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ARTIFICIAL NEURAL NETWORK MODELS FOR DIGITAL IMPLEMENTATION
by
Chuan Zhang Tang
Doctor of Philosophy in Electrical Engineering, 1996
University of Windsor, Windsor, Ontario, Canada N9B 3P4

Supervisor: Dr. Hon Keung Kwan

The last decade has witnessed the revival and a new surge in the field
of artificial neural network research. This is a thoroughly interdisciplinary area,
covering neurosciences, physics, mathematics, economics, and electronics.
Although artificial neural networks have found diverse applications in pattern
recognition, signal processing, communications, control systems, optimization,
among others, this is still a research field with many open problems in the areas
of theory, applications, and implementations. Compared with the development
in neural network theories, hardware implementation has lagged behind. In
order to take full advantages of neural networks, dedicated hardware
implementations are definitely needed. Today, harnessing VLSI technology to
produce efficient implementations of neural networks may be the key to the

future growth and ultimate success of neural network techniques.

This dissertation deals with the development of neural network models



implementation technologies are basically a digital implementation medium,
which offers many advantages over its analog counterpart, artificial neural
networks must be adapted to an all-digital model in order to benefit from those
advanced technologies. In this dissertation, new models of multilayer
feedforward neural networks with single term powers-of-two weights,
quantized neurons, and simplified activation functions are proposed to facilitate
the hardware implementation in digital approach. Dedicated training algorithms
and design procedures for these models are also developed. To demonstrate the
feasibility of the presented models, performance analysis and simulation results
are provided, and VHDL and FPGA designs are implemented. It has been shown
that these proposed models can achieve almost the same performance as the
original multilayer feedforward networks while obtaining significant
improvement in digital hardware implementation in terms of silicon area and
operation speed. By using the models developed in this dissertation, a digital
implementation approach of multilayer feedforward neural networks becomes

very attractive.
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Chapter 1

INTRODUCTION

The last decade has witnessed the revival and a new surge in the field
of artificial neural network research. The term neural network originally referred
to a network of interconnected neurons which are basic building blocks of the
nervous system. Today, this term, or more properly artificial neural networks,
has come to mean any computing architecture that consists of a massively
parallel interconnection of simple neuron-like processors. These architectures
have been inspired by our current understanding of the brain, but do not

necessarily conform strictly to that understanding.

The fact that an one-year-old baby is much better and faster at
recognizing objects, faces, and so on than even the most advanced artificial
intelligence system running on the fastest supercomputer may imply that there
are numerous problems in the real world that are difficult with today’s
computing technology but are easily solved by human beings or even animals.
In view of this fact, the research on artificial neural networks has been

1



thoroughly interdisciplinary area, covering neurosciences, physics,
mathematics, economics, computer sciences, and electronics. There are

thousands of new comers entering this exciting research field every year.

1.1 History of Artificial Neural Networks

The initial effort in Artificial Neural Network (ANN) research may be
traced back to early 1940s when McCulloch and Pitts [McCulloch and Pitts,
1943] modeled a neuron as a simple threshold binary device to perform logic
functions. In this model, each neuron can be in only one of two possible states
and has a fixed threshold. It can receive inputs from excitatory synapses, all of
which have identical weights. It can also receive inputs from inhibitory
synapses, whose action is absolute; that is, if the inhibitory synapse is active,

the neuron cannot turn on.

Later in 1949, Hebb [Hebb, 1949] published his book The Organization
of Behaviour and for the first time proposed a neural learning rule for synaptic
modification that has been known as the Hebb rule. Hebb stated that if one
neuron repeatedly fires another, some change will take place in the connecting
synapse to increase the efficiency of such firing. This correlational synapse

modification rule has become the basis for many neural network models



1987 and 1988] and Hopfield Network [Hopfield, 1982].

The most significant work at the early stage of neural network research
was the Perceptron model which was developed by Rosenblatt [Rosenblatt,
1959 and 1962] in late 1950s and early 1960s. It was the first precisely
specified, computationally oriented neural network. The basic classification
element in the Perceptron is the R-unit, which forms a weighted sum of the
active elements times the connection strengths. The unit has a threshold. If the
sum is greater than the threshold, the R-unit takes the value 1; if less than the
threshold, the unit takes the value -1. This simple network generated much
interest when initially developed because of its ability to learn to recognize

simple patterns.

However, the Perceptron model has its own limitations. It is capable of
realizing only those linearly separable functions. This weakness was seized by
Minsky and Papert [Minsky and Papert, 1969] in 1969 when they proved
mathematically that the Perceptron cannot be used for complex logic functions.
The publication of their famous book, Perceptron, caused a sharp decline in

research on neural networks.

The present impetus in neural network research is due in part to the



these papers, he presented a recurrent model of neural computation that is
based on the interaction of neurons. He also pointed out that there are
emergent computational capabilities at the network level that are nonexistent
at the single neuron level. Such neural networks are now known as Hopfield

networks.

During the 1970s when no one else was working on neural networks,
Steven Grossberg and Teuvo Kohonen were making significant contributions.
In 1980s, Grossberg and Carpenter [Carpenter and Grossberg, 1983, 1987,
and 1990] developed their Adaptive Resonance Theory (ART) neural network
architectures, based on the idea that the brain spontaneously organized itself
into recognition codes. These are self-organizing neural implementations of
pattern clustering algorithms, that is, they form clusters and are trained without

supervision.

At the same time, Kohonen [Kohonen, 1982 and 1984] proposed his idea
of a self-organizing map, based on the fact that the brain is organized, in many
places, so that aspects of the sensory environment are represented in the form
of two-dimensional maps; the placement of neurons is orderly and often reflects
some physical characteristic of the external stimulus being sensed. It is a sheet-

like artificial neural network, the cells of which become specifically tuned to



learning process.

In the mid 1980s, David Rumelhart and his colleagues rediscovered the
backpropagation algorithm [Rumelhart et al., 1986], which was originally
discovered by Paul Werbos [Werbos, 1974] when he applied the LMS algorithm
to multiple layers of Perceptrons in the study of social sciences. The publication
of their landmark book on parallel distributed processing [Rumelhart and
McClelland, 1986] established the backpropagation algorithm and multilayer
feedforward neural networks (MFNNs) as the major paradigm of the field of
neural network research. This work and earlier works have finally galvanized a
large number of scientists into thinking in terms of collective neural

computation rather than single neurons.

From the late 1980s through the 1990s, with some neural network
paradigms having reached a considerable degree of maturity, more and more
efforts have been directed towards the area of neural network implementation
as well as applications. The pioneering work by Mead [1989] marked the
beginning of a new era in hardware implementation of neural networks. Since
then, with the technological advances of VLSI circuits and systems, the field
of VLSI artificial neural networks experienced an exponential growth and a new

engineering discipline was born. Various work on analog, digital, pulse-



and Elmasry, 1992, Oh and Salam, 1993 and 1994, Kim and Shanblatt, 1992,

Zaghloul et al., 1994, Sheu and Choi, 1995].

By far, Hopfield networks, ART networks, self-organizing maps, and
multilayer feedforward networks are the most popular artificial neural network
models that have ever been proposed. Other important ANN models may
include Neocognitron[Fukushima, 1975 and 1980}, Boltzman machines[Hinton
and Sejnowski, 1986][Ackley et al., 1988], bidirectional associative memories
(BAM’s)[Kosko, 1987 and 19881, and fuzzy ARTMAP[Carpentaer et al, 1992

and 1993].

1.2 ANN Features
Generally speaking, an artificial neural network model is specified by

three factors:

e a set of basic processing elements, called neurons (or nodes)

e a specific topology of weighted interconnections between neurons

e atraining or learning rule which specifies an initial set of weights and
indicates how weights should be adapted during use to improve

performance



sums a number of weighted inputs and passes the result through a nonlinear
activation function. More complex neurons may include temporal integration or
other types of time dependencies and more complex mathematical operations
than summation. The topologies of ANNs fit broadly into two classes: recursive
and feedforward. A recursive ANN is a network with feedback. In such a
network, each neuron receives as input a weighted output from every other
neuron in the network, possibly including itself. A typical example of recursive
neural networks is the Hopfield network shown in Figure 1.1. A feedforward
network does not contain any closed synaptic loops or feedback. The most
famous feedforward network is the Multilayer Feedforward Neural Network
which will be discussed thoroughly in Chapter 2. Training algorithms for ANNs
can be described either as supervised training or unsupervised training. The
distinction between supervised and unsupervised algorithms depends on
information they use. Supervised training, also called learning with a teacher,
assumes that the desired output of the network is known. This is then used to
form an error signal which is used to update the weights. On the other hand,
in unsupervised training the desired output is not known, but instead training
is based simply on input/output values. Such training algorithms usually act to

extract features from sets of input data.



AN
/\\ /\\
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%= (WY, + X))

Figure 1.1 A Hopfield Network

The potential benefits of neural networks extend beyond the high
computation rates provided by massive parallelism. Some of these benefits are

outlined below.

¢ Neural networks typically provide a greater degree of robustness or
fault tolerance than von Neumann sequential computers because
there are many more processing elements, each with primarily local

connections.

¢ Neural networks have the ability to adapt to changes in the data and

8



areas such as speech and image recognition. Adaptation also
provides a degree of robustness by compensating for minor

variabilities in characteristics of processing elements.

e Neural networks can perform functional approximation and signal
filtering operations which are beyond optimal linear techniques

because of their nonlinear nature.

e Neural network classifiers are non-parametric and make weaker
assumptions concerning the shapes of underlying distributions than

traditional statistical classifiers.

e Neural networks are model-free classifiers because they approximate

functions with raw sample data.

Because the motivation of ANN research comes mainly from the fact that
humans are much better at pattern recognition than digital computers, there is
no surprise that ANNs have found many applications in vision processing and
speech processing[Sejnowski et al., 1987][Lang et al., 1990][Taylor,
1990]([Levin, 1993][Kung and Taur, 1995][Zhang and Fulcher, 1996]. Besides,

ANNSs have also been applied to the areas of optimization[Tank and Hopfield,



and Winarske, 1988][(Choi et al, 1993][Kechriotis, et al., 1994][Ansari, et al.,
1995], control systems[Nguyen and Widrow, 1990][Narendra and
Parthasarathy, 1990][Sebald and Schlenzig, 1994]{Sanger, 1994][Lewis, et al.,
1996], and medical applications[Nikoonahad and Liu, 1990][Nekovei and Sun,

1995][Choong, et al., 1996], to mention a few.

1.3 Motivations and impact of this research

Although artificial neural networks have found diverse applications in
control, signal processing, and pattern recognition, among others, this is still
a research field with many open problems in the areas of theory, applications,
and implementations. Compared with the development in neural network
theories, hardware implementation has lagged behind. In order to take the full
advantages of neural networks, there has to be dedicated hardware
implementations. Research in hardware implementations belongs to the main
areas of activity in the field of neural networks and plays a unique role in the
progress of the entire field. The surge of interest in neural networks, which
started in mid eighties, was to a large extent caused by advances in VLSI
technology. Today, harnessing VLS| technology to produce efficient
implementations of neural networks may be the key to the future growth and

ultimate success of neural network techniques.

10



success in their own application domains. Each technique has its own pros and

cons. The selection between digital and analog circuits depends on many

factors, for example, speed, precision, adaptiveness, programmability, and

transfer/storage of signals. This dissertation deals with the topic in digital VLSI

implementations of artificial neural networks. An all-digital artificial neural

network VLS| implementation offers several advantages over its analog

counterpart[White and Elmasry, 1992]1[Kung, 1993].

1)

2)

3)

Digital design has an overall advantage in terms of system-level
performance. Dynamic range and precision are critical for many complex
neural network models. Digital implementation offers much greater

flexibility of precision than its analog counterpart.

In most real-world applications, neural networks are embedded in
existing digital systems. An all-digital ANN implementation provides

compatibility.

Real-world applications usually require large scale neural networks, in
some cases, of tens of thousands neurons and synapses. Digital VLSI is
more appropriate at this level of complexity, whereas analog VLSI suffers

from noise and difficulties in fabricating high-precision resistors and

11



4)

5)

6)

7)

Larger ANN’s may require multichip implementations, and an analog
implementation makes it more difficult to transfer signals from chip to
chip, and also to match board-level capacitive loads and time constants.
An all digital technique makes it easier to transfer signals form chip to

chip.

At any given time, digital VLSI technology is always more mature than
its analog counterpart in terms of fabrication technology and simulation
and design automation tools. It also offers a wide range of fabrication
technologies, including such technologies as ASIC for application

oriented design and FPGA for rapid prototyping.

Real-world neural network applications may suffer from 1/0 bottlenecks,
which are best addressed by digital techniques such as input buffers,
shift registers, and pipelining. Moreover, power dissipation reduction
techniques, such as dynamic logic and complementary operation, can be

used.

Digital implementation offers a homogeneous implementation

environment between the processing elements and the on-chip or

12



Because the state-of-the-art VLS| implementation technologies are
basically a digital implementation medium, artificial neural networks must be

adapted to an all-digital model in order to benefit from these technologies.

Meanwhile, there are also certain shortcomings of digital VLSI
implementation that must be resolved in order to implement ANN's efficiently.
Most ANN neuron calculations involve a weighted sum of the neuron inputs,
and the multiplier required for this multiply-accumulate operation is slow and

consumes large silicon area in a digital VLS| implementation.

The solution of this problem may be approached from 1) advances in
VLSI technologies; and 2) adapting existed models to today’s available
technologies. This dissertation deals with the latter issue and will develop new

models of MFNN’s which are suitable for digital hardware implementations.

In silicon design, the cost of a chip is primarily determined by its two-
dimensional area. Smaller chips are cheaper chips. Within a chip, the cost of an
operation is roughly determined by the silicon area needed to implement it. As
pointed out previously, in digital neural network systems, multiplications are

area-consuming and slow operations and there are massive such operations
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inputs to neurons and their corresponding weights can be reduced, a reduced
silicon area and higher speed will be resulted. Consequently, a lower cost will
be achieved. The basic ideas behind the models proposed in this thesis are
powers-of-two coefficients and functions, which will result in the replacement
of multiplications by shift operations, which are much faster and have much
smaller area, as well as the simplification of the realization of nonlinear
activation functions. By using these proposed models, certain computational
burdens in digital implementations will be alleviated without jeopardizing the
performance of the ANN system, and a digital implementation scheme becomes

very attractive.

1.4 Literature Survey

The idea of powers-of-two factors was first proposed for digital filter
implementations and has been successfully applied to many designs[Kwan and
Chan, 1989 and 1990][Lim and Parker, 1983a and 1983b][Lim et al. 1982][Lim
and Constantinides, 1979][Xue and Liu, 1986][Zhao and Tadokoro, 1988], in
which multiplications were either replaced by shift only operations or reduced
to shift operations plus very few additions, depending on how many terms of
powers-of-two were used. Single term powers-of-two factors are most desired

because they require the least operations in hardware implementation.
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artificial neural networks require very high density of computations including
large number of multiplications. In such cases, powers-of-two factors or at
least quantized weights are needed to reduce the amount of computation and

hardware requirements.

A digi-neocognitron model for VLS| implementation was proposed by
White and EImasry[White and Elmasry, 1992]. The original neocognitron (NC)
model[Fukushima 1980] was adapted to an efficient all-digital implementation
for VLSI. The new model, the digi-neocognitron (DNC), has the same pattern
recognition performance as the NC. The DNC model was derived from the NC
model by a combination of preprocessing approximations and the definition of
new model function, e.g., multiplication and division are eliminated by
conversion of factors to powers of 2, requiring only shift operations. The DNC
model has substantial advantages over the NC model for VLSI implementation

with a two to three orders of magnitude improvement in the area-delay product.

A one-dimensional Kohonen network with quantized weights and inputs
was studied by Thiran and Hasler [Thiran and Hasler, 1994]. The
implementation of a Kohonen network on a digital circuit realization yields the
quantization of all the input signals and weight values. It is crucial to see

whether this modification perturbs the self-organizing feature. In [Thiran and
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organization property of the original Kohonen network for the one-dimensional
case is conserved when the weights are quantized provided that its parameters

are well chosen.

The application of discrete weights and the powers-of-two technique in
multilayer feedforward neural networks has been studied by several authors
[Marchesi et al. 1990][Nakayama et al. 1990][Piazza et al. 1993] and most
recently by Marchesi et al.[Marchesi et al. 1993]. In [Marchesi et al. 1993], a
fast neural network model was proposed for digital VLSI impiementation along
with a dedicated learning procedure. In their model, weight values were
restricted to powers-of-two or sum of powers-of-two and adaptive biases and
automatic learning rate control were employed to compensate the quantization

error.

It was pointed out that one of the major problems of digital architectures
implementing neural networks, affecting both performance and chip area, is the
presence of muitipliers. The multiplications between inputs and weights, which
are slow compared to other operations and require a lot of chip area if a direct
VLSI implementation is planned, can be the bottle-neck of the system. By
introducing the idea of powers-of-two weights, it is possible to substitute

multiplications with simple shifts or much fewer shift-and-add operations,
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However, the learning algorithm developed in [Marchesi et al. 1993] was
not very effective. Its convergence performance was not satisfactory due to
lack of sufficient adjustable parameters. For a given problem, the starting point
of their proposed learning algorithm is the solution of the same mapping
problem with a conventional MFNN having continuous weights, applying the BP
learning algorithm. The obtained weights are then quantized to powers-of-two
values and the BP will be applied again to adjust the discretized weights in hope
to converge to the final solution. It is obvious that there is little room to
improve the network by adjusting the quantized weights. These quantized
weights are distributed in some discrete points and the gaps among these
points are usually much larger than the weight updating amount required by the
BP algorithm, so they are not suitable for fine tuning the neural network,
especially when single term powers-of-two format is used. Moreover, the
quantization scheme they adopted appears to be fairly complicated. Actually,
the minimization of the sum of squared weight quantization error as adopted
in [Marchesi et al. 1993] does not necessarily reduce the sum of squared
output error of the network due to the non-linear nature of the neural network
systems. It will be much simpler to adopt direct quantization of weights to their

nearest powers-of-two values as proposed in this dissertation.
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digital VLSI implementation, no investigation on real hardware issues had been

presented in the published work and that was a major weakness of their paper.

In view of this situation, a new algorithm for design of MFNNs with
single term powers-of-two (STPT) weights will be presented in Chapter 3 of
this dissertation, which has more degrees of freedom to adapt to a given
problem. In Chapter 4, an all new model of MFNNs with guantized neurons will
be proposed for digital hardware implementation, in which multiplications can
still be avoided and the implementation of nonlinear activation functions will

also be simplified.

1.5 Organization of this Dissertation

The remaining of this dissertation is organized as follows.

Chapter 2 begins with the multilayer feedforward neural network model.
The structure of the network and the backpropagation (BP) learning algorithm
are discussed. Some modifications to the BP algorithm are also presented. At
the end of this chapter, the issue of hardware implementation of MFNNs is
addressed, which introduces the necessity of the models to be developed in

Chapters 3 and 4.
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with single term powers-of-two (STPT) weights. The design procedures are

provided along with simulation results.

Another MFNN model - MFNNs with quantized neurons will be proposed
in Chapter 4. The concept of quantized neuron is introduced and followed by
the corresponding training algorithm. The design methodology of such networks

is developed and the mapping capability of the new model is examined.

Chapter 5 presents more MFNN models suitable for digital
implementations, starting with a simplified sigmoid activation function which
is easy for direct hardware realization, and followed by some MFNN models

designed to accommodate continuous and discrete input patterns.

Chapter 6 concludes the dissertation and suggests possible future

research directions.
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Chapter 2

MULTILAYER FEEDFORWARD NEURAL

NETWORKS

As mentioned in Chapter 1, multilayer feedforward neural networks
(MFNNs) are one of the most important and widely used ANN models. In this
Chapter, a review of the structure, properties, and training algorithms of
MFNNSs will be presented as a preparation for the new models proposed in the

following chapters.

2.1 MFNN Architecture

A Multilayer Feedforward Neural Network is a unidirectional network in
which adjacent layers are fully connected. The general structure of such a
network can be illustrated by Fig.2.1. For an L-layer MFNN, there is an input
layer (denoted as layer 0) with N, input nodes, an output layer (denoted as
layer L) with N, output neurons, and one or more hidden layers with N, (h=1,

2, ..., L-1) neurons at layer h.
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Figure 2.1 A Multilayer Feedforward Neural Network
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summations, and calculation of nonlinear functions. A typical neuron of MFNNs
is illustrated in Fig.2.2, where x;'s are inputs to the neuron, w's are
corresponding connection weights, z is the net input to the neuron before
activation, and y is the output of the neuron. The input-output relationship of
the neuron can be described as

N
z=Y_wx, + b (2.1)
=

and

y=Rz2) (2.2)

where F(-) is a nonlinear activation function. Some commonly used forms of
F(e) include the hardlimit function, threshold logic function, and sigmoid

function, which are shown in Fig.2.3.

Usually, the collective features of neural networks are of more interest
than those of single neuron. When the entire network is concerned, the input-
output relationship of a multilayer feedforward neural network can be described

by the following set of equations

22



OUTPUT

[h)
A Y ik

B/lh-1l . ] . yln-1]

N, K

Figure 2.2 A Typical Neuron in MFNNs
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Figure 2.3 Commonly Used Nonlinear Activation Functions

Ny
y}‘m=,_-(; Wiy I[hl] (2.3)

=X for i=1,2,..., N, (2.4)

where y, " is the output of neuron i at layer h-7; w;™ is the connection weight

between neuron 7 at layer A-7 and neuron at layer h; b* is the bias of neuron

j at layer h; x, is element / of the input pattern when pattern k is presented to
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of the network.

Due to the use of nonlinearities within neurons, multilayer feedforward
neural networks overcome many of the limitations of single layer
perceptrons[Rosenblatt, 1958 and 1962], which can only be applied to linearly
separable problems. Now, it is possible to use MFNNSs to distinguish between
arbitrarily complex decision regions. Actually, it has been shown that MFNNs
with a single hidden layer and arbitrarily bounded and nonconstant activation
functions are universal approximators provided that sufficiently many hidden
neurons are available [Hornik et al., 1989]. Although one hidden layer is usually
sufficient, sometimes a problem is easier to solve with more than one hidden

layer. In this case, easier means that the network learns faster.

For a given problem, the parameters of a MFNN, such as the number of
layers, the number of hidden neurons, the formula of activation functions, and
the values of weights, need to be determined before the neural network can be
applied to solve the problem. Among them, how to obtain the appropriate
values of weights is the major concern, i.e., how to train the network to adapt
to each particular problem. Learning algorithms for MFNNs has been a research
topic since 1960s. So far, the backpropagation (BP) algorithm[Rumelhart et al.

1986] has been the most popular one in spite of the existence of some
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1992], simulated annealing [Kirkpatrick et al., 1988][Szu, 1986], Choice of
Internal Representations (CHIR) [Grossman et al., 19891, and layer by layer
optimization [Ergezinger and Thomsen, 1995][Wang and Chen, 1996]. In the
next section, the BP algorithm will be reviewed and some of possible

modifications will be discussed.
2.2 The Backpropagation Algorithm

Consider the multilayer feedforward neural network as shown in Fig.2.1.
Adopting the same definition as in Section 2.1, the input-output relationship of

the network can be described as follows:

Ny
yll‘hl =F [IZ; w’;hly”l:)-ﬂ + bj[hl] (2.5)

with

¥ =x, for i=1,2, ..., N, (2.6)

Usually, the output of the network is not exactly the same as the desired
output during the learning process, there is an error associated with each

pattern. The error can be measured as the sum of the squared difference
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a pattern k is presented to the network, the error at neuron j of the output layer

is calculated as

6x=(tx- Vi (2.7)

Here t, represents element j of the target pattern k and L refers to the output
layer of an MFNN with L layers. Then the sum of squared error (SSE) related

to a particular pattern k can be defined as

N,
9k=j; (tjk_yl[;-])z (2.8)

And, the total squared error (TSE) over all patterns in the training set is defined

as

K
TSE=E o, (2.9)

k=1

Where K is the number of patterns contained in the training set. A learning
process, or training algorithm, is attempting to reduce the output error by

adjusting the weights and, in some situations, other parameters of the network.

First proposed by Werbos [Werbos, 1974] and rediscovered by Rumelhart
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method which allows updating of the weights of a feedforward neural network.
The idea of the gradient descent algorithm is to make the change in a weight
proportional to the negative derivative of a cost function, such as TSE, with
[h]

respect to that weight. Hence, by following this rule, the change in weight w;

(due to pattern k) can be calculated as

oe

A= -e—& for 1<shslL (2.10)
ow
]

where € is a learning rate parameter of weights, which controls the pace of

each weight adjustment.

By applying the chain rule (see Appendix A), the following formulas can

be obtained for weight updates in the BP learning algorithm

Al caltyr 211
where
0 S (el (A1) 2.12
le =F/(Z/k ),21: 6,]( wﬁ fOI' h<L ( * )
and
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Here F’( ) is the derivative of the activation function F( ). It can be seen that the
update of weights starts from the output layer down to the input layer. In this
process, the derivative of the activation function plays a very important role.
If the derivative is zero, no learning will occur even though there is a large
amount of error. A very flat activation function, i.e., an activation function with

very small values of derivative, may result in a very long learning process.

In summary, the BP algorithm may be carried out as follows:

Step 1: Initialization of weights with small random numbers

Step 2: Presentation of input patterns and desired output patterns

Step 3: Calculation of actual output and squared output error

Step 4: Check TSE<E, ? If yes, then stop; otherwise proceed to
Step b

Step b: Update of weights

Step 6: Go back to Step 2

Although the BP algorithm remains as the most popular and effective
way to train MFNNs, there are some drawbacks accompanying it. The

convergence speed of the BP algorithm is usually slow, and, in some situations,
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In view of these problems, modifications to the original BP algorithm have been
proposed by some researchers [Vog! et al., 1988][Jacobs, 19881IMinai and
Williams, 19901[Schreibman and Norris, 1990][Kruschke and Movellan,

1991]1{Lee et al., 1991].

2.3 Improvements to the BP Algorithm

Since backpropagation suffers from low convergence speed,
modifications to the original algorithm have been proposed to improve the

learning speed. Some of these modifications are discussed in this section.

2.3.1 Adjustable Learning Rate

Choosing an appropriate learning rate parameter € is a key factor in
controling the learning speed of the backpropagation. At different stages of a
learning process, the best value of € may be different. Instead of using a
constant learning rate for the entire learning process, a good idea is to adjust
it automatically as learning progresses [Jacobs, 1988][Vog! et al., 1988]. The
usual approach is to check whether a particular weights update did actually
decrease the output error. If it didn’t, then the process overshot, and € should
be reduced. On the other hand, if several steps in a row have decreased the

error, then perhaps the learning process is being too conservative, and € could
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-be if AE>0 (2.14)
0 otherwise

{+a if AE<O consistently
Ae =

Where AE is the difference between the network output errors at two

consecutive times t+1 and t, and a and b are positive constants.

2.3.2 Momentum Term

As stated above, it is difficult to choose an appropriate learning rate
parameter € for a particular problem. The learning can be very slow if the
learning rate € is too small, and can oscillate widely if € is too large. A
momentum term can be introduced to deal with this problem [Phansalkar,
1994]. This scheme is implemented by giving a contribution from the previous

weight update to each of the current weight change:

AW(t+1)=—ggT€+pAW(o (2.15)

where Aw(t+ 1) =w(t+ 1)-wi(t), Aw(t) =w(t)-w(t-1), and ¥ is the momentum

parameter which is a positive number between O and 1.

If the learning process is marching through a plateau region of the error

surface, then (3E/dw) will be about the same at each time-step and the above
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Aw=-_& 9E (2.16)

with an effective learning rate of €/1-y. On the other hand, in an oscillatory
situation, Aw responds only with coefficient € to instantaneous fluctuations of
(9E/dw). The overall effect is to accelerate the long term trend by a factor of

1/(1-u), without magnifying the oscillations.

2.3.3 Adjustable Biases and Activation Functions

Since biases can be considered as the weights which are connected to
constant input 1, it is also possible to adjust biases using the gradient descent
method as in weight adaptations. To be specific, the following formula can be

employed.

ae,
Abf= e, —X (2.17)

Where ¢, is the step size for bias adjustment and b is the bias of neuron j at
layer h. Similar to weight updates, the following equations may be obtained by

using the chain rule
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where

% N et (o] 2.19
for h<H, and

6[;;1 =2(t]k_yl!(M)F/(z[[k (2.20)

Here F’( ) is the derivative of the activation function F(), and t,, y,", and z,™

have the same definition as in Section 2.2.

It is well known that the nonlinear activation functions play a very
important role in the performance of MFNNSs. Also, it can be seen from (2.11)-
(2.13) that the derivative of the activation function F’(x) is a key factor in the
weight adaptation process. This indicates that the learning process can be
improved by controlling the shape of the activation functions. For the most
widely used sigmoid activation function

1-7%%
=— = (2.21)
A==

the shape of the function can be controlled by the slope, which, in turn, can be
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the idea of the gradient descent method, i.e.,

ae
A= e, —% (2.22)

Some results [Kruschke and Movellan, 1991][Tang and Kwan, 1993] have
shown that this method can speed up the learning process significantly. The
detailed derivation of adaptation equations and discussion will be presented in

Chapter 3.

2.4 Hardware Implementations of MFNNs

As pointed out in Chapter 1, digital implementation of neural networks
is very attractive, especially with the currently available ASIC and FPGA
technologies. However, when applied to MFNNs, a direct implementation
scheme may not be appropriate due to the large number of multiplications

involved.

If we look at a typical neuron in an MFNN, a direct implementation will
generate a cell as shown in Fig.2.4. Among the functional blocks involved,
multipliers are not favoured by digital VLSI technologies since they consume

large chip areas and have slow speed. Implementing nonlinear activation
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Figure 2.4 Block diagram of direct implementation of a neuron in MFNNs

functions using look-up-table method will also require large silicon area. Large
silicon area means high cost. Reducing the cost always has high priority in any

real applications.

In chapter 3, an MFNN model using single term powers-of-two weights
will be proposed and consequently multipliers will be replaced by shifters. And,
in Chapter 4, an MFNN model with quantized neurons will be developed which
can eliminate multipliers as well as simplify the digital implementation of
nonlinear activation functions. The proposed models will result in a significant
improvement in both area and speed of digital implementation of multilayer

feedforward neural networks.
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Chapter 3

MULTILAYER FEEDFORWARD NEURAL
NETWORKS WITH SINGLE TERM

POWERS-OF-TWO WEIGHTS

As discussed in previous chapters, in order to alleviate the burden of
multiplications in digital hardware implementation of MFNNs, powers-of-two
valued connection weights can be used in place of the original continuously
valued weights such that the muitiplications can be replaced by shift
operations. It is no doubt that the format of single term powers-of-two (STPT)
would be of the most interest. To be specific, when the STPT format is used,
all weights in an MFNN would only be able to take values from the following

set W,

Ws,p,={ +1, 2271, .., 2 0} (3.1)

Where M is the maximum number of bits that may be shifted. It is noted that

the above definition constrains the absolute value of weights to be less than or
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It is also possible to extend admissible weight values to be sum of two or more
terms of powers-of-two, which has been proposed for both digital filters and
neural networks [Marchesi et al., 1993]. Although such expansion would make
the learning process easier due to the increased number of available weight
values, it will substantially weaken the advantages of the powers-of-two
technique because of the increased complexity of weight management and the
higher number of operations. Thus, in the following, the discussion will

concentrate on single term powers-of-two (STPT) format.

Since they are not involved in multiplications, biases of neurons are not
necessarily limited to powers-of-two format, they can still be real numbers. As
pointed out in Chapter 1, after adding single term powers-of-two constraint to
weights, their ability to adapt to various problems is dramatically reduced due
to limited choices. Therefore, it may not be adequate to adjust only weights in
an MFNN with powers-of-two weights as in [Marchesi et al., 1993], new
adjustable parameters must be introduced to provide more degrees of freedom
in learning. One of the key factors which have significant impact on the
performance of an MFNN is, as mentioned previously, the nonlinear activation
function. In this Chapter, the adaptive slope of activation functions will be

introduced to enhance the learning capability of the post-quantization MFNNs.
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MFNNs with STPT weights consists of three stages. First, the conventional
backpropagation algorithm is applied to find the continuous solution (a set of
continuous weights) for a given problem; then, quantization is adopted to
convert the obtained weights into appropriate STPT values. Finally, adaptation
of the slope of the activation function will, in addition to adjustment of weights
and biases, be employed to fine-tune the post-quantization network to the pre-

determined error level based on the method presented below.

3.1 Adaptation of activation functions in MFNNs

Consider a multilayer feedforward neural network with the following form
of sigmoid activation function

1-07%%
=2-@ (3.2)
A=

This nonlinear activation function is a key factor in determining the performance
of a neural network. It can also be seen from Eq.(2.11)-(2.13) that the
activation function and its derivative play a very important role in the process
of weight updates and, as a result, any change in the activation function will
affect the learning process. Therefore, a proper choice of the shape of
activation function can result in a better adjustment of weights and also affect

the input-output relationship of the network. Shown in Fig. 3.1 are sigmoid
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activation function may be controlied by the slope of the function and the slope
of the activation function is controlled by the parameter a. This property was
used in [Kruschke and Movellan, 1991] to speed up the BP learning process and

improve generalization capability.

The idea of gradient descent method can be extended to adaptation of
parameter a, i.e., the change in @ will be in the opposite direction of the partial
derivative of the squared output error of the network with respect to a. Hence,
the change in g™, the parameter a of neuron j at layer h, due to the

presentation of pattern k can be expressed as

(3.3)

Aka}h] = _ed aa}hl

where ¢, is a step size for a update and e, has the same definition as in section
2.2. By applying the chain rule (see Appendix B), the following relationship are

obtained

Ny
A Ji=¢ F (2", af) /§1: 8Ly fr1l for h<L (3.4)

and
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Figure 3.1 Sigmoid Functions with Different a

A e =2e (- Y (24", offh (3.5)

where F’,(z,a) is the partial derivative of the activation function F() with respect

toq,i.e.,
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and 8,"*", L, Ny, ™. t, and y,'' are all defined in the same way as in

Chapter 2.

It is also possible and usually helpful to include a momentum term to the
update equation of a. When taking all training patterns into account, the g

will be updated as

afA(t+1) = af)) é Agaf+ p o) - e (t-1) (3.7)

This scheme has been proved to be very effective in improving the
learning speed of MFNNs. In this Chapter, the adaptive slope of the activation
function will be used in the design procedure of MFNNs with STPT weights for
the purpose of post-quantization network fine-tuning, i.e., adjust the network

to compensate the error resulted from weight quantization.

3.2 Design Procedures for MFNNs with STPT Weights

3.2.1 Basic ldeas

Consider a multilayer feedforward neural network as illustrated in Fig.2.1

where the nonlinear activation function applied at the output of each neuron is
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network with STPT weights from the set {1, =27, +22, .., 2", 0},
where M determines the number of quantization levels of weights. For a given

M, there are 2M + 3 distinguished values of weight to choose from.

Given a mapping problem between the input and output spaces of the
MFNN and a set of training pattern pairs {X,, T.}, the starting point of the
design procedure is the solution for the same mapping problem from a
conventional MFNN with continuous weights, using BP as the learning
algorithm. Then, at the next stage, continuous weights will be transformed into
single term powers-of-two weights and activation functions are scaled
accordingly to accommodate such quantization. Finally, the slopes of activation
functions will be adjusted based on the algorithm described in the previous
section to compensate any increase in the output error of the network caused
by quantization. Since the bias of each neuron, b/, is not involved in

multiplications, it can remain continuous.

Before the quantization of weights, it is necessary to introduce a
normalization process such that all weights will be in the interval of [-1, +1]
because the set of quantization levels is defined by (3.1). Consider a particular
neuron j at layer h, where all connections going into the neuron are denoted by

weights w™, i=1,..., Ny,. Define
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Then, the normalization will be carried out by dividing weights w;™ by w, "™

as follows

"
w! L/ (3.9)

w’;/" now belongs to the interval [-1, +1]. However, it can be seen that the
input-output mapping relationship of the network will be changed if normalized
weights are used in the network without any other appropriate adjustment of
the network. By examining (2.3), (2.4) and (3.2), it is found that it is possible
to compensate the normalization of weights by scaling up the parameter of a
accordingly. That means if the weights are normalized by their maximum value
then adjusting the parameter a of the sigmoid activation function as

W.

j-max’

follows will keep the network mapping relationship unchanged.
AR _ A A (3.10)

@)= W-max

Now, we can quantize the normalized weights to STPT format. The
criterion used here is to round a weight to its nearest STPT value selected from

the set W,,,,. This scheme can be described as follows
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where sgn{w) denotes the sign of w and

c,,,=(%) o-m for m=0,1,....M (3.12)

A quantization curve based on the above definition when M=4 is shown in

Fig.3.2.

Usually, there will be an increase in the output error of the network due
to weight quantization. Therefore, more adjustment to the network is necessary
in order to bring this error down to a predetermined level. In this proposed
model, the method of adapting the slope of the activation functions, as
described in Section 3.2, will be used for this purpose. At this point, since
weights have already been quantized to discrete values and are not able to
make arbitrary changes (required by BP algorithm), there will be an update in
weights only when such an update can result in a reduced output error. At the
same time, the bias of each neuron can still be adjusted by using BP algorithm
because they are not involved in any muitiplication and may remain to be

continuous.
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Figure 3.2 Weight Quantization Curve When M=4

3.2.2 Design Algorithm

Based on the idea presented in Section 3.2.1, a procedure for design of
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developed and is illustrated in the following.

Step 1:

Step 2:

Step 3:

Set a™=a, (j=1, 2, ..., N; and h=1, 2, ..., L), where g is
related to the sigmoid activation function applied to neuronj at
layer h of an L-layer MFNN.

Starting with a set of weights and biases with small random
values, train the network using the conventional backpropagation
algorithm to obtain a continuous solution for the given problem,
i.e., to obtain a set of continuous weights and biases which can

achieve

K
& o,<E, (3.13)

where e, is as defined in (2.8), K is the number of pattern pairs in
the training set, and E, is a predetermined error level.

Find the maximum absolute value, w,,", among weights w;"
(i=1, 2, ..., Ny,)

Womaol =m?x{|w,}"1| | i=1,...,N, (3.14)
]

forj=1, ..., Nyand h=1, ..., L.
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Step b:

Step 6:

the interval of [-1, + 1]

w! - (3.15)
§
w]—max[hl
fori=1, ..., No.yy j=1, ..., Nyand h=1, ..., L.
Also scale biases ©™ by the same factor W ,,"
elhl
e}"] =—l]hl— (3.16)
Wi_max
forj=1, ...,N,and h=1, ..., L.
Adjust parameter g™ accordingly as follows
) [ (] (3.17)

%) = W-max %

forj=1, ...,N,and h=1, ..., L.
Quantize normalized weights w’;™ to single term powers-of-two

* [h]

weights w

Wa”[hl=o(w/”[h]) (3.18)

fori=1, ...,N,,, i=1, ..., Nyand h=1, ..., L. Where the function
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Step 7:

Step 8:

Step 9:

Step 10:

Step 11:

Substitute current STPT weights w';™ and new values of g™ into
the network. Calculate the squared output error over all training

pattern pairs as

K
TSE=Y &, (3.19)
k=1

If TSE<E,, stop; otherwise, proceed to Step 8.

Calculate Aw'ij™, Ab™, and Ag/™, which are changes in w'",
b™, and a/ respectively, using the relationships developed in
Sections 2.2, 2.3, and 3.1.

Update weights w’;™ with changes Aw obtained in Step 8 and
then quantize them to STPT values as in Step 6. If this update
results in a reduced TSE, accept the new weights; otherwise,
discard the changes and keep previous weights.

Update parameters b/" and g/ with changes Ab/™ and Ag"

obtained in Step 8.

Go to Step 7.

It needs to be pointed out that, as in the original BP algorithm,

convergence cannot be guaranteed. If convergence cannot be achieved, it may

be necessary to restart the algorithm from the beginning with a new and
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network topology, adding more neurons and/or layers to the existing network.
However, as shown in the next section, in most cases MFNNs with STPT
weights can reach convergence for the same problem as original MFNNs,

without increasing the number of neurons or layers.

3.3 Simulation Results

Simulations have been conducted to verify the effectiveness of the
proposed design algorithm. The first example is a simple but very important

benchmark problem, XOR.

3.3.1 A Benchmark Problem

XOR (exclusive OR) problem has been considered as a benchmark
problem in neural network history. It is of great importance to test the mapping
ability of neural networks. XOR was first cited by Minsky [Minsky and Papert,
1969] in 1969 to criticize the capability of neural networks, which caused an
interruption in neural network research for about ten years. In 1986, in their
famous books on Parallel Distributed Processing, Rumelhart et a/ have
demonstrated that MFNNs are capable of such mapping, which marked the

revival of neural network research.
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input output

- = 00
= QO = O
QO = =

According to [Rumelhart et al., 1986], the smallest MFNNs for the XOR
problem consists of two input neurons, one hidden layer with two hidden units,
and one output neuron. MFNNs with STPT weights have demonstrated that
they are capable of solving this problem without increasing the size of the
network from the smallest topology. Since this is a binary (0/1) input-output
mapping problem, the binary form of sigmoid activation function given by
(3.20) is used at each neuron. Other parameters used in the simulations are

listed in Table 3.1.

1

—_— (3.20)
1+07%X

Aty
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Parameters Symbols Values

Learning rate of weights € 0.5
Range of initial weights W, [-1.0, 1.0]
Learning rate of biases € 0.1
Range of initial biases B, [-0.1, O0.1]
Step size of slope changes €, 0.15
Momentum of slope changes U, 0.05
Quantization levels of weights M 4
Error level for training E, 0.1

MFNNs with STPT weights have shown very good performance for the
XOR problem, i.e., convergence was always reached within a limited number
of epochs. One typical example is given below:

NO. of epochs needed in stage 1: 730

NO. of epochs needed in stage 2: 9

Weights:
wi'l.; =1.00000 w'',,=1.00000
w!'l,, =1.00000 wi'l,,=1.00000

w2 =1.00000
wi2!,, =-1.,00000

Slopes:

a", =5.82774 a'",=1.93203
a?, =9.00515

BIASES:
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02, =-.34642

The simulation results of the XOR problem impliy that MFNNs with STPT
weights are able to achieve the same mapping capabilities as the conventional
MFNNs and the use of powers-of-two weights does not necessarily mean an

increase in the size (number of neurons or layers) of the network.

3.3.2 More simulations

More simulations have been carried out by using 10 numerals, each
represented by a 10x10 pixel matrix as shown in Fig.3.3. The corresponding
targets were given below each pattern. The MFNN used in the simulations had
one input layer with 100 units, one output layer with 4 neurons, and one or
more hidden layers with various numbers of hidden neurons. Different
combinations of the number of hidden layers, the number of hidden neurons,
and the number of weights quantization levels were used in simulations to test

the performance of the proposed design procedures.

Two aspects of performance, i.e., the convergence and generalization
properties of the algorithm, have been observed in simulations. For each

topology of the network and the number of quantization levels, the network
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Figure 3.3 10 numeral training patterns

was first trained with the given 10 pattern pairs to obtain both continuous and
quantized solutions, i.e., weights; then a set of noisy patterns (original patterns
corrupted by noise) was fed to both continuous-weight network and the'
powers-of-two-weight network to test the generalization abilities. A bipolar
form of inputs and outputs was used. Noisy patterns were constructed by
randomly inverting a percentage of total elements in training patterns. The
generalization performance was measured by the recall accuracy (the
percentage of correct recalls) which was obtained by feeding 100 noisy

versions of each training pattern to the network and taking the average.
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Table 3.2 Convergence Speed (In Number of Epochs) for CMFNN and STPT
MFNN (100 Inputs, 4 Outputs, and 1 Hidden Layer)

No. of STPT MFNN

Hidden CMFNN

Neurons =2 M=4 M=8
10 61.6 / 55.2 19.6
20 42.8 1366.6 3.8 3.4
40 32.4 34.0 2.0 2.0
60 28.0 9.4 2.0 2.0
80 25.4 13.0 2.0 2.0
100 24.0 2.2 2.0 2.0

Table 3.3 Generalization Capabilities (In Percentage of Correct Recalls) for
CMFNN and STPT MFNN (100 Inputs, 4 Outputs, and 1 Hidden

Layer)
No. of STPT MFNN

Hidden CMFNN

Neurons M=2 M=4 M=8
10 99.58% / 98.92% 98.98%
20 99.46% 96.14% 99.16% 99.24%
40 99.46% 98.94% 99.28% 99.34%
60 99.48% 99.08% 99.46% 99.50%
80 99.60% 99.00% 99.40% 99.40%
100 99.52% 99.04% 99.42% 99.42%
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Table 3.4 Convergence Speed for Networks with Different Number of
Hidden Layers When M =4 (100 Inputs and 4 Outputs)

No. of One Hidden Layer Two Hidden Layers
Hidden
Neurons CMFNN STPT MFNN CMFNN STPT MFNN
10 61.6 55.2 131.2 208.6
20 42.8 3.8 64.6 10.2
40 32.4 2.0 41.0 2.8
60 28.0 2.0 32.0 2.0
80 25.4 2.0 26.4 2.0
100 24.0 2.0 22.6 2.0

Table 3.5 Generalization Capabilities for Networks with Different Number of
Hidden Layers When M=4 (100 Inputs and 4 Outputs)

N_o. of One Hidden Layer Two Hidden Layers
J:ﬂ?::s CMFNN STPT MFNN CMFNN  STPT MFNN
10 99.58% 98.92% 99.14% 98.42%
20 99.46% 99.16% 99.52% 99.30%
40 99.46% 99.28% 99.34% 99.04%
60 99.48% 99.46% 99.44% 99.18%
80 99.60% 99.40% 99.60% 99.36%
100 99.52% 99.42% 99.62% 99.42%
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the proposed design algorithm have been confirmed by the simulation results
because convergence was reached in almost all runs. It can be seen from the
above simulation results that MFNNs with STPT weights can retain similar
generalization capability as the conventional MFNNs without an increase in the
size of the network. Furthermore, in order to achieve good performance,
parameters like the number of hidden neurons and the number of quantization
levels should be chosen carefully. Small number of hidden neurons combined
with very small number of quantization levels of weights should be avoided.
Some redundancy in the topology of the network is recommended in order to
reduce the number of quantization levels of weights and consequently to

reduce the number of bits to be shifted in hardware implementation.

3.4 Comparison with Existing Models

With the introduction of adaptive slopes of activation functions for post-
quantization network fine-tuning, our above proposed algorithm has shown to
be very effective in the STPT-network error reduction. It has significant
advantages in convergence speed and the magnitude of error that can be
reduced when compared with the weight-adjust-only algorithm, e.g., the one
used in [Marchesi et al., 1993]. The comparison of the two algorithms over the

performance of their post-quantization network tuning capabilities are shown

56



of hidden neurons varies from 10 to 60.

In each diagram, curve "weight-slope"” represents the result using the
algorithm proposed in this chapter, i.e., adaptation of weights and slope of
activation functions for post-quantization network tuning, while curve "weight-
only" refers to the result based on the algorithm of adjusting weights only with
adaptive learning rate parameter as proposed in [Marchesi et al., 1993]. It can
be seen that in all cases our proposed algorithm is more capable of post-

quantization network error reduction.
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Figure 3.7 Error curve when N, =60

3.5 Advantages for hardware implementation

The basic operation of MFNNs is to pass a weighted sum of inputs
through a non-linear activation function. Therefore, the digital hardware
implementation of MFNNs will consist of several major functional blocks,
including multiplications, summations, and calculation of non-linear functions.
Among them, summations can’ be implemented by using adders and
accumulators, while non-linear calculations are usually done by look-up tables.
However, the multiplications between inputs and weights are not favored by

digital technology since the multipliers required for these operations are slow
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in a digital VLSI implementation.

This computational burden in digital implementation can be eliminated if
STPT weights are used in MFNNs as proposed previously in this chapter. There
will be significant gain in operation speed and saving in silicon area when
multiplications being replaced by shift operations. A shift operation can easily
be implemented using either MUX’s or simple combinational logic. A block
diagram illustrating the operation of a shifter is shown in Fig.3.8. The
corresponding symbol of the shifter is drawn in Fig.3.9, where "A" is the input
vector, "CT" is the control vector which determines the number of bits to be
shifted, and "Z" is the output vector, which is a shifted version of the input
vector "A". To be fitted into a neuron’s operation in MFNNs with STPT
weights, the pin "A" is connected to a particular input to the neuron, while
"CT" is mapped to the corresponding STPT weight. Considering that STPT
weights are all with negative powers, the shifter has shift-right operations only.
The operation of the shifter can further be illustrated as follows. Assuming
M =4, the possible STPT choices are 2°, 2", 22, 2, 2%, 0 and corresponding
control vectors of the shifter are 10000, 01000, 00100, 00010, 00001, and
00000, respectively. If input A" is an 8 bit vector, A,...A,, the operation can
be described by Table 3.6. A VHDL description of such an operation with STPT

parameter M =4 can be found in Table D.1 of Appendix D.
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Table 3.6 Description of the operation of the shifter

CT A z
00000 A,...A, 000000000000
10000 A,...A, A,...A,0000
01000 A,...A, AJA,...A;000
00100 A,...A, ALALA,...A,00
00010 A,...A, AAALA,...A0
00001 A,...A, AAAAA,.. A,
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design has an area of 474 design units (158 equivalent gates) with a maximum

delay of 1.35 ns in LSI Logic 0.6 um 3.3V CMOS 600K ASIC technology.

If we consider an 8x8 2’s complement multiplication with carry-save
array in the same technology, the multiplier will require 2525 design units (842

gates) and have a maximum delay of 11.30 ns.

Table 3.7 illustrates the advantages of the MFNN model of STPT weights
over the original MFNN model for digital hardware implementation of the
multiplication in the weighted sum calculations. The technology used here is LSI

Logic Corporation 0.6 um 3.3V CMOS 600K ASIC technology.

Table 3.7 Hardware advantage of MFNN with STPT weights

MFNN STPT-MFNN
Calculation M *w ™ M *w,
implementation multiplier (8x8) shifter
Area (# gates) 842 158
Delay (ns) 11.30 1.3b
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significantly by replacing multipliers with shifters in the MFNN design.

As for the nonlinear activation functions, they are usually implemented
by using look-up tables. In the original MFNN models, every neuron in the
network has the same activation function. For the proposed model of MFNN
with STPT weights, due to the adjustment of the slope of activation functions,
each neuron in the network will have different parameter for activation function
and result in a different look-up table. In the first glance, it seems that the
implementation of activation function in the new model will be more
complicated than in the original model where a single global look-up table may

be used.

However, one of the most attractive features of artificial neural networks
is the parallel distributed computation. In order to realize parallel processing,
each neuron will need a local look-up table for its activation function instead of
a global one. Based on this consideration, the proposed model will have no
extra hardware requirements by implementing a different activation function at

each neuron.

3.6 Concluding Remarks

The model of multilayer feedforward neural networks with single-term
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algorithm featuring adaptive slope of activation functions was developed and
corresponding design procedure was established. Due to the use of STPT
weights, the multiplications required in the weighted sum operations were able
to be replaced by shift operations, which resulted in a substantial improvement
in both silicon area and operation speed in digital VLS! implementation of
multilayer feedforward neural networks. Meanwhile, the MFNNs with STPT are
capable of achieving almost the same generalization performance as the original
multilayer feedforward networks without increasing the network sizes. The
results presented here demonstrated the feasibility of the proposed model in

multilayer feedforward neural network applications.
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Chapter 4

MULTILAYER FEEDFORWARD NEURAL

NETWORKS WITH QUANTIZED NEURONS

In the previous chapter, an MFNN model using STPT weights has been
proposed to alleviate the computational burden of multiplication. By using that
model, the multipliers will be replaced by shift registers in digital hardware
implementation. In this chapter, a new model, which can solve the same

problem but through a different approach, will be developed.

4.1 Introduction

Under normal circumstances, the outputs of activation functions in an
MFNN and connection weights obtained by using the backpropagationalgorithm
are continuously valued such that multiplications are inevitable in the
calculation of weighted sums, the basic operations involved in MFNNs. This
implies that the current architecture of MFNNs is not suitable for digital

implementation. Some research activities have been invoked in view of this
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STPT weights has been proposed to deal with this problem.

Actually, the two factors involved in a typical muitiplication in MFNNs are
connection weight and the output of a related neuron. If either of them takes
the form of powers of two, then the multiplication is able to be replaced by a
shift operation. Based on this observation, a new model of MFNNs using
quantized neurons will be proposed in this Chapter. The outputs of such
quantized neurons can take only powers-of-two values so that multiplication
operations can also be avoided even though weights are still continuous ones.
Both strategies of using powers of two weights and quantized neurons in
MFNNs can alleviate the computational burden of multiplications; however,
quantized neurons offer a number of advantages over powers of two weights.
First, using quantized neurons makes the realization of activation functions
(usually by look-up-table technique) much easier. Moreover, continuous weights
are used with quantized neurons such that the network will have more freedom
to be adapted to diverse problems than in the case of using powers of two

weights.

The remaining part of this Chapter is organized as follows. Section 4.2
is dedicated to the quantized neuron model and the modified learning algorithm

suitable for MFNNs with quantized neurons. In Section 4.3, the detailed
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neurons is described. The mapping capability of MFNNs with quantized neurons
will be studied in Section 4.4. Simulation results will be provided in Section

4.5. Finally, Section 4.6 is dedicated to hardware implementation.

4.2 Quantized Neurons

As mentioned before, the purpose of introducing quantized neurons is to
avoid multiplications by forcing their outputs to be of powers of two values.
Thus, the most important feature of a quantized neuron is its output form. In
this model, single term powers of two format will be used, i.e., a quantized

neuron can generate only outputs from the following set

{ £1,:271,:22 .. ,:2°M0) (4.1)

where M determines the number of quantization levels.

Except for its output format, a quantized neuron operates in a similar
manner as an ordinary neuron, i.e., it takes a weighted sum and passes it
through a nonlinear activation function. The powers of two output format can
be realized by adopting a multi-step function as its activation function which

can be defined as:

1 |x] = G,
GX)=sgn(¥){ 2™  Cpasix|<Cp (4.2)
0 | X} <Cp.q
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quantized neuron is depicted in Fig.4.1. Since the inputs to this neuron are
outputs of other quantized neurons, the operation of taking the weighted sum

becomes much easier and no multipliers are needed.

Although a neuron with hardlimit activation function can be considered
as a special case of quantized neurons with M =0, quantized neurons provide
a more generalized definition of neurons with discrete outputs. Since quantized
neurons have more output levels than hardlimit function, the network using
quantized neurons will have more flexibility in adapting to various problems and

will be easier to train.

Although muitiplications can be avoided by using quantized neurons in
MFNNs, the training of such networks is another problem. Since the activation
function of a quantized neuron is a multi-step function, the derivatives of such
a function are either zero or undefined. Therefore, the original form of the
backpropagation algorithm can not be applied directly. In the following, a
modification to the backpropagation algorithm will be proposed to make it

suitable for training MFNNs with quantized neurons.

The major obstacle preventing the original BP algorithm from being

applicable to MFNNs with quantized neurons is that there is no appropriately
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learning will occur. To overcome this difficulty, an appropriate nonzero
derivative will be assigned to each interval (C,,, C,. ;) of the activation function
(the function is constant within the interval). Consider the sigmoid function
given as

Fy-g1-8™~ (4.3)
1+e7%X

Where g=1.0 is a gain factor. This F(x), which can be used as activation
function for ordinary MFNNs, is depicted in Fig.4.2. The multi-step activation

function can be obtained by the following procedures.

F(x)/G(x)

= +1 9/
Xo

- -1

Figure 4.2 Original and Quantized Activation Functions
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they range from -1 to + 1, each level will have an intersection with F(x) defined
above. These intersections can be obtained by solving the following set of

simultaneous equations

_1-e7
Y9 o (4.4)

y=2"" m=0,1,..M

Denoting x coordinates corresponding to these intersections as Xo, Xq, ... Xy,

then, the extreme points of each interval of G(x) can be defined as

Xm + xm-1

C,= m=12,....M
2 (4.5)
Xy
CM+1 ='?

An illustration is provided in Fig.4.2. Furthermore, the derivative of F(x)
evaluated at an intersection will be used to approximate the derivative of G{x)
within the entire interval corresponding to that intersection, that is

F'(x) x| = C,

G'(0=\Fx,)  CmasIXI<C, (4.6)
F'(0) | x| < Cipe

This definition settles down the problem with the derivative of the muiti-step

activation functions. With these modifications, the principle of the
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applied to MFNNs with quantized neurons.

4.3 Design Procedures for MFNNs with Quantized Neurons

In this section, the detailed design procedures of using quantized neurons
in MFNNs will be presented. The proposed algorithm consists of three basic
steps. Firstly, the network is trained by using the standard backpropagation
algorithm outlined in Chapter 2. After convergence, all neurons are then
replaced by quantized ones, which are introduced in Section 4.2. Finally,
weights are adjusted by adopting the modified backpropagation algorithm

described in Section 4.2 to reduce the increased output error.

A. Training the Network Using the Standard Backpropagation Algorithm
For a given problem, assuming that the topology of the network has
been established, we first initialize all connection weights to small random
numbers, then apply the standard backpropagation algorithm to the network
until convergence is reached, i.e., the output error falls below a predetermined
level E. For bipolar input and output of +1 and -1, the following sigmoid

activation function is used

1-7%X
= (4.7)
Rn-g—2—
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order to avoid the possiblility of undesired saturation. Another consideration on
the use of g is that intersections of F(x) and the quantized levels of +1 are
needed as discussed in Section 4.2 in order to obtain non-zero derivatives of
G(x). Upon convergence to a predetermined error level E, a network with
continuous weights and sigmoid activation functions is obtained which is

denoted as Net#1.

B. Replacing Original Neurons with Quantized Neurons

All neurons in Net#1 will be replaced by quantized neurons while the
topology of the network and the connection weights among neurons are
unchanged. As stated previously, a quantized neuron differs from an original
neuron mainly in its activation function which is a multi-step function as
defined in (4.2). After the replacement of neurons, all training patterns will be
presented to the network and the output error will be checked. If the sum of
squared output errors remains below the error level E, i.e.,

K
E eksE (4.8)
k=1

the algorithm terminates at this point. The desired MFNN with quantized

neurons, denoted as Net#2, is obtained. Otherwise proceed to the next step.
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Normally, replacing original neurons with quantized ones will cause an
increase in the output error of the network. If this increased output error jumps
above the predetermined level E, then it must be brought down by adjusting the
parameters of the network. Since all weights are continuous, the modified BP
algorithm proposed in the first part of this section can be employed to fulfill

such adjustment.

Besides, biases can also be adapted because they are continuous and not
involved in any multiplications. The procedures for bias adaptation are similar
to those described previously. The weights and biases will be repeatedly
updated until the sum of squared output errors falls below the levelE, i.e., (4.8)
is satisfied. Now the obtained network, denoted as Net#2, is the desired MFNN

with quantized neurons.

The above three-stage design method is referred as Scheme 1. Besides,
it is also possible to use quantized neurons right from the very beginning of the
training process especially when on-chip (on-line) learning is desired. This plan
will be referred as Scheme 2. However, it is expected that the network
obtained by using Scheme 2 will lose some generalization capability while it will
gain speed in training. In section 4.5.2, the simulations results for both

schemes will be provided. Because the training is performed off-line here, the
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the other hand, a higher generalization capability is what we always want to

achieve.

4.4 Mapping Abilities of MFNNs with Quantized Neurons

The conventional multilayer feedforward neural networks have been
shown to be universal approximators [Hornik et al., 1989][Hornik, 1991], that
means MFNNs with as few as one hidden layer using arbitrary squashing
functions are capable of approximating any Borel measurable function from one
finite dimensional space to another to any desired degree of accuracy, provided

sufficiently many hidden neurons are available.

For MFNNs with quantized neurons, the activation functions are
quantized and no longer continuous. Consequently, the mapping ability of such
networks needs to be examined. In [Hornik, 1991], it was shown that
whenever function F(®) is bounded and nonconstant, then, for arbitrary input
environment measures y, multilayer feedforward networks with activation
function F() can approximate any function in L?(u) {the space of all functions on
R* such that [ r |f(x)|® du(x) < ) arbitrarily well provided that sufficiently

many hidden units are available if closeness is measured by p, , as
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Fp.p\r 7 _Unkl'\"l N "I"\"IJ

where 1 <p =< o, the most popular choice being p=2, corresponding to mean
square error. Since the activation functions used in MFNNs with quantized
neurons can meet the bounded and nonconstant condition, MFNNs with
quantized neurons are still capable of approximating any discrete mapping. The
simulation results presented below will also show that it is not always
necessary to use more hidden units in MFNNs with quantized neurons than in

conventional MFNNSs in order to get the same mapping capabilities.

4.5 Simulation Results

4.5.1 Benchmark Problems

The XOR problem was again applied to MFNNs with quantized neurons.
Since the input/output patterns are binary (0/1) form, the activation function

will also take binary form which can be defined as

F,.(2+1
[-'0“(2)=_1_2__ (4.10)

Here F,,(z) remains a multistep function with STPT values because the
constant 1/2 can be combined into biases and the factor 1/2 does not change

the single term powers of two format of the activation function.
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with two neurons, and one output neuron, which is the smallest MFNN that can
solve the XOR problem. Quantized neurons are used for the complete training,
i.e., there is only one stage instead of two. Simulations have been carried out
with different initial conditions and for each simulation convergence reached

within limited number of epochs. One example is given below:

Parameters used in training:
Learning rate of weights: 0.5
Range of initial weights: [-1.0, +1.0]
Learning rate of biases: 0.1
Range of initial biases: [-0.1, +0.1]
NO. of quantization levels: M=4

Error level of training: TSEL =0.01

Results:

NO. of epochs needed in training: 187

Weights:
w'tl ,=2.380167 will,, =1.489372
w''',, =2.388525 w',,=1.496423
w'?,, =3.639545
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0", =-1.027880 O',=-1.806875

0, =-1.105733

An FPGA design of an MFNN with quantized neurons has been
implemented for the XOR problem (see Appendix D for details) using Xilinx
4000 series technology, which verified the feasibility of using quantized

neurons in MFNN designs.

Another benchmark problem is the parity problem, in which the output
required is 1 if the input pattern contains an odd number of 1s and 0 otherwise.
This is a very difficult problem because the most similar patterns (those which

differ by a single bit) require different answers.

A four-bit parity was used to test the MFNNs with quantized neurons.
The problem can be described as in Table 4.1. The network used in this
problem has four inputs, one hidden layer with four hidden neurons, and one
output unit, which is the smallest size needed to solve this parity problem with
conventional MFNNs. Convergence was reached in all simulation runs. One of
them is shown below.

Parameters of training:

Learning rate of weights: 0.01
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Learning rate of biases: 0.01

Range of initial biases: +0.1

NO. of quantization levels: M=4

Error level of training: TSEL=0.0

Results:

NO. of epochs needed in training: 24620

Weights:

wil,, =0.67983

wi,,=1.19062
wi,, =-0.68769
wi,, =-1.18309
wi,, =0.68069
wi, =1.19142
wi,, =-0.68304
wil,, =-1.18275

W[2]21 ='3-391 81

w2, =4.70325

w2, =4.50950
BIASES:

oM, =-0.32909

wi,,=0.68972

wih,,=-0.67753

will,,=0.69107

wi'l,,=-0.67973

0", =-0.35629

81

wil! , =8.98207

will,, =8.80989

wi,, =-9.28224

o'",=-1.37785



02, =-2.73303

Table 4.1 Description of Parity Problem

[ INPUT OUTPUT
0000 0]
0001
0010
0011
0100
" 0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

OQlmlalOoOlmj|OolO|m|m|O|O|=|O|=|=

Based on the above simulation results, it can be seen that MFNNs with
quantized neurons are able to achieve the same mapping performance as the

conventional MFNNs without an increase in network size.
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Simulations have been conducted to verify the design procedures
proposed above. An example is given below. The training patterns were the 26
letters of the alphabet, each represented by a 10x10 pixel matrix as shown in
Fig. 4.3. Black pixels correspond a value to 1 and white pixels are assigned the
value -1. The targets were bipolar codes as given below each training pattern.
The feedforward neural network used in simulations had 100 inputs, 5
outputs, and one or two hidden layers with various number of neurons. Two
aspects of behaviour, i.e., the convergence and generalization properties of the
algorithm, have been examined in the simulation. For each topology of the
network, Scheme 1 of the design algorithms proposed in section 4.3 was
applied to obtain Net#1 and Net#2, a set of noisy patterns (original patterns
corrupted by noise) was then fed to Net#2 to test the generalization capability.
Noisy patterns were constructed by randomly inverting a percentage of total
elements in training patterns. In simulations presented in this section, this
percentage was ranging from 5% to 20%. Example of noise patterns are shown
in Fig.4.4. The recall accuracy was obtained by taking the average results of

100 noisy versions of each of the training patterns used.

Tables 4.2 through 4.5 show the simulation results under different

conditions of the number of hidden layers, hidden neurons, and quantization

83



I T
’ [ma 11
' ’ Ll L]
: L
L}
Ll i |
' Ll --

=11 1=-1 1
IT
1-1 ¢ 1.1

1101l

LLLL
1-1-1.1-1
1=-1 ’-1 1

84

Figure 4.3 Training patterns of the 26 letters of the alphabet
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are also given in these tables. For the case of two hidden layers, an identical

size for both layers is assumed, i.e., both layers have the same number of

neurons. All data given in these tables are averages of five runs of the

algorithm, starting with different initial weights which were set as random

numbers uniformly distributed in [-0.1, +0.1). Parameters of F(x) when used

to find out C.’s were g=1.1 and a=2.0. Other parameters used were:
Learning rate for weights: € = 0.01

Predetermined error level: E = 0.1.

For the purpose of comparison, also listed in Tables 4.2-4.5 under the
column CMFNN are corresponding results of conventional MFNNs using the
standard backpropagation algorithm. The parameters of sigmoid activation
functions are g=1.0 and a=2.0.

Table 4.2 Convergence performance in number of training epochs (one
hidden layer)

Scheme 1
N, Scheme 2 CMFNN
Net #2
Net #1
M=4 M=2 M=4 M=2
20 453.8 1.0 1.0 35.8 38.2 244.2
40 551.8 2.0 1.6 31.2 32.4 166.4
60 754.8 4.6 3.4 31.8 31.2 141.6
80 1078.8 6.4 5.4 31.0 31.6 146.0
100 1190.6 9.8 8.6 29.4 30.0 126.2
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Table 4.3 Generalization capability in percentage of correct recalls (one
hidden layer, 5% noise level)

Scheme 1 Scheme 2 CMFNN

N M=4 M=2 M=4 M=2
20 94.52 92.76 93.24 90.75 95.70
40 95.13 93.32 93.00 91.71 95.84
60 93.54 91.69 91.41 90.74 94.82
80 92.28 90.53 90.44 88.84 94.09
100 92.44 90.50 90.52 88.27 94.17

Table 4.4 Convergence performance in number of training epochs (two
hidden layers)

Scheme 1 Scheme 2 CMFNN
N Net #2
H
Net #1
M=4 M=2 M=4 M=2
20 303.4 21.4 17.8 44.6 41.6 198.6
40 314.4 14.4 15.8 36.2 35.0 131.2
60 429.4 15.2 13.8 34.4 33.2 109.2
80 669.0 12.2 13.0 35.4 34.0 86.2
100 827.6 12.8 15.4 36.0 35.6 69.2
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Table 4.5 Generalization capability in percentage of correct recalls (two
hidden layers, 5% noise level)

Scheme 1 Scheme 2 CMFNN
N M=4 M=2 M=4 M=2
20 94.54 93.04 93.53 91.35 95.44
40 94.21 93.03 93.02 91.83 95.39
60 94.09 92.74 93.13 92.10 95.32
80 93.32 92.54 92.78 90.64 95.17
100 93.65 92.16 91.66 90.86 94.30

This test procedure is repeated 100 times at each noise level, in 5%
increments ranging from 0% to 20%. At 5% noise, the patterns are still
recognizable, as shown by the examples in the middle part of Fig.4.4. At 20%
noise, the patterns are not very recognizable, as shown by the examples in the
right part of Fig.4.4. The correct recall rate as a function of noise added for
MFNNs with 20 hidden neurons is shown in Fig.4.5, where QMFNN refers to
the MFNN with quantized neurons and M =4, while the curve CMFNN
represents the performance of the conventional MFNN with continuous
weights. It can be seen that the MFNN with quantized neurons has no

deterioration from original MFNN performance.

87



Figure 4.4 Example of noise patterns
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Figure 4.5 Recall accuracy as a function of input noise (20 hidden neurons)

From the simulation results, we can see that, first, convergence was
always reached in all runs. This implies the effectiveness of the proposed
algorithm and the possibility of implementing feedforward neural networks with
quantized neurons. Next, the multilayer feedforward neural networks with
quantized neurons can achieve similar recall accuracy as the conventional
multilayer feedforward neural networks. Furthermore, Scheme 1 can get higher
recall accuracy than Scheme 2 while the latter converges faster in training,
which agrees with the prediction in Section 4.3. It is also noted that the recall

performance deteriorates with decreasing number of quantization levels. This

89



4.6 ADVANTAGES FOR HARDWARE IMPLEMENTATION

For MFNNs with quantized neurons, the powers-of-two factors involved
in multiplications are outputs of neurons. Since these outputs vary from pattern
to pattern, there is no such cases that direct wiring can be applied. However,
the shifter using simple combinational logic as suggested in Chapter 3 is still
applicable and can improve significantly the area-delay product over
multiplications. The difference is that the weight is connected to pin "A" of the
shifter as input vector and the input to the neuron (the output from another
neuron) functions as the control vector. This configuration is illustrated in Fig.
4.6. Table 4.6 illustrates the advantages of the MFNN with quantized neuron
model over the original MFNN model for VLS| implementation of the
multiplication in the weighted sum calculations. An 8x8 multiplier is assumed
for MFNN model while the MFNN with quantized neurons model is as presented
previously in this Chapter with M=4. Again, the LSI Logic 600k CMOS ASIC
technology is used in the example. The VHDL description of the shifter is listed

in Table D.1 of Appendix D.
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Figure 4.6 A shifter used in MFNNs with quantized neurons

Table 4.6 Hardware advantage of MFNN with quantized neurons

MFNN STPT-MFNN
Calculation z™*w, M zM*wy,
Implementation multiplier (8x8) shifter
Area (# gates) 842 158
Delay (ns) 11.30 1.35

91



that it simplifies the implementation of the nonlinear activation function. As
described previously in this chapter, activation functions used in MFNNs with
quantized neurons are multistep functions with STPT outputs. This simplified
STPT multistep activation function can be realized easily using either
comparators or other combinational logic. For any input to the function, the
STPT output value can be determined by simply compare the input with the
thresholds related to each output level. This procedure is illustrated in Fig.4.7,
where only one bit in the output vector will be one, all others are zero. A
further description can be found in Table 4.7, where TH,>TH,> ... >TH, are
thresholds and C,=1 when IN=TH, and C,=0 otherwise. A VHDL description
of such an implementation when M=4 is listed in Table D.2. The input is

assumed to be 16 bits.

Table 4.7 Description of the decoder for STPT multistep activation function

OUTPUT FROM COMPARATORS OUTPUT FROM THE DECODER
(INPUT TO THE DECODER) C,...C,; | (OUTPUT OF THE FUNCTION)
Qn¢-|Q1

00...0000 0000...00

11...1111 1000...00

11...1110 0100...00

11...1100 0010...00

10...0000 0000...01
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Figure 4.7 Block diagram of the STPT multistep activation function

The synthesized circuit in LSI Logic 600k CMOS ASIC technology is
shown in Fig.4.8. A more detailed schematic is drawn in Fig.4.9 with an area
of 1937 design units (646 gates). The complexity of this design is only
comparable to the address decoder (an n to 2" decoder) part of a memory
based look-up-table implementation, as shown in Fig.4.10, which is the
commonly used solution of the nonlinear activation function. A 128 words 8-bit
look-up-table implementation in LSl 600k technology requires approximately

2560 gates.
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Figure 4.8 Multistep activation function circuitry
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Figure 4.9 Schematic of the multistep activation function
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Figure 4.10 Structure of a look-up-table

4.7 Concluding Remarks

The concept of quantized neurons was introduced in this chapter to
alleviate the computational burden of massive multiplications in muitilayer
feedforward neural networks. A modified backpropagation algorithm was

developed to meet the training requirements of MFNNs with quantized neurons.
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network, an MFNN with quantized neurons has significant advantages for
digital hardware implementation. First of all, a reduced chip area and an
increased computational speed can be achieved due to the fact that
multiplications are replaced by shift operations only, which is a similar feature
as for the model of MFNNs with STPT weights proposed in Chapter 3. Yet one
more advantage of using quantized neurons in MFNNs is that the complexity
of the implementation of nonlinear activation functions, which is another
shortcoming in digital techniques, can be reduced substantially. More on the

issue of implementation of activation functions will be discussed in the next

chapter.

97



MORE MFNN MODELS FOR DIGITAL

IMPLEMENTATIONS

In the previous chapters, MFNN models with STPT weights and
quantized neurons were proposed. These models have been shown to be
effective in alleviating some of the computational burden in digital
implementation of neural networks. Based on the ideas in the development of
those two models, along with the introduction of a new form of sigmoid
activation function, further MFNN models will be developed in this chapter for

alternative digital hardware implementation.

5.1 A Simplified Sigmoid Activation Function (SSAF)

The sigmoid function as defined in equation (3.2) is the most popular
nonlinear activation function used in artificial neural networks. However, this
sigmoid function is not suitable for direct digital implementation as it consists
of an infinite exponential series. A look-up-table has been a traditional method

for implementing the sigmoid function for which the amount of hardware
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overcomes many of the limitations of single-layer perceptron so that MFNNs
can approximate any input-output functions. The sigmoid function provides, at
the output of a neuron, a nonlinearity that has a tanh-like transition between
the lower and upper saturation regions. In practice, any nonlinear function
which possesses a similar transition region may be expected to achieve similar
performance in MFNNs. In this section, it is shown that a simple second-order
piecewise nonlinear function exists which can be used as an activation function
in MFNNs. The proposed piecewise activation function can be impiemented

directly using digital techniques.
5.1.1 Second-Order Approximation

Consider the following second-order piecewise nonlinear function, which

has a tanh-like transition between an interval [-L, L]

_ -0 for Osx<L 5.1
H(X)—{ ;((84-6;)) for —lfs;so 5-1)

where R and © determine the slope and the gain of the function. Consequently,

a sigmoid-like bipolar function can be realized by

1 for L<x
G(¥) = { H(x for -L<x<L (5.2)
-1 for x<-L
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1 for L<x
1 1
Gop(¥) = EH(X) + 5 for -L<xs<L (5.3)

0 for x<-L

To determine the parameters B and O, the following condition can be used

H'*A,..=0 (5.4)

hence

p=20L (5.5)

Also, based on the condition H(L) =1, we obtain

ﬂL—9L2=1 (5.6)

From equations (5.5) and (5.6), the following relationships can be obtained

p-2

; (5.7)
9=—

L2

where L determines the saturation point of the function.
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conventional sigmoid function given below

1-7%
= (5.8)
RN -2

The parameters used are L =2 and a=2. It can be seen that these two curves
are very close. The maximum difference, which is about 4%, occurs around the
saturation points. With such a close approximation, similar performance can be

expected when the piecewise activation function is used with MFNNs.

saf/ssaf

ssaf

05

saf

N

_1.5lllllllIllllllllllllllllllllllllllllll

-4 -3 -2 -1 o 1 2 3 4
X

Figure 5.1 Sigmoid Activation Function (SAF) and Simplified Sigmoid
Activation Function (SSAF)
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Although the piecewise function G(x) is a very good approximation to the
sigmoid activation function F(x), there is a major difference between the two
functions. It can be seen that the piecewise function has a zero derivative
beyond the saturation points +L, as shown in equation (5.9), which is not
suitable for training with the backpropagation algorithm. This problem needs to
be solved before the piecewise function G(x) can be used as activation

functions in MFNNSs.

0 for L<x
G'(®) =1 H'(® for -L<xsL (5.9)
0 for xs<-L

If the derivative of the piecewise activation function is used directly with
the algorithm, the learning process will get stuck when it happens to be in the
wrong saturation region. It needs a little push to bring the learning out of the
premature saturation region. A small positive value of the derivative may serve
the purpose. By introducing a small positive value & into G’(x) in both saturation

regions, we have

102



G'(% =iH}(x) for -(L-A)sxsL-A 2. 10}
) for -(L-A)=>x
The learning process can be carried out using this version of the derivative of
G(x). While the newly defined G’{x) will serve in the backward operations
during training, the piecewise activation function G(x) is still used in the
forward operations. Given a small positive value of &, the offset A can be

determined by setting H'(L-A) =4, i.e.,

p-20(L-A)=5 (5.11)

Solving the above equation and taking into account equation (5.7}, we have

L2
A=Xt_2 (5.12)
2

A direct digital hardware implementation of H(x) can be carried out
according to the signal flow graph as shown in Fig.5.2. This implementation
can be simplified when L takes a value in single term powers-of-two format. In
this situation, both ©® and R are also single term powers-of-two values
according to Eq.(5.7) such that H(x) can be implemented by one muiltiplication
together with one shift and one addition as illustrated by Fig.5.3. A VHDL

description of the implementation of the simplified sigmoid activation function
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circuitry is drawn in Fig. 5.4, which clearly indicates that there are one
multiplier, one adder/subtracter, and two comparators in the implementation.
The detailed schematic of this design is drawn in Fig.5.5 and has an area of
2661 design units (887 gates) and a maximum delay of 13.14 ns in LSI Logic
600K ASIC technology. In comparison, a 128x8-bit look-up-table, as discussed

in section 4.6, requires 2560 gates in the same technology.

S fﬁ} @—Hm

+0) 5

Figure 5.2 Block Diagram for Implementation of H(x)
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Figure 5.3 H(x) with STPT L
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Figure 5.4 Implementation of the simplified sigmoid activation function
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Figure 5.5 Schematic of the Simplified Sigmoid activation function



In this section, simulation results will be presented in which the
performance of the proposed piecewise activation function G(x) is compared
with the performance of the traditional sigmoid activation function as shown
below

1-87%%
=1-° (5.13)
A=

The two activation functions were used to train a two-layer and a three-
layer feedforward neural network using the backpropagation algorithm. The
following parameters of the functions were used:

G(x): L=2

F(x): a=2

Two curves of activation functions with these parameters are shown in Fig.5.1.
The training pattern-pairs of 10 numerals, which are the same as those used
in Chapter 3, were used in simulations. The feedforward neural networks have
100 input nodes, 4 output neurons, and one or two hidden layers each with 40
hidden neurons. The learning rate parameter used was 0.01 in all simulations.
For each combination of function and network, three set of initial random

weights uniformly distributed in the interval [-0.1, 0.1] were used. For recall
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constructed by inverting 5% of its original pixels randomly. The results on the
number of training epochs to reach a sum of squared output errors of 0.1 over
the entire training pattern set and the generalization capabilities, which were
measured as the percentage of correct recalls over all patterns, are summarized
in Table 5.1. The simulation results show that the proposed piecewise
activation function can achieve a similar performance as that of the traditional

sigmoid activation function.

Table 5.1 Performances of SSAF and SAF for Two- and Three-Layer FNNs

F(x) G(x)
Training Generalization Training Generalization
(Epochs) (%) (Epochs) (%)
33 99.6 29 99.6
Two-layer 32 99.1 27 99.1
network
32 99.0 28 99.0
39 99.5 35 99.4
Three-layer 41 99.9 38 99.9
network
38 99.9 35 99.9
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The simplified sigmoid activation function (SSAF) proposed in the last
section has nearly identical features to the traditional sigmoid activation
function, but can be implemented easily using one multiplier. When used in
combination with STPT weights, the implementation of network can be further
simplified. In this section, a method for designing MFNNs using SSAFs and

STPT weights will be developed.

5.2.1 Design Algorithm

Our objective is to design an MFNN with SSAF at the output of each
neuron and STPT weights of the form of {1, £2, ..., £2™, 0}. The design

procedure can be carried out as follows.

Step 1: Starting with small random weights and zero biases, train an
MFNN with SSAFs and continuous weights using the
backpropagation algorithm without adjusting biases until
convergence to an predetermined error level E,, i.e.,

K
Y e <E (5.14)

k=1
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Step 2:

Step 3:

Step 4:

Step 5:

Find the maximum absolute value in each layer among weights
w.™, which have been obtained in Step 1.

i f

Wmax""=f;la}x { jw") ) (5.15)

Then find the smallest STPT value which is greater than or equal

to w,,," and denote it as 2°"™. Now set w,,,,/" to this STPT value

w__ [l — oplhl

max

Normalize weights w," as

w [ = 2-Aif gy I (5.16)

Adjust the parameters in SSAFs at each layer accordingly as

plAl =20t i

ol = 92dh glH (5.17)

such that they remain STPT values.

Quantize the normalized weight w’;™ to its nearest STPT value
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T
if |w'5|<Cy (5.18)

0
[N i
w = S w
7=t ”’{2'"’ if Cp<|Wh}|<Cpry

where sgn(w’,™) stands for the sign of w’;" and C,, is defined as

c%:%zm m=0,1,...M (5.19)

Step 6: Calculate the TSE using current STPT weights and SSAFs. If TSE

is less than the predefined level E,, i.e.,

K
Y o,<E (5.20)
k=1

stop; otherwise, proceed to Step 7.

Step 7: Compute changes in weights w’;™ and biases b/™, respectively,

according to the equations in the BP algorithm.

Step 8: Update weights and quantize them as in Step 5. Denote the old
set of weights as {w’;"},, and the new set as {w";"'},,.... and then

calculate TSE using both sets of weights, if
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S T i hows I L

accept new weights by setting

W= (5.22)

otherwise, discard them and keep old weights.

Step 9: Update biases b/ and go back to Step 6.

5.2.2 Simulation Results

The 10 numeral patterns, each with 10x10 bipolar pixels, shown in
Fig.3.4 are used in the simulations. Each MFNN was trained to obtain both
continuous and STPT weights. Sets of noisy patterns were fed to each
continuous-weight MFNN and its corresponding STPT-weight MFNN to test
their generalization capabilities in terms of recall accuracy (in percentage of
correct recalls). A noisy version of each of the 10 training patterns was
constructed, as before, by inverting randomly 5% of the original elements. The
recall accuracy was obtained by taking the average of the results among 100
noisy versions of each of the 10 training patterns. Simulation results are
summarized in Table 5.2 and Table 5.3, where CMFNN and STPTMFNN

represent, respectively, the MFNNs with continuous and STPT weights. For
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All data given in Tables 5.2 and 5.3 were averages of five designs, starting
with different initial random weights uniformly distributed in [-0.1, O.1]. Other
parameters used were €=0.01; ¢,=0.1; M=4; E,=0.01; E=0.2; D=2; and

6=0.01.

It can be seen that convergence was reached in all designs. The designed
MFNNs with STPT weights can retain the generalization capability of the
corresponding MFNN with continuous weights as the degradations in

performance were at most 0.42% over all designs.
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Number Training Generalization

of (Epochs) (%)

Hidden

Neurons CMFNN STPTMFNN CMFNN STPTMFNN
10 96.6 72.2 99.44 99.04
20 350.2 1.0 99.72 99.50
40 300.0 2.2 99.50 99.40
60 294.6 1.0 99.58 99.48
80 61.6 1.0 99.56 99.50
100 45.0 1.0 99.54 99.32

Table 5.3 Convergence Speed and Generalization Capabilities of MFNNs with
Two Hidden Layers

Number Training Generalization
of (Epochs) (%)

Hidden CMFNN  STPTMFNN CMFNN  STPTMFNN

Neurons
10 385.2 71.0 99.42 99.00
20 846.0 381.8 99.46 99.34
40 712.2 3.4 99.40 99.38
60 1021.2 1.0 99.52 99.48
80 483 .4 1.0 99.56 99.50
100 307.6 1.0 99.60 99.46
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In this section, the ideas of STPT weights, quantized neurons, and
simplified sigmoid activation functions will be combined to generate an MFNN

model with no weight multiplications for continuous input-output mapping.

The designed MFNNs will have following features:
e STPT weights in the input layer and continuous weights in all
other layers
e Simplified sigmoid activation functions at output neurons

s three-level activation functions (3-LAFs) at hidden neurons

A three-level activation function is a special case of the quantized neuron

presented in Chapter 4 when M =0 and can be expressed as

1 for t<x
F(x)={0 for -t<x<t (5.23)
-1 for x<t

where t is a positive threshold value. The derivative of F,(x) can be determined
by using the method described in Chapter 4, i.e., finding the three intersection

of F;(x) and the following function
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where g> 1 is a gain factor. The derivative of F(x) at these three intersections

will be used as the approximation of F’,(x) in three different regions defined in

equation (5.23), respectively, during training.

5.3.1 Design Algorithm

Step 1:

Step 2:

Step 3:

Step 4:

Prepare a set of random weights and zero biases.

Starting with the latest weights and zero biases, train the network
using the backpropagation algorithm, with the SSAFs at the
output neurons and the 3-LAFs at the hidden neurons. The
weights will keep updated until the TSE becomes less than a
prespecified error level E,. The obtained network is denoted as Net

1.

Find the maximum absolute value w,,,, among the weights in the

first layer and normalize these weights by w,,,,.

Scale the threshold value t of 3-LAFs applied to hidden neurons by
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Step 5:

Step 6:

Step 7:

Step 8:

Quantize those normalized weights in the first layer to their

nearest STPT values from the set of {£1, £27, ..., £2™, 0}.

Calculate the TSE. If TSE<E,, stop and denote the network

obtained here as Net 2; otherwise, proceed to Step 7.
Re-adapt all continuous weights in all layers rather than the first
one, and biases in all neurons using the backpropagation

algorithm.

Go back to Step 6.

5.3.2 Simulation Results

Simulation results are provided in Table 5.4. Two normalized orthogonal

continuous real vector sets, one as input pattern set and the other as target

set, were used for training and recall. Each vector set consists of 10 vectors

and each vector consists of 25 continuous real elements, which are generated

by using a method described in Reference [Kwan et al., 1993]. The network

was used as a pattern associator, which had 25 inputs, 25 outputs, and one
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versions of each of the 10 input vectors were presented to the network to test
the recall performance. The noisy vectors were constructed by adding random
noise within the interval of £R to each element of each input vector. R
represents a percentage of the maximum element value among all the 10 input
vectors. In the simulations presented here, R was 10% or 20%. The output
vector was identified based on its crosscorrelations with all ideal output
vectors. The ideal output vector with maximum crosscorrelation was selected
as the recall vector. For comparison, the simulation results of the corresponding
continuous MFNN (CMFNN), which had the same topology but continuous
weights and bipolar sigmoid activation functions at both layers, were also
obtained. The data summarized in Table 5.4 represent the average of five
designs, starting with different initial random weights uniformly distributed
within £0.1. The learning rate parameter for weights was €=0.01, the step
size for bias adjustment was ¢€,=0.01, and other parameters used were

6=0.01, a=2, D=2, M=4, and E,=10°.

It can be seen that the proposed MFNNs with SSAFS, 3-LAFs, and STPT

weights have a similar recall performance as the original MFNNs with SAFs and

continuous weights at a cost of additional training epochs.
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5.4 Multiplierless MFNNSs for Discrete Input-Output Mapping

When the input and output patterns are of discrete format (binary or
bipolar), some limitations in the design of MNFFs without weight multiplications

can be removed and the design will be more flexible.

In this section, a method for designing 2-layer feedforward neural
networks suitable for bipolar (+ 1) input to output mapping will be presented,
which uses simplified sigmoid activation functions at hidden neurons, step
activation functions at output neurons, continuous valued weights in the first
layer, and single-term powers-of-two weights in the second layer such that
multipliers can be eliminated from the resultant networks. The designed

network will have the following properties:

. bipolar (= 1) input and output
. one hidden layer
. continuous weights at first layer and single-term powers-of-two

weights at the second layer
. SSAFs at the hidden layer
. SAFs at the output layer for training and step functions at the

output layer for recall
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5.4.1 Design Algorithm

Step 1:

Step 2:

Step 3:

Step 4:

Prepare a set of random weights and zero biases, with sigmoid
activation functions at the output layer and simplified sigmoid
activation functions (with a single-term powers-of-two L) at the

hidden layer.

Starting with the latest weights and zero biases, train the network

using the BP algorithm without adjusting biases until

K
Y e<E (5.25)
k=1

where E is a prespecified error level. The network obtained at this

point is denoted as Net#1.

Find the maximum absolute value w,,,,'* among the weights in the

output layer and normalize these weights by w,, /2.

Adjust the parameter a of the sigmoid activation functions applied

at the output neurons as aw,,,,'>'.
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Step 6:

Step 7:

Step 8:

Step 9:

term powers-of-two values chosen from the following set:

{ 21, 27, 272, +2°5,0) (5.26)

Calculate the TSE. If TSE<E is not satisfied, proceed to step 7;

otherwise, go to step 8.

Adapt all continuous weights of the first layer and biases of
neurons at both layers using the equations given in Section Il until
either Eq.(13) is satisfied or convergence is reached in which no

further improvement in SSE can be obtained.

Find the maximum absolute value w,,,,'"! among the weights in the
first layer, and set w,,,,/"' =2"", where 2°"! is the smallest single-

term powers-of-two value greater than or equal to w,,""".

Normalize the weights in the first layer by 2°'"! and set parameters
R and O of the SSAFs applied at hidden neurons as B=2""8 and
©=2%19, respectively, such that they remain single-term

powers-of-two.

Step 10: Replace the sigmoid activation functions at the output layer by
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as Net#2.

5.4.2 Simulation Results

Simulations have been conducted to verify the proposed design
algorithm. The input patterns used in training were 10 numerals as shown in
Fig.3.4, each represented by 10x10 bipolar pixels. The corresponding desired
output patterns were 4-bit codes given below each input pattern. Thus, the
network had 100 inputs, 4 outputs, and one hidden layer with various number
of neurons. After training, 100 noisy versions of each of the 10 input patterns,
in total 1000, were presented to test the recall accuracy of the network
obtained. A noisy pattern was constructed by inverting randomly a percentage
(in this paper it was 5%) of elements of the original pattern. The recall
accuracy was obtained by taking the average over all 1000 testing patterns.
Simulation results are summarized in Tables 5.5 and 5.6. All data given in these
tables were averages of five designs, starting with different initial random
weights uniformly distributed in [-0.1, +0.1]. For the purpose of comparison,
the results of corresponding continuous-weight MFNN (CMFNN), which had the
same topology but continuous weights and sigmoid activation functions at both
layers, were also obtained and included in these tables. The total number of

epochs under MMFNN is the sum of epochs required to obtain both Net#1 and
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target patterns. The other parameters used for simulations were: €=0.01,

€,=0.1,E=0.01, a=2, D=2, and 6=102
Based on the data in Tables 5.5 and 5.6, we can see that the
convergence was always reached in the training of MMFNN and there was only

slight degradation in the recall performance of MMFNN compared with CMFNN.

Table 5.5 CONVERGENCE SPEED (IN NO. OF EPOCHS) OF CMFNNs AND

MMFNNs

Number MMFNN

of hidden CMFNN

neurons §=2 S=4 S=8
10 202.8 721.2 629.0 696.4
20 98.0 182.6 172.2 172.2
40 78.2 155.8 141.8 141.2
60 71.4 141.2 146 146.8
80 67.4 120.2 126.6 126.6
100 56.0 99.2 99.8 100.6
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Table 5.6 RECALL PERFORMANCE (IN PERCENTAGE OF
CORRECTNESS) OF CMFNNs AND MMFNNs

Number MMFNN
of hidden CMFNN

neurons §=2 S=4 S=8
10 99.50 99.43 99.08 98.96
20 99.72 99.60 99.68 99.66
40 99.56 99.46 99.56 99.58
60 99.54 99.56 99.60 99.60
80 99.62 99.58 99.60 99.60
100 99.62 99.46 99.58 99.58

5.5 Concluding Remarks

A simplified sigmoid activation function (SSAF) has been proposed in this
chapter for direct digital implementation. This presented model is a piecewise
function which has a very close approximation to the original sigmoid function
and performs equally when used in multilayer feedforward neural networks. The
advantage of SSAF for hardware implementation was demonstrated by the fact
that it requires much less silicon area than the commonly used look-up-table

method.

Based on the SSAF model and combined with the ideas of STPT weights
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feedforward neural networks architectures suitable for digital hardware
implementation were developed under different conditions. While having
advantages for digital implementation approach, all these models can retain the

performance of the original multilayer feedforward networks as shown by the

simulation results.
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Chapter 6

CONCLUSIONS AND SUGGESTIONS

6.1 Conclusions

This dissertation has made original contributions to the development of

artificial neural network models for digital hardware implementations.

First, a new model of multilayer feedforward neural network with single
term powers-of-two weights is proposed in Chapter 3 along with a dedicated
design algorithm. The adaptive sigmoid activation function has been introduced
for fine-tuning the network to compensate the 'errors caused by weight
quantization. This method gives the network more dimensions of freedom in
addition to weight adjustment to adapt to a given problem. The proposed
algorithm turns out to be effective in designing MFNNs with STPT weights.
MFNNs with STPT weights have substantial advantages over original MFNNs
in digital hardware implementation. By using STPT weights, multiplications are

eliminated such that only shift operations are required. This has resulted in
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feasibility of the proposed model and algorithm was demonstrated by simulation
results. STPT-weight networks can retain a similar performance to the original
continuous-weight networks while avoiding weight multiplications in digital

hardware implementations.

The STPT weights were introduced in an attempt to alleviate the
computational burden of multiplications, no extra effort has been made to ease
the interconnection problem in digital implementation. However, if we take into
account the effect of the increased number of zero weights and the reduced bit
width of non-zero weights as a result of the adoption of STPT weights, we can
still see some reduction in the density of interconnections, although this impact

is limited and no substantial improvement is expected.

A new model for MFNNs with quantized neurons is proposed in Chapter
4. The concept of a quantized neuron is introduced and its structure is
demonstrated. The output of a quantized neuron is restricted to STPT format
with a multistep activation function. The BP algorithm has been modified to
handle the training of quantized neurons. A methodology for designing MFNNs
with quantized neurons is presented and has been proved to be very effective
through simulations. The advantages of using quantized neurons in MFNNs for

digital hardware implementation include elimination of weight multiplications
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functional blocks have been proposed and significant improvement in terms of
speed and silicon area has been achieved. In conclusion, MFNNs with quantized
neurons have shown great advantages over digital hardware implementation
with little degradation in the network performance when compared with original

MFNNs.

A simplified sigmoid activation function is proposed in Chapter 5, which
is a very close approximation to the original sigmoid activation function and has
the same performance in simulations. A corresponding training algorithm has
been developed and a cost effective direct hardware implementation is
presented. More multiplierless MFNN models are also developed in Chapter 5
based on the idea of STPT weights and the simplified sigmoid activation
function. The effectiveness of these models are verified via computer

simulations.

Real world applications may require very large neural networks with
hundreds of thousands neurons, or even more. Increased complexity of ANN
will definitely result in a high cost of hardware implementation, which could
limit the wide application of ANNs. Thus, there is an urgent need in cost
effective implementation of ANNs and the strategies proposed in this

dissertation are able to serve this purpose well.
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While the proposed models and algorithms have been shown to be
successful in designing multilayer feedforward neural networks, the following

open problems still need further investigation.

The original multilayer feedforward neural networks are universal
approximators. Do MFNNs with powers-of-two weights still have this property?
It would be very interesting to see whether it is possible to find any direct
analytical solution in this regard. Although it is expected that the analysis may

be quite complex in nature.

Our simulation results show that MFNNs with STPT weights or quantized
neurons can achieve almost the same performance as the original MFNNs
without an increase in the size of the network. To what extent this result can

still hold is a good direction for future mathematical analysis.

The models proposed in this dissertation can eliminate multiplication in
the feedforward operations only. That means multiplications are still inevitable
in the learning phase. The learning algorithm without multiplications is needed

if on-chip learning is to be implemented digitally.
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Appendix A

DERIVATION OF THE BP ALGORITHM

The backpropagation (BP) algorithm is a gradient descent method, which
makes the change in a weight to be proportional to the negative derivative of
a cost function with respect to that weight. If the total squared error (TSE)
defined in equation (2.9) is used as the cost function, then the change in
weight w;™ due to pattern k can be calculated as

a6
AW = —e—% (A.1)
ow}’

By using the chain rule,
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Appendix B

DERIVATION OF THE ALGORITHM FOR

ADAPTATION OF ACTIVATION FUNCTIONS

Based on the gradient descent method, the change in the parameter a of
the sigmoid activation function of the jth neuron at the Ath layer in an MFNN

can be expressed as

e
Ay =-—r (B.1)
aaj
for h=L
ay aa[Ll (B.2)

=2(t- ¥, )F’ (Z o)

where F’,(z,a) is the partial derivative of the activation function with respect to
parameter a.
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AN FPGA IMPLEMENTATION OF MFNNS

WITH QUANTIZED NEURONS

In this appendix, the FPGA design of a muitilayer feedforward neural

network with quantized neurons for XOR problem will be presented.

C.1 Design Overview

The overall design of an all-digital implementation of MFNN with
quantized neurons can be divided into several major parts, including
accumulation, shift operation, activation function, and timing control. The
design will be a partly parallel, partly serial operated architecture. In other
words, the operations within the same layer of the network are parallel, and the
inter-layer operations are performed in serial from the first (or input) layer to the
output layer because the outputs of the current layer usually are inputs to the
next layer. The architecture of each layer are similar in MFNNs. A block diagram
of the implementation structure of a typical MFNN is illustrated in Fig.C.1,

where only one layer is shown.
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Figure C.1 Block Diagram of Digital Implementation Structure of an MFNN
with quantized neurons

In the above structure, the ACCUs stand for functional blocks of
accumulation; the SHFs are functional blocks of shift operation; the LUTs stand
for the functional blocks of activation function; MUX is a multiplexer; and Ws

are weights.

The operation of accumulation can be realized using an accumulator. The
function of accumulator is to add up all input to the neuron. Each neuron wiill

have a dedicated accumulator. The accumulator will have add/subtract
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operation flow. The function of a shift block is to shift a weight by a certain
number of bits, which is determined by the activation of the corresponding
neuron. This block will also have parallel data loading, synchronous reset, and
clock enable. Because for a particular connection weight, the number of bits to
be shifted varies from pattern to pattern, the shift block should be able to
detect how many bits will be shifted for each weights under different input
patterns and control the shift operation as required. From Chapter 4, it can be
seen that the maximum magnitude of the output of a neuron cannot exceed 1,
therefore only right shift is involved in the operation. However, the output of
each neuron is changing with different pattern presented to the network.
Consequently, the number of bits to be shifted for a particular weight is not
known in advance. The circuit has to be able to deal with this demand. As for
the nonlinear activation function, it is usually implemented by look-up table
using memories. Since in the model of MFNNs with quantized neurons, the
activation function is a multi-step function, the implementation of this function
can be simplified significantly. Due to its multi-step format, a group of
magnitude comparators and a simple combinational logic can be put together
to realize the desired feature of such activation functions. Weights can be

stored in memories.

140



design package using the Unified Component Libraries. Lreating F~aA esighs

with Viewlogic involves the following steps:

1. Enter the design with Viewdraw schematic editor, observing the Xilinx

design requirements.

2. Test the functionality of the design. Run XSimMake to generate the
ViewSim functional simulation netlist (VSM) file. After verifying that the
logic design is functionally correct, proceed with the third step, design

implementation.

3. Implement the FPGA design. Generate the placed and routed design
automatically by executing the XMake program for an FPGA design or

translate the design manually.

4. Simulate the timing of the design. Generate a ViewSim timing netlist by
running the XSimMake program on the LCA (Logic Cell Array) file. Use

the VSM output file for timing simulation.

The Viewlogic design methodology for FPGAs is illustrated by the

flowchart in Fig.C.2.
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Figure C.2 Viewlogic Design Methodology for FPGAs
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Fig.C.3 shows a top level schematic of an MFNN with 2 inputs, one (1)
output, and one (1) hidden layer of two (2) hidden neurons for solving XOR
problem. Several functional blocks were used in the design. The description of
these blocks will be provided in the following sections. Some of them are user
defined symbols, while the others are components directly from Xilinx libraries.
In Table C.1, all symbols used in the top level design are listed with a brief
explanation. Xilinx FPGA device 4013MQ208-5 was used in the design. The
final design occupies 346 CLBs, that counts for 60% of the maximum number

of 576 available CLBs.

The circuit was designed to function in the following way. After a
pattern is presented to the input of the network, the bias of each neuron will
be loaded into the corresponding accumulator; then the first layer accumulators
will be working in parailel to add up all weighted inputs. Since the inputs are
digital signals of O or 1, they can control the clock enable of the accumulator
to determine whether the corresponding weight will be added or not. The
elements of the input pattern are selected one by one in sequence by a

multiplexer.
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Symbols Explanation
M2_1E Two to one multiplexer
IFD Input D Flip-Flop “
IPAD Input pad “
w, L, Weight w;™ {l
BIAS,_L, Bias b,

T16MUX2_1E | 16 bit two to one multiplexer “
AND2 Two inputs AND gate J|
ACC16 16 bit accumulator “

LUT Activation function 4“
SHF_BLOC | Shift operation block
0SC_4K Internal clock generator |
DEBOUNCE | Start pulse generator
CTRLBLOC | Timing control block
OBUF Output buffer
OPAD Output pad
IBUF Input buffer “

After the accumulations at the first layer are finished, the sums of

accumulators will be passed to the activation functions (block LUT) to produce

the output of neurons. Because quantized neurons are used here, the output of

an activation function has single term powers-of-two format, which will be

used as an input to the block of shift operation (SHF_BLOC) to control the shift
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to neurons at the next iayer. 1He oiyit LIt UL Wik S =2 == 7
will be used to select add/sub of the accumulator at the second layer. Due to
the similarity of layers in an MFENN model, the same operations will be repeated

in the consecutive layers.

In the following section, the details of major sub-circuit blocks will be

described.

C.3 Sub-Circuit Blocks

In this section, the schematic design of the major functional blocks will
be described. All of these blocks have been constructed using the primitive

components from the Xilinx XC4000 library.

C.3.1 Accumulator - ACC16

ACC16, shown in Fig.C.4, is a 16-Bit Loadable Cascadable Accumulator
with Carry-In, Carry-Out, and Synchronous Reset. The function of ACC16 is to
take a sum of weighted inputs to each neuron, that means the output of the

accumulator is the net input to the corresponding neuron.

Each neuron needs a dedicated accumulator such that parallel operation
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L
inputs. Therefore, ADD will ADD
CE
always be HIGH and CI will be c o
- ]
LOW. Weights and biases, both

connected to B and D,

respectively.

When used in a layer other than the first one, ACC16 will operate in add
mode as well as subtract mode. The operation mode will be determined by the
output of neurons in the previous layer together with the corresponding
weights. If the sign bit of the output of the neuron in the previous layer is
negative, then the value of the shifted version of the corresponding weight will
be subtracted from the contents of the accumulator; otherwise, it will be added

to that accumulator.

C.3.2 LUT - Impiementation of the Activation Function
The input to the LUT is the output from the accumulator. The output of
the LUT is the activation of the quantized neuron in STPT format, i.e., there is

only one bit is "on" (logic high) in the output. This functional block has been
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Fig. C.O i1s the schematliC orf LU WHEI WE=%. 11 SiTeies 7 ==
CMPRTR is shown in Fig. C.6. The five comparators on the top are used for
comparisons between input data and positive thresholds, while the other five

at the bottom are for comparison with negative thresholds.
The input-output relationship of the combinatorial logic can be described
as in Table C.2. The five positive and negative thresholds are obtained by using

the method described in Chapter 4 and listed in Table C.3.

Table C.2 Combinatorial Logic in LUT Block

INPUTS OUTPUTS
IN15 P4-PO N4-NO Position of "1"
0 11111 XXXXX
1 XXXXX " ouT?7
0 01111 XXXXX
1 XXXXX o1111 ouTe
0 00111 XXXXX
| 1 XXXXX 00111 ouTs
“ 0 00011 XXXXX
|[ 1 XXXXX 00011 ouT4
‘F 0 00001 XXXXX
1 XXXXX 00001 ouT3
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THRESHOLDS 2'S COMPLEMENT VALUES
TH_P1 0001000000011010
TH_P2 0000010111000110
TH_P3 0000001011000011
TH_P4 0000000101011110
TH_P5 0000000001110101
TH_N1 1110111111100110
TH_N2 1111101000111010
TH_N3 1111110100111101
TH_N4 1111111010100010
TH_NS 1111111110001011

C.3.3 SHF_BLOC - Implementation of Shift Operation

The function of the shift block is to shift a weight according to the
activation of the corresponding neuron, which is of the STPT format, instead
of doing multiplication. As mentioned before, because the output of a neuron
is different under different input patterns, the number of bits to be shifted in
the corresponding weight varies from one pattern to another. Therefore, the
shift block must be able to detect and control the actual number of bits to be
shifted. This is done by using two shift registers, one is used to control how
many bits will be shifted while the other is used to do the actual shift operation

of weights. Fig. C.7 shows the implementation of the shift block where the
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Figure C.7 Implementation of Shift Operation

The 8-bit shift register SR8RLED is used to control the shift operation
while the 16-bit shift register SR16RLED conducts the actual weight shifting.
The SRBRLED will keep shifting left while the SR16RLED is shifting right until

the most significant bit (MSB) in the SR8RLED becomes 1. At that point, both
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synchronously at the next clock pulse.

C.3.4 CTRLBLOC - Implementation of the Control Block

The function of the control block CTRLBLOC is to provide timing signals
to the circuit. These signals usually will control the Enable input, the Data Load
input, and Set/Reset input of functional components. Because an MFNN
operates from the input layer to the output layer, the CTRLBLOC will allow each

layer to operate only when all information have come available to that layer.

Fig. C.8 shows the implementation of the control block CTRLBLOC,
where CB4CE is a 4-stage, 4-bit, synchronous, clearable, cascadable binary

counter.

From the top level design given in Section C.2, it can be seen that the
whole circuit operates synchronously, i.e., the states of the circuit make
changes only during clock transitions. However, the sequence of operations and
the time at which a block can operate will be determined by control signals.
These signals include ACC_LD, L1_ENB, L1_SLCT, SHF_LD, SHF_CE, L2_ENB,

and L2_SLCT, which are summarized in Table C.3.
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W SIG;IAL OUTPUTS OF CTRLBLOC FUNCTIONS
ACC_LD CTRL_1 Accumulators load signal
L1_ENB CTRL_2 Layer 1 operations enable
L1_SLCT CTRL_3 Layer 1 multiplexer select signal
SHF_LD CTRL_4 Shift blocks load signal
SHF_CE CTRL_5 Shift blocks clock enable
L2_ENB CTRL_6 Layer 2 operations enable
L2_SLCT CTRL_7 Layer 2 multiplexer select signal

All control signals are active High. Each block can act only during the
active period of the corresponding control signal. The order of appearance of

these signals is the same as the sequence in which they are listed in Table C.3.

C.3.5 Weights and Biases

Weights and biases used in the FPGA design are listed in Table C.4,

along with their 16-bit fixed-point 2’'s complement representations.
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Table C.4 Representations of Weights and Biases

Symbols Values 2’s Complement Representations
w11(1] 2.36474609375000 0010010111010110
w12[1] 1.56982441875000 0001100100011110
w21(1] 2.42138671875000 0010011010111110
w22([1] 1.56982421875000 0001100100011110
w11(2] 3.65307617187500 0011101001110011
w21[2] -3.72949218750000 1100010001010100

b1(1] -1.03979492187500 1110111101011101

b2[1] -1.86059570312500 1110001000111011

b1(2] -1.11254882812500 1110111000110011

C.4 Design Simulation

Both functional and timing simulations have been conducted on the top
level schematic design. Functional simulation is used to verify the logic
relationship under normal unit delay of each component while timing simulation
is used to verify the logic correctness under the worst situation of gate delays.
Functional simulations use unrouted design and timing simulation based on the

routed design.
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output layer, if the net input before activation is negative, then the output of
that neuron will be zero because a hardlimiter function can be applied to
produce binary output. On the other hand, if the net input before activation is

positive, the output of that neuron will be logic one.

C.4.1 Functional Simulation Results
Design simulations have been conducted using Xilinx’s ViewSim. The

results are provided below.

1) XU=0, XD=0

When both inputs are O, the signal OUTPUT[15:0] =
1110111000110011 whichis less thanTH_N1=1110111111100110. Thus,
the output of the network is logic zero (Low), the same as expected. The

simulation waveform is depicted in Fig. C.9.

2) XU=0, XD=1

In this case, two inputs are different, the output of the network should
be logic one (High). Look at the simulation waveform given in Fig. C.10, the
signal OUTPUT[15:0]=0001001001000101 which is greater than

TH_P1 =0001000000011010. Therefore, the output of the network is indeed
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3) XUu=1, XD=0

Similar to the above case 2), the two inputs are new different, so the
output of the network should be logic one (High). From Fig. C.11, the
simulation waveform, it can be seen that the signal OUTPUT[15:0] =
0001001001000101 which is greater than TH_P1=0001000000011010.

Therefore, the output of the network is indeed logic one (High).

4) XU=1, XD=1

Now both inputs are 1, which is a similar situation to case 1), the output
of the network is expected to be logic zero (Low). Observe the simulation
waveform in Fig.C.12, the signal OUTPUT[15:0]=11101100111 11001 which
is still less than TH_N1=1110111111100110. With this OUTPUTI1 5:0] as the
net input to the output neuron before activation, the output of the network is

logic Low (zero), showing the correct result.
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The same logic results as in the functional simulations were obtained and are

shown in Fig.C.13-C.16. The only difference is the amount of delays.
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Appendix D

VHDL CODES FOR HARDWARE

IMPLEMENTATION SCHEMES

Table D.1 VHDL code for shift operation

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;

entity SHIFTER is

port( a: in std_logic_vector(7 downto 0);
ct: in std_logic_vector(4 downto O);
z: out std_logic_vector(11 downto 0));
end SHIFTER;

architecture BEHAVIORAL of SHIFTER is
begin
process(a, ct)
begin
case ct is
when "00000" =>
z< ="000000000000";
when "00001" =>
z< =a(7)&a(7)&a(7)&a(7)&a(7 downto 0);
when "00010" =>
z< =a(7)&a(7)&al(7)&a(7 downto 0)&’0’;
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when "01000" =>
z< =a(7)&a(7 downto 0)&"000";
when "10000" =>
z< =a(7 downto 0)&"0000";
when others = >
Z< =" e "
end case;
end process;

end BEHAVIORAL;
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Library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

entity PIECEWISE is
port( a: in std_logic_vector(15 downto 0);
c: out std_logic_vector(4 downto O));
end PIECEWISE;

architecture BEHAVIORAL of PIECEWISE is

constant pO: std_logic_vector(15 downto O): = "0001000000011010";
constant p1: std_logic_vector(15 downto 0): ="0000010111000110";
constant p2: std_logic_vector(15 downto 0): ="0000001011000011";
constant p3: std_logic_vector(15 downto 0): ="0000000101011110";
constant p4: std_logic_vector(15 downto 0): ="00000000011101 o1";
constant nO: std_logic_vector(15 downto 0):="1110111111100110%;
constant n1: std_logic_vector(15 downto 0):="1111101000111010%;
constant n2: std_logic_vector(15 downto 0):="1111110100111101";
constant n3: std_logic_vector(15 downto 0):="1111111010100010";
constant n4: std_logic_vector(15 downto 0):="1111111110001011";
begin

process(a)

begin

case a(1b) is
when ‘0’ =>
if(a> =p0) then
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c< ="01000";
elsifla> =p2) then

c< ="00100";
elsif(a> =p3) then

c< ="00010";
elsif(a> =p4) then

c< ="00001";
else

c< ="00000";
end if;

when others = >
ifla< =n0) then

c< ="10000";
elsiflta< =n1) then

c< ="01000";
elsif(fa< =n2) then

c< ="00100";
elsif(a< =n3) then

c< ="00010";
elsifla< =n4) then

c< ="00001";
else

c< ="00000";
end if;

end case;

end process;

end BEHAVIORAL;
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Table D.3 VHDL description ot the simplitied sigmotd activation runcton

library IEEE, DWO2;

use IEEE.std_logic_1164.all;

use |IEEE.std_logic_arith.all;

use IEEE.std_logic_signed.all;

use DW02.DWO02_components.all;

entity ssaf is
port(x: in std_logic_vector(15 downto 0);
z: out std_logic_vector(7 downto 0));
end ssaf;

architecture behavior of ssaf is

signal x_shft: std_logic_vector(15 downto O);

signal x_shft_low: std_logic_vector(7 downto 0);
signal x_shft_low_sqr: std_logic_vector(15 downto 0);
signal z_long: std_logic_vector(8 downto 0);

signal control: std_logic;

begin
control <= "1';
x_shft < = x(15)&x(15 downto 1);
x_shft_low < = x_shft(7 downto 0);
-- x_shft_low_sgr < = x_shft_low * x_shft_low;
U1: DWO02_mult
generic map(A_width => 8, B_width => 8)
port map(A => x_shft_low, B = > x_shft_low,
TC = > control, PRODUCT => x_shft_low_sqr);

piecewise: process(x, z_long)
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if(x > =2) then
z<="01111111";
elsif(x < =-2) then
z< ="10000000";
else
z < = z_long(7 downto 0);
end if;
end process;

second_order: process(x_shft, x_shft_low_sqr, x)

begin
case x(15) is
when ‘0" =>
z_long < = x_shft(7 downto 0)&’0’ -
x_shft_low_sqr(15 downto 7);
when others =>
z_long < = x_shft(7 downto 0)&'0" +
x_shft_low_sqr(15 downto 7);
end case;
end process;

end behavior;
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