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ABSTRACT -

An implicit finite difference method is used to obtain a
numerical solution of ‘an incompressible axisymmetric submerged laminar
free jet issuing from a iong tube. Based on the results of the finite
difference method the velocity profile in the developing regioé is
modelled by combining a parqbo]ic velocity profiLg and a radially
shifted Schli;hting velocity profile. A simplified derivation.of
tﬁe axial velocity variation along the jet centre line is also
presented. The axial centre line velocities and their first deriv-
ativés are matched at the boundary of the developing and developed
flow region in order to determine the virtual origin and the develop-
ing length of the jet. These results exhibit reasonable agreement

with the existing experimental and analytical results.
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CHAPTER T
INTRODUCT ION

When a fluid exits from a supply tube into an unbounded
medium of_the same fluid it is called a submerged free jet. Down-
stream of the exit, the jet entrains fluid from the surroundings.
Depending upoﬁ the Reynolds number, the jet could be either laminar
or turbulent. This thesis is concerned with laminar jets only.

Submerged free jets can be divided into a devefgﬁing and
deve}oped region. The developing region is one near the tube exit

and velocity profiles in this region are nonsimilar. The velocity pro-

" files are similar in the developed region. The.velocity profiles in the

developing region are determined by the exit velocity profile of the jet
which depends on the length of the supply tube. If the supply tube is
very short almost a uniform velocity profile is obtained since the wall
layer growth is negligible. In this case the developing regjon is identi-
fied by the existemce of a potential core and an annular free shear iayer.
The centre line velocity of the jet remains constant in the potentia]'coref
The jet becomes fully developed at a distance from the exit called the
developing length. The radius of the potential core reduces to zero at
this distance and the centre line velocity-begins to decay in the developed
region.

If the supply tube is sufficiently long, the flow inside the
tube becomes fully developed aﬁd this results in a parabolic velocity
profile at the exit. In this case the developing region is identified
by a parabolic core where the exit parabolic velocity profile persists,
however, with a decreasing centre line velocity and an annular free-shear

layer.



It-is also possible to obtain a partly parabolic and: partly
uniform velocity profile at the exit by varying the length of the
tube. This case is not considered in this thesis. -/jk)

This thesis.is devoted to the study of the developing region
of a8 submerged axisymmetric laminar free jet with parabolic exit
velocity profile. The present analysis has épp]ication in the
design of fluidic devices such as turbulence amplifiers.

/\f\}

1.1 Aims
The burpose Bf-the present “°f5—£9m93i§§5/6¥.the following:

(1) To present, in a tabular form, a finite difference solution
bf the boundary layer equations for‘the case of an axisymmetric
Jet issuing from a tube, with a parabolic exit velocity pro-
fi1é, into an -infinite expanse of fluid.

(2) Analyse the results for the déveTopiﬁg jet to determiﬁe the
region where the velocity profile is parabolic to a good
approximation. |

(3) To obtain a velocity profile model in the free shear layer
by modifying the Schlichting velocity profile with its axis
shifted vadially and using suitable length and velocity
scales. |

(4) To present a simplified derivation of the centre line velocity
variation and to determine the developing length and virtual

origin.



CHAPTER II
LITERATURE SURVEY

The developing and developed regions of axisymmetric laminar
free jets have been analysed theoretically and experimentally. The
investigations can be grouped into three sections depending upon the
initial condition of the jet:

(1) Jet originating from an infinitesimal o;ifice.
(2) Jet with a parabolic exit velocity profile.
(3) Jet with a uniform exit velocity profile.

This survey is limited to the first two cases.

2.1 Jet Originating from an Infinitesimal Orifice

The exact solution for velocity profiles of a free jet was
obtained by Schlichting [14]. He solved the momentum equation in
the axial direction under the u;ua1 boundary .Tayer simplifications,

“and the continuity equation along—with the following assumptions:
T. The jet originates from a point source w{th infinite velocity.
2. The pressure is constant hence the momentum flux is constant

in the axjal direction.
3. The veTocity'profi1es are similar.
The exﬁressions for the axial and radial velocities are of the

following form:




and 3

1 30 1 5‘%
TTNm kg Ty 2 (2.2)
(1 t7 b )
where
= 3J 1 r
£ = 16mp v X (2.3)

Since it {s assumed that the jet originates from a point, Schlichting's
solutions are applicable only far downstream of the exit for a jet
issuing from an orifice of finite size.

Landau [9] determined the velocity profiles accurately for
arbitrary Reynolds numbers by a rigorous solution of Navier-Stokes
equations. He\ng}oyed spherical co-ordinates in his analysis and
determined the pressure field of the jet. The distribution of the

pressure is given by:

2 (A Cos® - 1)

)2

_ dpv

P
r2 (A - Coss®

where the constant A is related to the momentum of the jet. For

large angles the velocities are given by:

8
Cot
ug = -2v r'? ' (2.5)

and



For small angles the velocities are given by:

48 \
u, = - (2.7)
8 OL2 + e2
and
ﬁ_az (2.8)
u_ = 8v ] . 2.8
where
32T v2 o)
@ = S . {2.9)

The conditions for the case of small ang{es are in accordance with the
results obtained by Schlichting.

Landau's solutions can be applied only in a region far downstream_
of the point source.

Rumer [13] showed that Landau's solution technique gives zero
mass flowrate at the origin. To obtain a finite flowrate he included
two function cohponents in the expressions for the velocities and the
Pressure. From Landau's and Rumer's results it can be concluded that
the addition of higher order terms in their previously mentioned ex-
pansions would yield better solutions at the expense of the labour
involved in obtaining them. }

2.2 ‘Jet with a Parabolic Exit Velocity Profile

2.2.1 Theoretical Studies

Andrade and Tsien [2] lntroduced the virtual origin technique

* to obtain the velocity prof11es for a Jet issuing from an orifice of

4



Equating these two expressions they obtained an approximate

value for the virtual origin given by the equation:

X
= 0.1 Re, . (2.10)

Schlfchting's eXpression for the axial velocity with modified axial

distance iS'given‘by:

region of the jet since they have used a point source flow model.

Other investigators have determined other approximations of
the location of the virtual origin by matching flow quantities suych
as centre Tine velocity and’ mass flowrate at the nozzle exit as
described by Bell [4,5].

Dmitriev and Kulesova (7] compared their theoretical investi-
gations and experimental measurements. A tpta] pressure probe was
uggf/;g\measure velocity in their experiment, They employed two

different versions of SchTichting's expression to represent the

(\



I’
velocity profiles in the near region of the exit and far downstream

of the exit where the latter is the same as that used by Andrade

and Tsien. The flow model in its general form is given by:
’

_m_

(1 + 8r%)2

-

u = (2.12)

In the neaﬁﬁregion of the jet exit U, and B are given by the following

aRe (2.13)

and

8 =U (2.14)

The centre Tine velocities of the developing region and the developed
region were matched to obtain the developing length. The real part
of a complex root of the resulting quadratic equation was chosen as
the developing length and it was found to be:
A, 0.0752 Re (2.15)
a ¢
Their variation of centre 1ine velocity with the axial distance has
a discontinuity at the boundary of the developing and fully developed
regions. '

Rankin [12] obtained an approximate solution to the velocity



distribution by an integral method. The velocity profile assumed,
reduces to a parabcla at the exit however far downstream of the
jet exit it reduces only to 2 “near” Schlichting profile. He also
obtained an equation for the centreiine velocity decay. Rahkin's
iheoretical investigations show better agreement with his experi-
menfal results near the jet exit. .

Pai and Hsieh [10,11] employed an impTic{t.finite difference
technique to solve the simplified boundary layer equations. They
graphically presented the velocity profiles, centre line velocity
decay and the spread of the jet. The spread of the jet determined
by Pai and Hsieh is in disagreement with that of Rankin [12].

du Plessis et al [8] solved the momentum and the continuity

equations in the Von Mises plane. They employed aﬁ explijcit algorithm

?nd in order to keep the algorithm in the recurrence retationship the
ve1oci£y~was expressed as a Fourier cosine sgries which has the character:
“istic of vanishing gradients at the axis of symmetry. They compared
their numerical resdﬁts with their own experimenta] values.

Tsang [16] employed a three point, implicit finite difference
scheme. This metho& has a higher order of truncation error in
comparison to Pai and Hsieh's implicit reﬁresentation and explicit
representation of du Plessis et al and it needs initial conditioﬁs

‘at two consecutive axial locations to start the computation. Tsang’

produced the results for the turbulent and the laminar jet.
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2.2.2 Experimental Studies

Andrade and Tsien {2] employed a sugﬁended'particle
technique to measure the velocity profiles in the fully developed
region. The experimental velocity profiles are in good agreement
with a modified form of Schlichting's velocity profiles suggested
by them.

. Symons - et al. [15] investigated a helium into helium
jet issuing from a vertical tube of 0.254 centimeters in diamefer
with fully developed flow at the exit of the tube. A total pressure
probe which had a c;}cu1ar opening of 0.015 centimeter diameter was
used to take the measurements. They measured the velocity profiles
and the centre line velocity decay at Reynolds numbers (Rec) of 437
and 1839 at 0, 3, 6, 10, 15 and 25 diameters from the tube exit.

They also measured the spread of the jet to be 2° to'3° for the

Reynolds numbers of 437, 925, and 1839 and reported that the magnitude

of the spread angle did not significantly depend upon Reynolds numbers
investigated. They predicted that the behaviour of the developing

region of the jeit tp be dépendent on the initial velocity profile

of the jet.

Chang [6] made an analytical and experimental study
of a laminar free jet with parabolic exit velocity profile. An
aqueous solution of resin (polyox WSR N-3000, Unfon Carbide péoduct)
was used as the fluid medium. The measurements were taken with a
Constant-Temperature Anemometer. He graphically presented his ex-
perimeﬁta] velocity profiles for differen; axial locations and for

Reynolds numbers of 430 and 600. Based an the experimental data he

f’\\>

/ s
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derived an expression for the velocity distribution in thé developing
" zone and obtained an equation for the location of the virtual origin.
du Plessis et al [8] numerically and experimentally investi-
gated an oil-to-o0il laminar free.jet. A hot-film probe was used for
the measurement of velocities. Their algorithm agreed well
with their experimental results in the developing region of the jet.
They also showed that the velocity profiles obtained from the modified
Schlichting's expression suggested by Andrade and Tsien did not compare
well in the developing region. -
Abramovich and Solan [1] obtained an empirical correlation for

the centre line veiccity decay as follows:

B Um = LR for x* > 0.2 (2.16)
where
x* = —%
2a -/ReC
and ¢ =T1.13 with b = 0.89. .

The authors claim that their results are in good agreement with
Andrade and Tsien's results in the scaling of x*. However, it should

be noted that the nondimensional form of boundary layer equations ‘

yield aRex as the nondimensional axial distance.
' c
Rankin [12] in his experimental”investigation used a Laser
Coppler Anemometer in dual beam mode. He presented the axial velocity

profiles, the variation of centre line velocity, developing length of



the jet and the locétion of the virtual origin. His theoretical
and experimental results are in good agreement. Since a Laser
Doppler Anemometer does not provide any physical disturbance to
the fluid flow unlike a pressure probe or a hot-film probe the re-
sults obtained by Rankin [12] are more-accurate than the results
obtained by the other investigators. Rankin has experimentally

verified that a parabolic core exists in the developing region of .

the jet. i . L\
The‘ffove Titerature survey reveals that _
(i) ho attempt has, as yet, been made to model the ’
free shear layer with a modified form of Sch]ichtiﬁg's
expression in the developing region.
(ii) the developing length and the position of the virtual

origin have not been well defined theoretically.

Solutions to the'problems mentioned above are presented in
this thesis.



CHAPTER III
" ANALYSIS OF DEVELOPING REGION OF A
SUBMERGED LAMINAR FREE JET -

3.1 Introduction

In this chapter the numericail solution of an 1ncompress1ble
1am1nar free jet issuing from a Tong tube is presented in tabular
form.
(8] which indicates the existence of a parabolic core in the
developing region. Based on this fact, a simplified der1vat1on of
the centre line velocity has been obtained. Further, the lengath
of the developing region and the location of the virtual origin have
been obtained by matching the centre line ve]ocwty var1at1ons at the
boundary of the developing and fully developed regions. The velocity
profile in the annular free shear 1ayer of the déveToping region is
modelled by shifting the centre of the Schlichting velocity profile
(Figure 1).

and analytical results. The variation of Schlichting parameters,
namely, x , L

and A are also obtained in the deve105}n§"?é%;on.
v ReC
3.2 Theoretical Analysis U

The equations of motion for a Steady, axisymmetriE_Jzﬁinér

jet of an incompressible fluid may be written as follows:

[+ )

u,3v_ v

a_-+é__+r'=0 (3])
k_‘ '
u_a_U+V§_U_= (] au-}-azu (3.2)
5 ar VY gr g::f)

The results are analysedto verify the experimental prediction -

The present solution is compared with existing experTmenta1

12

[P ———
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The non dimensional form of the equations, (3.1) and (3.2), can be

-

written as follows:

0,3V, V _ 4y
5T YR TR 0 (3.3)
~~  aU 3U 3U- 3%y
VAR T bl IR (3.4)
09Xl SR 3R%
u vpa r
where U = —_— V=_"'-a R:—’/
° Uno H a
. (3.5)
pau
. _ X _ Mo
. ‘ xc = aRec and ReC aly
The initial and boundary conditions are:
. _ . =1 _ nl
g,xc ={Jand R <1: U0 1 R_
XC =0and R > T1: U0 =0
L X,.>0: V=0atR=0 (3.6)

u, =0at R+

At the axis of symmetry,

: 2
at 3 u
. v _ayv L 1 7o, 0
Limit R "3R and klg1t R 3 ;EZ—
R0 * _

Therefore the continuity and the momentum equations at the axis of

symmetry can be written as follows: . e T

Qr

U
Tm+2_\f_=o (3.7)
c

[+ B

a2
Qr
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- :t’ - L3y .32uo ' a8
| TH.: R | 3.8
m axc BRZ

Since theré are restrictions to small mesh sizes in the explicit
finitg difference schemg due to stability criteria and the imp]icif
scheme is universally stable for all mesh sizes the Tatter-is cHosgn
to solve the partial differential equations (3.3) and (3.4). \)
Figure [2] shows the g;id imposed on the flow field. Backward -
finite difference representations are used to replace the partial
derivatives in the axial direction and central Hifference representa-
tiops are used to replace the partial derivatives in the radial direction.

The representations used at a point (j+1,k) are:

BU ' Uo. -Uo. -
U _0_ = U [ J+]sk Jsk]
03X 5 AX
o
au, U°j+1 R+I—U°j+1 k=1 o
—— = 2 )
Vism Vi L 3TaR) : S (3.9)
U U
1% 1 (it O3 el
R 3R Ry AN
2 U - 2U £y
9l 0541 ktl O3+1k O341,k-1
aR2 (AR')Z

Using these representations, equations (3.4) and (3.7)

may be written in the following finite difference form:



1 v 1
TR - -——1u
EZRK AR ZIARI- (AR) ] Oj.l_-[,k_]

U .
2 0
+ [+ Yy

J+1,k

o [§%§ -l 5 " Zﬁ_%ERT 1
(4R) K 0541, k+1

U u
0 0.
- ___EEALK_ (3.10) ~
and
U - u :
4 4 0

(> + ) U - U = -0 y (3.11)
TR 0541k (RIZ Ojerky | BX %k

(N-1) number of simultaneous equations are obtained by apply-
ing the momentum equation in the forms given by equations (3.15) and
(3.11) at each node along the radial direction at a particular axial
location where N is the number of grid points considere% in the radial
direction. These simultaneous equations are soived for fhe axial vel-
ocities by Thomas' algorithm described in references 10 and 17.

The continuity equation may be written in integro-differential
form as follows:

U

(-YQ) RdR (3.12)
C

=
o’

o“'\z:,

Using the trapezoidal rule the equation (3.12) may be written in the

finite difference form:
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. U
R U -R, U R, .U -R 0.
~ y v R [K+1 0341, K 05 kKT 054 g KT %Kil
Ik T gLkl TRy BX ; ' BX
l ~ C
. .
™ (3.13)
® 3.3 Numerical Computation

- The radial velocities at the (j+1)th station are computed from

equation (3.13)._ The UO and V appearing in the coefficients of equat&ons
(3.710), (3.11) and (3.13) are considered to be known values at the node

(j+¥1,k). In the computation; the U0 and V. . are first used in the

: 3,k
ik
coefficients to obtain U and V, . The iterative process of
°j+1,k j+1,k .
replacing the previous values of U s V. by present values is
X °j+1 K j+l,k
continued until satisfactory values for U, and V are obtained which

. j+‘|,k j+11k
satisfy the fundamental equations exactly. Although Pai and Hsieh [10,11]

used the same method to solve the fundamental equations the computer
program used by them is found to have an error (Appendix D).

A]thouéh the boundary of the free jet is at infinity, due to
the limitation on the numbers a computer could handle, the solution is
started with 1350 gria points at the nezzle exit in the transverse
direction. The computation is started with the mesh sizes of 0.001 in
the radial direction and 2.5 x 10-4 in the axial direction. As the
computation proceeds downstream the number of grid points in the radial
direction and the mesh sjzes are increased in such a way that the con-
vergence of the solution is still achieved. Increasing the number of
grid points more than ‘the above mentioned values doeéﬂnot change the
solution significantly. ~

It is worth mentioning here that altzzzzjzthe implicit finite

difference}kechnique is free of stability pr the solution would



converge only if thg number of iterations on U0 and V are jnfinite
for any arbitrarily Targe or smal] mesh size. Since the number of
iterations on U0 and V were fixed at specific values it‘was necessary
to determine the proper mesh size. The starting value of the axijal
. step size is determined from the stability criterion for an explicit

-igijf < %— where the initial value for

(aY)
the radial step size is chosen as..001. With these step sizes the

difference method which is

solutions at an axial distance 0.001 downstream of the nozzle exit

are obtained. The solutions-at the same Tocation are again obtained
with the axial step size halved. Both solutions are compared. If ’
the axial velocities are correct up to four significant figures and
the loe# error in the radial velocities are less than 5% then it is
said that the convergence has been achieved. If the solution does

not converge the step size is repeatedly halved until the solution

has converged. When this occurs, the computation is continued with
the admissible large step size in the X direction. As the computation
proceeds downstream the axial and the radial step sizes are gradually

increased in accordance with the convergence criteria described above.

The numerical procedure described above is coded into a Fortran program

{Appendix A); This program is a modified version of that used by
Pai and Hsieh [10,11].

3.4 Analysis of the Finite Difference.Solution

As previously stated the main aim of this work is to model
the velocity profile in the devejoping region of the jet. A combina-

tion of a parabolic and a Schlichting profile is siggested in this

17



region as shown in Figure 1. The region close to the axjs of the jet
is considered to be of parabolic form with reduced centre line velocity
based on the experimental data [12]. Far downstream, the Schlichting
velocity profile represents the velocity distribution. Therefore it
is reasonable to approximate the free shear layer which surrounds the
parabolic core by a Schlichting jet with its axis shifted.

To verify whether there is a parabolic region and, if there
is such a region, to determine its radial width a subroutine called
GUNAM is written. This subroutine GUNAM generates a parabolic velocity
profile and compares the magnitude of these velocities with the axial
velocities obtained from the finite difference solution. When the
differencefﬁs larger than the predetermined tolerance, the subroutine
records the radial distance where this occurs and takes this
as the width of the parabolic core. The other subroutiggslHALU and
MYLV that appear..in.the-main program determine the value of Rm/2 and the
values of U/U0 with R/Rm/2 respectively at the required axial locations.
The flow charts and the listing of the main program and the subroutines
are given in the Appendix A.

3.4.1 Schlichting Velocity Profile in the Free Shear Layer

The equation of the Schlichting velocity profiie in
free shear layer in the developing region can be written in the non

dimensional form as:

2(y/Re )2 2 -2
- (R-A)
o Tt U G ey 1 99
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The unknown coefficients in equation (3.14) are Y/Rec.and A.

The data points UO and R obtained from the finite difference solution
at particular axial Tocations were used in ihe program NLIN, available
in the University of Windsor Computer Centre Statistical Analysis Pro-
gram Library {3], to determine K__ X and A. A modified Giuss-
Newton method is employed in the NLIN program to estimate the unknown
coefficients. The program requires the description of the -model, its
partial derivatives with respect to the coefficients A, (X.,+X.) and

cv °C
%E—’ and the anticipated ranges of values of these coefficients.

3.5 Simplified Derivation of the Maximum Velocity Decay

The momentum equation for the axisymmetric jet along the axis

and with boundary layer approximations can be written as,

i 2
qau__ 2 Yy

r

U
—2) (3.15)

R=0

[
o —
(3]

auo . a-po
5% z
— = 22 (3.16)
R+0 ' R0
Therefore the momentum equation can be rewritten as
au_ 32,
&, 2 (—7—) (3.17)

For the case when the velocity profile is” parabo11c at the Eube exit
U
2

the centre line velodity is a local mathematical maximum, < 0
3R

at R = 0. As a result, equation (3.17} gives



du du :
U (=2) <0. Therefore, — < 0 because U > 0. This shows that
m dxc . dXC m

the centre line velocity begins to decrease immediately at the tube
exit.

3.5.1 Variation of Maximum Velocity with Axial Distance

An approximaté solution for the axial variation of
ceptre line velocity will now be considered. As the fluid exits from
the tube it comes into contact with the surrounding stationary fluid.
The edges of the velocity profile aré changed from the parabolic shape
that exists at the tube exit. The central portion, however, remains
approximately parabolic with the centre Tine maximum velocity reduced
from the value at the exit. This aspect of the jet flow has been
noticed from the results of finite difference solution described in
Section 3.4 and from the measurements of Rankin [12]. As the fluid -
moves ddhngtréam, the region where the velocity profile is parabolic
becomes smaller. At a particular distance from the nozzle ‘exit
(x - xE) the velocity profile reduces to that of Schlichting as shown
in Figure 1.

In the developing region the parabolic portion of the

velocity profile in nondimensional form is given by,

_ 2
U, = Um(]iR ) {3.18)
where Um is a function of XC.
The first and the second derivatives of"U0 with respect to R can be

obtained from equation (3.18). .They are:

20



5-9-= -2 U R (3.19)
azua |
‘ a—Rz— = -2 Um ‘(3.20)
2

F = <4 ‘ ‘ (3.2'[)

U =-4 X +C (3.22)
m . _

where C is an arbitrary constant.
At the nozzle exit; XC =0, Um = 1. Substituting this condition in

the equation (3.22) yields,

€= (3.23)

Therefore,

.

' Up =1 - 4 X, (3.24)

It should be recalled that equation (3.24) applies in the developing

region (0 <xc '<xc1). In the fully developed region the velocity

profile is given by Schlichting's So1utiogf
) )

\\

/[
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U 2r/Re,)° 1+ Y R )ZJ‘2 | (3.25)
= + (= .
0 th+xcv5 2 Rec (Xc+xé;T

where XCV is the nondimensionai distance to the virtua] origin,

Upstream of the Jet exit, as shown 1in Figure 2. When R = ¢, equation .

(3.25) gives the centre Tine velocity distribution along the axis of

the jet in the fully developed region (Xcﬂ <X <o),

c

constant y/ReC can be determined.

The momentum of the jet [1] is,

v (3.27)

(3.29)



Therefore ejuation (3.26) reduces to

Un = Wor i (3.30)

3.5.2 Matching of Maximum Velocity Variat{ons

In this section the Um variations in the developing
and fully developed regions, Equations (3.24) and (3.30), are matched
to obtain the length of the developing region (xcl) and the distance
of the virtual origin (Xcv). The conditions of matching are as

follows; -

(i) U, given by equations (3.24) and (3.30) are equated.

(1) dUm obtained from equations {3.24) and (3.30) are

dXC

equated.”

The following two equations are obtained from the matching:

1/8
1 - 4 = —H8 (3.31)
cl Xci + xcv
- -1/8 .
4 = (3.32) &
Xc£+ xc 2 X

Equations (3.31) and (3.32) are solved to get the values of X, and

Xy We find

= 0.1036 (3.33)



24

and

Xeg = 1-7/4 X /8 . g5.0732 ' (3.34)

The values of the root in equations (3.33) and (3.34) are taken in a
consistent way to yield a positive value for XCV. In other words,
the virtual origin for the Schlichting's solution is located inside

the jet nozzle.
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CHAPTER IV
RESULTS AND DISCUSSION
4.1 Finite Difference-Solution -
-~ The finite difference solution of the boundary  layer equations

(3.3 ) and (3.4) are presented in Table [. These results are dis-
cussed in detail in the following sections.

4.1.1 Centre Line Velocity Variation

The axial velocity profiles are computed from the
momentum equation. The variation of non-dimensional &entre 1ine
velocity with the non-dimensional axial distance is plotted in
Figures 3 and 4. The above résuTts are also presented in tabular
form in Table I. In Figure 3 the variation is compared with the
experimental results. The experimental results of Rankin [12] are
considered to be more re]igb]e than those of other investigators since
a Laser Doppler Anemometer is used to measure the velocities. This
device is preferred because it doesn't interfere with the flow. The-
present numersi esults agree well yith Rankin's [12] experi-
mental results. Since Rankin has compareq his results extensively
"with those of others [1, 15, 16] they are not presented here.

Figure 4 shows the comparison of the present ceﬁtre
Tine velocity variation with the other analytical results. For Xc
greater than 0.028, Pai and Hsieh's [10, 11] nﬁmerica] solution is
in good agreement with the present r;su1ts. The disagreement when
xc is less than 0.028 could possibly be due to larger step sizes
used by them in that rangé. [t is also not clear from their paper

whether they djd achieve convergence of their solution in the near exit

~
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region of the jet. The—corre]atioh of Dmitriev and Kulesovd is in )
excellent agreement, however, the variation suggested by them has

a discontinuity at the boundary of déve]oped and developing region. .
This discoptinuity is a result of thé method used to determine %he
development length of thé jet.

Rankin's theoretical m;ze] shows good agreement with thé
present solution when X_ is less than 0.04. The agreement with tﬁe
increasingly worse as the value of XC becomes larger. Tpe increasing
divergence 1; due to the facf°tﬁiz/hﬁs velocity profile model does
not converge toward; a Schlichting profile.

4.1.2 Paraboiic Core of ‘the Jet

" The extent of the paraboli re has been determined
by a subprogram called "GUNAM". In the p§:§ﬁ;:;g>coré, the velocity

profile remains almost parabolic but with reduced centre-]ing velocity.

The variation of the width of the parabolic region with the non-
dimeHEiona1 axial distance is plotted in Figure 5 for the toTerance
values of 0.001 and 0.005. From ‘Figure 5 it is apparent that the
width of the parabolic core depends upon fﬁe preset tolerance value
of the generated paraboltic profile and the velocity field obtained
from the finite difference technique. However, the uncertainty ana-

lysis on the parabolic velocity (Appendix B) indicates that the un-

certainty of the axial velocity normalized with the local centre Tine

velocity is £ 0.001 R. This shows that even in the case of ar“exact

i$ reason

[

the smallest step size in the radial direction used in the fﬁhif&.

parabolic profile there is an uncertainty on Uo‘ For
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difference calculations has Been chosen as the tolerance value for
the\determiné%iqg of ép. -

Figure,s shows a steep drop in the width of the parabolic
core in the very near region of the nozzle' exit: The change inkRP '
is very small.when X. is larger than 0.06 due to the fact thét the
parabolic and Schlichting profiles coincide in tﬁis region. -Since
"the curve RP vs X, does not intersect the x axis anywhere in befween
0 and 0.1 it seems that the flow has not yet developed. An approxi-
mate Fethod of locating the end df parabolic region:in the axial
direction is presented in Section 3.5.2. | \

4.1.3 , Jet Half-Radius

The variation of Rm/‘2 with the axial distance, given
in Table I, provides an excellent means of representing the spread
of the jét. This variation'is p16tted in Figure 6 along with the
results ‘of Rankin [12] and Pai and Hsieh [10, 11]. For éhe range of
Xe from 0. to 0.06 Rankin's experimental results are in good agreement
with the present numerical solution, however, at larger axial distances
his data indicate a wider jet. The theoretical results of Rankin
show a broader jet by about 5.6%. -Pai and Hsieh approximated'theif

numerical solution, for'the range of ¥ _from 0.1 to 2.0, by a straight

lTine given by
N =
Rm/2 5.2 (XC-*O.I) (5.3)

A nonTinear variation of the jei width is indicated when XC is less

than 0.1. The present numerical solution shows good agreement with

Ve




28.

the equation (5.3) when Xc is greater than 0.06.

4.1.4 Axial Velocity Profiles

-

-The axial velocity distributions are presented in Table I.

The axial velocity distributibns are compared with the Schlichting velocity
: _ U X

profile in Figure 7. The comparison is made by plotting Ug-at constant

R . ' . . Y. : m R

Rm/2 against XC. For the similar solution U;'15 constant at conatant Rmy2

but in the Heveloping region the numerical solution shows that Ug-depends

m

R : - s .

both on Rz and Xc' However, as Xc increases, the numerical soTPt1on

approaches Schlichting's solution.’

4.2 Velocity Model in the Developing Region

In Section 4.1 it has been:shown that in the developing region the
velocity field of the cylindrical portion of the jet which surrounds the
axis can be represented by a paraboiic velocity profile. .The finite difference
solution outside of this parabolic core is used along with a nonlinear curve
fitting technique to determine the.parametgr of the modified Schlichting
velocity profile that best fits the numerical solution in this region. The
non-dimensional axial locations and their corresponding Schlichting parameters
name1y‘Xcv, EEE and A are presented in Table 3 and in“Figure 8, ¢ and 10.
These parameters are determined by using a standard library program called
“NLIN". In order to maintain a reasonable computer time, approximately 140
equally spaced points are used. The Schiichting parameters are constant in
the fully developed region of the jet and they are independent of XC.
The above figures indicate that the flow is still developing at an axial
distance as Targe as 0.1 since they have not reached constant values.

Axial velocity distribution in the free shear layer are generated
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by using the Séh]ichting parameters obtained above iqigéhatfon (3.14).
Figures 11 to 19 show the finite difference solutions plottéd gainst
their corresponding parabolic and Schlichting velocity models at dif-
ferent axial locations. In these plots the oriéin and the point farthest
away from the origin corresponds to the edge and the axis of the jet
respectively. As anticipated in the region near the axis of the jet
the parabolic velocity model is in excellent agreement with the numer-
ical solution. The modified Schlichting model in the free shear layer
exhibits an acceptab1e agreement with the finite difference solution.
However, in the reg1on ne4;>the edge of the jet the finite difference
solution diverges sTightly from the modified Schlichting model. This
could possibly be due to the restriction placed on the width of the jet,

4.3 Simplified Derivation of the Variation of Axial Velocity

‘Equation (3.17) may be used to predict the manner in which the
centre Tine veToc{ty would change knowing initial velocity profile of
the jet at the tute exit. Consider the case when the initial veloc1ty
profile of the jet at the exit of the tube ig un1form In .this case,
points in the jet ' said to be in the Qeveloping region as long as
a potential core exj*s. In the potential core the velocity profile is
uniform and 3 “u/3 r2 =3ufdr = 0. Therefore, ciearly from equation
(3.17) we see that U remains constant in the deve1op1ng region. Con-
s1der the intemm@diate case where the tube ‘Tength is inadequate to
produce a fuylly developed laminar pipe flow. In this case, the edges
of the profile are approximately parabolic and the central portion is

uniform. Using the same argument as in the previous case, it can be

~



\_{-
shown that the centre 11ne velocity remains constant in the developing
region. .

Equation (3. 24) indicates that the nondimensional maximum ve]-
oc1ty decays ]1near1y in the developing region of a Taminar jet that
has a parabolic velocity profile at the nozzle exit. Dmitriev and
Kulesova [7] have obtained exactly the same relationship, by fitting

@ curve to a finite difference soTution of the boundary Tayer equations.
From Figure 4 it can pe seen that equation (3.24) is also an excellent
fit for the present finite difference solution. The present derivation
of this equation is certainly preferable in view of the simple, basic
assumptions that have been made and the implication that they have on
the jet structure; namely, the existence of a parabolic core region
similar to a potential core in the uniform exit velocity case. The
parabol1c portion of the velocity profile experiences a uniform rate

of decrease in the max i mum veToc1ty but not a change in shape. This
region is relatively unaffected by the entrainment compared to the
outer edges of the jet. In view of the fact that the radial velocity
component approaches zero, the use of the boundary lTayer assumptions
for a differential element along the jet centre line is certainly
Justified. .

The present method of matching the solution in the developing
and fully developed regwons is unique in that it occurs at the end of
the developing region and includes a match of axial velocity gradient
as well as the velocity. This results in a determination of both

cv

X . and Xcg. Traditiona11y, 2, 4, 5] jet matching has been accomplished

at the tube exit and invelves matching one of a number of possible
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quantities of the exit f1éw condition to that b% Schlichting's
similarity profile.  This results in a determination of XCv only,

but not Xcz. Flow quantities matched in the literature include
kinetic enérgy, centre line velocity, volume flow rate and streamlines
at the edgé of the tube exit. The resulting Xcv values, along with
;sferences are included in Table 2 for comparison with the present
.case. Also iﬁc]uded %s the result of du Plessis et al. [8] wﬁich was
obtained by ‘comparing the similarity profile with a numerical finite
difference solution to estimate XCv and Xcl' Tsang [16] obtained his
values by comparing with a slightly different numerical method. The
values of XCv and XC2 given by Chang [6] were determined from experi-
mental velocity profile data. The dependence of Xc2 upen ReC is unique
among the results and yields a value of xl/a = 20. The lack of ReC
.dependence of xm/a is likely due to the narrow range of R%: values
used in his tests (Re, = 430 and 600). —

The results of Dmitriev and Kulesova [7] were obtained by
approximately matching the maximum velocity in the development region,
equation (3.17), to that in the fully developed region assuming a
value of Xcv equal to that for kinetic energy matching. The two
curves do not join and hence a discontinuity exists in their methqg.
The present values are in good agreement with Dmitriev and Kulesova's
[7], however, yield results without any discontinuity. By allowing
the values of XCv and Xcz to be determined simultaneously less re-
striction was placed on the sglution. The present values of >(mr and

Xci are in slightly better agreement with the values of du Plessis et

al. [8].
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A better comparison can be made by constructing a graph of .
Um-veréus XC as given in Figures 20 and 21.

The experimental and analytical results of Rankin [12] and the
numerical finite difference soTQtion of Pai and Hsieh [10, 11] further

substantiate the aocuracy of the present aphroximation.

e



CHAPTER V
CONCLUSIONS .

5.1 Finite Difference Solution

(1)

The finite difference solution of the bouﬁdar} layer
equations for the case of an axisymmetric jet issuing

from a wall with parabolic exit velocity profile into

an infinite expanse of fluid is presented in a useful
tabular manner.

Based on the finite difference solution, a velocity
distribution model for the developing region of the

jet formed by the combination of parabolic and Schlichting

velocity profiles is presented.

5.2 Simplified Derivation of Maximum Velocity Decay

(1)

(2)

A maximum velocity decay reTé%ionship, based on the mom-
entum equation applied along fﬁe jet centre line and the
use of the boundary layer assumptions, has been developed
which:

(a) proves that the maximum velocity in a laminar jet
remains constant only if a potential core exits,
and decreases in every other case.

(b) predicts a Tinear v;riation of the maximum velocity
in the development region if we assume that a centra]
parabolic core exists.

A scheme for matchi;g the maximum velocity and its grad-

ient in the axial direction at the end of the development

33
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region is presented and shown to yield an estimate of It

> Xc as well as xcv' s

A
‘(3}) The resulting combined model for the centre line velocity
is in good agreement with the experimentai and more exact

methods-of analysis.
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o~ TABLE 2_./
Development Lengths and Virtual Origin Locations
Method References XCV x,c2

Present Case: .
Matching Um and - 0.1036 0.0732

dUm/dXC at XC = xc2
Centre Line Velocity

Matching at Xc =0 (4,5,6] 0.1252 -
Kinetic Energy
"Matching at XC =0 [2,4] 0.1 -
Flow Rate Matching at \ :

. =0 - " (4] : 0.0624 -
Streamiine Matching at

X.=0and r =2 (4,51 0.1252

du Plessis et al. i8] SRS 0.06 \‘

'S
Tsang : N6 ] g.1n 0.07
Chang 5] 0.1112 20/Re,,
3 -
Dmitriev and Kulesova ) .
. 4 —]
(XCV is assumed) 1] - 0.1 0.0752




r

TABLE 3

F

Schlichting Parameters in the Free Shear Layer

!Ax1a1 Mstance The Radial Location ‘ Spread Parameter D1s:ance_]

} of the Maximum Velocity ‘E +/Re of Virtual

: of Matcn;ng Schiichting i c Or;gin ] !

e ' o

L0 0.7910 L g.0t81 0.0011 |

; 0.00 | 0.6832 ; 0.0410 0.0036

i 0.008 ! 0.5009 ! 0.0630 0.0073

L 0.012 ]‘ 0.5388 0.0815 0.0113

! 0.016 | 0.4863 : 0.0979 0.0156

. 0.020 | 0.4402 ; D.1128 0.0202
0.024 ; 0.3980 ! 0.1267 0.0250

' 0.028 0.3592 } 0.1396 0.0299

0,03 0.3227 1_ 9.1517 © 0.0350 !

L 0.036 0.2876 ; 0.1633 9.0403 |

| c.00 0.2540 i 0.1743 0.0458 |

©0.084 0.2216 } 0.1848 0.051%
0.048 0.1501 . 0.1%eg 0.057¢

;  0.052 0.1595 ! 0.2043 0.0635

i 0.056 0.1382 i 0.2127 0.0692

| 0.060 ¢.31119 ! 0.2187 0.0736

i 0.064 0.1012 f g9.2221 0.0759 |

. 0.068 i 0.0872 : 0.2263 0.0791 |

L s.072 | 0.0795 o g.2287 0.0808

- .07 ' 0.073¢ . 0.2306 0.0822

| 0.080 ! 0.0684 | 0.2321 0.0833

| o0.08s ! 0.0639 i 0.2335 0.0883

| 0.088 ' 0.0500 0.2347 0.0851

[ 0.092 0.0565 0.2358 0.0859

| 0.096 0.0536 0.2366 0.0865

j 0.100 0.0508 l 0.2375 0.0871
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APPENDIX A

MAIN COMPUTER PROGRAM

SET THE MESH SIZES, WIDTH OF THE
JET, NUMBER QF SETS QF EQUAL
SPACING STATIONS, NUMBER QF STA-
TIONS [N EACH SET.

GENERATE THE INITIAL AXIAL aND
RADIAL VELOCITY PROFILE AT THE
NOZZLE EXIT.

SET THE NUMBER OF ITERATIONS.
SZT THE AXIAL LOCATION X = 0.

f

GO TO THE NEXT AXIAL LOCATION

-

X = X+ AX

FORM A SET OF SIMULTANEOQUS EQUA-

TIONS BY APPLYING THE MOMENTUM j~®

EQUATION AT THE NODES IN THE RAD-
{AL DIRECTION,

SOLVE THESZ EQUATTONS FOR
Iy
AXTAL VELOCITIES

,
NO ; USE THE NEWLY OBTAINED
¢ AXIAL VELOCITIES

END QF [TERATION
0

S



|
DETERMINE THE RADIAL VELOCITY
PROFILE FROM THE CONTINUITY o
EQUATION. ,

i
I

USE THE NEWLY OBTAINED
AXIAL AND RADIAL”
VELOCITIES. .

NO
END OF [TERATIONS ON

SET NEW ITERATIONS FOR Y AND ¥
FOR THE REST OF THE AXIAL
LOCATIONS.

.

IS OUTPUT
REQUIRED

YES

/ PRINT RESULTS /

SUBROUTINES HALU, GUNAM

MYLY
i
g
/ PRINT RESULTS ;
|
N
&

- 63



ANY

-

IS IT END OF A

STEP

SET NEW AX[AL
SIZE

NO

SET THE NUMBER QF RADIAL
INTERVALS

o

-

64
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The Functiéns of the Subroutines:

1. HALU: At the axial aistance specified, the subroutine is used
to determine the value of Rm/2’ the nondimensional radial
location where‘the axial velocity is one haff of that at
the centre Iine.‘

2. MYLV: Used to determine {§ and R/Rm/e'

3. GUNAM: Used to determine the width of the parabolic core by compar-

ing the finite difference solution with a parabolic profile.

~ .

b e Oud



NYL

NYE

LL
LE(LL)
AHI{LL)
N(LL)
KY

KY1

KY2
KY3

ST

RM

RMU
PARU

BU

1]

Variables Used in the Program

Total number of grid points in y direction.

Gr{d point at the edge af the jet'exit.

Number of sets of equally spaced stations.

Number of staticns to be calculated in each set.
Spacing between stations in each set.

Total number of grid points less 1 in each set.
Number of iterations for radial velocity.

Number of iteratio;s on U at first station of the
first set.

Number of iterations on U in the first set.

Number of iterations on U in the rest of the sets.

Developing length of-the jet.

X

)

m/2

[y

Magnitude of U0 at the edge of the paraboliccore
(from finite difference solution)

v
Magnitude of UO at the edge of the parabolic core

(from the generated paraboiic velocity profile)
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ll"-\'
P.Ju

//IUH

SRUBA JOR (R131D0RSFB, 30> 4‘,'ARUL’7CLQSS-S

ZREC  FORTGCLG,REQCICMN=3Z09K
T.S¥SIN DD x ~ T

REAL¥S A(1451)+B(1431),C(1451),D(145

XV(1431),UC1451)

1)yUPC1451)~

REALX8 AM(1451),AN{1451),AL{1451),AMHI(S)

REALXS P -
DIMENSION LI(S)yNuéi
COMMON U
P=,001D00
2=PKXx2
¥Y=1430
‘NY1i=1a31
NYE=1001"
NYR=1449
LIL=5
LIC1)=100
LIC2)=25
LIC3)=2%S
LI(4)=25
LI(Sr=25
AHI(1)=1.E~-05
AHI(2Z2)=1.E~-0S
AHI(3)=1.E-05
AHI{4)=1.E~-05 }
AHI(5)=1.E-OS -
M(1)=13590
N(Z):1:75
N{3)=1300
N(23=1425
“kq)—14uo
MHia:=1430
XST-.1°
KYy=10Q
RYP=10
Ky:i=5
Ky2=5
KY3=5
KO=RKYF-1
10 31 I=1sNT2
IF (I-NYE) 501+503,503
UR(I)=1—-(FLOAT{I=1)%XF)%%2
GO YO0 'St
Up<ijy=0.
CONTINUE
00 52 I=1,MYT
YiI)=0.
CONTINUE
x=00 -
g 2800 wiL=1,LL

-

’

’

67



NY=N(KL)
NYMN=NIKL+1)
NY1=NY+1
NYR=NY~1
L=LI(KL)
AH=AHI (KL) ) ”
D0 9000 KKK=1,L
X=X+aH . . R
DO 9200 K=1,KYP
DO 9100 KA=1,KY1
DO 17 I=1sNY
IF(KA.GT.1) GOTO 202 ~
UCO=UR(I) .
- -G0 TO 203
202 Uco=uU(I)
203 B¢ IY=UCOXFP2/AH+2.
B¢ I)=UCO%XP2/AHXUFP(I)
17 CONTINUE
B(1)=R(1)+2.
AM(1)=B(1)
CAN(L)I==-4./AM(1)
AUC1)Y=DCL) 7aML)
DO &4 I=2sNY
CAAE~ (L VTN -1 /I /PYRP/20)
CA==1  HF/2.% (VLI =1 /CI-1)/7F)
AMCT)=R(I)~AAXAN(I-1)
AMCI)=CA/AM(I)
AUIII=(DC(I)-AULI-1)%AA) /AMLI)
86 CONTINUE
IF ((KA-KY1).LT.C) 60TO 304 -
00 S1 I=1sNY
BLIY=U(I) ' .
&1 EONTINUE .
304 U{NY Y=AU(NY)
DO 388 J=1,NYR
I=NY-J
UCIX=AULI)—ANCIIXUII+1) :
88 CONTINUE , .
2100 CONTINUE -
D0 63 I=1sNY
UCI)=.Sx(B(I)+UCI))
43 CONTINUE
v(1)=0.
V(2)==P/4. /AHX(LU(2)-UF{2)+UC1)=-UP (1))
DO 29 M=3,NY
V(M)=FLOAT(M-2)/FLOAT(M~1)2XV(M-1)—
X JSKP/AHR(UM) -UFP M) +
X " FLOAT(M-2)/FLOAT(M=1)%(U(M=1)=UF(M~1)))
29 CONTINUE
KY1=KY2
IF(K.NE.KI') GO TO 9200

-
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13~
o
O

GO0

LD B

DO &7 I=1sNY
C(Id=ULT .
ACII)=UCT)
CONTINUE
CONTINUE
DO 48 I=1,NY
VBr=TS%(CCI+V(IN) ;
UCI)=.SX(UCI)+ACTI) )
CONTINUE .
IF(KKK.NE.L)GOTO 233
PRINT S00:X
FORMAY (/s “AVERAGE VALUE FOR UrV AT X=',E15.7:/)
RINT 400
I=1 & .
IF (I.GT.NY)GOTO 235
FRINT 420yI5UPCI)UCI)y9CI) _
FORMAT(//SXs T/ y4X s *UFII) 26X "ULI) s 72Xy Y1) " /)
FORMAT(2XyI4r4XsF7.474%X:F7.4,AXF7.2)

I=1+50 | |

GOTO 234 \

CONT INUE _ a
PRINT 601 . .
FORHAT (////) -

PRINT &00s¢I,B(I)+U(I),I=1,NY)
FORMAT (2Xs 174X, 028, 16, 4%-028. 14)
CALL HALUCNYF,HALFR)

CALL MYLU(HALFR,FsNY)

CALL™ GUNAM(NY,P)

CONTINUE

CONTTHUE

DD &85 I=14NY
Ur{ri=Uu{id

NTINUE :
I 110 M=NY1,NYN
UA(MI=0.

’c NTINUE

(X.LT.XSTYGOTO 2000
hYP“hY -
CONTINUE
KY1=KY3 .
KY2=KY3
CONTINUE
SyT0F

“END

SUBROUTINE HALU(NYsP,»HALFR)
COMMON U

REAL X8 UC1331)
HALFU=U{1) /2.

D0 10 I=1aNY

IF(UCL) LMEJHALFUXGOTO 20
HALFR=PXFLOAT({I-1)

‘...‘...-un,'i_‘_(ai
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Program Description

The,prog?am is writteﬁ in FORTRAN IV for an IBM 3031
computer and needs approximately 550 K memory . The variables used
in the program are given in Appendix A.

Fiéure 22 shows the squthn domain of the jet considered in
the present computational work. The program determines the velacity
distribution up to the axial distance XC = 0.1. The entire flow field
1s divided into a number of sets LL(I). Each of these sets consists
of a number of stations LI{I). The stations are equaj1y spaced. The
distance between two- consecutive station§ in a set, the axial step .
siée, is denoted by AHI(I}. Up to the axial Tength of 0.068 the radial
step size of 0.001 is used\wh11e from X. = 0.068 to X -

C C
step size is set at 0.002. The number of grid points in the radial

= 0.1 the radial

direction at each axiai station is denoted by M(I) and determined by
the radial width at that particular axial station.

The gcription of the calculation at the j+1th station when
the velocity distributions at the jth station is known is given below.

If the nozzle exit is considered as the jth station the axjal
velocity distribution is known to be parabolic while the radial vel-
ocity distribution is zero. These axial velocities are stored in
arrays UP(I) and V(I). During the first iteration on the axial velocity
at the j+ith station the coefficients of the (N-1) simultaneous equa;
tions are formed by substituting the values of UP(N) and V(N) in the
equation (3.10). The program then solves these equations for the axijal

velocities at the station j*+1. (N-1) simultaneous equations at j+lth
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station are again formed where the coefficients of these equations are

now obtained by using the new axia].veTOCitiéé. These equations are

again solved for U. The process of foéﬁ%ng (N-1) simultaneous equations
repeatedly by using the newly ca1cu1ated'ax¥a1,ve1ocities is controlled
by the number of iterations specified on U (i.e. KY1). Then the program
calculates the radial velocities from the continuity equation. The
pfognam then returns to the point where it begins the calculation of U.
Since the loop Qﬁich calculates U is nested inside the V loop the axial
velocities are iterated KYT*KYP times where KYP is the number of iter-
and R and

U
m/2’ u " Ryrs
the extent of the parabolic region Rp from the subrout1nes HALU, MYLV

ations on V Then the program calculates the R

and GUNAM respectively. Once the so]ut1on at the j+1 the stq/;nn.is
found the program goes to the next stat1on by conSTder1ng the present 57'

station as the jth station.

Due to computing t1meﬁresvricéions, obtaining the solution to
the whole flow field in é single run of'the;gdmputer was not feasfbie.
This problem was circumvented by storing the outp®t at an,intermediatéi
Iocationpon a tape and reading them as input for the jth station to

continue the computation.



~ APPENDIX B
UNCERTAINTY ANALYSIS

Tﬁe\gi:ifo1ic velocity pFofi1e is given by the equatién: <
N

U, = U (1-R%) (8.1)

-

g
When the axial velocity is normaliZed with the local centré line velocity,

equitiii/i?.1) can be rewritten in the following form:
\ by

_ 2
5—m- (1-R%) | (8.2)

(i.e.

The uncertainty of U is given by the following equation:

- 2
<
From equation (B.3); .
B ' ~ip
! ~
a3y .
S - R (8.5)

The smailest radial step size usea'?? the finite difference calcula-
tion is 0.001, hence, the uncertainty on R is chosen as 0.0005.
% Therefore,

NU = 0.001R.
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APPENDIX D
ADDITIONAL MODIFICATION IN PAI AND HSIEH'S
COMPUTER PROGRAM ' ’“

The computer program given in reference [10] is for a two
dimensional.jet with rectangular initial ¥e10city distribution. In
the éase of an axisymmetric jet, the changes necessary in this program
are also given %y them. However, it is noticed that in additi;: to

C7 . the given changes, thg.statement AM(1) = -2./AM(1) should be changed

to  AN(1) = -4./AM(1) when an axisymmetric jet is considered.
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