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ABSTRACT

Air supported structures have been gaining popularity due 10 a number of reasons. Their
inherent architectural advantage and the increased demand for large column-free spaces make
them ideal for large arenas and stadiums. The constructional advantages and the availability of
high strength steels add to their popularity. But such structures are hindered by the complexity of
their behavioural response to all kinds of loads. The high degree of indeterminancy present
imposes severe restraints on the available methods of analysis and makes them very difficult to
analyze.

The present study encompasses a comparison of the experimental and theoretical analysis of
air supponéd cabie roof structures. A 1:120 scale mode] of the Pontiac Silver Dome in Pontiac,
Michigan, U.S.A., was used to substantiate the results obtained by the various solution techniques
used in the theoretical study. The energy search method is compared to three standard one-step
solution techniques presented by Baron and Venkatesan and Kar and Okazaki.

Computer programs were developed using FORTRAN for all of the above solution methods
to simulate various kinds of distributed loads on the structure, For the purpose of experimental
study, the model was inflated with different air pressures and the nodal coordinates were
measured for each case. Thereafter, keeping the internal pressure constant, the structure was
loaded with different types of externally applied patch loads of sand to simulate live loads on the
dome.

Load-displacement curves at various nodes on the roof were plotied and compared 1o the
theoretical results obtained. Finally conclusions are drawn and recommendations for further
research are presented,
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L=
y

NOTATION
area of cross section of the member
direction cosine vector
direction cosine vector in thex, ¥, £ directions
elastic modulus of the member
gradient vector of the total potential energy

gradient vector

displacement field at a local minimum

= stiffness matrix of the structure from State ! o Srate 2

correction to the initial estimate of the stiffness matrix

stiffness matrix as per elastic theory

: initial estimate of the stiffness matrix

geometric stiffness matrix of an element

linearized stiffness matrix of an element

nonlinear component of the stiffness matrix of an element

nionlinear stiffness matrix of the structure
secant stiffness matrix of the structure
langent stiffness matrix of an element
tangent stiffness matrix of the structure

length vector in state 1



L,= length vector in state 2

! = unstiffened length of the member
I = length of the member in State §
I, = length of the member in State 2

Lim,n = direction cosines in x, y, = directions
LA, = direction cosines in %, ¥, i directions
P = applied load vector of the structure

P, = column vector of loads from State | to State 2

P _= equilibrium loads

£Q
P = initial estimate of the load vector
Ppopo= residual load vector

FP = position vector of end p
Fq = position vector of end q

{S,} = initial negative gradient direction
T = force in the member

T, = member force in State 2
T, = member force in State 1
[TR] = transformation matrix

= displacement vector

U, = vector of displacement increments from State 1 to State 2

U, ;= initial estimate of the displacement vector
Ucoa = correction to the initial estimate of the displacement vector



'EF = displacement vector of end p

u = displacement vector of end q

up.ﬁp.ﬁ'? = displicement from State | to State 2 at end p

&q,ﬁq,ﬁq = displacement from State | 1o State 2 at end q

u_ = derivative of u with respect tox
V = volume of the member
W = work done on the member

X, Y,Z = global coordinate system

X.Y.Z = common reference coordinate system

XP.YF.ZP = coordinates of end p
q'Yq'zq = ¢oordinates of end q

5T, = increment of member force from State | to State 2

€= strain in the elememt

€= strain due to prestress

&, = elastic strain in the member

g = specified accuracy

Z = potential energy of the element
l'!P = total potential energy

p = step length

o = siress in the element

G, = stressat the proportional limit of the member

o = yield stress of the member
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Chapter 1
INTRODUCTION

1.1 GENERAL

The presence in nature of such structures such as a spider's web and the tensile action of
animal skin must have spurred man to develop tension systems for his use. Primitive roofing
systems, such as tents, which used animal skin are even today considered perfect examples of a
membrane roof with predominantly tensile forces. The idea of using a suspended cable was
probably born in the tropical countries of Asia and Africa where there is an abundance of ropes
made of vines and creepers. Available historical evidence suggests that natural ropes were the
first materials to be used for constructing small suspension bridges. With the invention of iron
and steel as structural materials, the analysis, design and construction of suspension bridges has
developed 10 a considerable extent.

The impetus for the design of modem cable roofs could well be attributed 1o the success of
suspension bridges. The main load bearing element in cable roofs is a steel cable which is
occasionally combined with struts or light flexural members. Most of these roofs are usually light
in weight and are thus limited in their performance as a roof due 1o their low gravity stiffness
unless the system is pretensioned.

A cable roof can be defined as one in which a cable or a system of cables is used as a load
carrying structural element, Cable roofs could be placed under three main categories:

1. Cable supported roofs

2. Cable suspended roofs



3. Cable~cum-air supported roofs.

In cabie supported roofs, the cables have only the auxiliary function of providing additional
support for elements which are otherwise sufficently strong enough to carry a major portion of
the load, In cable suspended roofs, the system of cables carries the roof load directly and has a
primary structural function. The third class of roof, which is of interest in this study, is the air
supported roof. These are mostly tent or balloon type structures supported by a combination of
cables and air inflation.

The idea of using pneumatic principles for buildings was introduced as early as 1917. During
World War II "radomes", air supported weather covers for radar installations, were constructed
for the U.S, Air Force. Lightweight portable structures were also developed for military and
commiercial applications after this perod. The Pan American Airways Pavilion at the 1958
Brussels World Fair further popularized the use of such structures. The inauguration of the first
International Symposium on Pneumatic Structures in Stuttgart, Germany in 1967 was an
indication of the growing interest in this field. The greatest exploitation of this type of structures
was made at EXPO '70 in Osaka, Japan.

The most recent and notable construction of this type of structure was the building of B.C.
Place Stadium in Vancouver, British Columbia and has an estimated capacity of 60000 people.
The roof is inflated by means of 16 gigantic computer controlled fans.

The Pontiac Silver Dome is touted as the world’s largest air supported structure. Located in
Pontiac, Michigan, the stadium has a capacity of 80000 people. it covers an area of 38400 square
metres with clear spans of 220 (722 fi.) and 168 metres. (551 f1.) The membrane is teflon coated
fibre glass supporied by an oblique net of 76 mm (3 in.) diameter cables, Thbe fibre glass
membrane spans between the cables forming quadrilateral panels. A model of this structure has
been built in the laboratory to test and compare with the results of the various theoretical models

generated on the computer,
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7

A cable exhibits a marked nonlinear behaviour (figure 1.5) when it is subjected to loads,
This behaviour varies with the type of structure as well as loading. It has to follow the funicular
curve of the loads and so undergoes large geometric adjustments especiaily when the loading is
concentrated or unsymmetrical. Thus, geometric nonlinearity will occur in cables irrespective of
material nonlinearity. The slope of the tangent to a load displacement curve at any point gives the
value of the stiffness at that point.

The high degree of indeterminancy coupled with highly nonlinear behaviour makes the
analysis of cable systems very complex. This is somewhat reduced by placing the types of
analysis into two categories:

L. a continous membrane and
2. a discrete system.

If the structure is treated as a discrete system, as is done in most analytical methods, the

solution coasists of solving for flexibility and stiffness matrices. Most of these solutions assume

that the subporting structure of the roof is rigid i.e., the compression ring around the edges of the

roof.

1.2 MERITS

Cable roofs are becoming increasingly popular due to their inherent architectural advantages
and the increased demand for large column-free spaces. The economic constructional advantages
and the availability of high strength steels add to their popularity. Also, the accessibility to
computers with huge amounts of memory has made a numeric analysis of such siructures
financially feasible.

The contribution of cable roofs to the overall economy of the structure is due to the
efficiency with which cables carry their load. A cable is a uniform stress member that has a very

high tensile strength. Its own weight is also very small compared to other roof components,
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9
Since it is a tensile structure, it fully utilizes the properties of steel with its high tensile strength.
There is also no problem of buckling in such structures.

The economy of the structure is further justified by the decrease of erection costs due to the
elimination of most of the scaffolding. The total volume enclosed by a cable roof is usually less
than that of a shell or truss structure covering the same area which results in savings in terms of
heating, ventilating and air conditioning costs. The maintenance requirements with respect to
other roof systems are also minimal.

From an aesthetic point of view, the shapes can be made architecturally appealing. This has
been proved by the fact that several cable roof buildings with artistic architectural facades have

sprung up in the past two decades.

1.3  DEFICIENCIES OF AIR SUPPORTED STRUCTURES

However, such structures do have disadvantages. Primarily, the light weight and small
stiffness of the roof make it subject to unacceptable dynamic and aero-elastic responses. Live
loads create larger deformations than in conventional systems. This flexibility requires more
complicated connections and water proofing details. The boundary supports are large and usually
account for more than fifty percent of the total dead weight of the roof structures.

The greatest inherent drawback in such structures could be the difficulty in the exact analysis
due to the relationship between tension and geometry. Conventional lincar analysis which
assumes small elastic deformations and displacements is not applicable unless it is modified by a
piecewise incremental analysis which in itself causes residual displacemeuts to be unaccounted.

Special design considerations like anchorages to resist tensile loads, air lock systems to

ensure air tightness and mechanical systems for inflation pressure need to be taken care of.
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In addition, the roof fabric is susceptible to storm damage caused by a strong wind especially
when it is not fully inflated. There is also the danger of unusual loads in a single panel leading to

the failure of the entire roof system.

1.4 DEVELOPMENTS IN ANALYSIS

An extensive literature survey was undertaken to study various methods used in the analysis
of cable net structures. Basically, most of the analysis methods incorporated the finite element
procedure.

Siev[27)] presented a method for the determination of the displacements of a general net. The
effect of horizontal displacements and changes in geometry were included in the derivation of the
equations. It was also suggested that piecewise application of load increments be done in cases of
high geometric nonlinearity. The displacements were arrived at using the linear theory and
subsequent]y corrected by iteration. In [28], he presented an analytical and experimental study of
prestressed suspended cable roofs using the theory presented in [27].

Thomton and Birnsteil [30] derived nonlinear equations for a general three dimensional
unstiffened suspension structure composed of members resisting axial load only. They presented
two methods for the solution of nonlinear equations, the method of continuity and the incremental
load method.

Baron and Venkatesan[l], using the direct stiffness method, analyzed geometrically
nonlinear structures composed of elastic members capable of resisting axial forces. The theory
employs the concept of a geometric stiffness matrix in obtaining an estimate, and then
successively adjusting the stiffness matrix, forces and the displacements to obtain a set of r~" .13

compatible with the final dimensions of the structure,
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Kar and Okazaki[15] studied the convergence of solutions in highly nonlinear cable net
problems. They recognize that an efficient method of solution should have two important
characteristics: (1) the equations and the associated iterative method should ensure convergence;
and (2) the convergence should be rapid for the method to be economically efficient. They also
present a new iterative technique in [15].

Saafan(25] suggests halving the displacements in each cycle of iteration to improve
convergsnce, However, he states that judgement is needed to determine the number of times the
displacement should be halved and proposes a scheme similar to the one used by Haug and
Powell[11]. He concludes that only a fraction of the residual loads need to be applied to have
good convergence.

The energy search approach has also been applied successfully to the nonlinear analysis of
space type structures, It consists of including geometric nonlinearities by using nonlinear strain
displacemept equations to construct the potential energy for each of the finite elements. A
numerical solution is obtained by seeking the minimum of the total potential energy for the
assemblage of the finite elements reprasenting the structure. This approach was developed
successfully by Bogner, Mallet, Minich and Schmidt{3] and has proven to be suitable for
nonlinear problems[22} including instability analysis. Various methods have been used to
minimize the potential energy. Bogner used the Fletcher-Powell(6] variable metric search
technique. Buchholdt[4] solved the nonlinear equations by the method of steepest descent. Again,
Buchholdt[4] used the method of conjugate gradients to minimize the potential energy along with
a scaling technique to improve convergence.

Monforton and El-Hakim[24] applied the energy search method to the analysis of general
pin-ended truss and cable structures. Geometric and material nonlinearities were direcuy

incorporated within the formulation thereby accounting for large strains and displacements as



12
well as configuration changes as a structural response. Solutions for the minimum potential
energy were generated using the conjugate gradient method. Monforton[23] also adapted the

energy search method to microcomputer analysis using a BASIC program.

1.5 SCOPE OF THE PRESENT STUDY

The present study encompasses a comparison of experimental and theoretical analysis of air
supported cable roof structures. The energy search approach is compared to five standard one-
step solution techniques and further corroborated by an experimental study. For the purpose of
comparison, solution techniques presented by Baron and Venkatesan[1], Kar and Okazaki[15]
were used.

The conjugate gradient method of function minimization proposed by Hestenes and
Stiefel[12] and its extension by Fletcher and Reeves{7) was used to minimize the potential energy
function in the energy search method. A scaling technique proposed by Fox and Stanton[8] was
used to improve the rate of convergence.

In [1], Baron and Venkatesan present three different solution techniques and a modification
for two of them. In each of them, an estimate for the displacement vector is constanuy sought.
The equilibrium load at each of the nodes is calculated for the geometry obtained with the
estimated displacement vectors. These equilibrium loads are then compared with the actual
applied nodat loads. Convergence is said to have been obtained when the difference between the
equilibrium nodal loads and the actual applied loads are within a specified tolerance limit.

Kar[15], in his iterative technique, represents an effort to scale down the overestimated
displacements which are quite common in linearized solution methods for highly nonlinear cable
net structures. This technique yields a closer approximation to the actual displacements.

All of these methods are further discussed in Chapter 2.
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For the experimental study, a 1:120 scale model of the Pontiac Silver Dome was constructed
based on blueprints obtained from the Department of Public Works, Pontiac, Michigan, U.S.A.
The model was tested for nodal displacements for various distributed ioads on the roof. This is
further explained in Chapter 3.

Finally, in Chapter 4, the evaluation and discussion of results are presented. The advantages
and drawbacks of various methods vis-a-vis the experimental study are highlighted.

In Chapter 5, con¢lusions are drawn and recommendations for further points of research are

presented.



Chapter li
THEORY

In this chapter, the different methods of analysis are explained. Mathematical models for
each of the methods are developed using the finite element procedure. All of these models take
into account the deformed geomeltry of the structure permitting large nodal displacements quite
commonly observed in air supported structures.

The principal assumptions in the development of the theoretical models are as follows:

1. In the theoretical models, the cable network consists of cables spanning between two
nodes. In the experimental model, the network is formed by an oblique net formed by
th‘e intersection of 9 cables spanning in each direction. The cablcs are soldered at their
intersections to form nodes.

2. The membrane is assumed to be uniformly loaded in any one panel, The total force is

equally distributed to its enclosing nodes.

3. Members are straight and prismatic between joints,

4, Stressing the member does not change its cross-sectional area,

5. The joints of the structure are frictionless,

6. All loads are conservative, in that their original directions in space are preserved.

7. A conservative simplification in the analysis of a cable and fabric roof can be made by

considering only the cables according to Malcolm and Glockner[21]. Hence the
behaviour of the structure ¢an be adequately studied if only the cables are considered to

contribute o the structural behaviour,

-14 -
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8. The boundary supporting structure is assumed to be rigid and does not contribute to the

stiffness of the cables,

2.1 ENERGY SEARCH METHOD

The fundamental relations to be incorporated into the various methods have to be first

established before outlining the method in detail.

2.1.1 DEFORMATION-DISPLACEMENT RELATION
The undeformed length I,, (figure 2.1) of a discrete element of a typical tension member is

defined in figure 2.1 by the initial position vectors of the element joints with respect to a common

reference coordinate system (X, ¥, Z) as

L=F -7 @.1)

- b _ Pl PRy e
V& -2 e, -0+ -2) 2.2)
The deformed length /,, after the joints undergo displacements (&, ¥, w) under loading is then
expressed as
L= {T-q +Eq) —l‘FP + EP) (2.3)

where i@, and i, are the displacement vectors of the element joints. It can be rewritten as:

L={ [(X,+8)- (X + ﬁp)]2 +[F,+7)-F + \:P)]2 +[@ +w)-2, + ﬁ-ﬁ)]’ ] e
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2.1.2 ANALYSIS OF ELASTIC TENSION MEMBERS

2.1.2.1 STRAIN-DEFORMATION RELATION
There is no deformation in the transverse direction for tension members. The axial
deformation can be expressed as

=9

£ . (2.5)

2.1.2.2 ELEMENT STRAIN ENERGY

The strain energy density for elastic tension members is defined as:

£+
5’

aE= j’ ode 2.6)
0

where €_is the strain due to prestress.

Integration of (2.6) over the volume V of the elements results in the following expression for

L3

the strain energy in terms of the strain €.

==1

z=1 l(:-: +e)odV @.7)
CEferef
=3 “[(e + ep) av (2.8)

Substituting (2.5) into (2.8) and integrating over the cross-section area yields:

[}
AE 2
5 J(u‘ + ep) dx (2.9)
o
The governing differential equation of (2.9) is given by El-Hakim([5] as:
i(u +€)=0 (2.10)
ox * F

Upon integrating (2.10),

u+e =K, (211)
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where K, is a constant with respect to x and can be determined by integrating (2.11) over 4,

! ,
JlKl elv =J(uz+ ep) dx (2.12)
0 a
d 2.13
K‘zl_TH:F (2.13)

The force in the .nember is constant and can be written as:

T= AEKI (2.14)

The strain energy in the tension elements is obtained by substituting (2.11) and (2.13) into

(2.10) as:

=45, (2.15)

2.1.3  ANALYSIS OF INELASTIC TENSION MEMBERS
The inelastic material behaviour is considered in deriving the expressions for the element
strain energy. The mathematical inodel proposed by Kumanan in [19] which uses a compound
curve initially linear up to the proportional limit followed by a parabola up to the ultimate stress
is adopted to derive the expression,
The parabolic curve of Kumanan (figure 2.2) can be represented by the following equation:
o’ +2ge+2fg+c=0 (2.16)

and is assumed to have its axis parallel to the € axis. The constants are evaluated by the following

relations:
g =-250(c, - ap)z .17
f=d o (2.18)
c= c: (2.19)
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The yield stress o, is determined by the 0.2% offset drawn (o the linear portion of the curve.
o, is determined by loading the cable until it starts to deviate from the linear stress-strain curve,
The point of deviation is noted as the stress in the cable at the proportional limit.

The elastic modulus of the seven strand cable was determined to be 145000 MPa and the

yield stress and ultimate stress were determined as 1625 MPa and 2160 MPa respectively.

2,1.3.1 STRAIN-DEFORMATION RELATION
In case of inelastic tension members, the axial deformation is expressed up Lo the second
term of Taylor's expansion to account for the larger strains in the inelastic range. Therefore,

2
e= 3—: - %(%) (2.20)
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21.4 ELEMENT STRAIN ENERGY

This is defined by

E+E'
Eef+ I ode

Ei

a'E,:l
2

where G is given by (2.16).

The resulting strain energy was derived by El-Hakim in [5] as:

= =AI2[-2-

where
2
k= +(-yela-ly

2 s L7002 1

2141

The gradient of the element strain energy is defined as:

]

1,2 1 7
Ee =K —-g)= —{(f —22K_- 4+ —(f =2pE —
- -fK,-¢) 33(3 gK, - ¢) 38()‘2 8€,—¢)

ANALYTIC GRADIENT OF THE ELEMENT STRAIN ENERGY

(2.21)

(2.23)

(2.24)

The expressions for the gradient are given by Monforton and El-Hakim in [24] and presented in

Appendix A.

21.5

= is"’ -W

inl

TOTAL POTENTIAL ENERGY OF THE STRUCTURAL SYSTEM

The total poiential energy of an assembly of n tension members is defined as:

(2.25)

where =7 is the strain energy of the itk element given by (2.15) or (2.22) depending on the clastic

or inelastic state of the member. W is t:2 external work done by the loads applied at the joints of

the structure,
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Since the total potential energy of the structural system is a function of n variables

representing the nodal displacements of the structure, the total potential energy of the structural
system can be written in terms of an n-component displacement vector U as:

l'lP(U) =E(U)~ WU} (2.26)

where Z(L) is the sum of the element strain energies in terms of the independent displacement

degrees of freedom U of the system. The external work done W is given by
W) =UP (2.27)

where P is the vector of applied loads associated with each degree of freedom in U.

2.1.6 ANALYTIC GRADIENT OF THE TOTAL POTENTIAL ENERGY
The gradient vector {G) of the total potential energy is the vector sum of the gradient vector

of the element strain energy minus the applied load vector P. Therefore,

1= (60} - (2.28)

ietl

where {GY} is given by the expression in Appendix A.

22 STIFFNESS METHOD OF ANALYSIS

This method can be stated in terms of an estimate plus a correction to. account for the
nonlinear effects of changes in the geometry of a given structure, It uses a tangent stiffness matrix
to arrive at an estimate of displacements and then adjusts the stiffness matrix to obtain forces and
displacements compatible with the final dimensions of the structure.

In the theory of linear elastic structures, the relations between the external loads P and the
joint displacements U can be represented in matrix form as:

P=K_U (2.29)
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where K is the elastic stiffness matrix of the structure. Here the displacements are considered
small and the contributions of the member forces to balance the external loads are stated in terms
of the initial geometry of the structure.

In the nonlinear theory of structures, when displacements are large, equation (2.29) is no
longer valid because the strain-displacement relationship is nonlinear. The equations of joint
equilibrium need to be written in terms of the final geometry of the structure which further
invalidates the above equation.

If the changes between two deformed states 1 and 2 are considered, an incremental equation
of joint equilibrium can be written as:

P,=K,U, (2.30)
where P, is a column vector of loads from state 1 to state 2 and U, is a column vector of the
increment of displacements.

Solutions to equation (2.30) can be obtained by using various techniques. The final solution

is realized by successive estimates and corrections. To facilitate the above, equation (2.30) is

rewritten as:
P=P. +P, (2.31)
=K£s‘rU£sr+ KCORUCOR (2.32)

where Py Ko and Upg are initial estimates of load vector, stiffness matrix and displacement
vector and P, Kipp and U, are corrections 1o the above,
A linearized version of the nonlinear stiffness matrix is produced by rewriting (2.32) as:
P=[K, +K,,]1[U, +U,,] (2.33)
where the subscripts L and NL indicate the linear and nonlinear portion respectively.

The linearized version k,, of the stiffness of an element is known as the tangent stiffness 4,
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of an clement, It is composed of &, the stiffness of an element as per linear elastic theory and &,

the geometric stiffness matrix.

The matrix k. is associated with the deformations in each element, whereas k; incorporates

the changes in the geometry of an element.

The geometric and tangent stiffness matrices are presented in detail in Appendix B.

2.3 SOLUTION TECHNIQUES
Four techniques are presented to solve the nonlinear equz..on:
P=KU (2.34)
Each of the techniques is elaborated with the help of schematic diagrams.
The estimate U, sought in each of the above techniques is used to calculate the strain €

from the relaton:

(e’=1+ %wam + %AUL.,AUHT (2.35)
1

1
where AUL. = (,—u, v,=v, w,— w_,]rm.
The above equation is fully developed in Appendix C.

The magnitude of the member forces are given by:

T=T,+8T,, (2.36)

where 8T, = -A;—E-ell by Hooke's Law.

o

Thus the joint loads that are in equlibrium with the member forces are calculated as:
T
Pep= ZE"z =0 (2.37)

where , = 1,(1 +€)



L,=L +aU.

The above equations yield a set of equivalent joint loads for which the displacements matrix
Upq, is an exact solution. This can be further extended to state that if the residual load vector
given by:

Ppgs=P _PEQ (2.38)
is zero or within a specified tolerance, the exact solution given by U is equal to Upe

The methods of solution described in the following paragraphs are utilized to achieve the

above.

2.3.1 TANGENT STIFFNESS METHOD
This method (figure 2.3) is very simiiar to the Newton-Raphson technique for the solution of
nonlinear equations, T.e final displacement vector U is a summation of estimates AUyq obtained
in each cycfe of iteration until the condition of convergence given below is met.
P Se (2.39)
The method can be expressed by the following equation: |
PUNZ gD A i=123 (2.40)
where K, is the tangent stiffness matrix formed by using the joint coordinates and member forces

at the end of each cycle of iteration and is formed by the assemblage of &, the stiffness matrix of

each element:
k= %{D][D]ﬂ 3’1[1 - oY (2.41)
]
where [D]T =[! m n]", the direction cosines in the x, y, and = directions respectively.

After each cycle of iteration Py is calculated using equations (2.35) to (2.38) until it

satisfies the condition of equation (2.39), The flow chart for this method is given in figure 2.4.
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23.2 SECANT STIFFNESS METHOD

This method is the extended version of the tangent stiffness method in that that it takes into
account the nonlinear behaviour of the structure. It is schematically illustrated in figure 2.5. The
method is expressed by the following equation:

Pres=KAUgq (2.42)
- i1y, .
=K, +K,; "W =123 (2.43)

where K, is equal to K, which is explained in Sec 2.2.1 and K, is the nonlinear component of the

stiffness matrix consisting of an assemblage of the nonlinear element stiffness matrix k,, given

by:
_[aE._ T, r AUl
kyy _[ ; e T CHC,IDNIPI +C fD1= ] (2.44)
where
€= (2.45)
__E3+e)
27T (1+EX2+€) (2.46)
.1
&= Troe+o @47

The above equations are detailed in Appendix C,

In this method, the nonlinear part of the secant stiffness matrix K, is successively modified
during each cycle of iteration as well as Py, the residual load vector, using equations (2.35) to

(2.38) until the condition outlined in equation (2.39) is met. The flow chart for this method is

presented in figure 2.6,
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233 KAR'S MODIFICATION METHOD

In highly nonlinear cable net behaviour, the equilibrium load based on a linear solution may
be so different that the initial estimates oscillate uncontrollably which results frequently in a
nonconvergent situation. Kar's method{15] is an effort to scale down the overestimated
displacements to yield a closer approximation to the correct solution and hasten convergence.

Here, the displacement vector AU, obtained as the solution of the linearized equation
(2.39) is modified by the ratio of the largest applied load at any cycle of iteration 1o its
corresponding equilibrium load calculated on the basis of equatuon (2.39). The largest applied
load is used as a criterion since it is assumed to have the most severe effect on the behaviour of
the structure.

The method is outlined in figure 2.7 which represents a load-displacement curve of a joint

with the largest applied load. The displacement u, is the initial estimate obtained as a solution to
the linear equation (2.39). This is modified to u', by multiplying it with the ratio of the applied
load P to the comresponding equilibrium load P The modified displacement is used to calculate
the new equilibrium load P'EQ using equations (2.35) to (2.38). The flow chart is presented in

figure 2.8,

Thus the residual load is obtained as:

Prgs =P~ Py, (2.48)

and the process repeated in the next iteration until the convergence conditions of equation (2.39)

are mel.
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Chapter 1i§
METHOD OF SOLUTION

The principle of stationary potential energy can be stated as:

Of all displacement fields U which satisfy geometric compatibility, those
which locally minimize the potential emergy, [I(U), also satisfy the

equilibrium conditions and are stable equilibrium positions.

Mathematically,

3I'IE(U)

3 lvan=0 j=123umN a1
y)

where H is the displacement field at a local minimum. Equilibrium position‘is said to have been
achieved if
IL(H) <TL() (3.2

for all U in some neighbourhood of H

In matrix formulation of structural problems such as the stiffness method of analysis, the
search for the minimum of a total potential energy is based on successive iterations followed by
some sort of a refinement. The gradient vector is drawn out into matrix form along with the
applied load and displacement vectors. Consequently, these highly organized methods coupled
with large scale computing facilities have made the prediction of the performance of complex
structural systems routine,

Thus, the use of matrix notation in discrete element idealization simplifies the problem into a

set of simultaneous equations suitable for a direct computer solution.

-34-
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In the solution to the stiffness methods of analysis, the subroutine L.SARG supplied by IMSL

Inc., Math Library has proved to be adequate. It solves a system of linear algebraic equations
having a real general coefficient matrix. It computes the LU factorization of the coefficient matrix
using another subroutine LFCRG. The solution of the linear system is then found using the
iterative refinement routine LFIRG.

LSARG fails if the upper triangular part of the factorization has a zero diagonal element or if
the ilerative refinement algorithm fails to converge. These errors occur only if the stiffness

matrix, K, or K is singular or very close to a singular matrix,

In the energy search method, the potential energy function constructed is solved by the direct
search for the displacement vector U which would minimize the function. A substantial number
of high performance structural systems are not adequately treated by linearized analysis
techniques. Mathematical programming methods of unconstrained minimization seck to retain the
flexibility of application which is characteristic of discrete element idealizations. Such methods
also try to improve the representation of structural behaviour by avoiding some of the raditional
linearizing assumptions.

There are a wide variety of unconstrained minimization techniques suitable to be applicd to
different types of optimization problems. They are discussed in detail in (6}, [7] and [8]. The
conjugate gradient method proposed by Hestenes and Stiefel{12] in 1952 and its extension by
Fletcher and Reeves in {7] form the basis of the minimization algorithm used to gencrate the
solutions to the problem presented in this work. (figure 3.1)

The Fletcher-Reeves method of conjugate gradients is an elegant procedure for solving a set
of linear simultaneous equations having a symmetric positive definite matrix of coefficients. It

begins with an initial approximation vector to the minimum U,, which is modificd after each
iteration as the position of minimum of the potential energy function I, moves along a line

through U, in some specified direction {S}.
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The initial direction of travel is in the negative gradient direction (S,},

(S,} =~ (G.} == V1)) @.3)
and the step length p is determined by the relation:

a

e (3.4)

- (S} VLU, ~p{S,}) =0 (3.5)
where

fp)= I'IP(UO - le'IP(Ua)) (3.6)
and

U, =U+p[S)} fori=123...... n (3.7)

The minimization by successive linear searches is illustrated by the quadratic function.

AD=FED + X~ HY(G) (3.8)

whose minimum is at U = H and the gradient {G} of second order partial derivatives is given by:
{Gl=A(U-H) (3.9)
and A is a positive definite symmetric matrix of second order partial derivatives.

The condition for the gradient to vanish is seen to be:

AU=AH (3.10)
In the solution of the above equations, directions (5,},(S;},{S;}eeres {S;,} are generated
using A orthogonality:
(S:)a{s;} =0 forisj (3.11)
=123 ]

and also the following relation:
{Sii1} == (G} +B{S)) (3.12)

where
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(G} =VHP(U.'+:) (3.13)

and

- (Gs1} {Giu ) a1h
{G}{G)

This process is guaranteed, apart from rounding errors, to locate the minimum of an

n-argument quadratic function in at most » iterations.

A cubic fit scheme recommended by Fletcher and Reeves in [6] is used in case the function
is a nonquadratic one. If {G;) vanishes, the iterations conclude both 1o avoid division by zero in
the next iteration and also because this is the formal requirement for U, to be at a minimum. This
cannot be achieved in practice because of truncation errors in the computer. Thus, the iterations
are stopped when there is no significant reduction in the value of the potential energy function.
That is '

M{U,,}-TL{U;} <¢, (3.15)
where €, is the specified accuracy, whose value is recommended to be 1 x 10° '€

Computer programs for the conjugate gradient method written by Kuester and Mize[18]

have been used in this analysis.



Chapter IV
EXPERIMENTAL INVESTIGATION

An experimental study was undertaken to substantiate the results derived by the theoretical
models. For this, a model of the Pontiac Silver Dome in Pontiac, Michigan, U.S.A. was
constructed and subjected to various different loading conditions of internal pressure and

externally applied distributed loads.

4.1 MODEL

A 1:120 model of the Pontiac Silver Dome was built using blue prints from the Department
of Public Works and Service, Pontiac, Michigan, U.S.A. The cable net was modelled using a
seven strand steel fishing cable of 0.8 mm diameter. The base and the walls were construcied of
9.5 mm plywood and the whole model was made air-tight to contain the pressure when the dome
was inflated, To resist the horizontal forces created by the cables, a compression ring was built

using 32 x 32 x 6.5 mm (1% x l%- x 4 in.) rofled steel angles and 36 machined metal blocks.

These blocks were welded in place at specified locations and were used for cable adjustment with
the help of bolts.

The cable net consists of eighteen cables, nine running in each direction, soldered together at
81 points to form a cable net. Free rotation of the cables in the vertical plane was assured by
soldering electrical eye connectors to the ends of the cables, which in turn, helped to fasten the

cables to the adjustment mechanism.

-39.
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A 0.05 mm (2 mil) plastic sheet was used as a membrane for the air supported roof. A single

continous sheet was used because of the impracticality of modelling the membrane into panels

spanning between the cables. However, the flexible nature of the plastic helped to conform to the
geomeltry of the cable net when it was inflaled, thus serving the purpose.

The detailed dimensions are given in figures 4.1 to 4.5,

42 SET-UP

The existing pressure system in the structural laboratory was used to provide the inflation
pressure for the model. The pressure was regulated by means of a standard pressure regulator.
The internal differential pressure inside the model was measured by means of a sensitive digital
manometer capable of measuring pressures down to one hundredth of a millibar. Conventional
gauges could not be used since differential pressures were as low as 10 pascals. The digital
manometer is shown in figure 4.6. *

The coordinate measuring system for the nodal points was built in the Central Research
Shop and is capable of measuring displacements up to one ten thousandth of a millimetre in the X
and Y directions. It consists of three frames, one along the length on each side of the model and
the other spanning between them. The cross frame moves across the length of the model on two
solid circular bars of the longitudinal frames which act as tracks. The movement is achieved by a
ball bushing assem:bly, placed on either ends of the cross frame,

A second set of solid circular bars is mounted on the cross frame which helps to move the
measuring equipment in the lateral direction. The transverse movement is achieved in the same
way as before. Figure 4.7 to 4.9 show the entire assembly,

The measurement of the coordinates in the horizontal plane is done by “TURNVISION ", a

microprocessor based Vision Readout Unit maufactured by ACU-RITE Inc., New York. This unit
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is capable of receiving, storing, manipulating and displaying information. It receives data via the
keypad, input by the operator or by positional electronic information decoded from ACU-RITE
linear encoders as was done in this experiment. A monochrome monitor with an eighteen mm
(seven inch) screen was used to display the information and is shown in figure 4.10.

Two linear encoders were fixed one on one of the longitudinal frames and the other on the
cross frame. They had a fiducial trigger output capability i.e., they are capabie of incorporating
reference axes into the memory of the computer. Thus, any accidental movement would not
hamper subsequent measurements. A suitable roller arrangement was constructed to relate the
movements of the bearings on to the linear eacoders as shown in figures 4.11, 4.12, 4.13 and
4.14,

The measurement in the vertical direction was dome by means of a Linear Variable
Differential Transformer (LVDT) shown in figure 4.15. This device used in the experiment was
manufactured by Hewlett-Packard Inc. and has a capability of measuring displacements up 10 14
rm (5.5 in.). A voltmeter and a digital multimeter were connected to the LVDT to convey the
positional information in terms of millivolts. The LVDT was calibrated in the lab using a
universal testing machine and sensitive dial gauages as shown in figure 4.16. The calibration
curve shown in figure 4.17 was used to convert the electronic information into millimetres. The

least count of this system is one hundredth of a millimetre.

4.3 LOADING CONDITIONS
The mode} was tested both for internal pressure as well as for various external distributed

loads. Seven external patch loads were applied on the roof and the displacements measured in

each case.
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4.3.1 INTERNAL PRESSURE
The model was initially inflated with air sufficient to conform to the initial geometry of the
structure (figure 4.18). At this point, the roof weight was just supported by the internal air
pressure. Thereafter, the internal pressure was increased in four steps and nodal measurements
were taken, The prototype had a stable operating pressure of about 240 pascals (5 1b/sq ft) over
atmospheric pressure and this would be equivalent to a pressure of 2 pascals over the aimospheric
pressure when computed on the basis of a scale factor of 120. Due to the difficulty in maintaining
such a low differential pressure and also taking into account the relative imperfections in the
construction of the dome, it was decided 10 use a differential pressure of about 10 pascals. This
would not significantly alter the objectives of the study.
Load-deflection curves were plotted for salient nodal points in the structure and the results

analyzed are presented in the following chapier.

43.2 DISTRIBUTED LOADS

The model was loaded with seven different types of symmetrical and unsymmetrical patch
loads. Keeping the internal pressure constant, sand was distributed uniformly on panels to
simulate snow and other types of distributed loads. The depth of sand in each of the load cases
varied from 6 to 39.5 mm. Since the model is only geometrically similar, true snﬁw loads could
not be simulated.

In the first load case, a patch load of sand with a depth of 6 mm was placed on one of the
extreme panels in the longitudinal direction as shown in figure 4.19. The patch was enclosed by
the nodes 72, 80, 81 and 89 as per the numbering scheme shown in figure 4.18. The initial depth
of 6 mm was increased to 39.5 mm in four steps and nodal measurements taken at each step.

In the second load case a patch load was placed simultanegusly on the two panels enclosed
by nodes 71, 72, 79, 80, 81, 88 and 89 and the nodal measurements were recorded. This is shown

in figure 4.20.
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Sand was placed on three panels enclosed by 66,74, 75 and 83 and 71,72, 79, 80, 81, 88 and

89 to form load case three as shown in figure 4.21. Figure 4.22 shows sand enclosed in the four
panels in each extremity of the longitudinal direction. This was the first in the series of
symmetrical loads placed on the model. Figure 4.23 shows the fifth load case where sand was
placed on four panels at all four extrernities. The sixth load case is shown in figure 4.24 and
represents snow loads simulating ponding of the roof. The seventh load case shows sand placed
over all the panels in figure 4.25. This is an extreme case of loading and the structure ceascs 1o
behave as a roof. This is rarely achieved in actual conditions and is incorporated in this case as a

hypothetical condition for the purposes of theoretical study.
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| FIG. 4.12
THE TRANSVERSE LINEAR ENCODER FOR
THE MEASUREMENT OF THE Y-COORDINATE
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FIG. 4.13
THE ROLLER ARRANGEMENT IN THE Y-DIRECTION
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FIG. 4.14

THE BEARING ARRANGEMENT IN THE LONGITUDINAL
DIRECTION
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FIG. 4.15
A VIEW OF THE LVDT
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_ DIALGAUGE DISPLACEMENT IN mm

LVDT READING IN mV

CALIBRATION CURVE FOR LVDT

FIG. 4.17



FIG. 4.18
MODEL WITH INTERNAL PRESSURE ONLY
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NODE NUMBERING SCHEME
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FIG. 4.20
LOAD CASE ONE
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Chapter vV
RESULTS AND ANALYSIS

In this chapter, each of the methods outlined in chapter III is used to obtain solutions for
various cases of distributed ioads on the model. Computer programs in Fortran have been
developed for all the four solution techniques with the aid of an IBM 4381 computer. Load
versus displacement curves are drawn for salient nodal points for each load case, The material
properties of the cable are also discussed here,

In the following load cases, load increments were made until the solution method failed to
converge 10 a solution. No difficullies were encountered in obtaining convergence in the
unstressed s‘tate for the energy search method. On the other hand, the other theoretical models
exhibited wild oscillations which resulted in nonconvergent situations. This was because the
terms associated with the member force T in equations {C.13) and (C.14) is zero in the first cycle
of iteration. To overcome this problem, a small stiffening force was introduced into each member
of the structure when analyzing by the matrix methods. This stiffening force had a stabilizing
influence on the elements of the structural stiffness matrix aithough small enough to be neglected
in force computations.

A solution based on the elastic deformation matrix was also considered. This neglected the
contribution of the cable forces T and the subsequent changes in geometry. However, it was
found that solution techriques based on this type of matrix were inadequate to prevent large

oscillations during the first few cycles of iteration and thus resulted in divergent solutions,



72

Among the matrix methods of analysis, the solution technique based on the lincarized
version of the stiffness of an element, i.e., the tangent stiffness method, tended to underestimate
failure loads in that the load-displacement curves for the various nodes flattened at a relatively
early stage of loading. It was beset by convergence difficulties especially in highly unstable load
configurations.

The secant stiffness method of analysis based on the complete nonlinear version of the
stiffness of the elements stowed very good agreenient with the experimental results. The results
obtained by the energy search method and the secant stiffness method almost coincide in the
initial stages. This technique also underestimated the ultimate load. The load-displacement curve
plotted for this technique also flattened out early but at a late- stage of loading as compared to the
tangent stiffness method.

The fourth solutici technique, which is based on Kar's modification to the solution obtained
by the tanggnt stiffness method, helped to improve the results and bring it on a par with the secant
stiffness method, but it still underestimated the ultimate load. As well, the expected hastening of
convergence was not achieved.

Due to experimental difficulties, like the slipping of sand into adjacent panels at depths
beyond 40 mm, the loading could not be carried out beyond 4 N at each nodal point which
translates to a depth of 40 mm of sand. Nonetheless, the trends clearly follow the energy search
method very closely and the failure !~ad is clearly shown to be definitely beyond that predicted

by any of the matrix methods of analysis.



5.1 LOADING CONDITIONS

5.1.1 INTERNAL PRESSURE

The model was filled with compressed air to achieve a uniform internal pressure. Initially,
the model was filled with air just sufficient to hold the cable net in an unstiffened configuration
i.e., it was inflated just to the point where a tensile force was starting to develop in the members.
The coordinates for this position were worked oul previously with the help of blueprints of the
Pontiac Silver Dome obtained from the Department of Public Works, Pontiac, Michigan, U.S.A.

The internal pressure was then increased in small increments and the nodal displacements
measured. Load versus displacement curves are drawn at nodal points 37, 73, 77, 81, 117
numbered as per the node numbering scheme shown in Figure 4.18. The theoretical models
showed good agreement with the experimental results and the curve trends were along expected
lines.

The ex‘perimental result showed a 20% variation with the results of the theoretical models as

shown in figure 5.1. Figures 5.2 and 5.3 show the best correlation between the various models.

5.1.2 DISTRIBUTED LOADS

The internal pressure was kept constant for all the patch load cases. The intemnal pressure
would have to be kept as low as 2 pascals above the atmospheric pressure to simulate a
differential pressure of 240 pascals (5 Ib/sq ft) above the atmospheric pressure in the prototype.
Such a small pressure was impractical to be kept constant and it was decided te increase the

internal pressure to 10 pascals since the object of the studies would not be significantly affected.



74

5.1.2.1 CASE ONE
The results of the computer runs for load case one shown in Fig. 5.4 arc plotied along with
the experimental observations in the form of load-displacement curves. Figures 5.5 to 5.11 show
the load-displacement histories at various salient nodal points on the dome. There is no difference
in the results obtained by the various models in the initial stage as shown in figure 5.5, Figure 5.6
indicates a linear relationship between load and displacement for loads up to 4 N for ail the
methods except the tangent stiffness method. The latter exhibits a linear curve till the
superimposed load reaches 1.75 N. Thereafter, it begins to flatten predicting an ultimate load of
about 2 N, The secant stiffness method predicts the ultimate load at 4 N and Kar's method at 3.9
N. However, the energy search method predicts the ultimate load to be about 30 N. Good
agreement was observed between the theoretical models and the experimental observations for
displacements directly under the load as shown in figures 5.5 to 5.8. However in figure 5.9, the
curve plotted for node 73 indicates a large variation of as much as 200% over the theoretical
models. No displacement was observed at node 77 in any direction and this is reflected in figures
5.10 and 5.11. The energy search method seems to predict the ultimate load more realistically as

is indicated by the close agreement with the experimental result.

5.1.22 CASETWO

The second load case covers two extreme panels in the longitudinal direction as shown in
figure 5.12. Again, there is little or no variation in the recults gtained by the various methods as
shown in figure 5.13. The load displacement curves plotted for this case show that nonlinearity
sets in when the applied load is more than 2 N for all the models except that of the tangent
stiffness method, The curve for this method ceases a lincar trend at a superimposed load of just
less than 1 N. The ultimate load is predicted to be around 1.25 N. The experimental trend is

excellent at node 81 in the Z direction closely following the energy search model. This is shown
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in figure 5.13. However, the X observation as shown in figure 5.14 at the same node shows a
variation of about 20% with the energy search method. There is no displacement at node 77 as
reflected in figures 5.15 and 5.16. Figure 5.17 shows the failure of the matrix methods to

converge to a solution, Even the energy scarch curve has an unstecady and wavering trend before

being smoothened at higher loads.

5.1.23 CASE THREE

This load case is shown in figure 5.18 and the results plotted have exhibited the same kind
of trends as in the previous two cases i.e., the prediction of ultimate load by the tangent stiffness
model is approximately half the value predicted by other matrix methods. Also the results
generally coincide in the initial loading stages as shown in figure 5.20. The secant stiffness curve
indicates an ultimate load of 6 N at node 80. Experimental trends as usual prove that the energy

search method is realistic in its predictions.

5.1.24 CASEFOUR

This is a symmetrical patch load applied at both ends in the longitudinal direction as shown
in figure 5.21. Figure 5.22 to 5.25 highlight the loading symmetry of the structure. Interestingly,
the energy search model curves upward in both cases. This would seem to suggest that the sway
in the X direction remains conslant after an application of 9 N at nodes 73 and 81 respectively.
The curves plotted in the . directicn at the same nodes show that nonlinearity is not pronounced
even after a considerabie numixi oi load increments. The experimental observations shown in
figure 5.22 fail to follow the energy search curve closely and a distinct possibility of severe
divergence at higher loads is noticed. As usual, there is an excellent agreement belween the
results obtained by the various models in the initial loading range. Another interesting feature,

shown in figure 5.26 was the behaviour of the energy search curve at node 77. It can be
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interpreted as a change of direction of sway as the load increases. The same trend is followed by
Kar's model. Displacements at nodes 74 and 75 correlated very well with that of nodes 79 and 80

respectively as is expected in a symmetric load case.

5.1.25 CASEFIVE

This load case is symmetric about both the X and Y directions as shown in figure 5.27. Test
results showed very good agreement with the theoretical models in the vertical Z direction but the
X and Y direction load-displacement curves tended to a slight variation. Figure 5.28 shows the
load-displacement curve at node 37 in the Y direction. The experimental curve exhibits a slight
kink in the initial stages. A likely reason for this behaviour could be the possible lateral shift in
the measuring equipment due to the extreme slope at this point. On the other hand the Z direction
curve at the same node shows excellent agreement and correlation. Figures 5.30 and 5.31 also
show the same theoretical trends which generally corroborate with experimental observations.
Figure 5.32 shows the same trend exhibited by node 77 as in case 3.

The linear trend ends for all the models at a superimposed load of about 3 N for all the
matrix methods including the tangent stiffness method. The energy search curve continues to be
linear until it reaches 5 N. The symmetrical characteristics of this load case is very clearly shown
by the .idenu'cal trends of the curves at nodes 37, 73, 81 and 117 as shown in figures 5.28, 5.30,

5.33 and 5.34 respectively.

5.1.2.6 CASE SiX

This is a very simple load case with a patch load placed on the four central panels as shown
in figure 5.35. The load-displacement plots shown in figures 5,36 to 5.39 indicate the detection of
general instability by the energy search method. The displacements oscillate mildly but conform

to a general trend, The same trend is predicted by the tangent stiffness method but as usual it
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underestimates the behaviour at the node. Figure 5.37 shows an unusual trend of Kar's method. It
indicates the failure of Kar's method to successfully hasten convergence in ill-conditioned
situations. The same trend is exhibited in figure 5.38 which is the load-displacement curve at
node 117 in the Z direction. However, the behaviour of the structure dircctly under ihe load is as

per predicted lines. This is clearly illustrated in figure 5.39.

5.1.2.7 CASE SEVEN

This case shown in figure 5.40 is very unstable in that the theoretical models with the
exception of the energy search method failed to converge beyond a few load increments, Even the
energy search methed which is normally not beset with convergence problems exhibited a certain
degree of divergence at a relatively early stage. In this case, the structure collapsed totally and
ceased 10 behave as a roof even at the first few increments of loading. A considerable sway in
both the lateral directions was predicted by the energy search method as shown in figures 5.41
and 5.42. But experimental trends clearly indicated a shift to only one side. Sand spilling into
adjacent panels due to ponding could be a possible reason for this type of wrend. Overall, there is
general disagreement with experimental observations and theroetical values in this case. The
load-displacement curves for the vertical direction as shown in figures 5,42 and 5.43 do not
corroborate at all with the experimental curves in the initial loading stages but seems to follow in
the general direction of the energy search model. However, the energy search mcthod predicts
expected trends at node 77 as showa in figure 5.43 and the experimental curve indicates the same

type of behaviour although with a lateral shift,
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Chapter VI
CONCLUSIONS AND RECOMMENDATIONS

The finite element method has been incorporated into all of the solution techniques presented
here. The matrix methods of analysis are advantageous in that the convergence, if achieved, is
done so in a very few iterative cycles. The tangent stiffness method has proved to be the most
efficient when the nonlinearity is not pronounced since it converges in fewer iterations than the
secant stiffness method; but its inherent drawback les in its relative inaccuracy in predicting
displacements when geometric nonlinearity sets into the structure. The secant stiffness method is
slightly better in the prediction of displacements and follows the experimental values more
closely; its estimation of failure load is also much lower than predicted by the energy search
method although relatively better than that of the tangent stiffness model. Kar's modification
applied to the tangent stiffness method did not hasten convergence in any way; but it has resulted
in the solutions approximating the energy search method more closely and the estimation of
failure load is about 10% higher than that of the secant stiffness method, However, all of the
above methods are beset by convergence difficulties when the structure is loaded into the
nonlinear range,

On the other hand, the energy search method permits the prediction of large nodal
displacements and its formulation also allows the detection of general instabilities. The potential
energy formulation is also much simpler to construct than the corresponding m=trix methods of
analysis. The calculation of the total potential energy is simply the scalar sum of the energy

contributions from the individual members which comprise the structure, No convergence
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problems were encountered except in cases of highly nonlinear solutions due to large applied

loads., The only disadvantage in the use of the energy search method is the amount of time taken

to converge to a solution. It is about five times slower than the conventional matrix methods.

The variable metric method[6] of Fletcher and Powell was not used in the search for a

minimum because of the need for more storage as compared to similar techniques, Hence it was

decided to use the Fletcher-Reeves[7] algorithm of conjugate gradients. The scaling technique

proposed by Fox and Stanton[8] helped to hasten convergence,

The conclusions reached in this study were:

There is little or no difference in results obtained by one step matrix solution techniques
and the energy search method in the initia: stage of loading when geometric or material
nonlinearity is not pronounced.

The stiffness method of analysis is more suitable when the strcuture is very stable, i.c.,
in case of internal pressure loading, as the solution converges very quickly.

The amount of execution time takez hy the matrix methods is roughly one-fifth that of
the energy search method.

Matrix methods of analysis failed to converge in the first few iterations in an
unstiffened state i.e., when the member forces are zero, Such problems did not exist
with the energy search method.

The one step solution techniques were beset by convergence difficulties and predicted
the failure load to be much lower than was the case. In the energy search method, no
convergence problems were encountered until the ultimate load capacity of the structure
was reached.

Elaborate matrix formulations were not required in the case of the energy search
method. The calculation of the total potential energy was simply the scalar of the

potential energies of the individual members comprising the stnicture.
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7. The proposed modification of Kar to improve the rate of convergence was not
successful in nonlinear situations.

Based on the above, it is recommended that for structures whose service load may not
exceed 20% of the ultimate load, it may be more economical to use matrix methods of analysis as
they show little or no variation with the energy search method. But in cases where the service
load is expected to be beyond 20% of the ultimate load capacity of the structure, the energy
search procedure proves to be the more accurate method albeit time consuming,

For future research, it is recommended to study the membrane-cable interaclion and the
effect of marriage between these two elements. It is also recommended that future studies use

optical techniques to have relative ease and accuracy in measuring displacements,



Appendix A
STRAIN ENERGY GRADIENT

The analytic gradients of the element strain energy given by equations (2.15) and (2.22) for

elastic and inelastic tension members respectively is given by:

= _ o= 4, Al
Er ey @
P q
o _ 3= 4
==L (A.2)
aVP avq 5
= o A
? g )

where
A =X +a)-(X +a)
Ay = (Yq + ﬁq) - (YP + ﬁp)

B=E +w)-Z %)
L=+ A whene <e,
/)
==+ Ti(2- !_) whene > g

and E, T, /, and [, are as defined in Chapter 2,
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Appendix B
GEOMETRIC STIFFNESS MATRIX OF AN AXIALLY LOADED
MEMBER

The member shown in figures B.1 and B.2 has a length /, and lies between nodal points p

and ¢. In the initial state 1, the member lies in an XY plane and the force at each end of the

member is given in vector form by:

T, =|sina, |1 (B.1)
where

T = scalar magnitude of Tl

o, =angle of the local X axis of the member the X axis

Bi =angle about the local y' axis measured the X-Y plane the local x axis and is selected be equal zero

If a small rigid body rotation is given to the member, the resultant rotation in state 2 has
components 8cr,, about the z axis and 8B, about the y axis. Therefore the force at each end of the

member is given by:
7‘2= sina, |7 (B.2)

where the scalar magnitude of T, is the same as 7, and

-125 -



@, =0, + 8,
B, =B+ 8B,
Since the rigid body rotation is small,
cosBBl2= 1.0 (B.3)
cosdor,, = 1.0 (B.4)

The deformations A¥,Ay,AZ, shown in figures B.3 and B.4 are further related to o, and the
angles of rotation dc,,, 88, as follows:

Afsina + Ajcosor
sin&::|2 = 7 (B.5)

sindf,, = 5~ (B.6)

P

The deformations are also related to the displacements of joints p and g by:

Au
AU12 =| Av (B.7)
Aw
uq 4 - Ax
=Yl =| &y (B.8)
- AT
wq WP 2 12

The changes in member force to the applied load vector P at joint p can be related by statics

to be:

ﬁlz + (Tz -T)=0 (B.9)

Substituting equations (B.1) to (B.6) into equation (B.9) the following expression results:

F,-c . sinzmi —sina,cosee, 0,
P,=|b =7 7| - sinc coser, coszotl ol & (B.10)
P. Aw

Z 0 01
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This can be related to the direction cosines of the element as:
- T - .
P,=-Lr-557as, (B.11)

where
I = Identity matrix of order 3
B =1 m A
= [cosat sinc 0] the direction cosines for the X-Y plane

This can be transformed to a global reference plane (X,¥,Z) with the help of an orthogonal

transformation matrix given by:

P im In
(Tl=|tm m* mn (B.12)

In mn nz

where /, m, n are the direction cosines of the local axes to X, ¥, and Z respectively.

Therefore
‘Elz =[TR)P, (B.13)
and
AU, =T AU, (B.14)
Substitution of equations (B.13) and (B.14) into equation yields:
5 T
P,=- T[I— DIP)Jau,, (B.15)
The contributions of each element to the structural stiffness matrix is then written as:
[PP] =[ k- "}[UP] (B.16)
Pl [-x &l|u '
4. q.
where

"':kr“‘a



k= }£[D][D]T from classical linear theory

a

T
ko=~ DIDI']
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Appendix C
COMPLETE NONLINEAR STIFFNESS MATRIX

The axial element of a structure displaced from state 1 to state 2 is shown in figure 2.1. The

displacements u, and u , of ends p and g respectively are considered to be large and the strain € of

the element is considered small for Hooke's Law to apply. Therefore

-1 8
ke Wi
€,= ) 7 (C.1)
AU, =S-L
uq—up Au
V.oV | =jaAv (C.2)
W W, " awj,
Then,
(1 +e) =1+ 2080, + D)D) (C3)
1
=(1+%¥) (C4)

where ¥ = Tz-[Djr[AU]u +[D1[DL.
1

The incremental equation of statics at joint p is:

——-(T‘+6T‘1)L AU T'L =0 C.5
27 (U re,) (£, + |2'T 0= (€.5)

where
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T_ - _ _ T
L=[X,~X) (V,~Y) @,~Z))

Using Hooke's Law:
8T, = %E'Srtz (C.6)
a
AE

o

where /, is the unrestrained Iengih of the member.

The manipulations of equation (C.1) and (C.2) yield the following relations:

1

1 "2
—_—+Y C38
T+e, (1+'¥) (C.3)
€2 2

=1-(1+¥) C9
1+e,
1 1..7 1 1
FH{L+aU,} = SLL AU+ ?LIAULAUH + = ¥IAY,, (C.10)

1 i

Substituting equation (C.7) into equation (C.5) and using equations (C.8), (C.9) and (C.10):

AP, =kl (C.11)
= [k, +ky JAU,, (C.12)
where
T
k= 2201 + S+ - oIl (C.13)

[] 1

T
k= [";E - T:][C'm +C,ID)D] + CsLIAUL] (C.14)
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C,= 12 (C.15)

212(3 +E,

== —— C.16
2 (l+E,)2+E,) (C.16)
1

P Ure )+, (C.17)



Appendix D
COMPUTER PROGRAM FOR THE TANGENT STIFFNESS METHOD
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C...
C...
C...
C...
C...
C...

C...
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This is a program for the Tangent Stiffness Method
for the nonlinear analysis of cable net

structures.
in this program.

. DCOS (NEL, 3)

. KT (NDF,NDF)

o wwnnn

The following are the variables used

A (NEL, 2) = Nodal connectivity matrix
AREA (NEL) = Area of the element
B (NEL) = Tension in the member during an
iteration
.. COOR(NN, 3) Coordinates at each node
. CORA (NN, 3) Updated coordinates at the node
COUNT Number of iterations

Direction cosine of the element

. DELU(NDF) Sum of displacements after every
. iteration
. DOF (NN, 3) Degree of freedom at each node
. E(NEL) Elastic modulus of the element
. GAMMA (NEL) Strain in the element
ID(3, 3) Identity matrix of order 3

Tangent stiffness matrix

LEN (NEL) Length of the element
LENO (NEL) Unstiffened length of the
element
LIMIT = Specified accuracy for
convergence
NDE = Number of degrees of freedom
NEL = Number of elements.
NN = Number of nodes
PEQ (NDF) = BEquilibrium nodal load
PNODE (NDF) = Applied nodal load
PREM (NDF') = Residual load at the nodes
T{NEL) = Pretension in the element
TNODE (NDF') = Total equivalent nodal load
U {NDF) = Digplacements at the degrees of
freedom
VCT (NEL, 6) = Variable correlation matrix
PARAMETER (NEL = 180,NN = 117,NDF = 243)
COMMON/ONE/CORA
COMMON/TWO/VCT
COMMON/THREE/A
COMMON/FOUR/DOF
COMMON/WORKSP /RWKSP

REAL ALEN,AREA (NEL),B(NEL), COOR (NN, 3} ,CORA (NN, 3),
+DCOS (NEL, 3) ,DELU (NDF) ,DIFJ (3, 3) ,E(NEL) ,ELK (3, 3),

+ELM(6, 6) , GAMMA, (NEL) , ID (3, 3) , INTER(3, 3) , KT (NDF, NDF) ,
+LEN (NEL) , LENO (NEL) , LIMIT, PEQ (NDF) , PNODE (NDF) , PREM (NDF) ,
+RNODE (NDF) , RWKSP (59557) , SIFJ (3, 3), T (NEL) , TNODE (NDF),

+U (NDF)
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C...
INTEGER A(NEL, 2),COUNT, DOF (NN, 3) ,END1,END2,
+VCT (NEL, 6)
C...
C... Read input data
CICI
READ *, ((A(I,J),J = 1,2),I=1,NEL)
READ *, ((DOF(I,J),J = 1,3),I = 1,NN)
READ *, ({COOR(I,J),J = 1,3),I = 1,NN)
READ *, (T(I), I = 1,NEL)
READ *, (PNODE(I),I = 1,NDF)
READ *, (AREA(I),I = 1,NEL)
READ *, (E{I), I = 1,NEL)
Cl..
C... Increase work storage for the LSARG routine
Cl.l
CALL IWKIN(59557)
CIIC
C... Print structural information
C.II

PRINT 30, 'NODAL CONNECTIVITY TABLE',
+'MEMBER', 'END P', 'END Q'
DO 1 I = 1,NEL
PRINT 31,I,A(I,1),A(T,2)
1+  CONTINUE
PRINT 32, 'DEGREE OF FREEDOM', 'NODE','X','Y','Z2’
DO 2z I = 1,NN
PRINT 33,I,DOF(I,1),DOF(I,2),DOF(I,3)
2 CONTINUE

C... Form and print variable correlation table
cC...
PRINT 34, 'VARIABLE CORRELATION TABLE', 'ELEMENT',
+'END P','END Q','T
DO 4 I = 1,NEL
365 CONTINUE
po3 J=1,6

M=2

Q=J-3

IF (J.LE.3) THEN
M=1

Q=J

END IF

PAN = A(I,M)
VCT(I,J) = DOF(PAN,Q)

3 CONTINUE
PRINT 35,I,(VCT(I,J),J = 1,5)
4 CONTINUE

PRINT 36, 'NODAL COORDINATES', 'NODE','X','Y','2’
DOS5 I=1,NN
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PRINT 37,I,COOR(I,1),COOR(I,2),CO0R(I,3)
CONTINUE

PRINT 38, 'SECTIONAL PROPERTIES OF MEMBERS',
+'MEMBER', 'AREA', '"MODULUS', 'TENSION®

DO 6 I = 1,NEL

PRINT 39,I,AREA(I),E(T),T(I)

CONTINUE

DO 7 I = 1,NN

DO 7J=1,3

CORA(I,J) = COOR({I,J)

CONTINUE

PRINT 40, 'LOAD CONDITION', 'DOF', 'LOAD’
DO 8 I = 1,NDF

PRINT 41,I,PNODE({(I)

Initialize load and displacement vectors

PREM(I) = PNODE (I)
TNODE {I) = PNODE (I)
U(r) =20

DELU(I) = 0
CONTINUE

To calculate the direction cosines of the members
and the total equivalent nodal loads

DO 10 I = 1,NEL
ENDLl = A(I,1)

END2 = A(I,2)

CALL DIRCOS (I, U,LEN,DCOS)

DO9 J=1,3

OR = DOF (END2,J)

0S8 = DOF (END1, J)

IF (OR.NE.0) THEN

TNODE (OR) = TNODE (OR) + T (I)*DCOS(I,J)
END IF

IF (0S.NE.0) THEN

TNODE (0S) = TNODE (0S) - T (I)*DCOS(I,J)
END IF

CONTINUE

Calculate unstiffened length of the member
LENO(I) = LEN(I)/{(T(I)/(AREA(I)*E(I)) + 1.)
Initialize member strains

GAMMA (I) = 0
CONTINUE
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12

C...
C...
C...

15

16

17

Form identity matrix

DO 11 L = 1,3
DO 11 M = 1,3
ID(L,M) = 0

IF (L.EQ.M) THEN
ID(L,M)}) = 1,

END IF

CONTINUE

COUNT = O

COUNT = COUNT + 1

Initialize stiffness matrix

DO 13 I = 1,NDF
RNODE (I) = PREM(I)
DO 13 J = 1,NDF
KT(I,J) = 0
CONTINUE

Form a new stiffness matrix

DO 19 I = 1,NEL

PO 14 L = 1,3

DO 14 M = 1,3

DIFJ(L,M) = DCOS(I,L)*DCOS (I,M)
CONTINUE

CALL MATADD (ID,DIFJ,2,INTER, 3)

DO 15 L = 1,3

DO 15 M = 1,3

INTER(L,M) = INTER(L,M)*T{I)/LEN(I)
SIFJ(L,M) = DIFJ(L,M)*AREA (I)*E(Il)/LENO(I)
CONTINUE

CALL MATADD (SIFJ, INTER, 1,ELK, 3)

DO 17 L = 1,3

DO 16 M = 1,3

ELM(L,M) = ELK(L,M)

IR =M + 3

EIM(L,IR) = - ELK(L,M)

CONTINUE

LOR = L + 3

Do 173 =1,6

ELM(LOR,J) = - ELM(L,J)

CONTINUE

DO 18 J = 1,6

KORA = VCT(I,J)

DO 18 M = 1,6

LORA = VCT (I,M)

IF ( (KORA.EQ.0) .OR. (LORA.EQ.0)) GOTO 19
KT (KORA, LORA) = KT (KORA,LORA) + ELM(J,M)
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20

C...
C...
C...

21

C...
C...
C...

C...
Col.
C...

22

C...
cC...
C...
cC...

23

CONTINUE
CONTINUE

DO 20 I = 1,NDF

RNODE (I) = RNODE (I} *1000.
DO 20 J = 1,NDF

KT (I,J) = KT(I,J)*1000.
CONTINUE

Solve for the displacements

CALL LSARG (NDF,KT,NDF,RNODE, 1,U)
CALL ORDY (U,CORA)

DO 21 J = 1,NDF

DELU(J) = DELU(J) + U(J)
RNODE (J) = RNODE (J)/1000.
PEQ(J) = 0

CONTINUE -

Update structure geometry

DO 24 I = 1,NEL

ALEN = LEN(I}

CALL DIRCOS (I,U,LEN,DCOS)
Calculate strain in the member

GAMMA (I) = (LEN(I) - ALEN)/ALEN

B(I) =0
END1 = A(I,1)
END2 = A(I,2)

Do 22 J =1,3

CALL CALCUL(I,J,U,U2,Ul)

DIF = U2 - Ul

B(I) = B(I) + DCOS(I,J)*DIF*E(I)*AREA(I)/LEN(I)
CONTINUE

Calculate member tension and nodal equilibrium
load

T{(I) = T(I) + B(I)

Do 23 J=1,3

OR = DOF (END2, J)

0S = DOF (END1, J)

IF (OR.NE.O) THEN

PEQ(OR) = PEQ(OR) - T (I)*DCOS(I,J)
END IF

IF(OS.NE.O) THEN

PEQ(0S) = PEQ{0OS) + T(I)*DCOS(I,J)
END IF

CONTINUE
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24 CONTINUE

Cev
C... Calculate residual nodal loads
CC.I
DO 25 L = 1,NDF
PREM(L) = PEQ({L) + TNODE (L)
25 CONTINUE
Cll
C.. Check for convergence
C..

po 26 L = 1,NDF
LIMIT = 1.E-4
IF (ABS (PREM(L)) .GT. ABS(LIMIT)) GOTO 12
26 CONTINUE
27 PRINT 42, 'FINAL NODAL DISPLACEMENTS', 'NODE','X',

+Iyl' lzl

PRINT *, 'NO OF ITERATIONS = ',COUNT
DO 28 J = 1,NN

COLE = DOF(J,1)

UX =0

DOLE = DOF (J,2)

UY = 0

MOLE = DOF (J, 3)

Uz = 0

. IF (COLE.NE.Q) THEN
UX = DELU(COLE)
END IF
IF (DOLE.NE.Q) THEN
UY = DELU (DOLE)
END IF
IF (MOLE.NE.0) THEN
Uz = DELU(MOLE)
END IF
PRINT 43,J,UX,UY, U2

28 CONTINUE

' ERINT 44, 'FINAL MEMBER FORCES', 'MEMBER', 'FORCE'

DO 29 I = 1,NEL
PRINT 45,I,T(I)

29 CONTINUE

30 FORMAT (15X,A24//15X,A6,2X,AS5,2X,A5//)

31 FORMAT (17X,I2,6X,I2,5X,I2)

32 FORMAT (15X,Al17//15X,Ad,3X,Al,3X,Al,3X,Al1//)

33 FORMAT (16X,13,2X,I3,1X,I3,1X,13)

34 FORMAT (///10X,A26///10X,A7,5X,A5,8X,A5///14X,
+Al1,5%X,2('U',3X,'V',3X, 'W',3X) /20X,3('P', 3X),
+3('Q',3%)//)

35 FORMAT (13X,I2,4X,I2,5(2X,I2))

36 FORMAT (//15X,A17///7X,A4,8X,Al,9X,A1,9X,A1//)

37 FORMAT (7X,I3,4X,F8.1,2X,F8.1,2X,F8.1)}

38 FORMAT (//15X,A24//13X,A6, 3X,Ad, 4X,R7,3X,A7//)
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FORMAT (14X,I3,4X,F8.2,2X,F8.3,2X,F9.3)
FORMAT (///15X,A14//15X,A3,5X,Ad4//)

FORMAT (15X,I3,3X,F8.3)

FORMAT (15X,A24//18X,A4,6X,Al,10X,Al,10X,Al)
FORMAT (16X,I3,2X,F14.7,2X,F14.7,2X,F14.7)
FORMAT (15X,Al19///15X,A6,6X,A6//)

FORMAT (17X,I3,5X,F14.7)

STOP

END

Subroutine DIRCOS calculates the lengths and
direction cosines of each element

SUBROUTINE DIRCOS(I,U,LEN,DCOS)
PARAMETER (NEL = 180,NDF = 243,NN = 117)
COMMON/ONE/CORA

COMMON/THREE/A

REAL U (NDF) ,LEN (NEL),DCOS (NEL, 3) , CORA (NN, 3)
INTEGER A(NEL, 2)

END1 = A(I,1)

END2 = A(I,2)

LEN(I) =0

DO 101 3 =1,3

CALIL CALCUL(IL,J,U,U2,Ul)

DIF = U2 - Ul

X2 = CORA (END2,J)

X1 = CORA(ENDL,J)

LEN(I) = LEN(I) + (X2 - X1)=**2
DCOS(I,J) = X2 - X1

CONTINUE

LEN(I) = SQRT(LEN(I))

DO 102 3 =1,3

DCOS(I,J) = DCOS(I,J)/LEN(I)
CONTINUE

RETURN

END

Subroutine MATADD is used to add or subtract two
matrices

Mode = 1 indicates addition

Mode 2 indicates gubtraction

SUBROUTINE MATADD (MAT1,MATZ, MODE,MAT3, IRW)
REAL MATI1 (IRW,IRW) ,MATZ2 (IRW, IRW),MAT3 (IRW, IRW)
DO 201 L = 1,IRW

DO 201 M = 1,IRW

MAT3(L,M) = MAT1(L,M} - MATZ2(L,M)

IF {MODE.EQ.1l) THEN

MAT3 (L,M) = MAT1l(L,M, + MAT2(L,6 M)

END IF
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201 CONTINUE

RETURN
END
Ci..
C... Subroutine CALCUL is used to relate nodal
C... deflections to corresponding degree of freedom
c.
SUBROUTINE CALCUL(I,J,U,U2,Ul)
PARAMETER(NDF = 243,NEL = 180)
COMMON/TWO/VCT
REAL U2, Ul, U (NDF)
INTEGER VCT (NEL, 6)
IR=J + 3
MO = VCT(I,J)
NO = VCT (I, IR)
Ul =0
U2 =10
IF{MO.NE.0) THEN
Ul = U(MO)
END IF
IF(NO.NE.Q) THEN
Uz = U(NO)
END IF
RETURN
» END
C...
C... Subroutine ORDY updates the coordinates of the
C... nodes after every iteration
C...
SUBRQUTINE ORDY (U, CORA)
PARAMETER (NEL = 1B(0,NDF = 243, NN = 117)
COMMON/FOUR/DOF
REAT, CORA (NN, 3) ,U(NDF)
INTEGER DOF (NN, 3)
DO 401 N = 1,NN
DO 401 g =1,3
LO = DOF (N, J)
IF(LO.NE.(Q) THEN
CORA(N,J) = CORA(N,J) + U(LO)
END IF
401 CONTINUE
RETURN

END
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This is a program for the Secant Stiffness Method
for the nonlinear analysis of cable net

structures. The following are the variables used

Nodal connectivity matrix
Area of the element

Tension in the member at each
iteration

Coordinates of the nodes
Updated coordinates of the
nodes

Number of iterations
Direction cosines of the
element

Sum of displacements due to
each iteration

Elastic modulus of the

Strain in the element
Identity matrix of order 3
Tangent stiffness matrix
Secant Stiffness matrix
Stiffness matrix of the
structure

Length of the element
Unstiffened length of the
element

Specified accuracy for
convergence

Number of degrees of freedom
Number of elements.

Number of nodes

Equlibrium nodal load
Applied nodal load

Residual load at the node
Total equivalent nodal load
Displacement at the node for
each iteration

Variable correlation matrix

PARAMETER (NEL = 180,NN = 117, NDF = 243)

C..

cC..

cC...

c.. in this program.

C... A(NEL,2) =

cC.. AREA (NEL) =

cC.. B (NEL) =

C...

C... COOR(NN,3) =

c. CORA (NN, 3) =

C..

cC.. COUNT =

cC.. DCOS (NEL, 3) =

C...

C... DELU(NDF)} =

C...

C... E({(NEL) =

element

C... GAMMA(NEL) =

C... 1ID(3,3) =

C... KL(NDF,NDF) =

C... KNL(NDF,NDF) =

C... K(NDF,NDF) =

C...

Cur LEN (NEL} =

C... LENOQ(NEL) =

C...

C... LIMIT =

C...

C.. NDF =

c. NEL =

C.. NN =

C.. PEQ (NDF') =

C... PNODE (NDF) =

C... PRES(NDF) =

C... TNODE (NDF) =

C... U(NDF) =

C...

C... VCT(NEL, &) =

C.u.

C...
COMMON/ONE /CORA
COMMON/TWO/VCT
COMMON/THREE/A
COMMON/FQUR./DOF
COMMON/EXPT/LAC
COMMON/WORKSP /RWKSP

C...

REAL AID(3,3),ALEN,AREA(NEL),B (NEL),COOR (NN, 3),
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+CORA (NN, 3) ,DCOS (NEL, 3) ,DELU (NDF) ,DIFJ (3, 3) ,E (NEL),
+ELK (3, 3) ,ELM(6, 6) , ENLK (3, 3) ,ENLM (6, 6) , ENTAR (3, 3),
+GAMMA (NEL) , ID (3, 3) , INTER (3, 3) , K (NDF , NDF) , KL (NDF , NDF) ,
+KNL (NDF, NDF) , LEN (NEL} , LENO (NEL) , LIMIT, PEQ (NDF) ,
+PNODE (NDF) , PREM (NDF) , RNODE (NDF) , RWKSP (59557) ,
+SIFJ(3,3), T(NEL), TEMP (3,3), TIFJ (3, 3) , TNODE (NDF),

+U (NDF)

INTEGER A (NEL, 2), COUNT,DOF (NN, 3) , END1, END2,
+VCT (NEL, 6)

C... Read input data

READ *, ((A(I,J),J = 1,2),I=1,NEL)
READ *, ( (DOF(I,J),J = 1,3),I = 1,NN)
READ *, ( (COOR(I,J),J = 1,3),I = 1,NN)
READ *, (T(I), I = 1,NEL)

READ *, (PNODE(I),I = 1,NDF)

READ *, (AREA(I),I = 1,NEL)

READ *, (E(I}), I = 1,NEL)

Increase work storage for LSARG routine

R Y

CALL IWKIN(59557)

Print structural information

a0 000

PRINT 33, 'NODAL CONNECTIVITY TABLE', 'MEMBER',
+'END B', 'END Q'
pol I = 1,NEL
PRINT 34,I,A(I,1),A(I,2)
1 CONTINUE
PRINT 35, 'DEGREE OF FREEDOM', 'NODE','X','Y','2'
DO 2 I = 1,NN
PRINT 36,I,DOF(I,1),DOF(I,2),DOF (I,3)
CONTINUE

2
C.
C... Form variable correlation table and print
ol

PRINT 37, 'VARIABLE CORRELATICON TABLE', 'ELEMENT',
+'END P', 'END Q','I

DO 4 I = 1,NEL
DO 3 J = 1,6

M= 2

Q=J-3

IF (J.LE.3) THEN
M=1

Q=J

END IF

PAN = A(I,M)
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VCT(I,J) = DOF (PAN,Q)

3 CONTINUE
PRINT 38,1, (VCT(I,J),J = 1,6)
4 CONTINUE

PRINT 39, 'SECTIONAL PROPERTIES OF MEMBERS',
+'MEMBER', 'AREA', '"MODULUS ', ' TENSION'
DO 5 I = 1,NEL
PRINT 40,I,AREA(I),E(I),T(I)
5 CONTINUE
PRINT 41, 'NODAL COORDINATES', 'NODE','X','Y', ‘%!
DO 6 I = 1,NN
PRINT 42,I,COOR(I,1),COOR(I,2),COOR(I, 3)
6 CONTINUE
DO 7 I = 1,NN
DO 7 J = 1,3
CORA(I,J) = COOR(I,J)
7 CONTINUE
PRINT 43, 'LOAD CONDITION', 'DOF', 'LOAD'
DO 8 I = 1,NDF
PRINT 44,I,PNODE(I)

Initialize load and displacement vectors

a0 o

TNODE (I) = PNODE(I)
' PREM(I) PNODE (I)
DELU(I) 0
U(r)y =0
8 CONTINUE
cC...

C... To calculate the direction cosines of the members
C...

DO 10 I = 1,NEL

T(I) = TR(I)

END1 = A(I,1)

END2 = A(I,2)

CALL DIRCOS (I,U,LEN,DCOS)
DO 9 J=1,3

OR = DOF (END2, J)

0S = DOF (END1, J)

munan

C... Calculate total equivalent nodal loads

IF(OR.NE.O) THEN
TNODE (OR) = TNODE(OR) + T{I)*DCOS(I,J)
END IF
IF(OS.NE.0} THEN
TNODE (C3} = TNODE{0OS) ~ T(I)*DCOS(I,J)
END IF

9 CONTINUE
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C... Calculate the unstiffened length of the element
c...
LENO(I) = LEN(I)/(T(I)/(AREA(I)*E(I)) + 1.)
C...
C... Initialize the member strains
cC...
GAMMA (I) = O
10 CONTINUE
cC...
C... Form the identity matrix
C.O!
011 L =1,3
DO 11 M=1,3
ID{(L,M) = 0

IF(L.EQ.M) THEN
ID(L,M) = 1.

END IF

11 CONTINUE
COUONT = 0

12 COUNT = COUNT + 1

C...

C... Initialize the stiffness matrix

Cl L]
DO 13 L = 1,NDF

. RNODE (L) = PREM(L)

DO 13 M = 1,NDF
KL(L,M) = 0

KNL(L,M) = 0
13 CONTINUE

C...
C... Form a new stiffness matrix
C...

DO 22 I = 1,NEL

DO 14 L =1,3

DO 14 M = 1,3

TEMP (L,M) = DCOS(I,L)

14 CONTINUE

DO 15 J = 1,3

CALL CALCUL(I,J,U,U2,Ul)

DO 15 L = 1,3

TEMP (L, J) = TEMP (L,J)*(U2 - Ul)
15 CONTINUE

DO 16 L = 1,3

DO 16 M =1,3

DIFJ(L,M) = DCOS(I,L)*DCOS(I,M)
16 CONTINUE

CALL MATADD (ID,DIFJ, 2, INTER, 3)

DO 17 L = 1,3

DO 17 M = 1,3

INTER(L,M) = INTER(L,M)*T(I)/LEN(I)



SIFJ (L,M) = DIFJ(L,M)*AREA (I)*E(I)/LENO{I)
TEMP (L,M) = TEMP (L,M)/(LEN(I)*(1l. + GAMMA (I))
+* (2. + GAMMA(I)))

TIFJ(L,M) = DIFJ(L,M)*GAMMA (I)* (3.+GAMMA (I))
TIFJ(L,M) = TIFJ(L,M)/((l. + GAMMA(I))

+* (2, + GAMMA(I)))

AID(L,M) = ID(L,M)*GAMMA(I)/ (1. + GAMMA(I))

17 CONTINUE

CALL MATADD (SIFJ, INTER, 1,ELK, 3)

CALL MATADD (AID, TIFJ,2,ENTAR, 3)

CALL MATADD (ENTAR, TEMP, 1, ENLK, 3)

DO 18 L = 1,3

DO 18 M = 1,3

ENLK (L,M) = ENLK(L,M) * (AREA (I) *E(I) /LENO(I) -
+T (1) /LEN(I))

18 CONTINUE
DO 20L =1,3
DO 19 M =1,3

ELM(L,M) = ELK(L,M)
ENLM(L,M) = ENLK(L,M)

IR=M+ 3
ELM(L,IR) = - ELK(L,M)
ENIM{L,IR) = - ENLK(L,M)

19 CONTINUE
' IOR =1 + 3
1

DO 20 J = 1,6
ELM(LOR,J) = - ELM(L,J)
ENLM(LOR, J) = - ENLM{L,J)

20 CONTINUE
DO 21 J=1,6
KORA = VCT(I,J)
Do 21 M=1,6
LORA = VCT (I,M)
IF ((KORA.EQ.0) .OR. (LORA.EQ.0)) GOTO 40
KL (KORA,LORA) = KL(KORA,LORA) + ELM(J,M)
KNL (KORA, LORA) = KNL (KORA,LORA) + ENLM(J,6 M)
21 CONTINUE
22 CONTINUE
CALL MATADD (KL, KNL, 1, K, NDF)
DO 23 I = 1,NDF
RNODE (L) = RNODE(I)*1000.
DO 23 J = 1,NDF
K(I,J) = K{(I,J)*1000.
23 CONTINUE

C...
C... Solve for the displacements
C...

CALL LSARG (NDF,K,NDF,RNODE,1,U)
Clll

C... Update the structure geometry
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CALL ORDY (U, CORA}
po 24 J = 1,NDF
RNODE (J) = RNODE (J) /1000.
PEQ(J) = 0
24 CONTINUE
DO 27 I = 1,NEL
ALEN = LEN (I)
CALL DIRCOS (I,U,LEN,DCOS)

C...
C... Calculate new member strains
C...
GAMMA (I) = (LEN(I) - ALEN) /ALEN
B(I) = 0
END1 = A(I, 1)
END2 = A(I,2)

DO 25 J =1,3

CALL CALCUL(I,J,U,U2,Ul)

DIF = U2 - Ul

B(I) = B{I) + DCOS(I,J)*DIF*E{I)*AREA(I)/LEN(I)
25 CONTINUE

C...
C... Calculate new member tensions
C...
. T(I) = T(I) + B(I)
DO 26 J=1,3
OR = DOF (END2, J)
0S = DOF (END1,J)
C..
C... Calculate nodal equilibrium loads
C...

IF(OR.NE,(Q) THEN
PEQ(OR) = PEQ(OR) - T '")*DCOS(I,J)
END IF
IF(OS.NE.() THEN
PEQ(0S) = PEQ(0S) + T(I}*DbCOS(I,J)
END IF

26 CONTINUE

27 CONTINUE

C...
C... Calculate residual loads at the nodes
C...
DO 28 L = 1,NDF
DELU(L) = DELU{(L) + U{L)
PREM(L) = (PEQ (L) + TNODE (L))
28 CONTINUE
C...
C... Check for convergence
C.‘t

DO 29 L = 1,NDF



LIMIT = 1.E-4
IF (ARS (PREM{L)) .GT. ABS(LIMIT)) GOTO 33
29 CONTINUE

C...
C... Print final diaplacements and member forces
cC...
30 PRINT 45, 'FINAL NODAL DISPLACEMENTS', 'NODE', 'X',
+1Yl’ tgt
PRINT *, 'NO OF ITERATIONS = ',COUNT
DO 31 J = 1,NN
COLE = DOF (J,1)
UX =0
DOLE = DOF (J,2)
uy =0
MOLE = DOF (J, 3)
Uz =0

IF (COLE.NE.0O) THEN
UX = DELU(COLE)
END IF
IF (DOLE.NE.Q) THEN
UY = DELU{DOLE)
END IF
IF (MOLE.NE.O) THEN
UZ = DELU(MOLE)

. END IF
PRINT 46,J,UX,UY,UZ

31 CONTINUE

PRINT 47, 'FINAL MEMBER FORCES', 'MEMBER', 'FORCE'
DO 32 I = 1,NEL
PRINT 48,I,T(I)

32 CONTINUE

33 FORMAT (15X,A24//1SX,A6,2X,A5,2X,A5//)

34 FORMAT (17X,I2,6X,I2,5X,I2)

35 FORMAT (15X,A17//15X,A4,3X,Al,3X,A1,3X,Al//)

36 FORMAT (16X,13,2X,I3,1X,I3,1X,13)

37 FORMAT (///10X,R26///10X,A7,5X,A5,8X,A5///14X,
+Al,5%,2('U',3X,'V',3X, 'W',3X) /20X,3('P', 3X),
+3('Q',3X)//)

38 FORMAT (13X,I2,4X,I2,5(2X,I12))

39 FORMAT (//15X,A24//13X,A6,3X,A4,4%,A7,3X,A7//)

40 FORMAT (14X%,I3,4X,F8.2,2X,F8.3,2X,F9.3)

41 FORMAT (//15X,A17///7X,A4,8X,Al,9X,Al,9%X,A1//)

42 FORMAT (7X,13,4X,F8.1,2X,F8.1,2X,F8.1)

43 FORMAT (///15X,Al4//15X,A3,5X,R4//)

44 FORMAT (15X,I13,3X,F8.3)

45 FORMAT (15X,A24//18X,Ad4,6X,Al,10X,Al,10X,Al)

46 FORMAT (16X,I3,2X,Fl14.7,2X,F14.7,2X,F14.7)

47 FORMAT (15X,Al19///15X,A6,6X,A6//)

48 FORMAT (17X,13,5X,F14.7)

STOP
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C...
c...
C...
C...
C...
Coun

201
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Qoo

END

Subroutine DIRCOS calculates direction cosines
and lengths of the elements

SUBROUTINE DIRCOS (I, U,LEN,DCOS)
PARAMETER (NEL = 180,NDF = 243,NN = 117}
COMMON/ONE/CORA

COMMON/THREE /A

COMMON/EXPT/LAC

REAI U (NDF), LEN (NEL) ,DCOS (NEL, 3) , CORA (NN, 3}
INTEGER A (NEL,2)

END1 = A(I,1)

END2 = A(I,2)

LEN(I) = 0

po 101 J = 1,3

CALL CALCUL({I,J,U,U2,Ul)

DIF = U2 - Ul

X2 = CORA(END2,J)

X1 = CORA (END1,J)

LEN(I) = LEN(I) + (X2 - X1)**2
DCOS(I,J) = X2 - X1

CONTINUE

LEN(I) = SQRT(LEN(I))

po 102 J =1,3

DCOS (I,J) = DCOS(I,J)/LEN(I)
CONTINUE

RETURN

END

Subroutine MATADD adds or subtracts two
matrices

Mode = 1 indicates addition

Mode = 2 indicates subtraction

SUBROUTINE MATADD (MAT1,MAT2,MODE,MAT3, IRW)
REAL MAT1 {(IRW, IRW),MAT2 (IRW, IRW) ,MAT3 (IRW, IRW)
DO 201 L = 1,IRW

DO 201 M = 1,IRW

MAT3 (L,M) = MAT1(L,M) - MAT2(L,M)

IF (MODE.EQ.1) THEN

MAT3(L,M) = MAT1(L,M) + MAT2(L,M)

END IF

CONTINUE

RETURN

END

nn

Subroutine CALCUL relaces nodal deflections to
its corresponding degrees of freedom

153
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SUBROUTINE CALCUL(I,J,U,U2,Ul)
PARBMETER (NDF = 243,NEL = 180)
COMMON/TWOQ/VCT
COMMON/EXPT/LAC

REAL, U2,Ul,U(NDF}

INTEGER VCT (NEL, 6)

IR=J+ 3

MO = VCT(I,J)

NO = VCT(I,IR)
Ul =0

uz =0

IF (MO.NE.O) THEN
Ul = U(MO)

END IF

IF (NO.NE.0) THEN
U2 = U(NO)

END IF

RETURN

END

Subroutine ORDY updates the nodal coordinates

after every iteration

SUBROQUTINE ORDY (U,CORA)

PARAMETER (NEL = 180,NDF = 243, NN

COMMON/FOUR/DOF

REAL CORA{NN, 3),U(NDF)
INTEGER DOF (NN, 3)

DO 101 ¥ = 1,NN

DO 101 J = 1,3

LO = DOF({N,J)

IF ({LO.NE.0) THEN
CORA(N,J) = CORA(N,J) + U(LO)
END IF

CONTINUE

RETURN

END
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C.. This is a program for Kar's modification method
C.. for the nonlinear analysis of cables networks,
C... The following are the variables used in this
C.. program

C... AREA(NEL) = Area of the element

c.. A(NEL, 2) = Nodal connectivity matrix
C... B(NEL) = Tension in the element due to
C... displacements

C... COOR (NN, 3) = Coordinates at each node

C... CORA(NN,3) = Updated coordinates at each
node

C... COUNT = Number of iterations

C.. DCOS (NEL, 3) = Direction cosines of each
C... element

C... DELU(NDF) = Summation of displacements in
C... every iteration

C... DOF(NN,3) = Degree of freedom at each node
C... E(NEL) = Elastic modulus in each element
C... GAMMA(NEL) = Strain in each element

C... 1ID(3,3) = Identity matrix of order 3
C... KT{NDF,NDF) = Tangent stiffness matrix

C... LEN(NEL) = Length of the element

C... LENO(NEL) = Unstiffened length of each
C... element

C.vn. LIMIT = Specified accuracy

C... NDF = Number of degrees of freedom
C... NEL = Number of elements.

C... NN = Number of nodes

C... PEQ(NDF) = Equilibrium nodal load

C... PNODE (NEL) = Applied nodal load

C... PREM(NDF) = Residual load at each node
after

C... every iteration

C... T({NEL) Pretension in the element
C... TNODE {NEL) Total equivalent nodal load
C... U(NDF) Displacements at the degrees of

C... freedom in each iteration

tunn

C... VCT(NEL, 6) = Variable correlation matrix
C...
PARAMETER (NEL = 180,NN = 117, NDF = 243)
COMMON/TWO/VCT
COMMON/THREE /A
COMMON/FQOUR/DOF
COMMON/WORKSP /RWKSP

C...
REAL ALEN,AREA(NEL),B (NEL),COOR (NN, 3),CORA (NN, 3},
+DCOS {NEL, 3) , DELU (NDF) ,DIFJ (3, 3) ,E(NEL) ,ELK (3, 3),
+ELM (3, 3) , GAMMA (NEL) , GLEN, ID (3, 3) , INTER(3,3),
+K (NDF, NDF) , KT (NDF, NDF) , LEN (NEL) , LENO (NEL) , LIMIT,
+LIN (NEL) , MORA (NN, 3) , PEQ (NDF) , PNODE (NDF) , PREM (NDF) ,
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+U (NDF) , RNODE (NDF') , RWKSP (59557) , SIFJ(3, 3) , T (NEL),
+TNODE (NDF') , TR (NEL)

cC..
INTEGER A (NEL, 2} ,COUNT,DOF (NN, 3) ,END1, ENDZ,

+VCT (NEL, 6)
C...
C... Read input data
C...

READ *, ({A(I,J),J = 1,2),I=1,NEL)

READ *, ({DOF(I,J),J =1,3),I = 1,NN)

READ *, ( {COOR(I,J),J = 1,3),1I = 1,NN)

READ *, (T(I), I = 1,NEL)

READ *, (PNODE(I),I = 1,NDF)

READ *, (AREA(I),I = 1,NEL)

READ *, (E(I), I = 1,NEL)
Cl.l
C... Increase temporary work storage for LSARG routine
Cl.l

CALL IWKIN({59557)
cC...
C... Print out the structural data
cC...

PRINT 36, 'NODAL CONNECTIVITY TABLE', 'MEMBER',

+'END P', 'END Q'

DO 1T = 1,NEL

PRINT 37,I,A(I,1),A(I,2)
1 CONTINUE

PRINT 38, 'DEGREE OF FREEDOM', 'NODE','X','¥','2’

DO 2T = 1,NN

PRINT 39,I,DOF(I,1),DOF(I,2),DOF{(I,3)

2 CONTINUE

C...

C... Form the variable correlation table
C...

PRINT 40, 'VARIABLE CORRELATION TABLE', 'ELEMENT',
+'END P','END Q','I

DO 4 I = 1,NEL

DO 3 J=1,6

2
J -3
F (J.LE.3) THEN
1
J

PAN = A(I,M)
VCT(I,J) = DOF (PAN,Q)

3 CONTINUE
PRINT 41,I, (VCT(I,J),J = 1,6)
4 CONTINUE

PRINT 42, 'NCDAL COORDINATES', 'NCDE','X','Y','2'



C...

C...

c...
C...
C...
C...

c...
c...
Cuu-

Cc .
cC...
Col *

10
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DOS I = 1,NN

PRINT 43,I,COOR(I,1),COOR(I,2),COOR(I,3)

CONTINUE

PRINT 44, 'SECTIONAL PROPERTIES OF MEMBERS',
+'MEMBER’', 'AREA’, 'MODULUS', 'TENSION'

DO 6 I = 1,NEL

PRINT 45,I,AREA(I),E(I),T(I)

CONTINUE

DO 7 I = 1,NN

DO 7 J =1,3
CORA(I,J) = COOR(I,J)
CONTINUE

PRINT 46, 'LOAD CONDITION','DOF', 'LOAD'
DO 8 I = 1,NDF
PRINT 47,I,PNODE (I)

Initialize the lcad and displacement vectors

TNODE (I) = PNODE (I)
PREM(I) = PNODE(I)
U(r) =90

DELU(I) = 0
CONTINUE

To calculate the direction cosines of the members
and the total equivalent nodal loads

DO 10 I = 1,NEL

END1 = A(I,1)

END2 = A(I,2)

CATL DIRCOS(I,U,CORA,LEN,DCOS)

DO 9 3 =1,3

OR = DOF (END2, J)

0S = DOF (END1, J)

IF (OR.NE.0) THEN

TNODE (OR) = TNODE (OR) + T (I)*DCOS(I,J)
END IF

IF (OS.NE.0) TEEN

TNODE (0S) = TNODE (0S) - T(I)*DCOS(I,J)
END IF

CONTINUE

Calculate the unstressed length of the member
LENO(I) = LEN(I}/(T(I)/(AREA(I)*E({I)) + 1l.)
Initialize strain to zero

GEMMA (I) = 0
CONTINUE
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12

C.oo
C-..

13

C..

C---

13

15

16

17
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Form the identity matrix

DO 11 L = 1,3
poilmM=1,3
ID(L,M) = 0

IF(L.EQ.M) THEN
ID(L,M) = 1.

END IF

CONTINUE

COUNT = 0

COUNT = COUNT + 1

Initialize the st i.ffness matrix

DO 13 I = 1,NDF
RNODE (I) = PREM(I)
DO 13 J = 1,NDF
KT(I,J) = 0
CONTINUE

nu

Form a new stiffness matrix

DO 19 I = 1,NEL .
DO 14 L = 1,3

DO 14 M = 1,3

DIFJ(L,M) = DCOS(I,L)*DCOS (I,M)
CONTINUE

CALL MATADD (ID,DIFJ,2,INTER,3)

DO 15 L = 1,3

DO 15 M = 1,3

INTER(L,M) = INTER(L,M)*T(I)/LEN (I)
SIFJ(L,M) = DIFJ(L,M)*AREA(I)*E(I)/LENO (I)
CONTINUE

CALL MATADD (SIFJ, INTER, 1,ELK, 3)

PO 17 L = 1,3

DO 16 M= 1,3

ELM(L,M) = ELK(L,M)

IR =M + 3

ELM(L,IR) = - ELK(L,M)

CONTINUE

IOR = L + 3

DO 17 T =1,6

ELM(LOR,J) = - ELM(L,J)

CONTINUE

DO 18 J = 1,6

KORA = VCT(I,J)

DO 18 M = 1,6

LORA = VCT(I,M)

IF ( (KORA,.EQ.0) .OR. {LORA.EQ.0)) GOTO 19



18
19

20

cC...
cC...

CUOO
CI.I
c.oo

21

22

C...
C.l'
c...

23

C...
C...
cC...

KT (KORA,LORA) = KT {(WORA,LORA) + ELM(J,M)

CONTINUE

CONTINUE

DO 20 I = 1,NDF

RNODE (I) = RNODE (I)*1000.
DO 20 J = 1,NDF

KT(I,J) = KT(I,J)*1000.
CONTINUE

Solve for the displacements
CALL LSARG (NDF,KT,NDF,RNODE, 1, 1)

Update the geometry

DO 21 T = 1,NN

DO 21 J = 1,3

MORA (I,J) = CORA(I,J)
CONTINUE

CALL ORDY (U, MORA)
DO 22 J = 1,NDF
RNODE (J) = RNODE (J) /1000.

PEQ(J) = 0
CONTINUE

DO 25 I = 1,NEL
TR(I) = T(I)

GLEN = LEN(I)
CALL DIRCCS (I,U,MORA,LIN,DCOS)

Calculate new strains

GAMMA (I) = (LIN{(I) - GLEN)/GLEN

B(I) =0
ENDl = A(I,1)
END2 = A(I,2)

bo 23 9=1,3
CALL CALCUL(I,J,U,U2,Ul)
DIF = U2 - Ul

B(I) = B(I) + DCOS(I,J)*DIF*E{(I)*AREA(I)/LIN(I)

CONTINUE

Calculate new tension and equilibrium loads

TR(I) = TR(I) + B(I)
DO 24 J = 1,3

OR = DOF (END2, J)

0S = DOF (END1,J)

IF (OR.NE.0) THEN

PEQ(OR) = PEQ{(OR}) - B(I)*DCOS(I,J)

END IF



24
25

C...
c...

26

C..
C..
C...

27

28
C.
cl

c...

c..

IF(OS.NE.Q) THEN

PEQ (O
END I

S)
F

= TEQ(0S) + B(I)*DCOS(I,J)

CONTINCE
CONTINUE
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Calculate the ratio of the greatest applied load

to its corresponding equilibrium load

GREAT = RNODE{1)

RATIO = GREAT/ (-PEQ(1))

DO 26 I = 2,NDF

IF (RNODE(I) .GT. GREAT) THEN
GREAT = RNODE (I)

RATIO = GREAT/ (-PEQ(I))

END IF

CONTINUE

Modify the displacements

DO 27 I = 1,NDF

U{(I)

U(I)*RATIO

CONTINUE
CALL ORDY (U, CORA)
DO 28 J = 1,NDF

RNODE (J)

PEQ (J)
CONTINUE

=0

- RNODE (J) /1000.

Reupdate the geometry

DC 31 I = 1,NEL
ALEN = LEN(I)
CALL DIRCOS (I,U,CORA,LEN,DCOS)

Recalculate the strains

GAMMA (I) = (LEN(I)
B(I) = 0

END1 = A(I,1)

END2 = A(I,2)

DO 29 J=1,3
CALL CALCUL(I,J,U,U2,Ul)
DIF = U2 - Ul
= B(X) + DCOS(I,J)*DIF*E(I)*AREA(I)/LEN(I)
CONTINUE

B(I)

Recalculate tension and equilibrium loads

T(I)

T{I) + B(I)

- ALEN) /ALEN



30
31
C...
C...
C...
C...

32

33

C...
C...
C...
C...

34

DO 30 0 =1,3

CR = DOF (END2, J)

0S8 = DQF (ENDL, J)

IF (OR.NE.0) THEN

PEQ(OR) = PEQ(CR) - T (I)*DCOS(I,J)
END IF

IF (OS.NE.0) THEN

PEQ (08} = PEQ{OS8S) + T(I)*DCOS(I,J)
END IF

CONTINUE

CONTINUE

Calculate total displacement and the residual
load

DO 32 L = 1,NDF

DELU(L) = DELU(L) + U(L)
PREM(L) = PEQ(L) + TNODE (L)
CONTINUE

DO 33 L = 1,NDF

LIMIT = 1.E-3

IF (ABS (PREM(L) ) .GT. ABS(LIMIT)) GOTO 12
CONTINUE

Print out the final displacements and member
forces

PRINT 48, 'FINAL NODAL DISPLACEMENTS', 'NODE','X',
+IY';'Z'

PRINT *, 'NO OF ITERATIONS = ',COUNT
DO 34 J = 1,NN

COLE = DOF (J,1)

UX =0

DOLE = DOF (J, 2)

UY = 0

MOLE = DOF (J, 3)

Uz =0

IF (COLE.NE.0) THEN
UX = DELU{COLE)

END IF

IF (DOLE.NE.0) THEN
UY = DELU(DOLE)

END IF

IF (MOLE.NE.0) THEN
UZ = DELU(MOLE)

END IF

PRINT 49,J,UX,UY¥,U32
CONTINUE

PRINT 50, 'FINAL MEMBER FORCES', 'MEMBER', 'FORCE'
DO 35 T = 1,NEL
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PRINT 51,I,T(I)

35 CONTINUE

36 FORMAT (15X,A24//15X,A6,2X,A5,2X,A5//)

37 FORMAT (17X,I2,6X,12,5X,I2)

38 FORMAT (15X,Al17//15X,A4,3X,A1,3X,Al,3X,A1//)

39 FORMAT (16X,I3,2X,I3,1X,I3,1X,1I3)

40 FORMAT (///10X,R26///10X,A7,5X,A5,8X,A5///14X,
+Al,5%X,2('U',3%X,'V',3X, '"W',3X) /20%X,3('P', 3X),
+3('Q',3X)//)

41 FORMAT (13X,I2,4X,I2,5(2X,I2))

42 FORMAT (//15X,Al7///7X,A4,8X,Al, 9%X,Al,9X,Al//)

43 FORMAT (7X,I3,4X,F8.1,2X,F8.1,2X,F8.1)

44 FORMAT (//15X,A24//13X,A6,3X,Ad,4X,A7,3X,A7//)

45 FORMAT (14X,I3,4X,F8.2,2X,F8.3,2X,F9.3)

46 FORMAT (///15X,Al4//15X,A3,5X,A4//)

47 FORMAT (15X,I3,3X,F8.3)

48 FORMAT (15X,A24//18X,Ad,6X,Al,10X,A1,10X,Al)

49 FORMAT (16X,I3,2X,Fl14.7,2X,F14.7,2X,F14.7)

50 FORMAT (15X,Al9///15X,A6,6X,R6//)

51 FORMAT (17X,I3,5X,F14.7)

STOP
END
C...

C... Subroutine DIRCOS is used to calculate the
C... lengths and direction cosines of each element
Cc...
SUBRCQUTINE DIRCOS(I,U,CORA,LEN,DCOS)
PARAMETER (NEL = 180,NDF = 243,NN = 117)
COMMON/THREE/A
REAL U(NDF),LEN (NEL) ,DCOS (NEL, 3) , CORA (NN, 3}
INTEGER A(NEL, 2)
END1 = A(I, 1)
END2 = A(I,2)
LEN(I) =0
Do 101 5 =1,3
CALL CALCUL(I,J,U,U02,Ul)
DIF = U2 - Ul
X2 = CORA(END2,J)
X1 = CORA (END1, J)
LEN(I) = LEN(I) + (X2 = X1)*x*2
DCOS(I,J) = X2 - Xi
101 CONTINUE
LEN(I) = SQRT(LEN(I))
DO 102 J =1,3
DCOS (I,J) = DCOS(I,J)/LEN(I)
102 CONTINUE
RETURN
END
C...
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C...
cC...
c...
C...
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Subroutine MATADD is used in the addition or
subtraction of two matrices. Mode = 1 indicates
addition. Mode = 2 indicates subtraction

SUBROUTINE MATADD (MAT1,MAT2,MODE,MAT3, IRW)
REAL MAT1 (IRW, IRW) ,MAT2 (IRW, IRW) ,MAT3 (IRW, IRW)
DO 201 L = 1,IRW

DO 201 M = 1,IRW

MAT3(L,M) = MATL(L,M) - MAT2(L,M)

IF (MODE.EQ.1) THEN

MAT3(L,M) = MAT1(L,M) + MAT2 (L,M)

END IF

CONTINUE

RETURN

END

Subroutine CALCUL is used to relate the nodal
degree of freedom to its deflection

SUBROUTINE CALCUL(I,J,U,U2,Ul)
PARAMETER (NDF = 243,NEL = 180)
COMMON/TWO/VCT

REAL U2,U1l, U (NDF)

INTEGER VCT (NEL, 6)

IR=J + 3

MO = VCT(I,J)

NO = VCT(I,IR)
Ul =20

U2 =0

IF (MO.NE.0Q) THEN
Ul = U(MO)

END IF

IF (NO.NE.O) THEN
U2 = U(NO)

END IF

RETURN

END

Subroutine ORDY updates the nodal coordinates
of the structure after every iteration

SUBROQUTINE ORDY (U,CORA)

PARAMETER (NEL = 180,NDF = 243, NN = 117)
COMMON/FOQUR/DOF

REAL CORA (NN, 3), U (NDF)

INTEGER DOF (NN, 3)

DO 401 N NN

DO 401 J 3

1,
1,
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LO = DOF (N, J)
IF(LO.NE.O) THEN
CORA (N,J) = CORA(N,J) + U(LO)
END IF
401 CONTINUE
RETURN
END



Appendix G
COMPUTER PROGRAM FOR THE ENERGY SEARCH METHOD
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C... This is a program for the Energy Search Method
C... to obtain a minimum for the energy function using
C... the Conjugate Gradient Method along with a
scaling

C... a scaling transformation. The following are the
C... wvariables used in this program.

C... A(NEL,2)
C... AREA(NEL)

Nodal connectivity matrix
Area of each element

C... COOR({NN, 3) Coordinates of the nodes
C... CORA(NN,3) Updated coordinates of the
C... nodes

C... DCOS(NEL,3) = Direction cosines of each
C... element

C... DOF(NN, 3) = Degree of freedom matrix
C... E(NEL) = Elastic modulus of element
C... FORCE (NEL) = Final tension in the member
c.. K (NDF, NDF) = Stiffness matrix of the
C... structure

C... KOUNT = Number of iterations

C... LEN(NEL) = Length of the member

C... NDF = Number of degrees of freedom
C... NEL = Number of elements

C... NN = Number of nodes

C... P (NDF) = Applied nodal load

C... RI(NDF) = Scaling factor

C... S(NEL) = Length of the member after

C... deformataion

C... T(NEL) Initial tension in the member
C... X(NDF) Displacements at the nodes
C... VCT(NEL, 6) Variable correlation matrix
C...

Cll.

PARAMETER (NEL = 180,NDF = 243,NN = 117,
+LIMIT = 1000)
c...
DOUBLE PRECISION AREA (NEL),C,COOR (NN, 3),
+CORA (NN, 3) , DCOS (NEL, 3) , E (NEL) , ELK (NEL, 6) ,
+EEP, F, FO, FORCE (NEL) , G (NDF) , GE, H (486) , K (NDF, NDF) ,
+LEN(NEL),P(NDF),R(NDF),RIG,S(NEL),T(NEL),UX,UY,
+UZ,X(NDF),Xl,XZ,Yl,YZ,Zl,ZZ
c...
INTEGER A(NEL,2),COLE,DOF(NN,B),DOLE,RDLE,
+VCT (NEL, €),
c...
COMMON/ONE/LEN,E,AREA,T,R,P,FORCE
COMMON/TWO/A, COOR, VCT , CORA
COMMON/THREE/EEP, GE, FO, C
COMMON/FOUR/KOUNT
C..-
EXTERNAL FUNC



c.no
c---
c.o‘

C...
Co-.
Col -

EPS = 1.D-8
EST = ~100.D00
EEP = .0105103

C = 2321851.D0
FO = 1506.D0
= 2568285.D0

Read input data

READ *, ((A(I,J),J = 1,2),I=1,NEL)
REAL *, ((DOF(I,J),J = 1,3),I = 1,NN)
READ *, { (COOR(I,J),J = 1,3),I = 1,NN)

READ *, (T(I), I = 1,NEL)
READ *, (P(I),I = 1,NDF)
READ *, (AREA(I),I = 1,NEL)
READ *, (E(I), I = 1,NEL)

Print structural information

PRINT 19, 'NODAL CONNECTIVITY TABLE', 'MEMBER',
+'END P','END Q'

DO 1 I = 1,NEL

PRINT 20,I,A(I,1),A(I,2)

CONTINUE

PRINT 21, 'DEGREE OF FREEDOM', 'NODE','X','Y','Z!
DO 2 I = 1,NN

PRINT 22,I,DOF(I,1),DOF(I,2),DOF(I,3)

CONTINUE

Form and print variable correlation table

PRINT 23, 'VARIABLE CORRELATION TABLE', 'ELEMENT'
+'END P','END Q','I

DO 4 I = 1,NEL

po3 J=1,6

M =2

L=J~-3

IF (J.LE.3) THEN
M=1

L=J

END IF

MAN = A(I,M)

VCT(I,J) = DOF (MAN, L)

CONTINUE

PRINT 24,I, (VCT(I,J),J = 1,6)

CONTINUE

PRINT 25, 'NODAL COORDINATES', ‘NODE','X','y','a’
DO 6 T = 1,NN

DO 5 J=1,3
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CORA{I,J) = COOR(I,J}
CONTINUE

PRINT 26,I,COOR(I,1),COOR(I,2),CO0RI,3)
CONTINUE

PRINT 27, 'SECTIONAL PROPERTIES OF MEMBERS',
+'MEMBER ', 'AREA', '"MODULUS ', ' TENSTON'

DO 7 I = 1,NEL

PRINT 28,I,AREA(I),E(I),T(I)

CONTINUE

To calculate the lengths of the members and to
use the scaling transformations

DO 8 I = 1,NDF
X(I) =0
CONTINUE
DO 12 I = 1,NEL

END? = A(I,2)

X1 = COOR(END1,1)
X2 = COOR(ENDZ, 1)
Y1l = COOR(ENDIL, 2)
Y2 = COOR(END2Z,2)
21 = CCOR(END1, 3}
22 = COOR(ENDZ, 3)

LEN(I) = DSQRT((X2 - X1)**2 + (Y2 ~ Y1)**2 +
+(22 - 21)**2)

DCOS(I,1l) = (X2 - X1)/LEN(I)
DCOS(I,2) = (Y2 - Y1)/LEN(I)
DCOS(I,3) = (22 - Z1)/LEN(I)

RIG = AREA(T)*E (I)/LEN(I)

DO 10 J = 1,3

DO 9 M=1,3

ELK(J,M) = DCOS(I,J)*DCOS (I, M) *RIG
IM = M + 3

ELK{J,IM) = - ELK(J,M)

CONTINUE
IT=J + 3

DO 10 L = 1,6
ELK(IJ,L) = -
CONTINUE

DO 11 J =1,6
KORA = VCT(I,J)

DO 11 M = 1,6

LORA = VCT (I, M)

IF ( (KOFA.NE.0) .AND.(LORA.NE.0)) THEN
K (KORA, LORA) = K(KORA,LORA) + ELK(J,M)
END IF

CONTINUE

CONTINUE

ELK (J, L)
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c..
C... Form the scaling factor matrix
C...
DO 13 M = 1,NDF
R{M} = 1.DO0
IF(K(M,M) .NE.0) THEN
R(M) = 1.DO/DSQRT (K (M, M))
END IF
13 CONTINUE
N = NDF

PRINT 29, 'LOAD CONDITION', 'DOF', 'LOAD'
DO 14 I = 1,NDF
PRINT 30,1,P(I)
14 CONTINUE

c.
C... To call the subroutine of Conjugate Gradients
C.

CALL DFMCG (FUNC, KOUNT, LIMIT, EPS,EST, IER,F,
cC...
C... To print out the final values
C...

PRINT 31,F,KOUNT, IER
PRINT 32, 'MEMBER', 'DIMENSIONAI VARIABLES VECTOR',
+'DIMENSION FUNCTION GRADIENT VECTOR', 'X(I}',
+'G(I)!
DO 15 I = 1,NDF
X(I) = X(I)*R(I)
PRINT 33,1I,X(I),G{I)
15 CONTINUE
c...
C... To print the nodal displacements
C...
PRINT 34, 'FINAL NODAL DISFLACEMENTS', 'NODE', 'X',
+!!l'lzl
DO 16 J = 1,NN
COLE = DOF(J,1)

UX = 0
DOLE = DOF (J, 2)
Uy = 0
ROLE = DOF {J, 3)
Uz = 0

IF (COLE.NE.0) THEN
UX = X (COLE)

END IF

IF (DOLE.NE.0) THEN
UY = X(DOLE)

END IF

IF (ROLE.NE.(Q) THEN
U2 = X{(ROLE)
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END IF
PRINT 35,J,UX,UY,U2
16 CONTINUE
PRINT 34,'FINAL NODAL COORDINATES', 'NODE','X',
+lYl' lzl
DO 17 I = 1,NN
PRINT 35,I,CORA(I,1),CORA(I,2),CORA(I,3)
17 CONTINUE
PRINT 36,'FINAL MEMBER FORCES', 'MEMBER', 'FORCE’
DO 18 I = 1,NEL
PRINT 37,I,FORCE(I)

18 CONTINUE

19 FORMAT (15X,A24//15X,A6,2X,AS5,2X,A5//)

20 FORMAT (17X,I3,6X,I2,5X,I3)

21 FORMAT (15X,Al7//15X,A4,3X%X,Al,3X,Al,3X,A1//)

22 FORMAT (16X,I3,2X,1I3,1X,13,1X,1I3)

23 FORMAT (///10X,A26///10%X,A7,5X,A5,8%X,A5///14X,
+Al,5X,2('U',3X, 'V',3X, 'W',3X)/20X,3('P"',3X),
+3('Q',3X)//)

24 FORMAT ({13X,I3,4X,I3,5(2%,I3))

25 FORMAT (//15X,Al17///7X,34,8X,A1,9X,Al,9X,Al//)

26 FORMAT {7X,I3,4X,F8.1,2X,F8.1,2X,F8.1)

27 FORMAT (//15X,A24//13X,A6,3X,A4,4X,A7,3X,A7//)

28 FORMAT (14X,I3,4X,F9.6,2X,F8.1,2%,F9.3)

29 FORMAT (///15X,A14//15X,23,5X,24//)

30 FORMAT (15X,I3,3X,F8.3)

31 FORMAT (15X, 'POTENTIAL ENERGY = ',E13.5///15X,
+'NO. OF ITERATIONS = ',I4//15X,'IER = ',18)

32 FORMAT (10X,A6,6X,A28,30X,A29///40X,24,53X,24///)

33 FORMAT (12X,I4,19X,E13.5,44X,E13.5)

34 FORMAT (15X,A24///18X,A4,6X,Al,10X,Al,10X,Al)

35 FORMAT (16X,I3,2X,F9.3,2X,F9.3,2X,F9.3)

36 FORMAT (15X,A1%8///15X,A6,6X,A6//)

37 FORMAT (17X,I3,5X,F20.11)

STOP

END
C...
C...
C... Subroutine FUNC calculates the value of the
C... potential energy and its gradient needed in the
C... subroutine DFMCG

SUBROUTINE FUNC (N, X,F,G)

PARAMETER (NEL = 180, NDF = 243)

DOUBLE PRECISION AREA (NEL),C,D,E(NEL),EEP,F,F1,
+FO, FORCE (NEL} , C (NDF) , GE, KAY, LEN (NEL) , P (NDF) , R (NDF) ,
+8 (NEL) , T (NEL) , TERM1, TERM2, TERM3, X (NDF)

COMMON/ONE/LEN, E, AREA, T, R, P, FORCE

COMMON/THREE /EEP, GE, FO, C

COMMON/FOUR/KOUNT



CI'.
c...
cC..

101

cll.
C...
Cl..
102

Clll
C‘.I
C...
cC...
C...
C...
CI'.
CII.
C“.
cl.l
C...
C...
cl..
cC...

Initialize the value of potential anergy and
modify the displacements

F = 0.D0

DO 101 J = 1,NDF
X(J) = R(J)* X(J)
G(J) = 0.D0

CONT INUE

Calculate the deformed lengths

DO 105 I = 1,NEL

S(I) = 0.D0

DO 102 J = 1,3

CALL ORDY (I,J,MO,NO,D,X)
S(I) = S(I) + D**2
CONTINUE

S{I) = DSQRT(S(I))
Calculate the strain in the members

KAY = 1.D0 - LEN(I)/S(I) + T(I)/(AREA(I)*E(I))
IF (KAY.LT.0) THEN

U = 0.D0

Fl = 0.D0

FORCE (I} = 0.DO0

GOTO 211

END IF

Check if the strain is less than the proportional
limit

IF (KAY.LE.EEP) THEN
Use elastic strain energy equation

U = S(I)*AREA(I)*E(I)*KAY**2/2.D0
FORCE (I) = AREA(I)*E '} *KAY

Fl = (U 4+ FORCE(I)*IL > ,I))/8(I)**2
GOTO 103

END IF

Check if the strain ig greater than the
proportional limit

IF (KAY.GT.EEP) THEN

KAY = KAY + (1.DO0 - LEN(I)/S(I))**2/2.D0
TERM1 = E(I)*EEP**2/2.D0 + FO* (KAY - EEP)
TERM2 = DSQRT("2**2 + 2.DO0*GE*KAY - C)
FORCE(I) = AREA(I)* (FO + TERM2)



C...

C...

103

1C4
105

106

cC.
C.

aaoaoaan

+ & & & & »

TERM3 = DSQRT (FO**2 + 2 .DO*GE*EEP - C)
Use inelastic strain energy equation

U = AREA(I)*S(I)*(TERMl + TERM2**3/ (3.D0*GE) -
+TERM3**3/(3,D0*GE) )

Fl = (U + FORCE(I)*LEN(I))/S(I)**2
END IF

F=F+0U

DO 104 J =1,3

CALL ORDY (I,J,MO,NO,D,X)

IF (MO.NE.Q) THEN

G(MC) = G(MO) - Fl*D

END IF

IF (NO.NE.O) THEN

G(NQO) = G(NO} + F1*D

END IF

CONTINUE

CONTINUE

WORK = 0.D0

DO 106 I = 1,NDF

WORK = WORK + P({I)*X(I)

Calculate strain energy gradient
G(I) = ((G(I) - P(I)})* R(I)

X(I) = X(I)/R(I)
CONTINUE

Calculate the total potential energy of the
structure

F =F - WORK
RETURN
END

Subroutine ORDY is used to relate nodal
deflections to its corresponding ~agree of
freedom and it also updates nodal coordinates

SUBROUTINE ORDY (I, J,MO,NO,D,X)
PARAMETER (NEL = 180,NDF = 243,NN = 117)

DOUBLE PRECISION COOR (NN, 3),CORA (NN, 3),D,DIFU,
+R (NDF') , U1, U2, X (NDF) , X1, X2
COMMON/TWO/A, COOR, VCT, CORA

INTEGER A (NEL,2),END2,ENDI1,VCT (NEL, 6)

IR=2J + 3

END1 = A(I,1)

END2 = A(I,2)
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C...
C...
C...
cC...
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C...
cC..

cC...
C...
C...
C...
C...
C...
C...
C...
cC...
cC...
C...
C...
C...
cC...
C...
C...
C...
C..u
cC...
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X2 = COOR(END2, J)
X1 = COOR(END1, J)
MO = VCT(I,J)

NO = VCT(I,IR)

Ul =0

U2 =0

IF (MO.NE.O) THEN
Ul = X (MO)

END IF

IF (NO.NE.O0) THEN
U2 = X(NO)

END IF

CORA (END2,J) = X2 + U2

CORA(END1,J) = X1 + Ul
DIFU = U2 - Ul

D = X2 - X1 + DIFU
RETURN

END

Subroutine DFMCG is typed here

Description of parameters:-~

FUNCT - User written subroutine concerning the

function to be minimized. It must be of the form

SUBROUTINE FUNC (N,ARG,VAL,GRAD) and must serve

the following purpose: For each N dimensional

argument vector ARG, function value and gradient

must be computed and on return, stored in VAL and

GRAD respectively. ARG, VAL and GRAD must be of

double precision

N = Number of variables

X = Vector of dimension N containing the
argument vector where the iteration
starts. On return, X holds the
argument corresponding to the
computed minimum function value,
Double precision vector.

F = Single variable containing the
minimum function wvalue on return i.e.
F = F(X). Double precision variable.

G = Vector of dimension N containing the
gradient vector corresponding to the
minimum on return i.e., G = G(X).
Double precision vector.

EST = Is an estimate of the minimum
function value. Single Precision.
EPS = Test value representing the expected

absolute error. A reasonable choice
is 10 **(-16) i.e., somewhat greater
than 10 **(-D), where D is the number
of significant digits in floating
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C... point representation. Single
precision
C... variable.
C... LIMIT = Maximum number of iterations.
C... IER = Error parameter
C... IER = 0 means convergence was obtained
C... IER = 1 means no convergence in the limit
of
cC... iterations.
cC.. IER = -1 means error in gradient
Coen calculations
C... IER = 2 means linear search indicates the
C.. probability of no minimum.
C.. H = Working storage of dimension 2Z*N.
C.. Double precision array
cC..
SUBROUTINE DFMCG(FUNC,KOUNT,LIMIT,EPS,EST,IER,
+F,G,H,N,X)
C...
C... Dimensioned dummy variable
C.ll
DIMENSION X (243),G(243),H(486)
DOUBLE PRECIZION X,G,GNRM,H,HNRM,F,FX,FY,OLDF,
+OLDG, SNRM, AMBDA, DALFA, T, %, W, DX, DY, ALFA, GRAM
c..
C... Compute function value and gradient vector for
C... initial argument
C...
CALL FUNC(N,X,F,G)
c‘l.
C... Reset iteration counter
C...
KOUNT = 0
IER = 0
Nl =N+1
C...
G... Start iteration cycle for every N + 1 iterations
c-l.
1 DO 43 1I = 1,Nl
CI..
C... Step iteration counter and save function value
C..
KOUNT = KOUNT + 1
OLDF = F
C...
C... Compute square of gradient and termninate if zero
C..!
GNRM = 0.DO
DO 2 J =1,N
2 GNRM = GNRM + G(J) *G(J)
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IF (GNRM) 46,46,3

c..-
C... Each time che iteration loop is executed, the
C... first step will be in the direction of the
cC.. steepest descent.
C..
3 IF (II -1) 4,4,6
4 Do 5 J=1N
5 H{(J) = - G(J)
GO TO 8
Cl!.
C... Further direction vectors will be chosen
C... corresponding to the Conjugate Gradient Method
Cl‘.
6 AMBDA = GNRM/OLDG
po7J=1,N
7 H(J) = AMBDA*H(J) =~ G(J)
c..
C.. Compute test value for directional vector and
C... directional derivatives
C. .
8 DY = 0.D0O
HNRM = 0.DO
DO 9 J=1,N
K=J+ N
Ct L]
C... Save argument vector
c..
H(K) = X({(J)
HNRM = HNRM + DABS (H(J))
9 DY = DY + H(J) *G(J)
cC..
c.. Check whether function will decrease stepping
c.. along H and skip linear search if not
C...
IF (DY) 10,42,42
C..
c.. Compute scale factor used in linear search
c.. subroutine
cC..
10 SNRM = 1.D0/ENRM
cC..
C.. Search minimum along direction H
C... Search along H for positive directional
derivative
c-..

C...

FY = F
ALFA = 2.D0 * (EST - F)/DY
AMBDA = SNRM
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C... Use estimate for step size only if it is positive
C... and less than SNRM. Otherwise use SNRM as
stepsize
C...
IF (ALFA) 13,13,11
11 IF (ALFA - AMBDA) 12,13,13
12 AMBDA = ALFA
13 ALFA = (0.DO
Cll.
C... Save function and derivative values for old
C... argument
Cl..
14 FX = FY
DX = DY
C..‘
C... Step argument along H
CII.
DO 15 I = 1,N
15 X(I) = X(I) + AMBDA*H(I)
C'..
c.. Compute function value and gradient for 2w
C... argument
C!l.
CALL FUNC(N,X,F,G)
FY = F
c...
C... Compute directional derivative DY for new
cC.. argument. Terminate search if DY is positive. If
c.. DY is zero, the minimum is found.
C...
DY = 0.D0
DO 16 I = 1,N
16 DY = DY + G(I)*H(I)
IF (DY) 17,38,20
CIII
C... Terminate search also if the function value
C... indicates that a minimum has been passed.
c'..
C...
C... Repeat search and double step size for further
C... searches
C...
18 AMBDA = AMBDA + ALFA
ALFA = AMEDA
c...
C... Terminate if the change in argument gets very
C... large
C..l

GRAM = HNRM*AMBDA - 1.D10



100

C...
C...
C...
C...
C...
C...
20
21
22

C...
C...
C.u.
23

24
C...
C...
C...
25
26

27

270

271
272

28
C.Ol
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IF (HNRM*AMBDA - 1.D10) 14,14,19
Linear search indicates that no minimum exists
IER = 2
Restore old values of function and arguments

F = OLDF

DO 100 J = I,N
G(J) = H(J)
K=N+J

X(J) = H(K)
RETURN

End of search loop

Interpolate cubically in the interval defined by
the search above and compute the argument X for

which the interpolation polynomial is minimized.

T = 0.

IF (AMBDA) 22,38,22

2 = 3,DO*(FX - FY)/AMBDA + DX + DY
ALFA = DMAXL (DABS (Z) ,DABS (DX) ,DABS (DY) )
DALFA = Z/ALFA

DALFA = DALFA*DALFA - DX/ALFA*DY/ALFA
IF (DALFA) 23,27,27

Restore old values of function and arguments

DO 24 J =1,N
K=N+J

X(J) = H{K)

CALL FUNC(N,X,F,G)

Test for repeated failure of iteration

IF (IER) 47,26,47

IER = -1

GOTO 1

W = ALFA*DSQRT (DALFA)

ALFA = DY - DX + W+ W

IF (ALFA) 270,271,270

ALFA = (DY - Z + W)/ALFA
GOTO 272

ALFA = (2 + DY - W)/(Z2 + DX + 2 + DY)
ALFA = ALFA*AMBDA

DO 28 I = 1,N

X(I) = X{I) + (T - ALFA)*H(I)
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C... Terminate, if the wvalue of the actual function at
C... X is less than the function values at the
interval
C... ends. Otherwise reduce the interval by choosing
C... one end point equal to X and repeat the
C... interpolation. Which end point is chosen depends
C... on the value of the function and its gradient at
X
cC...
CALL FUNC(N,X,F,G)
IF (F - FX) 29,29,30
29 IF (F - FY) 38,38,30
C...
C... Compute the directional derivative
C...
30 DALFA = 0.D0
po 31 I = 1,N
31 DALFA = DALFA + G(I)*H(I)
I¥ (DALFA) 32,35,35
32 IF (F - FX) 34,33,35
33 IF (DX - DALFA) 34,38,34
34 FX = F
DX = DALFA
T = ALFA
AMBDA = ALFA
GOTO 21
35 IF (FY - F) 37,36,37
36 IF (DY - DALFA) 37,38,37
37 FY = F
DY = DALFA
AMBDA = AMBDA - ALFA
GOTO 20
C...
C... Terminate if function has not decreased during
C... last iteration. Otherwise save gradient normal.
cC...
38 IF (OLDF - F + EPS) 19,25,39
39 OLDG = GNRM
cC...
C... Compute difference of old and new argument vector
Cies
T = 0.
Do 40 J = 1,N
K=J+N
H(K) = X{J) - H(K)
40 T = T + DABS (H(K))
cC...
C... Test length of difference vector if at least N +
1
C... iterations have been executed. Terminate, if
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C-..
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length is less than EPS.

IF (KOUNT - N1) 42,41,41
IF (T - EPS) 45,45,42

Terminate if number of iterations exceed limit

IF (KOUNT - LIMIT) 43,44,44
IER = 0

End of iteration cycle and start next iteration
cycle

GOTO 1
No convergence after limit iterations

IER = 1
IF (GNRM - EPS) 46,46,47

Test for sufficiently small gradient

IF (GNRM - EPS) 46,46,25
IER = 0

RETURN

END
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