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Abstract

Relationships among the complex numbers, quaternions, and the Pauli al-
gebra are developed by presenting them as geometrical (Clifford) algebras.
Rotations are examined using both quaternions and the Pauli algebra, and
in particular, algorithms that are used in three-dimensional simulations and
vidco games are formulated in the Pauli algebra. Relativity is presented
using a number of formalisms, and the treatment of De Leo and Rotelli is
clarified. The relationship between spinors and spacetime vectors is explored
using the Pauli algebra. Dirac theory is exhibited using the Pauli algebra,

and neutrino oscillations are discussed.
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Chapter 1

Introduction

The complex numbers, quaternions, and the complex quaternions are all
important examples of associative algebras that have found extensive appli-
cations in theoretical physics. These are all examples of geometric or Clifford
algebras. A geometric algebra can also be formed from vectors in space and
their products. This geometric algebra of vectors, the Pauli algebra, is iso-
morphic to the algebra of complex quaternions, and contains the algebras of
the quaternions and complex numbers as subalgebras. Therefore, all appli-
cations of the complex numbers, quaternions, and the complex quaternions
can be formulated within the Pauli algebra. By doing this, the geometrical
significance of these applications is emphasized. Also, spinors reside natu-
rally in the Pauli algebra, and unlike the real quaternions, the Pauli algebra
is quite useful for applications in relativity. The complex quaternions can
also be used for relativity, but they do not provide the geometrical and phys-
ical insight provided by the Pauli algebra. This thesis explores these ideas
as follows.

Chapter 2 introduces the quaternions from a historical perspective, uses

quaternions to represent reflections and rotations in space, and complexifies

1



them for later use in relativity. The third chapter starts with a presentation
of general geometric algebras as Clifford algebras, and then moves on to the
specific examples of the quaternions and the Pauli algebra as geometric al-
gebras. Special relativity is presented in the next chapter. Formulations are
given using: the complex quaternions; operators on the real quaternions; and
the Pauli algebra. Chapter 5 gives a Pauli algebra development of spinors
and relates this development to the standard presentations of 2-component
spinors and 4-component Dirac spinors. These spinor developments are used
in chapter six to write the Dirac equation in the Pauli algebra, which is then
used to explore the possibilities of massless and massive neutrinos.

In this thesis units are used such that ¢ = & = 1. Lower-case Latin
letters are used for spatial indices that take on the values 1,2,3; lower-case
Greek letters are used for spacetime indices that take on the values 0,1,2,3;
and upper case Latin letters are used for indices spinor that have values
0,1. Any index that is repeated in a product is to be summed over the
appropriate range of values. Vectors and spacetime vectors are denoted with
upper-case letters when represented by quaternions and complex quaternions

respectively.



Chapter 2

Quaternions

2.1 Semi-historical Introduction

An extraordinary invention in mathematics was the algebra of quaternions
by Sir William Rowan Ilamilton[l]. Quaternions were created by extending
the complex numbers. Hamilton had been interested in complex numbers
since the carly 1830's. By 1830, complex numbers were intuitively well un-
derstood through their representations as points or as directed line segments
in the plane, but this intuitive foundation was not satisfactory to [lamilton.
Le was more interested in basing the complex numbers on the logic of arith-
metic. In 1833, he was the first one to show that complex numbers can be
viewed as merely ordered pairs of real numbers with rules for products. He
also pointed out that a complex number a + bi is NOT a genuine sum of
two (real) numbers, since bi cannot be added to a. Hamilton incorporated
the peculiar ¢ = /=1 in the definition of operations with ordered pairs. In
Hamilton's interpretation of complex numbers the usual associative, com-
mutative and distributive properties are logically founded on the basis of

real numbers. The geometrical representation of complex numbers given by



Wessel, Argand and Gauss, when combined with Hamilton’s algebraic inter-
pretation, gives an algebra for vectors and vector operations in a plane. The
power of complex numbers is thus realized as a tool for handling vectors
algebraically, which is sometimes much easier than performing operations
geometrically, but at the same time it is limited to vectors in the plane.

Hamilton wanted to find an algebra capable of handling operations with
vectors in three-dimensional space. Guided by the example of ordered pairs
and complex numbers, he hoped to find an algebra for ordered triples of real
numbers. Hence the search for the extension of complex numbers to the so-
called hypercomplex numbers and its algebra was started. Hypercomplex
numbers were required to do every thing that complex numbers can do,
i.c., they must all have binary operations and obey the usual associative,
commutative and distributive laws so that algebraic operations could be
performed cffectively.

For the next ten years Hamilton worked very hard, if not obsessively,
with the problem of finding the hypercomplex numbers that could be used
to represent multiplication of vectors in three-dimensional space. On Mon-
day, the 16th of October 1843, one of the best documented days in the
history of mathematics, Hamilton found this new number system, which
he called quaternions. He found the quaternions after recognizing that the
multiplication that he needed was not possible with triples of real numbers.
Hamilton realized that his new numbers each had to have four components,
and that he had to give up the commutative multiplication law satisfied by
both the real and complex numbers. Both of these features were radical for

mathematics. One real unit and three imaginary units, i, j, k, were needed



and they had to have the following relations:

2=2=k’=-1 (2.1)
ijk = —1. (2.2)

There is an obvious geometrical reason why quaternions have to have four
components, namely because a quaternion can be regarded as an operator
that rotates a given vector about a given axis in the space and also stretches
or contracts the vector. There are two parameters needed to specify the
fixed axis of rotation, one parameter to specify the angle of rotation, and a
fourth parameter is needed to stretch or contract the given vector.

A Ilamilton quaternion A is written as
A=al +zi+yj+ 2k, (2.3)

where the coefficients a, z, y, and z are all real. Consequently, in modern
terminology, the quaternions are said to form a four-dimensional real vector
space. ‘The set H of all quaternions forms an associative algebra! when
distributivity is assumed. If A # 0 and

_al—xi-—:j—zk
T a?+a?+y? + 2%

(2.4)

then AB = BA = 1. Hence, H is a division algebra. The only thing
that prevents the quaternions from forming a field is that multiplications
arc not commutative. Therefore, they can be used as the components over
which quaternionic vector spaces are formulated. In particular, quaternionic
versions of Hilbert spaces can be constructed, and Adler{2] uses these to

implement an extension of quantum theory. Adler’s version of quantum

! Algebras are defined formally in the next chapter.
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mechanics differs from standard quantum mechanics only for energies near
the Plank scale.

If a is zero, A is said to be a pure quaternion, or a vector. Then i, j, and
k are associated with the three mutually perpendicular directions ey, ez, e3

in space. A vector v = v'e; + v2es + vde3 will be written as
V =vli + v*j + r’k. (2.5)

If V and W are two pure quaternions, it follows directly that in modern

notation
VW =-v-w+V xW, (2.6)

where V x W is a pure quaternion with components (V x W) = (v x w)-e;.
From this it follows that two non-zero vectors commute iff they are parallel,
and anti-coramute iff they are perpendicular.

After quaternions were introduced, there was a long controversy between
Tait and other disciples of Hamilton on one side, and Gibbs and Heaviside
on the other. over whether the full quaternion algebra, or just the vector
parts, would prove most useful for physics. That vectors prevailed is obvious,
as may be seen in practically any physics textbook today. By considering
applications such as rotations, relativity, and relativistic quantum mechan-
ics, this thesis hopes to show the usefulness of quaternions and their more

general cousins, Clifford (geometric) algebras.

2.2 Rotations and Quaternions

Quaternions are very useful for rotating and reflecting vectors without using

matrices. To see this, it is handy to have a geometrical picture of what a
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Figure 2.1.

rotation is. Let v be any vector that is to be rotated by the vector 8. This
means that the unit vector 8 is the axis of rotation, and 8 = V8 -8 is the
angle of rotation. A rotation of v by @ means that the part of v parallel to
6. v. = v - 86. remains unchanged, while the part of v perpendicular to 8,
v, = v —v,, rotates in the plane perpendicular to 8. This plane is called
the plane of rotation. Therefore, the rotated vector is v/ = vi,+ v/, where
v, =v,. To find v/, consider n = 8 x v, which is a vector perpendicular
to both v and @ that has the same length as v, . Also, n is lies in the plane
of rotation.

From the geometry (see Figure 2.1), we can express the rotated vector

v/, in terms of the vectors v, and n:



v, =vcosf +nsind. (2.7)
Consequently,
V=v-00+v,cos0+8xv,sind. (2.8)

Rotations in three dimensional space can also be generated by the com-
position of two plane reflections. A reflection of a vector v through a plane
proceeds as follows. Let it be the unit vector normal to the plane, and de-
compose v into parts parallel and perpendicular to fi. A reflection changes
the sign of the part of v parallel to i (perpendicular to the plane), while
leaving the part perpendicular to i (lying in the plane) unchanged. Now
consicder the quaternionic expression

NVN = N(V,+V,)N
(V.- V. )NN
-V,+V,
= V-2V,

(2.9)

Therefore, V! = NVN is the reflection of v through the plane that has
normal ii.
Now consider two successive reflections of v, first through a plane with
normal &, and then through a plane with normal b. Thus, v — v/, given by
V' = BAVAB

= —(K-ﬁ-&-xxﬁ)V(—X‘ﬁ-&-xxﬁ)

= - (cosa-{-ésin()) (V.+Vy) (—cosO +§sin0)

= =V, (cosO +§sin0) (—0050 +§sin0)

-V, (cosO - ésinO) (—coso +ésin0)
= V,+V_ycos(20) +O x V, sin(20)

. (2.10)



where 8 is the unit vector in the direction Axb, and 8 is the angle between
a and b, which is also the dihedral angle of opening between the planes.
Because 8 is perpendicular to both a and b, it lies in both planes, i.e., it
lies along the line of intersection of the planes.

Therefore, the product of two reflections is a rotation about an axis
that is the line of intersection of the planes, with an angle that is twice the
angle of opening between the planes, and every rotation can be expressed
in this way. Also, it has been shown that rotations are easily represented

algebraically using quaternions, i.e.,

V' = R(6) VR(0), (2.11)

where

R(8) = cos (g) +8sin (-g) : (2.12)

and the bar changes the sign of vectors but not that of scalars. No rotation

matrices are necessary!

2.3 Complex Quaternions

Since the quaternions are four-dimensional, it might be thought that they
arc uscful in relativity, and that boosts as well as rotations can be treated
using them. This is not possible by staying strictly within the quaternions,
because of the indefinite nature of the Lorentz inner product. However, by
complexifying the quaternions, or by considering operators on quaternions,
formulations of relativity are possible. These formulations of relativity are
briefly outlined in this section 3.2. Complex numbers, quaternions, and
the complex quaternions are all examples of Clifford algebras, which are

considered in the next chapter.



The quaternions form a four-dimensional vector space over the scalar
field R. The complex quaternions are obtained when the scalar field R of
rcal numbers is replaced by the scalar field C of complex numbers. Thus we
would like the complex quaternions, like the real quaternions, to also possess
a vector space structure, but now over the complex field. Therefore, ifa € C
and q € H, then we want aq to be a complex quaternion, and we also want
the sum of two complex quaternions to be another complex quaternion. To
sce how these axioms of vector space structure can be satisfied, let q;,¢2 € H,

ayp, g € C with ay = ay + ib, and consider

aiqy +aaqe = (ay +ib) qu + (a2 +iby) @2
= (a1q1 +a2q2) +i(biq1 + b2qa) (2.13)
= q +ip
where q'l =a,q) +ayq2 and q; = byq; + baqy arc both elements of H. Hence,
the complex quaternions are not just of the form agq with a € C, but are
taken to be {q + iq' | ¢q,q € H}, which forms a four-dimensional vector
space over C. As a real vector space, the space of complex quaternions is
an cight-dimensional real vector space H ¢ H.
The quaternions are closed under multiplication, so a natural question
is whether the complex quaternions have only a vector space structure, or if
they inherit higher-level structure as well. [n order to find this out let’s sec

what happens when two complex quaternions are multiplied,

( +ig)p +ig) = (@ — @a1) +i(9194 + q2q3)
= g5 +ige,

(2.14)

where ¢, € H for n = 1, ..,6. Thus, the product of two elements of the form
q+ iq’ gives another element of the same form, that is, the set of complex

quaternions is closed under multiplication. Therefore, the set of complex

10



quaternions forms an algebra. However, unlike the real quaternions, the
complex quaternions to do not form a division algebra. Fom Frobenius’ the-
orem, any division algebra over R is isomorphic to R, C, or H. Because the
real dimension of the complex quaternions is greater than the dimensions of
all of these, they can't form a division algebra. In the complex quaternions,

divisors of zero exist. For example, (1 +ii) (1 —ii) = 0.

11



Chapter 3

Clifford Algebras

3.1 General Clifford Algebras

Clifford algebras{3, 4, 5] arc generated by inner product spaces and are ide-
ally suited for studying the geometry and symmetries of these inner product
spaces. An inner product space is a pair (V,g) where V is a vector space
and the inner product is a symmetric bilinear map g : V x V. — R. The
inner product g is said to be nondegenerate if g(x,v) = 0 Vv € V implies
w = 0. If V is finite dimensional and g is nondegencrate, then there exists

an orthonormal basis {eg,... ,eq} for V such that

xl; i=j
g9(eiej) = T (3.1)

0; i#]
The inner product space is said to have signature (p, q) if p elements of an
orthonormal basis give +1 in (3.1) and q elements of an orthonormal basis
give —1 in (3.1). For 1 < n = p + q many different orthonormal bases exist.

The signature is independent of which orthonormal basis is used.

A real associative algebra A is a vector space over R together with an

12



algebraic product that is a bilinear map

AxA - A
(a,b) +— ab,

(3.2)

which for a,b,c € A and a € R satisfies the following two conditions:

1) bilinearity implies multiplication is distributive over

addition,
(a + ab)c=ac+abe (3.3)
a (b + ac) = ab + aac,
2) the product is associative,
a(bc) = (ab)e. (3.4)

Note that multiplication is not necessarily commutative. In a complex as-
sociative algebra, R is replaced by C. If there exists | € A such that
la = al = a for every a € A, then 1 is called a unit or the identity for
A
A real Clifford algebra, denoted CI(V, g), for an inner product space
(V.g) is an associative algebra with unit 1 that contains copies of V' and
R = RI as distinct subspaces such that
1) v®* =g(v,v) ,VveV
2) V generates CI(V, g) as an algebra over R
3) CI(V, g) is not generated by any proper subspace of V.
These axioms then uniquely define a Clifford algebra if the bilinear form g
is nondegenerate. Often Cl(V,g) is written Cl 4 when (V,g) is an inner
product space that has signature (p, q).
In condition 1), the square of v denotes the product of v with itself in
this algebra, and on the right hand side g(v,v) is a real number which lies

13



in the vector subspace of the algebra spanned by the identity. Now consider

g (w, w), where w=u+uv:

9 ('wv ‘lU) = w2
g(uu)+29(w,v) +g(v,v) =ud +uv+vu+ v?

g(uv) = % (uv + vu) . (3.5)
Therefore, for elements of the orthonormal basis,

eicj = =l £=J . (3.6)
—ejey;  L#]

Condition 2) means that every clement of CL(V,g) can be written as
a lincar combination of products of elements of V. The third condition,
called the universal property of the Clifford algebras, is needed to guarantee
that the algebra is the largest possible one that satisfies 1) and 2). With-
out condition 3), it is sometimes possible to generate a lower dimensional
nonuniversal Clifford algebra. This is only possible for odd dimensional
inner product spaces that satisfy(3] p — g = L mod .

Every element of V can be written as a linear combination of basis
clements, and consequently every element of Cl(V,g) can be written as
a linecar combination of products of the orthonormal basis elements W =
{e1,... .en} for V. Therefore, a maximal linearly independent set of prod-
ucts of the basis elements for V is a basis for CI(V,g). If a product of
elements of 11" contains an element of 1 more than once, then (3.6) can
be used to reduce it to a product that contains this element at most once.

Therefore, a basis for Cl(V, g) can be chosen that consists of products that

14



contain elements of IV at most once. Hence, if V is n-dimensional, the num-
ber of elements in each product must be less than or equal to n. Equation
(3.6) can also be used to reorder the elements in the products such that the

indices increase from left to right. For example,
esezeze) = —erezeze; = —e€ze] = e1€y, (3.7)

assuming €3 = 1. There are () products of m elements that satisfy these
n
conditions. Therefore, a basis for CL(V, g) has 3 (,',") = 2" elements, with

m=0
m = 0 corresponding to the scalars.

3.2 Quaternions and Complex Numbers

As an cxample of a Clifford algebra, consider Clgy, the Clifford algebra
generated by a two-dimensional inner product space (V, g) that has a basis

{c1,e2} with
g(er,e1) = g(e2, e2) = -1 (3.8)
A basis for the real Clifford algebra Clp 2 is thus {1, e;, €2, e1€2}. Defining
i:=ep, ji=e2, k:i=ejeq, (3.9)

we [ind the following properties:
1)ij=k=-ji, jk=i=-kj, and ki =j= ki
2) i? =j2=~1, Kk =ijij= —izj2 = -1
3)ijk=k?=~1.
Note that any of the above two relation implies the third, and also notice
that 2) implies that the algebraic product is not commutative.
Properties 2) and 3) are just Hamilton's defining relations for the quater-

nions. Therefore, the 22 = 4-dimensional Clifford algebra Cly 2 is just the

15



real algebra of the quaternions viewed from a slightly different perspective.
Hence any quaternion q can be viewed as an element of Clg2 and written
as a real linear combination of its basis elements, i.e., g = a + bi + ¢j + dk.

We define the Clifford conjugate of g by
g=a-bi—cj—dk (3.10)
and the real valued norm of q by
N@)=qij=qdq=a® +b*>+c* +d% (3.11)

Note that N(g) = 0 if and only if ¢ = 0. Thus every nonzero element of
Cly.2 has an inverse given by ¢~! = F?Ej Hence, as above, the algebra of
real quaternions is a division algebra. When working with the quaternions
it is useful to identify R and R? with the subspaces spanned by {1} and

{i.j, k} respectively, so that each quaternion is uniquely expressed as

g=a+v (3.12)
where,
1 -
a=<q>s:=5(q+q) (3.13)
1 _
v=<Kq>y= E(q - q). (3.14)

The sum and product of two quaternions q and q is then given by

q+q'=(a+a')+(v+v') (3.15)

qq =aa —v-v +a'viav +v xv. (3.16)

16



The quaternions contain various subalgebras that can be regarded as
the algebra of complex numbers. For example, consider the subspace C =
span {1,i}. Because i commutes with all elements of C and i = -1, Cis a
subalgebra of H that is isomorphic to C as an algebra, with the isomorphism
given by

a+bi — a +ib. (3.17)

For any ¢ in H,

7 = +qi+di+k
= ¢ +q'i+j(q’ - %)

Thus, any quaternion can be expressed as the sum of an element of C with

: (3.18)

Jj times an element of C. Thercfore, the identification (3.17) induces the

vector space isomorphisms(3]

H—-CaoC—C?
® . (3.19)
q— (" +q'ig* - 1) — (¢° + ¢"i,¢? - ¢%)
These isomorphisms are used in 4.3 to make precise and clarify the work of

De Leo and Rotelli.

3.3 Pauli Algebra

The Pauli algebra(7] P is the Clifford algebra Cl3 of three-dimensional space
with g being the ordinary dot product of vectors. The algebraic structure
of this Clifford algebra enables us to construct inverses, square roots and
functions of vectors, just as one is able to with fields. The main differences
between fields such as R and C, and the Pauli algebra of vectors are that the

product in P is noncommutative and that divisors of zero exist, i.e., there
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exist Pauli elements u # 0, v # 0, with uv = 0. This allows us to construct
projectors which give the Pauli algebra a richer structure then fields possess.

The Pauli algebra provides very natural ways for expressing geometrical
relationships, e.g. rotations and reflections, as well as for four dimensional
geometrical relationships in relativity[8, 9, 10]. Because of this close re-
lationship between algebra and geometry, Cliflord algebras are sometimes
called gcometric algebras. Calculations in geometric algebra often avoid the
explicit basis dependence of coordinate systems. This is true for any geo-
metric algebra, but what is interesting about the Pauli algebra is that it is
the smallest possible Clifford algebra that can incorporate all possible rel-
ativistic phenomena in spacetime, from relativistic quantum theory[11, 12},
to clectrodynamices(7, 13, 1], to general relativity[10].

The Pauli algebra is gencrated by three-dimensional Euclidean space
R3. Using the axioms in section 3.1 we construct the structure of the Pauli
algebra. The product of any two vectors can be expressed as the sum of

symmetric and antisymmetric parts:

ab = j(ab+ba)+ j(ab —ba)
=: a-b+aAb,

(3.20)
where from the first axiom for Clifford algebras, the symmetric part is just
a-b. Note that if a and b are parallel then
ab=Dba=a"b, (3.21)
and if a and b are orthogonal then
ab=-ba=aAb. (3.22)
It follows from the section on general Clifford algebras that a basis for

18



Clg is
{1,e1,e2,€3,e1€2,€1€3,€2€3, €1€2€3} , (3.23)

where 1 is the unit scalar, {e;} is an orthonormal vector basis for R3,
{erea, e1€3, e2e3}, is the basis for the bivector space, and {eieze3} is the
trivector representing the volume. Geometrically, the elements of the basis
for bivector space represent planes, e.g., eje; represents the plane spanned
by e; and e;. Hence any element of the Pauli algebra can be written in geo-
metrical terms as the linear combination of scalars, vectors (lines), bivectors
(planes) and a trivector (volume).

Note that e;e;e3 squares to —1 and commutes with all other basis of Cl3.
Hence {1,ejeae3} lies in the centre of the algebra, and forms a subalgebra
isomorphic to the algebra of complex numbers C, where ejeze3 plays the
role of the imaginary unit i. This gives the Pauli algebra a natural complex
structure. Bivectors, with this identification, are written as imaginary vec-
tors, i.c., ejex = i€ ey, and e; — ie; is an isomorphism between vectors and
bivectors. Thus, over the field of complex numbers, Clj is a four-dimensional
algebra with basis {1,e;,ez,e3}. Hence, any element p € Cl3 is written as
the sum of a scalar p® and a vector p. i.e., p = p° + p, where p° and p may
be complex.

The antisymmetric part of the product ab can now be written as a usual

cross product:

aAb = abtreje
= ian"ejklel . (3.24)

= iaxb

Therefore, i represents handedness in the algebra, since the association of i
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with the volume element e;eze3 can be assumed in right handed coordinate
system, i.e., e; X ey = e3 and cyclic permutations.

There are three types of involutions for Clifford algebras, with each hav-
ing natural actions on elements of the Pauli algebra. An involution is an
invertible transformation mapping an algebra onto itself which, when com-
posed with itself, gives the identity.

The involution of spatial reversal is an antiautomorphism that reverses

the sign of the vector part of the element
—ip—=Pp=p—P (3.25)
It is casy to verify that the action of bar on the product reverses the order
of the product, i.e., p§ = §p. Any element of Cl3 can be split into vector
and scalar parts using the bar involution:
p = 3(p+p)+3(p-p)
=: <p>s+<p> vy

: (3.26)

and also the product of two elements of Cl3 can be split into scalar and vector

products that generate the dot and cross products of vectors, respectively:

1 — -
<9 >s=5(pq + pq) (3.27)

_ ) Q—
< pg>v= §(pq - Pq). (3.28)

Note that < pg >g=<Gp >s.

Hermitian conjugation is another involution which is also an antiauto-
morphism. Hermitian conjugation is denoted by dagger; it reverses the order
of multiplication and changes the sign of i. Hence, the dagger only affects

the imaginary part of a Pauli element.

t:p— pl =p*he,, (3.29)
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where {e,} with eg = 1 is the basis (taken over C) for Cl3 and p** is the
complex conjugation of the components p* for 4 =0, 1,2, 3. The Hermitian
conjugate involution is used to split the elements of Cl3 into real and imag-
inary parts:
p = 3p+p")+ip-p"
= <p>a+<p>

(3.30)

The combination of the involutions spatial reversal and Hermitian con-
jugation gives another involution, but one which is an automorphism. The
map is denoted by bar-dagger and preserves the order of the multiplication.
This involution is used to split the Pauli algebra into even and odd parts,
i.c., into clements constructed from even and odd products of vectors:

p = 3+ +i(p-p")
= <p>y+<p>- '

(3.31)

The bar-dagger involution represents the parity transformation. In general
Clifford algebras, this transformation is called the grade automorphism or
involution. All three involutions are very important and are used to split
the Pauli algebra into important parts and subalgebras. For example,

< Cly >ms={p€Clz: {(p+p' +p+p")} =R, the field of real numbers,
and < Clg >s=C, the field of complex numbers.

Now consider < Cl3 >, with basis {1, —ie;, —iey, —ie3} Note:
(~iey) (~ieg) = —ies, (—ieq)(—ies) = —iey, (—ies) (—ier) = —iez, (3.32)
and (—ie1)2 = (—i82)2 = (—ie;,)2 = —1. Therefore, the identifications
l—=1,i— —ie;, j — —ieg, k — —ieg (3.33)

give an isomorphism between the even subalgebra < Clz >; and H, the

algebra of real quaternions, that extends to a complex isomorphism of the
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complex quaternions with the Pauli algebra. Note that this isomorphism
does not preserve the representation of vectors. In H, a vector v is repre-
sented as V = v'i + v?j + v°k, while in the Pauli algebra the same vector
is represented as v = v'e; + v?ep + v3e3. Therefore. the two representa-
tions are related by v = iV, which is just the isomorphism between vectors
and bivectors discussed earlier. Thus, Hamiltons "vectors” are realized as
bivectors in Clj.

A faithful matrix representation of the Pauli algebra is obtained by as-

sociating the Pauli spin matrices

01 0 — 1 O
g = T2 = O3 = ' (3'34)
1 0 i 0 0 -1

with the clements of a right handed orthonormal basis {e), ¢z, ea}, and the
identity matrix with the unit element of P. Then a vector v is represented

as the 2 x 2 matrix
v-o:=vle, + vla, + vioy, (3.35)
and (3.20) becomes the familiar
a-cb-o=a-bl +iaxb-o. (3.36)

The dagger involution corresponds to taking the Hermitian conjugate (com-
plex conjugate transpose) in this matrix representation or any unitary trans-
formation of it.

This matrix representation gives the Pauli algebra its name and has
proved useful for physics(15, 16], but it should be emphasized that no matrix
representation is needed for the algebra. Many representations are possible;

what they have in common is the algebra.
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3.4 Rotations with the Pauli Algebra

Reflections and rotations have slightly different representations in the Pauli
algebra than they do using quaternions. For a reflection of v through the

plane having normal unit n, consider

-iviih = —-(v,—-v,)0n

= v-—-2v,.

(3.37)

As demonstrated with quaternions, any rotation is the product of two re-

flections. Therefore, the rotation of v about the axis ] by an angle 8 is

v = R(8)vR(9), (3.38)
where
R = nam
n; -ng - ing X N2 (3.39)

= cos(}) - i@sin (%),

and n; and iy are unit vectors normal to the reflection planes that intersect
along 8 and have a dihidral angle of . Note that B! = R = R!. Hence R is
unimodular and unitary. The plane perpendicular to the axis of rotation is
given by the bivector © =—i@. For example, if 8 = g then © = —eje9e3e0 =
eje3. Only the components of a vector that lie in © get rotated by R.

Rotations are used extensively in three-dimensional graphics program-
ming for commercial games and professional flight simulators. These compu-
tationally intensive applications require simple, efficient algorithms, which
the Pauli algebra can provide. As an example, consider the situation where
all the objects in a three-dimensional image are to be rotated from initial

orientations to final orientations, and that the images on the screen must
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move smoothly. What continuous sequence of rotations should be chosen
to do the job? The technique used in practice is called spherical linear
interpolation(17] (SLERP), and is usually implemented with quaternions.
The Pauli algebra equivalent is presented below after disadvantages of other
methods are discussed.

An orientation in space is given by a right-handed triad of orthonor-
mal vectors. In many graphics applications orientations are specified by
the unique rotation that transforms a fixed reference orientation into a re-
quired orientation. Hence. interpolating between orientations amounts to
interpolating between rotations. When 3 x 3 rotation matrices are used,
interpolation is difficult. A linear interpolation between rotation matrices
results in intermediate matrices that are not rotation (orthogonal) matrices.
Using a Gram-Schmidt algorithm to orthogonalize each interpolation matrix
is computationally expensive, and may result in jerky motion.

Euler angles can also be used to represent the relationship between a
fixed reference orientation and a required orientation. Suppose {e1,ea,e3}
are the axes of fixed reference orientation. Any rotation can be expressed
as the product of a rotation about the ej axis followed by a rotation about
the ey axis followed by a rotation about the ¢} axis!. The Euler angles that
represent the rotation are the angle ¥ of the first rotation, the angle 4 of the
second rotation, and the angle ¢ of the last rotation. Let the Euler angles of
the initial and final orientations be {1;,6:,4;} and {,,6;,8,} respectively.
Then

{(L—t) g+t (1—t) 6 +t8p, (1 - t) 0 + tor} (3.40)

'In most physics texts, the final rotation is again about e3. However, one can equally

use the “gimbal " choice specified here.[18]|
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for 0 < t < 1 interpolates the Euler angles. However, this interpolation may
develop singularities{18] because the correspondence between Euler angles
and rotations is not always unique. For example, consider the case when

8 = % and ¢ and ¢ are arbitrary. Then

e e o ($) (2] g o (3) e 2]

[cos% (¥ + @) —ielsin%(w-ﬂﬁ) -iegcos-;»(w-'rdz)

|
=l

—iey sin % (% + ¢)] . (3.41)

Therefore, the sets of Euler angles {a — ¢, 5, ¢} represent the same rotation
for any fixed value of a, and interpolation may behave badly when passing
through certain values of the Euler angles.

In the usual matrix representation of the Pauli algebra, the condition
R-' = R' means that the matrix representative of R is unitary, and the
condition RI? = 1 implics that the matrix representative of R is unimodular,
i.c.. has unit determinant. Hence, the set of all rotation operators forms a
group that is isomorphic to the group SU(2). Suppose R = a + T is
a rotation operator. Then R = R' gives that a = ax and =T = T*.
Therefore, any rotation operator can be written as R = a + i, where a
and T are both real, and the group of rotation operators is a subset of the
four-dimensional real vector space (Cl3) . = (P)sm ®(P)y5. Unimodularity
of R gives that 1 = a® + b - T, which means that the group of rotation
operators (and SU(2)) has the topology of S3, the three-dimensional surface
of a sphere in four-dimensional Euclidean space. This also suggests taking
(AB) as the (positive definite) real inner product of elements A and B of

the space (Cl3) . Hence, rotations are “unit vectors” in this inner product
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space, and the “angle” w between rotations R; and Ry is given by
cosw = (RyRy),. (3.42)

Suppose R and R; are rotations that transform the reference orientation
into the initial and final orientations respectively. Then RyR, is a rotation
that transforms the initial orientation into the final orientation. Because
R,R, is a rotation, it be expressed as RR, = e i which is consistent
with (3.42). This means that the “angle” in the inner product space is
twice the angle of rotation in physical space. An appropriate interpolation
path between R, and Ry is the arc of the “great circle” that runs along the
surface of the 3-sphere between them. If ¢ is the curve parameter and R (t) is
a rotation operator on this curve such that R(0) = R, and R(1) = Ry, then
RT, is a rotation that transforms the initial orientation into an intermediate
orientation. Then, RR, = e~ for 0 < ¢t < | is a linear interpolation of
both the angle in physical space and the arc length in the inner product

space. Thus
R(l)=e ™R, (3.43)

is the required spherical linear interpolation.
The rotation R can also be expressed as a lincar combination of R; and

R-z, ic.,
R(t) = a(t) Ry + b(t) Ry, (3.44)

where a and b are scalars. The functional forms of e and b are easily found by
expanding the above exponentials. Then R; = (cosw — ifisinw) R, implies
that —itiR) = (sinw) ™! (R2 —coswR)) which gives

_sinfw(l —¢)] Ry +sin(wt) Ry
- sinw

R(t) (3.45)

26



Figure 3.1.

when used in R; = [cos (wt) — ifisin (wt)] R;. Equation (3.45) is the form
of SLERP commonly used in industry, but (3.43) may offer a better imple-
mentation,

The bijective correspondence between the group SU (2) and the space
S3 defines a group product on S%. Therefore, any two elements of S® can
be multiplied together to give another element of S3. However, there is no
visual geometrical picture of this multiplication.

The surface S? of the unit sphere in E? can also be used to model SU (2),
and in this model the group multiplication is easy to visualize. Consider a
rotation R = cos (§) —i@sin (%) that has the bivector © = —i0 as its plane

of rotation. The plane © intersects S2 in a great circle, and R is represented
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by any directed arc of this great circle that has length /2. The direction
of the arc is needed to determine the sense of the rotation. Hence, R is
represented by an equivalence class of arcs called a spherical vector, where
two arcs are equivalent if they lie on the same great circle and have the
same direction and length. Any two antipodal points on a great circle are
separated by an arc of length 27 /2, which represents a rotation of 2r. An
arc that has length 47/2 joins any point to itself represents a rotation of
4m. These two types of arcs are clearly distinguishable. This illustrates the
difference between the SU (2) element —1 that represents a rotation of 27
and the SU (2) element +1 that represents a rotation of 4=.

To see the geometry of the group product, let R, and R; be two rota-
tions. Hence, Ry; = RaR, is also a rotation. Any two great circles intersect
in two antipodal points. Suppose c is an intersection of the great circles of
the bivectors ©; and ©5;, and that the spherical vector for R, starts at ¢
(sce Fig. 3.2). The spherical vector for R, will end at a, an intersection
of the great circles for ©, and ©;. Since a is on the great circle for 93,
the spherical vector for R can start there, and then will end at b, an inter-
section of the great circles of the bivectors O, and ©3;. Consistency with
the group multiplication law requires that the arc from ¢ to b is a spherical
vector for Ry1. See Baylis[19] for details. Thus, geometrically, the group
multiplication corresponds to just addition of spherical vectors. See Figure
3.2. The non-commutivity of the group product is associated with the fact

that that addition of spherical vectors is not commutative.



Figure 3.2.



Chapter 4

Special Relativity

4.1 Minkowski Spacetime

Minkowski spacetime[20] consists of the set of all possible events. Once an
origin is fixed, Minkowski spacetime becomes the 1-D real vector spacc M
of -I-positions relative to this origin. The clements of M are called spacetime
vectors. Minkowski spacetime has a non-degencrate symmetric bilinear form

g with signature (1,3):
g:MxM—R, (4.1)

called the Lorentz inner product. The Lorentz inner product is used to
determine (observer dependent) elapsed times and spatial distances between
cvents in spacetime. If {eq, ey, 2, €3} is an orthonormal basis for M, and =
and y are the spacetime vectors of any physical events in spacetime, then
z = z"¢, and y = y*e,, where the Einstein summation convention is used.
When the speed of light is taken to be one, time and space coordinates are

measured in the same units and the Lorentz inner product on M can be



written
a(z,y) = 2%° - zly! — 2?2 -2 (4.2)

A Lorentz transformation L is a linear operator on M that preserves the
Lorentz inner product, i.e.,
1) L: M — M with L(z +ay)=Lz+aly
2) g(z,y) = g(Lz, Ly),
for every z,y € M and a € R. In particular, if {e,} is an orthogonal basis
for M then {e}, = Le,} is also an orthogonal basis for M. The metric

cocflicients are defined as

N = 9(eu, &) = g(Le,, Ley), (4.3)

and arc Lorentz invariant. In component form (4.2) is g(z,y) = n,,z*y".
The following sections embed these features in associative algebras in

various ways.

4.2 Relativity with the Complex Quaternions

The rich structure of the algebra of complex quaternions[21] enables us to
define spacetime vectors and a Lorentz inner product within this algebra.
Indeed, Minkowski spacetime, when complexified turns out to be isomorphic
to the vector space formed by the complex quaternions. First, the most
important thing is to specify what elements of the algebra are identified
with the spacetime vectors. If {eg,e;,e2,e3} is a spacetime vector basis,

then the identifications

e; — ii, eg — ij, eg — ik (4.4)
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follow from section 2.1. Identifying eg with the scalar 1 completes the iden-
tifications. Then, a spacetime vector v = v*e, has the form

W+iv = 04+iV (45)

= VO+i(Vii+V2k+V3k). '

where i is the usual imaginary scalar, not the quaternion unit i. Therefore,

in the complex quaternions, a spacetime vector splits into a part that is a
real scalar and a part that is an imaginary pure quaternion.

In order to more clearly characterize the subset of the complex quater-

nions used to represent spacetime vectors, two conjugations are defined.

First, the bar conjugation for the quaternions is extended naturally to the

complex quaternions by defining
QL+ i :=q] + Q2 (4.6)
for q;,q2 clements of H. Next, define the dagger conjugation
(@1 +ig)! =1 - i (4.7)
for qi,q2 clements of H. It is casy to show that the dagger conjugate of a
product is the product of the dagger conjugates in the same order. while the
bar conjugate of a product is the product of the bar conjugates in the reverse
order. Then. in the complex quaternions, any spacetime vector satisfies
V=7
The second most important concept in relativity is the Lorentz inner
product. The Lorentz inner product has a very natural definition in the
complex quaternions given by
VV = (°+iV)(@P +iV)
= (v°)2 -v-v (4.8)

= (- @) -0 - )
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Now given that the Lorentz inner product exists in this algebra, we try
to find whether Lorentz transformations have natural expressions using the

complex quaternions. Consider the transformation
V-V =LVL, (4.9)
where L is a complex quaternion that satisfies LL = 1. Then
V=V = VI, (4.10)
so V' represents a spacetime vector. Also,
vV = LVI'L'VI =LV (LL)'VI=VV. (4.11)

Thercfore (4.9) is a Lorentz transformation. This type of transformation is

cxamined in more detail in 4.4.

4.3 Relativity with Operators on the Real Quater-
nions

The identifications (3.19) can be used to realize linear operators on H as
2 x 2 complex matrices. Examples that are relevant to the work of De
Leo and Rotelli[6] are the linear operators Q,! given by left multiplication:
Qq(d') = qq for all quaternions ¢ and ¢’. Expressing these quaternions
as ¢ = a+ jb and ¢ = c + jd, where a, b, ¢, and d are all elements of

C =span{l,i} C H gives

Qq (¢') = ac—bd + j(bc +ad). (4.12)

'Actually, Q : H — End (H) is a representation of H in the algebra of operators on H,
with Qq : H — H being the operator (element of End (H)) that results when Q is evaluated
atgeH.
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Note that ij = —ji implies that aj = ja for any a in C. Therefore, the

2 x 2 complex matrix that represents the operator @, in the space with

g=a+jb— ( ¢ ),a,beCisgivenby[S]
b

Qq —_ ( a b ) . (4.13)
b @

where no distinction has been made between clements of C and their images

in C . In particular,

i 0 0 -1 0 - 10
Qi_’ 1Qj"‘ le—' 1Ql'—’ '
0 —i 1 0 -i 0 01
(4.14)
which corresponds to the somewhat confusing equation (10) in De Leo and
Rotelli[6].

"The equally confusing (11) of De Leo and Rotelli is made clear by defining
operators Iy by I, (¢) := Qq(¢)i = q¢'i. Then

ai -bi
Iy — (4.15)
b ai
gives

-1 0 0 —i 01 t 0
[l - ’ [j - ’ [k - ' [l -
0 1 i 0 1 0 0 i
(4.16)
Let Oy = {Qq | g € H}. This set of operators is a subspace of the space
of all operators on the quaternions because 0 = Qo and Qg + aQq, =

Qq+ag- Now assume Qq, = Qq,- Then q19 = ¢2q for every quaternion gq.

Taking q = 1 gives q; = ¢q2. Thus, g — Q, is a vector space isomorphism
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Then q19 = ¢qqi for every quaternion q. Taking: q = i gives q1i = —q;
and q = k gives g1k = ¢sj, and right multiplying by —j implies q1i = ¢.
Therefore, ¢1 = ¢2 = 0 and O, N Oy = {0}. Hence, O & O, is an eight-
dimensional subspace of the sixteen-dimensional space of all linear operators
on the quaternions.

A bijective correspondence between the complex quaternions and the set

of all operators Qg and Iy is thus given by
q+iq = Qq+ Iy (4.17)

Note: QuQq = Qua Qale = 15Qn = Igyq, and Ig g, = —Qqyq,-
Therefore, this O, @ O, is an algebra and the correspondence (4.17) is an
isomorphism of algebras provided the correspondence is a homomorphism.

Hence, consider (q1 + iq2) (g3 + iqa) and (Qq, + Ip;) (Qqs + Iy, ) . First,

(1 +iq2) (g3 +iqq) = Q193 — 2q4 +1(q2g3 + Q1qu) - (4.18)
Next

Qo + 1) Qe + [a)) = Quies =~ Qaae + Ines + Ig1a

= Qua-aut lpat+an

(4.19)

Thus, (q1 +iq2) (g3 + iqs) — (Qq, + I;) (Qey + Ig,) is a homomorphism.
Therefore, everything that can be done with the complex quaternions can
be done with this algebra of operators. In particular, any spacetime vector
v can be represented as the operator Q.0 + I,. Also, the bar and dag-
ger conjugations extend to this operator algebra, which allows for Lorentz

transformations.
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4.4 Relativity with the Pauli Algebra

When doing relativity in any formalism, it is essential to first define what set
represents the elements of the set of all possible events in spacetime, which
forms four-dimensional vector space. It is also essential to define on this set
the symmetric bilinear mapping g, via which Lorentz transformations are
defined. Fortunately, the Pauli algebra possesses both of these structures
in a most convenient manner. Thus, the Pauli algebra allows for a natural
covariant formulation of special relativity.

Minkowski vector space is taken to be the four-dimensional subspace of
Pauli algebra that contains only real elements of Clz. Hence, the spacetime

vector v is represented by the Pauli algebra element
v=104+v=1'e, (4.20)

where v# are the real components of v relative to the basis {e,}, and ep is
a unit timelike spacctime vector along the time axis of the observer. Any
sum of a scalar and a vector is called a paravector. The paravector v is
associated with a contravariant spacetime vector, which can also expressed
as v = vue®, where {e# :=n'Ye,} is the reciprocal basis for Minkowski
spacctime. The spatial reversal 0 is associated with the covariant spacetime
vector ¢ = v#€, = v,&", where {é,} and {€*} are considered to be reciprocal
bases for the dual of Minkowski spacetime.

The Lorentz inner product g is defined on paravector space by observing

that in the Pauli algebra the square of a paravector v is
V=(0+v) (@ +v)= (-uo)2 +v-v+ 20, (4.21)
which, unlike the square of a vector, is not a scalar. However, v# is a scalar,
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and in fact,
vi=(0+v) (0 -v)= (v“)2 -v-v. (4.22)
Hence,
v =vi = g(v,v) (4.23)

is the desired Lorentz norm. As in (3.5), the Lorentz inner product is given

by letting v = z + y and using the symmetry and linearity of g in (4.23)

o(z,4) = 5@y +7z). (424)

Notice that the right side of the (4.24) is just the scalar part of the product
< zij >g . Given the Lorentz inner product, the Minkowski spacetime metric

cocflicients are determined explicitly in Cl3 as

1; p=v=0
2 l, <
M = (euév)g = 3 (euév +evéy)=¢ —-1; p=v=123 . (425
0; B#Fv

The scalar part of the product is symmetric in Cla, thus (e,é,) g = (€uev)g =
(év"u)s = (evEu)y

A Lorentz transformation is defined in section 4.1 as a linear transfor-
mation that preserves the Lorentz inner product. The set of all Lorentz
transformations forms a group called Lorentz group. An important sub-
group of a Lorentz group, called the restricted Lorentz group Cl, consists of
the proper orthochronous Lorentz transformations. Given an orthonormal
basis {e,}, a Lorentz transformation L is represented by the 4 x 4 matrix

L,” defined by e, = Le, = L,"e,. It follows from (4.25) that
Muv = (ezlé:')s = L“QLV" (eae-ﬁ)s = LpaLvaﬂap, (426)
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and L," is an orthogonal matrix with respect to 7. A Lorentz transformation
L is proper if the matrix L,” has determinant +1, and is orthochronous if
it preserves the time orientation of all timelike spacetime vectors. This ma-
trix representation of the restricted Lorentz group is SO (1,3). Restricted
Lorentz transformations are particularly physically relevant for special rel-
ativity because they relate the orthonormal bases of inertial observers.

The two-fold covering group?® of CS_ is the spin group SL(2,C) which is
isomorphic to the subset[5] $piny (1,3) of the Pauli algebra that consists of

all the unimodular elements of Clj:
$piny (1,3) :={LeCly | LL=LL=1}. (4.27)

This group is isomorphic to SL(2,C) in the usual matrix representation of

the Pauli algebra. The spacetime vector z = z% + x transforms under £,r,, as
z—z =LzL', (4.28)

where L is a unimodular element of Clz. From (4.28), the corresponding

covector T transforms like
T—% =L'ZL. (4.29)

There are always two elements of $piny (1,3), £L, which map onto the
same clement in CL. Thus, there is a 2 to 1 map ¢ from the group of spin
transformations to the group of restricted Lorentz transformations, i.e., the
ker(¢) = {£1}. Notice that while spin transformations exist as elements of
the Pauli algebra, the restricted Lorentz transformations themselves do not

exist as single elements of Cl3.

2Locally, $pin, (1,3) and CL are alike, but globally they differ. The most important
global differences are that $pin, (1, 3) is simply connected. while [.1 is not, and there is
2 to | homomorphism from $pin. (1,3) onto L.
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Any spin transformation can be written in the form

L=:!:exp{-;- (w+i0)}, (4.30)

where w and 8 are real vectors. If w =0, then L is unitary and describes a
rotation in R? in the plane orthogonal to 8 by an angle [8]. If 8 = 0, then

L is real, and we have a boost at velocity
v = tanh(w), (4.31)

where w represents the rapidity.

However, unless a and b commute, e**® is not e®®, and therefore,
exp {4 (w+i6)} is not generally the product of the ei¥ with the rota-
tion €% unless w and @ are parallel. [n spite of this it is always possible
to factor any transformation into the product of a boost and a rotation as
follows. For any spin transformation L, the product LL' is Hermitian, and

gives the proper velocity of an object transformed from rest
u=Legl! = LL' =e". (4.32)

There exists a unique timelike square root of u with a positive time com-
ponent which can be used to define a boost B = VLL' =e¥. The product
BL is unitary and unimodular hence it is a rotation R = %%, This shows
that L can uniquely be written as the product of a boost and a rotation,
L =BR.

The topology of the group {R : RR =1} of rotations was shown in sec-
tion 3.4 to be that of the 3-sphere S3. The set {w =w'} of boost pa-
rameters is a real three-dimensional vector, and thus has the topology of
R3. Because the exponential is continuous with continuous inverse, the set

{e¥ : w = w'} of boosts is topologically identical[23] to the set of boost
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parameters, and thus also has the same topology as R3. Therefore, since
each ordered pair consisting of a boost and a rotation is associated with
a unique spin transformation, $pin,. (1, 3) has the topology of R3 x $3(22].
The space R® x §3 is easily given a group product by considering it to be the
direct product of the groups R? and S3. Therefore, $pin, (1,3) and R3 x §°
are both topological spaces and groups, and are equivalent as topological

spaces. Are they equivalent also as groups? The answer is no, because the
mapping

R? x S® — $pin, (1,3)

) (4.33)

(w,e?) — eVe
that makes them isomorphic as topological spaces maps the commutative
subgroup R3 x {1} bijectively into the set {e¥} of boosts, which has a non-
commutative product. Thus, this mapping is not an isomorphism of groups,
and cannot be used to impose group structure on the set of boosts.

Since the spin transformations L and — L correspond to the same Lorentz
transformation, it is interesting to find out how their boost rotation decom-
positions differ. If L = e¥e % then

L = e¥ei§emd
(4.34)

= eFe-30-2mo

Therefore, the spin transformation that represents the boost is unchanged,

and the negative sign is absorbed into the argument of the exponential that
represents the rotation.

When A? # 0, it is always possible to find A’ such that eih = —edh
as follows. \hen transformed by a spin transformation L, this equation
becomes eiF = —eiF, where F* = LA'L and F = LAL. If an L can

be found such that the real and imaginary parts of F are parallel, then

40



the minus sign can be absorbed into the exponential as in (4.34), so that

AF = i (F+2mF) Applying the inverse transformation L then gives that

e%l\' = e%(A+21riZf’L). Then
A = A +2nilFL. (4.35)

To find the required L, note that A can be Lorentz transformed into F
iff the Lorentz invariants A2 and F? are equal. Therefore, there exists a
transformation(s) such that F = v/AZe;, which has real and imaginary parts
parallel. Many different Lorentz transformations will do the job, but a
unique boost B can always be found [16]. The direction of the boost is the
vector & that is orthogonal to both the real and imaginary parts of F — A

and the proper velocity is

F AL

= 2=
Rk vy ve

(4.36)

where L is with respect to u.

This construction fails when A2 = 0. Hence, the negative sign in front
of the exponential in (4.30) is essential(4, 5] and cannot always be absorbed
within the exponential. To see this consider L = —e%‘\, where A = w + 0

and
A =uw?-6%-2iw-0=0. (4.37)
Thus w = 8 and w -8 =0. Then A% =0 gives
e“=1+A+%A2+...=l+w+i9. (4.38)
Suppose L = eV’, where A’ = w’ +i@". If (A’ )2 =0, then

1+w +i0'=—-(1+w+1i6), (4.39)
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which clearly is impaossible. If (A')? #0, then

4 !
cosh A’ + -slnAh—,A—A'= -(1+w+i6). (4.40)

Then cosh A’ = ~1 gives A’ = +im, which in turn gives sinh A’ = 0, which
clearly also is impossible for non-zero A. Therefore, this L cannot be written
as e for some A’. However, L can be approached arbitrarily closely by
elements of the form e'.

Every A with A? = 0 can be rotated into A = a(ey —ie2). Hence,
for simplicity and without loss of generality, consider L = —eiA. Define a

one-parameter family
W (X)) =ae) —i(a - M) ey, (4.41)

where 0 < A < a. Then 1in})W(z\) = A implics that lirr}) [—e";w] = —eih.

But whenever A # 0,

W2=a?—(a-A)?=A(2a-1) #0. (4.42)

Therefore. from the above. there exist W' (A) with AW = —eiW | and

limn [eiw'] = —eif, Explicitly. take F = ae; where a = /A (2a = A).
Then

F-W=(a—-a)e;+i(a—-A)ez (4.43)

gives that u is in the ez direction. Therefore F = F and W = W, and

from (4.36),

FW

w7

= alla—-ia-)\ee (4.-44)

= alla+(a—A)eg.
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Finally, (4.35) with L = B = u? gives

W' = W +2mBe B
= W +27ieiu (4.45)
= ae;+2ma”!(a—-Aez+i[2ma"lae; — (a - N)er] .
Therefore

R{W?} = a? + [2ma™ (a - N)]* - (2107'a)" - (@ = N)? = a? — 4n”

(4.46)
3{W?} = 4na"'a® - 4ma~ (a - 2)? = 4ra, (4.47)
and W' = (a + 2mi)?. These together with
AW _ osh [ LW W oon (Lvwe
e? -coah(2 w ) + msmh 3 w
give
. iw — . a—=1 s f i L ,
lim [e'-' ] = cosh(mi) + (2m) " lim [W'sinh § (a + 27i)]
= - [1 + % (ey - ieg)] (4-48)
= —eih.

Now find the boost B and rotation R such that L = —ed(©1ti€2) = BR.
To find the boost, first calculate
B? = LL!
= (1 +ae; +iaep) (1 +ae; —iaey) - (4.49)
= 1+ 2a? + 2ae; + 2a%e3

This gives

(1 +a® +ae; +a’es), (4.50)
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and
R = BL

7&.1‘ (1 +a? — ae; —a?e3) (1 +ae; + iaes) - (4.51)

ﬁg (1 + iaey)
[n terms of exponentials, B = e? = cosh % +wsinh§ and R = e i%e

[} ; in 8 o1
cos ;5 — ey sm§ give

8 = ey, (4.52)

0 )
a = —tan 3= sinh KL (4.53)
w= —eu:os% + ez sin g (4.54)

Thus, [ = —edle1+ies) — csinh™'(a)Weitan~'(aJez  Even though the boost and
rotation are expressed as positive exponentials, their product can only be
expressed as the negative of a single exponential. Notice that the boost
direction and the rotation axis are perpendicular to each other, and in the
limit @ — 0o, the boost parameter is infinite and rotation angle is =.
Note that (4.54) gives that W is a rotation of —e; about the ep axis by
an angle §. This gives W = et (—ey) et and thus
L = ee"g‘?(—%e|)e“‘2c-igeg
= e-iferp-fergiferg-ifer | (4.55)

w
-

-8 -8
e t1%e™3 e o-ige?

Hence, L is a rotation about the ep axis by an angle "5, followed by a boost
in the —e; direction with rapidity w, followed by a second rotation about
the e, axis by an angle %. This gives geometrical significance to the vectors

that appear in A.
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Chapter 5
Spinors

Spinors are needed in physics because in relativistic quantum mechanics
states are represented by rays in a Hilbert space(23]. The state of a quantum
system depends on the reference frame of the observer. Suppose ¥ and
' arc the states with respect to reference frames related by the Lorentz
transformation L. Then there is a unitary transformation Uy such that Y =
ULy. However, if ¢ is any normalized element of Hilbert space, then ¢ and
¢  represent the same physical state of the quantum system. Therefore, if

L, and L, are two Lorentz transformations, then
U UL, =wly, 4, (5.1)

where w is a phase factor that depends on L, and L. Wigner(24] showed
that the unitary operators can be chosen such that this phase factor is
+1. This means a double-valued representation of the Lorentz group, or
a single-valued representation of its covering group, SL(2,C), is needed.
These representations are the spinor representations. The elements of the
representation spaces are called spinors, and are fundamental to physics.
Spinors also provide useful insight in classical physics(14].
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The smallest irreducible representations of S L(2, C) are on the 2-component
spinor spaces(20, 22], and every representation of SL(2, C) is equivalent to a
representation of $pin (1,3). As a matter of fact, it turns out that minimal
left and right ideals of Cl3 can be used as irreducible representation spaces
of $pin, (1,3)[25]. Thus, spinors and spinor algebra can be fully incorpo-
rated in the Pauli algebra. This leads to a particularly elegant algebraic
formulation of spinors that is largely index free.

Minimal left and right ideals of geometric algebras are created with pro-
jectors. Consider the Pauli element P = % (1 + e) constructed from the unit
spatial dircction e. This element is called a projector because P is real and
P = P? which means that projcctors are non-invertible elements of the
Pauli algebra. A minimal left ideal S of the Pauli algebra is defined by any

projector P:
S={aP|a € Cl}. (5.2)

Definc an irreducible representation of $piny (1,3) on S by the spinor trans-

formation
n—Ap (5.3)

for every n € S and A € $piny (1,3). For any elements 7 and € of S, n€ = 0.
A basis over C for the minimal left ideal S is {ag, a1}, with ag = 2ip
and a; = 2%nP = €7 qq, where n is a unit vector orthogonal to e. The
normalization has been chosen to make comparison with standard results
easier. [n terms of components, n € S is writtenasn = nlas; A =0,1. The
! are the indexed quantities used in the standard formulation of spinors.
Thus, the minimal left ideal S is identified with the space of contravariant

2-component spinors.
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Notice that agag = &1 = 0 and agay = —a@jag. This allows for a

skew symmetric inner product
(,):SxS-=C (5.4)
on S defined by

i€ = (n°&' - n'¢®) doa
= (&) doa , (5.5)
= V2 (niif)s dom
ie., (0,8 = V2 (nis) s+ Note that (n,n) = 0 for any spinor . The basis

{ap, a1} satisfies {(ag, ;) = — (a1, ag) = 1. Any basis with this property

forms a spin frame. The indexed version of the inner product is given by

€A = (aa,ag), [eas] = [0 ' ] , (5.6)
-1 0

and (1, §) = 1*&%eqs.
Since P = P?, P is also a projector, it can be used to define a minimal

right ideal

i

= {-Pala€Cls}
= {nlneS}.

(5.7)

This space is identified with the space of covariant spinors, the dual space

to the minimal left ideal S. Under the spin transformation A, 7 € S
7j — AA. (5.8)
Thus, under the spin transformation A,
7§ — HAAE = 7€, (5.9)
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and the inner product (5.4) is invariant under all spin transformations.
Suppose § = span{ﬁo,ﬁl}, with {Eo,'ﬁ_l} dual to the basis {ag,a;}, and
7T=n ABA for n € S. The dual basis elements are defined as scalar val-
ued linear functions of spinors in S, namely 3’4 (ag) = 64, and 7(§) =

n€88" (@) = 176€° +n,€". On the other hand,

<n,&> = <n'asPap> (5.10)
= ¢! —n'

Henee, if 71 (€) =< n,€ >, then ng = —n* and n; = n° are implied. Thus, 7j =
17,‘-5"‘ = nBag gives that the basis (over C) for Sis {[_30 = —-ay, -ﬂ-l = ﬁ}.

Similarly, the spaces of contravariant and covariant conjugate (or dot-
ted) spinors can also be identified within Cl3. The contravariant space is

identified with the minimal right ideal

St = {Pa|a€Cl3}

, (5.11)
= {n'IneSs}.

with the transformation law
n' — A" (5.12)

This space is spanned by {a() =a),a; = a{} , and for every n € S, n' € S7
is written as pt = "7‘\.’03 , X =0,1. The covariant space is identified with

the minimal left ideal space (covariant conjugate spinors)

5" = {aP|a€Cl3}

(5.13)
= {7'IlneS}.
Under the spin transformation A, 7T € S '
gt — K. (5.14)
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The basis for St is {36 =5°*,Bi =E”} and ¥ n € S, /' is written as 7t =

n XF\" The obvious dual relationship between covariant and contravariant

conjugate spinors is given by
it ({*) =<n,&>". (5.15)

From (5.8), S is a representation space for $pin4 (1,3). The represen-
tations of Sping (1,3) on S and § are equivalent because : § — S is an
invertible linear mapping. The map S — S! is a conjugate isomorphism,

ie.,

n+&—nt+¢& (5.16)

cn—c'n' (5.17)

¥ 1,£ € S and ¢ € C. Therefore, the representations of $pin (1,3) on S
and ST arc inequivalent, while representations on ST and 5" are equivalent.

The product of the spinor 1 with the conjugate spinor &' transforms as
ng' — Ang'A (5.18)

under a spin transformation A. This is the same transformation law as that
of a spacctime vector. Also, r)f*r){’ = 0. Thus, n€! is a candidate for a
lightlike spacetime vector. However, since in general né! is not real, it is an

element of complexified Minkowski spacetime. The basis
{l = aoaf,, m= aoa{, m! = alao, n= alal} (5.19)
for Clj is a basis of lightlike spacetime vectors with

ll=im=m'm!'=fin=0 (5.20)
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(In)g = - <ﬁm’>s =1 (5.21)

Such a basis is often called a null tetrad. Any real spacetime vector v can
be expanded with respect to a standard orthonormal basis, or with respect
to the null tetrad:

v=1de, = V"‘BaAaTB. (5.22)

Note that the v* are real, while the VA8 may be complex.

[n relativity the choice of a metric with signature (1, 3) or with signature
(3,1) is usually considered a matter of convention. However, in light of
(5.22), where a spacctime vector is expressed in terms of both a spacetime
vector basis and a spinor basis, the choice of signature (1,3) seems much
more natural and convenient[23|, as we now show. For the rest of this

paragraph assume that the choice (3,1) is made. Then the scalar vv =

yABy <D ( aAaEacaz,)s

= yABycCD (ﬁLE,\O(ﬂJB)

-, vk Also

gl
]

S
= V"‘BVCDGAC (HEHQQ 1 “TD>S

= VABYCD¢, e <(330!D)t agay >s
= VABVCDGACGBD

= VepV©P

(5.23)

Hence, v = -y, v* = CDVCD. Thus lowering one spacetime index or
lowering two spinor indices are both natural ways to change a contravariant
spacetime vector into a covariant spacetime vector. When the signature
(3,1) is used, these two natural ways of moving to the dual space differ by

a minus sign! When doing calculations that involve spinor and spacetime
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vector indices it is necessary to keep track of which method is used. Choosing
the opposite sign for the spinor metric doesn’t help because it is used twice
for every use of the spacetime metricc. When l:.he signature (1,3) is used,
no such problems occur because the very natural relation vv = y,# =
VopVED is satisfied.

So far, 2-component spinor spaces have been identified with certain left
and right ideals in Cl3. But in order to write the Dirac equation in Cl3
we must express 4-component Dirac spinors in Clj as well{12]. Dirac spinor
space is the direct sum of the two inequivalent 2-component spinor spaces
S and 5. Now note that the projectors P and P satisfy PP = 0 and
P + P = 1. Hence, the minimal left ideal

S = {aP| a € Cl3} (5.24)

is complementary to the minimal left ideal S. That is, an element a of the
Pauli algebra can be expressed uniquely as a sum of an element of S and an
element of S: @ = aP + aP. In other words, the Pauli algebra is the direct
sum S @ §, which is used to embed Dirac spinors in the Pauli algebra as
follows.

First define a spin action on the whole Pauli algebra by ¥ — AW for any

Pauli element ¥. Now,

¥ = YP+VYP
VP + ¥YnnP
VP +¥nPn
= n+¢n,

(5.25)

where = U P and £ = ¥nP are both elements of S. The spin action on the

Pauli algebra is thus consistent with the spin action (5.3) on S. The space
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of Dirac spinors is taken to be the Pauli algebra with this spin action and

the decomposition into (5.25).

Now that Dirac spinors have been formulated within the Pauli algebra,

the Dirac equation is treated in the next chapter.
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Chapter 6

Pauli Algebra Dirac Equation

6.1 Dirac Equation

The Dirac equation[l1l, 12| can be motivated from spacetime momentum.
The spacctime momentum of a particle of rest mass m is given by p = mu,
where u is the proper velocity of the particle with respect to the lab frame.
Here, ¢ = | gives that uw = 1. The particle’s proper velocity with respect
to its own rest frame is just 1. These momenta are related by the Lorentz
transformation that takes the particle rest frame to the lab frame, i.e., p =

mu = mAlA'". This, together with AA = | gives
pAl = mA, (6.1)

where A is the eigenspinor relating the rest frame to the lab frame. Equation
(6.1) looks very much like the standard formulation Dirac equation p#v,¥ =
myp except that: 1) in a matrix representation of the Pauli algebra, the 4-
momentum is expressed using 2x 2 matrices, and in the standard formulation
it is written using 4 x 4 matrices, 2) in the standard formulation, ¥ is a Dirac

spinor with four independent complex degrees of freedom, while in (6.1),
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A is a unimodular element of the Pauli algebra specified by three complex
numbers. The first difference is an advantage over the standard formulation.
The second difference means that (6.1) cannot be a Pauli algebra formulation
of the Dirac equation. To overcome this difficulty, replace A by ¥, a Pauli
algebra version of a Dirac spinor as discussed at the end of the previous
chapter. Actually, ¥ is spinor field that depends on spacetime position.
Under a spin transformation (that doesn’t change the spacetime origin) A,
W' (') = AW (z), which is the same as ¥’ (z) = AW (sz’).

The differential form of the standard formulation Dirac equation is ob-
tained by replacing the conjugate momentum p* +eA* by id*. In the Pauli
algebra formulation, (p + eA) 7' is replaced by i9W'e, where e is the spin
axis in the electron’s rest frame, and 3 := e*d, is the Pauli algebra differ-

ential operator. This results in the Pauli algebra Dirac equation

io0'c —eAV = m¥, (6.2)
or cquivalently, after taking bar-dagger

il — eAV = m¥'. (6.3)

Under a spin transformation A, 39— KYEK, ¥ — AY, A — KTXK, and e
is invariant because it always represents the spin in the rest frame of the
electron. Lorentz covariance is casily shown by transforming these quantities
in (6.3).

It is very easy to verify that the Pauli algebra Dirac equation is equivalent
to the standard Dirac equation. This is done by multiplying (6.2) from the
right by the projectors P and P. Using eP = P and eP = —P, this gives

id(VP) - eA(VP) = m¥P (6.4)
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—id(VP) - eA(¥P)' = m¥P, (6.5)

and with the identifications ¥P = n and WP = £n of the previous section

these become
(18 — eA) (En)’ = mn (6.6)
~(i0 + eA) 7' = mén. (6.7)

Thus, these equations are two coupled equation with 7 and £, and from this

we can write the Weyl bispinor as

21
t[):(-en). (6.8)
n

The standard Dirac equation ¥#(i8, —eA, )y = my, when expanded in the
Weyl representation, leads to the same two coupled equations.

If ¥, =n, +&n and ¥z = 1, + §n are two solutions of (6.2), then
any rcal combination of ¥, and W¥; is also a solution. However, c1 ¥, is
not nccessarily a solution for ¢; an arbitrary complex scalar, and thus the
superposition principle does not hold for the Pauli algebra Dirac equation.
This is because the appearance of dagger on only one side of (6.2) makes it
a complex non-linear equation. There are Weyl bispinor solutions ¥, and
¥y to the standard Dirac equation that correspond to ¥, and W2. The

superposition principle for the standard Dirac equation then gives that

—(c1*§1)'n
ay; = (6.9)
an

is also a solution. Therefore, for ¢; = r;1e¥! with real r, and 6,,

¢ = an+a’§n

| _ (6.10)
= 11 (e +e & n)
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is the solution to the Pauli algebra Dirac equation that corresponds to c1¥;.
Now note that
Pe® = 3(1+e)(cosf + iesind)

= Pe'Y,

(6.11)

and n = nP. Hence, ¢ = r1¥,e"%1® is a solution to the Pauli algebra Dirac
equation whenever ¥, is. This can be verified by substituting ¢ directly into
(6.2). Note that e'%'® is rotation about the spin axis e.

In the Weyl representation for the standard Dirac equation, the charge
conjugation operator interchanges n and §. Therefore, in the Paul algebra

the action of charge conjugation C is
V=np+ln—V¥c=5+m=¥u (6.12)

To confirm this calculate

mUc = -m¥'n
= —(-id¥ce— eA¥c) (6.13)
= i0¥ce +eAV¥c,

which is (6.3) with the sign of the charge changed. Under parity P, all spatial
vectors reverse direction, but products of spatial vectors do not change order.

This is accomplished by taking the bar-dagger:

V=n+n—Vp=0 =7 -&'n. (6.14)
Hence ¥ p satisfies
m¥Up = m¥
= 90 e —eAT' (6.15)
= i0¥pe —eAVp.
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In other words 8 — 8 and A — A as expected. Time reversal T is achieved
by

+ 4
i

U=n+tn—Upr="ei"= (ne‘*") - (Ee"i"') n. (6.16)

Therefore,
m'll_l; = m\[lei"i"“
= 90 e ine — AU eiE" . (6.17)
= —ia\l"re - eA‘IlT.

Under time reversal e — —e and 7 — p. This is the same as rotating the

spin axis about n by 7 followed by a parity transformation.

6.2 Neutrinos

Recently, there has been much interest in neutrinos, which are electrically
ncutral clementary particles that satisfy the Dirac equation. The current in-
terest has largely centred on whether or not neutrinos have mass. Neutrinos
interact with matter through the electroweak force. When the electromag-
netic and weak forces decouple in the low-energy limit, neutrinos interact
with matter only via the weak force. This makes neutrinos difficult, but
not impossible, to detect experimentally. Also, this means that the electric
charge e = 0 in the Dirac equation for neutrinos. Independent neutrinos ex-
ist for each of the three generations of leptons, the electron, muon and tau
particles. A brief introduction to neutrino oscillations and to the treatment
of Dirac-theory neutrinos in the Pauli algebra follows.

Neutrinos were originally introduced theoretically to conserve energy,
momentum and angular momentum in beta decay. At the time, there was

no direct experiment evidence for this particle, but the only other possibility
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seemed to be to give up the law of conservation of spacetime momentum.
The indirect experimental evidence that existed indicated that the mass of
a neutrino had to be very small[26], so the simplest assumption was to set
its mass equal to zero. Since it needed to be a fermion of spin %, it should

be governed by the Dirac equation (6.3) withm=e =10

0 = idve

- (6.18)
= id(n+&n),

which decouples into iy = 0 and id¢ = 0. One of these equations is
sufficicnt, because they are mathematically identical, and n and £ don’t
interact with each other. Hence, neutrino wavefunction space is N =
{n€S:iBn=0}. If n is a neutrino wavefunction, then parity acting on
n gives 7' € §T, which is not in A, and thus not a neutrino wavefunction.
Therefore, since parity is not even defined on N, parity cannot be a sym-
metry of this formulation of the neutrino. This was initially thought to be
a negative aspect of the theory, but was later confirmed by experiment(27).

Neutrinos produced in nuclear reactions in the sun are detectable on
the carth. [However, the number of solar neutrinos detected is smaller than
expected. One possible explanation is that neutrino oscillations[28] are in-
volved. These oscillations are possible only when one or more of the neutrino
masses is nonzero. To show this, assume for simplicity that there are only
two flavours (generations) of neutrinos, the electron neutrino |ve) and the
muon neutrino |v,). The mechanism for neutrino oscillation also assumes
that there is mass mixing, so that the flavour eigenstates are superpositions

of orthogonal mass eigenstates. Hence, in the usual Dirac notation,

lve) = c1|m1) + c2|ma) (6.19)
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[vu) = dy [m1) +d2|ma) . (6.20)

Orthogonality of the flavour eigenstates gives c;d} + czdj = 0. If an electron
neutrino in state |v.) is created at the spacetime origin and the mass eigen-
states propagate as plane waves that have the same 3-momentum p, then

the state of the neutrino at all spacetime positions z is given by
[¥) = c1e”*P3s |m,) + coe~*P2®)s |my) . (6.21)

The probability of detecting a muon neutrino at spacetime position z is then

given by

2

[(Wul)? = [dicie™ P Fs + d5cre~*P23)s (6.22)

= |dar]? + |daca)® + 2 (d}crdaci exp {—i (P2 = 1) B) s Pn -

The probability at the spacetime origin is, as expected, |cid} + czci§|2 =0,
but oscillates between 0 and 1 as spacetime position changes. Thus, an
electron neutrino can “oscillate” into a muon neutrino as it propagates. Note
that if the masses of the mass eigenstates are equal then equal 3-momenta
implies that the spacetime momenta p; and p; are equal, and no oscillation
occurs. In particular, both masses cannot be zero.

Consider the Dirac equation for the neutrino when m # 0, for which
(6.3) is i0Ve = m¥'. Therefore, a neutrino wavefunction in this formuia-
tion is ¥ € P that satisfies the Pauli algebra Dirac equation with e = 0.
Hence. from the above, parity acting on any neutrino wavefunction gives a
wavefunction that is also a neutrino wavefunction. Thus, in this formulation,
the theory of the massive neutrino may be made invariant under (intrinsic)
parity.

For a formulation of the neutrino that is explicitly not invariant under

parity, consider a massive Majorana neutrino. A massive Majorana neutrino

59



is its own antiparticle, i.e., its wavefunction satisfies ¥ = ¥¢. When ¥ =
n+én, ¥c = €+nn, and ¥ = Yo iff £ = n. Then (6.3) reduces to
ion = m(_r)n_)t, and each Majorana wavefunction has half the number of
degrees of freedom of the massive Dirac neutrino. The Majorana formulation
of the massive neutrino does not have parity as a symmetry because, as in
the case for the massless neutrino, parity cannot be defined on the neutrino
wavefunction space.

Both the massive Dirac neutrino and the massive Majorana neutrino
approach the massless case smoothly as m — 0. Therefore if the mass
of the neutrino is small but nonzero, it could prove difficult to distinguish

experimentally between them.
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Chapter 7

Conclusions

Geometrical algebras are ideally suited for providing geometrical insight
into various subjects and calculations. For example, the geometrical basis
for rotations and Lorentz transformations is best illustrated using the Pauli
algebra, which is the geometrical algebra for physical space. Geometrical
algebras also unify many concepts and formalisms, including the complex
numbers, quatecrnions, and complex quaternions. When using geometrical
algebras, no matrix representation is needed. In fact, it is usually best to
avoid such a representation.

The Pauli algebra contains the complex numbers and quaternions as
subalgebras, and is itsell isomorphic to the complex quaternions. Thus,
it is no surprise that the geometrical concepts for space, and applications
of complex numbers and quaternions, are all easiiy expressed using it. The
geometric algebra for spacetime has twice the dimension of the Pauli algebra,
and would seem to be a natural tool for relativity. Therefore, it is a pleasant
surprise that all aspects of relativity can be formulated easily within the
smaller and simpler Pauli algebra. This includes 2 and 4-component spinors,

which appear as algebraic ideals of the Pauli algebra.
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This thesis has investigated a number of examples in which the Pauli
algebra unifies quaternionic, spinorial, and other approaches to problems
involving rotations, boosts and relativistic quantum theory. These investi-

gations have shown the versatility and power of the Pauli algebra.
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