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Abstract

The requirements for Production Planning and Control (PP&C) System have
fundamentally changed during last years. The increasingly complex production processes
and constantly changing production environment require the system able to be agile,
flexible and adaptable to the changing situations from markets, customers, new
technology, environment, and so on. Fraunhofer Institute of Production and Automation
(IPA), Stuttgart, Germany created an experimentation environment of software agent,
event-oriented simulation and evolutionary strategies, to examine adaptive approach for
the PP&C system. The project of Agent Learning Adaptive Network (ALAN),
Fraunhofer — IPA proposed, focused on the Job Shop Control level to explore the new

order management paradigm applicable to small and medium sized enterprises (SMEs).

Object-oriented programs automatically generated by Genetic Programming are expected
to automatically co-ordinate between multiple intelligent agents to reach system’s global
targets. This research extends genetic programming beyond its current generation of
functional and procedural programs to the generation of object-oriented programs.
Successful achievement of this goal will represent a significant advance in the practice of

genetic programming in Object-Orientation.

Keywords: Production Planning and Control, Job Shop Control, order management,

optimization, Genetic Programming, evolution strategy, agent.
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Chapter 1
Introduction

On 21% June 1999, a memorandum of agreement was signed between University of
Windsor and Fraunhofer-Institut fiir Produktionstechnik und Automatisierung (IPA) of

the City of Stuttgart, Germany.

As per this agreement, the two parties agreed to initiate a Pilot Graduate Internship
Program in Computer Science and Engineering, thus allowing students registered in an
appropriate graduate program at University of Windsor to be engaged by IPA as interns
working on projects in Germany and also that they will receive credit toward the graduate
degree for research conducted in the course of the cooperative internship. A group of 3

students were selected by a panel of IPA engineers. | was among those fortunate ones.

The Fraunhofer-Gesellschaft is the leading organization of applied research in Germany.
It currently operates 48 research institutes at 38 locations throughout Germany, with
about 9,600 employees, most of them are scientists and engineers. The annual research
budget amounts to over 1.5 billion German marks since 1999. FhG-IPA (Fraunhofer-
Institute for Manufacturing Engineering and Automation) is one of these 48 Fraunhofer-
Institutes. [PA is providing a flow of know-how and technology from the researcher in

the university environments to industrial enterprises.

University of Windsor, 2001 1



[ joined IPA in January 2000 and was immediately assigned to the project of Adaptive
Learning Agent Network (ALAN) to work with the ALAN team. One main focus of the
project is to improve the adaptability of Production Planning and Control (PP&C) system
to the constantly changing situations in production processes, so that a self-adaptive
PP&C software system is about to be offered to the small and medium sized enterprises

(SMEs) to optimize their production.

The fundamental innovation of ALAN is to advise the agents a global system target and
automatically adapt each agent’s behavior to reach such target. The new order
management methodology is applied in the system implemented by the up-to-date IT
technology, such as machine leaming, intelligent multi-agents, genetic algorithm and

genetic programming.

My main task was to implement the object-oriented Genetic Programming. Based on GP
evolutionary strategies, agents can start to corporate with each other and work out a
dynamically adaptive rule to direct the manufacturing system. The time [ was in ALAN
was the first phase of the project — AL AN prototype. The work focused on the definition
of agent-model structures, basic control loops as well as business and enterprise
scenarios. This thesis will give an overall view of the AL AN project and will cover some

important aspects of Genetic Programming.

University of Windsor, 2001 2



The second chapter mainly defines the research problems, analyzes the existing
Production Planning and Control systems and proposes our new approach and
methodology. Since this work is based on Job Shop Control level, the problem definition

of Job Shop Control is given in this chapter, as well.

The third chapter overviews ALAN project. The mechanism of dynamic permanent
adaptation applied in ALAN project is discussed; simulation, evolution and agent

technology is overviewed; ALAN modules are described in detail.

As background knowledge, Chapter 4 gives introduction to the Genetic Algorithm and
Genetic Programming and Chapter 5 discusses the GP extension, such as Koza’s (1992)
Automatically Defined Function (ADF), Montana’s (1994) Strongly-Typed GP and

issues related to GP object-oriented programming.

Chapter 6 delves into ALAN GP design, which is the main focus of my work in ALAN.
The following aspects are discussed in detail: ALAN GP implementation language —
Interpreter, program representation, population initialization, GP opertations, GP control
and fitness evaluation. The implementation of object-oriented Genetic Programming is

one of my main contributions in ALAN, and hereby described and analyzed in detail.

Chapter 7 analyzes the ALAN experiment results, disscusses some related questions,

problems and future work. Chapter 8 gives some concluding remarks.

University of Windsor, 2001 3



Chapter 2 Next-Generation

Production Planning and Control System

2.1 What is Production Planning and Control (PP&C)?

Production planning and control is a production process of developing and using
information to forecast market requirements, to efficiently manage the material flow, to
coordinate internal and supplier activities, and to effectively use resources. The
production planning and control represents a fundamental part of modern manufacturing

technology. There are many existing PP&C mothods and tools, according to different

levels of planning and control.

2.2 New Requirements

The requirements for PP&C system have fundamentally changed in recent years. With
the increasingly complex production systems and spreading of flexible manufacturing,

today's competitive global marketplace requires the manufacturing system:

1. to be able to produce various products from various limited and shared resources;

University of Windsor, 2001 4
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to be able to adapt quickly to changed conditions, e.g. markets, customers, products,

new technologies, as well as production environments, including machine breakdown

and product yield loss;

3. to be able to support optimally the achievement of the enterprise goals which are not
constant all the time during manufacturing;

4. to be able to have orders commissioned “just in time", because the customers are not
willing to accept long lead times;

5. to be scaleable and have the ability to integrate such systems quickly in the enterprise;

6. to be able to increase manufacturing productivity and quality.

These requirements change the way that the traditional production planning as well as
order management used to be done. Production processes in increasingly complex
manufacturing systems have to react quickly and adapt themselves dynamically to the
market situation, customer requests, production environment and other unpredictable

influences. The system agility, flexibility and adaptability has already become the key to

enterprise success.

Production planning and control is no longer a static task. The production enterprises live
in an environment that is changing rapidly, constantly and unpredictably. The permanent
modification of supply and demand (Westkimper, Balve & Wiendahl, 1998) requires that

PP&C system evolve to meet changing environments.

University of Windsor, 2001 5



2.3 Existing PP&C systems

The flexibility of modern production planning has reached certain extent that the

traditional control procedures can rarely exploit the potential of the devices.

Today's systems can’t fulfil the above-mentioned requirements.

e Today’s conventional planning system is based on detailed long-term forecasts.
Disciplines like the chaos theory illustrates that minor disturbances cause
disproportionate =ffects (Bergé ,1984). A number of unpredictable input factors,
such as of resource failure, delivery bottlenecks, etc., have an impact on the
enterprise behaviour and make a detailed long-term planning process fail.
Moreover, much more frequent adjustment to production process is hardly

managed by long-term planning system.

e Existing systems handle the unpredicatable changes and system flexibility by

excuting very expensive replanning cycle repeatedly, and therefore, cementing the

workflow.

e The enterprise workflow and communication are limited to a stationary status.
Any unprecitable change can not be reported and handled promptly. Therefore, a

decentralized enterprise supply chain network is demanded.

University of Windsor, 2001 6



e The hierarchical planning frameworks, which are widely used in today’s systems,
do not reflect the existing enterprise organisation. Years of experiences show that

these frameworks are difficult to handle and do not provide optimal results.

The potentials of new enterprise structures are taken insufficiently by existing production
planning methods and systems. It is observed that the conventional procedures for
planning and scheduling are not any longer suitable for the new enterprise paradigms.

New concepts and strategies for the next generation enterprises are about to be exploited.

2.4 New Approach

Modern planning and control tools meeting present requirements are no longer
conceivable without dynamic adaptability. Self-adaptation will, and must be one of the
critical features, presented in the next generation PP&C system and take a continuously

growing advantage in competition.

2.4.1 Objective

The objective of the project is to improve the adaptation, automation, standardization,

scalability and customizability of system to enable Small-Medium Enterprises (SMEs) to

University of Windsor, 2001 7



react quickly to the dynamics of their markets and cope with fast changes in the

environment.

In this research, we desire a PP&C system which has the ability to:

e Improve responsiveness to customers', and be customer-ori=nted;

e adapt its structure according to new technology;

e fulfill “*manufacturing on demand” principle and be fully flexible to market;

e provide high flexibility and rapid adaptability to potential perturbance variables;

e short-term forecast for unanticipated occurrences;

e meet high planning reliability by improving synchronization of internal and

distributed planning.

2.4.2 ALAN Approach and Methodology

An “automatically and permanently adaptive” PP&C system was proposed, as Adaptive

Learning Agent Network (ALAN) to achieve the objectives, mentioned as above.

ALAN automates enterprise transactions using adaptive agents and by connecting these

agents to a logistic information infrastructure. Agents generate dynamic, self-adaptive

' Customers migt be another Eroducer, a wholesaler or a retailer, or customers alike.
University of Windsor, 2001 8



planning rules by evolutionary strategy and use “sensor” to trigger the rule modification

when any unanticipated change occurs in the system.

There has already been some approaches to accomplish environment modifications:
concepts and paradigms for permanent adjustment are e.g. ‘Die fraktale Fabrik’
(Warnecke, 1993), "Bionic Manufacturing’ (Bongaerts, Wyns, Detand &Van Brussel,
1996), ‘Genetic Manufacturing” (Ueda, 1993), ‘Random Factory’ (Iwata & Onosato,
1994), ‘Virtual Manufacturing’ (Kimura, 1993) and ‘Holonic Manufacturing’ (Bruns,
1996). Many of these approaches show that the optimization of an enterprise has to be

considered comprehensively, in order to achieve significant improvements.

The approach presented here combines known planning and optimization methods into an
automatically and permanently optimizing, adaptive controller consisting of controller
elements that can be modeled on the shop floor control level. In the controller, each
manufacturing element is represented by a software agent, which is intelligent, adaptive,

and capable of coordinating with other agents by evolution strategy.

All the technologies like genetic algorithms, genetic programming, discrete event
simulation and agent technology have been in use for several years. The new way of
combining them, as presented in ALAN, will result in a very powerful way of

implementing adaptive systems for production planning and control.

University of Windsor, 2001 9



2.5 Job Shop Control

There are different levels of production planning and control. ALAN is based on Job

Shop Control level, discovering the optimization rules between jobs and machines.

2.5.1 Problem Formulation

The Job Shop Control Problem (JSCP) is among the toughest real world combinatorial

optimization problems. It was shown to belong to the NP-hard class (Taillard, 1994).

Basically JSCP is formulated as a set of J jobs that are processed on a set of M machines.
Each job j (1<=j<=n = |J|) consists of m operations (O;;, Oj ..., Ojn) that must be
scheduled in a pre-defined machine sequence imposed by technological requirements.
Each operation is processed on each machine only once and without preemption. No
operation may free its machine until it is finished. And each machine can only process
one operation at a time. There is also a specified processing time ¢(j,k) for each operation
Ojx (job j in machine k). The problem is to find a sequence of jobs for each machine
satisfying the technological restrictions and such that the finishing time of the last
operation (completion time) on the latest job be minimized (Makespan minimization).
The problem of large production processes is very difficult to solve due to the high

combinatorial complexity resulting from their flexibility in processing multiple products.

University of Windsor, 2001 10



2.5.2 Recent Research

Many procedures have been proposed to solve general job shop problem. The algorithms
differ in methodology, solution quality and efficiency. Branch and Bounds method
provides the optimal solution for this problem but its computation becomes prohibitive
for large size instances. The most popular algorithms nowadays are iterative optimization
algorithms, also called neighborhood search. Examples of advanced local search
strategies are simulated annealing, taboo search, variable-depth search, neural networks
and genetic/evolutionary algorithm. Local research approaches like those analyzed in

(Aarts et al., 1997) and (Vaessens et al. 1996) can get good quality solutions without

ensuring optimality.

There have been a number of studies on applying GA to JSCP (see (Davis, 1985),
(Yamada and Nakano, 1995), (Kobayashi et al., 1995), (Yamada and Nakano, 1996), (Shi
et al., 1997), (Yamada and Nakano, 1997), (Gen and Cheng, 1997)). Among the most

successful ones, we can cite (Yamada and Nakano, 1995) and (Yamada and Nakano,
1996).

University of Windsor, 2001 11



Chapter 3

Project Overview

In the project of Adaptive Learning Agent Network (ALAN), Fraunhofer Institute of
Production and Automation (IPA) created an experimentation environment of software
agent, event-oriented simulation and evolutionary strategies, to examine adaptive
approach to the PP&C system. ALAN provides an electronic method for generating an

adaptive solution in the manufacturing environment.

3.1 Agent-Based Controller — Solution of “Permanent Adaptation”

As discussed in Section 2.4.2, the core concept of ALAN approach is an automatically

and permanently adaptive controller. The controller elements are adaptive software

agents.

The system operates in two modes: A training mode precedes the operating mode. During
the training mode, a model of the reality with all planning relevant items e.g. orders and
jobs, is created. Each item is equipped with logistic key parameters pertinent to
manufacturing, which determine the behaviour of the item in the model. Target of the
"Meta Optimization" is finding suitable rules for all model items with consideration of an

overall target system by evolution strategy. The quality of the newly found rules can be

University of Windsor, 2001 12



measured on the degree of completion of the target parameters of the target system.
During this mode, the training model serves as evaluator for the quality of the regulation
model. As soon as suitable rules are found, the training mode is finished. In the following
operating mode, commands are no longer sent to the training model, but to real
manufacturing instead. The regulation model is now operated in real time, i.e. the
execution is slowed down, so that the synchronization with real manufacturing processes

is guaranteed. The manufacturing state’s feedback now also comes from real

manufacturing (see Figure 3-1).

Agent-Model Reality

= ’ “ Commands L > Fn
O : ) 7 4 - —» Goods
SO > ailiog % in time

A J

Orders

" Statusof real Objects

Figure 3-1: Agent-based Controller in Operation Mode

A manually configured discrete event simulation model calculates necessary actions in
real time and the reality is controlled according to the actions happening in the model.
Inevitable discrepancies between reality and model’s state, caused by disturbances like

fading of processing lead times, resource failures are immediately fed back into the

controller model.

University of Windsor, 2001 13



Thus, in combination with a current simulation model of manufacturing, a precise short-
term forecast is generated. The better the controller model matches the reality, the better
the regulation works in the real world manufacturing system. Manufacturing's behavior is
observed in short control cycles. Since the controller is an event-oriented system, any
necessary reactions are triggered. The controller thus learns goal-oriented counteracting
in case the forecasted development takes an undesired turn. Such a system no longer

works like conventional order management systems, but rather as an "agent-based

controller”.

3.2 Agents

In ALAN, the controller is built as an object-oriented model of planning relevant
elements. These elements are represented by software agents. In contrast to the modeled,
real objects, each agent has inputs and outputs and shows certain behaviors. The
controller's global algorithm is based on the agents' behavior and cooperation. An agent's
behavior can be depicted and executed through rules, neural nets, or special symbolic
program languages. Inputs and outputs are used for the communication between the

agents. Machines, orders, and lots are represented by agents.

This object-oriented modeling and depiction of the controller provides the user with new

possibilities to have an impact on planning and control processes. Furthermore, the

University of Windsor, 2001 14



software agent can take on monitoring functions for the element of reality assigned to

him. In this way, an object-oriented monitoring system is implemented.

An Agent Network

Figure 3-2: An Agent Network

For the training of the controller, an evolution strategy is used to manipulate the agents’
behaviour, to evaluate the fitness of the collaborating agents, and therefore, the overall
fitness of the controller, which consists of several agents. In this way, the global
behaviour of the controller, e.g. trying to meet all due dates while having low stock level,
is optimized. During the training mode, a simulation model is needed. The controller is
irained to cope with the simulation model objects. During the operation mode, the

controller interacts with real-world objects. The user can manipulate the control

University of Windsor, 2001 15



parameters at any time and the agents can provide the system with additional control

information.

3.3 Simulation

Planning and optimization of production and logistic systems touch sensitive areas of the
enterprises. Analytical methods are rarely successful in the solution search in complex
systems. The use of systematically or stochastically run "attempts”. e.g. in the form of
simulation methods and evolution strategies, have proven successful for problems of this

kind (Becker, 1991).

Simulation opens completely new perspectives in practice. Expressive simulations are
especially suitable for complex tasks and they are so low-cost that even small and
medium-sized companies can profit from their advantages. Object-oriented simulation

gives the strength of intuitive clarity of the problem's modeling.

Simulation methods copy reality in an executable computer model. By means of this
model, simulation experiments about the exact effect of planning, operation and
optimization measures can be carried out before it is executed. With this acquired

knowledge from the future, risks, costs and the lead time of projects can be reduced to

University of Windsor, 2001 16



Simulation makes it possible to test any changes in structure and parameters without risks
of implementation or costs. The manual comparison of various simulation experiment

results can be considered an optimization.

On the basis of the computer model, aim-oriented changes can be carried out and their
consequences can be examined step by step within the actual simulation. It delivers

detailed results, which — carefully interpreted and most exactly evaluated — form a solid

foundation for decisions.

Therefore, during planning, new chances are opened up for optimization without any risk
and cost - quickly, flexibly and realistically. The computer assisted simulation gives
enterprise a clear competitive advantage — making decisions on the basis of realistic key

figures — quickly and above all correctly.

3.4 Evolution

Evolution strategies go one step further. Evolution strategies stand out because of the

problem independent automatism of stochastic solution search that follows a biological

ideal.

Planning is the intellectual, goal-oriented anticipation of measures to be taken in the

future. Each planning effort bears risks due to potential perturbance variables. Depending

University of Windsor, 2001 17



on the networking of the plan elements and its overall fragility, an unexpected effect can

necessitate partial or total replanning. The same holds true if a plan is generated through

costly optimization methods.

The repeated manual improvement of the planning algorithm, as well as drawing up a
machine plan, can in itself be understood as optimization. Instead of manual, analytical
continuing development of the planning algorithm, an automatic evolution strategy can
be used. The evolution algorithm can be executed by means of a simulation model of

manufacturing, so that the risk of non-validated use of optimized algorithms in

manufacturing is decreased.

3.4.1 Evolution Strategy

The parameter variations necessary to optimize a problem are carried out according to the
biological evolution. Each potential solution, represented through a list of parameters, is
considered as an individual. A number of solutions, i.e. individuals, make a population.
All individuals of a population are evaluated according to their ability to solve the given
problem. Depending on the evaluation, the individuals are introduced into a replication
mechanism, which transforms an existing population to a succeeding population. The
mechanisms used are reproduction, mutation, and crossover, as biology operations. These
mechanisms, operating based on evaluation, therefore, improves individuals in following

populations. In order to speed up the evolution processes and shorten optimization time,
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evaluation has tc be completed quickly and, if possible, automated. Parallel evaluation is
suggested and implemented in ALAN. The described process, i.e. the evolution, is

repeated until a break off criterion is fulfilled.

3.4.2 Method of Evaluation - Simulation

The new optimization rules, automatically determined, cannot be used immediately,
before they are verified. Also, evolution strategies depend on the evaluations of solutions
by an outside judge who works based on a goal system. Discrete event simulation
performs this task. When manufacturing is mapped in an executable simulation model,
optimization rules can be tested and evaluated through simulation. Corresponding to
conventional optimization problems of logistics, business processes and resources, a
model of the problem area is generated and validated. This model is then processed using
different scenarios which are to be evaluated. Each simulation run provides a relative

statement or value concerning the quality of the tested planning algorithm.

3.5 ALAN Architecture

ALAN is an object-oriented software framework for constructing Evolutionary
Computing (EC) applications with extensible and reusable components. The following

(Figure 3-3) is a list of ALAN Packages:
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] OVIMAN
) SIMULATION

Figure 3-3: ALAN Components

ALAN applies the principles of design patterns and object orientation to construct a
framework of extensible and reusable modules. The basic structure of the ALAN system

is represented in figure 3-4.

ConfMan

'—F |

OptMan » EvalServer
Interpreter |

Data exchange - Registration

Figure 3-4: AL AN Modules
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The central item - DbMan stands for Database Manager. It processes the largest part of
the data exchange between the modules and administrates the resulting data. Basically
DbMan manages the Database where all configurations, events, GA/GP runs are stored,
such as production environments, products, scenarios, workplans, operations, resources,
individuals with best fitness, evaluation servers, etc... The pure object database,

.ObjectStore™ PSEPro is applied to store the valuable data to make it persistent.

The ConfMan module, which stands for Configuration Manager, is responsible for all
configuration functions. ConfMan contains a Graphical User Interface (GUI), which
enables users to specify industrial scenario, production environment, GP parameters,
etc.... The new configuration can be saved in the database and the previous

configuration(s) can be retrieved from the database via the DbMan. These configurations

can be defined or adjusted by users’ specific needs.

OptMan - Optimization Manager, is responsible for the optimization of the program
solution by conducting evolutionary computing. The OptMan retrieves the necessary
parameters for the algorithms from the DbMan and sends the optimization results (the
fittest program) back to DbMan. Since OptMan registers itself at the DbMan at the
beginning of ALAN run, he is able to get the available EvalServer and send the newly
generated individuals to have their fitness calculated there. Individuals are returned to the

OptMan, after fitness assigned, ready for Genetic operations.
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The EvalServer, Evaluation Server, receives individuals from the OptMan for discrete
fimess calculation, as described above. The concept of parallel multi-EvalServer has the
advantage to execute evaluation tasks on different computers in a network and therefore,

make an optimal use of the available resources.

OviMan - Optimization Visualization Manager module offers an option to visualize the
results of the optimization in the database, which is the individual stored in the database
with the best fitness value. There are online and offline modes of OviMan. In the offline
mode, the best solution so far will be transferred to the OviMan and be visualized; while
in the online-mode, the best solution in each current generation will be displayed on the

OviMan GUI. OviMan contains a Graphical User Interface with various visualization

features.

The model of the production system is simulated on the basis of the start parameters
defined by the user (manually configured in Configuration Manager). The results of this
scenario are passed on to the evaluation module. Evaluation Manager distributes it to a
remote machine to do simulation. The overall fitness value is calculated and is sent back
to Optimization Manager for continuous improvement and optimization. Rounds of such
process are implemented till the criterion is met. Thus, the solution, which met the goal of

the system, is offered to the user.
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3.6 ALAN Benefits

Such Production Planning and Control system improves business by:

¢ [Increase of flexibility on the adaption to market changes

e Reduction of stocks in fractal structures (networks of business units)

e Customer orientation through the focus on customer demands and quality of
deliveries (manufacturing on demand)

e Shortening process lead times in fractal structures

e Ability to handle price variation of the offered product

e [mprovement of product quality

¢ Reduction of overall production and handling costs

The benefit of this new order management methodology is the use of the order
management potentials in present and coming enterprise structures (e. g. fractal) and
philosophies (e. g. manufacturing on demand). The high potential of scalability and
adaptability exceeds those of traditional systems. Long-term planning is replaced by a
multi-level control system with short-term forecasts. The concept of planning partially
disappears and is replaced by short control loops. The new concept can be used in totally

decentralized enterprise structures.
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Chapter 4
Background Knowledge

This section attempts to provide some background knowledge and the mechanics of

Genetic Algorithm and Genetic Programming.

4.1 Genetic Algorithm

Genetic Algorithm (GA) is a stochastic search technique which was introduced by John
Holland (1975) at University of Michigan, Ann Arbor. The algorithm's search strategy is
based on Darwin’s biological evolution, using a computationally simulated version of
survival of the fittest. It supports the view that the individual entities within a given
generation that have the highest adaptability to the environment will be selected and
survive into the next generation. This process thus generates entities that have obtained

new characteristics or have received advantageous characteristics through genetic action.

Genetic Algorithm was inspired by the analogy of evolution and population genetics. GA
model concepts from the evolutionary process found in nature to apply them to artificial
optimisation problems. GA evolves solutions to difficult problems, where the answer is

not obvious (NP problems). Genetic Algorithm will find a very good solution, but might

not to be the best one.
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4.1.1 Population Initialization

GA starts with an initial ‘population’ of trial solutions to a problem. The traditional
simple GA, as defined by (Holland, 1975) represents the problem's data as chromosomes,
each of which is a collection of genes. Holland's GA maps the genetic units into binary
strings, where each bit corresponds to a single gene. A group of such binary strings is the

population, with each individual of the population referring to a single possible solution

to the particular problem.

4.1.2 GA operators

Having created a population, or first generation the next operation is the actual
manipulation and application of the biological operators. As in nature, the biological
operators do not work on the individuals as they appear in ‘in real life’ (phenotype), but

on their chromosomal representation (genotype).

4.1.2.1 Reproduction Operator

Reproduction is the genetic algorithm analogy to the cloning operation in biological
genetics. It is the cloning or copying of a selected individual into the next generation. The

reproduction operator has the effect of maintaining useful genetic material in the

population.
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4.1.2.2 Crossover (Sexual Recombination) Operator

Crossover (Recombination), in essence, is simulated mating. There are many ways to
define this operator but the basic principle is the same. Firstly a portion of the population
is selected for crossover, according to certain mechanisms (details at 4.1.3 Selection).
Individuals, which are selected, form a mating pool. Once in the mating pool, individuals
are paired and the crossover process is carried out. Crossover has many definitions, the
simplest of which is the following: a random position is selected along the length of the
chromosome and the two individuals swap genetic information from this point onwards

creating two new individuals. This is illustrated in Figure 4-1.

Chromosome 1 (NN | 00100110110
Chromosome 2 11011 |

Offspring |
Offspring 2 11011 | 00100110110

Figure 4-1: Crossover Operation in Genetic Algorithm ( | is the crossover point)

4.1.2.3 Mutation (Asexual) Operator

Another common biological operator is mutation. This operator is intended to act as a
means of introducing some random variation into the population. It is applied as follows:
an individual is selected at random from the population according to a mutation

probability. A position along the length of the chromosome is chosen at random and the
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value of the gene in this position is flipped from 1 to 0 or 0 to 1. In this way, a small

variation is introduced forming a new individual.

The mutation operator serves to maintain diversity in the population. Its use in

conjunction with a large population of individuals helps the genetic algorithm to avoid

local optima and convergence in the search space.

Original offspring | IIF
Original offspring 2 1101104100110110
Mutated offspring |
Mutated offspring 2 1101104100110110
Figure 4-2: Mutation Operation in Genetic Algorithm (one point mutation)
Other forms of biological operators include inversion, permutation and editing all of

which can substantially aid the genetic search and are described in (Goldberg, 1989),

(Koza, 1992). A new population is bred after applying these genetic operators to the

existing population.

4.1.3 Selection

The selection procedure is of vital importance to the likely success of the genetic search.
The most common form of selection applied is referred to as roulette wheel selection

(Goldberg, 1989). The principle behind roulette wheel selection is simply that an
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individual with a higher fitness value should have higher probability to be selected for
genetic operations.

Another population form of selection is tournament selection where two or more
individuals are chosen at random to participate in a tournament. The fittest individual(s)
will be the winner(s) and will be selected to participate in genetic operations.

Elitism is sometimes used in selection to preserve the best individual found in a run. This
form of selection always passes a copy of the best individual of the population to the new
generation.

Other selection methods include Rank selection and Stochastic Universal Sampling. A

detailed analysis of each of them is beyond the scope of this work.

4.1.4 GA Fitness Evaluation

Selection is rated by fitness evaluation result. Fitness evaluation is conducted by fitness
function. In Genetic Algorithm, fitness function is set on the high problem statement

level and is the formula to decide how close a candidate solution actually is to solving the

problem.

The nature of the fitness measure varies greatly from one type of program to the next. For
some problems, the fitness of an individual can be measured by the error between the

result produced by one candidate solution and the correct result. The closer this error is to

zero, the better the candidate solution is.
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4.1.5 GA Termination Strategy

By the use of genetic operators such as reproduction, crossover and mutation, a
population of candidate solutions is continuously improved, through many generations,
towards a not necessarily global optimum. The whole process repeats itself through
successive generations, evolving new populations. Unlike natural evolution, which

continues indefinitely, GA has to be stopped somewhere, when the termination criteria is

met:
(1) solution is found, i.e. fitness is satisfied
(2) convergence occurs

(3) a certain number of cycles are completed.

Convergence is a phenomenon that all, or nearly all, individuals in the population have

the same genotype or genetic representation.

4.1.6 GA Application

Genetic Algorithm has been demonstrated to be effective and robust in searching very
large, varied, spaces in a wide range of application, including financial, imaging, VLSI

circuit layout, gas pipeline control and production scheduling (Banzhaf, Nordin, Keller,
& Francone, 1998).
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4.2 Genetic Programming

4.2.1 What is Genetic Programming?

Genetic Programming (Cramer, 1985; Koza, 1992; Koza, 1994; Kinnear, 1994) is an
extension of the genetic algorithm (Goldberg, 1989) in which the individuals in the

population consist of computer programs represented as expression trees.

Genetic Programming is a domain-independent method for automatically creating a
working computer program from a high-level problem statement that evolves computer

programs that solve, or approximately solve, problems.

Genetic Programming is a relatively new and powerful approach to the automatic
generation of computer programs from specifications of program behavior. Genetic
programming combines ideas from the fields of biology (natural selection, survival of the
fittest), genetics (reproduction, recombination and mutation of genetic material), artificial
intelligence (state space search), and compiler theory (representation of programs as
abstract syntax trees) to create an algorithm which searches a large but constrained space
of computer programs that are capable of adapting or recreating themselves for one or

more programs, which are nearly optimal in performing a specified open-ended task.
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Genetic programming works best in complex problem domain, in which problems have
no ideal solution. Furthermore, genetic programming is useful in finding solutions with a
large number of variables, which are constantly changing and none of which is

encompassing the measurement.

Genetic programming has been extensively applied to generate functional programs
which solve difficult problems in application areas as diverse as automatic design, pattern
recognition, symbolic regression, multi-dimensional least squares regression, music and

picture generation, neural network architecture and training, robot behavior planning and

many others.

4.2.2 GP versus GA

Genetic programming is a branch of genetic algorithms where the problem solution

representation strings are replaced with variable length programs, instead of fixed-length

binary strings.

Unlike Genetic Algorithms, the crossover points in both parents of GP programs do not
have to be the same. and probably cannot be. It is likely that the parents will have a

different number of nodes, and have a different configuration.
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GP programs are evaluated for fitness by executing the programs. The programs, when
executed, are the candidate solutions to the problem; while in GA, the fixed-length

strings of parameters, themselves, encode possible solutions to a problem.

Genetic programming is much more powerful than genetic algorithms. The output of the
Genetic Algorithm is a quantity, while the output of the Genetic Programming is another
computer program. Many problems appear to be inappropriate candidates for solution via
genetic algorithms because they. in effect, require the operation method (i.e. “how*) that
produces some desired output value when presented with particular inputs. In essence,

this is the beginning of computer programs that program themselves.

Genetic Programming is descended rather directly from the GA paradigm. However, GP,
as a field founded by John Koza at the beginning of the 1990s, has grown exponentially
since then, and become a new branch of Evolutionary Computation and now is a separate,

very successful branch of its parent field.

4.2.3 GP Significance

One of the central challenges of computer science is to get a computer to do what needs
to be done, without telling it how to do it. Genetic programming addresses this challenge

by providing a method for automatically creating a working computer program from a
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high-level problem statement. Genetic programming achieves the goal of automatic

programming (also sometimes called program synthesis or program induction).

Genetic Programming allows problems to be solved without explicitly programming the
solution. It would be desirable if computers could solve problems without being
explicitly programmed. Specifically, it would be desirable to have a problem-independent
technique whose input is a high-level statement of the problem's requirements and whose
output is a working computer program that does a satisfactory job of solving the problem.
This kind of "What You Want Is What You Get" ("WYWIWYG" P pronounced "wow-
eee-wig") method of creating a computer program is called automatic programming

(Arthur Samuel. 1959). Automatic programming is one of the central problems of

computer science.

Since the early 1990s, GP has emerged as one of the most promising paradigms for fast,
productive software development. GP, as a method of developing software, is radically
different from current software engineering practice. GP is a kind of heuristic weak
search, in the sense that it does not use background knowledge intensively. (Aler, Borrajo
& Isasi, 1998). Potentially, in GP, the domain experts, instead of trying to transfer their
knowledge to computer programmers, can create programs by directly specifying how
they should behave.
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Genetic programming addresses the problem of automatic programming, namely the
problem of how to enable a computer to do useful things without instructing it, step by
step, on how to do it. The rapid growth of the field of genetic programming reflects the
growing recognition that, after half a century of research in the fields of artificial
intelligence, machine learning, adaptive systems, automated logic, expert systems, and
neural networks, we may finally have a way to achieve automatic programming. Genetic
programming is fundamentally different from other approaches in terms of (i) its
representation (namely, programs), (ii) the role of knowledge (none), (iii) the role of logic
(none), and (iv) its mechanism (gleaned from nature) for getting to a solution within the

space of possible solutions. (Bruce, 1995)

4.2.4 GP Mechanism

GP consists of three main components: a population of individuals (or candidate

solutions), a fitness measure (or heuristic function) and a set of genetic operators.

4.2.4.1 Creation of Initial Population of Computer Programs

A genetic programming run begins by creating an initial population (generation zero) of
abstract syntax trees that have random shapes and sizes. The nodes in the program trees
are functions and terminals appropriate for a given problem. The nodes in each initial tree

are randomly chosen from the set of functions and terminals being used.
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e The set of functions that appear at the internal points of a program tree may
include ordinary arithmetic and logic functions, such as addition, subtraction,
multiplication, division and other more complex functions; conditional operators,
loops, etc... and user-specified functions.

e The set of terminals appearing at the external points (leaf nodes in program trees)
typically include the program's external inputs (such as the independent variables

x and y) and constants (such as 3.2 and 0.4).

Functions and Terminals are important components of genetic programming. They are

the alphabet of the programs to be made.

4.2.4.2 Fitness Function

Fitness Evalution is one of the difficult and important concepts in Genetic Programming.
The evolutionary process is driven by a fitness measure that evaluates how well each
individual computer program in the population performs in its problem environment. In
GP, the fitness of each individual in the population is assigned by executing that
individual program with certain input values and measuring how well it performs at the

problem one is trying to solve. The detail was discussed in GP versus GA.
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4.2.4.3 GP Operators

Similar to Genetic Algorithm, three genetic operators are generally used in GP:
reproduction, crossover and mutation. The genetic operators are applied to fitness
proportionally. Therefore, genetic operators genetically search the space of possible

computer programs for a fittest individual computer program.

Reproduction involves selecting a single abstract syntax tree, probabilistically selected

based on fitness. from the population and making a copy of that tree.

In the crossover, two selected parents are usually of different sizes and shapes. A
crossover point is randomly chosen in each of the two parents. Then, the subtrees rooted
at the two crossover points are swapped and placed at the same position from which their
counterpart was removed. This results in two new abstract syntax trees which contain
genetic material from each of their parents, with typically high fitness. Crossover is the
predominant operation in genetic programming (and genetic algorithm, as well) and is

performed with a high probability (say, 85% to 90%). See Figure 4-4 for an example.

[n Genetic Programming, identical parents can yield different offspring; while in genetic
algorithms identical parents would yield identical offspring. This is once again the

advantage of genetic programming over genetic algorithm.
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Parents

Crossover Node O

Figure 4-3: GP Crossover Example

Mutation is a process analogous to asexual reproduction in which a newly generated
subtree replaces the subtree rooted at a random mutation point in a selected individual,
probabilistically based on fitness. This asexual mutation operation is typically performed

sparingly (with a low probability of, say, 1% during each generation of the run).

Mutation Node ‘

Figure 4-4: GP Mutation Example
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4.2 4.4 Main Generational Loop of GP

Genetic programming breeds computer programs to solve problems by executing the

following three steps:

1. Generate an initial population of random compositions of the functions and terminals

of the problem (computer programs).

2. Iteratively perform the following sub steps until the termination criterion has been

satisfied.

(a) Execute each program in the population and assign it a fitness value using the fitness

measure.

(b) Create a new population of computer programs by applying the following two
primary operations.

1) Copy the best existing programs;

it) Create new computer programs by mutation;

1) Create new computer programs by crossover(sexual reproduction).

3 The best computer program that appeared in any generation, the best-so-far solution, is

designated as the result of genetic programming (Koza, 1992).
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Flowchart for Genetic Programming

Create Initial
Random Population
)
_ | Termination Y¢S [Desginate
CriterionSatisfied? Result

e ]
Evaluate Fitness of Each
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reproduction Select Genetic Operation mutation
Probabalistically
1 ‘ cros3Over
Select One Individual Select Two Individuals Select One individual
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u?erform Reproduction | I PorformCrossovorI I Perform Mutation ]
N Insert Two
Copy into New Offspring insert Mutant into
opylation into New New Population
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{individuals = individuals + 1 | ‘ [individuals = individuals + 1]
| individuals = individuals + 2 |
1

Figure 4-5: Genetic Programming Flowchart

4.2 4.5 GP Control Structure and Termination Criterion

The genetic operators and the policy of selection based on survival of the fittest provides

genetic programming with a means to explore the search space. The specification of a
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genetic programming system is completed with the choice of a search control structure

and a search termination criterion.

The primary parameters for controlling a run are the population size and the maximum
number of generations to be run. Secondary parameters include probability of
reproduction, crossover and mutation, maximum depth of S-expression created in the

initial population and after genetic operators, such as crossover and mutation, are

operated.

The evolutionary process proceeds generation by generation. GP run will be terminated
when it completes the number of designated cycles or when an individual with the perfect

fitness is found. Usually the best-so-far individual is designated as the result.

The interaction of the genetic operators and the use of stochastic selection based on
survival of the fittest results in an exploration of the search space which moves towards

abstract syntax trees which have increased fitness on average over time.
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Chapter S

Genetic Programming Extension

This section presents several extensions to the genetic programming paradigm. These
extensions attempt to improve the power of the paradigm by increasing the difficulty of
the problems that can be solved by genetic programming and by extending the set of
language features that can be used in programs generated by genetic programming. These
extensions include Automatically Defined Functions (ADFs), Strongly-Typed Genetic

Programming and Object-Oriented Genetic Programming.

5.1 Automatically Defined Functions (ADFSs)

The standard genetic programming approach attempts to generate a single program in
order to solve a problem. However. in many cases the best solutions for more difficult
problems tend to be hierarchical in nature. The divide and conquer approach has been
successfully used in human problem solving to deal with the intellectual complexity of
these problems by dividing them into easier subproblems which can be directly solved
and then reassembled into a global solution. Koza (1992; 1994; 1995; 1996) presents a
method for using simulated evolution to automatically divide difficult problems into a

main program and one or more subprograms whose solutions are simuitaneously evolved
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by a genetic programming system. This method is called Automatically Defined

Functions (ADFs).

Simple computer programs consist of one main program (called a result-producing

branch). However, more complicated programs contain subroutines (i.e. automatically

defined functions,

ADFs, also called function-defining branches),

iterations

(automatically defined iterations or ADIs), loops (automatically defined loops or ADLs),

recursions (automatically defined recursions or ADRs), and memory of various

dimensionality and size (automatically defined stores or ADSs).

defun
I
I I I | I
main  list defun defun values
| /A /] I
arg0 adfO list \  dfl list \ |
I [ I
arg0 | arg0 | I
I I I
I I I
+ adf0
/ \ /' \ |
arg0 1 arg0 arg0  adfl
I
arg0

Figure 5-1: Structure of an Automatically Defined Functions
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Figure 5-1 shows the tree structure of an automatically defined function. This figure is
divided into two sections, those portions of the tree above the dashed line and those
portions of the tree below the dashed line. The portions of the tree above the dashed line
represent the fixed structure of the procedure that must be maintained in every individual
in the population. The portions of the tree below the dashed line represent the parts of the

procedure that can be evolved to solve the problem.

In this way, a problem can be solved by simply prespecifying a reasonable fixed
architectural arrangement for all programs in the population (i.e., the number and types of
branches and number of arguments that each branch possesses). Genetic programming

can then be used to evolve the exact sequence of primitive work-performing steps in each

branch.

Several sets of experiments have been performed to compare the performance of genetic
programming systems that use automatically defined functions with those that do not
(Koza, 1992 & 1994). The results of these experiments show that the use of automatically
defined functions increases the power of a genetic programming system in terms of the
difficulty of problems that it can solve. The technique also improves the speed at which
solutions can be obtained for all but the most trivial of problems. In addition, the use of
automatically defined functions generally results in more compact solutions than those
found without the technique. The general reuse in the main routine of the subroutines

evolved by the system allow for the improvement in program size.
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The method of automatically defined functions is extended in (Koza, 1992) by allowing
automatically defined functions to call other automatically defined functions. And several
different architecture-altering operations, such as subroutine duplication operation,
argument duplication operation, subroutine creation operation, subroutine deletion
operation, argument deletion operation, etc. are each applied sparingly during the run, to

reuse automatically defined function.

Genetic programming uses architecture-altering operations to automatically determine
program architecture in a manner that parallels gene duplication in nature and the related
operation of gene deletion in nature. Programs with architectures that are well-suited to
the problem at hand will tend to grow and prosper in the competitive evolutionary
process, while programs with inadequate architectures will tend to wither away under the
relentless selective pressure of the problem's fitness measure. Thus, the architecture-
altering operations relieve the human user of the task of pre-specifying program
architecture. (Koza, 1999) Via ADFs and these related techniques, GP gains considerable

benefit from functional abstraction.

5.2 Strongly Typed Genetic Programming

In the Koza approach (Koza, 1992), population individuals are defined as hierarchical

(Lisp) Symbolic Expressions. S-expressions are composed of two types of functions,
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functions that accept arguments and called non-terminal functions, (For brevity we use
the term function in the previous chapters to mean non-terminal function) and functions
take no arguments called terminals. No information on the data types of functions and
terminals is used. Closure of the set of language element is required to be able to run the
generated programs. That is, all functions have to accept arguments and return values of
the same type. This allows for legal crossover recombination and mutation of S-

expressions. This is called untyped genetic programming.

One important constraint of Koza GP is that S-expressions have to satisfy the property of
closure. Montana has introduced Strongly-Typed Genetic Programming (STGP) by
extending the GP paradigm to overcome the problem of closure. Montana (1994) uses the
type information associated with variables, constants and the signature of functions to
constrain the programs that can be generated by the initialization process and the genetic
operators, so that only syntactic correct programs with regards to both structure and type
can be constructed. Functions in STGP now can accept arguments and return values of
different data types. Variables, constants, arguments, and returned values in GP can be of

any data type with the provision specified beforehand.

Closure is not required in Montana’s approach since syntactically invalid programs

cannot be generated by the system.
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The algorithm requires several modifications to include the use of type information. First,
the random creation of programs must be modified so that when a node is randomly
selected, the only nodes that are eligible for selection are those which satisfy the required
return type. Similarly, the crossover and mutation operators must also be modified so that
they only return syntactically correct programs with respect to the data types. In the case
of mutation, the new node must return the same data type as the old node. In the case of

crossover, the root node of the two subtrees to be swapped must have the same data type.

These modifications allow the generated abstract syntax trees to be translated into typed
languages. They also constrain the search space during the program generation process
by eliminating the need for the genetic programming system to induce the language

type-syntax structure along with solving the actual programming problem.

5.3 GP Object-Oriented Programming

Genetic programming is a powerful new method for the generation of computer programs
from examples of the program’s desired input-output behavior. It is based upon the solid
foundation of the field of genetic algorithms and provides the robust behavior of that

paradigm applied to a new problem representation, abstract syntax trees.

One interesting area where genetic programming has not yet been widely applied is in the

generation of object-oriented programs (Bruce, 1995). Since object-orientation is
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becoming one of the more heavily used methodologies for constructing systems, it is of

critical importance to the acceptance of genetic programming that it be extended to work

in this area.

With the movement of industry towards the object model as the basis for analysis, design
and programming, the application of genetic programming as a means for automating the
programming of objects has the potential for positively impacting the software
productivity crisis. Winter., Mcllroy and Fernandez-Villacanas (1994) hint at this
potential by projecting that the financial cost of using genetic programming to generate
small program components will become less than the cost of using human programmers
to perform the same task as early as the first decade of the twenty-first century. If these
projections are correct, the use of genetic programming to build object oriented programs

should be economically advantageous to organizations that wish to take advantage of the

technology.
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Chapter 6
ALAN GP Design

ALAN provides a collection of about 250 Java classes representing over 30,000 lines of
code. As for the actual implementation of the genetic program, programming language
Java is used, instead of LISP, for the reasons illustrated in the session of *6.1

Implementation Language Issues”. The JDK (Java Development Toolkit) Version 1.3 is

used to code the system.

6.1 Implementation Language Issues

There have been few experiments of GP systems implemented in Java (Chong, F.S. &
Langdon, W.B., 1999) (Zalzala, AM.S. and Green, D., 1999), but considering the
relative youth of both GP and Java, it is not too surprising that Java has not been applied

to GP with much frequency. ALAN was implemented in Java, for the following main

concems:

1. The Java Virtual Machine (JVM) provides platform independence and full portability,
allowing ALAN to be used on most major platforms. The JVM’s support for automatic
memory management also allows for straightforward implementation of tree sharing

which keeps memory usage small even with large populations.
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2. Java is the recognized computer language for client server distributed and multi-

threading parallel applications.

Basically, Genetic Programming requires substantially higher computing power and
memory. GP is inherently a computational intensive process due to the many evaluations
and manipulations of a potentially large number of programs, over a large number of
training cases. A way of reducing the computational load, and hence increasing the
computing speed and power, is to parallelise the evaluation process and use a multi-

processor system to evaluate sub-population.

Java fulfils the distributed approach for parallelizing Genetic Programming. A centralized
controller assigns sub-populations of individuals to different computers, via Java RMI, in
ALAN System, which would carry out evaluation within the JVM of each computer and
then report the results to the centralized EvalServer. In this manner, huge populations of

individuals are speedily evaluated in a massively parallel process.

3. We used a GP kernel written in Java, due to its good connection with pure Java object-

oriented database — ObjectStore PSEPro.

ObjectStore Personal Storage Edition (PSE) Pro for Java (products of Object Design Inc)

is a lightweight single-user 100% pure Java object persistent storage engine for Java
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developers. PSE and PSE Pro for Java are pure object databases for embedded database
and mobile computing applications. ObjectStore PSE/PSE Pro combines the simplicity of
object serialization, and the reliability of a database management system (DBMS),

together with in-memory-like performance for accessing persistent objects.

6.2 GP Object-Oriented Programming

In ALAN, Genetic Programming is extended to the discovery of multi-agent behaviors.
Each agent is active, goal-oriented, responsible for a task. Each agent has its “hidden
agenda” (internal behavior), sensors and actors to interact with environment
(communication), and each of them has a ,,Real-World* object. In ALAN system, each

order has an OrderAgent; each machine has a ResourceAgent to represent them.

All intelligent agents together act as a controller in ALAN, taking requirements from
customers and giving command to the manufacturing system. The role of the agent will
be that of using its sensors to gather information in they system, and its actors to act on it,
while genetic programs generates commands for the actors based on sensorial

information available and its current internal state.

The behavior of the adaptive agents is represented as a certain number of programs and
modeled as functional blocks of executable code (by means of an interpreter). The

optimization is manipulated by evolution of these programs. After optimization, those
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agents behavior (the arrangement of the different functional blocks of programs) are
rearranged to obtain new, improved (or nearly improved) behavior. The improvement can

be measured with the help of simulation.

Since the purpose of this work is to discover the self-adaptive agent behavior, the GP
work mainly focuses on how agents communicate and interact with each other.
Therefore, this work extends genetic programming to the automatic definition and

evolution of object-oriented programs, with order agents and resource agents as the main

concemn of the project.

Object-oriented GP instead of GP was used, because expressing the structure of ALAN
system involves more than one type of classes. To disable crossover between types which

are not related such as combination of OrderAgent with ResourceAgent will certainly

optimize search space.

6.3 Program Representation (Interpreter Language)

An executable, object-oriented language was illustrated which allows changing the
behavior of the agents at run-time of the system. ALAN’s own Interpreter language was

developed, its kernel written in Java.
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This interpreter language is based on interpreter building blocks, represents a program
with a parse tree structure and interprets each node of the tree at run-time of the program,

so that an executable program is developed. In GP run, the program structure is about to

be changed by the exchange, modification of the building blocks.

Program trees are usually represented top-down and read from above. Branches are

processed from left to right.

First a simple function is to be represented as a function tree.

Figure 6-1: Function Tree

Figure 6-1 is the function tree that the functiony =(3-b)*x+@4/a—-2 *(x - 95))
represents. However, except for arithmetic operations, other program items exist, such as

conditional statement, loops, iterations, also need to be represented in the program tree.
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Figure 6-2 shows a short program example with a IfThenElse statement and two

Assignments.

x = 10;
if (x > 3)/¢
y = 1;

Figure 6-2: Program Example

This program can be expressed as a program tree, like in figure 6-3 represented.
Sequence, as the highest program node, contains three sub-programs - two assignments
and a IfThenElse statement. In the assignments, either a literal value or another local
variable value is assigned to a local variable in each case. The IfThenElse statement
possesses a condition, with this condition fulfilled, the if-branch is executed. otherwise

the else-branch is executed. Both branches contain an assignment once again.

] BRI56
e
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Figure 6-3: Program Tree of the Program Example
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Now the interpreter building blocks represent a program showed as Figure 6-2, as a
program tree. In our object-oriented Genetic Programming, each program node is an

object and the class hierarchy of the individual interpreter building blocks is to be

represented.

The abstract class Interpretable is the highest class of the class hierarchy of all classes,
such as FunctionCall, Term and Expression. That means all these classes are inheriting

Interpretable executable building blocks represent at interpreted run-time.

Interpretable
FunctionCaii Term BExpression

Figure 6-4: Abstract Class of Interpretable

Terms, such as sequence, IfThenElse, Loop, Assignment, VarDeclaration, are mainly the

operation statements (programming operations, without return value required).

Expressions, such as Literal, LocalVar, DotOp and Return need to return values.

FunctionCall includes all the functions, such as standard arithmetic and logical functions
— JavaCall (for basicInterpreterTypes, IInteger, [Double, Ifloat and [Boolean) or

domain-specific function — InterpreterCall (for behaviorAngent).
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The function sets of trees are implemented by objects of the inherited classes of Term,

Expression and FunctionCall.

]l FunctionCall l

[ InterpreterCail | l JavaCall

.—ﬂ

L Loop Lﬂ'henE!se H Sequence IL Assgnmen—l [VarDedarauonI

i Expression l

L DotOp J [ Literal 1 [ LovalVar l Return 1

IBasuclnurpreterTypes—H BehavnourAgent—l

A’T

L |Booiean ~H linteger ]L |Flcat 1Double lrlnandomlzed
|FuncﬁonFrame] L Context I
|GlobaiStaticFunctions| | Select | |interpreterCalistun| | JavaCalistub |

Figure 6-5: Class Hierarchy of the Interpreter Building Blocks

The interface Callable is implemented in all the cases that a specific class type is
required. The abstract class BasicInterpreterTypes, BehaviourAgent and

ManufacturingServices implement the interface Cailable.
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The abstract class of BasicInterpreterTypes provides the basic types that most present
programming languages provide - Boolean, Integer, Float, Double. The class

[Randomizer is to produce any of these types randomly, decided by the system.

BehaviourAgents includes OrderAgents and ResourceAgents. The domain specific
functions — human coded functions and genetically generated functions will be applied to

discover the best solutions to the Manufacturing Services.

ManufacturingServices is a class also implementing the interface Callable. The system
uses “singleton™ design pattern to create and maintain a single instance of

ManufacturingServices to manage all the agents in the system.

ManufacturingServices, BehaviourAgents and all the other possible class types, including
[Integer, [Boolean, [Float, [Double are wrapped as a class. Objects of these classes will
be initialized to be used in the nodes of the tree, these nodes carry the class type, in this
sense. ALAN use Callable as another layer under Interpretable to provide class type

information to implement the object genetic programming.

6.4 Population Initialization
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As stated above, a Genetic Programming Interpreter Language is ready, with the same
language features and statements as the conventional language being programmed in.

And moreover, the language is based on interpreter building blocks.

These building blocks are constructed together to generate ALAN GP programs, in the
structure of S-Expression binary trees whose nodes are made of two different types :

function sets and terminal sets (Leaf nodes and Non-Leaf nodes).

ALAN has quite different concepts in Leaf and Non-Leaf nodes, due to its extra layer on

class type definition.

e Non-Leaf nodes (referred as function sets above) of trees are objects of Sequence,

IfThenElse. Loop, VarDeclaration, Assignment, inherited from abstract class

Term.

e [Leaf nodes (referred as terminal sets above) of s-expression trees are objects of
DotOp, Literal, LocalVar, Return, inherited from abstract class Expression.
Literal takes any Callabe objects as value; LocalVar takes one local variable
declared already by VarDeclartion; Return takes Literals or LocalVars according

to the data requirement; and DotOp takes FunctionCall as its sub-node, to get the

value of function operation.
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The leaf nodes in ALAN are not the real sense of tree nodes in the tree structure, since

they are requiring sub-node(s), such as values of different class types. However, they are

leaf nodes of the tree, functionally.

Each tree starts with Sequence and ends with Return. By calling the function “initTree”
of Sequence, a tree structure was created automatically, since all the “initTree™ functions

in the randomly selected nodes are iteratively called. Each Interpretable inherited class

has an “initTree” function:

public void initTree(int deepMax, FunctionFrame frame, Class returnType,

Select s);°

The random selection of nodes is not absolute. During population initialization, care must
be taken to create a legal program. The nodes open to be selected have to be constrained
only within the pre-specified class type. Once the class type of the child node is

determined, all objects of that type have an equal chance of being selected.

Each Interpretable inherited class contains the function of

public Class getReturnType();

* FunctionFrame is the frame we use to hold the tree structure. Each FunctionFrame is an associated
program. evolved using_&eticmmmming.
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to provide the information of type of the node.

Genetically generated trees will vary in size and shape. A restriction is made on the tree’s

maximum depth as well. Each Interpretable node provides the function:

calculateTreeDeepness (FunctionFrame ff, int currentDeep)

to trace the depth of each node. While this depth is not reached (depth > 2), nodes are
randomly chosen from the reunion of function and terminal sets. When the maximum
depth is reached (depth=2), nodes are randomly chosen from the terminal set alone,

which causes the tree’s depth to be no greater than the maximum depth allowed.
The combinations of different nodes, i.e., interpreter building blocks compose our GP
individuals. Certain numbers of individuals (depending on system GP parameters)

compose our initial population (Generation 0) and get ready for GP run.

6.5 GP Operators

6.5.1 Mutation

To be truly random, the mutation node must have an equal chance of being any node in

the parent tree. Both leaf node and non-leaf node have the same probability to be selected
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in ALAN system. This would be done by finding the number of nodes in the tree N,

picking a random number R from 1 to N, and then doing an preorder traversal of the tree

through R-1 nodes.

After a mutation point is randomly chosen, the subtree rooted at that point is deleted, and
a new subtree is grown there using the same random growth process that was used to
generate the initial population. The following function is shared to conduct both initial

population generation and mutation.

public void initTree(int deepMax, FunctionFrame frame, Class returnType,

Select s);

Once again, we need to take care of the class type. in order to get the syntactically legal
programs and of the depth of the tree, as well, since we don’t want the memory runs out

while executing the tree of too big size.

6.5.2 Crossover

In Object-Oriented GP, crossover has to be conducted between two nodes of the same
class type. The crossover node (XNrtr.1) in one tree is first selected randomly as
described in mutation (see section 6.5.1); the crossover node in the other tree (XNtree2)

will be randomly selected from those nodes with the same class type as XNrreei.
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The sub-trees under XNrree1 and XNrree2 then are swapped

public void swap(NodeDescriptor childNodel, NodeDescriptor childNode2);

to get two new programs.

In most GP applications, a certain mechanism has to be set up to make the leaf nodes and
non-leaf nodes not interchangeable. As in the mathematical example, the leaf nodes were
operands and the non-leaf nodes were operators. This problem is not applicable over here

in ALAN, due to the class type constraints.

6.6 GP Controls

Once again, ALAN is a framework® to make up a reusable GP design. Inheritance and
polymorphism allow easy modification of default behaviors. Changing parameters and

components is typically just a matter of overriding inherited methods and altering their

default behavior.

* A Framework is a set of cooperating classes that make up a reusable design for a specific class of
software. (Gamma. et al., 1995)
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ALAN, itself, is a scalable system, providing various GP control policies. By simply
instantializing these pre-specified policy, depending on the users’ different requirements,

GP control strategies and parameters will be applied to GP run.

interface PoplInitPolicy

is the mechanism to start up the initialization population (Generation 0) of GP run.

RandomlInitPolicy implements PoplnitPolicy. RandomlInitPolicy starts up the
initialization population, by changing the prototypes of an individual by mutation and

inserting it into the initialization. In this way the entire population is created.

Interface GenPolicy

is responsible for creation of the next Generation.

CrowdingGenPolicy implements GenPolicy. CrowdingGenPolicy is to be used to insert
the new individuals to the current population; when the population number count reaches
a certain pre-set value, population is full. Genetic operators start to work on the

population and the new individuals are moving to next generation.

Interface ElitePolicy

is responsible for reproduction — one of the genetic operators.
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StandardElitePolicy implements ElitePolicy. StandardElitePolicy takes the number at the

users’ own choice (n) to pass the best n individuals as elites to the next generation.

Interface SelectionPolicy

is responsible for selecting individuals from the population and move them to a mating

pool.

TournamentSelectionPolicy randomly selects individuals of size n=2 to compare their
fitness, the individual with the better fitness value will be selected to mating pool.
RouletteWheelSelectionPolicy makes it happen that the individual with the better fitness

will get better chance to be selected.

EliteSelectionPolicy passes a copy of the individual with the best fitness value in the

current population to the new generation.

interface KillPolicy
makes sure that the population size does not exceed the maximum acceptable number in
each generation. By setting another parameter as the worst fitness, the fitness could be

improved by eliminating the individual with the worst fitness.

PairFightingKillPolicy is developed, to implement the interface KillPolicy. Two

individuals are randomly selected and their fitness values are calculated and compared.
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The individual with the worse fitness value is removed from the population. The system

reduces the number of individuals in the population in this way, in “steady-state” GP.

ReverseFimessKillPolicy: In our system, we also keep the worst fitness value in each
generation. The individual with the worst fitness value will be removed from the current

generation when this policy was followed.

interface TerminationPolicy

determines the abort condition for GP run.

GenNumTerminationPolicy: GP run is terminated when the self-set generation number
has been reached.

NoChangeTerminationPolicy: An array is used to hold the fitness history. When the best
fitness remains the same over a certain number of generations (convergence might
happen), this policy will terminate the GP run.

FitnessFulfillTerminationPolicy: When the best fitness meets the problem requirement,

GP run stops.

interface ExplorationPolicy
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NoChangeExplorationPolicy implements ExplorationPolicy. The function of
adaptVariationParameters() adapts the mutation and crossover rate in GP run, when the

best fitness over a certain number of generations keep the same.

It is a creative idea that during a GP run, genetic operator parameters is to be modified
dynamically. The strategy for the modification of the parameters is described by the
interface ExplorationPolicy with the implemented class NoChangeExplorationPolicy.
The policy will check whether the best fitnesses in the last ten generations is improved. If
the fitness remains the same for long, the current crossover and mutation rate is increased
by a certain amount (10%, for example). This process continues. until the fitness of the
best individual get improved. The crossover and mutation rate will be reset again to its

original value, after this process is done.

6.7 ALAN Fitness Function

Fitness function is a very significant element in Genetic Programming. The fitness

function rates the performance of a possible solution.

The purpose of ALAN is to obtain a feasible plan in the Manufacturing Services system,
how and when to process each operation of each order on different resource machines to

make sure that each order will be complete on the due date.
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For the purposes of this system, a fitness function based on minimizing the sum of the

square of the error (SSE) is used in ALAN:

n

2
f=2 (TCompleteTime - TbueDate)

i=1

The deviation of each order’s complete time and its due date is enlarged by square of the

error. Simulation:

. TCompleteTime is the time one order needs to be released from machine. It is

obtained by simulation. In ALAN, simulation work with fitness function to assign

fitness value to each individual.
¢ TpueDate is the time required by the customers for each order.

e n is the number of orders in the system.

The lower fitness one candidate solution gets, the better performance the solution

presents.

In Genetic Programming, program is evaluated for fitness by executing the program. The
function of interpret() in each Interpretable class will recursively traverse the tree top-

down and execute the program, acting on each statement as it reaches.
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The fitness evaluation in ALAN is carried out parallel. Systems take those individuals
coming back from EvalServer, with the fitness value assigned to conduct genetic
operations. For those individuals which take too long, there might be infinite execution
loops. System sets certain time to wait, after that time, system is going to ,kill* this

individual to prevent program growing out of stack.
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Chapter 7

Results, Discussion Issues and Future work

7.1 Results

7.1.1 Test Problem Results

Target of the first phase of ALAN was to build the prototype and examine the
possibilities for the creation and optimization of behavior strategies by means of genetic

programming on the conceived infrastructure.

The test problem was developed — Traveling Salesman Problem (TSP) was used to
examine the GA operation and a two-dimensional function - " blind mountain climber "

was set to examine GP operations in the system, defined as the following function:

y=e " *sin(5*(x+a)) (Equation 7-1)

with:  y=1f(x) Jfunction value at the point x

X Position

a band factor (test environment)
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The variable a is ranged within
-3<a<3 (Equation 7-2)

The experiment use GP to coordinate between x and a to reach the target - get the max

value of y. Figure 6-1 shows two functions with a=0 and a=3.
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Figure 7-1: Function Band f,(x) with a=0 and a=-3

The fitness is calculated like in equation 1-3:

fitness = 1- f4(x) (equation 7-3)
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Also for each test the initial population was set to 40 individuals — 10 individuals per
protoype. The size of the MatingPool was set to 50% of the population, which means 20
individuals are allowed to be selected into MatingPool to conduct genetic operations —
10% of them are reproduced, 10% of them are mutated and 30% are recombined.
Meanwhile, 20 individuals from the previous generation are killed to maintain the
“steady-state” of the population. Thus the next generation again consists of 40 individuals

and maintains constant population size.

As shown in figure 6.2, the fitness of the static function (when a=0) is approaching to its
best value after 40 generations (fitness = 1 — fy(x) = 1 — 0.745 = 0.255). In this case, no

variable strategy is developed.
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Figure 7-2: Fitness of a Static Function with a=0

Figure 7-2 shows the best fitness of each generation for the function with a as its
variable. The best fitness (fitness = [ — fy(x) = I — 0.590 = 0.410 > 0.255) was not

reached by the developed individuals.
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Figure 7-3: Fitness of Individuals Generating Variable Strategies

The test problem shows that GP is able to improve preset basic prototype strategies and
thus optimize the behaviour of the individuals. However, GP is not able to develop
completely new strategies, nevertheless the adaptation and improvement of the basic

prototype strategy was beyond of pure parameter variation.

7.1.2 ALAN Experiment Results

Tournament selection, defined in TournamentSelectionPolicy, was used in ALAN
experiments. The individual with the better fitness (smaller value) is considered to be the
winner and is copied into a mating pool with the same size as the initial population. After
the mating pool is full, reproduction is applied to 10% of the individuals, mutation to 5%
of the individuals and crossover to the remaining ones. The individuals resulting from the
operator application are copied into a new population. The process ends either at a limit

generation (according to GenNumTerminationPolicy) or when an individual with some
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goal fitness found (following FitnessFulfilTerminationPolicy), or convergence occurs

(based on NoChangeTerminationPolicy).

As [ was assigned a one year contract with [PA, at the time of my departure, the ALAN
team was still working on the first phase — prototype. The whole integrated system
results are yet to be finalized. But it has already been clearly proved by the previous test
problems that genetic programming is able to optimize behavior strategies and therefore

the learning strategy for the order and resource agents is about to be discovered.

With the turn of the year, ALAN is starting its second implementation phase on order and
resource agent, an abstract semi-conductor manufacturing environment, a virtual market
between the agents. A framework is about to be implemented for the negotiation

strategies between the agents and the target systems of the agents.

During my stay at IPA, [ was mainly responsible for developing the Interpreter package
for the ALAN system. Here, I would like to give some crossover and mutation programs
as a result, (as the AgentSystem package was to be completed in the second phase, the
execution of tree was difficult) and discuss some related issues arising during the

development and testing of Interpreter.

Parent Tree 1:
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[Double lillyTest(!Interger a, [Double b){

[Boolean unique_1 = true;

OrderAgent unique_12 =
de.fhg.ipa.alan.agentSystem.OrderAgent@3a9f2fe7;

ResourceAgent unique_11 =
de.fhg.ipa.alan.agentSystem.ResourceAgent@3b7f2fe7;

OrderAgent unique_13 = de.thg.ipa.alan.agentSystem.OrderAgent@3al f2fe7;

IInterger unique_9 = -4;

[Double unique_3 = 1.9509055559440363;

ManufacturingServices ms =

de.fhg.ipa.alan.agentSystem.ManufacturingServices@3b8e9d93;

if (((-0.326596197857997).greater(b)).not()) {

unique_11 = unique_12. getCheapestResourceAvailable();

}

else{

unique_12.tryMoveTo(unique_11);

Return unique_3;
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Parent Tree 2:

[Double lilly Test(IInterger a, [Double b){

H

[IRandomizer unique_1 =
de.fhg.ipa.alan.agentSystem.Irandomizer@935f2fef:

IFloat unique_7 = 0.0;

IInterger unique_13 =9;

OrderAgent unique_5 =
de.fhg.ipa.alan.agentSystem.OrderAgent@370e2868;

ResourceAgent unique_10 =
de.fhg.ipa.alan.agentSystem.ResourceAgent@40ae286a;

ResourceAgent unique_12 =
de.fthg.ipa.alan.agentSystem.ResourceAgent@40ae286a;

ManufacturingServices ms =
de.fhg.ipa.alan.agentSystem.ManufacturingServices@3f8¢2868;

[Integer unique_8 = -7;

[Boolean unique_3 = true;

[Double unique_14 = 2.780778232865;

for (unique_9 = de.fthg.ipa.alan.agentSystem.Irandomizer@b716286a.
getlInteger(); unique_9.lessthan(unique_13); unique_9++){
-
R
unique_3 = true;
if (unique_10.sell(unique_12)){
unique_1 3.equalTo(unique_9));
else{
ms.getMS();

4

Return —3.818988636005816;
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Crossovered Tree 1:

[Double lillyTest(IInterger a, [Double b){

[Boolean unique_1 = true;

OrderAgent unique_12 =
de.fhg.ipa.alan.agentSystem.OrderAgent@3a9f2fe7;

ResourceAgent unique_11 =
de.fthg.ipa.alan.agentSystem.ResourceAgent@3b7f2fe7;

OrderAgent unique_13 = de.fhg.ipa.alan.agentSystem.OrderAgent@3al f2fe7;

[Interger unique_9 = -4;

IDouble unique_3 = 1.9509055559440363;

ManufacturingServices ms =

de.fhg.ipa.alan.agentSystem.ManufacturingServics@3b8e9d93;

if (((-0.326596197897997).greater(b)).not()) {

unique_11 = unique_12.getCheapestResourceAvailable();

}

else{

unique_12.tryMoveTo(unique_11);

Return unique_3;

The Shaded parts are crossovered. Since the crossover point in the Parent Tree 1 is a
Term. The Terms of any kind in Parent Tree 2 get equal chances to be selected. An

Assignment is selected in this experimental case.

University of Windsor, 2001 75



Crossovered Tree 2:

[Double lillyTest(IInterger a, [Double b){

IRandomizer unique_1 =
de.fhg.ipa.alan.agentSystem.Irandomizer@935f2fef’

[Float unique_7 = 0.0;

[Interger unique_13 =9;

OrderAgent unique_5 =
de.fhg.ipa.alan.agentSystem.OrderAgent@370e2868;

ResourceAgent unique_10 =
de.fhg.ipa.alan.agentSystem.ResourceAgent@40ae286a;

ResourceAgent unique_12 =
de.fhg.ipa.alan.agentSystem.ResourceAgent@40ae286a;

ManufacturingServices ms =
de.fhg.ipa.alan.agentSystem.ManufacturingServices@3f8e2868;

[Integer unique_8 =-7;

[Boolean unique_3 = true;

[Double unique_14 = 2.780778232865;

for (unique_9 = de.fthg.ipa.alan.agentSystem.Irandomizer@b716286a.
getlinteger(); unique_9.lessthan(unique_13); unique_9++){

unique_3 = true;
if (unique_10.sell(unique_12)){
unique__13.equalTo(unique_9));
elsef{
ms.getMS();
}
h

Return -3.818988636005816;
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a Tree Before Mutation:

ResourceAgent aOrderAgentOperation(IInterger int){

ManufacturingServics ms = ;
de.thg.ipa.alan.agentSystem.ManufacturingServices@f91 caeff;

OrderAgent unique_S =
de.fthg.ipa.alan.agentSystem.OrderAgent@bcScae0a;

IInterger unique_6 = §;

ResourceAgent unique_4 =
de.fhg.ipa.alan.agentSystem.ResourceAgent@cb7caef7;

IBoolean unique_7 = false;

[Double unique_9 = 6.36822151476540;

[Boolean unique_8 = false;

this.standardActivateInBuffer();
if (unique_7.equalTo(unique_8)){

mt - oms.ect himeC urrentOrderReads (unie

return this.getCurrentResourceAgent();
}

return unique_4;
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The Tree After Mutation:

ResourceAgent aOrderAgentOperation(IInterger inv){

ManufacturingServics ms =
de.fhg.ipa.alan.agentSystem.ManufacturingServices@f91caeff;

OrderAgent unique_5 =
de.fhg. ipa.alan.agentSystem.OrderAgent@bcScae0a;

IInterger unique_6 = 3;

ResourceAgent unique_4 =
de.fhg.ipa.alan.agentSystem.ResourceAgent@cb7caef7;

[Boolean unique_7 = false;

[Double unique_9 = 6.36822151476540;

[Boolean unique_8 = false;

this.standardActivateInBuffer();
if (unique_7.equalTo(unique_8)){

else{

return this.getCurrentResourceAgent();

}

return unique_4;

The mutation point is randomly selected and happens to be the Assignment. The parent

tree has an assignment to linterger class type; during mutation, ResourceAgent class type

is selected to do Assignment.
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7.2 Discussion Issues

7.2.1 GA/GP Migration

Object-oriented GP design greatly increases the complexity of GP. In addition, the
complex interactions between agents, parallel simulation to calculate fitness, Database
consistency layer, make ALAN a very complex system. How can ALAN people handle

the complexity of this system, has become the main concern for next phase of ALAN

development.

ALAN architect has to consider reducing the system complexity. In addition, a large
number of GP tree program execution makes big memory consumption. GA/GP

migration (Howard & D’Angelo, 1995) has been porposed and already successfully

implemented in the current system.

For those numeric parameters of Manufacturing Services, ALAN uses Genetic Algorithm
genomes to represent them. Agent behavior, focus of this research, represented in GP
programs, becomes one gene of the GA genomes. The gene of GP takes part in the GA
genetic operations, which means, this gene might be selected for mutation and crossover
with the same gene in another individual; meanwhile, it has its own genetic operation,

which follows the same process as described as above.
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The numeric parameters in the system, such as:

totalAmountOfMoney
waitingTimeWeight
priceWeight
deltaPricelnc
deltaPriceDec
maxPrice

minPrice

will be operated based on GA and no class type is needed, so that problem get simplified

at a large extent.

7.2.2 Random Control

ALAN GP initialization and various selection strategy, including selection of crossover
points, mutation points, selection of individuals, Interpretable nodes, are following the
complete random principle, trying to be truly random, which ends up completely different
situation in each GP run. For the first phase of ALAN prototypes, system uses random

seeds to generate random number, to make program debugging and analysis possible.
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From the print out of the genetically created programs, we have found some illogical,

naturally-generated codes, for example,

if ((aDoubleParamA = new Idouble(8.519369)).greater(aDoubleParamA)){
((((ms).getMS()).getMS()).getMS()).getOrderAgent();

aVariable = (aResourceAgent).getPriceForOffer(-4);

Some GP automatically generated codes do not make too much sense and waste the
problem search space. Therefore, another set of selection principle “SemanticalSeletion”
is added into the system. Effort was made to make codes more semantically meaningful,

with syntactically correct as a necessity.

7.2.3 ADFs

FunctionFrame is the framework we apply GP to discover the agent behaviour.
FunctionFrame has to have the function signature, as a regular function in conventional

programming language, including associated parameters (both types and names) and

return type.

It 1s working like an operation of BehaviourAgent object. ALAN system allows an

automatically generated FunctionFrame (program) to call anther automatically generated
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FunctionFrame, even between simultaneously generated FunctionFrames. This is done by
registering each FunctionFrame in the CallStubMap, which is a HashTable to contain all
the operations of each class. Each operation has a callStub in GP Interpreter language,
including Java languages functions and human specified functions. All kinds of functions
- Java functions, pre-specified system functions, automatically generated GP functions

have the same chance to be selected in GP run.

This is a different way of implementation of Koza (1999)’s Automatically defined

Function. It is a kind of generalization and expandation.

7.3 Future Work

The work on ALAN system and other PPS approaches, such as MRP UII, OPT, Kanban,
3-Litter PPS, will be followed and extensively researched at Fraunhofer — [PA institute

years to come. A couple of PhD dissertations are in the chanel on the above topic.

Concemning with the GP part, in ALAN complex problem domain, genotype-phenotype
mapping is not possibly in one-to-one model any more. The observation, comparison and
improvement of the final system behaviour may be of difficulty, due to the large amount
of random mechanism set inside the system. Reducing system complexity and

simplifying the initial prototype, production scenario and environment is the work about

to do in the near future.
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In GP run, measure needs to be taken to encourage population diversity. Tournament
selection, reproduction and crossover appear to converge too readily. Mutation is largely
inapplicable to genetic programming (Koza 1992)*. Simply choosing an easier evaluation
function might not be the best solution in complex problems. Dynamic evaluation
function scaled over different time (Fukunaga & Kahng, 1996) might be an approach to

better performance and need to be discovered in the future.

* In genetic programming, particular functions and terminals are not associated with fixed positions in a
fixed structure.
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Chapter 8

Conclusion

Besides PPC system, numerous enterprises use new tools for modeling, simulation, and
optimization in production planning. These tools facilitate good modeling of business
operations, as well as using the latest methods in the search for solutions. ALAN is
making effort to offer a new method to implement production planning automation and

adaptation in a higher level — Method Selection Level.

A Method Selection Level Manual Comparison
Input -> Selection -> Output prriviinag
wl & / Compiete Enumeration
-1 ] Method Level Genetic Algorithms
3 g Input -> Method -> Output MRAP 1I, Kanban
[ \ / Andler's Batch Size Formula
Probiem Level Traveling Salesman Problem
Problem -> Processing -> Sclution Sequencing .
v Batch Size Caiculation

Figure 8-1 Levels of Optimization

An altogether new approach is the optimization of the planning methods used by means
of known optimization methods on the method selection level. This requires a new
combination of methods, and promises significant improvements of the ability to
adequately model enterprises, the PP&C methods themselves and the user interface of

future systems. The approach presented in ALAN combines known planning and
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optimization methods into an automatically optimized adaptive controller consisting of
modelable controller elements. The adaptability inherent in the methods simultaneously

removes current systems' shortcomings: the lack of flexibility, adaptability and

cooperative planning.

Genetic Programming has recently emerged as an important paradigm for automatic
generation of computer programs. GP has been extensively applied to generate functional
and procedural programs in various application areas. Since object-orientation is
becoming one of the more heavily used methodologies for software engineering, some
experimentation is done in this research to apply Genetic Programming into
automatically generation of object-oriented programs. It is of critical importance to the

acceptance of genetic programming to be extended to work in this area.
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Appendix: A GA/GP Glossary

Building Block: A pattern of genes in a contiguous section of a chromosome.

Chromosome: The bit string (GA) or program parse tree (GP), which represents the

individual.

Closure: all the variables, constants, arguments for functions, and values returned from

functions must be of the same data type.

Convergence: Tendency of members of a population to be the same.

Crossover: The genetic process by which genetic material is exchanged between

individuals in the population.

Elitist: GA which always retains the best individual in the population found so far

(Tournament selection is naturally elitist).

Evolution Strategy: A search technique, where the next point to search is given by

adding gaussian random noise to the current search point.
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Fitness Function: Function which evaluates a member of a population.

Function Set: The set of operators used in GP, these functions label the internal (non-

leaf) points of the parse trees that represent the programs in the population. An example
function set might be {+, -, *}.

Generation: An iteration of the measurement of fitness and the creation of a new

population by means of genetic operations.

Genetic Algorithm (GA): Model of machine learning that uses a genetic/evolutionary
metaphor. Implementations typically use fixed-length character strings to

represent their genetic information.

Genetic Operator: An operator in a genetic algorithm or genetic programming, which
acts upon the chromosome to produce a new individual. Example operators are mutation

and crossover.

Genetic Programming (GP): Genetic Algorithms applied to programs. Genetic Pro-
gramming is more expressive than fixed-length character string GA's, though GA's are

likely to be more efficient for some classes of problems.
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Genotype: "Physiological Team" in which a gene can make a maximum contribution to
fitness by elaborating its chemical "gene product” in the needed quantity and at the

appropriate stage of development.

Mutation: Arbitrary change to representation, often at random. In Genetic Programming,

a subtree is replaced by another, some or all of which is created at random.

Non-Terminal Functions: This name may be used to avoid confusion with functions

with no parameters which can only act as end points of the parse tree (i.e. leafs) and so

are part of the terminal set.

Phenotype: Product of the interaction of all genes.

Premature Convergence: When a Genetic Algorithm's population converges to

something which is not the solution you wanted.

Reproduction: The genetic operation which causes an exact copy of the genetic

representation of an individual to be made in the population.

Terminal Set: The set of terminal (leaf) nodes in the parse trees representing the
programs in the population. A terminal might be a variable, such as X, a constant value,

such as 42, or a function taking no arguments, such as (move-north).
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Tournament Selection: A mechanism for choosing individuals from a population. A
group are selected at random from the population and the best (normally only one, but

possibly more) is chosen.
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Appendix B: Fraunhofer IPA Introduction

The Research Organization

The Fraunhofer-Gesellschaft is the leading organization of applied research in Germany.
It currently operates 48 research institutes at 38 locations throughout Germany, with
about 9,600 employees, most of them are scientists and engineers. The annual research

budget amounts to over 1.5 billion German marks since 1999.

International activities are increasingly important. Apart from the collaboration with
numerous companies and research establishments within Europe, the Fraunhofer-
Gesellschaft operates resource centers and research units in Asia and the United States.

Revenue generated by the Fraunhofer-Gesellschaft abroad exceeded 107 million DM in

the year of 1998.

The Fraunhofer-Gesellschaft was founded in 1949 and is a recognized non-profit
organization. Amongst its members are well-known companies and private patrons who
contribute to the promotion of its application-oriented policy. The name Fraunhofer-
Gesellschaft was chosen in reference to the successful Munich researcher, inventor and

entrepreneur Joseph von Fraunhofer (1787-1826), who won high acclaim for his

scientific and commercial achievements.
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The Research Fields

Research conducted by the Fraunhofer-Gesellschaft focuses on specific tasks across a
wide spectrum of research fields, where systematic solutions are required, several

institutes collaborate on an interdisciplinary basis, such as:

e Matenials technology, components

¢ Production technology

¢ [nformation and communications technology

¢ Microelectronics, microsystems technology

e Sensor systems, testing and measurement technology
® Process engineering

e Energy and construction technology

¢ Environmental and health research

e Technical and economic studies, information transfer

IPA

FhG-IPA (Fraunhofer-Institute for Manufacturing Engineering and Automation) is one of
the 48 Fraunhofer institutes. They are to provide a flow of know-how and technology

from the researcher in the university environments to industrial enterprises.

University of Windsor, 2001 98



In 1959 IPA was founded in Stuttgart and has more than 200 scientists today, who work
in 7,700 m2 of offices, laboratories and outdoor facilities. The annual turnover amounted

to a total of DM 66 millions in 1998. 1999 is the big jubilee year, when the Fraunhofer

Society is celebrating its 50th birthday.

IPA with its 200+ scientists and a turnover in excess of 23 MECU works in various areas

of control of manufacturing networks, enterprise organization, manufacturing engineering

and electronic commerce.

In particular the section “Enterprise Development and Logistics” covers strategic
planning projects concerning the optimization of manufacturing networks in terms of
order and information flows, Internet-applications for logistics, machine learning and
negotiation-based order flow optimization. From the experiences gained in these projects
a number of software tools were developed at [PA. These tools include multi-agent
systems, simulation (strategic and operational), capacity planning and shop floor control.
By the development of these tools know-how in the area manufacturing optimization was

built up at [PA and used in more than 200 industrial projects.

IPA has participated in numerous ESPRIT and other EC-funded projects before, most
notably in the projects 5478 SHOP-CONTROL, 8865 Real-I-CIM and 20544 X-CITTIC.
IPA therefore has lots of positive experiences in working together with other European

enterprises and research facilities.
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