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ABSTRACT

The advance in design, and manufacturing technologies has made it possible to
design, and manufacture products with high degrees of irregularity, such as free form
surfaces. These products are utilized in the aircraft, shipbuilding, automotive, biomedical,
and tool and die industries. Coordinate Measuring Machines (CMMs) are used to
examine the conformity of the produced parts with the designer's intention. The

inspection of free form surfaces is a difficult process due to their complexity, and

irregularity.

Many tasks are performed to ensure a reliable and efficient inspection using CMMs.
Sampling is an essential and vital step in inspection planning. It is a major contributor to
the CMM measurement uncertainty. This research focuses on developing efficient and

reliable approaches to determine the locations of the points to be sampled from free form

surfaces using the CMM.

Four heuristic algorithms for the sampling of free form surfaces have been

developed. Optimal sampling of free form surfaces using Genetic Algorithms has been

iii



introduced. An algorithm for the automatic selection of sampling algorithm based on the
surface complexity is developed. The developed sampling algorithms have been
implemented, and integrated into a computer-aided system for the sampling of free form

surfaces.

Extensive simulations have been performed on the developed methodologies to test
their performance using free form surfaces with different degrees of complexity. Within
the simulation study, the CMM measurement error, and the manufacturing form error

have been simulated. The developed sampling approaches were compared to the uniform

sampling pattern.

The heuristic methodologies proved to be efficient in producing reliable sampling
strategies to a wide range of surface complexity. When the surface reaches a high
complexity level, finding an optimal sampling plan becomes crucial. In this case, Genetic

Algorithms demonstrated superiority over the various sampling methodologies.

The developed algorithms are intended to fill voids which exist in previous works in
sampling of free form surfaces. These are: offering alternative solutions to the sampling
problem, optimal sampling of free form surfaces, and automatic selection of sampling
algorithms. They are intended to be candidates for integration with computer aided tactile
inspection planning systems.

iv



To The Memory of Mohammad AlDurrah



ACKNOWLEDGMENTS

[ am deeply indebted to my supervisors, Dr. Hoda A. ElMaraghy, and Dr. Waguih H.
ElMaraghy for their guidance, and the support they had extended to me throughout the course of
my M.A.Sc. Program. I would like to express my deepest gratitude to my supervisory committee,

Dr. Michael Wang, and Dr. Nader Zamani, for their comments, and time in reviewing my thesis.

I would like to thank the Industrial and Manufacturing Systems Engineering Program
secretary, Ms. Jacquie Mummery, and department technical support, Mr. Ram Barakat, and Mr.
Dave McKenzie for their help. I would like to thank my colleague, and friend, Mr. Christopher
Rolls for his help in proofreading my thesis.

I would like to extend my thanks to my friends, and colleagues who helped me during my stay
in the Intelligent Manufacturing Systems Centre, namely, Dr. Abbas Vafaeesefat, Mrs. Melinda

Harmos, Mr. Tarek ElMekkawy, Mrs. Ana Djuric, Mrs. Izabella Kojic-Sabo, Mr. Xiaoyong
Yang, and Mr. Ting Zhou.

I would like to acknowledge the great help, and insight that I received from my dear friends,
Dr. Ashraf Nassef, and Dr. Anis Limaiem. The priceless discussions that [ had with them were a
great help to accomplish the work presented in this thesis. I would like to thank my dear friends,

Drs. Imed BenAbdallah, Tarek Lahdhiri, Hassen Zghal, Mohamed Gadalla, and Mr. AlHoussaine
Waled for their friendship, support, and encouragement.

[ am very grateful to Dr. Tawfik EIMidany, Production Eng. Dept., Mansoura University,

Egypt, who has been the role model, and the God father for me, and many of my generation.

I would not have accomplished this work without the support, help, love, and insight of my

great parents, Mr. Fahmi ElKott, and Mrs. Soad Asar, my brother, Eyad, and my sister, Doaa.

Last, but not least, the love, and faith of my wife, Rehab, has always been my inspiration. I

would like to present this work to her, and to our sweet daughter, Nour.

vi



LIST OF CONTENTS

ABSTRACT iii
DEDICATION v
ACKNOWLEDGMENTS vi
LIST OF CONTENTS vii
LIST OF TABLES xii
LIST OF FIGURES Xiii
CHAPTER ONE
INTRODUCTION AND BACKGROUND 1
1.1. Coordinate Metrology 1
1.1.1. CMM main components 4
1.1.2. Programming of CMM 6
1.1.3. CMM Measurement Uncertainty 9
1.2. Overview of Inspection Planning 10
1.3. Geometric Modeling of Free Form Surfaces 16
1.3.1. Parametric and Non-Parametric Representation 16
1.3.2. NURBS review 18
1.4. Overview of Optimization 22
1.4.1. Genetic Algorithms Optimization 25
1.5. Problem Definition 28
31

1.6. Overview of the Thesis

vii



CHAPTER TWO
LITERATURE SURVEY

2.1. Overview of Sampling for CMM Inspection
2.2. The work of Menq and His Team

2.3. The Work of Hocken and His Team

2.4. The Work of Woo and Liang

2.5. The Work of Cho and Kim

2.6. The Work of Zhang et al.

2.7. Other Work

2.8. Motivations and Objectives

2.9. The Work of ElMaraghy and Team

2.10. Discussion

CHAPTER THREE
SAMPLING ALGORITHMS DESCRIPTION

3.1. Approach
3.1.1. Representation of free from surfaces.
3.1.2. Simulation of sampling process.
3.1.3. Data fitting.
3.1.4. Curve and surface samples.
3.2. Equi-Parametric Sampling
3.3. Span/Patch Size Based Sampling
3.4. Span/Patch Mean Gaussian Curvature Based Sampling

3.5. Combined Span/Patch Size, and Span/Patch Mean Gaussian
Curvature Sampling

3.6. Automatic Selection of the Surface Sampling Algorithm
3.6.1. Surface curvature analysis
3.6.2. Surface patch size analysis
3.6.3. Making the decision

viii

56
56
56
58
59
60
62
65
68
69

73
73
77
78



3.7. Optimal Sampling of Free Form Surfaces

3.8. Discussion

CHAPTER FOUR
SAMPLING ALGORITHMS SIMULATION

4.1. Methodology
4.1.1. Simulation process outline.
4.1.2. Surface complexity.
4.1.3. Surfaces used for simulation study.
4.1.4. Form error simulation.
4.1.5. Measurement error simulation.
4.2. Results of Sampling Algorithms Simulation.
4.2.1. Application of sampling algorithms to surface A
4.2.2. Application of sampling algorithms to surface B
4.2.3. Application of sampling algorithms to surface C
4.2.4. Application of sampling algorithms to surface D
4.2.5. Application of sampling algorithms to surface E
4.2.6. Application of sampling algorithms to surface F
4.3. Analysis of Simulation Results
4.4. Case Studies
4.4.1. Case studies pre processing
4.4.2. Selected CAD models

4.5. Discussion

CHAPTER FIVE
COMPUTER AIDED SAMPLING OF FREE FORM SURFACES

5.1. Overview of CASampler
5.2. Structure of CASampler
5.2.1. NURBS tool box
5.2.2. Genetic algorithms tool box

ix

79
82

86
86
87
87
89
90
93
95
96
98
101
103
106
108
111
114
114
115
121

124
124
125
128
129



5.2.3. Input/output functions

5.2.4. Graphical user interface (GUI) functions

5.2.5. Visualization functions

5.2.6. Sampling functions group

5.2.7. Automatic selection of sampling algorithms functions group
5.3. Operation of CASampler

5.4. Discussion

CHAPTER SIX
CONCLUSION

6.1. Contributions
6.2. Summary of Research
6.3. Discussion and Conclusions
6.4. Future Research
6.4.1. Research issues

6.4.2. Development issues

REFERENCES

APPENDIX A
CODE FOR SAMPLING ALGORITHMS

A.l. Nomenclature

A.2. Equi-Parametric Sampling Algorithm

A.3. Surface Patch Size Based Sampling Algorithm
A.4. Patch Mean Curvature Sampling Algorithm

A.5. Combined Surface Patch Size, and Patch Mean Curvature Based
Sampling Algorithm

130
130
130
131
132
132
137

138
138
139
141
143
143
144

145

151
151
152
153
155
156



APPENDIX B

USER GUIDE FOR COMPUTER-AIDED FREE FORM SAMPLING 157
SYSTEM (CASampler)

B.1. Program Setup 157

B.1.1. File locations 157

B.1.2. Construction of control points data files 158

B.2. Running the Program 160

VITA AUCTORIS 162

Xi



Table 2.1.

Table 4.1.
Table 4.2.
Table 4.3.
Table 4.4.
Table 4.5.
Table 4.6.
Table 4.7.
Table 4.8.

Table 5.1.

Table 5.2.

Table 5.3.

Table B.1.

LIST OF TABLES

Summary of Automated Sampling for CMM Inspection

Features of Surface A

Features of Surface B

Features of Surface C

Features of Surface D

Features of Surface E

Features of Surface F

Results of Simulation Study

Results of Sampling of Selected Surfaces

NURBS Tool Box Functions
GUI Functions

Sampling Functions Group

Contents of CASampler Directories

xil

49

96

98

101
103
106
109
111
120

129

130

131

157



Figure 1.1.
Figure 1.2.
Figure 1.3.
Figure 1.4.
Figure 1.5.
Figure 1.6.
Figure 1.7.
Figure 1.8.
Figure 1.9.

LIST OF FIGURES

Part Inspection Using A CMM

Main CMM Components

Various CMM Configurations

CMM Measurement Uncertainty And Measurement Error
Inspection Planning and Verification Procedure

CMM Inspection Procedure

A Sample NURBS Curve

A Sample NURBS Surface

Samples of NURBS Surfaces

Figure 1.10. Flow Chart for Genetic Algorithms Optimization

Figure 2.1.
Figure 2.2.

Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 3.4.
Figure 3.5.
Figure 3.6.
Figure 3.7.
Figure 3.8.

Figure 3.9.
Surface

Various Factors Affecting CMM Measurement
ANN Architecture Proposed By Zhang et al.

Sample NURBS Curve
Sample NURBS Surface
Flow Diagram of Equi-parametric NURBS Sampling

Equi-parametric Sampling Applied to the Sample Curve, and Surface.

Computation of NURBS Surface Patch Size

Flow Diagram of Patch Size Based NURBS Sampling

Span/Patch Size Based Sampling Applied to the Sample, and Surface
Flow Diagram of Patch Mean Curvature Based Sampling

Span/Patch Mean Curvature Sampling Applied to the Sample, and

Figure 3.10. NURBS Curve, and Surface Sampled Using Hybrid Sampling the

Approach

xiii

34
43

61
62
63
64
66
66
67
70
71

72



Figure 3.11. Automatic Selection of Sampling Algorithm Based on Surface
Complexity

Figure 3.12. Flow Diagram of GA's Based Optimization of NURBS Surface
Sampling

Figure 3.13. NURBS Curve, and Surface Sampled Using GA Based Sampling
Algorithm

Figure 4.1. Flowchart of Inspection Sampling Simulation Process

Figure 4.2. Surfaces Used for Sampling Algorithms Simulation

Figure 4.3. Flowchart of Form Error Simulation

Figure 4.4. Results of The application of Sampling Algorithms to Surface A
Figure 4.5. Results of The application of Sampling Algorithms to Surface B
Figure 4.6. Results of The application of Sampling Algorithms to Surface C
Figure 4.7. Results of The application of Sampling Algorithms to Surface D
Figure 4.8. Results of The application of Sampling Algorithms to Surface E
Figure 4.9. Results of The application of Sampling Algorithms to Surface F
Figure 4.10. Comparison of Sampling Algorithm Applied in Simulation Study
Figure 4.11. Pre Processing of IGES Files

Figure 4.12. Example of IGES Format

Figure 4.13. Exampie of Wafe Front OBJ Format

Figure 4.14. CAD Models Used for Case Studies

Figure 4.15. Surfaces Extracted from CAD Models

Figure 5.1. Flowchart of CASampler

Figure 5.2. Structure of CASampler

Figure 5.3. Surface Data Entry Form

Figure 5.4. Sampling Mode Selection
Figure 5.5. User Defined Sampling

Figure 5.6. Surface Feature Based Sampling
Figure 5.7. Program Status Summary Screen

81

82

85

91
92
93
97
99
102
105
107
110
112
116
117
117
118
119

127
128
133
134
134
134
135



Figure 5.8. Results Visualization Screen
Figure 5.9. Samples Distribution
Figure 5.10. Deviation Distribution

Figure B.1. Structure of CASampler Installation Directory

Figure B.2. Layers of P Control Points 3D Matrix

Figure B.3. MATLAB Format of P Control Points 3D Matrix
Figure B.4. Running CASampler on MATLAB Command Prompt

XV

136
136
136

158
159
160
162



CHAPTER ONE

INTRODUCTION AND BACKGROUND

This chapter presents a background to the principal concepts, and methodologies
utilized throughout the course of this study. The first section discusses various aspects of
coordinate metrology. The second section is a brief discussion of inspection planning,
and a literature survey of the work done in the field of automation of inspection planning.
The third section introduces an overview of geometric modeling of free form surfaces,
with emphasis on Non Uniform Rational B-Splines (NURBS). Section four is a brief
review of optimization, with emphasis on Genetic Algorithms (GA's). Section five

presents a problem statement. Finally, section six presents an overview of this thesis.

1.1. Coordinate Metrology

The basic function of coordinate metrology consists of the measurement of the actual
shape of a workpiece, its comparison with the desired shape, and the evaluation of the
metrological information such as size, form, location and orientation (Ni and Wildele,
1995). The actual shape of a workpiece is obtained by probing its surface at certain points

with the CMM touch probe which returns the locations in space of each point, processing



the data collected to extract the required substitute geometry of the workpiece, and then
comparing the substitute geometry with the workpiece design data to determine whether
the workpiece features lie within the specified design tolerances. Two techniques are
widely used for the measurement of a workpiece using a CMM. Those are contact, and
non-contact measurements. In contact measurement, an electronic device, known as the
probe, tactile, or touch trigger, touches the surface of the workpiece. Upon touching the
workpiece, the probe returns an electrical pulse that tells the machine the location in
space of the contact point. Probed points are then processed to obtain the workpiece
substitute geometry. Non-contact methods are based on optical systems which use
electron or laser beams to measure the dimensions of various features. Non-contact

methods return clouds of data that are to be processed to generate the substitute geometry.

Non-contact measurement methods are fast and capable of collecting a large amount of
data. However, the capital cost of non-contact measurement equipment is significant, and

elaborate software techniques are needed to efficiently handle the large amount of data

scanned by these methods.

Measurement accuracy in the range of 2.50-25.0 um with excellent repeatability is
achievable with contact measurement methods (ElMaraghy, H. A., and ElMaraghy, W.

H., 1994). This gave inspection with touch probes an obvious advantage over the non-



contact measurement methods which provide measurement accuracy in the range of 25-
50 pm. Aside from the high accuracy of touch probes, they are also cheaper than non-

contact techniques. Both methods are complementary. Each has its own pros and cons.
The most promising approach is a combination of both tactile and non-contact coordinate
measurement methods (EiMaraghy, H. A., and ElMaraghy, W. H., 1994). Figure 1.1
illustrates a CMM measuring a mechanical part. The inset of figure 1.1 shows a P-9

Ranishaw touch probe.

Figure 1.1. Part Inspection Using A CMM



1.1.1. CMM Main Components

The coordinate measuring machine is basically a Cartesian robot that is produced in
various configurations. The CMM configuration plays an important role in meeting
measurement requirements such as accuracy, flexibility, time (as synonymous of
throughput), and cost (Slocum, A. H., 1992). The main CMM components fall in two
categories, i.e., hardware components and application software. Hardware components
include all the physical components that are responsible for the transmission, sensing, and

control of the CMM motion. The main CMM hardware components are:

1. Mechanical setup with the three axes, servomotors, motion transmission
components, and distance transducers.
2. Probe head to touch the workpiece at the measurement points.

3. Control unit, and control pad to control the motion of the CMM moving

parts.

4. Digital computer with peripheral equipment and software to calculate and

represent results.

The function of CMM application software is to facilitate the measuring process and
provide users with measurement data in the most useful format. The main types of CMM

application software are (Krejci 1995):



1. CMM core software:

This is the minimum software needed for the machine to run. It performs
the tasks of calibration, coordinate system manipulation, feature construction,

and some basic tolerance analysis.

2. Programming software:

This is the software used to facilitate the job of the CMM operator. This
category of software improves the operator interface, and assists in the
programming of CMM. It is subdivided into two broad categories, namely,

online, offline programming software.

3. Post inspection software:
This category deals with the manipulation and presentation of the
inspection data collected by the CMM. It performs such tasks as statistical

analysis, data fitting and evaluation, and graphical representation of form errors.

4. Reverse engineering software:
This category of software is used to define the geometry of a measured part
or prototype starting from the data digitized by the CMM.

Figure 1.2 illustrates the main CMM components.



CMM MAIN

COMPONENTS
|
| I
Hardware Application
Components Secftware

Structural Probe Core Programming

Elements Head Software Software
Control Unit Computer Post-Inspection Reverse
Control Pad and Peripherak Software Engineering Software

Figure 1.2. Main CMM Components

Basic CMM configurations, illustrated in Figure 1.3, are:
1. Fixed table cantilever arm.
2. Moving bridge.
3. Moving ram horizontal arm.

4. Gantry-type.

1.1.2. Programming of CMM
The following techniques are used to drive the CMM probe head to measure
workpiece surface:
1. Manual operation:

This takes place by controlling the machine probe head to touch the



workpiece at the specified points. The encoders, then, determine the locations of

the probed points in the Cartesian space.

2. Teaching mode:

The part inspection steps are carried out through driving the CMM probe
using the control pad. Meanwhile, the machine programming software records
these steps on-line in an inspection program. Once the program recording is
complete, the program can be recalled at any time to perform the part inspection
steps. This is the most commonly used CMM programming method. However, it
is time consuming, since the machine is to stay idle during the programming
process. In an environment where large variety of parts are produced in medium

size batches, this method creates a bottleneck in the production.

3. Off-line programming:

In this case, the CMM program is generated without the need for any
physical involvement of the machine. The workpiece design data and the CMM
planner experience are used to generate the inspection plan (sampling points,
approach vectors, probe orientations, probing path, etc.) which is then translated

into the machine language.



4. Automatic CMM planning and program generation:

The CMM inspection plan and program are automatically generated based
on the CAD data and the coded CMM planner experience. Sophisticated
calculations are included, e.g., inspection points allocation, points grouping and

clustering, probe orientations planning, and collision-free optimum probe path

planning.
o -1 m
£ i - g
L :
@
]
Cantilever type Horizontal type
— .
1

#3_33 [ Hs
] s

Gantry type Bridge type

Figure 1.3. Various CMM Configurations



1.1.3. CMM measurement error and measurement uncertainty

CMM measurement error means the difference between the true coordinate location of
the point probed with the CMM and the coordinate values measured by the CMM. In
CMM performance evaluation, precisely calibrated artifacts are used. In this case, the
form error of an artifact is negligible so that the measurement error can be calculated as

the difference between the CMM measurement and the artifact dimension.

In the case of measuring well-calibrated artifacts, measuring the same artifact feature
using the same procedures, and in the same environment more than one time still leads to
different values, and hence different measurement errors. CMM measurement uncertainty
can be defined as the collection of all possible measurement errors when measuring the
same feature, following the same procedure, in the same environment. Measurement
uncertainty is positioned about the measured value and is usually centred symmetrically,

as 1llustrated in Figure 1.4 (Philips, 1995).

- Measurement Uncertainty -
.
« Measurement
Error
— True Value

Measured Value

Figure 1.4: CMM Measurement Uncertainty And Measurement Error



Sources of uncertainty in CMM measurement are grouped in four main categories

(Philips et al., 1993):

1. Probe properties:

Probe lobing, probe repeatability, stylus bending, indexable probe head
repeatability, stylus changer repeatability, and probe spatial frequency response
and frictional effects.

2. CMM properties:

Errors in rigid body geometry at standard temperature, non-rigid body

geometry errors, CMM part loading effects, CMM dynamic behavior, CMM

repeatability, algorithm accuracy, and thermally induced errors.

3. Part properties:

Part dynamics, part fixturing, and part thermal properties.

4. User-selected properties:

Algorithm selection, sampling strategy, and part location and orientation.

1.2. Overview Of Inspection Planning

Coordinate measuring machines (CMMs) are used to discretely sample points from a

10



manufactured part. Geometric features are then extracted from the sampled points to
represent different characteristics of the produced part. The deviation between the

produced part and the geometric model (ideal part) can then be obtained and evaluated.

In today’s world of manufacturing, the CMM has become a critical device for quality
control. The CMM has emerged as one of the systems of choice in measurement, and
inspection. In order to meet the demands of very high production throughput, the
inspection process using CMMs should be well defined and planned such that it is

performed effectively and economically.

Inspection using CMM is the central activity in the inspection planning and
verification procedure shown in Figure 1.5 (Limaiem, A. and EIMaraghy, H. 1997). The
downstream activity is tolerance analysis and verification, which often takes place online.

The upstream activity is the CMM inspection planning which usually takes place off-line.

Although the use of computer controlled CMMs eliminates costs associated with the
manual inspection operations, it requires significant planning efforts for the CMM to
function without human intervention. Feature-based CMM inspection verifies the
conformity of the manufactured part with the design intent generally expressed in the

form of dimensional and geometric tolerances, and decides whether to accept or reject it

11



accordingly (Limaiem, A. and ElMaraghy, H. 1999). Planning for CMM inspection
involves a series of activities such as setup planning, operation planning, sample point
determination, measurement sequencing, and probe trajectory planning, as illustrated by

Figure 1.6 (Ziemian and Medeiros 1998).

The expertise of the planner and the CMM operator has to be complemented with
mathematical tools which can handle efficiently and optimally critical and time
consuming tasks in inspection planning for CMMs. The ever increasing need for
automating the CMM inspection planning activities has emerged as CMMs started to find
their place on the shop floors. Several attempts to automate inspection planning activities

were reported in the literature. This section overviews those attempts.

The ever-increasing need for using CMMs on the shop floor, and difficulty and
complexity of the CMM inspection planning process has urged researchers to work
towards the automation of the CMM inspection planning activities. The need for CMMs
can best be experienced in modern manufacturing environments with low production
volumes, high variety production, close tolerances and high quality products. In such
production environments, conventional dimensional inspection and verification methods
can create production bottlenecks due to their limited speed, accuracy, and lack of

integration with CAD tools. Therefore, more automated inspection process planning and

12



better decision support tools for human planners are needed. This can be achieved by
adopting and developing an integrated Computer-Aided Inspection Planning (CAIP)

approach as proposed by EIMaraghy H.A., and EIMaraghy, W. H. (1994).

CAD Mode
and
Tolerance Specifications

l Accept

Inspection

. ERE—— Inspection 3] Tolerance Analysis
Planning

and Verification
T Reject

Actual Part

Figure 1.5: Inspection Planning And Verification Procedure

——> II. CMM Program Generation

I. Pre Inspection Plannin%

Part Selection
Probe Selection III. Machine Motion and Inspection
‘ Machine Calibration
Feature Sequence 1
Planning
¢ T Probe > Point S .
Changes/Calibration| oint Sampling
Point Selection ‘
* Data Evaluation
Path Planning

Figure 1.6: CMM Inspection Procedure
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ElMaraghy and Gu (1987) presented the first expert system for inspection planning. In
this system, inspection features are grouped, and prioritized. The expertise of human
inspection planners has been transcribed into expert rules and used for clustering features

to be inspected.

CMM inspection planning automation was approached through the automation of the
low-level inspection planning tasks (Limaiem, A., 1996, Limaiem, A. and ElMaraghy,
H., 1997 and 2000, and Vafeesefat, A., and ElMaraghy, H. A., 2000). Such tasks include:
measurement points accessibility analysis, clustering of measurement points, sequencing
of measurement points, generation of collision-free probe paths, and the integration of
these tasks into a computer-aided inspection planning system. A Computer-Aided Tactile
Inspection Planning (CATIP) system was developed (Limaiem, A., and EIMaraghy, H. A.
1999), which provides a means of integrating the previously mentioned inspection
planning tasks into a computer-aided inspection planning system. This system provides
tools for robust accessibility analysis, an optimization algorithm to provide different
plans for clustering and sequencing the inspection points. It generates the shortest

collision free probing path.

The automation of the high level inspection planning is approached through the

automation of part setups determination. Spyridi and Requicha (1994) used a state space
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approach to develop a system for automatic generation of inspection plans. The output of

that system is a collection of setups, probes, and probe orientations associates with the

surface features to be inspected.

Kweon and Medeiros (1998) presented a methodology for part setup planning based
on the part visibility maps. Since a part frequently needs more than one setup for
inspection, such a system presented a methodology to determine a set of part orientations

such that all tolerances under consideration can be inspected with a small number of part

orientations.

Ziemian and Medeiros (1998) presented a probe and workpiece setup planner for
CMMs that defines a set of feasible probe orientations for the inspection of each feature

requiring measurement and defining the associated recommended part setups.

Other researchers focused on developing efficient sampling plans for CMM inspection
planning. The problem involves two parts, namely, the determination of the number of
measurement samples that best represent the geometric feature, and the best distribution

of this number of sample points. The later is the focus of the present work and will be

discussed in details in Chapter 2 (Literature Survey).
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1.3. Geometric Modeling Of Free Form Surfaces

The data probed with a CMM is manipulated to construct the substitute geometry,
which is to be evaluated against a geometric model. In the case of reverse engineering,
the data is fitted to produce a geometric model. In CNC machining, a mathematical
representation of a part is essential to program a path for the cutting tool. For automatic

CMM inspection planning, a part geometric model is used to plan the probe path, and

probe orientations.

1.3.1. Parametric and non-parametric representation

There are two methods that are most common in representing curves and surfaces.
These are implicit equations and parametric functions (Piegl, L., and Tiller, W., 1997).
The implicit equations describe the relationship between the coordinates of a point lying
on the geometric entity. They take the form y = f(x) or f(x, y) = 0 for a planar curve, or z

= f(x, y) or f(x,y,z) = O for a 3D surface.

In parametric functions, each of the coordinates of a point on the geometric entity is
expressed as a function in a parametric space (u for a point on a curve, or u-v for a point
on a surface), while each of u and v varies between minimum and maximum real positive
values. For each value of u and v, the position of a point on the geometric entity is

calculated. These parametric functions take the form: P = {x y]T = [x(u) y(u)]T for a point
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on a parametric planar curve,and P=[x y z]T =[ x(u, v) y(u, v) z(u, v)]T for a point on
a 3D surface. A circle can be implicitly represented as f(x, y) = X + y2 -1 =0, or

parametrically as: C(u)=[x(u) y(u)]" = [cos(u) sin(u)]", -p/2 £ u = p/2.

An implicit sphere is expressed as f(x, y, z) = X+ y2+ Z-1=0.A parametric sphere is:
S(u,v) = [x(u, v) y(u, v) z(u, v)]T = [sin(u) cos(v) sin(u) sin(v) cos(u)]T.

where -p/2 < u = p/2 and -p/2 < v < p/2.

Parametric functions have several advantages over implicit equations that made
parametric functions the mathematical representation method of choice for CAD

packages (Piegl, L., and Tiller, W., 1997).

Geometric entities are not only cylinders, cones, spheres, and planar surfaces. Other
more complex shapes are the so-called sculptured or free-form surfaces which arise
extensively in such industries as aerospace, automotive, and die and mold making. A
sculptured surface is defined as a collection or sum of interconnected and bounded

parametric patches together with blending and interpolation formulas (Zeid 1991).

Free-form shapes have to be geometrically represented to be handled in the CAD,

CAM, and inspection applications packages. Parametric functions provide an efficient
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and powerful representation tool. Several parametric representation methods are available
to represent free form shapes, e.g., Splines, Bézier, B-Splines, and NURBS. Both B-
Splines and NURBS are widely used in CAD packages for their flexibility and power in

representing, and manipulating complex shapes.

1.3.2. NURBS review

NURBS is a parametric representation of a curve or a surface. A curve is defined by an
approximate polygon (control polygon), the corner points of which are known as the
control points (see Figure 1.7). Each control point “P;” is associated with a positive real
number, known as the control point weight “w;”, which pulls the curve towards, or pushes
it away from the control point. The NURBS equation is a function of an independent

parameter “u” which ranges from zero to one.

At a parameter value of zero, the first control point lies on the curve. At a parameter
value of one, lies the last control point. For NURBS surfaces, the surface equation is a
function of two independent parameters “u” and “v’’; both range from zero to one. The
surface passes through the border control points (u=0, v=0; u=0, v=1; u=1, v=0; u=I,
v=1). Figure 1.8 illustrates the control polyhedron, and the data points of a NURBS

surface.
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The major advantage of NURBS representation of curves and surfaces is the capability
of introducing local changes to the curve/surface through changing the locations and/or
weights of the control points. This local control comes from the segmentation of the
curve/surface into spans/patches through subdividing the independent parameter(s) range
of 0-1 into spans. Each span is controlled by a group of control points. This segmentation
1s achieved through the use of a non-decreasing real numbered sequence known as the
knot vector. For a NURBS curve, only one knot vector is defined, whereas for a NURBS

surface, two knot vectors are used to divide the surface into patches. Let

U =[ uf_ ug‘ eyt u,'ﬁ,] be the knot vector of the independent parameter “u”. A

A

NURBS curve is defined by accompanying each of its control points “P” by a

corresponding B-Spline function “N;”, defined recursively as:

k k
Ni,p(u)z k k Ni,p—l(u)+ k A k Ni+l,p—l(u)

Zli+,,- i Ui pr1 ™ Uy

i uf<u<ut
Nl_0={l {ful —u—ul-l—l}

0 otherwise

(1.1)

The NURBS equation of a curve is given by:

C(u)=i R, (u)P,

, N (u) (1.2)

w
R'lp(u)= n

Z w; Ni,p(u)
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where:
n = number of control points+1.

R.,(u) =Rational basis function.

The rational basis function is non-zero in the interval ( uf . uf+ p+1 ), and thus, the
change in any of the control point P; parameters (location, weight) will affect the segment
of the curve where u € [uf ,u’, »+1) - This property is known as “local shape control”
which gave NURBS an advantage over other mathematical representations of curves and
surfaces. The same principles are applied for a NURBS surface, which is represented in

terms of two independent parameters u, and v. The segmentation of a NURBS surface

into patches is achieved through the use of two knot vectors, U and V, given by

U=[uf‘ ug' uf u"] ,and V=[vf‘ v'; vf---, v,f,] respectively. A NURBS

2 m

(I Pe)

surface of degree “p” in the “u” direction and degree “q” in the “v” direction is given by:

i=0 j=0
1.3)
)= ) o) (
Z Nkp(u) qu(v) Wt
k=0 /=0

where:

n = number of control points+1 in the u-direction.
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m = number of control points+1 in the v-direction.

R,(u,v) =Rational basis function.

NURBS provides a flexible and powerful tool for designers to represent a wide variety
of shapes, from the very simple curves/planes to even very complex free-form
curves/surfaces, as illustrated in Figure 1.9. Down stream applications of the NURBS
representation of surfaces are reverse engineering, and inspection. In reverse engineering,
a designer starts with a prototype, digitizes points on that prototype, and ends up with a
geometric CAD model that represents the digitized surface. An inspection person starts
with a product, digitizes points on the product surface, fits these points to a NURBS
surface that simulates the CAD model, and compares the fitted surface to the CAD model
to determine whether the produced surface is within the designated tolerance zone. As
previously mentioned, the number and locations of sampled points have a significant

effect on the shape of the surface fitted to them, and, therefore, on the inspection results.

1.4. Overview Of Optimization

Optimization is the application of mathematical and numerical methods for finding
and identifying the best candidate from a collection of alternatives without having to
explicitly enumerate and evaluate all possible alternatives (Reklaitis et al., 1983). In order

to implement any mathematical technique to achieve the optimal state for a certain
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system, four main elements should be defined:
1. The system boundaries:

These are the limits that separate the system under consideration from the
surrounding universe. For instance, to optimize the parameter values of points
to be sampled from a free form surface, the limits of the system are the
minimum and maximum values of the parameters u and v.

2. The performance measure:

This is the criterion based on which the performance of the system can be
evaluated. It is usually a cost or profit function. For example, the objective may
be to minimize the surface roughness, or to maximize the system efficiency.

3. The independent variables:

The independent system variables are those whose interaction characterizes
the system behaviour. In machining for instance, the cutting speed, feed rate, and
depth of cut are independent variables that affect the surface finish. Similarly, in
inspection the locations of the sample points in the parametric space are
independent variables that affect the accuracy of the free form surface fitted to
these points.

4. The system model:
This is the formulation of the behavior of the system as a consequence of

the interaction between different values of the independent variables.
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Figure 1.9. Samples Of NURBS Surfaces

Optimization is either constrained or unconstrained (Chong, E., and Zak, S., 1996). In
unconstrained optimization, the problem takes the form:
Minimize f(x) ,subjectto: x€Q (1.4)
where:
f(x) = The objective function.
x =[x, x, x; --x,] =A setofreal numbers defining the independent variables of
the system.

Q = The constraint set.
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In constrained optimization, the problem takes the form:

Minimize f(x) , subjectto (1.5)
gi{x)<0,; j=12,---,p

where:

xX€R", f:R"—R, g;-R">R (1.6)

Different optimization problems require different optimization methods (Reklaitis et
al., 1983 and Chong, E., and Zak, S., 1993). Several techniques work on solving both

constrained and unconstrained optimization.

1.4.1.Genetic Algorithms (GA's) optimization

Genetic Algorithms (GAs) are stochastic search techniques based on the mechanism of
natural selection and natural genetics (Gen, M., and Cheng, R., 1997). GAs start with an
initial set of random solutions for the problem under consideration. This set of solutions
is known as the population. The individuals of the population are called chromosomes.
The chromosomes of the population are evaluated according to a pre-defined fitness
function. The chromosomes evolve through successive iterations called generations.
During each generation, a new population is created by either merging, or modifying
chromosomes of the present population. Merging chromosomes is known as “crossover”,

while modifying an existing one is known as “mutation”. The selection of chromosomes
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to merge/modify to create the new population is based on their fitness function. Once a

new generation is created, a new population is formed by deleting members of the present

population to make room for the new generation. The process is iterative. A step-by-step

GA process proceeds as follows (Karr, C. L., and Freeman, L. M., 1999):

1.

)

Generate random initial population of candidate solutions in the form of
chromosomes.

Evaluate each chromosome in the population according to a pre-defined fitness
function (usually, the value of the objective function corresponding to this
chromosome).

Employ a selection operator to create new chromosomes. The selection operator
biases the new generation of chromosomes towards higher quality “fitter”
solutions.

Members of the present population are deleted to make room for the new
candidates.

New chromosomes are evaluated and inserted into the population so that the
population size remains constant.

If a satisfactory solution (or a termination condition) has been achieved, the

process stops; otherwise, process is repeated from step 3.

Figure 1.10 (Chong, E., and Zak, S., 1996) shows a flow chart of the process described
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above. Within the flow chart, P(k) represents the k" population, M(k) is the K" mating
pool of chromosomes, Pc is the probability of choosing two chromosomes for crossover

operation and Pm is the mutation probability within a chosen chromosome.

k=0
Form P(0)

Evolution

Crossover (—@
Mutation (—@
Pk+1)

k=k+1

Figure 1.10. Flow Chart For Genetic Algorithms Optimization

Genetic algorithms are applied to a wide variety of engineering problems, e.g., design,

process planning, job-shop scheduling, robotics, software testing (Karr, C. L., and

Freeman, L. M., 1999 and Gen, M., and Cheng, R., 1997).
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1.5. Problem Definition

The sampling strategy affects the accuracy of the inspection process results. Features
inspection is usually carried out using a machine measurement system that contains
systematic and pseudo-random errors. Furthermore, the actual form of the manufactured

feature deviates from the ideal defined by CAD model giving rise to form errors.

Mathematical algorithms are used to fit the measurement data to construct the
substitute geometry, which should resemble the real geometric feature. It may be intuitive
that increasing the number of sample points decreases the error in measurement.
However, the time spent on inspection is an important factor that affects the inspection
cost, and hence, the product cost. Therefore, it is desirable to perform the inspection task
satisfactorily with the lowest possible number of sample points (sample size). Second, it
is of great importance to select the sample points at suitable locations to best represent the
feature being inspected, and reduce errors due to the sampling strategy. The more
complex the geometric feature, the more difficult to solve is the sampling problem. The

problem is further complicated when free form shapes are encountered.

Many attempts to tackle the issue of sampling of free form features have been reported
in the literature. Many of these attempts adopt methodologies that offer a single solution

to the sampling problem (e.g. Uniform pattern sampling, Bezier patches curvature based
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sampling, etc.). Besides, these methodologies do not seek optimal solution to the

sampling problem. Furthermore, they do not provide an automatic methodology to

sample free form surfaces.

The objective of this research is to develop a system for the sampling of free form

surfaces. The characteristics sought in this system are:

1.

W

NURBS-based representation of free form surfaces.

Providing alternate sampling strategies.

. Offering an optimality criterion.

Offering automatic selection of the sampling methodology, depending on the

surface complexity.

Ease and flexibility of integration with computer-aided tactile inspection

planning systems.

Sampling algorithms utilize the features of NURBS representation of free form

surfaces to allocate points on the surface. The sampling algorithms presented in this

thesis are:

1.

Equi-parametric sampling:

This algorithm equally distributes the sampling points on the surface in the
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parametric space, regardless of the complexity of surface features.

2. Patch size based sampling:

This algorithm resolves the surface into its patches, ranks the patches
according to their sizes, and then use this ranking as a criterion to distribute

sample points, i.e., larger patches get larger share of sample points.

3. Patch mean Gaussian curvature based sampling:
This algorithm resolves the surface into its patches, ranks them according to

the values of their mean Gaussian curvature, and use this ranking as a criterion

for sampling.

4. Hybrid sampling:
This algorithm combines the latter two algorithms into one. Each of the

former two methodologies is assigned a weight, and then the hybrid algorithm

performs the sampling.

5. Genetic Algoritms (GA's) based sampling:

This algorithm uses Genetic Algorithms to optimize the location of sample
points on the feature being inspected. The optimization criterion is the
minimization of the maximum deviation between the substitute geometry, and
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the CAD surface.

6. Automatic Selection of sampling algorithm:
This algorithm performs a series of complexity checks on the surface, and ,

accordingly, selects a sampling algorithm that is suitable to the surface under

consideration.

Each sampling algorithm was developed, implemented, and tested for NURBS curves,
and then generalized for NURBS surfaces. Furthermore, all the developed algorithms

were integrated into a computer aided system for sampling of free form surfaces.

1.6. Overview Of The Thesis

This thesis is divided into six chapters, and one appendix.

Chapter one presented the background to this research, as well as a problem definition,

and overview.

Chapter two provides a survey of the literature in the field of sampling for CMM

inspection planning. It also presents the objective, and motivation of the research.

Chapter three presents the sampling algorithms developed in this research. Flow
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diagram for each sampling algorithm is provided, as well as the result on a NURBS

curve, and a NURBS surface.

Chapter four presents a simulation study conducted to validate the efficiency of the
developed sampling algorithms, and compare them to the uniform sampling pattern

presented by Yao and Menq (1992).

Chapter five presents a computer-aided system for sampling of free form surfaces

(CASampler) that integrates the developed sampling algorithms.

Chapter six concludes the thesis, and discusses the achievements, and future research,

and development issues.

Appendix A of this thesis provides the pseudo code for the sampling algorithms

developed throughout the course of this study, illustrated in chapter three.

Appendix B is a guide for the reader to setup, and run the Computer-Aided Free Form

Sampling System (CASampler), illustrated in chapter five.
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CHAPTER TWO

LITERATURE SURVEY

Many attempts to achieve the goal of automating the CMM inspection planning have
been reported in the literature, as discussed in chapter 1. Some researchers presented
methods to automate the sampling phase of the inspection planning for CMMs which
involve prismatic and conical parts. Others attempted to automate the sampling of free
form surfaces, applied algorithms to calculate the sample size, and automated the
distribution of sampling points with a pre-determined number (sample size). Within this
chapter, those attempts are discussed and compared. The type of part feature, the
sampling criteria, and the optimality criteria, if any, are discussed. This chapter also
contains an overview of sampling for CMM inspection planning. A summary table is

provided to summarize the discussed literature.

2.1. Overview of Sampling for CMM Inspection
As discussed in the previous chapter, CMM acquires data on a point-by-point basis.
These data need to be analyzed to create a geometric model, usually called the substitute

geometry, for the feature being measured. The computed results are greatly affected by
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different factors. Figure 2.1 demonstrates those effects (Philips 1995).

Algorithm Selection

CMM (Fitting Criteria)
Hardware [
Error 4
— > . iqs

Sampling| Fitting 3 Substitute Geometry
Strategy Algorithm Results and Uncertainty
Part Form ?
Ermor
Algorithm
Implementation

Fig. 2.1: Various Factors Affecting CMM Measurement

The effect of selecting a measurement sampling strategy has been recognized as a
major component of measurement uncertainty (Philips et al., 1993). This effect comes
from the fact that measuring a feature is usually carried out using a machine measurement
system containing systematic and pseudo-random error (Hocken et al., 1993).
Furthermore, the form of the feature deviates from ideal. This deviation, usually known
as the form error, is always unknown. Mathematical algorithms will be used to fit these
measurement data to construct the substitute geometry, which is supposed to resemble the
real geometric feature. The more complex the features to be inspected, the more the need
for a higher number of sample points. However, this increases the inspection time, and
hence, the cost of the product. It is desirable to produce efficient sampling plans that

utilize the lowest possible number of sample points. Second, it is of great importance to
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locate the sample points in suitable locations so as to represent the feature being
inspected, and reduce the error component due to the sampling strategy. Extensive
research on sampling for CMM inspection planning has been reported in the literature.
The more complex the geometric feature, the more difficult to solve is the sampling
problem. The problem becomes very difficult when free form shapes are concerned. It is
needed to fit the data sampled to a free form surface that best represents the real features

such as surface complexion and continuity.

Three sampling schema are most commonly used in the literature, i.e., uniform or
equidistant sampling, completely randomized sampling, and stratified sampling (Dowling
et al.,, 1997 and Hocken et al., 1993). When the geometric feature is a free form feature,
the need arises for sampling methodologies that take into consideration the complexity of

that feature.

2.2. The Work of Menq and His Team

2.2.1. Mengq et al. (1990), and Yau and Menq (1992)

Mengq et al. (1990), and Yau and Menq (1992) presented a statistical approach for
the evaluation of geometric tolerances using discrete CMM measurement data. The
system presented involves three phases, namely, the generation of the sampling plan,

optimal match, and comparative analysis. In this system, statistical formulation was
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applied to solve the problem of determining the sample size. The formulation depends on

the manufacturing process capability, and the profile tolerance assigned to the surface.

Introduced in the formula for sample size determination are two factors “d”, and “a”
that represent the probability of types “I”, and “II” errors, i.e., the acceptance of bad parts
or the rejection of good parts. After determining the sample size “N”, the samples are
distributed on the geometric feature to be inspected. In the case of free form surfaces, the
“N” samples are uniformly distributed. The optimal match of the profile/feature is then
applied to the sampled data. This is the stage of fitting the sampled data to obtain the
substitute geometry. Comparative analysis is conducted to determine whether the

substitute geometry satisfies the tolerance specifications.

2.2.2. Wong et al. (1991), and Mengq et al. (1992)

Wong et al. (1991), and Menq et al. (1992) presented a computer integrated.
dimensional inspection system for objects having sculptured surfaces. They presented a
system for CAD/CMM integration, CAD/CMM inspection planning and comparative

analysis.

The CAD/CMM inspection planning module is the phase responsible for generating
the inspection plan. Various sampling methods were examined for free form curves
(Wong et al 1991). The curve sampling approaches involved methods such as equal-
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length spacing, fixed-length spacing, curvature-gradient spacing, and equal-parametric
spacing. For free form surfaces, the sampling methods applied are the equal parameter
spacing, equal length spacing, and fixed length spacing. For each inspection point, the
probing vector is calculated. The generated measurement points are then fed to the CMM

which probes them, and feeds them back to the system.

Comparative analysis of the inspected surface takes place to investigate whether the

measured part satisfies the tolerance specifications in the CAD model.

The systems and approaches presented by Menq and his team take into consideration
the effect of the manufacturing process on determining the sample size, and the tolerance
specifications. They also provide sampling plans for free form surfaces. However, these
systems still do not offer an optimal distribution of sample points, and do not take into
consideration the free form surface complexity levels, i.e., curvature changes,

parameterization, etc.

2.3. The Work of Hocken and His Team
2.3.1. Caskey et al. (1992)

Caskey et al. (1992) proposed and conducted a simulation study to examine the
interaction between various procedures involved in measurement of mechanical parts
using CMMs. The system presented in this study examines the interaction between the
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sampling strategy, the systematic and random errors, and the algorithms used to analyze
the coordinate data to produce mathematical descriptions of geometric features such as
lines, planes, circles, spheres, cylinders, and cones. To achieve their goal, Caskey et al.
proceeded as follows:

1. Perfect geometric entity was constructed.

2. Systematic and random error components were obtained from a data

generator algorithm, and added to the perfect data.
3. Different sampling techniques were applied.
4. Fitting algorithms were used to fit the sampled data.

5. Fitted data was compared to perfect data.

In this research, Caskey et el. emphasized the great importance of sampling plans.
They concluded that more research was needed in the area of sampling, especially the
minimax algorithms. The also predicted that non contact probing will be demanded, for

its ability to scan large amounts of data in short time spans.

2.3.2. Machireddy et al. (1993)

Machireddy et al. (1993) conducted a simulation study on the interaction between
the sample size and the fitting algorithms applied for sampling of plane surfaces. They

used the same principle used by Caskey et al. (1992) to generate the plane surface and
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add the random and systematic error components. The stratified sampling technique was
applied to sample data from the plane surface. The mini-max, and least square algorithms
were applied to fit the sampled data to a plane surface. The fitted data was then compared
to the data obtained from the plane surface generator. They used two criteria as accuracy
measures, namely, the perpendicular distance normal to the true plane and the simulated
plane, and the angle between the normal of the two planes. Results of their simulation
experiments proved the advantage of the least square algorithm over the mini-max
algorithm. They also concluded that a sample size of at least 49 points is needed for a

planar surface to be sampled within an accuracy of 5 micro radians.

2.3.3. Uppliappan et al. (1997)

Uppliappan et al. (1997) conducted a similar study on the sampling of cylinders.
They investigated the influence of the form and measurement errors on the sampling
methods and substitute geometry algorithms. The sampling strategies applied in this
study are the equi-distant sampling at multiple sections, and the spiral sampling. The
fitting algorithms compared are the least square, and mini-max fitting algorithms. The
results of their experiments revealed a general relationship between the form error,
sampling strategy, measurement uncertainty, and the choice of the fitting algorithms.
They concluded that for the sampling of cylinders, equi-distant sampling produces

satisfactory results, when compared to the other sampling strategies. Generally, least
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square fitting algorithm proved to be more stable than the mini-max algorithm. However,

the results vary with the nature of the form error.

2.4. The Work of Woo and Liang

Woo and Liang (1993), presented a method to determine the sample size “N” and
the sample locations for the inspection of machined planar surfaces. The sampling size
calculation method presented is based on the discrepancy of the surface measurement,
and the number of dimensions. Woo and Liang chose the Hammersley sequences to
determine the sample locations. This method was applied to Gaussian and Weiner
surfaces and compared against uniform sampling. The results of the implementation of
this approach show a great advantage for the Hammersley sampling over uniform

sampling. However, some limitations were detected including:

1) This method is applicable only to planar surfaces.
2) This method dramatically reduces the number of points needed to be sampled from a

surface, but it does not offer an optimality criterion for the distribution of sample

points.

2.5. The Work of Cho and Kim

Cho and Kim (1995) presented a CMM inspection planning strategy for free form
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surfaces. Their strategy involves two major parts: the distribution of a predetermined

sample grid over the sculptured surface, and the determination of the probe path to visit

those inspection points. The strategy they followed to distribute sample points is based on

the mean curvatures of the surface sub-regions and is outlined as follows:

1)
2)
3)
4)

5)

6)

Divide the surface into a predetermined number of regions.

Allocate a sample point to the centre of each region.

Divide each region into a grid of sub-regions.

Calculate the mean curvature per curve sub-region.

Rank the surface sub-regions according to their mean curvatures, and define factor
“a” which defines the % of sample points to be assigned to the sub-region with the
highest ranking.

Sample points are uniformly distributed within each sub-region.

The sampling strategy proposed by Cho and Kim ensured the representation of all

the surface regions, with emphasis on surface regions with curvature changes. However,

this method has the following limitations:

1)

Assigning sample points at the centre of surface regions could lead to the need for a
larger sample size, since it is likely to assign more sample points to regions where
less points are needed, i.e., relatively flat surface regions. In other words, this

technique equally treats regions with sharp curvature changes, and those whose
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features are relatively flat.

2) The user-defined factor “a” imposes another limitation, since any change in this factor
would lead to a significant change in the sampling plan. Moreover, it makes the
system more dependent on the user’s skills.

3) This system does not provide an optimal solution for the sampling planning problem.

4) To use this system as a part of an optimization objective function, two nested
optimization loops would result; i.e., to optimize the regions/sub-regions grid sizes,
and the value of the factor “a”. This leads to a tedious, and lengthy process, that is

difficult to implement in a system for inspection planning.

2.6. The Work of Zhang et al.

Zhang et al (1996)presented a method to optimally determine the sample size needed
for the CMM inspection of drilled holes. They applied an Artificial Neural Networks
(ANNSs) approach to achieve this goal. Zhang et al. Considered the effects of the
manufacturing process, the tolerance band, and the manufactured hole size on the sample
size. Figure 2.2 shows the structure they suggested for their ANN. Back propagation
learning was applied to teach the ANN to output the optimal sample size given the

manufacturing process, the hole size, and the tolerance bad as inputs.

This approach has the following limitations:

1) It does not take into account the effect of the sample points locations on the
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CMM measurement uncertainty (Phillips et al. 1993).
2) It is limited to specific hole manufacturing processes.

3) The ANN output does not guarantee the optimality of the sampling distribution.

Sample Size
"N"

Input Layers

Fig. 2.2: ANN Architecture Proposed By Zhang Et Al.

2.7. Other Work

Other attempts to automate sampling for CMM inspection planning were reported in

the literature for specific cases.

2.7.1. Pahk et al. (1995)

Pahk et al (1995) presented a system for the inspection of molds. Their system
involved data sampling (distribution of predetermined sample grid), sampling path

generation, and error evaluation. This system represented the mold surface
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parametrically. Different sampling strategies were demonstrated, i.e., uniform sampling,
curvature-based sampling, and a hybrid approach of both uniform and curvature-based
sampling. Uniform sampling distributes the sample grid of points uniformly regardless
the surface complexity. Curvature based sampling distributes sample points among the
surface sections so that sections with high curvatures get larger shares of sample points.

A hybrid approach combines both uniform and curvature based sampling.

2.7.2. Fan and Leu (1998)

Fan and Leu (1998) presented an AutoCAD-based system for the inspection
planning of 3D objects. The sampling module of their system provides the user with two
options, i.e., automatic, and user-defined sampling. The automatic sampling routine
samples four points from a plane surface, and eight from a cylindrical feature. The
distribution of the sample points is based on the feature dimensions, i.e., the plane width
and height, and the cylinder length and diameter. The sampling method presented by Fan
and Leu is limited in three ways:

1) The automatic sampling is dependent only on the feature dimensions. It does not
take into account the tolerance requirements, the form errors, or the effect of the
fitting algorithms.

2) This method does not provide alternate sampling methodologies.

3) No optimality criterion is applied.



2.7.3. Lee and Mou (1996)

Lee and Mou (1996) combined the Hammersley sampling with stratified sampling to
different geometric features. They applied this combined sampling methodology to
circular, hemispherical, and conical features. Their major result was the superiority of the
stratified Hammersley over the stratified random and uniform sampling. However, this
study did not offer an optimal solution for the distribution of sample peints. Moreover,
they did not address the effect of different factors on the choice of the sample size, i.e.,

process capability, and tolerance bands.

2.7.4. The work of Kim, and Ozsoy (1999)

Kim, and Ozsoy (1999) presented a technique to distribute the sample points for the
form evaluation of free form surfaces. Their technique allocates the sample points on the
constant curvature contour lines. In their method, they used uniformly parameterized
cubic B-Spline surfaces. First, the maximum curvatures each point on the surface grid are
computed. Second, the contour lines along which the curvatures are constant are
generated. Third, for each contour, two values are computed, i.e., its length, and its rank
(depending on the curvature value). Both parameters are used to weigh the contour line,
and determine its share of the sample points. Fourth, the locations of the sample points

are determined along the contour lines using linear interpolation.
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Kim, and Ozsoy performed an experimental study to verify their technique, and
concluded that it is effective, and better than such techniques as the uniform sampling
pattern, the equi-parametric pattern, and the region selection method (Cho, and Kim,
1995). They also designed their technique to offer flexibility to its user to combine the
two criteria used to weigh the constant curvature contour lines, and thus, tighten, or

loosen the quality specifications.

The method presented by Kim, and Ozsoy provides a flexible tool for the inspection
planner to allocate sample points on a free form surface. However, it does not take into
account the curvature change as a factor that might affect the accuracy of the sampling
plan, and therefore, resulting substitute geometry. Furthermore, their method does not
take into consideration the effect of non-uniform parameterization of free form surfaces.
Aside from the former two drawbacks, their method does not provide the user with an

alternate method to optimize the sampling plan.

2.7.5. The work of Orady et al. (2000)

Orady at al (2000) presented a fuzzy-based decision making system for determining
the CMM sampling strategies. They based their system on relating the machine tool
accuracy to the part measurement accuracy. They composed their system of four main

components: 1) knowledge bases, 2) fuzzy interface based decision making engine, 3)
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online feed back adaptation module, and 4) feature fitting software.

The knowledge bases are collections of information, and rules related to design,
manufacturing, metrology methods, and previous experiences. Based on the knowledge
bases, the decision making module uses fuzzy rules to predict a CMM sampling strategy.
The CMM carries out the sampling strategy, and returns the locations of the measured
points. The sampled points are, then, fitted using the feature fitting software module. The
feed back and adaptation module processes the online data according to the related data
stored in the knowledge base. According to this analysis, the module commands the
system to continue the measurement process, or adapts the system by updating the fuzzy

rules, and the related data in the knowledge base.

This system was implemented, and tested on determining the sampling strategies for
measuring the straightness of a produced part. The feature fitting software fits the

measurement data to circles, lines, or cylinders.

2.7.6. The work of Fang et al. (2001)

Fang et al. (2001) presented a methodology for the sampling of spherical features.
They proposed a linear model for the stratified sampling technique. They performed a

theoretical analysis study to compare their method with the random sampling method.
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The analysis proved the linear model proposed for stratified sampling to surpass random

sampling scheme in the accuracy of the sampling plan.

2.7.7. The work of Edgeworth, and Wilhelm (1999).

Edgeworth, and Wilhelm (1999) presented an iterative sampling process for
dimensional measurement of free form surfaces. The strategy proposed by Edgeworth,
and Wilhelm uses the surface normal measurement data to develop an interpolating curve
between sample points. The developed interpolant between every two points is evaluated
to determine a new target point. The process is repeated until the measurement converges

to a complete, and accurate evaluation of the surface.

2.7.8. The work of Kim, and Raman (2000)

Kim, and Raman (2000) investigated the sampling for the CMM measurement of
flatness of planar surfaces. In their study, they investigated the Hammersely sampling, the
Halton-Zaremba sampling, and the aligned systematic sampling. In addition, they
proposed the systematic random sampling methodology. They performed a simulation
study to compare the four sampling strategies. The criteria used were the accuracy of the
sampling plan, and the length of the generated CMM probe path.

Table 2.1 summarizes the different attempts to automate sampling for CMM

inspection planning.
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Table 2.1. Summary Of Automated Sampling For Cmm Inspection

g Menq And 1 Woo And | Hocken And | Cho And Kim
| HisTeam @ Liamg | HisTeam 5 (1995)
| (1990-1992) | (1993) | (1992-1997) °
Type ?utomatic. © Automatic. | Automatic. i Automatic.
CAD Model Free form : Caussian and ; Lines, cylinders, : Free form surfaces.
curves/surfaces. ~ Weiner and planes.
. surfaces. ‘
Sample Size Yes. Yes. - No. | No.
Calculation | |
Samples | Equal parameter, ; Alternate Mean curvatre of -
Distribution Equal length, Hammersley. (Uniform, surface sub-regions.
Criterion Fixed length. stratified, etc.) '
" Alternate Plans | Yes. - No. .~ Yes. i No.
Optimization | No. Sample size. No. : No.
Table 2.1-continued.
Zhang Et Al , Pahk Et Al. ° Fan And Leu ? Lee And Mou
C1996) | (1995 | (1998) | (1996) :
Type ANN-Based. Automatic. . Automatic. Automatic.
CAD Model | Internal drilled , Free form mould | Plane  surfaces  Circular,
1 holes. surfaces. and cylinders. hemispherical, and
| | conical. ‘
Sample Size | Yes. ~ No. No. - No.
Calculation
Samples ; Uniform, ~Based on feature |
Distribution : Uniform. : curvature-based, . dimensions. Multiple.
Criterion and hybrid ‘
Alternate | No. ' No. . Yes. . Yes.
Plans
;  Optimization ; No. . Sample size. i No. J No. |
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2.8. Motivations And Objectives

Review of the previous work in automatic sampling for CMM inspection planning
shows that many areas have been extensively researched in specific cases. For instance,
sampling of prismatic and conical shapes has received a lot of attention from the
researchers. However, many other problems remain unsolved. Among these problems are
the optimization of sampling plans, and sampling of free form surfaces. The latter is the

focus of this study.

From the literature summary given in Table 2.1, one can infer that most of the attempts
to automate sampling for CMM inspection of free form surfaces adopt specific scenarios
for sampling points distribution. For instance, some use curvature-based sampling, some
use uniform sampling, others apply a hybrid approach of both scenarios. Most of these
attempts do not provide alternate scenarios for sample points distribution. They also do

not apply an optimality criterion for the sampling problem.

Motivated by the above discussion and the limitations of the reviewed literature, the

objectives of this work are to:

1. Examine the effect of different sampling scenarios on the effectiveness of

sampling of free form surfaces. This is to be carried out through the development
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S\)

of a set of algorithms for the sampling of free form surfaces using different
sampling scenarios. The sampling scenarios are to take into account the various
features of parametric free form surfaces, i.e., the surface patch size, the surface

curvature, and the surface parameterization.

Develop an algorithm to optimize the locations of the sample points for CMM
inspection planning of free form surfaces, such that to minimize the deviation of
the substitute geometry from the nominal CAD data. This is a desirable option

that helps obtain efficient sampling plans that reduce the inspection cost.

Develop a methodology for automatic sampling of free form surfaces. This is to
be accomplished through the implementation of the various algorithms for free
form surfaces sampling in the form of computer programs. This methodology is
to have the following characteristics:
a) Integration of the various sampling algorithms into a computer-aided
system for sampling of free form surfaces.
b) The ability to provide alternate sampling scenarios.
c) The ability to provide optimum sampling plans that minimize the
deviation of the substitute geometry from the nominal CAD data.

d) The ability to effectively handle the complex mathematics of free form
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surfaces and rid the user of getting into deep details of the construction of

free form surfaces.

4. The developed sampling methodology is to be tested using various free form
shapes. The tested shapes are to be designed to simulate various levels of surface
shape complexity. The various sources of error are to be simulated, i.e., the CMM
measurement error, and the surface form error. The interaction between different

sampling scenarios and the surface complexity is to be investigated.

5. A final step is to compare the developed and proposed sampling methodology with

similar methodologies reported in the literature.

Next section reviews the work published throughout the course of this study towards

accomplishing the objectives mentioned above.

2.9. The Work of ElMaraghy and Team
2.9.1. EiKott, D., EIMaraghy, H., and Nassef, A. (1998)

ElKott, D., ElMaraghy, H., and Nassef, A. (1998) presented methodologies for the
sampling of free form curves. The methodologies presented utilized the NURBS
representation of curves to compute sampling plans that reduce the maximum deviation

between the design curve, and the curve fitted to the sampled points. They also presented
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a methodology for the optimal sampling of free form curves. The criterion for
optimization is to minimize the maximum deviation between the design curve, and the
curve fitted to the sample points. In this work, Genetic Algorithms (GA's) were applied to

achieve an optimal solution to the sampling problem.

Extensive simulations were applied to test these methodologies. This work was

presented as a candidate for further generalization to NURBS surfaces.

2.9.2. EIKott, D., ElMaraghy, H., and Nassef, A. (1999)

ElKott, D., EIMaraghy, H., and Nassef, A. (1999) extended the work presented in the
previous subsection to NURBS surfaces. They presented four methodologies for the
sampling of free form surfaces. Each methodology emphasized a certain feature of the
NURBS surface features. The algorithms developed in this work are, namely, equi-
parametric sampling, patch size based sampling, patch mean curvature sampling, and
hybrid sampling. In addition to the mentioned heuristics, they introduced an algorithm for
the optimization of sampling of free form surfaces using Genetic Algorithms (GA's).

The algorithms presented were implemented, and tested on NURBS surfaces with

different levels of complexity.
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2.9.3. EIKott, D., EIMaraghy, H., and EIMaraghy, W. (2000)
ElKott, D., EIMaraghy, H., and ElMaraghy, W. (2000) presented a system that
integrates the algorithms developed in the latter two subsections into a computer-aided

system for inspection planning (CASampler). This system was developed to:

1. provide the user with alternate solutions to the sampling problem,

2. provide an optimality criterion,

3. provide the user with a utility to automatically select the sampling algorithm, based
on the surface complexity,

4. be easy to use, and user-friendly, and

5. be feasible to integrate with CATIP (Limaiem, A., and ElMaraghy, H., 1999).

The algorithms mentioned in this section are described in details in chapter three. The
simulation study performed on the sampling algorithms is presented in chapter four.

Details of CASampler are presented in chapter five.

2.10. Discussion

This chapter provided a survey of the literature available on the sampling of free form
surfaces. It also outlined the work published throughout the course of this thesis. The

work presented in sections 2.2 through 2.8 pointed out the problems in sampling for
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CMM inspection planning. It is obvious that various problems related to sampling have
been extensively covered in the literature (e.g. sampling of different primitives).
However, more work needs to be done in the field of sampling of free form surfaces.
Section 2.8 presented the objectives of the research presented in this thesis. Section 2.9
highlighted the work published throughout the course of this research. The next chapters

discuss the details of this work.
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CHAPTER THREE

SAMPLING ALGORITHMS DESCRIPTION

This chapter demonstrates the sampling algorithms developed throughout the course of
this work. The implementation of Genetic Algorithms (GA’s) in the sampling of free
form surfaces is demonstrated as well. The parameter used to measure the effectiveness
of sampling scenarios is the maximum deviation between the substitute geometry and the
design data. MATLAB 5.3 (Math Works Inc.) was used to code the sampling algorithms.
Before demonstrating the different sampling algorithms, some common topics should be
highlighted, i.e., the methods used for free form surfaces representation within the

algorithms, how sampling is simulated and the method used for data fitting.

3.1. Approach

3.1.1. Representation of free form surfaces
NURBS are chosen in this work to represent free form surfaces as was shown in
chapter I. For simplicity of computation, a slight modification was introduced by using

homogeneous coordinates (Piegl, L., and Tiller, W., 1997). A NURBS curve is

represented in four-dimensional space as:
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where P} is the i" weighted control point:

w
P =(wx,,w,y,,w;z,,w; )

C"(u) is a tensor vector that represernts a point on the curve, calculated as:

C'(u)=(wx(u),wyu), wz(u),w)

Similarly, a NURBS surface is represented in the same fashion as:

w
PiJ = WiiXi s Wi Vijs Wiy Zi5 5 Wiy )

Also, S"(u,v) isatensor vector that represents a point on the surface,

S"(uv)=(wx(uv),wy(uv),wz(uv),w)

3.1

(3.3)

3.4)

(3.5)

(3.6)

For more simplification, all the weights for the control points were set to unity. This

simplified representation made the coding of NURBS surfaces easier, more compact, and
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shortened the CPU runtime. For modeling the original data (the CAD model), the
NURBS curve is identified by a matrix representing its control polygon, curve degree,

and knot vector. Similarly, a NURBS surface is identified by a 3D matrix representing



the control polyhedron, surface degree in both u, and v parameter directions, and knot
vectors in for both u, and v directions.

3.1.2. Simulation of the sampling process

The work done in this research deals with the problem of allocating a predetermined
set of sample points so that the surface fitted to that point set is as close as possible to the
CAD surface. To simulate the process of point probing, some factors have to be
considered, i.e., the part form error due to the manufacturing process, and the
measurement uncertainty. Different form error patterns were simulated and imposed on
the surface CAD data. The simulation of measurement uncertainty was accomplished by
adding a random value to the coordinates of each sampled point. This random
measurement error value is obtained from the calibration sheet of the DEA Mistral CMM
at the IMS Centre, which is +=0.004 mm. The selection of the random measurement
error is based on a 6c uniform distribution, with -0.004 mm. located at -3c, and +0.004
mm. at +3c, respectively. The sample points resulting from the algorithms are, then,
fitted to obtain the substitute geometry. The final step is to compare the substitute
geometry to the CAD surface data, and compute the deviation between both surfaces. The
maximum deviation between the two surfaces in each algorithm is used as a parameter to
determine the effectiveness of that algorithm. For each of the developed algorithms, the
implementation was carried out for NURBS curves, and then generalized for NURBS

surfaces.
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3.1.3. Data fitting

The problem of fitting the data obtained to a free form surface is formulated in this
way: given a set of data points Q that represents the sample points, determine the free
form surface that best fits this set of data. Since the design information, the ideal
geometric feature data, is available, the problem becomes simpler than in the case of
reverse engineering where no information is available about the geometric feature. The u
and v parameters for each sample point are known from the sampling plan. The number
of control points in both directions, and the knot vectors are also known. Furthermore, the
surface degree in both u and v directions is known. The problem then becomes to
determine the locations of the control points that minimize the least square error between
the fitted data and the ideal geometric feature. The fitting problem is then reduced to

solving a set of linear equations. As per Eq. 3.4, The original format of a NURBS surface

n m

is S"(uv)= Z N, (u) N, (v) P;; .Let Pg; be the set of control points for the
i=0 j=0

substitute geometry. To determine, Pg; the following formula is used:

n m

P =22 N(u) {Syu)]" [N, G.7)

i=0 j=0
Once Py is determined, the construction of the substitute geometry is
straightforward. To construct the substitute geometry, Eq. 3.4 is used. Let Sg;(u,v) be

the equation of the substitute geometry. Using equation 3.4, Sg¢;(u,v) is computed as
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Ssaluv) =22 N, (u) N, (v) P, . (3.8)

Within Eq. 3.8, the knot vectors, and degrees of the CAD surface are used. Once the
substitute geometry is constructed, its deviation from the original data is carried out
through computing the normal distance between each point on the substitute geometry,
and the adjacent point on the CAD model. The maximum deviation between the two

surfaces is taken to be the measure of the sampling scenario effectiveness.

3.1.4. Curve and surface samples.

Extensive experimentation was performed on different NURBS curves and surfaces to
test the different sampling scenarios. A sample NURBS curve, and a sample NURBS
surface are used for all methods, for demonstration within this text. Figures 3.1 and 3.2
show the NURBS curve together with its control polygon, and the NURBS surface

together with its control polyhedron respectively.

For the sample NURBS curve shown in Figure 3.1: curve degree “p” = 3, and the

curve knot vector “U” is [0, 0, 0, 0, 0.1454, 0.3129, 0.4974, 1, 1, 1, 1]. The curve control

polygon is shown in dashed lines.

The NURBS surface of Figure 3.2 is of the third degree in both u- and v- directions,
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and has knot vectors in both directions of U = [0, 0, 0, 0, 0.1406, 0.3035, 0.5132, 1, 1, 1,
1],and V=[0,0,0, 0, 0.1242, 0.3322, 1, 1, 1, 1]. The control polyhedron of the surface is

plotted in dashed lines.

To demonstrate the behavior of the sampling algorithms, they were applied to sample
points from both the sample surface, and curve, respectively. For the curve, the sample

size was fixed at 8 points, whereas the sample grid for the surface is set to
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Figure 3.1. Sample NURBS Curve
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Figure 3.2. Sample NURBS Surface

3.2. Equi-Parametric Sampling

This is a simple method of equally distributing the sample points in the u-v space, i.e.
allocating the sample points at equal distances on both the u-, and v- axis. This method is
the simplest amongst all the sampling methods. It successfully represents simple,
relatively flat NURBS surfaces with relatively no significant changes in curvatures. It has
the drawback of being insensitive to different complexity levels that might exist in free
form surfaces such as surfaces with sharp curvature changes and unequal surface-patch
sizes. Equi-parametric sampling is used to provide an approximate the sample size for the
surface. Figure 3.3 shows a flow diagram which explains the equi-parametric sampling

method.
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Curve/surface degree(s ) Equally distribute Calculate
START Curve/surface points, | »| Nu&MvalongU,and || samples
Knot vec.ttor(s), and V knot vectors, (xy.z)
Sample size (Nu / Nu x Mv). respectively. locations.
Find the value ofthe gormute de;’iéﬁotn ; Fit NURBS
maximumdeviation between etween substitute, an curve/surface
— s . . ——
END the substitute geometry, and CAD geometries (a'u:tance to sampled
the CAD surfice. in .s:pace between adjacent points.
points of both surfaces).

Figure 3.3. Flow Diagram Of Equi-Parametric NURBS Sampling

Figure 3.4 shows the result of applying the equi-parametric sampling method to
selected NURBS curve and surface. The sample size needs to be dramatically increased
to achieve better results using this method. For instance, in the case of the sample
NURBS surface illustrated in figure 3.4, a sample size of  9,_girecion X 1 1y—divection 1S
needed to reduce the maximum deviation between the substitute geometry, and the CAD
model to 0.009 mm. (72% reduction). This means a 77% increase in the sample size and,
therefore, in the inspection time. Moreover, this method is not sensitive to complex areas
of a NURBS surface. Other sampling algorithms need to be developed that are able to
manipulate NURBS curves/surfaces with higher levels of shape complexity. The alternate
algorithms are based on the knot vector(s) spans, and the NURBS curve/surface mean

curvature.
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3.3. Span/Patch Size Based Sampling

In this methodology, the NURBS surface is resolved into its patches (obtained from
the knot vectors). In this section of the algorithm, the knot vectors play the major role.
First, the span lengths are computed in the parameter u direction. Second, span lengths in
the parameter v direction are computed. The surface patch in the uv parametric space is a
rectangle, the edges of which are composed of u-spans, and v-spans. The patch size is,

then, calculated as the multiplication of the length of a u-span by the length of the v-span

coinciding with it.

Figure 3.5 demonstrates how a surface patch size is computed. The surface patches
are, then, ranked according to their sizes. Given a predetermined sample size, the samples
are distributed amongst the surface patches according to the rank of each patch; i.e., the
higher the patch rank, the larger its share of the samples in both the u- and v-directions.
This method produces sampling plans that successfully represent NURBS surfaces with
variations in patch sizes (resulting from the use of non-uniform knot vectors). However,
patches that are relatively very small can be ignored. In some cases, those relatively small
patches can include portions of the surface with sharp variation in the surface curvature.
Therefore, this methodology can produce inaccurate sampling plans, in the case of sharp
curvature changes, especially when they occur within relatively very small surface

patches. Figures 3.7 and 3.8 show the flow diagram of the Patch Size Based Sampling
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Methodology, and the results of applying it to sample NURBS curve, and surface

respectively.

A: Span length in

v- direction \

Patch Size=A x B

\ B: Span length in

u- direction

Figure 3.5. Computation Of NURBS Surface Patch Size

Curve/surface degree(s), Rank s.urﬁlce patF he.s Calculate
Curve/surface points according to their sizes, samples
START —» K ’ — ™ and distribute NuxMv  —
not vector(s), and bet tches accordi (xy,2)
Sample size (Nu / Nu x Mv). etween patches according locations.
to their ranking.
Find the value ofthe E;"P‘;"'Sie;’;?‘t“’t: i Fit NURBS
maximumdeviation between we rtute, : /surface
END the substitute geonetry, and CAD geonetries (distance :cl:l;ve 5lll d
k4 - - anp e
the CAD surfice. inspace between adjacent points
points of both surfaces). -

Figure 3.6. Flow Diagram Of Patch Size-Based NURBS Sampling
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Sample size = 8 points
Maximum deviation from CAD data = 0.008 mm.
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Figure 3.7. Span/Patch Size Based Sampling Applied To Sample Curve, And Surface
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3.4. Span/Patch Mean Gaussian Curvature-Based Sampling
This methodology ranks surface patches based on the patch mean Gaussian
curvature. For each point on the surface, the Gaussian curvature is calculated. The

formula used for Gaussian curvature at each point on the surface is (Mortenson, 1985):

_ L(u,v)N(u,v)— M*(u,v)
T Eu,v)G(u,v)~ F2(u,v) (3.9)

K(u,v)

N(u,v) is the surface normal at (u,v), calculated as:

[ox oy 2z
P OGP p* Su &
N(u,v) =——x——=P* x P" where = “ u ou
Ju Ov v _é’i a“_y é (3.10)
v v OJv

where P* , P' are the partial derivatives of the surface in the u, and v directions

respectively. Other partial derivative vectors that are used within the Gaussian curvature
formula are P“, P", and P*, which are calculated as:

*x 'y J%z
| _ | du* du* Ju o F*x 2%y oz |
P | | 9% 3y Iz and P =,:0"u5v cudv é’uo”v} (3.11)

av:  av:  Gv?

»

At any point (u,v) on the surface, a unit normal vector is calculated as:

N _ P'XP’
|N| | P*%P’| (3.12)

n=

The rest of the terms used in the Gaussian curvature formula are calculated using the

following formulae:
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L(uv)=n-P* M(uv)=n-P* N(uv)=n-P”

E(uv)=P“P* F(uv)=P“P" G(uv)=P"-P’ (3.13)

The surface is divided into patches, as in the previous method, the mean Gaussian
curvature per surface patch is calculated, and the patches are ranked according to their
mean Gaussian curvatures. The sample points grid is then distributed amongst the surface
patches according to their ranking, i.e., the higher the patch ranking, the larger its share of
sample points. Unlike the former two, this method places emphasis on the zones with the
highest curvatures. However, it might concentrate the majority of the sample points in the
patch with the highest mean Gaussian curvature, no matter how small or large that patch
is. Therefore, larger patches could be represented with a relatively small number of
sample points, which may lead to an inefficient sampling plan. Figures 3.8 and 3.9 show
the flow diagram, and the sample runs of the mean Gaussian curvature-based sampling

methodology.

3.5. Combined Span/patch Size And Span/patch Mean Gaussian

Curvature Based Sampling
In order to satisfy the need for an effective and efficient sampling plan that properly
represents a NURBS surface which has both the characteristics of different patch sizes

and curvature changes, the former two methods were combined into a new method. It
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allows the user to specify a weight for each of the combined criteria. For instance, if a
sharp change in the mean Gaussian curvatures is present, the user might prefer to
emphasize the role of the mean Gaussian curvature based sampling. On the other hand,
for a surface with no significant changes in its mean Gaussian curvatures, but the surface
patches vary greatly in size, the user might emphasize more the effect of the variation in
the size of surface patches. Figure 3.10 shows the sampling plan resulting from applying
the combined method to a sample NURBS curve and surface. In the example used in this
section, equal weights are given to the span/patch mean Gaussian curvature-based, and

patch/span size-based sampling.

Rank surface patches
Curve/surface de%“"e(s ), according to their mean Calculate
! START —» Curve/surface points, —— Gaussian curvatures,and ——3| samples
" Knot vector(s), and distribute Nu x Mv between (xy.2)
Sample size (Nu / Nu x Mv). patches according to their locations.
ranking
Find the value ofthe Eot”p“te d‘:"i:.ttiot" ; Fit NURBS
maximumdeviation between etween substitute, an < curve/surfice
END [ the substitute geometry, and < CAD geonetries (distance to sampled
the CAD surfice. in space between adjacent points.
oints of both surfaces).

Figure 3.8. Flow Diagram Of Patch Mean Gaussian Curvature-Based Sampling
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Figure 3.9. Sample NURBS Curve And Surface Sampled Using Span/Patch Mean
Gaussian Curvature-Based Algorithm
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3.6 Automatic Selection Of The Surface Sampling Algorithm

As stated earlier, the goal of the work presented in this thesis is to develop a system
for automatic sampling of NURBS surfaces that provides the user with the flexibility to
choose a sampling method that is suitable for the features of the surface under
consideration. The hybrid approach provides an efficient means of combining the patch
size, and the patch mean curvature methods. However, the selection of the weights for
each method dependent on the user’s skills. To increase the flexibility of the system, an
algorithm was developed to automatically select the sampling algorithm that is suitable

for the NURBS surface.

The algorithm performs a complexity check on the NURBS surface to determine
which sampling algorithm is the most suitable to apply. The algorithm performs
complexity check on the NURBS surface, which results in two factors, namely, the
curvature factor, and the patch size factor. The curvature factor determines whether the
surface change in curvature is of significance to be taken into consideration, or not.
Likewise, the patch size factor determines if the surface patch size is to be taken into

consideration in the sampling process or not.

3.6.1. Surface curvature analysis
This is the first step taken by the algorithm for automatic selection of sampling

scenarios. This module, first, computes the curvature at each point on the surface grid.
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This is done using equations 3.9 through 3.13. The result of this step is two matrices,
representing the surface curvature in each of the two parametric spaces u, and v. Let the

surface curvatures in the u, and v directions at an arbitrary point (u;,v j) be given as:

C*(u;,v;) and C*(w;,v,) , i€{1,2,.,K} and j€(1,2,.,L} (3.14)
Where:
C" = value of surface curvature in u-direction.
C"” = value of surface curvature in v-direction.
i = integer index.
j = integer index.
K = size of surface grid in u-direction.
L = size of surface grid in v-direction.
The two curvature matrices are constructed as:
C*uy,vy) C"uy,v,) C"(us,v,) C*(uy,v,)
CM = Cuy,vy) C*ua,vy) C¥usz,v,) C*(ug,v,y) (.15)
_C"(.u',.,vL) C"(.u.z-,vL) C"(.u.;,vL) C"(;(;,VL)-
C'(u;,v) C™us,v,) C'(u;z,v,) C™(ug,v,)
CM* = C'(uy,vy) C'(uy,vy) C'(usz,v,) C'(ug,vy) (3.16)
Clu) Clunw) Colus) o Chlugov,)]
Where:

CM* = Matrix of surface curvatures in u-direction.

74



CM® = Matrix of surface curvatures in v-direction.

Second, the percent change in curvature between every two neighboring points is
calculated in both u, and v axes. The result is two curvature change matrices. The
curvature change at at an arbitrary point (,,v;) is given as:

CC*(u,,v;) and CC’(u;,v;) , i€(1,2,.,K} and j€(1,2,.,L)} (3.17)

where:

C( ui9vj)_Cu(ui—l ’vj)

CC*(u;,v,) = X 100

( J) Cu(ui-[svj)
CCu(ul,vj)=O (3.18)
CC*(ug,v;)=0
CC*(u;,v,)=0
CC*(u;,v,)=0

and
CV ) ) _CV ‘s .
CC*(uyrv,) = B2 C i)
C (uiavj—l)

CC™(u,,v;)=0 (3.19)

CC*(ug,v;)=0
CC"(u;,v,)=0
CC"(u;,v,)=0

The curvature change matrices are constructed as:

CC*(uy,v,) CC*(uy,vy) CC*(usz,v) ... CC*(ug,v)
CCM*= cc (ul’vz) cc (uz,Vz) cC (u3,v2) ... CC (uK,Vz) (3.20)
CCu(ul9vL) CC"(uzaVL) C'C"(u3,vL) CC"(“K,VL)
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CC*(uy,v;) CC*(uy,v;) CC*'(uz,v,) ... CC™(ug,w)
CCM* = CC(uy,v,) CC*(uy,v,) CC (u3,v;) ... CC(ug,v,) (3.21)
CC(uy,v,) CC*(uy,vy) CC*(us,v;) ... CC™(ug,v,)
Where:

CCM* = Matrix of surface curvatures' changes in u-direction.
CCM® = Matrix of surface curvatures' changes in v-direction.
Third, the curvature change matrices are combined into one matrix. This is done

through the following formula:

.. CCM™(ij)xK + CCM"(ij)xL
‘M A =
ceM(iy) K+L

i€(1,2,..K]
jE€({1,2,..,L}

(3.22)

where:
CCM = Final curvature change matrix.

The elements of the final curvature change matrix (CCM) are then divided by the

highest value in the matrix.

CCM'(ij)= CC[.W.(U)

| CCM (i) | sevanmunt (3.23)
i€(1,2,.,K} |
je{ 1327"31‘}

The curvature factor (referred to as CFactor) is calculated as the percentage change

between the minimum, and the maximum elements in the Curvature Change Matrix

CCM' . The following formula is used:
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(l CCM]lMM(MI - l CCM[IAHNIAW)

X 100 (3.24)
lCCMl,MNIMW ’

CFactor =

The curvature factor is compared to a threshold value (CLimit). The value of CLimit
is specified by the user of the algorithm. The value of CLimit is inversely proportional
to the algorithm sensitivity to the change of the surface curvature; i.e., the higher the
value of CLimit, the more "tolerant" the algorithm to the changes in the surface
curvatures, and vise versa. In other words, if a high accuracy of the inspection process is
needed, a lower value of CLimit is set, and vise versa. If CFactor was less than CLimit,
the curvature change is considered insignificant in affecting the sampling strategy. If,
otherwise, CFactor lied beyond CLimit, the surface curvature change is considered of a
significant effect on the sampling strategy and, therefore, taken into account. Taking the
change in the surface curvatures into account means applying the patch mean curvature

based sampling. The next step is to test the change in the surface patch sizes.

3.6.2. Surface patch size analysis

In this section of the algorithm, the surface patch sizes are computed, as explained in
section 3.3. After the surface patches’ sizes are computed, the percent change between the
minimum, and the maximum surface patches is calculated. This percent change in patch
sizes is referred to as the patch factor (PFactor). As in the curvature analysis section,
PFactor is compared to a threshold (PLimit), which is used to determine whether the

effect of surface patch size changes is significant or not. Like CLimit, the value of PLimit

77



is set by the user of the algorithm. PLimit is inversely proportional to the sensitivity of
the algorithm to the change in the surface patch sizes. If PFactor was less than PLimit, the
change in surface patch sizes is not considered of a significant effect on the sampling
scenario, and vise versa. Taking the effect of surface patch sizes into account in the

sampling process means applying the surface patch size based algorithm.

3.6.3. Making the decision

Having the surface complexity check carried out, the automatic selection algorithm
decides which sampling algorithm to apply. First, the algorithm checks the CFactor value,
then it checks the PFactor value. As mentioned earlier, those values determine the
significance of the curvature change, and the patch size changes on the sampling scenario,
respectively. If both values exceeded the threshold values (CLimit, and PLimit), then the
automatic selection algorithm performs hybrid sampling, and uses CFactor, and PFactor
to combine the Curvature-Based, and Patch Size-Based sampling scenarios, respectively.
Figure 3.11 demonstrates a flow diagram of the logic applied within the algorithm for

automatic selection of sampling scenario.

One issue that is of great importance to emphasize is the values of the thresholds
CLimit, and FLimit. The values of those limits are based on how tolerant the program

user is to changes in surface curvatures, and patch sizes. In other words, the user adjusts

78



the values of these limits to push the program to pay more attention to either or both
factors. If both limits were set to 1, this means that any change in the surface curvatures,
or patch sizes will be taken into consideration. The higher the value of the limits, the

more the tolerance given to the adjacent surface complexity feature.

The determination of the thresholds was left to the program user to decide to provide
the user with more flexibility, and allow him/her to set the limits according the type of the
surface, the manufacturing operation, or the inspection requirements. The algorithm
described in this section is integrated with the sampling algorithms that, together, provide
an integrated system for the sampling of free form surfaces. This integration will be

discussed in details in the next chapter.

3.7. Optimal Sampling Of Free Form Surfaces

When the sampling problem is too complex to resolve, or when the heuristics
discussed in this chapter can not reach a satisfactory solution, or when an optimal
allocation of sampling points is required, the inspection planner may need a utility to
produce an optimal sampling plan. Such an alternative is made possible through the
application of Genetic Algorithms (GA’s) in the sampling of free form curves, and
surfaces (ElKott, D., EIMaraghy, H., and Nassef, A., 1998, and 1999). A GAs MATLAB

toolbox was integrated with the surface construction, sampling, and fitting functions. The
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objective function of the optimization problem was set to minimize the maximum
deviation between the original NURBS surface (geometric model), and the NURBS
surface fitted to the sampled points. Within the GA’s objective function, the sampling
process is simulated, a NURBS surface is fitted to the sampled data, and the maximum
deviation between the fitted surface and the geometric model is calculated and
minimized. Figure 3.12 demonstrates the block diagram of GAs optimization of NUBS
curves and surfaces samples locations. The GA’s parameters used in this study are:

e Population size: 70

e Number of generations: 100

e Number of times to apply boundary mutation, uniform, and non uniform mutations: 4
e Number of times to apply simple and whole arithmetic cross over: 2

e Number of times to apply whole non-uniform mutation: 4

e Number of times to apply heuristic cross over: 2

Genetic Algorithms-based NURBS surfaces sampling optimization was applied to a
group of NURBS surfaces which represented different levels of complexity, with variety

of sample sizes. Results of GA’s optimization for the sample NURBS curve, and surface

are demonstrated in figure 3.13.
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Figure 3.12. Flow Diagram Of The GA's Optimization Of NURBS Surface Sampling

3.8. Discussion

This chapter introduced the different algorithms developed for the sampling of free
form surfaces, as well as the implementation of Genetic Algorithms (GAs) in the
sampling problem. The sampling algorithms operate in the parametric space to calculate

the coordinates of a sample grid whose size is predetermined.
Equi-parametric sampling equally distributes the sample points in the parametric
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space. This method is not sensitive to changes in the surface curvature, or patch size. This

method is satisfactory for relatively flat surfaces with limited, or small curvature changes.

Patch size-based sampling distributes the sample points among the surface patches
according to their sizes. The larger the patch size, the larger its share of sample points.
The drawback of this algorithm is its insensitivity to sharp curvature changes, especially

in relatively small patches.

Curvature-based sampling ranks the surface patches according to the value of mean
curvature per each surface patch. The drawback of this method is its insensitivity to the
variation in surface patch size. The combined surface patch size and mean curvature

based sampling algorithm emphasizes both effects of the variation in patch size, and

curvature.

An algorithm for automatically selecting the proper sampling algorithm based on the
surface features was introduced. It testes the surface complexity in terms of its curvature

variation, and patch size variation. The algorithm then decides which sampling algorithm

to apply.

A Genetic Algorithms-based method has been developed to offer optimum sampling
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of free form surfaces. Extensive simulations and numerical tests have been conducted to
test the performance, and reliability of the sampling methodologies presented in this
chapter. Surfaces with different levels of complexity have been sampled using each
methodology, and the results have been analyzed. Results of simulations, and numerical

tests are discussed in the next chapter.
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CHAPTER FOUR

SAMPLING ALGORITHMS SIMULATION

This chapter describes the simulation study performed on the sampling algorithms
introduced in the previous chapter. It discusses the method used for the simulation study,
and the results of applying the sampling algorithms. The Genetic Algorithms (GAs) based

sampling method is also demonstrated.

To emphasize the significance of the algorithms developed throughout the course of
this thesis, the result from the different algorithms are compared to the results of

sampling using the uniform sampling pattern introduced by in Yau and Menq (1992).

The application of the sampling algorithms to selected cases is also introduced. CAD
models of different products were selected, and the sampling algorithms were applied to

them. This is demonstrated in this chapter.

4.1. Methodology

This section discusses the methods applied to simulate the sampling algorithms

86



presented in chapter 3. The surfaces used in the simulation study, and the simulation of

sources of error are discussed.

4.1.1. Simulation process outline

The simulation of sampling algorithms took place through the construction of sample
NURBS surfaces, simulating the form error error due to manufacturing, applying the
sampling algorithm to the surface (with form error added), simulating the measurement
error component, fitting NURBS surface to the sampled points. The fitted surface
simulates the substitute geometry, which is compared to the CAD surface (surface
without form error added). The deviation between the CAD surface, and substitute
geometry is computed for each sampling algorithm. Figure 4.1 illustrates the flowchart of
the simulation of the sampling algorithms. For each surface, the sample size is fixed, in
order to compare the behavior of the sampling algorithms at identical conditions.
Throughout the simulation process, the weights assigned for each of the curvature based,
and the patch size based sampling in the hybrid sampling algorithm were set to (CWeight
: PWeight = 25:75). These values of CWeight, and PWeight are fixed for all the

calculations involving the use of hybrid sampling in this simulation study.

4.1.2. Surface complexity

Throughout the context of this chapter, terms such as curvature change, patch size
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factor, and complexity level are used to describe the complexity of a NURBS surface, and
to distinguish between different NURBS surfaces. Two factors are used to address a
NURBS surface complexity level, i.e., the change in the surface patch size, and the

surface curvature change.

4.1.2.1. Surface curvature change matrix

The first measure of a NURBS surface complexity is the change in its curvature. In
order to have an idea of how sharp surface curvatures can change, the NURBS surface
curvature analysis 1s carried out, as per section 3.6.1 of the previous chapter. The higher
the values of elements of the curvature change matrix, the higher the sharpness of the
surface curvature change. A primary indicator to the surface complexity is the surface
curvature change factor (CFactor). The higher the value of CFactor, the higher the

tendency of the surface to contain sharp curvature changes, and vise versa.

4.1.2.2. Surface patch size change

A NURBS surface patch is bounded by the intersection of four isoparametric lines,
and its size is calculated as described in section 3.6.2, in the previous chapter. The patch
size factor (PFactor) is used as the second measure of a surface complexity. The higher
the value of PFactor, the higher the probability of the surface to contain small patches. A

Small surface patch might be ignored, or given an insufficient share of sample points.
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This might lead to high fitting error, especially if sharp curvature changes exist in those

small patches. Therefore, PFactor is used as a second measure for surface complexity.

For each of the NURBS surfaces used in this simulation study, the values of CFactor,
and PFactor are indicated, as well as the U, and V knot vectors, and the surface degrees in
both the u, and v directions. in order to compare the result of the different sampling
algorithms, the size of the sample points grid is fixed for each surfaces, while the

sampling algorithms are changed.

4.1.3. Surfaces used for simulation study

To simulate the sampling algorithms and test their behavior, NURBS surfaces with
different complexity levels were designed. The surface complexity consists of two main
factors, i.e., the curvature variations, and patch size variation. In this simulation study, six
different NURBS surfaces are used. The simplest of the six surfaces tends to be flat. The
complexity of the surfaces increases to reach its highest level in the sixth surface. Figure
4.2 illustrates the different surfaces used for testing the sampling scenarios. The surface
degrees in both the u, and v parametric spaces are set to 3. It was necessary to use
surfaces of the 3 degree to maintain C’ continuity, which is essential to compute the first

and second derivatives for the surface points.
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4.1.4. Form error simulation

The simulation of the form error takes place through the construction of a NURBS
surface that represents the form error distribution (error pattern), and imposing it on the
CAD surface. Since the error pattern is a NURBS surface, it is possible to impose
different distributions of the form error. In this study, the form error distribution is based
on the curvature change in the CAD surface. The surface zones where the curvature
change is sharp receive a larger share of the form error. The form error is then distributed
on the surface according to the curvature change matrix. Figure 4.3 illustrates the
methodology used to simulate the form error. In this simulation study, the form error
values simulated vary between 0 mm, and 0.008 mm, and their values vary in proportion

to the change in surface curvature.

The CAD surface is constructed. A series of calculations are then performed to
compute the curvature of the surface at each point in the surface grid, as well as the
curvature change matrices. These calculations are discussed in section 3.6.1, and
equations 3.14 through 3.23. The result of equation 3.23 is the curvature change matrix

CCM' , whose elements' values range between a minimum value of 0.0, and a
maximum value of 1.0. The elements of this matrix are, finally, multiplied by the
maximum value of the expected form error (0.008 mm. In this study). The result of this

final operation is a curvature-based form error distribution matrix (FEDM).
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FEDM (ij)=CCM"'(i;j)x0.008 mm. @1
i€{1,2,..,K}, je€{1,2,.,L} )

The values obtained from equation 4.1 are then added to the surface nominal data. The

result is the manufactured surface data.

START

Surface Degrees — Construct
NURBS Surface

Control Points —

l Ideal CAD Surface

Form Error Add Form Error
Pattern 3 Component

l Simulated Manufactured Surface

Samples Grid Si= —>1 Apply Sampling Measurement Error
Algorithm <¢—— Component

Sampling Algorithm

l Define Sample Points Locations

Fit NURBS Surface
To Sampled Points

Substitute Geometry

Compute Deviation
Matrix

Figure 4.1. Flowchart Of Inspection Sampling Simulation Process
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Figure 4.3. Flowchart Of Form Error Simulation

4.1.5. Measurement error simulation

In addition to the form error, the CMM measurement error is also simulated. A
random measurement error of £0.004 mm. is used to simulate the CMM measurement
error. This figure is obtained from the calibration chart of the DEA Mistral CMM, IMS

Centre.
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The sampling algorithm is run on the CAD surface, and the resulting locations of the
sample points are, then, shifted to their true locations on the deformed surface, and the
CMM random measurement error component is added. Simulating the CMM
measurement error component takes place through adding a random value &, to each
of the computed coordinates for each sample point. The value of &, is computed to
randomly lie between -0.004 mm., and +0.004 mm, as per the calibration chart of the
DEA Mistral CMM (IMS Centre, University of Windsor). The selection of the random

measurement error is based on a 6c uniform distribution, with -0.004 mm. located at -3,

and +0.004 mm. at +30, respectively.

The sampled points, having the measurement error added, feature two sources of error,
the form error, and the measurement error. Let P,;=(X,;,Y,,,Z,;) be an arbitrary

sample point, P,;€S , where S is the sample points grid as calculated by the sampling

algorithm.
[P Pz o Poy
S= Pz'l .Pz‘l .o PZ'N
42)
_PM.I PMZ PMN-

ie{l, M}, Jje{1,N}
where:
i = integer index marking the points sampled in the u-direction.

J = integer index marking the points sampled in the v-direction.
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M = size of sample points' grid in u-direction.

N = size of sample points' grid in v-direction.

The actual location of that point on the surface due to the form error is
d d d d

PiJ’:(XiJsYiJ"ZiJ) s

where:

X=X, +6X,, Y=Y, +6Y,, Zi,=Z,+6Z, (4.3)

(¥R

The random CMM measurement error is, then, added to Pf-i- . The final location of

P;; is:

PL=(X0. Y. 27) (4.4)
where:

XZ}=X,-J+6X,-J-+6,,,, Y;'J'-=Y,-J+6Y,-J-+6,,,, Z:-'J’-=Z,J+6Z,J+6m 4.5)

The measurement points P;; are fitted to a NURBS surface that represents the
substitute geometry. The deviation between the substitute geometry, and the CAD surface
is, then, calculated. The value of the maximum deviation resulting from the application of
each algorithm is compared against the similar value that results from the application of

Genetic Algorithms (GA's) to the sampling problem.

4.2. Results Of Sampling Algorithms Simulation
This section demonstrates the results of the application of the sampling algorithms to
the NURBS surfaces described in the previous section. For each surface, the different

sampling algorithms, including the uniform sampling pattern introduced by Yau and
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Mengq (1992) are applied, and compared. The different sampling strategies are compared

in terms of the maximum deviation between the substitute geometry and the CAD

surface.

4.2.1. Application of sampling algorithms to surface A

Surface A (Fig. 4.2) is a simple surface, whose features tend to be flat. There is no
relatively large change in the surface curvature values. The values of the knot vectors,
surface degrees, CFactor, and PFactor of surface A are given in table 4.1. The sampling
algorithms were applied to distribute a 6 X6 grid of points on the surface. The results
are illustrated in figure 4.4. Each sampling plan is associated with the maximum
deviation between the substitute geometry, and the CAD geometry resulting from the
application of that plan. Since surface A is a simple surface, with no significant changes
in curvature, The results of applying the different sampling algorithms do not vary
significantly.

Table 4.1. Features Of Surface A

No. Of Control Points . U-direction |5

V-direction |6

Knot Vectors U [0, 0,0,0,0.3, 1.0, 1.0, 1.0, 1.0] ?
‘ \Y% [0, 0, 0,0,0.34, 0.62, 1.0, 1.0, 1.0, 1.0]
Surface Degrees . U-direction 'p=3

V-direction ;q=3

Complexity Factors | CFactor  [0.03
! ' PFactor 8.0

96



AR ,&.
7
A
MR
N M

N
WO

N
N \
RN
WK

40

3

10um

Patch Size Based Sampling

12 pm

Equi-parametric Sampling

9 um

d Sampling

i

Hybr

8 um

Curvature Based Sampling

ic Algorithms: 8 pm

Genet

8 um

form Sampling:

i

Un

Algorithms To Surface A

ing

Of Sampl

1cation

Figure 4.4. Results Of The Appl

97



4.2.2. Application of sampling algorithms to surface B

More complexity has been added to surface B (Fig. 4.2). Moving the control points, a
simple convexity was added to the surface. The change in curvature remains insignificant
in surface B. However, the size of the surface patches varies significantly. This variation
is due to the surface knot vectors values. The values of the features of surface B are given

in table 4.2.

Table 4.2. Features Of Surface B

No. Of Control Points U-direction |5
V-direction |g

Knot Vectors : U 10,0,0,0,0.17, 1.0, 1.0, 1.0, 1.0]
' A [0,0,0,0,0.2,04,1.0, 1.0, 1.0, 1.0]
Surface Degrees  U-direction p=3

V-direction q=3

Complexity Factors CFactor 0.04
PFactor '14.0

Results of the application of the sampling algorithms to sample a grid of 6 X6

sample points are illustrated in figure 4.5.

The results of sampling surface B show significance in the effect of the surface patch
size on the results of the sampling algorithms. Equi-parametric sampling algorithm lead
to a sampling plan where the majority of the sample points are concentrated in a certain

area of the surface. This is due to the non-uniform nature of the knot vectors.
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Curvature based sampling algorithm concentrated the majority of the sample points
in the surface zone where the change in the curvature value is large. However, since
surface B tends to be flat in most of its zones, concentrating the sample points where the

curvature change is large did not reduce the sampling plan accuracy significantly.

The hybrid sampling approach combined the latter two plans, thus emphasizing the
effects of both the patch size change, and the curvature change respectively. As illustrated
in figure 4.5, applying the hybrid approach pulled two rows of sample points towards the
surface zone where the curvature changes are higher. This increased the maximum

deviation between the substitute geometry, and the CAD data.

The uniform sampling pattern uniformly covered surface B, and produced a plan that
is close to the patch size based plan in its accuracy. This is due to the insignificant

curvature variation of surface B.

Genetic Algorithms (GA's) optimization of the sampling process produced a sampling
plan with the minimum value of the maximum deviation between the substitute geometry

and the CAD surface. However, this plan is not of significant difference from the plans

produced by the other heuristic methods.
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4.2.3. Application of sampling algorithms to surface C

Surface C (Fig. 4.2) is similar to surface B in that the curvature values do not change
significantly throughout the surface. The only difference between surfaces C, and B is in
the direction of the curvature change in both surfaces. Surface C is concave, where

surface B is convex. The construction features of surface C are listen in table 4.3.

Table 4.3. Features Of Surface C

-No. Of Control Points | U-direction |5
V-direction |6

Knot Vectors U 1[0,0,0,0,0.17, 1.0, 1.0, 1.0, 1.0]
| \4 1[0,0,0,0,0.19, 0.397, 1.0, 1.0, 1.0, 1.0]
Surface Degrees @ U-direction p=3

V-direction iq=3

Complexity Factors ; CFactor [0.05
PFactor 130

The same sample grid size ( 6 X6 ) is applied in this case too. The sampling

algorithms were applied to surface C, and their results are illustrated in figure 4.6.

The similarity between surface C, and surface B (in terms of complexity) lead to
similar behavior of the sampling algorithms when applied to both surfaces (as can be

inferred from figure 4.6).

Patch size based sampling remains the second to GA's in producing an efficient
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sampling plan. Nevertheless, the optimization of the sampling plan in both surfaces did
not significantly change the magnitude of the maximum deviation between the nominal
surface, and the substitute geometry (maximum deviation was reduced by 10%-11% in

both cases).
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Figure 4.6. Results Of The Application Of Sampling Algorithms To Surface C
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4.2.4. Application of the sampling algorithms to surface D

Surface D (Fig. 4.2) is more complex than the latter two surfaces. This higher level of
complexity results from the values of the knot vectors, and curvature changes, which is
reflected in the values of CFactor, and PFactor for surface D. Table 4.4 shows the values

of the features of surface D.

Table 4.4. Features Of Surface D

No. Of Control Points | U-direction 'S
- V-direction |6

Knot Vectors U [0,0,6,0,0.09,1.0,1.0, 1.0, 1.0]
\% '10, 0, 0, 0,0.1643, 0.3512, 1.0, 1.0, 1.0, 1.0] 1
Surface Degrees U-direction p=3

V-direction q=3 |

Complexity Factors | CFactor 30.06 i
.~ PFactor [18.0 |

The curvature values vary between different surface zones. However, there is no sharp
curvature changes in surface D. Results of applying the sampling algorithms to sample a

6 X6 sample grid are demonstrated in figure 4.7.

The results demonstrated in figure 4.7 illustrate the decline in the ability of the
heuristics to produce a reliable sampling plan. Equi-parametric sampling does not have
any sensitivity to the surface complexity and, therefore, produced an inaccurate result.

Patch size based sampling distributed the sample points so that the bigger patches
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receive larger shares of sample points. Curvature based sampling concentrated the
majority of the sample points in the surface zone with the highest curvature values.
Uniform sampling uniformly distributed the sample points on the surface regardless of its
complexity. Hybrid sampling, in this case, produced results that are better than all other
heuristics. This is due to the fact that both surface complexity features, i.e., patch size
variation, and curvature variation were taken into account. Genetic Algorithms based
sampling produced the most accurate plan. However, the difference between hybrid
sampling, and Genetic Algorithms sampling is not significant. This is due to the
smoothness of the surface curvature changes (i.e., no sudden, sharp change in surface
curvature). Increasing the complexity of the surface features may dramatically change the
sampling results. The next two subsections demonstrate the application of sampling

algorithms to more complex surfaces.
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4.2.5. Application of sampling algorithms to surface E

Surface E (Fig. 4.2) is a more complex surface. Its patches vary in their sizes, and
mean curvature values as well. The surface includes a number of zones where the surface

curvature sharply changes. The surface features are summarized in table 4.5.

The most significant complexity feature of surface E is the variation in surface patches'
mean curvature values. This has an effect on the sampling algorithms applied to the
surface. A larger sample size was needed in case of surface E due to its higher complexity
than surfaces A through D. Sampling algorithms were applied to sample a grid of

6 X7 sample points from the surface. The results of the application of the sampling

algorithms to surface E are illustrated in figure 4.8.

Table 4.5. Features Of Surface E

'No. Of Control Points | U-direction 5
V-direction 6

Knot Vectors - U 10, 0,0,0,0.2246, 1.0, 1.0, 1.0, 1.0] ;
‘ v [0, 0, 0,0,0.1403, 0.3981, 1.0, 1.0, 1.0, 1.0]
Surface Degrees  U-direction p=3

V-direction :q=3

Complexity Factors |  CFactor 2.3
PFactor i14.0

As can be concluded from figure 5.8, the accuracy of most of the sampling algorithms,
except that of the curvature based sampling algorithm, declined. The reason is the sharp
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curvature changes that the surface has. Curvature based sampling came next to Genetic
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Hybrid sampling came next to curvature based sampling. The difference between
hybrid sampling, and curvature based sampling is not large, but the gap is wider between

hybrid sampling, and the other sampling algorithms, especially equi-parametric sampling.

Up to this point, heuristics produced satisfactory results. When the surface complexity
increases, such that the variation of surface patch sizes increase, and the surface curvature
values in change within smaller patches, the heuristics may fail to find a solution to the

sampling problem. An example to such case will be demonstrated in the next subsection.

4.2.6. Application of sampling algorithms to surface F

Surface F (Fig. 4.2) features more complexity than the former five surfaces. The
number of control points are larger in surface F and, therefore, the knot vectors are more
complex. This is due to the dependency of the number of knots on the number of control
points. The surface curvature values add more source of complexity, for they sharply

change at different surface zones. The features of surface F are listed in table 4.6.

Due to its higher complexity, surface F was sampled using a larger sample size. A

sample grid of 8X8 points was sampled using the sampling algorithms described in

the previous chapter. The results of the sampling processes are illustrated in figure 4.9.
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Table 4.5. Features Of Surface F

' No. Of Control Points | U-direction |6
 V-direction 6

Knot Vectors , U [0, 0,0,0,0.1704, 0.4018, 1.0, 1.0, 1.0, 1.0]

: A\ j[O, 0,0,0,0.1942,0.3568, 1.0, 1.0, 1.0, 1.0]

Surface Degrees U-direction |p=3

V-direction [q=3

Complexity Factors |  CFactor 90
PFactor :14.0

The results illustrated in figure 4.9 show how the effect of surface complexity can
dramatically change the results of the sampling algorithms. In the previous five cases, the
maximum deviation resulting from optimum sampling was better than the highest
accurate heuristic by (0%-20%), whereas in case of surface F, GA's surpassed the highest
accurate heuristic (Patch size based sampling) by 36%. It is intuitive that the higher the
surface complexity, the higher this ratio is. In such a complex shape like surface F,
Genetic Algorithms based sampling succeeded to produce a reliable sampling plan. Each
of the other methods focused on one surface feature, and ignored the others. The only
heuristic methodology that is able to produce an accurate plan is the hybrid approach,
through choosing the correct weights for each of the patch size, and mean curvature based
methodologies. However, this is a tedious iterative operation that involves an enormous
amount of calculations. This is due to the need of trial and error of different values for the

weights of the patch size, and the patch mean curvature methods. Instead, Genetic
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Algorithms based sampling provides such a reliable sampling plan.
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4.3. Analysis Of Simulation Results

The simulation process is carried out on a Pentium III - 733 MHz CPU. The time (in
seconds) spent by the algorithms to compute a sampling plan for each of surfaces A

through F was coded. Table 4.7 displays the results of the simulation study.

Table 4.7. Results Of Simulation Study

. Surface A | Surface B | Surface C | SurfaceD | SurfaceE ! SurfaceF °
* Dev. | Time ; Dev. | Time j Dev. | Time | Dev. | Time | Dev. | Time { Dev. | Time :
Fquiparametric ' 12 | 10 [ 16 [ 11 16 [ 1225 335 1a] 48] 15
PatchSizeBased © 10 | 15| 9 | 17 10 18] 19 19 25 21] 25| 2
40
33

 CurvatureBased | 8 | 20 | 15 | 22 | 12 | 24 | 32 | 26 | 15 | 28 30
 HybridSampling . 9 | 40 | 13 | 44 | 11 | 48 | 14 | 51 | 19 | 55 60

Uniform Sampling : § 9 11 10 ] 10 { 11 | 20 12 | 29 12 | 30 13
- Genetic Algorithms | 8 | 6000 8 [6180] 9 |6365] 12 ]6556] 12 [6753] 15 | 6956

The results of the simulation study was coded in a graphical format for simplicity. The
behavior of each methodology is compared according to the surface complexity. The
comparison criterion used is the algorithm accuracy, expressed in the formula:

_Devgy, (4.16)
Y Dev,

where:
A,;; = Accuracy of the i algorithm when applied to the j'h surface.
Devg, ; =Maximum deviation between substitute geometry, and CAD surface when
Genetic Algorithms sampling is applied to sample the jul surface.

Dev; ; = Maximum deviation between substitute geometry, and CAD surface when

the i" algorithm is applied to sample the jth surface.
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Figure 4.10. Comparison Of Sampling Algorithms Applied In Simulation Study

The value 4;;, was chosen as a measure for the sampling algorithms accuracy, for it
presents how the sampling algorithms behave when applied to surfaces of different
complexity levels. Figure 4.10 illustrates the graphical representation of the results of the
simulation study presented in this chapter. The trend of the various graphs in figure 4.10
show that the results obtained from the sampling algorithm vary according to the surface
complexity. For simple surfaces, the results of the different sampling algorithms,
including GA's based sampling do not seem to have significant differences. As the

complexity of the surface increases, the variation in sampling results increases.

The surface complexity features are patch sizes, and patch mean curvatures,

respectively. When both complexity features are not significant (as in surface A),
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sampling algorithms produce efficient plans.

In cases where patch sizes are a key issue, patch size based sampling proved to be a
reliable methodology. Examples on such case are surfaces B, and C. In this case, other
sampling algorithms did not perform as efficiently as patch size based sampling. This is
due to the focus of each algorithm on a certain surface feature, i.e., curvature, and
parameterization. Uniform sampling came next to patch size based sampling. This is
because both surfaces B, and C do not feature sharp curvature changes. The attempt to
combine patch size sampling with curvature based sampling using the hybrid sampling
algorithm produced a less accurate plan. This is due to introduction of the effect of patch

mean curvature to the sampling plan.

In cases where sharp curvature changes are encountered, as in surface E, curvature
based sampling produced the most accurate plan among all the heuristic methods. The
complex shape of surface E made the other sampling algorithms, excluding Genetic
Algorithms, fail to produce reliable sampling plans. This is due to their insensitivity to
the surface complex features. Hybrid sampling, nevertheless, could have been utilized
more efficiently, having the weights given to each of its methodologies chosen properly.
This process, however, involves a tedious amount of trial-and-error selections of the

weights. This is obvious in case of surface D, where the surface features involve higher
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complexity, in terms of its non uniform knot vectors, and curvatures change.

When the surface complexity is high, the task of sampling becomes very difficult, and
using any heuristic method may not lead to a satisfactory solution. In such cases, Genetic
Algorithms prove to be superior to the heuristic methodologies. An example to such cases
is surface F. However, a trade off to the high accuracy of Genetic Algorithms based
optimum sampling is the high computation time, as can be inferred from table 4.1. But,
since the sampling process is usually carried out off line, this cost can be justified.

Besides, faster algorithms for GA's based sampling can be implemented.

4.4. Case Studies

This section presents the application of the sampling algorithms to selected CAD
models for various products featuring free form surfaces. Flowchart of the approach used
to apply sampling algorithms to the case studies is presented, as well as the results of the
sampling algorithms. Results of running the sampling algorithms on selected surfaces of

the the case studies are also presented.

4.4.1. Case studies pre processing

Case studies were collected from different sources, and put subject to the sampling
algorithms. The case studies were imported in IGES format. Since the sampling
algorithms are not provided with the capability to read IGES data, it was necessary to
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translate the model files to a format that easily provide the data needed to build the
NURBS surfaces within the sampling algorithms. This data is the control points’
locations, the surface degrees, and the surface knot vectors. To achieve this goal, the
IGES files were first imported to Rhinoceros 2.0 CAD software (Robert McNeel and
Associates, Inc.), the surfaces were manipulated, and exported in the Alias Wave Front
(OBJ) format. The latter is a simple text format, from which the necessary data to

construct the NURBS surface were obtained.

Manipulating the CAD model consists of subdividing the CAD model into a set of
NURBS surfaces to simplify the calculations performed by the sampling algorithms,
performing operations such as stitching, knot insertion, and knot removal, on the model

surfaces to keep the continuity of the CAD model.

Figure 4.11 presents the steps followed to perform sampling on the selected case
studies. Figures 4.12, and 4.13 illustrate samples of the IGES surfaces, and Wave Front

OBJ (Alias|Wavefront, Inc.) formats respectively.

4.4.2. Selected CAD models

Four different CAD models, with varying complexities, were chosen to be used as case

studies. NURBS surfaces were extracted from each model, and used as examples to
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demonstrate the application of the sampling algorithms described in this thesis. For each
surface, the sample points grid size was fixed, and the sampling algorithms have been
applied. The results shown in this section represent the outcome of applying the sampling
algorithms to different Figure 4.14 illustrates the four CAD models selected for this

study, and the NURBS surfaces extracted from each model.

CAD Model
(IGES Format)

Y

Rhinoceros 2.0

CAD Software
Wave Front
OBJ format
Extract Surface

Construction Data

Control Points

Surface Degrees
Knot Vectors
NURB NURBS Surface
S P Construction
Tool Box .
Functions

v

Sampling Algorithms

v

Sampling Plans

Figure 4.11. Pre Processing Of IGES Data
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Figure 4.12. Example Of IGES Format
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Figure 4.13. Example Of Wave Front OBJ Format
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Cellular phone CAD model Fan CAD model

Camera CAD model Spray gun CAD model

Figure 4.14. CAD Models Used For Case Studies

Figure 4.15 illustrates the surfaces extracted from the CAD models, as described in
figure 4.11. The sampling algorithms have been applied to the surfaces extracted from the
CAD models illustrated in figure 4.14. The deviation between the CAD surface, and the
substitute geometry has been computed per each surface. Examples of the sampling of

selected surfaces are illustrated in table 4.2.
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Table 4.8. Results Of Sampling Of Selected Surfaces

- Surface . Sampling Plan Method

; Sample Size | Maximum

| (Nu X Mv) = Deviation .

" Hybrid Sampling. |
Fan : CWeight:PWeight = : 8x7 0.011 mm
Blade | 25:75
Patch Size Based j :
Sampling 8x7 1 0.015 mm
Patch Size Based | 10x13 | 0.020 mm |
; Sampling ; i
Spray ;
~ Gun | £ ‘ |
. Surface . Patch Size Based |
A Sampling . 8x6 | 0.017mm
| |
Spray | }
Gun |
Surface | s’ |
! ! :’
B . Hybrid Sampling. | 9x12 | 0.016 mm
' CWeight:PWeight = |
! | 25:75
i i |
: i i l
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4.5 Discussion

This chapter presented simulations of the sampling algorithms introduced in the last
chapter. The sampling algorithms were compared to the uniformn sampling algorithm

reported in the literature (Yau, and Mengq, 1992).

Results show that the equi-parametric sampling technique includes large
approximation and cannot provide reliable sampling plans, especially in the case of the
illustrated surface which includes patches with different sizes. A larger sample size
should be used to reduce the maximum deviation to a value that is close to the random

measurement error component.

A patch size based sampling for this surface proved to be capable of producing better
sampling plans, especially when patch size variation is the main factor participating in the
surface complexity. However, higher accuracy makes it necessary to use a larger sample

size as well.

Mean Gaussian curvature based sampling was found to be very efficient in cases of
surfaces with sharp curvature changes. However, if the sharp curvature change occurred
within smaller surface patches, this methodology may produce sampling plans in which

larger patches are not given sufficient share of the sample points, resulting in a larger
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deviation between the fitted surface and the geometric model.

Combining the last two methodologies produces better, and more accurate sampling
plans. The manner in which this methodology is implemented allows the user to assign a
relative weight to each of the combined two methodologies. For instance, if the effect of
relative differences of surface patches was more significant, a higher weight is assigned
to the patch size based sampling. The same applies if relatively sharp curvature changes
are involved. The drawback of this methodology is that it is highly dependent on the
user's judgment and, therefor, is most likely to produce insufficient plans, especially

where complex surfaces are involved.

The genetic algorithms (GA’s) based optimization provided the most accurate plan
amongst the five sampling methodologies discussed in this paper. Although it involves a
lot of calculations and CPU time, this is normally done off line. If the surface to be
inspected is complex, especially when high throughput involved, it is of great importance
to produce a reliable and efficient sampling plan that optimally locates the sample points.

In this case, GA’s based sampling provides a very efficient tool.

Uniform sampling proved to efficiently produce reliable sampling plans when the

surfaces are smooth, and without sharp curvature changes. As the complexity increases,
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uniform sampling algorithm fails to produce an accurate sampling plan, unless the sample
size was significantly increased. This is a major drawback, for it increases the inspection

process time and, consequently, the inspection cost.

The integration of the sampling algorithms simulated in this chapter leads to a module
for sampling of free form surfaces that may be a key component in a computer-aided
tactile inspection planning system. Furthermore, there is a need for a utility to
automatically select the sampling algorithm that best suites the surface being sampled.

These issues are discussed in chapter 5.

To further demonstrate the capability of the sampling algorithms introduced in this
chapter, they were applied to more case studies. Examples of the case studies, their pre
processing, and the results of applying sampling algorithms to them were demonstrated in

section 4.4.
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CHAPTER FIVE

COMPUTER AIDED SAMPLING OF FREE
FORM SURFACES

This chapter presents a computer-aided system for the sampling (CASampler) of
the points used for inspecting free form surfaces using CMMs. CASampler was
developed to remedy the shortcomings encountered in sampling free form surfaces for
inspection planning. Such shortcomings include the lack of offering alternative
sampling scenarios, the lack of the optimality criterion, and the dependency on the

user’s skills to select an appropriate sampling algorithm.

This chapter discusses the details of CASampler. Flowcharts, sample screen shots,

and a step-by-step example are also included.

5.1. Overview Of CASampler
CASampler integrates different sampling algorithms, including optimum sampling,
(ElKott, D., EIMaraghy, H., and Nassef, A., 1999) into a computer system with graphical

user interface. It offers the user the flexibility of choosing between different sampling
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algorithms, optimizing the sampling plan, or having the system automatically perform the
sampling task. The sampling algorithms are, namely, equi-parametric sampling, surface
patch size-based sampling, surface patch mean Gaussian curvature-based sampling, and a
hybrid approach of the last two methods. Optimal sampling plans are achieved using
Genetic Algorithms. In the automatic mode, the system performs a series of calculations
to determine the degree of surface complexity and, based on the results, decides which
sampling algorithm to apply. If the system decides to use the hybrid sampling algorithm,
it computes an appropriate weight to each of the surface patch size and mean Gaussian
curvature algorithms. The system then outputs the sampling points’ locations and
inspection probe approach vectors, the substitute geometry data (i.e. surface fitted to the
sampled data), and the expected deviation of the substitute geometry from the surface
CAD data. Within CASampler, a CMM random measurement error component, is

simulated. Figure 5.1 shows the CASampler flow chart.

The sampling algorithms shown in figure 5.1, including the automatic sampling

automatic selection of sampling algorithms, were discussed in details in chapter 3.

5.2. Structure Of CASampler
The functions developed throughout the course of this study were divided into seven

main groups which are used as building blocks of CASampler. These building blocks are,
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namely, the graphical user interface (GUI) group, NURBS tool box, Genetic Algorithms
(GA's) tool box, sampling algorithms group, the automatic sampling algorithm selection
group, the input/output (I/O) group, and the data visualization group. Figure 5.2

demonstrates the correlation between these groups, followed by a description of each.
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MATLAB 5.3 (Math Works, Inc.) was used to implement the functions used within

CASampler, as well as the graphical user interface (GUI) functions.

Vo fe—p] GU

Functions Functions
Genetic Algorithms %
Tool Box I
> Sampling
—— : ————
Algorithms
NURBS Tool Box
4
‘ > Automa.tic Selectipn —> Visuali'mtion
of Sampling Algorithm Functions

Figure 5.2. Structure Of CASampler

5.2.1. NURBS tool box

This group of functions includes all the functions needed to construct a NURBS
surface. It was built by Dr. Ashraf Nassef, IMS Centre, University of Windsor, and
extended throughout the course of this study. The NURBS algorithms used within the
NURBS tool box are based on Piegle, L. and Tiller, W. (1997), and Mortenson, M.
(1985). The NURBS tool box functions are categorized according to their functionality.

This is illustrated in table S.1.
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Table 5.1. NURBS Tool Box Functions

Category Functionality

Control Polyhedron fRead points’' 3D coordinates and construct curve/surface control

: Constructors ipolygon/polyhedron out of them.

: Knot Vectors , 1. Non Uniform: calculate knot vectors, given the locations of
. control points, and curve/surface degree(s).

' Constructors

2 Uniform: calculates a uniform knot vector, given the number -
of control points, and the surface degrees. ’

‘Basis Functions

?Calculate the curve/surface rational, and B-Spline basis.

' Calculators  functions.
B-Spline/NURBS 'Construct B- Spline/NURBS  curves/surfaces, given their
Curve and Surface lcontrol points, degrees, knot vectors, and display resolution ;
-Constructors ' (grid size).

'Curve and Surface
‘Fitting

'F1t a B-Spline/NURBS curve/surface to a row/grid of pomts !
‘given the number of control points, knot vectors, and degrees.

' Curve/Surface

' Compute partial derivatives, curvature, and normal vectors of a‘

Derivatives, Curvature, ‘curve/surface at any point.

and Normal Vectors

Span/Patch Width/Size i Compute curve/surface span/patch width/size based on knot

-Calculators

VCCtOI‘S

5.2.2. Genetic algorithms tool box

The Genetic Algorithms (GA's) tool box was used as the core of the algorithm for

optimum sampling of free form curves/surfaces (ElKott, D., EIMaraghy, H., and Nassef,

A., 1999). It includes functions to perform the operations of solution population

evaluation, selection, crossover and mutation. The tool box is designed to work with a

user-specified objective function. In case of sampling of free form curves/surfaces, the

objective function computes the maximum deviation between the substitute geometry,and

the CAD surface. The optimality criterion is then set to minimize the value returned by
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the objective function.

5.2.3. Input/output functions

This group of functions manages the I/O to and from the system. These functions are
divided into console I/O, and file I/O. The first receives user's input through the GUI, and
outputs data such as the program status, and error message. The latter function group

reads/write data files, creates run-time temporary files, and writes program results to files.

5.2.4. Graphical user interface (GUI) functions

This group of functions is responsible for the interaction between the user and the
system. [t was designed to provide a straightforward user-friendly interface to

CASampler. Functions of this group are categorized as in table 5.2.

Table 5.2. GUI Functions

Category *' Functionality
Data Output ‘Display the program status, and error messages, and prompts user-
to input data. |
Data Input ‘Receive user to input data regarding the free form surface |
‘construction, sampling parameters, and sampling algorithms:
-selections.
Function Calls 'Call different system functions, such as NURBS construction,g

-visualization, and sampling algorithms.

5.2.5. Visualization functions
This group of functions displays the program results. Upon user input, the

visualization group opens output data files, retrieves data, and displays graphical output.
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Examples of system output are CAD surface, control points, sampling plan, substitute

geometry, and the deviation between substitute geometry, and CAD data.

5.2.6. Sampling functions group

This group represents the core of the program. Functions of this group perform the
sampling operations. The functions of this group are categorized according to the
functionality of each group, i.e., according to the sampling algorithms. The categories of

the sampling functions group are illustrated in table 5.3.

Table 5.3. Sampling Functions Group

Category Functionality {
'Equi-Parametric |Read surface data, sample size, and error sources. Functions equally
Sampling rdlstnbute samples on the surface in the parametric space. :
Patch Size ‘Read surface data, sample size, and error sources. Functions perform
‘Based Sampling 'sampling based on the patch sizes.
Patch Mean Read surface data, sample size, and error sources. Functions computeé
Curvature Based : curvature values at surface points, and perform sampling based on the
Sampling ‘surface patch mean curvature value. ;
;Hybrid ‘Read surface data, sample size, and error sources. Functions combinefi
‘Sampling ‘the former two plans using weights assigned to each methodology. ‘
'GA's Based 'Read surface data, sample size, and error sources. Functions call the‘
Sampling GA's tool box to optimize the sampling plan using the objectlveI

function provided by the system user. i

Miscellaneous  |Functions used to compute the deviation between two surfaces, the |
.Functions ‘distance between two points, data preprocessing, and form error|
| ‘simulation. [
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5.2.7. Automatic selection of sampling algorithms functions group
This group of functions performs the automatic selection of sampling algorithm, as
described in section 3.6. This group includes functions for surface complexity check, and

assignment of sampling algorithms according to the results of the surface complexity

check.

5.3. Operation Of CASampler

The program starts with the dialogue shown in figure 5.3 to input the surface
construction data, i.e., control points, degrees, and display resolution. The user selects the
surface degree, display resolution, and inputs the name of the data file in which the

control points are stored.

The user is then prompted to choose either the automatic or the user-defined
sampling modes, as illustrated in figure 5.4. If the user-defined sampling mode is
selected, the user is given two options, i.e., surface feature-based sampling, and optimal
sampling (figure 5.5). In surface features-based sampling, the user can choose from four
sampling scenarios based on the NURBS surface properties. The choice of the surface
feature-based sampling scenario is accompanied by the selection of the sample grid size.
If the user selects the combined sampling approach, he/she is prompted to specify the

weight to be given to each of the algorithms to be combined. A default weight of 1 is
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given to each of the surface patch size and surface mean Gaussian curvature-based

sampling scenarios. The dialogue for that step is shown in figure 5.6.

If the user selects the optimization option, the system performs Genetic Algorithms

(GA’s) optimization to determine the optimum locations of the sample grid points.

2 C ASampier Surface ¢'AD Data Fnmry M

CASampler

Surface CAD Data Entry Form

MATLAB M-Fils Contining Control Peints

Type Hie Name and Press Retwn

Surfacs Dispisy Reolution Surface Degrees
ULines V-lines In U-Direction n ¥-Sicection
Press To Precesd l
Exit Program l

Figure 5.3. Surface Data Entry Form
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8. e octineasampuine ____AED
CASampler CASampler

Surfaca Sampling Mode Selection ; User-Defined Sampling Scenarios

Ussr-Osfined Sampliing l

Suriace Feature-Based SBampling I

Automatic Sampling | : Optimal Sampling [
Exit Program l Exit Program l
Figure 5.4. Sampling Mode Selection Figure 5.5. User Defined Sampling

¢ Surfare Feamires- Based Sampling

CASampler

Surface Features-Based Sampling

Sampling Bcenarios Sample Grid Sizs
Equ Paramelric-Based Sampiing n ¥-Dirsction

In U-Direction
Surface Patch Size Based Sampling - s B
Mean Gussian Curvalure Based Samplhing [ ;
Combined Mean Curvature and Paich Size | 8

Combined Scenario Factors
Cucrsture Factor Petch Fctor

I i Exit Program l

Press To Procsed I

Figure 5.6. Surface Feature-Based Sampling

The automatic mode of CASampler performs the process of blending the surface patch
size and surface mean Gaussian curvature-based sampling scenarios without user
interference. While CASampler is performing the sampling task, a program status screen
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displays a summary of the process variables, as well as the program status (Fig. 5.7).

CASampler

Summary of Smapling Process
Sampling Scenario in Action: Combined Patch Sizs and Curvature
Sample Grid Size: 12 X M1
Curvaturs Factor: 6
Patch Stze Factor: 7

PROGRAR STATUS COMPUTING DEVIATION MATRIX

Figure 5.7 Program Status Summary Screen

After the sampling process is carried out by CASampler, the program constructs
the substitute geometry (the NURBS surface that fits the sample points), and computes
the deviation of the substitute geometry from the CAD model (original NURBS
surface). The program then stores all the calculated data for future retrieval. The results
visualization dialogue, shown in figure 5.8, can access the data files produced by the
program throughout the sampling process. It allows the user to view the surface CAD
data, the sample points distribution (Fig. 5.9), the substitute geometry, and the deviation

distribution (Fig. 5.10).
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| CASampler

: Results Visualization

: Original Geometry Substitute Geometry
xyz Mesh | Control Points Mesh | Substitute xyz Mesh |

uvx | _uvy| _uvz | Substitute Control Points |

Sample Points Deviation Matrix
Sample Points Locations | Deviations Distribution |

Figure 5.8. Results Visualization Screen

Eile Edt Toals Window Help Ele Edt Jools Window Help

SAMPLE PQINTS DISTRIBUTION SUBSTITUTE GEOMETRY DEVIATION FROM CAD GEOMETRY 1g7

ar o~ v
X _Exit Windew |

Figure 5.9. Samples Distribution Figure 5.10. Deviation Distribution
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5.4. Discussion

An interactive system for the Computer-Aided Sampling of free form surfaces has
been presented in this chapter. The CASampler includes several innovative features; it
offers alternative solutions to the sampling problem, provides several optimality
criteria, as well as automatic sampling option. CASampler is a candidate for integration
with Computer-Aided Tactile Inspection Planning systems , such as CATIP (Limaiem,

A., and EIMaraghy, H. A.,1999).

In order to integrate CASampler with CATIP, it needs to be migrated from MATLAB to
C++. Furthermore, new features need to be added (e.g., the ability to read solid model
files instead of plain ASCII data). This latter feature can be achieved by implementing a

geometric modeling kernel (e.g. ACIS of Spatial Technologies Inc.).
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CHAPTER SIX

CONCLUSION

This chapter is divided into three sections, i.e., contributions, summary of research,

discussions and conclusions, and future research.

6.1. Contributions

The work reported in this thesis makes the following contributions to the field of

CMM inspection planning:

1. Four methodologies for the sampling of free form surfaces, based on their NURBS

characteristics were developed.

2. A Genetic Algorithms (GA's) based method for the optimum sampling of free form

surfaces was introduced.

3. A utility for the automatic selection of free form surface sampling algorithm, based

on the surface complexity check was developed, and integrated with the developed

sampling methodologies.

4. An integrated system for the sampling of free form surfaces was developed,

138



implemented using MATLAB 5.3 (Math Works Inc.). This system is a candidate
for integration with computer-aided tactile inspection planning, i.e., CATIP

(Limaiem, A., and ElMaraghy, H., 1999).

6.2. Summary Of Research
The focus of this research was the sampling for CMM inspection planning of free
form surfaces. The main concern was the allocation of sample points on the free form

surface, so that the surface fitted to the sampled points is as close as possible to the CAD

data.

Four heuristic algorithms were developed to sample points from free form surfaces,
based on the surface NURBS features. These are equi-parametric sampling, surface patch
size based sampling, surface patch mean curvature based sampling, and a hybrid

approach of the last two algorithms.

For better utilization of the heuristic sampling algorithms, the selection of the
sampling algorithm was automated through the development of an algorithm that
performs a series of complexity checks on the surface being sampled. According to the
results of the surface complexity check, this algorithm selects which sampling algorithm

to apply to the surface being tested.
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6.3. Discussion And Conclusions

Results of the simulation study indicate that the equi-parametric sampling technique
includes large approximation and cannot provide reliable sampling plans, especially in
the case of surfaces which includes patches with different sizes. A larger sample size

should be used to reduce the maximum deviation to a value that is close to the random

measurement eIrTor component.

A patch size based sampling proved to be capable of producing a better sampling
plan when the variation in surface patch sizes is the main contributor to the surface
complexity. However, higher accuracy makes it necessary to use a larger sample size,

especially in the case of surfaces with variations in curvature values.

Patch mean Gaussian curvature based sampling was found to be very efficient in
cases of surfaces with sharp curvature changes. However, if the sharp curvature change
occurred within smaller surface patches, this methodology may produce sampling plans
in which larger patches are not given sufficient share of the sample points, resulting in a

larger deviation between the fitted surface and the geometric model.

Combining the last two scenarios produces better, and more accurate sampling

plans. The manner in which this methodology is implemented allows the user to assign a
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A methodology for Genetic Algorithms (GA's) based optimum sampling of free
from surfaces was also presented in this work. The goal of that algorithm is to provide an
optimum solution to the sampling problem when the heuristic methods fail to provide a

satisfactory solution. This is when the complexity of the surface being sampled is high.

The sampling algorithms developed in this research were implemented in MATLAB
5.3 (Math Works Inc.), tested, and exposed to extensive simulation studies. The

simulation of sampling algorithms involved the following steps:

1. The construction of an ideal geometry (surface CAD model).

2. The simulation of the manufacturing process form error.

3. The application of the sampling algorithm, in which the CMM random
measurement error is simulated.

4. Fitting a NURBS surface to the sampled points. This surface is referred to as the

substitute geometry.

5. Computing the maximum deviation between the CAD surface, and the substitute
geometry. This maximum deviation is used as a measure of the sampling algorithm
efficiency, i.e., the lower the deviation between the CAD surface, and the substitute

geometry, the higher the more accurate the sampling algorithm.
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relative weight to each of the combined two methodologies. For instance, if the surface
patch sizes were significantly different, a higher weight is assigned to the patch size-

based sampling. The same applies if relatively sharp curvature changes are involved.

The Genetic Algorithms (GA’s) based optimization provided the most accurate plan
amongst the four sampling methodologies presented in this research. Although it involves
extensive calculations and CPU time, this is normally done off line. If the surface to be
inspected is complex, especially when high throughput is considered, it is of great
importance to produce a reliable and efficient sampling plan that optimally allocates the
sample points. In this case, GA’s based sampling provides a very efficient tool, especially

as the sampling is performed off-line.

The sampling algorithms presented in this research were compared to the uniform
sampling pattern presented by Yao, and Menq (1992). The developed sampling
algorithms proved to perform better than the uniform sampling pattern, when the surface

being sampled is one with complex features, especially changes in the values of surface

curvature.

Sampling has been proven to be a major factor that affects the accuracy of the CMM

measurement of free form surfaces. Changing the sampling plan changes the distribution,
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and magnitude of the deviation of the substitute geometry from the nominal geometry.
This contributes to the measurement uncertainty. Therefore, it is of great importance to
implement a sampling plan that best represents the geometric feature being inspected.
The sampling plan should reflect the degree of complexity of the geometric feature being
inspected. When the surface complexity reaches a high level, it becomes crucial to find an

optimum solution to the sampling problem.

6.4. Future Research
There are a number of research, and development issues related to the sampling of

free form inspection planning that need further investigation.

6.4.1. Research issues
1. The development of algorithms to sample points in a random order, rather than a

grid of points.

2. Further exploration of methodologies for optimum sampling of free form
surfaces, and the conduction of studies to compare the performance of GA's

versus other optimization methods.

3. The development of a methodology to determine the optimal sample size for
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CMM inspection planning of free form surfaces, and integrate this methodology

with the samples’' distribution algorithms.

6.4.2. Development issues

1.

93]

Migrating the algorithms developed in this research from MATLAB to C++
programming language. This is an essential step to integrate a sampling module

with CATIP (Limaiem, A., and ElMaraghy, H., 1999).

The development of a utility to allow the system user to interactively allocate

sample points in areas where he/she desires to place more emphasis.

The integration of the developed algorithms with a system for computer-aided

tactile inspection planning.

Enhancing the system to deal with solid models, instead of only ASCII data. This
step can be achieved through the use of commercial geometric modeling kernels

(e.g. ACIS of Spatial Technology Inc.).
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APPENDIX A

CODE FOR SAMPLING ALGORITHMS

A.l. Nomenclature

—M = Sample size in the u-direction.

- N = Sample size in the v-direction.

- P = 3D matrix defining the surface control points.

- U =U knot vector.

-V =V knot vector.

- p = Surface degee in u-direction.

—q = Surface degree in v-direction.

—su = The values of the u-parameter coordinate of the sample points.
- sv = The values of the v-parameter coordinate of the sample points.
— Su = Matrix of the u-coordinates of the sample points.

- Sv = Matrix of the v-coordinates of the sample points.

- Sx = Matrix of x-coordinate of sampling points.

- Sy = Matrix of y-coordinate of sampling points.

- Sz = Matrix of z-coordinate of sampling points.
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- Ucurvatures = Surface curvature in the u-direction.

- Vcurvatures = Surface curvature in the v-direction.

- Ucurvature_p = Matrix of surface curvatures on patch "p" in u-direction.

- Vcurvature_p = Matrix of surface curvatures on patch "p" in v-direction.

-Patch_Mean_Curv_U = Mean curvature of a patch in u-direction.

—~Patch_Mean_Curv_V = Mean curvature of a patch in v-direction.

—-Curv_Weight = weight of the patch mean curvature-based sampling (fo use in the
hybrid sampling method).

-Patch_Weight = weight of the patch size-based sampling (o use in the hybrid sampling
method).

- Su_Patch = u-parameter locations of the sample points, obtained from patch size-based
sampling.

- Sv_Patch = v-parameter locations of the sample points, obtained from patch size-based
sampling.

- Su_Curvature = u-parameter locations of the sample points, obtained from patch mean
curvature-based sampling.

- Sv_Curvature = v-parameter locations of the sample points, obtained from patch mean

curvature-based sampling.

A.2. Equi-parametric Sampling Algorithm
1. Input: M, N, P, U, V, p, q;
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N

. U_Interval = [MAX(U) - MIN(U)}/(M-1);
. V_interval = [MAX(V) — MIN(V)]J/(N-1);
4. su(1l) =MIN(U);

suM) = MAX(U);

Forief2,....,.M-1}

su(i) = su(I-1) + U_Interval,

W

End
5. sv(1) = MIN(V);
sv(N) = MAX(V);

Forjef2,....,.N-1}
sv(i) = sv(j-1) + V_Interval;
End
6. Fork {1,....M}
Forl €{1,...,N}
Svik,]) = sv(l);
End
End
7. Forl €{1,....N}
Fork €{1,....M}
Su(k,l) = su(k);
End
End

8. Use Su, and Sv to determine Sx, Sy, Sz.

A.3. Surface Patch Size Based Sampling Algorithm
1. Input: M, N,P, U, V, p, q;
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. Compute U_Spans. U_Spans = {Uspl, Usp2, ...., Uspm};
. Compute V_Spans. V_Spans = {Vspl, Vsp2, ...., Vspn};
. su(l) = MIN(U);
su(M) = MAX(U);
Fork € £2,.....M-1}
U_Span_Weight(k) = Usp(k)/SUM(U_Span);
U_Span_Share(k) = U_Span_Weight(k) x M;
Equally distribute points within span;
End
Get su;
- 8v(1) = MIN(V);
sv(N) = MAX(V);
Forl € Q2,....,N-1}
V_Span_Weight(l) = Vsp(1)/SUM(V_Span);
V_Span_Share(l) = V_Span_Weight(l) x N;
Equally distribute points within span;
End
Get sv;
. Forie{l,...,.M}
Forj €{1,...,.N}
Sv(ij) = sv(j);
End
End
. Forj €{1,...,N}
Fori {1,....M}
Su(iyj) = su(i);
End
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End

8. Use Su, and Sv to determine Sx, Sy, Sz.

A.4. Patch Mean Curvature-based Sampling
1. Input: M, N, P, U, V, p, q;
. Compute U_Spans. U_Spans = {Uspl, Usp2, ...., Uspm};

3]

. Compute V_Spans. V_Spans = {Vspl, Vsp2, ...., Vspn};
4. su(l) = MIN(U);

su(M) = MAX(U);

sv(1) = MIN(V);

sv(N) = MAX(V);

6. SUM_Ucurvatures = 0;

LI

hdl

SUM_Vcurvatures = 0;
Forie{l,...m}
Forj {l,...,n}
Patch(i,j) = [Usp(i) x Vsp(j)];
While p € {Patch(i,j)} Do
Patch_Mean_Curv_U(i,j) = MEAN(UCurvature p);
Patch_Mean_Curv_V(i,j) = MEAN(VCurvature p);
End
SUM_Ucurvatures = SUM_UCurvatures+Patch_Mean_Curv_U(i,j);
SUM_Vcurvatures = SUM_VCurvatures+Patch Mean Curv_V(i,j);
End
End

7. Fori €{1,....m}
Forj €{1,...,n}
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Patch _UWeight(i,j)= Patch_Mean_Curv_U(i,j)/SUM_Ucurvatures;
Patch VWeight(i,j)= Patch_Mean_Curv_V(i,j)/SUM_Vcurvatures;
End
End
8. Equally distribute sample points within each patch.
9. Get Su, Sv.

10.Use Su, and Sv to determine Sx, Sy, Sz.

A.S. Combined Surface Patch Size, And Patch Mean Curvature Based
Sampling
1. Input: M, N, P, U, V, p, q, Curv_Weight, Patch Weight;
2. Perform Patch Size Based sampling;
3. Get Su_Patch, and Sv_Patch;
4. Perform Patch Mean Curvature Based sampling;
5. Get Su_Curvature, and Sv_Curvature;
6. W_Su_Curvature = Su_Curvature x Curv_Weight;
W_Sv_Curvature = Sv_Curvature x Curv_Weight;
7. W_Su_Patch = Su_ Patch x Patch _Weight;
W_Sv_ Patch = Sv_ Patch x Patch _Weight;
8. Su=(W_Su_Curvature+ W_Su_Patch)/( Patch_Weight+ Curv_Weight);
9. Sv=(W_Sv_Curvature+ W_Sv_Patch)/( Patch_Weight+ Curv_Weight);

10.Use Su, and Sv to determine Sx, Sy, Sz.
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APPENDIX B

USER GUIDE FOR COMPUTER-AIDED FREE
FORM SAMPLING SYSTEM (CASampler)

As described in chapter five, CASampler is composed of a collection of MATLAB
functions, and tool boxes. This appendix explains how to setup, and use the program.

Also, explained are the formats of the various input data files used by CASampler.

B.1. Program Setup

B.1.1. File locations

To set up CASampler, it is important to define the locations of its various functions,
and tool boxes to be accessible by MATLAB. Figure B.1 illustrates a typical example for
the directory structure of CASampler files. The contents of every directory are explained

in table B.1.

Table B.1. Contents Of CASampler Directories

Category ‘ Functionality ‘
' Working directory : Main work directory. Output files are saved here.
 Control Points Control points data files are stored here.
'NURBS Toolbox %Copy NURBS toolbox files here. ’
'Genetic Algorithms Toolbox |{Copy Genetic Algorithms toolbox files here. »
'GUI Functions fCopy all the GUI functions here.
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CASampler

—'Working Directory ]
———Fontml Points 1
——INURBS Toolbox |

Genetic Algorithms

GUI Functions

Figure B.1. Structure Of CASampler Installation Directory

B.1.2. Construction of control points data files

All the data files containing the control points of surfaces are stored in the "control
points" directory. The control points of a particular surface are stored in data file named
"Surface_Name.m". The control points are stored in a 3D array format. The surface
control point is expressed in 4 coordinates, i.e., its Cartesian coordinates, and its weight.
Let P,; be acontrol point that lies in the intersection of the i"" layer of control points in
the u-direction, an the jth layer of control points in the v-direction. 2;; is expressed as:

T
PiJ = [xiJ’ Yijs Zij» W.;j] B.1)

Let P be a matrix of control points for a particular surface. P is expressed as:

Pl.l PI.Z P1.3 PI.R
p = P2 P Pu o Py ®2)
Ps1 Psz PS_J PSR_
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where:
R = Number of control point layers in the u-direction.
S = Number of control point layers in v-direction.

Figure B.2. [llustrates the structure of the different layers of P .

Py
Xs: Xsz " Xsg

P3l

X31 X3 X3 R
P,

Xa1 X2 XIR
P,

X X2 o XpgR
Yin Y2 0 JYir
211 Zy2 T Zgp
Wi Wia T Wrp

Figure B.2. Layers Of P Control Points 3D Matrix

Figure B.3 illustrates an example of a 3D matrix of control points, whose dimensions

are 5 udirection X 5 v direction X 4

XY S W e
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P(:,:,1) = [ ¢ o o0 0 0;
’ 0] 2 5 8 11; % First layer of control points

6 6 100 2 2;

1 1 1 1 11; % « Weights of control points
P(:,:,2) =[ 2 2 2 2 2;

0 2 5 8 11; % Second layer of control points

4 6 100 4 1;

1 1 1 1 l]; ¥ <« Weights of control points
P(:,:,3) = [ 5 5 5 5 5;

0] 2 5 8 11; % Third layer of control points

8 8 6 6 4;

1 1 1 1 1l]1; % <« Weights of control points
P(:,:,4) = [ 8 8 8 8 8;

0] 2 5 8 11; % Fourth layer of control points

7 S 6 5 1;

1 1 1 1 1]; % « Weights of control points
P(:,:,5) = [ 12 12 12 12 12;

0 2 5 8 11; % Fifth layer of control points

6 7 4 3 50;

1 1 1 1 1] % <« Weights of contreol points

Figure B.3. MATLAB Format Of P Control Points 3D Matrix

B.2. Running The Program
Running the program takes place through the following steps:
1. Run MATLAB 5.3 (Math Works Inc.).
2. Add the directories illustrated in fig. B.1 to the program search path.

3. Run "CASampler" file from the command prompt.

Figure B.4. Illustrates steps 1 through 3.
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MTALAB Command Window

File Edit View Window Help

> cd c: &

>> cd CASampler <&

>> cd ../Working Directory &

>> addpath ../Control Points &

>> addpath ../NURBS Toolbox <&

>> addpath ../Genetic Algorithms &
>> addpath ../GUI functions &

>> CASampler <

Figure B.4. Running CASampler On MATLAB Command Prompt

Once the last command "CASampler” is input, the program starts, and the user is
prompted to input the data for constructing the surface, and perform the sampling. The
program outputs the sampling plans. The interaction with CASampler is explained in

chapter 5.
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