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ABSTRACT

ANALYSIS OF ECG DATA, FOR DATA COMPRESSION

by

Mark Frederick Stevens

In this thesis the éffects of guantization on
ECG data are analyzed,la;a‘techniques to i&prove data
reduction over thoée obtainable by direct quantization
are discussed. Basically, three data reduction techniques,
linear prediction, with différentiél pulse code modulation,
spectral analysis and slope change detection, are con51dered'
and a relative assessment of their per&ormance is presented.
The results of the investigation reveal that a reduction of
3:1 is obtainable if a slope change detection technique is
applied to prefiltered ECG data. This claim is Baseé an
the number of bits/samples required for the'slope technigque
as compared to the number of bits/sample required when ECG

datais directly QUantized. The maximum mean squared and

peak error in the reconstructed signais were 1% and 5%,

-* respectively.
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CHAPTER I
r

INTRODUCTION

1.1 INTRODUCTION OF TOPIC

b

The number of electrocardiograms (ECG's) taken _
yvyearly has sharply increased, with the occurrence of more
and more deaths due to heart disease. At one time, heart
disease was‘mqinly cohfined to ﬁhe aged, and anyone under

o

fifty years-of age was not very aware of the problem.

-

But today heart conditions of all kinds, are developing

in middle age and young people at an ever inéreasing rate.
Because of this fact, there is a growing concern for this
problem among all age groups. Therefore, more and more
people are having ECG's taken as part of a regular
phyéical examination. This amounts to millions of ECG's
taken yearly in Canada alone, thus putting a heavy burden
on our physicians and cardiologists, who have to diagnose
these ECG's by manual'meansn

Not long after the advenf of digital computers,
man began working towards automatic‘systéms'of monitoring,
acquisition, storage and, in some cases, diagnosis of ECG
information, using these digital machines. The work was
started in the mid 1950‘3 by peopYe like Dr. H.V.
Pipberger, Dr. E. Frank and Dr. O.H. Schmitt, who felt

L4

that digital computers could be used effectively to

_perigg? many of the tedious tasks—dinvolved with mass

ECG analysis. It was felt that automatic systems would

1



have advantages over the conventional manual means. Some
of these aré:

1. By combining the experience of top cardiac
specialists, one should be able to come up with a diagnos-
tic algorithm which can surpass the diagnostic speed,
accuracy and consistency of one cardiologist.

2. A computef can be used to continually monitor
coronary éare patients that'need around-the-clock
monitoring. While a human observer might miss a short
term cardiac phenomenon, or thed start of a serious cardiac
cqndition} the computer would detect these sudden changes
and alarm an attendant and possibly store the abnormal
waveforms for later analysis by a cardiologist.

3. The compﬁter would facilitate the retreival
of ECG data from various sources so that past and present
waveforms could be compared more effectively. ,

4. The speed of the computer would allow mass
ECG screening so that everyone could have ECG's taken
regularly, witﬁout overburdening the physicians.

5. . ECG transmission over telephone lines could
be implemented so that heart patients can literally phone
in their ECG from any available telephone receiver, with
the appropriate equipment. . | -

These are just a few of the areas in which computers can .
be used to facilitate tedious duties and, in some cases,
accomplish duties that coﬁld'not be handled by manual

" methods in the past.

EERTN S Yy



The first automatic system of ECG analysis was
presented at a Conference in 1959, by Dr. H.V. Pipberger.
The system made use of an analoghto—diéital (A/D)
convertor and a small digital computer, prograﬁmed to
perform some fundamental ECG anélysis. Later between
1960-61 Dr. Pipberger and associates developed a program
for automatic waveform recognition which proved to be
the basis for jusf about all the automatic ECG analysis
pregréﬁs up until‘how.

During the 1960's and the first part of,ﬁhe-lQ?Ofs,
a lot of research has been going on to develop better
systems for auntomatic ECG analysis.» Todaf there‘ére a
variety of systems in use and some of these are discuésed
by Chr. Zywietz and B. Schneider(l). Even though these
systems are in use today, the general consensus is that
none of the existing systems are good enough and further
research is needed to make these systems more reliable
and less expensive. -

Now, in order to keep fhe costs of these automatic
ECG analysis systems down, one must find an efficient
means of representing thg ECG data in the digitél machine.
Normally these analog ECG signals are sampled, using an
analog-to~digital convertor, and therefore, are represented
by a set of discrete numbers, which sequentially vary with
the magnitude of the original analog signal. Thus, if the

sampling rate is 500 Hz then there will be 500 numbers

representing every second of ECG data. Since a complete




ECG analysis makes use of twelve differept ECG waveforms,
recorded for possibly 5 to 10 Seconds each, then the
computer storage requirements will be large, if the ECG
data is kept in its sampled form. Now by applying déta
reduction techniques'to this data, one can come up with
an ECG representation which significantly reduces the
storage requirements, while maintaining an acceptable
degfee of fidelity in the representation. Thus, a
reduction in data will mean savings in computer storage,

thus reducing the cost of the system.

1.2.i PHYSIOLOGY OF THE HEART

The circulatory system is designed to deliver
blood to and from the capillaries, where the blood gives
up its oxygem-and takes in carbon dioxide and other waste
products. The centre of the circulatory system is the
heart, a hollow, muscular contractile organ. The main
function of the ﬂeart is to pump blood continuously
throughout the body in a‘closed 1éop of vessels.

Figure l.shows the main parts of the heart. The
deoxygenated blood enteré the right ventricle from the
right atrium and the right ventricle in turn pumps the
bloed via the buiﬁonary arteries-£0 the lungs. At the
lungs the bloed is Oxygenated, the carbon dioxide is
taken out and then the blood is-returned to the‘left
atrium via the Pulmonary veins. The blood is then pumped

into the left ventricle from the left atrium. From here

R LA T e A ———
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RIGHT ATRIUM

RIGHT VENTRICLE

Figure 1. The Heart




the left ventricle pumps thé.oxygenated blood into the
aortia artery, which in turn carries this oxygenated
blocod to all parts of the body through a complex artery
system. After nuturing the body cells aﬁd picking up
the carbon dioxide, the blood again retBrns to the right
atrium and one cycle is complete. This cycle is repeated
60 to 120 times per minute throughout one's whole lifetime.
Stimulation of the heart is accomplished by
electrical changes which spread throughout the heart and

f\\-
cause it to contract. Under rest conditions the heart

cellé aré pola;ized, but when a proper electrical stimulus
is applied .the cells depolarize causing tﬁe muscle fibres
to contract. Systole is the contraction of muscles of
either the atriums or vent;icles, to expel the blocd from
these chambers. Diastole is when a chamberuis refilling
with blood. While the ventricles are inlsystole the
atriums are in diastole and vice versa.

All cardiac tissue has the property of rhythmicity
(the ability to initiate its own beat). There is a
specialized region of cells which exhibit the highest
order of rhythmicity; this region is called the
sincatrial or sinus node. This node is the natural pace-
maker of the heart, but other regions of the heart, or C;V
ectopic pacemakers, can initialize the beat under adverse
heart conditions. In descending order of rhythmicity, the
atrioventricular node, atriac myocardium, and the

ventricular myocardium may serve as ectopic pacemakers.

PR S g MVERF PRSP i S L



Thé rate of depolarization of the ectopic pacemakers is
slower than that of the sinus node, therefore, in order
for them to become pacemakers 1} their own rythmicity
must be enhanced, 2) the rythmicity of the higher order
pacemakers must be depressed or, 3} all conduction
pathways between the ectopic focus and thosg{regions with
higher degree of rythmicity become blocked. Thus, under
normal conditiogé the sinus node initializes the de-
polarization of the heart muscle. Since the sinus node
is located in the right atrium the depolarization spreads
through the atriums first, then it proceeds to the ven-
tricles so that one cardiac cycle is complete.

Thgse electrical forces are conducted throughout
thé whole body and can be detected and recorded by the
electrocardiograph machine. The shépg ;nd timing of the
.waveform being recorded depends on -the anatomic make up
of the structures being stimulateq,fthe speéd of con-
duction of the impulses through_thgse structures, and
the position of the electrodes in relation to the portions
being activated. In the next section the electrocardio-
gram will be discussed from the standpoint of lead
placement, diagnostic value and the‘ggysiological
phenoﬁena responsible f¥Br the deflections and intervals

of the ECG tracing.



1l.2.ii ELECTROCARDIOGRAM

Basically, an electrocardiogram is a plot, with
time, of the differences of potential between pairs of
points on the external surface of the body or between o
specific skin loci and a reference electrode. The
standard electrocardiogram ;s-made up of twelve waveforms
using differept lead configurations for each. Tables 1
and 2 list the six limb leads and six chest leads
respectively, along with ?he electfodes used and potentials

measured for each lead configuration.

TABLE 1
ELECTRODES USED FOR
LEAD - POTENTIAL MEASURED POTENTIAL MEASUREMENT
I (1) left shoulder (1) left arm electrode
(2) right shoulder (2) right arm electrode
IT (1) groin . (1) average potential of
‘ R + L leg electrodes
(2) right shoulder {2) right arm electrcde
IIT (1) groin { (1) average potential of
‘ { R + L leg electrodes
(2) left shoulder (2) left arm electrode
avR (1} right shoulder ' (1) right arm electrodes
(2) lateral left lower (2) average potential of
rib cage L leg + L arm electrodes
avL (1) left shoulder (1) left arm electrode
(2) 1lateral right lower (2) average potential of
rib cage : R leg + R arm electrodes
avF (1) groin (1) average potential of
R + I leg electrodes
(2) neck . | (2) average potential of

R + L arm electrodes

T T L T AT T T

Limb (Frontal) Leads.
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TABLE 2
POSITION OF CHEST VENTRICLE (S) USUALLY
LEAD WALL ELECTRODES FACING THIS ELECTRODE
A28 4th right intercostal space right ventricle
at the right sternal border
V2 4th left intercostal space right ventricle
‘at the left sternal border
v3 . 5th left intercostal space fight ventricle
between electrodes of V2 and (left ventricle)
v4
v4 5th left intercostal space left ventricle
at the midclavicular line (right ventricle}
- V5 5th intercostal space at left ventricle

anterior axillary line

V6 5th intercostal space at *ieft ventricle
midaxillary line

Chest Leads.

Figure 2 shows the positive axis directions of
the limb leads while Figure 3 shows the position of the
chest lead electrodes. At any instant of tiﬁe only one .
lead potential is being measured, therefore, there is no
time relétion between the different leads. Thus these
are sometimes referred to as scalar leads;since each lead
represents the potential change in one direction only.

Figure 4 shows a typical leaa II ECG with the
important waves and intervals labelled. The heart
depolarization is initiated by the sinus node in the
upper left atrium so the P wave represents the

depolarization spread through the atriums.
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Figure 2. Positive axis directions of the limb (frontal)
leads
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Figure 3. Position of chest lead electrodes
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Figure 4. Lead II ECG signal.
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The QRS waves represent two'phenomena that normally occur
during the samé time span, these being the depolarization
of the ventricles along with the repolarization of the
atriums., The T-wave is caused by the repolarization
process in the ventricles. The P-R interval is the time
between the start of the depolarization of the atriums
and the start of depolarization of the ventricles. This
duration is usually between 0.12 to 0.20 seconds in a
normal heart. The QRS interval is usually about 0.06 to
0.10 seconds and it represents the total time for de-
polarization of the ventricles. The S-T interval is the
time between the depolarization and repolarization of the
ventricles. This interval is felt to have no clinical
significance. The Q-T interval is the period of
electrical systole of the ventricles. Its duration is
about 0.4 seconds, but varies invep$ely with the heart
rate. The T duration is simply the time for ventricular
repolarization.

By analyzing the details of these waveforms a
cardiologist gains valuable insight concerning, 1) ' the
anatomical orientation of the heart, 2) +the relative
size of the cham%ers, 3) a variety of disturbances of
rhythm and of conéugtion, 4) the extent, location and
progress of ischemic:damage ﬁf the myoccardium, 5) the
effects of aitering electlolyte concentrations, and
6) the influence of cert:ZR\drugs (notably digitalis

and its derivatives).
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A code.known as the Minnesota Code was developed
in the late 1950's to make ECG diagnosis systematic; ?hé
Minnesota éode gives a step-by=step method of checking “
the ECG's characteristics, to come up with consistent
ECG evaluations. The autﬂor has included a copy of this

code in Appendix A, to give the reader an idea of the

complexity of manual ECG andlysis.

1.3 LITERATURE SURVEY ol

Up until now the-daté ;educfion techniques that
have been applied to ECG aata, can be dividéd into three
main categories, parameter .extraction, transformation and
direct data techniques. In the past, the parameter
extraction techniques have been the most popular since

the resultant parameters can be used directly in many

»
o

automatic diqgnostic schemes. The main disadvantage of "
this method is that the original signal cannot be re-
constructed from the extracted parameters. Récently,
authors have taken a close look at the transformation

and direct data methods. These two techniques have the
advantage that ;E; original waveform can ge.%éconstructed
using the parameﬁers of the ﬁodel. C.A. Andrews, J.M.
Davies and G.R. Schwarzcz) wrote a paper on data
compression which outlines many of the traﬁitioﬁal
methods of data compression. They concluded that the

direct data methods gave the best overall results of the

techniques investigated. An ECG signal was used fdﬁ.the

\
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reproduction comparisons.

1.3.i PARAMETER EXTRACTION TECHNIguEs 3! (4)

Thé parémeter extraction technique has been widely
used in the area of automatic ECG analysis, for clasgifiu
cation of different ECG waveforms. Basically, this
technique attempts to extract a set of parameters which,
in general, describe the ECG waveform. These parameters
are made up of amplitudes, intervals, maximum slopes,
phases, and a variety of other characteristics of the
’signal. In essence, the technigque attempts to mimic the
cardiologist in that it picks out those characteristics
of the signal that are of diégnostic &alue. Figure 5
shows an ECG signal which is labelled to show some of
the important parameters of the ECG signal. . The sub-
script p stands for a peak amplitude, 4 'stands for.wave
duration, a dot'(-) stands for the derivative or slope,
while.consecutive capital ietters represent intervals.
Some designers have used as many és 300 features to
describe the ECG signaL&s The main difficultx with
this sort of techﬂique is in the actual extraction of
these parameters. In practice the ECG waveforms héve
an infinite number of variaﬁions when talking about both
normal and abnormal tracingg. Because of this a lot of
research has been carried out to develop reliable

feature exthction routines.

t
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Figure 5. ECG signal with features labelled.
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1.3.ii TRANSFORMATION TEcENIQuEs ) (6)(7)

The main objective of these transform techniques
is to come up with a set of basis functiohs that will
best represent the ECG data with the fewest number of

basis functions. Letting the original timg function be

gt) , ty st t, (1.1)

-,

Now the estimate of the function g(t) is given by
A N .
g(t) = kil Iy ¢ktt) T S (1.2)
where G(t} is the estimate of g(t), g, are the N
coefficients and wk(t) represent the N basis functions.
The gk‘s depend on g(t) and the basis functions ¢k(t)
are chosen to be independent of g(t). If g(t) is well
behaved then a(t)'will approach g(t) as N approaches «.
These basis functions ¢k(t) do not necessarily
have to be orthogonal or normalized but when the wk(t)'s
are chosen to be orthonormal, the calculation of the
gk‘s is greatly simplified giving
t2
9y = t{ g(t) v (t) at , k =1,2,3,...,N

1 (1.3)

A variety of transform methods have been applied
~to ECG data in the past, for purposes of data reduction.
‘Some of these being the Fourier, Karhunen-Loéve, Discrete

Cosine and Haaxr Transforms with sinusoidal, eigenvector,
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sinusoidai and rectangular wave basis functions, rec-
pectively. The Karhunen-Loéve transform is considered
the optimum (in the méan squared error sense) transform
since it's basis functions are uncorrelated, but this
transform is normaily not used in practical situations
since there is no fast aléorithm for calculating the
transform. Thus, authors in the past have used the
Karhuﬁen—Loéve transform as a basis for comparison of
other transform techniques.

" The normal procedure followed is to calculate
the transform and then retain the M largest components,
where M is chosen according to the data reduction desired.
Then by setting the remaining components equal to zero
one can proceed to calculate the inverse transform using
only the M components. Of course M must be chosen so
that‘the resultant reconstruction is within an acceptable
tolerance.

It was observed that many of the agthors making
use of the transform techniques did not reconstruct the
total ECG signal. Mast authors did not include the
P-wave in their analysis, therefore, the evaluation of the
technique is difficult. This situation is evident in all

the papers referred to in this section.

1.3.iii DIRECT DATA ’I‘ECHNIQUES(Z) (8)

There are a variety of data compression techniques

which fall into the cateéory of direct data compressors.
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C.A. Andrews ‘®! and c.M. Kortman (8! have investigated
some of these techniques. C.A. Andrewscz) found that the
polynomial predictors and interpolation compressors gave
-the best results when applied to ECG data: These two
methods attempt to store only the sample points that best
characterize the shape of the signal, thus omitting any
redundant sample points. The signal can then be recon-
structed by using the sfored information to estimate,
using some criterion, the intermediate sample points.

The two particular techniqués which C.A. Andrews(z)
found most effective weré the zero-order predictor with
floating aperature (%ZOP-FA) and the first—order intér—
poiator Wwith two degrees of freedom (FOI-2DF). The ZOP-FA
technique estimates the signal by a set of constant
levels while the FOI-2DF technique estimates the signal
by straight line approximations. The ZOP-FA technique
was found to be inefficient in storing constant slope
informa:ion while the FOI-2DF was very sensitive to noise

in the signal.

x These direct data tecﬁhiques have been used in

conjunction with rhythm analysis algorithms to detect the
occurrence of certain ECG complexes within the ECG

waveform.

1.3.iv DISCUSSION

The main disadvantages of the parameter extraction

techniques is that the original signal cannot be re-
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constructed from the parametgﬁ? extracted from the signal.
Once the specific information is retained, no more infor-
mation can be obtained at a later date. The main purpose
of these techniques is to categorize waveforms into
different diagnostic categories for automatic ECG analysis
rather @han to store ECG data.

It was observed that most of the papers dealing
with ECG data reduction did not take into account the
effects of quantization, both on the original samples
and on the model parameters. Thé data reduction ratios
were calculated on a number per number basis so that no
attempt was made to reduce the bit requirements for each
parameter. Since a bit is the basic unit of computer
storage, then it is only logical to compare a data
reduction technigue with the original sample signal on
a bits basis. This gives a more realistic indication
of the storage éévings achieved when applying a data
reduétion technique, to sampled data.

Tt was also observed that a wide range of
;ampling frequencies were used by different authors;

The sampiing frequency will have a direct effect on the
redﬁction factors. Therefore,lit is felt that one must
take the sampling frequency into account before passing
judgement on a data reduction technique. By sampling

the data at a high rate one can claim very high reduction
ratios but they have introduced signal redundancy which

shows up in the inflated reduction ratios.
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1.4 PROBLEM STATEMENT

The objectives of this work are as follows:

1. To investigate three data reduction techniques,
linear prediction, with differential pulee code modulation
(DPCM) , spectral analysis and slope change detection, as
applied to ECG data, and present a relative assessment of
their effectiveness in reducing data. These techniques
are compared on a mean squared error, pPeak error and visual
reproduction basis versus reduction ratio. For these cases
the reduction ratio is calculated as the total number of
original sample points versus the total number of model
parameters, without taking into account quantization.

2. To carry out a quantization study of the
original ECG sample points in order to come up with the
minimum number of bits/sample required to represent these
samples points without significant distortion in the
quantized version. Refer to Appendix C for the bits/sample
criterion.

3. To apply a quantization method to the best
technique of the three studied and determine how many
bits/sample are needed to represent the original data.

This technique is then compared to the qﬁantized original
data on a blts/sample basis, rather than on a number per

number basis Whlch is used by many authors.
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1.5 THESIS OUTLINE

The first chapter of the-thésis_discusses the
importance of data reduction for automatic ECG analysis -
system along with a brief summary of techniques that have
been_applied in the past. There is also a short section
on the electrocardiag;am from the standpoint of electrode
placement, diagnostic value and physiclogical phenomenon
responsible for these eleétricai signals.

In Chapter II the acquisition and preprocessing
of the ECG data is discussed. Included is a system block
diagram and a bandwidth discussion.

The three main data reduction techniques are
~ presented in Chapter III. The theory involved with each
technique is discussed along with problems faced and
modifications made on each of these methods. Finally,
an original waveform along with reproductions using each
technique are presented at the end of each subsection
of the chapter.

In Chapter IV the results of each technique are
discussed, from the standpoint of mean squared and peak
errors, as well as the visual fidelity in the recon-
structions. The techniques are compared for different
levels of reduction, where the reduction is based simply
on a number per number basis. Conclusions are reached
as to which technique gives the bést reduction while

maintaining an acceptable representation of the ECG data.
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in Chapter V a quantization study is carried out
on both the origipal data and the slope change detection
technique parameters. It is found that the original data
can be represented by 6 bits/sample without significant
distortion in the reconstruction. By quantizing the
parameters of the slope change detection technique, as
applied to prefiltered data} one can represent this same
data using 2 bits/sample while maintaining the mean
squared and peak errors below 1¢ and 5%, respectively.

In Chapter VI the conclusions of the work are

presented.



CHAPTER II

ACQUISITION AND PREPROCESSING OF THE ECG DATA

2.1 EQUIPMENT DESCRIPTION

Figure 6 shows a block diagram of the equipment
used for the sampling and analysis of the ECG data. The
Lead II configuration was used to obtain the ECG signals.
For this configuration three electrodeé are used, one for
the fight shoulder and one for each of the legs of the
subject. The potential is measured between the right
shoulder with respect to the average of the two legs.

All the waves, P, Q, R, S and T are normally well defined
in the Lead II configuration, mainly because the
potential is being measuredrin the éeneral direction of
the depolarization and repolarization spread through the
heart. Thus, this lead is guite often used for ECG
analysis systems.

Before any-sampling was dope, two visits were
made to the Coronary Care Unit of Grace Hospital,
Windsor, Ontario, in order to become familiar with the
procedures for taking good electrocardiograms. These
two days were spent observing the ECG technicians as
they took the ECG's and discussing the problems that can
arise when the ECG is not taken properly. The ECG
machines used at the hospi£a1 were almost identical to

the one used for this analysis.

24
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2.1.i BURDICK EK—4 ELECTROCARDIOGRAPH

This ECG machine is fitted with an'output terminal
for oscilloscope monitoring of the signals being recorded -~
on the paper chart. The monitoring términal gives an
output of 1 volt per centimeter deflection of the record-
ing needle. Thus, by adjusting the sensitivity one can
control the signal output level. The output impedance
is approximately 100 @ with maximum output currents of
about 0.1 miliiamperes.

All the ECG's were taken from male subjects
between the ages of 24 to 35 years of age. The subjects
were lying quietly on their backs while the ECG's were
taken, thus reducing the possibilities of muscle noise in
the tracings. For a couple of caseé, the ECG signals
were sampled, immediately after the subject had done

some running on the spot.

2.1.ii NEFF MODEL 122 DC AMPLIFIER

The DC amplifier was used to amplify the ECG
signals so that the full range of the analog to digital
(A/D) convertor could be utilized. This particular
amplifier is a wideband differential DC amplifier which
is designed for low level signal amplification in
conjunction with data systems. The unit has a built-in
variable 2nd order filter with 3dB points ranging from
10 Hz to 100 KHz, stepped by factors of 10. The gain
of this amplifier is variable from 0 to 1000. The input

VN

)
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impedance is 100 megohms, minimum, shunted by 100 pf,
while the output impedance is approximately 0.1 ohms

in series with a 10 yH inductancge.

2.1.1ii KROHN-HITE MODEL 3750 VARIABLE FILTER

This filter was used to iow pass filter the ECG
data for A/D conversion. The filter is a variable
electronic filter which covers the frequency range from
0.02 Hz to 20 KHz. The unit is made up of high pass aﬁd
low pass sections which can be used indepeqdently or in
series to accomplish all four filter configurations;
high—gass, low-pass, band-pass and band-reject. The
pass-band gain can be set to either unity (0ae) o¥
10 (20dB) by simply pushing a switch. The out of band]
attenunations are 6, 12, 18 or 24 dB per octave. Thus
this filter can be used throughout the frequency range
from 0.02 Hz to 20 KHz for all four configurations and
with variable gain and attenuation. One has the choice
of either a Butterworth (maximum flat response) for
frequency domain operation or low Q (damped response}
for transient-free time domain operation. The input
can vary between % 15 volts for a gain of 0 @B and
¥ 1.5 volts for a gain of 20 dB. The input impedance
is 10 megohms in parallel with. 200 pf and the output
impedance is 50 ohms.

For this analysis the filter was used as a low

pass filter with a Butterworth response and the maximum
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out of band attenuation, 24dB/octave.

2.1.iv TUSTIN X-1500 A/D CONVERTOR

The Tustin analog~to—digital (A/D) convertor is
a 13 bit plus one sign bit convertor. The full scale

input voltage range is t 10 volts where + 10 volts

corresponds to + 213

- 2'—13 + 1. There afe 16 channels available, made up of

and - 10 volts corresponds to

4 buffered and 12 unbuffered channels. The input
impedance is greater than 20 megohms in parallel with

200 pf. The conversion time.is 15 psec with an accuracy
of 0.005% of full scale, t ¥ ISB. The actual conversion
is done using a method known as the successive approxima-
tion method, which is the most widely used technique for
A/D conversion.

In the successive approximation A/D convertor, a
feedback voltage -Vp is made to approximate the input
voltage Vy in a sequence of successive steps, where
during each step, FVF ?s cﬁénged in accordance with the
result of the previous comparison between Vy and -V. The

amount by which Vg is increased or decreased is ‘JR/Z;L

where i defines the ith

step in the operation and Vi is
the reference voltage which is 10 volts in this case.
A simple example will best demonstrate tﬂe operation of
this type of convertor. Let VR = 10 volts and VX = 7.9
volts which represents the value of an analog signal at

a particular instant of time.
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1

1. Vg is set equal to Vp/2" = 10/2 = 5 volts and
is compared with Vy to get the etror voltage Vg,
(VX - VF = VE). Since Vg is positive then the most signi-

ficant bit (MSB) is set equal -to a logical '1'.

2. Now VF is set equal to 5 + 10/4 = 7.5 volts,

thus Vg is now negative so the next MSB is set equal to
a logical '0'.

3. Since V. was negative, then V. is now set

BE F
equal to 7.5 - 10/8 = 6.25 volts, which gives a positive’

Vpr therefore, the next MSB is set equal to a logical '1'.

4. Now V. is set equal to 6.25 + 10/16 = 6.875

F

volts which again gives a positive VE’ thus the next MSB
is equal to a logical 'l'. Therefore, the first four
MSB's of the generated digital output are 1011. This
procedure is repeated N times for an N bit convertor.

For this case N was egual to 13.

-

2.1.v DATAGEN NOVA 840 MINICOMPUTER AND PERIPHERAL
EQUIPMENT ' - %2

The Nova 840 is a general purpose minicomputer
which operates using 16 bit word lengths. . The core
‘memory size at the time of this work was 32K, with disk
storége capabilitie§ of approximately 1.25 million words.
The Nova system used is equipped with a varietf of peri-
pheral egquipment, which can be used for different input/
output purposes. The peripheral devices are shown in

Figure 6.
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Infoton Consule: This c0nsulé is made up-of a full key-
boagd with a cathode ray tube (CRT) display. Its main
purpose is for inputing ‘. instxuction to the Nova and
outputing instructipns or computational results via the
CRT display-

Data General Cassette Unit: This unit allows the user
to store material on a cassette tape and read material
from stored tapes.

Diablo Digk Drives: This unit allows individual users
to store up to 1.25 million words of data or actual
programs'on digital tapes. By keying in the appropriate
" statements the user has access to all the files on the
mounted disk. |
Teletype: It is used for inputing and cutputing instruc~
tions or data to the Nova. It also allows the user to
input or output information using a paper tape.
Centronics 101 Line Printer: Usedjmainly for outputing
informatioh from the Nova.

Tektronix 4013 Terminal: Mad# up of a keyboard and CRT
display. For this analysis the unit was used primarily

as a means of displaying data and plotting way

orms,
although it is set up to be used in place of {he Infoton

consule.

Textronix 4610 Hard Copy Unit: This is used to get a
hard copy of what ever is displayed on the Tektronj)c CRT

display.
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Documentation D150 Card Reader: %imply used to read

information into the Nova using standard computer cards.

2.2 BANDWIDTH REQUIREMENTS

In order to sample the analoglEQG signal, one must
decide on a bandwidth for the signal. Nbrmally the band-
width is chosen to be as small as possible without
excluding any important frequency components. Once thé
bandwidth of the signal has been established, by the
sampling theprem, one can éample ét a frequency which is
twice the value of the bandwidth_frequency: as long as
the signal is band limited at this frequency. Ideally,

a signal is considered band limited if the spectral
components are zero beyond the band’ limit frequency.

For practical situations one wants the out of band
frequency components to be insignificant in magnitude so
that the aljiasing will be kept to a minimum. Usually the
signal is low pass filtered 'in order to attenuate the
higher frequency components. Therefore, by low pass
filtering and by sampling at‘; frequency a little higher
~than twice the bandwidth, one can be relaﬁiveiy sure that
any aliasing affects will be insignificant. |

It was found that a wide range of bandwidths have
been proposed by various authors, ranging from 5Hz to
40Hz, C.A. Swenﬁe(g), to DC to 1477Hz, C.E. Burton(s).

In the form;r case the author was dealing with the QRS

portion of the ECG signal only, while in the latter case
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the au?hor was using Fourier coefficients in order to
detect ECG waveform changes. The ch&ice of bandwidth is
very important because it can significantly affect one's
reduction factor, since the number of samples needed to
represen£ a set amount of data is directly proportional
to the sampling rate. |
Many of the problems associated with computer
analysis of ECG's, including bandwidth of the ECG signal,
wére discussed at a conference on computer application on
ECG and VCG analygis.,.Most of the pioneers of this field
were présent and the coﬁference papérs and d;scdssions |
were publishéd by Chr. Zywieté and B. Schhéider(l).
The -bandwidth of the ECG éignal was discussed and the
- participants were unable to agree on the bandwidth
requifements of the ECG signal. Their ECG analysis
systems assqmed béndwidths with upber bounds ranging from
- 100 Hz to 500 Ez. A spectral analysis was carried out on

(10) and their

ECG data by D.P. Golden aqd Associates
conclusion was that ECG amplitude information is contained
within a bandwidth.DC to 200 Hz,while a bandwidth up to
500 Hz is needed to retain certain high -freguency
notching information.

= Becaqée of the wide range of bandwidths presently
being used, it was decided to do a preliminary bandyidth
analysis on some ECG signals. First some ECG data was

low pass filtered to 1000 Hz and sampled at a rate of

2000 Hz. Now the sampled signal was low pass filtered
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at a variety of frequencies and compariéons were made
with the 1000 Hz bandwidth signal. The filtering was
accomplished by taking the Fourier transform of the sample
sequence apd truncating the spectrum at the apprbpriate
frequencies. , Now by taking the inverse Fourier transform
with the higher frequency components set equal to zero,
one gets the filtered time signal representation. For
this part of thé analysis there was no apparent distor-
tion in the filtered waveform due to Gibb's phenomenon
when the spectrum was truncated, using a rectangular
window. For this analysis a fast Fourier transform {(FFT)
algorithm was used to attain computational efficiency.

It‘was observed that there was no apparent visual
distortion in the signals analyzed, when the bandwidth
was reduced to 100 Hz. This comparison was done by
superimposing the 100 Hz bandwidth signal on the 1000 Hz
bandwidth signal.. The paper by D.P. Golden(lo) found
thatlthe peak errors were below 0.5% when the bandwidth
of the signal was reduced to 100 Hz. ?h;s 0.5% error

would be almost impossible to detect on a visual basis.

(10) also concluded that the ECG signal

Thus the paper
bandwidth can-be set to 100 Hz if the high fréquency
components prove to be unimportant as far as diagnostics
are concerned.. The diagnostic value of these high
frequency components has been questionable up until now

so most authors have chosen to ignore them in their

analysis.
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Tt was then decided to investigate the effects
of reducing the bandwidth beloﬁ'lOO Hz. For this part
of the analysis the spectrum was multiplied by a hamming
window to reduce the possibility of Gibb's phenomenoh,
although this did not prove to be necessary in the

previous analysis. The gamming window used is given by

w{n) = 0.54 + 0.46 cos nﬁ“- , n=1,2,3,...,N (2.1
G

This Hamming\window was applied to the last 20 points of

= 20) before the frequency cutoff. It
was found-t at the bandwidth had to be reduced below

50 Hz before there was any significant visual distortion

in the waveform. The only noticeable distortions caused

by reducing the bandwidth from 100 ﬁz through 50 Hz was
the rounding of sharp peaks. Even though the overall
representations for bandwidths between 50 Hé and 100 Hz
appeared acceptable, it was found that the maximuﬁ error
was in excess of 5% for some ﬁCG data, for bandwidths up
to about 80 Hz. H.V. Pipberger and Associates(ll)
stated that the maximum deviatién from the original
signal cannot exceed 5%. Therefore, if this criterion
is applied then the signal bandwidth must be at least
80 Hz for ECG signal sampling. ]
It was finally decided to set the bandwidth to

100 Hz, and sample the signals at 250 Hz in order to

reduce any aliasing effects.

Py e
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2.3 COMMENTS

Once the ECG data was sampled, it was displayed
on the Tektronix display to make sure the tracing was
acceptable before being stored. The discretg data points.
were shown on the display as analog waveforms. The
digital-to-analog (D/A) conversion was‘accomplished by
simply linearly interpolating between sample points.
This is known as a ﬁirst order hoid system of D/A
conversion. This method of D/A conversion was used for

all the waveforms shown in subsequent chapters;
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CHAPTER III

DATA REDUCTION TECHNIQUES INVESTIGATED

3.1 LINEAR PREDICTION TECHNIQUE

Let the sample sequence of the ECG signal be given

by

Si , 1 =1,2,3,...,N (3.1)

where N is the total number of points in the sequence.
Linear prediction attempts to estimate the present sample
point by a linear combination of 'past samples. Therefore,

the linear prediction estimate is of the form

A P '
§. = ¢ a., 5. . : (3.2)
where aj, j=1,2,3,...,P are the prediction parameters

A, ’ oo - - o
and Si represents the estimate of Si' The system 1s
represented by an all pole model which has a ;ransfer

function in the z-domain as follows

H(z) = (3:3) 

where ag has been normalized to unity. Usually Equation
(3.2) has an extra term y, on the right side of the
equation. This ¥; represents the excitation function of

the system. Since the proper choice of y; is sometimes

36
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difficult, it was decided to implement the linear pre-
diction model using the first P samples as starting

values, thus._'_yi drops out of the equation giving (3.2).

Therefore,
A
Sl = Sl
A —
AT
Sp = 5p

Now in order to calculate the aj's in (3.2), one
must minimize the mean squared error between the samples

A
Si and the estimate Si' Therefore,

N
giving
P .
e. =8, - L[ a. S:_ . (3.5)
i 1 5=1 3 i

Now the sum of the squared error is given by

(3.6)

Now one can calculate the_aj's by differentiating with
respect to the aj‘s and setting the resultant equation

equal to zero, giving




38

1,2,3,...,.P

i)
| -
[)]
[ N
1
1
%3]
l-;'
~
(=]
by
]

(3.7

Therefore,

N P N
iil jzl 35 835 %k T iil S;Si g r K= Le2:3,-000F
(3.8)
Letting
H N .
Y5k T iil 5i-3 Six
N (3.9)
b= I S; Siy
i=1
Therefore, in matrix form
_ _ . B
437 %312 - - — %1p a,| ¥y
%21 %22 - - - ‘%2 20 ¥y
I ! | I |
1 l o { = ‘ (3.10)
! I ! !
L?Pl ¢p2 - - — ‘tep %P | ﬁ’g_
giving,
ta = ¢ (3.11)

The solution of the set of linear equations (3.11) vields
the optimum (in the mean squared error sense) prediction

parameters, aj, j=1,2,3,..-.P-

PR Amsasag T I e F R L e T



39

There are some problems that can arise when using
this linear prediction model for synthesis. Instability
problems in the model can arise because of the mean
squared error criterion used along with the finite
precision of the sample points. These problems may cause
the poles of the model to be ocutside the unit circle

thus giving an unstable system.

3.1.i PREDICTION PARAMETER DETERMINATION

The prediction parameters are determined by
solving for the aj's, j=12,2,3,...,P in the linear
Bquations (3.10). One finds that the matrix ¢ is a -

symmetric matrix since

i-k ®i-j

|| e A

Therefore, (3.12)

Thus one only needs to calcﬁlate the leading diagonal
and upper triangle elements of the matrix ¢ and the
remaining elements will follow directly from (3.12).
Further computational time can be saved if the
signal is assumed to be stationary in the analysis

interval. If this is assumed then

= ¢. h (3.13)

%941, k41 5k
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When equation (3.13} holds then the matrix is known as

a Toeplitz matrix which simply means the diagonal elements
are equal. Therefore, assuming the matrix_is Toeplitz

and since (3.12) holds, then the ¢ matrix can be determined
by calculating the first row elemenLg only and then use
Equations (3.12) and (3.13) to obtain the remaining

elements. Therefore, the final ¢ matrix is as follows

$11 %12 %13 — — — %1p ]
¢12 $11 %12 — — — ®1p1
I
o = ' ! o (3.14)
| | | I
$1p %1p-1 *ip-2 - — 11 |

N. Levinson has developed a recursive procedure for
solying a system of simultaneous linear equations assuming
the ¢ matrix has the above mentioned characteristics.

This method of solution is outlined in E.A. Robinson's

booktlz).
4

3.1.ii PREDICTIVE CODING

In order to improve the linear prediction model,

one can encode the error signal

Now, if the estimate using linear prediction is accurate,
one can expect that the error e;, can be encoded using

fewer bits than the original sample points. Suppose thﬁf
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)
the original sample sequencé Si' i=1,2,3,.0.,N h&st

be represented by J bits for the_required fidelity.
Therefore, J-N bits are needed to represent the N sample
points. Now by applying the linear prediction .model along
.with error coding, one hopes that the total number of bits
needed to represeh£ the N sample points is significantly
reduced. If the error values e; can be quantized to M

bits and the K model parameters can be guantized to L bits

then,
M-N + K:L < J*N (3.16)

must be true in order to obtain a savings of storage.
This method of data compression has been found to provide
significant iﬁprovements in picture transmission, speech
transmission and transmissions of a variety of other

telemetry signals.

3.1.iia OPEN LOOP PREDICTIVE CODING

By implementing this model directly in an open
loop scheme, one finds that the estimate is subject to
error build up which may cause unacceptable reconstructions
on the output. Figure 7 shows an open loop predictive
coding scheme, where the ™ represent the linear prediction
estimates and the‘\’represents the qguantized versions.
Therefore, ‘

A P

S; = L a, S;_ (3.17)
1740 73 T

e T e ey T T — - e e
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and the error in the estimate is given by

AN
e, = S, - 5. ' (3.18)

i—)
|_l
1T

with.Ei'= e; (quantized).

Now the final estimate of S; is given by

] —’g' + e : (3.19)
i i n *
A A ~
=8, + (§; - 8;) = (e; ~e,) (3.20)

1 1 b

The final error in the estimate can now be calculated as

—~— A fal pu )
si‘— S; = (si - si) + (ei - ei) (3.21)

From this equation one observes that the final error is
made up of two different erxror terms, the quantization
error of the error term (ei - Ei) and the quantization

Al
S

error of the estimate (gi - iL Since,

A R ~ '

Thep the oveéEIl error will accumunlate which can cause
the model to be unagcceptable.

In order to improve this situation a differeptial
pPulse code modulation (DPCM) scheme was developed which

uses feedback to prevent the accumulation of error, due

to the first tarmbof Equation (3.21).
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3.1.iib DIFFERENTIAL PULSE CODE MODULATION {(DPCM)

Figure 8 shows the DPCM scheme.

It can be shown

that the error in the final estimate is equal to the

quantization noise in the error term alone.

estimate is given by

~ A —~
Si = Si + ei .
where
| AP
S, = & a., S.
ST i B A
and
?i = ey (quantized)

|
By expanding Equation (3.23)

~ A 2
Si = Si + (Si - Si) - (e,

1

The final
(3.23).
(3.24)
(3.25)
one gets
- e;) (3.26)

Therefore, the final error in the estimate is given by

= P. =2 e, - a.
Sl S.l 1 1

(3.27) ‘

which is simply the quantization error in the error term.

Therefore, by (3.27), it is observed that the error no

~

longer accumulates.

Y

The quantizer used for this analysis was a one

r

bit quantizer although higher bit quantizers could have

been used. B..Cirjanic(la) has discussed a #ariety of

linear quantizers which could be implemented in this sort

of scheme. Figure 9 shows the input“outp?t relationships
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Figure 8. Differential pulse code modulation (DPCM) scheme.




46-

+Q

input output

- 1 BIT

QUANTIZER

Figure 9. Input/output relationship of a 1 bit quantizer.
~

+Q

Figure 10. Quantizer level (Q) versus the error.

Y

PR PSS



- 47

——

of a two level (1 bit) quantization scheme while Figure 10
shows the quantization levels versus the error plot of the

two level quantizer. The final estimate is given by

Sl = E aj Si"‘j + Q Sgn ei (3.28)
j=1
where
P L "
e, =S, - L a,.5. .
i i 5=1 j i3
and.
sgn(ei) =+l , e; 20
= -1 , ei < 0

and Q is the quantizer level. The main disadvantage of
the DPCM scheme, as shown in Figure 8, is that the
determination of an optimum quantizer level Q is very
difficult. This difficulty arises because of the non-
linear characteristics of the quantizer and because of
the closed loop around the quantizer.

The original sample -sequence can be represented

by
P P .
§; = jil ay 8;_ 5+ |85 - jﬁl ay 8;_j (3.29)
Now the estimate is given by,
~ P —~
8; = E ay Si~j + Q Sgn e, {3.30)
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Now, if Q sgn e; can be calculated to be a good approxi-

P ~
mation of Si -~ I aj Si—j then Si' i=1,2,3,...,N will:

=

]
be close to si' i 1,2,3,...,N. Since sgn(ei) = il, then

Q must be chosen to be an optimum estimate of the magnitude

éf Sy - '§1 aj Si—j in the analysis interval. Therefore,
Q is chog;n to be
a=l i |s -t a s, (3.1.31)
M1 102 5= 3 173

where M is the number of samples over which Q is con-
sidered constant. This quantizer level Q is updated every
M samples where the value of M is found empirically.

3.1.iii IMPLEMENTATION OF THE LINEAR PREDICTION MODEL
WITH DPCM (LP-DPCM)

It was found that the model was sensitive to the
starting location on the ECG waveform. Thus a preliminary
investigation was carried out in order to come up with the
best starting point. It was concluded after several
locations were tried, that the model gave the best
results when the analysis was started at the Q-wave.
Therefore, the first Q-wave had to be detected befqre the
linear prediction model could be applied to any of the
ECG-saﬁple sets. |

The next step in the analysis.was to come up with
the best number of prediction parameters P. Thus, the
linear prediction model was implemented, without any

error coding, in an attempt to come up with an optimum
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value of P. It was obseryed that the reconstructions did
not significantly improve when the number of prediction
parameters were increased above 16. Thus it was decided
to implement'the linear prediction model letting P = 16.
Tt was also found that the prediction parameters had to
bé updated every cycle for the best reconstructions.
This was due to the non-stationary characteristics of the
ECG signal. Therefore, the analysis was carried out on a
cycle per cycle basis with the starting location at the
Q-wave for each cycle.

Therefore, for each cycle of ECG sampled data,

one has to specify -

16 prediction parameters

16 initial sample points

Qi , i=1,2, ', NQ Quantizer levels
t1' or 'O for each sample point

3.1.iv SIMULATED ECG SIGNALS

Figures lla,b,c and Figures l1l2a,b,c show an
original ECG signal along with two reconstructed Wave;
forms using the linear preaiction model with DPCM.
Figures lla and 12a are the original waveforms. Figures
11b and 12b are the reconstructed waveforms with
approximately 2:1 reduction in data while Figures llc
and l2c¢ show the reconstructions with a data reduction of

about 3:1.



.. E—

Figure lla. Original ECG signal

(1) .

..;._-"“v-“_’__‘-
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Figure 1lb. Reconstruction with 2:1 data

reduction (LP-DPCM).
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Figure llc. Reconstruction with 3:1 data reduction (LP-DPCM).
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Figure l‘2a. Original ECG signal (2).
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3.2 SPECTRAL TECHNIQUE

This technique attempts to make use of the EéG
signals spectral information in order to achieve a
reduction of data. By removing the redundant spectral
information,.one can reconstruct the timé signal using
only the nonredundantzcomponents, thus a reduction of data
may be accomplished.

Since the spectrum is estimated using the

Fourier transform, this method of data reduction can be '
Ll

‘categorized as a transform technique. Authors in the

past have made use of the Fourier transform for the
purpose of data compression, as mentioned in the intro-
duction. Two basic approaches have been followed in the
past.

1. First, the frequency spectrum is estimated
using the Fourier transform. The spectrum is_thep
truncated at various frequencies and the inverse trans-
form is taken to come up with -time signal representation.
By truncating the spectrum, one isg, in reality, low pass
filtering the data at the truncation frequency.
Therefore, this method, in essence, is removing the
signal redundancy, due to an improper choice of béndﬂ
width. It is felt that if the signal bandwidth is
chosen properly, then this approach should not give a.
significant reduction of data.’

2. The other approach taken is to calculate the

spectrum and proceed to pick out the M largest frequency

= =2 ¥ oy g o w A Y - e e
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components, set‘t;L iﬁg components, equal to zero

and then take the invers# nsform. Therefore, M can be
chosen so that a given data redu is achieved. Of
course, as M is decreased, the distortion in the recon-
.struction will increase-so that M must be chosen so that

. . . L]
the reconstruction is acceptable.

3.2.1i SPECTRAL BAND MODEL

The main obﬁécﬁg%e of this model is to divide the
 spectrum into predetermined bands and proceed to pick out
the importént frequenéy cogponents from each of these
bands. Therefore, an attempt is made to retain the
important low frequency and'ﬂigh frequency information.
It was hoped that the important, relatively low magni.- {;
tﬁde, high frequency components would be represented in
this band model. N

Now thg frequency speétrum is estimgted using the
discrete Fourier transform. The discrete Fourier
transform (DFT) and the inverse discrete Fourier trans-
form (IDFT) are defined by

N-1

F(ka) = £ £(nT) e J#TNK ppq (3.32)
n=0
where k = 0,1,2,...,8-1
f{nt) =n-=190,1,2,...,N-1 Sample Segquence
Q = 2m/NT
T = sampling period
and e?JnTnk, n =




"l

58

| N-1 -
£ (nT) =1% £ F(ka) eiTKnf IDFT (3.33)
k=0
Where n= O'l,annan—l-
Therefore, the basis functions e—ngnk, n=2031,2,...,N-1

of the discrete Fourier tranaform are sampled complex
sinu?oids. |
o~
The direct computation of the DFT, using
Equation k3.32) and the IDFT, using ﬁquation (3.33), is
very impractical so fast Fourigr transform (FFT)
algorithﬁs were déveloped to g;eatly reduce the computa—“
tions needed to make these transformations. Bergland(l4)
has describeq the basic principals behind thé FFT
algorithm. : ‘ \
. Onée the Fourier transform is taken using the
FFT algorithm, one can calculate_the frequency spectrum

by taking the log10 magnitude of the complex coefficients

F(ke), k = 0,1,2,. .,N-1, giving

S(_kﬂ) 10 loglo IF(kQ)I r k = 0'1,2,---"N—l ‘ (3-34)

Now once the nonredundant spectral information is picked

out of the predetermined bands, the model parameters are

-made up of complex Fourier coefficients and the corres-

ponding freqﬁency information. Let the parametefs be

defined as .2, and Fi where the Zi‘s are the complex
. .
Fourier coefficients and Fi's are the corresponding

frequency values. Therefore, Z; and.Fi are defined as %

-

.

S
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£ (LA)

S}
Il

(3.35)
F. = L&

where I represents the values of K for which a complex

Pourier coefficient is retained. Figure i3'shows a block
diagram of the procedure followed for this sofﬁ’pf model.

Now the time signal is reconstructed from thelzi and Fi

parameters in the following manner.

T - . P "

A * .

£(nT) = I 'RY(Z.) cos(F.nT) + L TI_(Z.)sin(F.nT)  (3.36)
. i i . m i i
l:l ] l"—"l

where n = 0,1,2,;..,N-l

_Re(zi) = real.part of Zi

Im(zi) = 1lmaglnary part of Z;

and

A
f{nT) represents the estimate of f(nT) while P repre-
sents the number of Fourier coefficients used in the

estimate, g(nT).

3.2.ia SPECTRAL BAND MODEL IMPLEMENTATION

The frequeﬁcy spectrum was calculated using a
1024 point FFT. Fourlcomplete cycles of ECG data were
used for this spect;al estimétion. Since the four
cycles of ECG data represented iesé than 1024 sample
points, the_difference was made up by adding zeros to
the sample sequenée. Since the sampling frequency

used was- 250 Hz, then the frequency resolution in the

Rariee e cp e o T T A TEe———— et e R T e s T o) Wetm—
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spectrum was

= * / ' -
Af = T 0.25 Hz (3.37)
where N = 1024
T = sampling interval 1/250 = 0.004 sec.

Because of the quasi-periodic nature of the ECG
signals, it was felt that the ECG spectrum might exhibit
some Fourier series characteristics in that the spectrum
would have harmonically related spectral peaks. If this

were the case, then one could reconstruct the time signal
using only the peak coefficients in the inverse trans-
formation. This approach was investigated and it was
found that the time signal representation was very
oscillétofy due to the absence of important frequency
components, making this.approach unacceptable.

The spectral band model was then'implemented as
shown in Figure 13. Now one must decide on the frequency
bands to be used in the model. Since the sampling rate
was set at 250 Hz, the spectrum had magnitudes up to
125 Hz. Therefore, because the bandwidth- of the ECG
signal was chosen tQ'be 0 to 100 Hz, it was decided to
truncate the spectrum at 100 Hz. Table 3 shows the' bands
used in the analysis. This choice of bands was based on
observations of the ECG spectfum, as well as on an

experimental study carried out.
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TABLE 3
BAND FREQUENCY
BAND  RANGE (Hz)
1l DC to 30
2 ‘ 307 to 50
3 50" to 100

Frequency Bands Used in
Spectral Model.

Now, in order to pick out the predominant co-
efficients within each of these bands, threshold levels
were set up within each band. Freguency, components
with magnltudes greater than the threshold were retained
while components with magnitudes less than the threshold
ﬁere set equal to zero. Now by .adjusting the threshold
lefel within each band, one.can vary the frequency
content of the signal. The parameters of this spectral
model are made up of predominant complex Fourier co-
efficients alorig with the corresponding frequency infor-
mation, from each of the frequency bands. Now the time
signal is reconstkucted by taking the inverse Fourier
transform, using the predominant coefficients and setting
the remaining coefficients equal to zero.

The reconstructed time siénal was passed through
a digital smoothing filter to improve the representation;

The input/output.relationship of the filter is given by

[a f(nnl)T + b £f(nT) + ¢ £(n+1)T]

g (nT) a+ b+ cC

{3.38)

—— T TR LTS E SRR S e O 2T e T Ll L T e S b TR TR TR
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where a, b and ¢ are the weighting functions. lFor this
‘analysis a = 1, b =4 and ¢ = 1, therefore giving most
of the weight to the sample being estimated.

After goihg through some analysis usihg ths
particular spectral modei, it was observed that the
frequency band from DC to 30 Hz was very sensitive to
the omission of frequency information, from this particu-
lar band. Furthermore, it was found that in order to get
a good reconstruction of the ECG signal, one had to store
most of the frequency components from DC to 30 Hz.
Therefore, it was decided to retain all the spectral
components from DC to 30 Hz. Now since all the spectral
. components are being retained from DC to 30 Hz, then no
frequency information has to be étored for this range.
Therefore, the model parameters are made up of cgmplex
Fourier coefficients from DC to 30 Hz aloﬂg with fhe
complex_Fouriér éoefficients and frequency information
from the other two bands. This new approach significantly
improved the amount of data reduction over that of the
previous approach.

Figure 14 shows a block diagram of the stéps
ipvolved in implementating this final spectral modei.

The spectrum was nérmalized for this model so that
overall threshold levels could be established for all the

data analyzed.

g
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Figure 15a. Original ECG signal (1).

v . 1

Figure 15b. Reconstruction with 2:1
TECHNIQUE} .

T N

data reduction (SPECTRAL-~
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Figure 15c. Reconstruction with 3:1 data reduction (SPECTRAL-
TECHNIQUE) .
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Figure l6a. Original ECG signal (2)

:‘ ,
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Figure 16b. Reconstruction with 2:1 data reduction (SPECTRAL-
TECHNIQUE) .

awa
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Figure l6c. Reconstruction with 3:1
TECHNIQUE) .

data

reduction (SPECTRAL-

amat
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3.2.ii SIMULATED ECG SIGNALS

Figures l15a,b,c and Figures 16a,b,c show an
original ECG signal along with two reconstructions gsing
the'épectral tgchnique. Figures 15a and 1l6a show the
original ECG signals.. Figures 15b and 16b show the
reconstruction with a data reduction of épproximately
2:1, while Figures 15¢ and 1l6c show the reconstruction

with a data reduction of about 3:1.

3.3 SLOPE CHANGE DETECTION TECHNIQUE (SCD~ORG)

The slope change detection technigue attempts to
approximate a signal by storing only the sample points
and correspdnding times at which a significant slope b
change occurs. This technique is similar to a group of
techniques known és interpolatién compregsors, discussed

‘

by C.A. Andrewstz) gnd C.M. Kortman(B).

Let the sample sequence be

fn , n=1,2,3,...,N (3.39)

where the period T has been set to unity to simplify
the analysis. The firét sample point fl is stored to
start off the procedﬁre. The following steps outline
the procédure.
1. First a reference slope is calculated using
the first two sample points giving
-SR=f2—fl/An=f2—fl
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for T = 1 and An = 1.
2. Now the following slope is calculated using

the next two sample points as follows

3. 85 is compared with the reference slope Sp
to see if SL differs by more than a predetermined

tolerance level €. Let the slope change be given by
(3.40)

4. If AS; < e then the next slope is calculated

giving

and ASy is again calculated according to Equation (3.40).
Now as long as 4Sp < &, then there is no information
stored.
5. This procedure is continued until the slope

change ASp is greater than e for a particular point
(n f'M). Now the values £ - 1 and M - 1 are stored as
parameters. -

| 6. Now a new reference slope SR is calculated
usiﬁg'the last stored value and the next samplé value

giving - '
Sp = £f() - £(n-1)

where N = M.
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7. Now consecutive slopes are again checked
against the new reference to see if the slope change
exceeds the tolerance level e. The only time sample
points are stored is-when the'slope change exceeds thé.
value e.

.Figure 17 shows the algorithm for the slope
change detection technique; Portions of signal with
slowly' varying slopes'will be represented by a few stored
valugsﬂ Figure 18 shows an arbitrary waveform along with
‘tﬂé reconstruéted waveformfusing the slope change
detection techniqu Since the stored sample points will
not occur at regular interfals of time, the corresponding
time information must also be stored. Theréfore, in order
’ Eofget n effective reduction of data, the'a;gorithm must
retain less thaﬁ one half of thesample points along with:

the time values. }E

- ' . \

3.3.i SIGNAL RECONSTRUCTION
- Now the signal-can be reconstructed by using the
sfored sample points and time information to estimate the
intermediate poinfé. For thiskanalysis, linear
finter@olation was dsed between stored sample ‘points.

Therefore, the intermediate points are estimated as

follows. B
Let Sj P B 1,2,3,...}M Stored Samplg Points
And Ty 3= Li2i3se Stored Time Values

Y




o

P

Figure 17. Slope change detection algorithm.

Read e,fn
n=1a'2,"' pN

=1
n=1

Store f1

Store
- le'N

SRff(m+l)— .

£ (m}

n=n-+1

SLéf(n+l)—

f(n)

m=1n
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Figure 18. Original waveform and reconstruction using .
the slope change detection algorithm.
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+ delta (3.41)

5

n n~l

where delta = Sj+1"sj/Tj+1"Tj' and the number of inter-—

plate§ values is equal to Tj+lijJ

It was found that this method was very sensitive
to.sudden changes in slope and_noise components present
in the waveform. The formerhéituation causes degradation
in the reproduction of the P-wave, which can be seen %g
Figures 21b,c and 22b,c. The noise components in the
waveform cause the algorithm to store many unnecessary
gsample points, because of the many slope changes. This
is evident in the reconstructions of the ECG waveforms
shown_in Figure 22b,c.

$
3.3.1ii SLOPE CHANGE DETECTION WITH PREFILTERING (SCD-P)

In order to overcome the problems mentioned above,
it was decided to apply-thé slope‘bpange detection
technigque to prefiltqréd ECG data. ‘The prefiltering in
this case Qas accomplished by passing the ECG signal

- through a numerical integrator. The integral of the
ECG signal iS shown in Figure 19 as a slowly varying
waveform. Now this waveform is more suited for the
slope change detection method.

The integration routine used for the prefiltering
was a three—pdint version of Simpson's rule given by

£. + 4AF, +. £.
Yi o _i-1 31 i+l } (3.42)




. F5

Figure 19. Integral of an ECG signal.

-
»
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fpr fi' i=1,2,3,...,N Sample Sequence
where Y, = integrated sample point, and
| Y. %= 0.0.

Because the integration Equations (3.42) is a
three-point scheme, it was decided to upsample the data
by a factor of 2 so that the number of integrated points
could equal the number of original points. This up- Vs
sam%ling was accomplisheq by simply linearlylinter—.
polating between sample point&§. For more accuracy the
original data could have been sampled at tﬁice the
established sampling frequenéy. By doing this the e;ﬁ%f
involved in ﬂgtegrating the signal could have LBEen

reduced.

3.3.iia DIGITAL IMPLEMENTATION

Figure 20 shows a block diagram of the steps
involvéd in implementiﬂg the slope change detection
technique as applied to prefiltered data. Once the data
is\iampled,/tﬁﬁ“é#?rgy of the signal is equalized to
some standard so that geﬁeral threshold levels can be
established. One particular set of data was used to
equalize the energy in the signals analyzed. The
equalization of energy was done in the following manner.

Let X; o+ 1= 1,2,3,...,N Signal to be Equalized

Y L ' i

i 1,2,3,...,N Standard Equalization

Signal

First the DC levels are set to zero,
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-/,——integrated using Equation (8.42). Since the slope change
. y . .

xﬁetection.algorithm estimates the signal by constant
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xi:xi-Avl , 1= 1,2,3,...N (3.43)
1 N
where AV1I = = I X
. - N n
n=1
a?éﬁQZB Y; = Yi - AV2 , 1=1,2,3,...,N (3.44)
1 N
where V2 = = T Y_ .
N n=1 n , J
Now thiignergy of X; is equalized to that of Yi as n
follows
N ‘
n L] +
Xi Xi « ratio {3.45)
— ‘ -
where g Y'Z ~
n
. n=1
rat{9 = SQRT N .
5 xn2
LF=1 R

O

The signal is then ypsampled to 500 Yz and

slopes, one finds that these constant slopes represent

constant values on the reconstructed signal. Therefore,

the slopes rather than sample points, are_stored along
with £h§ time information. The slope . value at‘the
interwection of two slopes is estimated as the average .
of the two slope values. on elther side. Therefore, the
reconstructed sighal igs made up ofggyonstant 1evefs
corresponding to the constant slopes and the level
transition values are estimated as the average of the

Il

4 :
0
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4

: v
two consistent levels. Therefore, the final parameters
L}

of the model are made up of constant level values and

the time information. frf.

3.3.iii SIMULATED ECC SIGNALS

Figures 2la,b,c and 22a,b,c, show the original
signal along with the rdconstruction using ﬁhe slope
change detection technique, as applied to the Eime signal.
Figures 23a,b and 24a,b show thé reconstructions using the
slope change detection technique as applied to the pre-

filtered data. The figures with subscripted b are re-

-constructiO?p with 2:1 reduction of data, whilé'the

figures with'subscripted ¢ are the reconstructions with

a 3:1 reductiog of data.
o

I
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Figure 2la. Original ECG sign{':ll (1).
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Figure 21b. Reconstruction with 2:1 data reduction (SCD-ORG) .
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Reconstruction with 3:1 data reduction (SCD-ORG).
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22c. Reconstruction with 3:1 data redu

ction (SCD-ORG) .
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Figure 23a. Reconstruction With 2:1 data reduction (SCD-P).
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Figure 24a. Reconstruction with 2:1 data reduction (SCD-P).
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CHAPTER IV

COMPARISON OF ORIGINAL AND RECONSTRUCTED SIGNALS

’

4.1 EVALUATION CRITERIA

The technlgu&ilnvestlgated were compared on a .

*

mean squared and peak error basis, as well as-on a VLSual

basis. It was hoped to keep the mean squared and peak

errors within 1% and 5% respectlvely, since reproductions

with errors above these limits were normally visually ' .
f N
*unacceptable. The mean squared error is calculated as (
follows . .j | ' - ’
. b ]
N
1 N2 .
e == L (f_-£)) o (4.1),
R N n=1 n n - :
_where fn’ n=1,2,3,...;N" original sample sequence
- A . . .
fn' n=1,2,3,...N ° reconstructed sample seguence
hd [+ -

For this analysis the perceﬁtage mean squared error in

_the reconstruction was ueed rather than the mean squared

error described by Equation (4.1). The percentage mean

+

squared error was given by:
. 4

te = —g——7 X 100 (4.2)

Since the percentage mean squared error, (% MSE),

.

is an average error figure, some reconstructions may have
: . - g . %)
relatively low % MSE values yet still exhibit large peak

90
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'éimilar % MSE and peak(ficors. It all depends on how

errors over :a small interval. Therefore, these large

. peak errors in the reconstructed waveform may cause the

reconstruction to be unacceptable, if they occur at
dlagnostlcally crltlcal points in the ECG waveform
Thus, it was dec1ded to calculate the percentage peak
error for each of the reconstructed waveforms. The

percentage peak error is defined by

% E, = ‘fn E g 100 . (4.3)
max min
where e, = £, - £ | as .
and fn = largest value in the sequence
max
ﬁn o= smallest value in the sequence
min

‘Since the ECG signal must be diagnosed on a
v1sual'ba515, ‘it is only natural that the final decision,
as to whechéc the reconstructed waveform is acceptable
or not, should be based on the visual fidelity of the

reconstruction. One mig@t'find that a particular re-

construction is”acceptable, while another is unacceptable,

from the visual standpoint, yet they both méy have

a

well the diagnostically significant features are -

represented in the reconstruction.

'

vk

TFRAT,
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4.2 ERROR_ANALYSIS

Flgures 25 and 26 show the % MSE and peak error -
versts reduction factor plots respectlvely, for all the‘
technlques lnvestlgated. The reductlon factors in ‘this
‘case are calculated as the total number of sample polnts
versus the total number’oﬁ,model parameters needed to

‘represent thls data. It)can be seeﬁ from Figure 25 that -
the slopeﬁchange detection technlque, applled to pre- | )
: flltered ECG data gives the best % MSE versus reductlon
factor for reductlon factors above about 1.7. The linear
prediction model proved to be very sensitive to the
number of times the quantlzed axgrage error was updated
each cycle. This seemed.to be due to the qua21—per10dlc
nature of the signal. For each set of data a new w
optimal number of updates had to be found. It was also
observed that cettain_cycles of a particular data set
would be reconstructed relati@ely eell, while other
cycleé were oseillatory. This was due to the\period
- changes that occur within a set of sampled.Ecg data. This
was evident in the reproductions shown in Figtres 1llb,c
and 1l2b,c of the ptevious cﬁapter. Therefore,‘Figtre 25
shows that for one particular % MSE value one can geth
more than one reduction factor. )
It can be seen in Figure 26 that the peak error'

for the slope change detection technique, as applied to

prefiltered-data, is below 5% for reduction factors up to about
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depressiens of the Q, R and S wave, which were not evident

95

» - - -

5. The.pegk error for lower reduction factors remained

_relatively constant. Thegse peak errors were due to the

error’ involved in numericaliy integrating the signal and
also because of the averaglng whlch takes place in the

reconstruction process. Thhse errors showed up as slight

4

until the “plot was expanded to exaggerate these errors.
The peak error curve for “Ehe slopemchgnge“detection

- . :
technique (without prefiltering) shows a fast rise in the

peak error values for reduction factors between abdut

1.8 to 2.5. This is due to t approximetions ueed
between the end of the T-wave apd the onset of the Q—I ve.
Flgures 27 and 28 compare \the four main technh .ques
with two original Sets of data. Ko these reproductions
the feduétion factor is about 3. 'On 'finds that the

linear prediction with DPCM and the spectral method

. reproductions are oscillatory in nature. These oscilla-

- - \\-—._ '
tions in the spectral technique reproductions are due to
the absence of important frequency information. This
problem can be corrected by -lowering the threshold

levels to include the missing Frequency components. The

‘oscillations in the linear prediction reproductions is

caused mainly by the 1 bi; error gquantization scheme
implemented. The slope change detection technique, as
applied to the original ECG signal, represents the

Q, R and S waﬁes well but makes gross approximations in

the T-P interval, for large threshold values. This error

L
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. LP-DPCM \ -~

SCD-0ORG

Figure 27, Original ECG signal (1) compared with the reconstructions
using the four technigues analyzed (3:1 data reduction).
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Original Signal (2) ' : .

LP-DPCM- : o

Spectral Technique

e

Ve
e

Figure 28 . Original ECG signal (2) compared with the reconstructions
- using the four techniques analyzed (3:1 data reduction).
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change detection technique, one is filtering out the high

98 s

T3

makes.the onset of the P-wave impossible to determine to
any acceptable degfee of accuracyil Also, when noise is
present in the signal, this technique tends to store
most of the noise samples whiéh peduces the reduction
factors for a given threshoid value. This is evident;in
Figures 2la,b. The slopé change detection technique as
applied to préfiltered data represents all portions;éf

the ECG waveform well. This technigue is not sensitive: .

. - . . 2 . .
to noise components in the ECG signal. By approximating

g

-

the integrated version of the signal using the slopeh

Y ‘
frequency noise. This techfiigue was applied to ECG data
with relatively high level noise and it was found that

for -reduction factors above about 2 the reproductions
compared very close to those obtained using ECG signals

A
with'relatively low noise components.

4.3 DISCUSSION

Overall, it was felt tha% the slope change
detection technique, as applied to £he pfefiltered data,.
gave thpfbest reconstructs of all the techniques inves-
tigated. All the ECG waves were well represénted using
the slope technique with prefilterfing, for redﬁction
factors beldw'gbout 3. It was also found that this
technique tended to filter out néfge components present
in the dﬁiginal sampled signal. The slope technique

also has the advantage that the analysis can be started

—
i



at any portion of the ECG $ignal, which was not the case

for the linear prediction ﬁf sSpectral techniqué. The\

Q-~wave Qf the ECG signal had to be detected béggre the

linear. prediction or spectral techhique could'Be applied.
The slope change detection technique; ﬁith pre-

filtering was compared to a straight piece wise

approximation of the ECG signals and it_was found that

the errors were about 70%lhigher fof the piece wise constant

approximation, for comparable reduction factors. This

was mainly due to the averéginglwhich takes place in the

slope change detection technique with prefiltering, to

come up with the time representation.

Since the slope' change deﬁection technique, with
prefiltering, proved to be the best technique of the
one's investigated, it was decided to do a quantization
study of this technique. Now by quanti%ing the origi;al
sample points, one can compare the slope change detection

technique, as applied to prefiltered data, with the

quantized original samples, on a bits/sample basis.




.
Y, | CHAPTER V

QUANTIZATION STUDY

It was found in Chapéeq IV that the slope change
detection technique, as applied to prefiltered data gave
the best data reduction of all the techniques studied.

The reduction factors were based on the total number of
model parameters needed to reconstruct a set.number of
originai sampie pointé: It was then decided to do a
gquantization study on the original sample points to see
how many bits/sampie are needed to represent this data-

in the sampled form. Now if the parameters of the slope
change detection model are also quantized, one can compare
the two reconstructions on a total bits or bits/sample
basis. By doing a comparison on the bits/sample basis
one has a true indicafion of the storage savings achieved.
A technique may give good data reduction wﬂen compared on

a number per number basis but may give very little data

" reduction when compared on a bit per bit basis, because

the model parameters may be very sensitive to gquantization.
. . -

5.1 QUANTIZATION SCHEME

There are two types of quantization schemes used,
linear and non-linear. For this analysis only linear
quantization schemes were used. By Quantizing data, one
is attempting to reduce the number of bits needed to

‘represent the set of data points. Figure 29 shows an

. 100
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Figure 29. Originai sampled waveform along with the
guantized version (4 bits).
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riginal sampled waveform along with the set of data

///Eoints, after the data was quantiied to 4 bits. The
dots (:) represent the originai sample poinis while‘Fﬁe
crosses ({x) represent fhe data points after quantization.
An N bit quantizer cgrrespondé to ZN levels, therefore,
for a 4 bit‘quantizer there are é4 = 16 levels. It can
be seen, that the acciiracy goes up as the number of bits
for the gquantization routiﬁe is increased.

The quantization method used in this analysis was

as follows.

Let fn' n=11,2,3;...,.N sample sequence.

Now,

-fn = integer (A*f + B + 0.5) , n=1,2,3,...,N (5.1)

where fn’ n=12,3,...,N are the quantizéd sample points,

and,
NB
big ~ femall

A f F

and,
B = 2NB/2 — Afp o
]

- where NB = no. of quantization bits

fbig = largest magnitude of fn

| fsmall = smgllest magnitude of fn.

Therefore, the largest value in the original same

sequence 1s set equal to ZNBFI

NB-1

while the smallest value
is set equal to -(2 -~ 1}. Now the intermediate

points are scaled accordingly, and are set equal to the

>~
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closest integer value. Therefore, after the scaling is
complete; a value likq 5.42 becomes simply 5, while a
value like 6.77 becomes 7. For non-linear quantizers

the levels are non~linearly spaced gs opposed to the

linear spacing of the levels shown in Figure 29.

5.2 QUANTIZATION OF_THE‘bRIGINAL SAMPLED DATA

Since the A/D convertor used to sample these ECG
signals was a 14 bit convertor, all the sample points are
represented by 14 bits including tﬂe sign bit. Now T
these original sets of data were quantized to different
levels (bits) to see its effect on the visual reproduction,
"as well as the mean squared error. There was no apparent
visual distortion in the quantized data for a 7 bit
representation. The 6 bit représeqﬁation showed some
visual distortion in the signaI.n Figures 30 and 31 show
éwo oriéihal signals quantized to 6 bits.l A staircasing
effect can be observed in these two waveforms. This
occurs because all sample ;aﬁﬁgs that lie within the
samg tolerance band of a particuiar quantizer level will
all be'éet equal to that level value. Therefore, rising
portions of the signal like the S-T interval will be |
repreéented by a staircase function while relatively
constant portions like the T-P interval will be re-
constructed as a ;traight line. . ;

When this data was quantized to 5 bits, it was

Q{found that the reconstruction was unacceptable, because
N

.
o e
) -

~
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Figure 30. ECG signal (1) quantized toe 6 bits.
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Figure 31. ECG signal (2) quantized to 6 bits.
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of the relatiﬁéiy high distortion caused by the éuantiza—

tion noise. The P-wave was distorted so that thg detection

of the onset and end of the P-wave was impossible.
Therefore, it.was decided that the ECG data under

investigation could be directly quantized to 6 bits and

still give a good representation of the ECG signal. The

$ MSE was less than 1% for all the‘datalquantized to

6 bits. Therefore, the original sample points could be

' represented at a bit rate of 6 bits/sample.

-

5.3 QUANTIZATION OF THE MODEL PARAMETERS

Now the parameters of the slope change detection
technique, with prefiltering, were quantized. Now by
storing the time differences rather than the actuai time
values, one can store this time information using 7 bits.
These time differenceslsimply represent the number of
sample iﬁtervals between each stored magnitude. Now the
magnitude parameters were quantiéed to different levels
(bits) and the reproductions were checked on a visual and
% MSE error basis against the oriéinal data. It was
found that these magnitude parameters could be quanéized
to 6 bits without significantly increasing the visual
distortion over the unquantized results. Figure 32
shows the % MSE'veréus bits/sample for the slope change ;'
detection technique, {with prefiltering), with the time -

information represented by 7 bits and the magnitude

information gquantized to 6 bits. From this curve one
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finds that the ECG data can be represented at a bit rate
of 2 bits/sample with a % MSE below 1%. ThiS'wag the
case for all the data analyzed iﬁ this study. It was also
found‘that the peak error was below 5% for all the 2 bit/

sample reconstructions.

£

5.4 sIMUTATED ECG DATA —_

'Figures 33a,b,c and 34a,b,c show the two original
sets of ECG data along with two reéoqstructed waveforms
using the slope change .detection tgspnique, applied to
prefiltered data. The \time information is reprééented in
7 bits while the magni dé information is quantized to
6 bits. Figune/igﬁ“agz Figure 34b are the reconstructions
with bit rates of ;éproximately 3‘bits/sample, thérefore,
an effecéivé 2:1 reductian in data, while Figure 335 and
Figure 34c show the reconstructions for a bit rate of
2 bits/sample, therefore, an effective 3:1 reduction of
data. These reconstructions coﬁpare very c¢losely to

H/—teose achieved when the parameters were not quantized.

/

5.5 DIGITAL IMPLEMENTATION

- Figure 35 shows a block diagram of the storage
and retrieval procedures far the slope change detection
tedhniqué, as applied to prefiltered data. First the
signal is sampied at a rate of 250 Hz and the energy in
the signal is egualized. to a standard, so that a general

threshold level can be established. The data is then

PR
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Figure 33a. Original ECG signal (1) .
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Figure 33c. Reconstruction with 3:1 data reduction (QsCD-P) .
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Figure 34a. Ofiginal ECG signal (2).
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Figure 34c. Reconstruction with 3:1 data reduction (QSCD-P)..
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DATA STORAGE
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SAMPLED EQUALIZE | upsaMPLE NUMERICAL
DATA ENERGY INTEGRATION
SLOPE
CHANGE T QUANT- " DATA
DETECTION | IZATION p STORAGE
ALGORITHM | '
.
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y SIGNAL
DATA // RECONST— |~—— OUTPUT
STORAGE RUCTION DEVICE

b o
Figure 35. Block diagram of the storage and retrieval of data
using the slope change detection technique, with

prefiltering. ¢
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upsampled to 500 Hz so;that the number of original and
reconstructed samples are equal. Now the three point
Simpson integration routine is used to integraée the
ECG signal. The upsampling and integration steps could
be eliminated if the original analog ECG signal is
integrated by analog means before sampling the data.
After integration, the slope change detection algorithm
is applied to this data and the significant slopes and
corresponding time information is picked out: Then the
quantized slope informatién and corresponding time
differences are stored.

The signal can now be reconstructéa using the
quantized slope values and the time diffeﬁpnce values. .
The stored slopes represent points on the reconstructed
signal and remain constant over the corresponding time
differences. The point at the inters;ction of two

constant slope values is calculated as the average of

thé two slopes.

5.6 DISCUSSION

It was found\ that the quantization of.the slope
change detectiofi'modgl parameters, to 6 bits, did not
significantly effect the reproduction fidelity over that
" of the unquantized reproductiAns. This can be seen bf
comparing Figures 33b,c and 34b,c with Figures 26b,c and
27b,c. The % MSE errors and peak errors incgeased as the

ymmodel parameters were quantized to fewer and fewer bits,
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but for the 6 bit représentaﬁ?ons the % MéE and peak
errors were maintained below 1% and 5% respectively, for
a 2 bit/sample recbnstruction. It was found that
general threshold levels could be established to ashieve
different bit rates in the reconstructions. Therefore,
for a set threshold level the number of bits/sample in
the recénstruction'will be similar for different sets of
ECG data.

It was felt that the slope change detection model,
as applied to prefiltered data, could bé improved if two
ideas were implemented in the algorithm. First, if the
algorithm was modified so that the time difference would
not exceed 64, then the time information could be stored
in 6 bits rather than 7 bits. Therefore, if'no slope
information was stored after 64 sample intervals, then
the algorithm would aﬁéematically étore the value. This
situation would only arise duﬁing the T-P interval so
this would mean, on the average, that one extra slope
value and time differgnce value would be stored during
each ECG cycle. The other improvement would be in the
representation of the QRS complex of the_ECG signal., It
was observed in Chapter III that the slﬁpe change _
detection algorithm, as applied to the original time
signal, gave good reproéuctions of the QRS portion of the
waveform. Now if the QRS complex could be represented by
constant slopes rather than by constant leVels, then this

portion of the signal could be represented more

L)
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efficiently. Therefore, by combining both these slope
techniques into one algorithm, one should be able to
obtain greater reduction of data, ’

Overall, it is felt thatiany techﬁique for data
reduction should be assessed on khe basis of the number
of bits/sample needed to represent the original data

points. By using this criterion, one has a good indication

of the savings in storage achieved by using a particular

data reduction techniqu?j/// :



'CHAPTER VI

CONCLUSIONS

The main conclusions of this research project are
as follows: .

1) It has been shown that of the techniques
investigated, the slope change detection technique, as
applied to prefiltered data yields the best reduction,
when compared on a number per number basis.

2) It has been shown, also, that ECG data can
be directly quantized to 6 bits for storage in a digital
computer. Therefore, any aata reduction téchniqhe must
be able to represent a set of ECG data with a bit raté“
significantly iower than 6 bits/sample. "

3) It was also found that by guanéizing the
parameters of the slope change detection technigue, ﬁith
prefiltering, one can reconstruct ECG‘data at a rate of
2 bits/sample, which is essentially a 3:1 reduction in
storage. At this bit rate, the % MSE and peak errors

are below 1% and 5% respectively.
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MINNESOTA CODE
'FOR ELECTROCARDIOGRAPHIC
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APPENDIX A

MINNESOTA CODE

FOR ELECTROCARDIOGRAPHIC

CLASSIFICATION

The Minnesota Code is a systematic procedure for
coding different ECG waveform classifications. These
categories are based on a calibratioﬁ of 1 cm deflection
on the ECG tracing corresponding to 1 millivolt. This
Code gives the reader an indication of the complexity

of ECG diagnosis.
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Code for Resting Blectrocardiograms

. Punch Category Leads
¢ Blank—no electrocardiogram avail-
able
0 XNo herein reportable e]cctrocnrdw
B graphic itema
Q nnd QS patterns (Q must be 1
mm. or mora with associnted R of 1
mm. or moro) .
1 Class I (any of a through g)
o. Q/R=1/3 or more and Q dura-
ntion=0.03 sec. or more..,.I, II, V&Va
b. Q duration=0.04 sec. or
TOTE o vveoinnnnrnrannnnns I, 11, Vi-V.
e. Q duration=0.04 sec. or more
and R amplitide 3 mm, or more....n Ve
d. Q duration=0.05 sec. or more
and » Q wave present in aVye...... III
e. Q duration=0.05 see. or more..... aVy
£. QS pattern when R wave is pres-
ent in adjacent precordial lead to
the right .................c..t. YV
7 Q3 pottern ............ " through V,
Vithrough V.
V: through ¥,
2 Class 1T {any of a through i)

a. Q/R=1/5 to 1/3 and Q dura-
tion=0.03 sec. or more....I, 11, V=V,
b. Q duration=0.03 to 0.04

122

Col.

II

IIT

v

Punch

[

[3-]

\

\

Category Leads
= T, II, VaVa
. Q dumhon....o 03 to Q.04 see. nad
R amplitude 3 mm. or more....... avVe
d. Q duration=0.04 to 0.03 sec. and
o Q wave present in aVie,......... 11
e. Q duration=0.04 to 0.03 see....... aVy

f. Q amplitude=3 mm. or more. . 11T, aVy
g. QS pattern nnd absence of cnle

VII, Vy through Vi
h. Decreasing absolute Tt amplitade

and smallest R=2 mm, or less

and absence of code III, or
R Z 9 P T Vi through Vi, 'V,

f. Q duration=0.04 secc. or more or
a QS pattern. ........ (Ancillnry leads,
«ee toxt)

Class IIT (any of u throngh o)
2. Q/R=1/3 or more and Q dura-

tion lesga than 0.03 sec...... 1, 1T, V-V,
b. QS pattern and absence of coide

VILior IITs...ovunnnn.. .. vV, oamd Ve
. Q/R=1/510 1/3 and Q duratien

less than 0.03 see.......... T, IT, V.V,
QRS aris deviation
Left :
QRS axis = -30° or greater. . T, [, and III
Right

QRS axis = +4120° or greater.I, IL, and 11
(The algebraie sum of major posi-
tive and major negative waves must
be negative In I, positive in IIT,
and in T must he one half or more

of t_hat in II1)"

High amplitnde R wares

Left

R more than 26 mm, ............. Vi Va
R more than 20 mnt, ...... I, II, T1I, aVy
R more than 12 mm. ............... avy
Right

QRS duration less than 0.12 see.

end R amplitude=35 mm. or more

end R/8 ratio=1.0 or more and

QRS transition zone or decrensing

R/S to left of Vi. (Incldes jncom-

plete RBBB which meets ahove eri-

teria) ..... e reeam et aate e Y.

8-T junction and scgment (Mensured
from preceding P-R interval at onset
of QRS)

Depression:
S-T-J depression 1 mm. or _
MOTC. verevuvnnessa I, II, aVy, aVy, V-V,

8-T-9 depression 0.5:0.9 mm. and
S-T segment hor‘xzpnlnl or downward
sloping.......0.... T, II, aVy, aVy, V-V
No 8-T-J depression as much as 0.3




Punch

t2

[2-]

W

L2

L £}

Category Lends
mm. but S-T segment sloping down

and reaching 0.5 min, or more helow

P-R baseline....... I, 11, aVy, aVy, Vi-Ve
Elevation: (Not routinely applied,

sea text)

8-T segment elevation of

1.0 mm, or more.T,II, II[,aV:, a Vs, Vi, Ve
2.0 mm, or more......: Deaeaareaa ViV,

Twave items

T amplitude=minus 5 nun. or

L+ - I, II, V..V,
when R amplitude=3 mm. or more...aVy
when QRS mainly upright,.......... aVr
T amplitude=minus 1 to

Smm, ........... e I, II, V-V,
when R amplitude=3 mm, or more..aVy
when QRS mainly upright........... avVy

T wavo flat or small diphasic (nega-

tive phase less than 1 mu), . 1, I, VoV,
when R amplitude=3 mm, or more. ..oV,
when QRS muinly wpright........... aVy

A-¥ conduction

Complete A-V block (permmnnent or
intermittent)
Partial AV bock. ... ..o, any
P-R interval over 0.21 sec. (nny

heart rate)
Aceelerated conduetion (¢ Wolff-

Parkinson-White*’) ._.............. any
Fentricular condiuetion

Left bundle-branch bleek (LBBB):

QRS duration 0.12 sec. or greater

in I, 11, III
and B penk durntion 0.06 sec. or

more in any of........ L IL avVi, Vi, Va
Complete right bunte-braneh hlock
(RBBB):

QRS duration 0.12 sec. or greater

In e e I, IL, 111
ard R prime greater than Rin........ Vi
Incomplete REBB: R prime greater

than R and QRS \luration less than

012 Sec. ..uieiiniiin Vi
(report under IIT: if those criterin

ara met)

Intraventricular block: QRS 0.12

sec. or more and no LBER or RBEB
pattern ... ... ..ol I, IT, IIT

Arrhythmias

Any combination uf arrhythmins below
(for punch card purposes)

Frequent (4 or meore in 40 complexes)
rremature | atrinl, nodal, or ventricular
beats

Ventricular tachyeardia (over 100/min.)
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Col.

Col,

X

T T T e

Punch

3

(= -

oW -~:;

Punch

L% B £ I
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Category

Atrial fibrilintion or flutter
Supraventricular tachreardin
Ventricular (idioventricular) rhythm (up
to 100/min.)

A-V nodal rhytiun (up to 100/min.)’
Sinus tachyeardia (over 100/min.)

Sinus bradreardia (under 40/min.)
Arrhythming not mentioned above

Lentels

Aiscellancous

Combinations below of item 2 or 3 with
item 1, 2, 3, 4, 5, or 6 (for punch corl
purposes)

Low QRS amplitude (in I, II, IIT na
poaitive or negntive dellection over 5 mmn,
or maximum QRS amplitude less than In
nin. in V,-V,)

“Qualitative’” T-wave findings includine
"‘high’’ or peaked T, postextrasyvatolic T-
wava inversion, T notching, ete.

QRS findings not mentioned ahove inchul-
ing notching, slurring, RR prime, rotation,
or othera .

Prolonged Q-T interval (evalunted from
kQT)

P wave findings ineluding penked, negu-
tive, 3 mm, amplitude or over, or others
Negative U wave in ViV

Other itema not mentioned nhgve
Questionable category due to technicnl im-
perfections in record or bent-to-heat varin-
bility of measurement

Combinations ahove of item 7 or 8§ with
item 1, 2, 3, 4, 5, or G (for punch carl
purposes)

Code for Postexercise Records
Category
Ezerciss trst

No exercise test made
Exercive test stopped
Exercise teat completed

8-T itemas posterercise

Change from no colled S-T item at rest to
B-T item type IV, 1 postexercise

Change from no coded S-T item at rest to
B.T item type IV, © postexercise

Change from no coded S-T item at rest to
B-T item type IV, 3 postexercise

Change from one coded S-T item nt rest
to a lower numerical S-T item postexercise
(IV, 3 to trpe IV, 1, cte.)

Change from one coded S-T item at rest
to a higher numerieal item postexercise
(IV, 1 to type IV, 3, cte.)

No change from resting coded ST item
Change from asy coded S-T item at rest



Col.

XIT

X111

IIv

Punch

£~

[ ]

(]

&
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Category

to no reportabla 8-T item postexcreise
Questionable S-T depression postexercise
due to teehnical considerations

T ilems postexercise

Change from no coded T item at rest to
T item type V, 1 postexercise
Change fram ne ceded T item at
T item type V, 2 postexercize
Change from wo coded T item at rest to
T item type V, 3 postexercise '
Change from one coded T item at rest to
a lower numericnl T item postexpreise (V,
3 to type V, 2, ete.)

Change from one coded T itemn at rest to
a higher numerical T item postexereise
(V, 2 to type V, 3, ete) \

No change from resting coded T item
Change from aay cnded T item nt rest to
ne reporinble T item postexercise
Questionable T item postexercise due to
technical considerations

rest to

A-V conduction, posterercise

Change from no coded A-V conduetion
item at rest to complete A-V block post-
excreisg .

Change from ne coded A-V conduction
item at rest to partiiﬂ A-V Woek post-
exercise

Change from no coded A-V conduction
item at rest to P-R interval more than
0.21 sce. postexercise

Cheuge from no coded A-V conduction
item nt rest to accelerated conduction
Change from ounc coded A-V conduction
item at rest (VI, 1-4) to anotler A-V
conduction item postexcreise o

No change from resting coded A-V con-
‘duction item '

Change from any A-V conduction item at
rest to no A-V conduction item postexer-
ciso

Fentricular conduetion, postezercise

Change from no coded ventricular condue-
tion item at rest to left bundle-branch
block (LBBB)

Change from no coded ventricular conduc-
tion item at rest to complete right bundle-
branch block (RBBB}

Change from no coded ventricular condue-
tion itein at rest to incomplete right bun-
dle-branch block

Change from no coded ventricular conduc-
tion item at rest to intraventrieular block
Change from onc coded ventricular com-
duction iteo: at rest (VII, 1-4) to augther

Col.

XVI

Punch

L3

1
Category
ventricular conduction ifem postexercise
No change from resting coded ventrienlar
conduetion item
Change from any ventricular conduction
item at rest (VII, 1-4) to no ventricular
conduction jtem postexercise )

{
Arrhythniias, postezercise

(exclude VITE, 7-8, simus tachyeardin and
Lradyeardia) w
Change from no coded arrhythmin at rest
to any reportable arrhiythmian postexercise
Change fromvone coled arrhythmia at rest
to anotlier arrhythmin postexercise
lﬁ'o change from coded resting arrhxthmia
honge from any arcliythmis at rest to
%nrrhythmin pustexercise i

Miscelluncous, posterercice

Change postexercise to any item not men-
tioned above

-

Code for Serial Electrocardiograms

Serinl clectrocardiograms will rarely be arailable
in ordinary eross-sectional surveys but their utiliza-
tien in longitudinal studivs must be consillered. Ma-
jor serinl changes will be apparent hy comparing the
classification naccording to the present system from
the same persons on different oceasions. In order to
note the findings in snch serial comparisons, it is
suggested to add another categorr, and column, for
the punch code, as foilows:

XVII

XVIII

W LD ora

L))

2

=)

Serial changes, general

Change from item I, 0 to any reportable
item I-XVI

Change in any reportable item I-XVI

No change in coded item

Change from any item I-XVI to no re-
portable item '
No serial comparison available

@ and @S items, rerial changes

Change from one coded Q@ and QS item
to = lower numerical Q and QS item (I,
3 to I, 2, ete.)

Change from one coded Q and QS item
te o higher numerical Q and QS item
(I, 1 to 1T, 2, ete.)

No change in coded @ and QS iten
Change from no coded Q and QS item to
Q and QS item I, 1

Chango from no coded Q nnd QS item to
Q and QS item I, 2

Change from no coded Q and QS item to
Qand QS item I, 3

Change from any coded Q and QS item
to no reportable Q and QS item



Col.
XIX

XX

XXI

XXIT

Puach Category

[ 5

<

[3-3

-y

ot

1w

8.1 items, serinl changes

Change from ono codel 5-T item to a
lower numerieal 81 item (IV, 310 IV, 1,
XI, 3 to XI, 1, cted

Change from onc ewlel S-T item to a

higher numerical ST item (IV, I to IV,
2, XI, 2 to XI, 3, cte))

No change in coded S-T itent

Change from no coded ST item to ST
item type IV, 1, rest or postexercise
Change from ne coded ST item to S-T
item type IV, 2, rest or postexcreise
Change from no ceded S-T item to 8-T
jtem type IV, 3, rest or postexercise

Change from any coded S-T item to no-

reportable 3-T item

T items, serinl changes

Change from one coded T item to a lower
numericnl T item (V, 3 to V, 1, XII, 3 to
XIL, 1, ete.)

Changa from one coded T item to a higher
numerjeal T item (V, 2 to V, 3, XII, 2
to XII, 3, ete.)

No change in coded T item

Change from no coded T item to T item
type V, 1, rest or postexercise

Change from no coded T item to T item

_type V, 2, rest or postexercise

Change from no coded T item to T item
trpe V, 3, rest or postexercise

Change from any caded T item to ne re-
portabls T item ’

Blocks, aeria!/qbangcs

Change from no coded A-V hlock to any
A-V bloek (VI, 1-4) ‘

Chonge from any coded A-V block to no
A-V block

No change in A-V block

Chnnge from mno coded ventricular con-
duction defect to any ventricular condue.
tion defect (VII, 1-4)

Change from any coded ventrieulnr con-
duction defect to no ventricular conduction
defect

No chenge in ventricular condurtion de-
feet

-

Arrhythmias, serinl changes

(exclude VIII, 7-8, sinus tachycardia and
bradyeardin)

Chonge from oune coded nrrhythmia to
another (VII, 1-G)

Change from no coded arrhythmia to any
reportable ar;h_vthmin

No change in codetl arrhythmia

Change from any c¢oded arrhythinin to ne
reportable arrhythmia
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APPENDIX B =

COMPUTER PROGRAMS USED FOR

THE SLOPE CHANGE DETECTION TECHNIQUE

AS APPLIED TO PREFILTERED DATA

’
This section contains all ;L? programs used for

the storage and retrieval of ECG data, using the slope

change detection technique, as applied to prefiltered

data.

Page 128 : Program to Equalize the Energy.

Page 129 : Pfogram to Upsample the Data.

Page 129 : Program to Integrate the Signal.

Page 130 : Slope Change Detection Program.

Page 132 : Program to Reconstruct the Data.

Page 133 : Subroutine for Quantizing Sampled Data.
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DIMEMSION HAMECSY, K048, Y2048y
ACCEFT "HO., OF SAMFLES= ", M’
FORMAT (SAZ N

TYFE "ORIGIHAL FILEMAME"
RERDCLL, L9 CHAMECI >, =L, MO
YFEN . HAME
REARDCOI YT, I=1. N>

CLOSE o

OFEN 1. "HOTCHMSL
FERDCLI TS, T=1. M)

CLOSE 1

SEMER=H. &

YEHER=0. &

SEUN=a. 6

YSUM=6. &1

DO 2 I=1, N
WEUM=MSUM+H LD
PSMEYSUMEY S LD

"COMTINUE

ASUM=HEZUMAFLOAT (M2
TSUM=YSUMAFLOAT (MO
DO.3 I=A.M
ACILD=HII-XEUNM
POIZ="{Ix-¥SUM
CONTINUE

DD 4 I1=1.M

KENER=HENER+H® (I D2
YENER=YENER+Y (I J#+2
CONTIMUIE
FATA=S0RTYENERSSENER
0O S I=1.HM
FOID=RAT2ZHY (1D
CONTINUE

GorFeM =, "ORG™
MRITECZDOPOID, I=4, N>
CLOZE = :
STOP

£MHD

R Y R ST Y T —
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DIMENSION x<2943>,v<4995>,NHmE<5>
ACCEPT "NO. OF IMPUT SAMPLES=", N
TYPE “INFUT FILENAME"
REHD(iiJi}(NHME(I);121459

FORMAT ¢SAZ

OFEM &, NEME
READCE N (HCT Y, I=1, 1
CLOSE o o
TYFE "OUTFUT FILENAME®
REHD(ii;i)(HHME(I);I;iJ
OFEN 1. NAME

MHH=~1

DO =2 'I=1,NN
W2+ T -1 =3¢ T
v<2*1>=<xc1>+x<1+1>>/2.a
Y {2HH—1 =5 0D o
MNHN=2:+p{—1
MRITECLY (Y CID, T=1, NHND
CLGSE +

SToP

EMD

f

4
s

DIMENSION NAMECS), X<4896>, v¢2g4a
ACCEPT “NO. OF INPUT SAMPLpoe ", H
TYPE "INPUT FILEMAME" .
READ (14, 13 CHAMECT), T=1, 55
FORMAT(SAZ)

OPEN 1, NAME

READCLD CXCLD, I=1, 1>

TPPE "OUTFUT FILENMAME™

READ (L1, 43 (HAMEC TS, 1=1, 5)
OFEN &, MAME

CLOSE 1

YCLd=6, @

HN=HLY

HN=(N-1} /2

HMNN=H+1

DO Z I=1,mN -
T (U R DR T KT 43 5 7
IFCIVEQ 140G TG =

YOI+HL) =y T

GO TO 4

I =y

HH=RC2HT 410

CONTINUE
NRITECEY (v (T3, T=1, Nt
CLOSE @

STOP

EHD
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DIMENSION aLOFl\_,;NHNEfc*v“'°G4 2, R028480, ITCZE38)
DIMEMSION XTRAC 20848H
ACCEFT "ERROR LIMIT ", E '
ACCEPT "NO. OF SAMPLE FOIMNTS". MM
TYPE "INFUT FILEMAME"
i READCLL, A1 3 (HAMECI>, I= 11 L
11 - FORMAT(SAZD 1
OFEM 1, HAME
READCL YT D, T=1, MM
CLOZE 4
T34
ITi=9
J=4.
KL ="
ITA =68
A=Y {I>
GO TO 2
1 CONTIMNUE
J=J-H1
ITCI>=1TI~-1
ACIO=YCI-10
ITI=ITC(I>
I=1-4
Yi="{I>
2 CONTINUJE
I=I+4 .
ITI=1TI+4
P2=%{Ix
SLOFPL{10=CY2-Y1in
DO 2 H=i, HH
IF{I. GE. NM>GO TO 48
I=I+1
ITI=1TI+1
Yi="2 )
Y2210 ’ :
CSLOPLLZH=YE2-Y1 ‘
IFCH. GE. HMN>GO TO 46
IFY HE:(CLDFl\l“—CLGFlfJD) GE. E>GO 7O 4
CDNTINUE
GO TO .
16 J=J+1 . .
ITCI>=1IT1
BCT2=CIn
COMTINUE
WRITECLB, 77>
FORMATC" 7, 2%, 15>
JI={J+52 /5
JII=JI*%5
IFCITT, EGL J>GO TO S8
JT=J+1

+

r

(A

Ja

~]
~



e
o ']

]

G m

266

=04

(AN
QP

Y |

131
PO ST I=JT, JII
MLTII=6. @
CONT IMUE
COMT IMUE :
DO 5% IS, JJ | \\

JK=E#I~13

MRTITECLE, 60 JE, (HORTRD K=, 62
FORMATC IS, SOAK, F1@. 400

COMTIMNUE

HT1=6 :

ACCEFT "1F QUANTIZATION. DESIRED, TYPE i; IF NOT TYFE 8", 1@
IFC IR EG. O2GOTOZGD | :
ACCEFT "MHO. OF BITS ", MB

CALL TUANTCX, J. HE>

CONT IHUE

EIG=6. _ I ;

" IBIG=8

Do 2o I=2.J )

SLOP= W {I0=X{I-A22 " ITL{I2-IT(I-12D
IFCIn Ba 6360 TO 344

IFC(BIG LE ¥{IX—X{I-1OpEIG=K{I1)-K{I-1D

CONTINUE ¢
IF{IEIG LE. RESCIT(IN-ATCI-130>IRIG=ITCI>-1ITCI-1D
MT=ITC(I>-IT(I-1>+ 5 ‘ .
HTRALAHNTLI =K (I-1>

IFCNT. EQ. 12607026

DO 21 K=2, HT

KWTRANTL+HK =X I-1L0+SLOF#{K~-1. >

HTL=NT1+NT

MRITECL1S, 362>IBIG

FORMATS” 7, 2%, “MAXIMUM DIFFERENCE=", 13>
IF{IQ. EQ. 8>G0 TO =85

WRITECLS, Z820EIG6

FORMAT L. 7, 2%, "MAXKIMUM DIFFEREMNCE DARTA=",F3. 1)
COMTINUE

HTRAHTLLI=K{T D

0o 7 I=2,3 ’

HCI=E =0 I a=R{I=103 " 0ITCID=ITCI-10D
JT=ITLI>=-ITC(I-12

ITCI-40=TT

- J1=J-1

OFEN 2, 75LP7

OFEM 2. “IDT”
HRITEL23(Y (L), I=1, JIK
HWRITECZXCITI), I=4, J1I>
CLOZE =

_CLOsZE =

MH=NT1+1

OFEN 1, “MSILOFE~

MRITECLY CATRACI Y, J=4, HHD
CLOSE 41 S
STORP

ENC
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DIMEHSION NHME<5>,K<2943>,IT<2648),KK(2648>
RACCEFT "MO. OF sSTORED SLOPES = v,y

OFEHMN B. “SLp~

READ AN CMCT), T=1, MO

CLOZE B '

QFEH- 6. ~ IDT~

READCBY CITCIY, I=4, M)

CLOSE @ :

ACCEFPT "MO. OF RECOMSTRUCTED FOINTS= ", NN
ACCEPT "0 YOU WISH T@ QUANTIZE? YES-1 HO-@ ", MR
IFCME EQ. 62G0 To 286 .

ACCEPT "NG. ©OF BITS=",NE

CALL TUANT ¢, 1L NED

COMTINUE

BIG=6. 6

PO & 1I=2,N .
1F<BIG.LE.HBS(K(I>~x<1—1>>>BIGdﬁBs<x<I>ex(1—1>>
HRITE<1B, 7)>EIG » )
FORMATC? 7, 2%, “MAXIMUM DIFFERENCE= “,F7. 15
CONTINUE ' :
KRy =xqLd

K=1

DO 4 J=1, N

H=K{ T

IIT=IT¢I>-1

IFXIIT. EC. 6>Go To 5

0O S I=1, IIT

UK+ I Y=y

CIFCI EQ MMGO TO 44

K=sK+IIT+1

FMCRI =T KT+ 0 22
COMTINUE

COMTINUE

MROMMD =8O

OFEMN @, “RCNT~

HRITEC®Y (X (1D, T=1, HM>

CLOZE ©
STOP
END
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SUEBROUTINE TUARNT (X, M, HED
DIMEMSION HXIM>
ML =244ME
EIG=X{Ln v
SMALL=H L)
DO 2 J=1,H -
f?(SMHLL.GT.K(J))SNHLL=K(J9
IFC(BIG. LT, X{IDDIBIG=XT)
CONTINLUE
FI=C{FLOST(HLY -4, @) A (EBIG-SMALL
E=FLOATCHLA2)—{A+BIG)
DO = TI=1,H

TERFKCTIHEF,
H{I>=1%
COMNTINUE
RETURM
EMD

v
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BITS/SAMPLE CRITERION
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APPENDIX C

BITS/SAMPLE CRITERION

Let NP equal the total number of parameters, needed
to reconstruct N.sample data boiﬁts. NBP will equal the
total number of bits needed to represent each parameter,
while NBO equals the total number of bits needed to

represent the original sample points. Therefore,

NTD

oo

N - NBO

i

NTP = NP -« NBT
where NTO represents the total number of bits needed to
represent the data in its orjginal sample form while NTP
is the total number of bits needed to represent the N data
points using the parametric representation. Therefore,

NBO = the number of bits/sample for the

original sample points

- .
NTP/N = the number of bitsfsample'é%r the para-
metric representation

By comparing NTP/N and NBO one can come up with the

effective reduction in storage.
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