks for
products in the case base that are also similar in Attitude and PPR so that it can return
similar relevant experience. In the similar fashon this class is also responsible for
updating or adding negotiation records to the Case base database.

fﬁ*i*******ti******ti*i*****i'*******/

University of Windsor 2002 109

import
import
import

import

public
{

java.sqgl.*;
java.net .URL;
java.io.*;

java.util.*;

class Case

Oontology onto;

Produc
double
double
double
double
double
double
double
double
double
double
double
double
String
string
String

Vector

public
{
onto

}//Ref

NegotiationSim;

t prod;

ImpTimePast, ImpPricePast, CommitPast, PricePast;
PricePresneg;

PricePres;

Pmaxactu, Pminactu;

Pmaxother, Pminother;
WarrbPast=0.0, WarrPres;

Sdrpast;

ProductSim, RangeSim, AttitudeSim,
NegSim;

Match;

MaxMatch =(double) 0.7;

NegMatch = (double) 0.5;
Pname, Pcat;

NegRec, saveNegotiation;
Bestcase;

SimProducts;

Case()

= new Ontology();
. to Ontology obj.

//This method find the prduct in question's(as actual) details

public void getProductDetails (String Pname)

{

String tester;

prod

= onto.getProdDet (Pname) ;

Pmaxactu = prod.Pmax;

Pminactu = prod.Pmin;

tester = prod.Pname;

public double getPmaxactu()

{

University of Windsor 2002

110

return Pmaxactu;

}

public double getPminactu()

(

return Pminactu;

//Method bellow returns the best case from the case base

public String getBestCase(String User, String Pname,double ImpTimePres,double ImpPricePres,

double CommitPres) {

SimProducts = onto.RetSimProducts(Pname) ;//Vector holding ProductSimilarity Objects
Enumeration enum = SimProducts.elements():;

Connection conn;

String url = "jdbc:odbc:orawin9s*;

Stri
stri

try{

University of Windsor 2002

ng uname = "scott";

ng upwd = "tiger";

cry(
Class.forName("sun. jdbc.odbc.JdbcOdbeDriver®) ;
}
catch (ClassNotFoundException cnfex) (
System.err.println("Failed to load class driver."):
cnfex.printStackTrace();
}
conn = DriverManager.getConnection(url, uname,upwd):;
Statement stmt = conn.createStatement();

while(enum.hasMoreElements())//For each product that is similar from Vector do bellow
{

Simproduct similarpro;

similarpro = (Simproduct) enum.nextElement();
String PnameOther;

PnameOther = similarpro.Pname;

Pmaxother = similarpro.Pmax;

Pminother = similarpro.Pmin;

ProductSim = similarpro.PSim;

//if the agent is seller

String statement = "Select * from sellerexp where PRODNAME ='"+PnameOther+"'";
//if the agent is buyer

if (User.equalsIgnoreCase{"buyer"))

statement = "Select * from buyerexp where PRODNAME ='*+PnameOther+"*'*;
ResultSet rs = stmt.executeQuery(statement);

111

String Attitudeother, Pastneg, othercase, Pcatother;

double Pricepast, SdrPast, WarrPast;

int PastRes;//Was negotiation successful or not

while(rs.next())//for each product experience form CaseBase do the bellow
{

Pcatother = rs.getString("PRODCAT"):;
PnameOther = rs.getString("PRODNAME") ;
WarrPast = rs.getFloat ("WARRANTY");
Pmaxother = rs.getFloat("PPRMAX");
Pminother

rs.getFloat (" PPRMIN") ;
Pricepast = rs.getFloat("PRICE");
Attitudeother = rs.getString(*"ATTITUDE");
SdrPast
Pastneg = rs.getString(*NEGREC");

rs.getFloat (*SDR") ;

PastRes = rs.getInt("RESULT");
StringTokenizer tokens = new StringTokenizer (Attitudeother,*,");
while (tokens.hasMoreTokens())
{
ImpTimePast= Double.parseDouble(tokens.nextToken());
ImpPricePast= Double.parseDouble (tokens.nextToken());
CommitPast = Double.parseDouble(tokens.nextToken());
}
getProductDetails (Pname
othercase = (Pcatother + *|* + PnameOther + "|" + WarrPast + "|" +
Pmaxother + *"|* + Pminother + "|* + Pricepast + "|* +
Attitudeother+ "|* + SdrPast + "|* + Pastneg + "|* +
PastRes + *"|* + Pmaxactu + "|" + Pminactu);
//Finding Attitude Similarity
AttitudeSim = attitudeSimilarity(ImpTimePast, ImpTimePres, ImpPricePast,
ImpPricePres,CommitPast,CommitPres) ;
//Finding Public Price Range Similarity
RangeSim = rangeSimilarity(Pmaxactu, Pminactu, Pmaxother, Pminother) ;

//Relevant Experience mach value

Match = ((AttitudeSim + RangeSim + ProductS$Sim)/(double)3.0);
if(Match >= MaxMatch)
{

Bestcase = othercase;
MaxMatch = Match;
}
}//For each product experience from case base (while loop) ends

}//For each product that is similar from Vector (while loop) ends
conn.closel() ;

}//End of try
catch (SQLException sqlex)

University of Windsor 2002 112

sqlex.printStackTrace(};
}
return Bestcase;

}//End of Method getBestCase

//This functions returns Attitude similarity

public double attitudeSimilarity(double ImpTimePast, double ImpTimePres, double

ImpPricePast, double ImpPricePres, double CommitPast,double CommitPres) (
double attisim;

attisim = ((1 - Math.abs(ImpTimePast- ImpTimePres))+(l-Math.abs(ImpPricePast-

ImpPricePres))+(1l - Math.abs(CommitPast-CommitPres)))/3;
return attisim;

// This functions returns similarity of two public price ranges

public double rangeSimilarity(double Pmaxactu, double Pminactu, double Pmaxother,

double Pminother) {
double ransim;

ransim = (1-(Math.abs(Pminactu-Pminother)/Math.max(Pminactu,Pminother)))*(1-

(Math.abs (Pmaxactu-Pmaxother) /Math.max (Pmaxactu, Pmaxother)));
return ransim;

}

//Method bellow updates or adds a case to the Negotiation Record either to buyerexp or
//sellerexp table.
public void UpdateOrAddNegotiation({String matcher) {
String User **, Pnameother="", attPres="";
0;
double ImpTimePres = 0, ImpPricePres = 0, CommitPres = 0, SdrPres = 0;
boolean negRecMatch = false;

int resPres

//tokenize the string
StringTokenizer tokens = new StringTokenizer (matcher,*|");
while (tokens.hasMoreTokens ())
{
User = tokens.nextToken{);
Pcat = tokens.nextToken();
Pname = tokens.nextToken();
WarrPres = Double.parseDouble(tokens.nextToken());
Pmaxactu = Double.parseDouble(tokens.nextToken());
Pminactu = Double.parseDouble (tokens.nextToken());

University of Windsor 2002 113

PricePres = Double.parseDouble({tokens.nextToken()):;
attPres

SdrPres

tokens.nextToken() ;

Double.parseDouble (tokens.nextToken()) ;
NegRec = tokens.nextToken() ;
resPres = Integer.parselnt(tokens.nextToken());
StringTokenizer tok = new StringTokenizer(attPres,”,");
while (tok.hasMoreTckens ())
{
ImpTimePres= Double.parseDouble(tok.nextToken()) ;
ImpPricePres= Double.parseDouble (tok.nextToken());

CommitPres = Double.parseDouble(tok.nextToken());
}

}//end of while (string tokenizing)
Connection conn;
String url = *jdbc:odbc:orawind95*;
String uname = "scott”;
String upwd = *tiger";
try(
try(
Class.forName(*sun. jdbc.odbec.JdbcOdbecDriver*) ;
}
catch (ClassNotFoundException cnfex) (
System.err.println(*Failed to load class driver.");
cnfex.printStackTrace() ;
}
conn = DriverManager.getConnection(url,uname,upwd) ;
Statement stmt = conn.createStatement();
//if the agent is seller
String statement = "Select * from sellerexp where PRODNAME ='"+Pname+"'";
//if the agent is buyer
if (User.equalsIgnoreCase ("buyer®))
statement = "Select * from buyerexp where PRODNAME ='"+Pname+"'";
ResultSet rs = stmt.executeQuery(statement) ;
String Attitudeother="*", Pastneg, othercase, Pcatother;
double Pricepast=0, SdrPast=0, WarrPast=0;
int PastRes;//Was negotiation successful or not

while(rs.next())//for each product experience form CaseBase do the bellow

{

Pcatother = rs.getString("PRODCAT");

Pnameother = rs.getString(*"PRODNAME") ;

WarrPast = rs.getFloat ("WARRANTY");

Pmaxother = rs.getFloat("PPRMAX");

Pminother = rs.getFloat ("PPRMIN"):;

Pricepast = rs.getFloat("PRICE");
University of Windsor 2002

114

Attitudeother = rs.getString("ATTITUDE");
SdrPast = rs.getFloat("SDR");
Pastneg = rs.getString("NEGREC");
PastRes = rs.getInt("RESULT");
StringTokenizer toke = new StringTokenizer (Attitudeother,*,");
while (tokens.hasMoreTokens())
{
ImpTimePast= Double.parseDouble(toke.nextToken());
ImpPricePast= Double.parseDouble (toke.nextToken());
CommitPast = Double.parseDouble(toke.nextToken());
}
othercase = (Pcatother + "|* + Pnameother + "|" + WarrPast + "|" +
Pmaxother + *|" + Pminother + "|" + Pricepast + "|[" +
Attitudeother+ *|" + SdrPast + "|* +Pastneg + "|"
+ PastRes };

if (Pname.ecuals (Pnameother)/* && (Pmaxactu == Pmaxother)&& (Pminactu ==
Pminother) */) {
//Finding Product Similarity (CS is always 1 here since products are same)
double pricel = (double) (Pmaxactu + Pminactu) / (double)2.0;
double price2 = (double) (Pmaxother + Pminother) / (double)2.0;
ProductSim = 1.0 * (1- Math.abs(pricel-price2)/Math.max

(pricel,price2));
//Finding Attitude Similarity

AttitudeSim = attitudeSimilarity(ImpTimePast, ImpTimePres, ImpPricePast,

ImpPricePres, CommitPast, CommitPres) ;
//Finding Public Price Range Similarity

RangeSim = rangeSimilarity(Pmaxactu, Pminactu, Pmaxother, Pminother) ;
//Finding NegotiationSimilarity

NegotiationSim = NegotiationSimilarity(Pastneg, NegRec, PastRes,

resPres) ;
//Negotiation Record Match value
Match = ((AttitudeSim + RangeSim + ProductSim +
NegotiationSim)/(double)4.0);
if(Match >= NegMatch)
{
negRecMatch = true;
Bestcase
NegMatch
}
}//End of if

}//end of rs.next's while

othercase;

[}

Match; System.out.println(*match found " + Match):;

University of Windsor 2002 115

//NOW USE THE othercase TO MERGE NEGOTIATION IN CBR SYSTEM(IFGOODMATCHSFOUND)
//OR IF othercase IS NULL THEN ADD A NEW CASE TO CBR SYSTEM.
if (negRecMatch) {

WarrPres = (WarrPast + WarrPres)/(double)2.0;

PricePres = FindLastPriceToUpdateCaseBase (NegRec);

attPres = AverageAttitude(attPres, Attitudeother);

SdrPres = ((SdrPres + SdrPast)/(double)2.0);

NegRec = saveNegotiation;

String Statement="";

if (User.equalsIgnoreCase("buyer"*)) {

Statement = "UPDATE buyerexp SET WARRANTY = '*+WarrPres+"', PPRMAX
='"+Pmaxactu+"', PPRMIN ='"+Pminactu+"', PRICE = '‘*+PricePres+"',
ATTITUDE = '"+attPres+"', SDR = '"+SdrPres+"', NEGREC = '"+NegRec+"'
WHERE PRODNAME = '"+Pname+"'";

stmt.execute(Statement) ;

//System.out.println(Statement);
}

else(

Statement = "UPDATE sellerexp SET WARRANTY = '“"+WarrPres+"', PPRMAX
='"+Pmaxactu+"', PPRMIN ='"+Pminactu+"',PRICE = '"+PricePres+"’',
ATTITUDE = '"*+attPres+"', SDR = '"+SdrPres+"', NEGREC = '"+NegRec+"'
WHERE PRODNAME = '"+Pname+"'";

stmt.execute(Statement) ;
//System.out.println(" Updating .." + Statement);
}
}
else if (Pnameother.equals(Pname))
String Statement="";
if (User.equalsIgnoreCase(*buyer®)) {

Statement = "INSERT INTO buyerexp VALUES ('*"+Pcat+"', '"+Pname+"',
'"+WarrPres+"', '‘*+Pmaxactu+®’', '"+Pminactu+"', '"+PricePres+"’',
'"+attPres+*', ' "+SdrPres+"', '"+NegRec+"',6 '‘"+resPres+"')";

//System.out.println(statement);

stmt .execute(Statement) ;

}
else{

Statement = "INSERT INTO sellerexp VALUES ('"+Pcat+"', '"+Pname+"’,
'*+WarrPres+"', '"+Pmaxactu+"', ‘'°*+Pminactu+"', '"+PricePres+"’',
**+attPres+"', ' "+SdrPres+"’', '"+NegRec+"', '“*+resPres+"')";

stmt .execute(Statement);

//System.ocut.println(Statement) ;

}

//if products are same... then add a new case (just to be safe)!!

University of Windsor 2002 116

conn.close();

}//End of try

catch (SQLException sglex)
{

sqlex.printStackTrace();
}

}//End of method UpdateOrAddNegotiation

//This functions returns Negotiation similarity of two Negotiations: both successful and
//failure cases!!

public double NegotiationSimilarity(String Pastneg, String NegRec, int PastRes,
int resPres) {
double negsim = 0;
int counterPast = 0, counterPres = 0;
StringTokenizer past = new StringTokenizer (Pastneg,"/");
StringTokenizer pres = new StringTokenizer (NegRec,"/");
while(past.hasMoreTokens ())

{
past.nextToken () ;counterPast++;
}
while (pres.hasMoreTokens ())
{

pres.nextToken() ;counterPres++;
}
if (counterPres>=counterPast) saveNegotiation = Pastneg;
else saveNegotiation = NegRec;
if (PastRes == resPres) {
negsim = 1 - ((double)Math.abs(counterPast - counterPres)/(double)Math.max
(counterPast, counterPres)) ;
}
else(

negsim = 1 - (((double)Math.abs (counterPast - counterPres)/(double)Math.max

(counterPast,counterPres)) * 0.5 + 0.5);
}

return negsim;
}

//This functions returns avarage of the attitude (IT, IP, Q)

public String AverageAttitude(String attPres, String Attitudeother) {
String aveAttitude="*;
StringTokenizer AP = new StringTokenizer(attPres,",");

r

University of Windsor 2002 117

StringTokenizer AO = new StringTokenizer (Attitudeother,",");
double ImpTimeP=0, ImpPriceP=0, CommitP=0, ImpTime0=0, ImpPrice0=0, Commit0=0;
while (AP.hasMoreTokens()) {

ImpTimeP= Double.parseDouble (AP.nextToken());

ImpPriceP= Double.parseDouble (AP.nextToken()) ;

CommitP = Double.parseDouble(AP.nextToken());
}

while (AO.hasMoreTokens()) {

ImpTimeO= Double.parseDouble(AO.nextToken());

ImpPrice0 = Double.parseDouble (AQ.nextToken());

CommitO = Double.parseDouble(AQ.nextToken());
}
aveAttitude = Rounding.toString(((ImpTimeP+ImpTime0)/(double)2.0),2)+ *,";
aveAttitude += Rounding.toString(((ImpPriceP+ImpPrice0O)/(double)2.0),2)+",";
aveAttitude += Rounding.toString(((CommitP+CommitO)/ (double)2.0),2);

return aveAttitude;

//This functions returns the price of the successful or unsuccessful deal For buyers: its
//buyer's and for sellers: its seller's last price.

public double FindLastPriceToUpdateCaseBase(String NegRec)
{
double price = 0;
StringTokenizer pres = new StringTokenizer (NegRec,"/"):;
while(pres.hasMoreTokens ())
{
price = Double.parseDouble (pres.nextToken());
}
return price;
}

public void UpdatePPRinCaseBase(String Pname, double pprMax, double pprMin){
Connection conn;

String url = "jdbc:odbc:orawings*;
String uname = "scott*";
String upwd = "tiger"*;
try(
try(
Class.forName("sun. jdbec.odbec.JdbcOdbeDriver”) ;
}
catch (ClassNotFoundException cnfex) (
System.erxr.println(*Failed to load class driver.");
University of Windsor 2002 118

cnfex.printStackTrace();
}

conn = DriverManager.getConnection(url,uname,upwd) ;

Statement stmt = conn.createStatement();
String Statement = "UPDATE range SET MINPRICE = '"+pprMin+*', MAXPRICE = '*+pprMax+"’

WHERE PRODNAME = '"+Pname+"'";
stmt.execute(Statement) ;

conn.close();

}

catch (SQLException sqglex)

{
System.err.println("Failed to load JDBC/ODBC drivertt!!t!!.");
sqglex.printStackTracel() ;

}

}//BEnd of Method UpdatePPRinCaseBase
}//End of class Case.java

/i*itt*itﬁi*'tif*i******fi*****iii

Product information is a data structure used for temporarlay storing and
manupulating/identifying the price ranges and it is used by Case class to find the public
Maximum and Minimum price ranges for a given product.

ﬁ*i*ii*ii*i***ﬁ*t******i**i*ttiiti/

public class Product
(
public String Pcat; //Product Catagory form SIMVALUE table (DB)
public String Pname;//Product Name
public double Pmin; //Priduct public minimum price
public double Pmax; //Product public maximum price

public Product()

{
Pname = **;
Pcat = **;
Pmax = 0;
Pmin = 0;

}

}// End of class Product

/*******ti****i**tit**********it*t***fi

This class is used to round the double numbers to whatever the precision we want so that we
can save the values in the Case Based Reasoning System.

tt********t*t*******ii*****t*tt*****tfi/

University of Windsor 2002 119

import java.lang.Math;

public class Rounding

{

public static String toString (double d, int place)
(

}

if (place <

return "°"

= 0)
+(int) (d+((d > 0)? 0.5 : -0.5));

d += 0.5*Math.pow(10, -place);

String s =

if (d < 0)
{
S += "o
d = -d;
}

if (d > 1)
{
int i =
s += i;
d -=1i;
}

else

s += "0";
if (4 > 0)
{
d += 1.0
String £

(int)d;

= *"*"+(int) (d*Math.pow(10,place));

s += *."+f.substring(l);

}

return s;

//Rounding.toString(4d, 4)
}//End of class Rounding

/*******ifti*t***i************t*i*****t*

This is a data structure used by Case class. The similar products found is kept in instance

of

this c¢lass temporarlay and return these information to CaseBase during Product

Similarity.

ti***ttitttt***********i*********iii/

public class Simproduct

{
public String Pname;//Product Name
University of Windsor 2002

120

public String Pcat; //Product Catagory form SIMVALUE table (DB)

public double Pmax; //Product public maximum price

public double Pmin; //Priduct public minimum price

public double PSim; //The similarity value found for this product and the product in

question.
}//End of Class Simproduct

/**i***tii***tt**t***it***titti*it*

Agent is an abstract class which extends to Thread and it has the most common attibutes and

the functionalities of all the Buyer Agents, Seller Agents, Buyer Clones and Seller Clones.

fi*f*it****f*tt**t*ﬁt**tiitﬁii**ft/
import java.util.*;

public abstract class Agent extends Thread

{

String AN, PN,BS,ATT, AW, MAX,MIN, SDR;

double aip = 0.0, ait= 0.0, amaxp = 0.0, aminp = 0.0;
Vector LBS;

//Constructor for ActualAgent
public Agent(String AN, String PN, String BS, String ATT, String AW, String MAX, String

MIN, String SDR, Vector LBS) {
this.AN = AN;

this.PN = PN;
this.BS = BS;
this.ATT=ATT;
this.AW = AW;
this.MAX=MAX;
this.MIN=MIN;
this.SDR=SDR;
this.LBS=LBS;

//Constructor for CloneAgent

public Agent(double aip, double ait, double amaxp, double aminp) {

this.aip = aip;
this.ait = ait;
this.amaxp = amaxp:;
this.aminp = aminp;

}
public String getAgentName() (

return AN;

University of Windsor 2002 121

//BuyerAgent, SellerAgent, BuyerClone or SellerClone Notification
public abstract void Notify(double sdr,Vector listBs);
//Agents to start Negotiation (where run is kept)
public void startNegotiation() {
}
}// BEnd of abstract class Agent

/*****t*t******t*i**i*t***i*ii**'h*t#t

Abstract class ActualAgent is a subclass of abstract class Agent. Here we have the most

common attributes and methods of BuyerAgent or Seller Agent. As we need to
Buyer and Seller Agents we implement Runnable here

i**itii*****t****i**t****ﬁ*******it**/

import java.util.*;

public abstract class ActualAgent extends Agent implements Runnable
{

//To CaseBaseSystem Component

Case C = new Case();

EWNEW EwNew = new EWNEW();

EWNEW.ForAgents FA = EwNew.new ForAgents();

double IT =0.0, IP=0.0, IC=0.0, ASDR = 0.0, aW = 0.0

double UserMax = 0.0, UserMin = 0.0;

.
13

double BCWarr=0.0, BCPMax=0.0, BCPMin=0.0, BCPrice=0.0, BCSDR=0.0;

double ThisProductsPPRMax=0.0, ThisProductsPPRMin=0.0, BCIT=0.0, BCIP=0.0,
double AdjustedIT = -1, AdjustedlIP = -1;

String BestCaseRecord="", BCPC="", BCPN="", BCAtt="", ="";
int BCR = -1;

//Constructor

have Threads for

BCIC=0.0;

public ActualAgent(String AN, String PN, String BS, String ATT, String AW, String MAX,

String MIN, String SDR
//initialize common attributes and behaviour
super (AN, PN, BS, ATT, AW, MAX, MIN, SDR, LBS) ;
this.AW = Double.parseDouble(AW) ;
//User's attitude, SDR Max and Min price are saved
StringTokenizer tokens = new StringTokenizer (ATT,","):
while (tokens.hasMoreTokens())

{
IT = Double.parseDouble(tokens.nextToken(});
IP = Double.parseDouble(tokens.nextToken(}):;
University of Windsor 2002

, Vector LBS) {

122

IC = Double.parseDouble(tokens.nextToken());

ASDR = Double.parseDouble (SDR) ;
UserMax = Double.parseDouble (MAX) ;
UserMin = Double.parseDouble(MIN) ;

//Best Relevant case is found for the agent to adjust the Mental Attitude
BestCaseRecord = C.getBestCase(BS, PN, IT, IP, IC);

//Needed information are tokenized from best result to find agent's MaxMin
TokenizeTheBestCase (BestCaseRecord) ;

//If there is no match

if (BestCaseRecord == null)
System.out.println("no relavent case found... ");
AdjustedIT = IT;
AdjustedIP = IP;

}

else(

AdjustAttitude(IT, BCIT, IP, BCIP, BCR);
}

}//END OF CONSTRUCTOR ActualAgent

//Needed information are tokenized from best result to find agent's MaxMin
public void TokenizeTheBestCase(String BestCaseRecord)
{
StringTokenizer tok = new StringTokenizer (BestCaseRecord,"|");
while(tok.hasMoreTokens())
{
BCPC

H

tok.nextToken() ;
BCPN = tok.nextToken();
BCWarr = Double.parseDouble(tok.nextToken());
BCPMax = Double.parseDouble(tok.nextToken()):
BCPMin = Double.parseDouble(tok.nextToken());
BCPrice= Double.parseDouble(tok.nextToken()):;
BCAtt = tok.nextToken();
BCSDR

Double.parseDouble{tok.nextToken());
BCNR = tok.nextToken();

BCR = Integer.parselnt(tok.nextToken());
ThisProductsPPRMax

Double.parseDouble(tok.nextToken()) ;
ThisProductsPPRMin = Double.parseDouble(tok.nextToken()):;
}
StringTokenizer toke = new StringTokenizer (BCAtt,","):;
while (toke.hasMoreTokens ())
{
BCIT = Double.parseDouble(toke.nextToken());

University of Windsor 2002 123

BCIP
BCIC

Double.parseDouble (toke.nextToken()) ;

Double.parseDouble (toke.nextToken()) ;
}
}//End of Method TokenizeTheBestCase

//Adjusting the Agent's (User's) Attitude (Learning...)
public void AdjustAttitude(double IT, double BCIT, double IP, double BCIP, int BCR)
{
if(BCR == 1) //Best Case negotiation was a successful negotiation
{
if (Math.abs(IT - BCIT)== 0.1)
AdjustedIT = BCIT;
else if (BCIT > IT)
AdjustedIT = IT + 0.1;
else AdjustedIT = IT - 0.1;

if(Math.abs(IP - BCIP)== 0.1)
AdjustedIP = BCIP;
else if (BCIP > IP)
AdjustedIP = IP + 0.1;
else AdjustedIP = IP - 0.1;
}
else //Best Case negotiation was NOT a successful negotiation
{
if (BCIT >= IT) AdjustedIT = IT + 0.1;
else AdjustedlIT = IT;
if (BCIP <= IP) AdjustedIP = IP - 0.1;
else AdjustedIP = IP;

}
public abstract wvoid Notify(Vector listBS, double pprMax, double pprMin);
}// End of abstract class ActualAgent

/ti**tiitt*itti*’i*tftiii**i****t***t*

Abstract class CloneAgent is a subclass of abstract class Agent. Here we have the most
common attributes and methods of BuyerClone & SellerClone. As we need to have Threads for
BuyerClone and SellerClon Agents we implement Runnable here

*********it**tt*titi'**t*i*tiit***t***,
import java.util.Vector;
public abstract class CloneAgent extends Agent implements Runnable

{
University of Windsor 2002 124

//initialize common attributes and behaviour
public CloneAgent(double aip, double ait, double amaxp, double aminp) {
super (aip,ait, amaxp,aminp) ;

public void Notify(double sdr,Vector listBs) (
// do nothing

public abstract void Offer(double price);

public abstract void Counteroffer();

}// BEnd of class CloneAgent

/*tii*ii*t*t*t**iii*i***i*f*ti*t*iiii*iiii*

BuyerAgent is a subclass of abstract class ActualAgent. Here we have all the specific

functionalities of a Buyer Agent. They are Finding Maximum and Minimum price (based on

agents mental attitude, SDR, PPR and Experience)

f*i****ifii****i***i*f****'ﬁ*****t#f**t*f***/

import java.util.*;

public class BuyerAgent extends ActualAgent

{

double AgentMaxPrice = 0.0, AgentMinPrice = 0.0;

long SLEEP_TIME = 500;

boolean donedeal = false, isSellerCloneSet = false;

Vector listOfBuyerClone = new Vector(10):;//Keep track of BuyerClones

Vector listOfNewClone = new Vector(10); //Keep track of New Clones BuyerClone to be
//created, if needed

Vector priceResult = new Vector(10):; //Negotiation result of each clone in a BuyerAgent

SellerAgent bestPricedSeller = null;

PriceResult bestPriceResult;

/ /Constructor

public BuyerAgent (String AN, String PN, String BS, String ATT, String AW, String MAX,
String MIN, String SDR, Vector LBS)({
//initialize common attributes and behaviour
super (AN, PN, BS, ATT, AW, MAX, MIN, SDR,LBS) ;
this.start();
FindBuyerMaxMin() ;

//This method calcultes the Buyer Agent's Price Ranges

University of Windsor 2002 125

public void FindBuyerMaxMin()

{

AgentMaxPrice = ThisProductsPPRMax - (({ThisProductsPPRMax*AdjustedIP)*(1l - IC))/3) +

ThisProductsPPRMax* (1 - ASDR)* 05 + ThisProductsPPRMax* (AW-BCWarr)*0.05;
AgentMinPrice = ThisProductsPPRMin + (AdjustedIT*(ThisProductsPPRMax -
ThisProductsPPRMin)) /10;
if (AgentMaxPrice > UserMax)AgentMaxPrice = UserMax;
System.out.println("Change In Environment: ® + AN + " Max Price: * + AgentMaxPrice + * Min

Price: " + AgentMinPrice);

//Here, when Notify is invoked from the EnvironmentWatcher, we create the BuyerClones for
//buyers and ask the SellersAgents to create a corrosponding SellerClones to
//communicate (negotiate) for the product. As the EnvironmentWatcher class sends all the
//buyers and seller that is found in the market for a product, we want to identify the
//Sellers who are not in the listOfSeller and also the Sellers who are NOT in the
//priceResult Vector. If we find any such new Sellers we create a new BuyerClone and ask the
//New Seller to create a SellerClone for negotiation. Now we keep the reference on both the
//buyerclone and sellerclone. Then add the new BuyerClone £o the istOfBuyerClone and

//listOfNewClone. When StartNegotiation is issued from Environment these new clones will
//start the negotiation

private void createClone() {

listOfNewClone.clear();

boolean isCloneNeeded = false;
boolean isNotFoundInPR = true;
boolean isNotFoundInBCL = true:;

for(int i = 0 ; i <LBS.size(); i++)({
Object obj = LBS.get(i);
if(obj instanceof SellerAgent) {

if (1istOfBuyerClone.size()>0 && priceResult.size()>0){
isCloneNeeded = true;

else if (listOfBuyerClone.size() <= 0 && priceResult.size() <=0){
isCloneNeeded = true;
}
else if (listOfBuyerClone.size() > 0 && priceResult.size() <=0)({
isCloneNeeded = true;
}
SellerAgent sAgent = (SellerAgent) obj;
for(int j = 0; j< listOfBuyerClone.size(); j++){
BuyerClone clone = (BuyerClone)listOfBuyerClone.get(j);
University of Windsor 2002 126

if (clone.getSellerName() .equalsIgnoreCase (sAgent.getAgentName())){
isNotFoundInBCL = false;

}

for(int k=0; k<priceResult.size(); k++){
PriceResult pr = (PriceResult)priceResult.get(k);
if ((pr.AA.AN) .equals(sAgent.AN)) {
isNotFPoundInPR = false;

}
if (isNotFoundInBCL && isNotFoundInPR && isCloneNeeded) {
BuyerClone bClone = new BuyerClone(this,AdjustedIP,
AdjustedlIT, AgentMaxPrice,AgentMinPrice) ;
SellerClone sClone = sAgent.setBuyerClone(bClone) ;
bClone.setSellerClone(sClone) ;
listOfBuyerClone.addElement (bClone) ;
listOfNewClone.addElement (bClone) ;
}//if ends
isCloneNeeded = false;
isNotFoundInPR = true;
isNotFoundInBCL = true;

}//if is over for listOfBuyerClone is not zero and priceResult not zero
}
}// end of method CreateClone

//When a BuyerClone or a SellerClone finishes negotiation with the opponent Clone they
//invoke this method to take the corresponding Seller out of the listOfBuyerClone and to add

//the reference of the Seller, price, deal done or not and negotiation offer/counter-offer
//as PriceResult instance in priceResult Vector.

public void RemoveNegotiationBuyerClone(PriceResult pResult, BuyerClone bc)
{

priceResult.addElement (pResult);
for(int i=0; i < listOfBuyerClone.size(); i++){
if (bc.equals((BuyerClone)listOfBuyerClone.get{i))) {
listOfBuyerClone.remove(i) ;

if(listOfBuyerClone.size() == 0){
for(int j = 0; j<priceResult.size(); j++){
PriceResult prpr = (PriceResult)priceResult.get(j);
System.out.println(AN + "'s Negotiation recorded with " + prpr.AA.AN + *:

* + prpr.negotiationRec);
University of Windsor 2002 127

//This method is invoked by BuyerCloneis) RunNegotiation Theard when they are done with
//their deal. Since the RemoveNegotiationBuyerClone method above already removes the Buyer
//clone from listOfBuyerClone when the negotiation clones reach a result (as accepted or
//rejected), at one point listOfBuyerClone will become empty! When listOfBuyerClone becomes
//empty, this method finds the best seller using SuccessfulDealByClone and if exist, sends a
//message to that best Seller saying WantToBuy.

//if the seller replies *"DoneDeal®"-->All the other sellers who made a successful deal with
//this Buyer's Clones are notified(it is in the priceResult Vector) asking them to remove
//this Buyer from their list.

//if the seller replies "NoDeal"-->We remove the bestSeller from priceResult Vector and go
//for the next bestSeller if there is one exist.

//If the seller replies "Wait"--> We call the wait method, which will only bring in the
//reply of *DoneDeal" or "NoDeal"

//If the BuyerCloneList is empty then we know that we have done with all the clones
// {negotiation).

//Now send a message to Seller if I have an accept in my priceResult Vector
public void wWantToBuy() {

ActualAgent actuSAgent = null;
ActualAgent bestPriceSeller = null;
if (listOfBuyerClone.size() == 0)(
String resultOfSeller = **;
//If at least one Seller willing to sell
while (SuccessfulDealByClone() && (!donedeal)){
resultOfSeller = bestPricedSeller.WantToBuy(this);
if(resultOofSeller.equals("DealDone")) {
//Notify all the accepted Sellers (by Clones) that you reject them...
donedeal= true;
for(int m=0; m<priceResult.size(); m++) {
PriceResult P_R = (PriceResult)priceResult.get(m);
SellerAgent sssaaa = (SellerAgent)P_R.AA;
if((P_R.accRej == 1) && (! ((sssaaa.AN).equals(bestPricedSeller.AN)))){
sssaaa.RejectionFromBuyers (this);

priceResult.remove(m) ;

}

C.UpdateOrAddNegotiation (SetStringForUpdation());
System.out.println(AN + * Removes himself from the Market®);
FA.RemoveBuyerSeller (PN, AN, BS):

University of Windsor 2002 128

}
if(resultOfSeller.equals(*NoDeal")) {
for(int j=0; j<priceResult.size(); j++){
PriceResult pprr = (PriceResult)priceResult.get(j):;
if ((pprr.AA.AN) .equals(bestPricedSeller.AN)) {
priceResult.remove(]j);
}//if over

}//for over

if (resultOfSeller.equals("Wait*)) {
resultOfSeller = CallWait (bestPricedSeller);
if (resultOfSeller.equals("DealDone")) {
for(int m=0; m<priceResult.size(); m++) {
PriceResult P_R = (PriceResult)priceResult.get(m);
SellerAgent sssaaa = (SellerAgent)P_R.AA;
if((P_R.accRej == 1) && (! ((sssaaa.AN).equals(bestPricedSeller.AN)))){
sssaaa.RejectionFromBuyers (this) ;

priceResult.remove(m) ;

}
C.UpdateOrAddNegotiation(SetStringForUpdation());
System.out.println(AN + " Removes himself from the Market");
donedeal = true;
FA.RemoveBuyerSeller (PN, AN, BS);
}
if (resultOfSeller.equals("NoDeal")) {
for(int j=0; j<priceResult.size(); j++)(
PriceResult pprr = (PriceResult)priceResult.get(j);
if ((pprr.AA.AN) .equals(bestPricedSeller.AN}) {
priceResult.remove(j);
}//if over

}//for over

}
}//end while
//if any successful negotiation exist
if (!SuccessfulbDealByClonel())
{
System.out.println("No deal from any Seller for this Buyer: " + AN):
System.out.println(AN + " Removes himself from the Market");
FA.RemoveBuyerSeller (PN, AN, BS);
}
}//end of if

University of Windsor 2002 129

}//end of method WantToBuy

//This method will return a string of "DoneDeal" or *Nodeal" when a seller agent decides to
//sell or not sell the product to this agent. In the mean time seller will say wait and this
//methods puts this Buyer to sleep for the indicated seconds.

public String CallWait(SellerAgent bestPricedSeller) {
String resultOfSeller = *Wait";
while(resultOfSeller.equals(*Wait")) (
try(
this.sleep(3000);
}catch(InterruptedException ee) {
ee.printStackTrace() ;
}
resultOfSeller = bestPricedSeller.WantToBuy(this);
}
return resultOfSeller;
}//end of method CallWait

//Buyer finds the bestSeller from the priceResult Vector and sets the attribute
//bestPricedSeller with that bestSeller, if not false value is send back to the invoker(Want
//to buy in this case).

public boolean SuccessfulDealByClone() {
double bestprice = 100000.00;
PriceResult PR = null;
bestPricedSeller = null;
bestPriceResult = null;
for(int j = 0; j < priceResult.size(); j++)(
PR = (PriceResult)priceResult.get(j);
if (PR.price < bestprice && PR.accRej == 1) (
bestprice = PR.price;
bestPriceResult = PR;
bestPricedSeller = (SellerAgent)PR.AA;
}
}//for ends
if (bestPricedSeller == null) return false;
else return true;

}//end of SuccessfulDealByClone

//This method sets the string for recording Case Base Reasoning System. It sets the strings
//in the right order.

public String SetStringForUpdation() {
University of Windsor 2002 130

String matcher= "";
matcher += BS +"|";
matcher += BCPC +"|*;
matcher += PN +*|*;
matcher += AW +"|*;
matcher += ThisProductsPPRMax +"|*";
matcher += ThisProductsPPRMin +"|";
matcher += Rounding.toString(bestPriceResult.price,2) +"|";

String att = Rounding.toString(AdjustedIT,2) + ",* + Rounding.toString(AdjustedIP,2) +

.+ IC;
matcher += att + *|*;
matcher += Rounding.toString(ASDR,4) +"|";
matcher += bestPriceResult.negotiationRec +*|"*;
matcher += bestPriceResult.accRej;
System.out.println(matcher);
return matcher;

}//end of method SetStringForUpdation

//This mehtod is called by StartNegotiation to start the new BuyerClones' negotiation-if
//there was any new Sellers came into the market, which would have been in listOfNewClone
//when createClone was invoked from Notify.

public void runNow() {
try(
Thread.sleep (SLEEP_TIME) ;
}catch({InterruptedException ee) (
ee.printStackTrace();
}
for(int i = 0; i < listOfNewClone.size(); i++){
BuyerClone bClone = (BuyerClone)listOfNewClone.get(i);
bClone.run() ;
}
}//end of method runNow

//This method is invoked when there is a change in the marketplace. When there is a buyer or
//seller comes in for a product, or removes from a products list in BSL class, and if it
//causes considerable change in Supply Demand ratio for a product here we call FindMaxMin
//method and createClone method. When there is a change only in Public Price Range for a
//product in the marketplace, FindMaxMin method is invoked. Otherwise if its only change in

//the Buyer Seller coming into the market or leaving the market then we just call the Create
//Clone method.

public void Notify(double sdr, Vector 1listBS) (
University of Windsor 2002 131

BuyerClone allBuyerClone = null;

LBS = listBS;

createClone() ;

if((Math.abs (ASDR-sdr)>0.1)) {

ASDR = sdr;

FindBuyerMaxMin () ;

for(int i=0; i<listOfBuyerClone.size(); i++){(

allBuyerClone = (BuyerClone)listOfBuyerClone.get(i);
allBuyerClone.Notify(AgentMaxPrice, AgentMinPrice) ;

}
}// end of method Notify

public void Notify(Vector listBS, double pprMax, double pprMin) {
BuyerClone allBuyerClone = null;
if (! (ThisProductsPPRMax == pprMax) || ! (ThisProductsPPRMin == pprMin)){
ThisProductsPPRMax = pprMax;
ThisProductsPPRMin = pprMin;
FindBuyerMaxMin() ;
for(int i=0; i<listOfBuyerClone.size(); i++){
allBuyerClone = (BuyerClone)listOfBuyerClone.get(i);
allBuyerClone.Notify(AgentMaxPrice, AgentMinPrice) ;

}
}// end of another Notify

//This method is called from EnvironmentWatcher to Start the negotiation between
//BuyerClone & SellerClone

public void startNegotiation() (
runNow () ;
}
}// END OF CLASS BuyerAgent

/*****t**tt**tt***t*t*fi*****i****t**if**

SellerAgent is a subclass of abstract class ActualAgent. Here we have all the specific

functionalities of a Seller Agent. They are Finding Maximum and Minimum price (based on
agents mental attitude, SDR, PPR and Experience)

f*t***tii***********t*****t*******fi**f#t/

import java.util.*;

University of Windsor 2002 132

public class SellerAgent extends ActualAgent

{
double AgentMaxPrice = 0.0, AgentMinPrice = 0.0;
boolean productSold

false, prodsold = false;

Vector listOfSellerClone = new Vector(10)://Keep track of SellerClones

Vector priceResult = new Vector(10);//Negotiation result of each clone in a SellerAgent
Vector BuyersToBuy

]

new Vector(10); //Keep track of Buyers who acctually want to buy out

//of the accepted Buyers
PriceResult pr;

PriceResult bestPriceResult = null;

public SellerAgent(String AN, String PN, String BS, String ATT, String AW, String MAX,
String MIN, String SDR, Vector LBS) {
//initialize common attributes and behaviour
super (AN, PN, BS, ATT, AW, MAX, MIN, SDR, LBS) ;
FindSellerMaxMin() ;
this.start();

//When a SellerClone or a BuyerClone finishes negotiation with the opponent Clone they
//invoke this method to take the corresponding Buyer out of the listOfSellerClone and to
//add the reference of the Seller, price, deal done or not and negotiation offer/counter-
//offer as PriceResult instance in priceResult Vector.

public synchronized void RemoveNegotiationSellerClone(PriceResult pr, SellerClone sc)
{
ActualAgent actuAgent = null;
ActualAgent bestPriceSeller = null;
priceResult.addElement(pr);
for(int i=0; i < listOfSellerClone.size(); i++)
{
if(sc.equals((SellerClone)listOfSellerClone.get(i)))

listOfSellerClone.remove(i);
}

}// end of method RemoveNegotiationSellerClone

//This method is invoked by BuyerAgent(s) when all their clones are done negotiating with
//SellerClones. Seller adds the Buyers who want to buy the product to a BuyersToBuy list and
//sends the result "Wait" when the listOfBuyers is not empty or when he is waiting for best
//buyer to contact him. But the best buyer of this seller might remove himself by calling
University of Windsor 2002 133

//the RejectionFromBuyers mehtod from BuyerAgent inside the WantToBuy method of BuyerAgnet.
//This is also taken care of by checking the bestBuyer every time a BuyerAgent calls for

//deal. If the bestbuyer comes in for the product then it will send the message "DoneDeal"
//to the buyer

public String WantToBuy(BuyeraAgent BA) {
boolean addbuyer = true;

double bestprice = -1.0;

e,
’

String resultToBuyer

BuyerAgent hestBuyer null;
bestPriceResult = null;
if (BuyersToBuy.size()<=0) {
BuyersToBuy.addElement (BA) ;
}
else(
for(int i = 0; i<BuyersToBuy.size(); i++)(
if (BA.equals ((BuyerAgent)BuyersToBuy.get(i))) (
addbuyer = false:
}
}//end of for
if (addbuyer) BuyersToBuy.addElement (BA);
}
for(int k = 0; k<priceResult.size(); k++){
PriceResult pprr = (PriceResult) priceResult.get(k);
if (pprr.price > bestprice && pprr.accRej == 1) ({
bestprice = pprr.price;
bestPriceResult = pprr;
bestBuyer = (BuyerAgent)pprr.AA;

}
if(listofsSellerClone.size()<=0) {
if (((bestBuyer.AN) .equals (BA.AN)) && (!productSold)) (
prodsold = true;
resultToBuyer = "DealDone-";
System.out.println(AN + " sold the product to * + BA.AN);
for(int k = 0; k<BuyersToBuy.size(); k++){
BuyerAgent btb = (BuyerAgent)BuyersToBuy.get(k);
if ((btb.AN) .equals(BA.AN)) {

BuyersToBuy.remove (k) ;

}

C.UpdateOraddNegotiation(SetStringForUpdation());
FA.RemoveBuyerSeller (PN, AN, BS);

University of Windsor 2002 134

}
else if(!productSold) resultToBuyer = *Wait*";
else if (productSold) {
for(int 1 = 0; l<BuyersToBuy.size(); 1l++)({
BuyerAgent bbaa = (BuyerAgent)BuyersToBuy.get(l);
System.out.println(AN + " rejects * + bbaa.AN);
if (bbaa.equals(BA)) {

BuyersToBuy.remove(l) ;

}
if (BuyersToBuy.size()<=0) {
System.out.println(AN + * Leave the Marketplace");
FA.RemoveBuyerSeller (PN, AN, BS):
}
resultToBuyer = "NoDeal";
}
}//if list of seller clone is over...
else {
resultToBuyer = "Wait";
}
productsSold = prodsold;
return resultToBuyer;
}//end of method....

//This method is invoked by BuyerAgent when Buyer finds a deal from some Seller but still
//have some Sellers in his priceResult list as accepted. Buyer invokes this method on such
//other seller(s) to remove himself from their priceResult Vector so that the sellers can
//accept other buyers deal by leaving the "Wait" reply and going into “DoneDeal® or
//"NoDeal".

public void RejectionFromBuyers (BuyerAgent ba) {
for (int i = 0; i<priceResult.size(); i++){
PriceResult ppprrr = (PriceResult)priceResult.get(i);
if ((ppprrr.Ad) .equals(ba)) {

priceResult.remove(i);

}
}// end of method RejectionFromBuyers

//This method sets the string for recording Case Base Reasoning System. It sets the strings
//in the right order.

public String SetStringForUpdation() {

String matcher= **;

University of Windsor 2002 135

matcher += BS + *|*;

'

matcher += BCPC +*|*;

’

matcher += PN + *|
matcher += AW + *|*;

matcher += ThisProductsPPRMax + "|*;

matcher += ThisProductsPPRMin + "|*;

matcher += Rounding.toString(bestPriceResult.price,2) + "|*;

String att = Rounding.toString(AdjustedIT,2) + *,* + Rounding.toString(AdjustedIP,2) +
", + IC;

matcher += att + *|*;

matcher += Rounding.toString(ASDR,4) + "|*;

matcher += bestPriceResult.negotiationRec + "|*;

matcher += bestPriceResult.accRej;

System.out.println(matcher);
return matcher;

}// end of method SetStringForUpdation

//This method is invoked by createClone method of BuyerAgent when this Seller agent is new
//or not in priceResult Vector for that BuyerAgent. It is done this way so that we can have
//the references of each other (Clones) and Clones can have proper references to their
//parent agents (BuyerAgent or SellerAgent).

public SellerClone setBuyerClone(BuyerClone bClone) (
SellerClone sClone = new SellerClone(this,AdjustedIP,AdjustedIP,AgentMaxPrice,

AgentMinPrice}) ;
sClone.setBuyerClone(bClone) ;
listOfSellerClone.addElement (sClone) ;
return sClone;

}// end of method setBuyerClone
//This method calculates the Seller Agent Price Ranges

public void FindSellerMaxMin()
{
AgentMaxPrice = ThisProductsPPRMax - (AdjustedIT* (ThisProductsPPRMax -
ThisProductsPPRMin}) /10;
AgentMinPrice = ThisProductsPPRMin + ((ThisProductsPPRMin* AdjustedIP)*(1 - IC))/3 +
ThisProductsPPRMin *(1 - ASDR)*0.05 + ThisProductsPPRMin * (AW-BCWarr)*0.05;
if (AgentMinPrice > UserMin)AgentMinPrice = UserMin;
System.out.println("Change In BEnvironment: * + AN + * Max Price: " + AgentMaxPrice + *
Min Price: * + AgentMinPrice);
}// end of method FindSellerMaxMin

University of Windsor 2002 136

//This method is invoked when there is a change in the marketplace. When there is a buyer or

//seller comes in for a product, or removes from a products list in BSL class, and if it

//causes considerable change in Supply Demand ratio for a product here we call FindMaxMin

//method. Also, when there is a change only in Public Price Range for a product in the

/ /marketplace, FindMaxMin method is invoked.

public void Notify(double sdr,Vector listBs) (
SellerClone allSellerClone = null;
if ((Math.abs (ASDR-sdr)>0.1)){
ASDR = sdr;
FindSellerMaxMin() ;

for(int i=0; i<listOfSellerClone.size(); i++){(

allSellerClone = (SellerClone)listOfSellerClone.get(i);

allsellerClone.Notify(AgentMaxPrice, AgentMinPrice);

}
}//end of if
}//end of Notify

public void Notify(Vector listBS, double pprMax, double pprMin) {
SellerClone allSellerClone = null;

if (! (ThisProductsPPRMax == pprMax) || ! (ThisProductsPPRMin == pprMin)) {

ThisProductsPPRMax = pprMax;
ThisProductsPPRMin = pprMin;
FindSellerMaxMin() ;
for(int i=0; i<listOfSellerClone.size(); i++){
allSellerClone = (SellexClone)listOfSellerClone.get(i);
allSellerClone.Notify(AgentMaxPrice, AgentMinPrice);

}
}
}// BEnd of class SellerAgent

/i*ii*tit*ii**i*ii*ii’****t*’****i****

BuyerClone is a subclass of abstract class AgentClone. Here we have all the specific

functionalities of a BuyerClone. They are finding the BidIncrement,

Calculating Offer and

Counter Offer, and Recalculation of BidIncrement when changes are notified either in Public

Price Range or Supply Demand Ratio or in new buyer or seller comes in.

****t***'k***it**t*ti*t*****t**t*t*itif/

public class BuyerClone extends CloneAgent
{
double bidInc = 0.0, lastPrice = 0.0;

University of Windsor 2002

137

boolean rejectCondition = false;
boolean isNotDone = true;
boolean setOffer = false;
boolean setCounterOffer = false;
String negotiationRec ="";
SellerClone sClone = null;

BuyerAgent bAgent = null;

PriceResult priceResult;//To save the negotiation result of this Buyer Clone

public BuyerClone(BuyerAgent agent , double aip, double ait, double amaxp, double aminp) {

//initialize common attributes and behaviour
super (aip,ait, amaxp, aminp) ;

bidinc = BidIncrement(aip, ait, amaxp, aminp);
bAgent = agent;

RunNegotiation runNeg = new RunNegotiation():;
runNeg.start();//Start the negotiation therad

//This method finds the increment price values of Buyer when they are created and also when

//they are notified of changes in the market.

double BidIncrement (double aip, double ait, double amaxp, double aminp) (

bidInc = (amaxp - aminp)/5 + 0.5*(ait*(amaxp - aminp)/10*aip);
// System.out.println("Bid increment for buyer: * + bidInc);

return bidInc;

public void setSellerClone(SellerClone sClone) {
this.sClone = sClone;

}

public String getSellerName() {

return sClone.getSellerName():;

//This Started when BuyerClone is c¢reated But actual negotiation offer

//BuyerAgent's runNow() invokes it again

public void run{() (
negotiationRec += Rounding.toString(aminp,2};
lastPrice = aminp;

setOffer = true;

University of Windsor 2002

starts when

138

//0ffer increments are done here with saving the offer/counter-offer into the string

//negotiationRec for later use through priceResult instance.
//corresponding SellerClone as well as this Clone

//CloneNegotiationAcceptReject method.

public void Offer (double price)
{
if(price <= amaxp) (
negotiationRec += "/* + Rounding.toString(price,2);
lastPrice = price;
sClone.CloneNegotiationAcceptReject (*accepted®);
CloneNegotiationAcceptReject("accepted”®);
}
else(
negotiationRec += "/* + Rounding.toString(price,2);
setCounterOffer = true;
}

//0ffer increments are done here with saving the offer/counter-offer

//negotiationRec for later use through priceResult instance.
//corresponding SellerClone as well as this Clone

//CloneNegotiationAcceptReject method.

public void CounterOffer() (
aminp = aminp + bidlInc;
if (aminp > amaxp)
{
aminp = amaxp:;
rejectCondition = true;
}
try{
Thread.sleep(3000);
}catch(InterruptedException ee) {
ee.printStackTrace();
}
if (trejectCondition) {
negotiationRec += */* + Rounding.toString(aminp,2);
lastPrice = aminp;
sClone.Offer (aminp) ;
}
else (

sClone.CloneNegotiationAcceptReject("rejected”);
University of Windsor 2002

is

notified

In case Accepted or Rejected

by

calling

into the string

In case Accepted or Rejected

is

notified

by

calling

139

CloneNegotiationAcceptReject("rejected®);

//When chnges occur in the environment this method is asked to change the to the new maximum

//and minimum price.

public void Notify(double amaxp, double aminp) {
this.amaxp = amaxp;
this.aminp = aminp;

//This method is used to control the flow of the offer and counter offer method.

public synchronized void doNegotiation()}({
if (setOffer) {
sClone.Offer (aminp) ;
setOffer = false;

if (setCounterOffer) (
CounterOffer();

setCounterOffer = false;

//When a negotiation in offer/counter-offer method is over this method is called to save the
//needed result and to create the instance of PriceResult with accepted or rejected price,

//negotiation record string, result of negotiation and reference to the SellerAgent whom

//this Clone was talking to.
public void CloneNegotiationAcceptReject(String AccRej) {

int result = -1;
if (AccRej.equals("accepted”))
result = 1;

else result = 0;

PriceResult pr = new PriceResult();

pr.price = lastPrice:;

pr.accRej = result;

pr.AA = sClone.sAgent;

pr.negotiationRec = negotiationRec;

bAgent .RemoveNegotiationBuyerClone(pr, this);

isNotDone = false;

University of Windsor 2002 140

//This iner class serves as the thread that handles offer and ounter-offer by sleeping (x)}
//seconds between offer and counter-offer. It is also responsible for notifying the Buyer

//Agnet to chcek and see if he should start Talking to the Seller using the call
//"bAgent.WantToBuy()".

class RunNegotiation extends Thread

{
RunNegotiation()
{
super () ;
}
public void run()
{
while(isNotDone)
{
try
{
Thread.sleep(6000);
}catch(InterruptedException iEx) {iEx.printStackTrace();}
doNegotiation():
}
bAgent.WantToBuy() ;
}
}

}// BEnd of class BuyerClone

/t*i'b**ii**i****t**ti*i*fi*i*********f’t*i

SellerClone is a subclass of abstract class AgentClone. Here we have all the specific
functionalities of a SellexClone. They are: Finding the BidDecrement, Calculating Offer and
Counter Offer, and Recalculation of BidDecrement when changes are notified either in Public
Price Range or Supply Demand Ratio or when new buyer or seller comes in.

'k***'k**iit***************t*******t'**tttttl

public class SellerClone extends CloneAgent
{

double bidbDec = 0.0;

double lastPrice = 0.0;

String negotiationRec ="";

boolean firstOffer = true;

boolean rejectCondition = false;

University of Windsor 2002 141

boolean isNotDone = true;
boolean setCounterOffer = false;
SellerAgent sAgent = null;
BuyerClone bClone = null;

PriceResult priceResult;//To save the negotiation result of this Clone

public SellerClone(SellerAgent agent, double aip, double ait, double amaxp, double aminp) {
//initialize common attributes and behaviour
super (aip, ait, amaxp, aminp) ;
bidbDec = BidDecrement(aip, ait, amaxp, aminp);
sAgent = agent;
RunNegotiation runNeg = new RunNegotiation():;
runNeg.start();//Start the negotiation therad

public void setBuyerClone (BuyerClone bClone) {
this.bClone = bClone;

}

public String getSellerName() {

return sAgent.getAgentName();

//This method finds the decrement price values of Seller when they are created and also when
//they are notified of changes in the market.

double BidDecrement (double aip, double ait, double amaxp, double aminp) {
bidDec = (amaxp - aminp)/5 + 0.5*(ait*(amaxp - aminp)/10*aip);
//System.out.println("Bid decrement for Seller: * + bidbDec);
return bidDec;

//0ffer increments are done here with saving the offer/counter-offer into the string
//negotiationRec for later use through priceResult instance. In case Accepted or Rejected
/ /corresponding BuyweClone as well as this Clone is notified by calling
//CloneNegotiationAcceptReject method.

public void Offer(double price) (
if(price >= aminp){
negotiationRec += Rounding.toString(price,2);
lastPrice = price;
CloneNegotiationAcceptReject("accepted”) ;
bClone.CloneNegotiationAcceptReject ("accepted®);
}

else if(rejectCondition==false) (

University of Windsor 2002 142

negotiationRec += Rounding.toString(price,2) + */*;
setCounterOffer = true;
}
else if (rejectCondition==true){
negotiationRec += Rounding.toString(price,2);
CloneNegotiationAcceptReject(*rejected”);
bClone.CloneNegotiationAcceptReject("rejected");

//0ffer increments are done here with saving the offer/counter-offer into the string
//negotiationRec for later use through priceResult instance. In case Accepted or Rejected
/ /corresponding BuyerClone as well as this Clone is notified by calling
//CloneNegotiationAcceptReject method.

public void CounterOffex() (
if(1firstoffer)(
amaxp = amaxp - bidbDec;
if (amaxp < aminp)
{
amaxp = aminp;

rejectCondition = true;

else(
firstOoffer = false;
}
try(
Thread.sleep(3000);
}catch(InterruptedException ee) {

ee.printStackTrace();

negotiationRec += Rounding.toString(amaxp,2) + */";
lastPrice = amaxp;
bClone.Offer (amaxp) ;

//When chnges occur in the environment this method is asked to change the to the new maximum
//and minimum price.

public void Notify(double amaxp, double aminp) {
this.amaxp = amaxp;
this.aminp = aminp;

University of Windsor 2002 143

//This method is used to control the flow of the offer and counter offer method.

public synchronized void doNegotiation() {
if (setCounteroffer) (
CounterOffer();
setCounterOffer = false;

//when a negotiation in offer/counter-offer method is over this method is called to save the

//needed result and to create the instance of PriceResult with accepted or rejected price,

//negotiation record string, result of negotiation and reference to the BuyerAgent whom this

//Clone was talking to.

public void CloneNegotiationAcceptReject (String AccRej) {
int resulct;
if (AccRej.equals("accepted"))
1;

result
else
result = 0;

PriceResult pr = new PriceResult();

pr.price = lastPrice;

pr.accRej = result;

pr.AA = bClone.bAgent;

pr.negotiationRec = negotiationRec;

sAgent .RemoveNegotiationSellerClone(pr, this) ;

isNotDone = true;

//This iner class serves as the thread that handles offer and counter-offer by sleeping (x)

seconds between offer and counter-offer.

class RunNegotiation extends Thread
{
RunNegotiation()
{
super();

}
public void run()
{

while (isNotDone)

University of Windsor 2002

144

}// End of

try

Thread.sleep(3000);

}catch(InterruptedException iEx) {iEx.printStackTrace();}

doNegotiation();

class SellerClone

Database schema for this application

/¥=======================z===============z==z==== = ========== ===*/

/* Database name: PHYSICALDATAMODEL_1 */

/* DBMS name: ORACLE Version 7 */

/* Created on: 8/07/02 11:56:22 AM */

/*======c===== ====== ==*/

drop table SCOTT.BUYEREXP cascade constraints

/

drop table SCOTT.RANGE cascade constraints

/

drop table SCOTT.SELLEREXP cascade constraints

/

drop table SCOTT.SIMVALUE cascade constraints

/

/*======= = */

/* Table: BUYEREXP */

/*========== */

create table SCOTT.BUYEREXP (
PRODCAT VARCHAR2Z (15) default '1°',
PRODNAME VARCHAR2 (15) default *'2°',
WARRANTY FLOAT (15) default 3,
PPRMAX FLOAT(15) default 4,
PPRMIN FLOAT(15) default 5,
PRICE FLOAT(15) default 6,
ATTITUDE VARCHAR2 (15) default '7',

University of Windsor 2002

145

/i'

/*
/t
/*

FLOAT(15) default 8,
NEGREC VARCHAR2 (50) default '9’',
RESULT NUMBER default 10
/ L T T R e e Y Y Y e e e e T T —f/
Table: RANGE */
== */
create table SCOTT.RANGE (
PRODUCTCAT VARCHARZ (15) default '1l',
PRODNAME VARCHAR2 (15) default '2',
MINPRICE FLOAT(15) default 3,
MAXPRICE FLOAT(15) default 4
ZE=SCSEZCZSSCCC=CSSCSSS=SSSSISSSSSSSSSSSSSSRSS=sS=S=SsSSzzzs=ssssss==Y/
/* Table: SELLEREXP */
================z========= ===============%/
create table SCOTT.SELLEREXP (
PRODCAT VARCHAR2 (15) default '1',
PRODNAME VARCHAR2 (15) default '2',
WARRANTY FLOAT(15) default 3,
PPRMAX FLOAT(15) default 4,
PPRMIN FLOAT(15) default 5,
PRICE FLOAT(15) default 6,
ATTITUDE VARCHAR?2 (15) default '7',
SDR FLOAT (15) default 8,
NEGREC VARCHAR?2 (50) default '9’,
RESULT NUMBER default 10
—
Table: SIMVALUE */
———————————— i/

SDR

create table SCOTT.SIMVALUE (

University of Windsor 2002

PRODCAT1

VARCHARZ2 (15)

default '1l:,

146

PRODCAT2 VARCHARZ2 (15) defaultc '2',
VALUE FLOAT(15) default 3

University of Windsor 2002 147

VITA AUCTORIS

Osmand Christian was born in 1974 in Jaffna, Sri-Lanka. He graduated from St. Brebeuf
High School, Toronto, in 1996. From there he went to the University of Windsor where
he obtained a B.Sc. in Computer Science in 2000. During the year of 2000 he worked as a
System Analyst for AIG inc. in Manhattan, New York. Currently he is a candidate for the
Master’s degree in Computer Science at the University of Windsor and hopes to graduate
in October 2002.

University of Windsor 2002 148

	An implementation of a dynamic negotiation model for competitive and cooperative agents.
	Recommended Citation

	tmp.1363613409.pdf.aUvu_

