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ABSTRACT

This dissertation deals with some boundary value
problems of continuum mechanicsl The problems considered,
in the main, deal with micropolar (or Cosserat) fluids

CQGE}nggd to creeping (Stokes') motions. Analytic

solutions are developed for all of the pProblems considered.

- R :
The equations of motion for the Stokes' flows of

micropolar fluids are uncoupled in a mannmer which is

slightly different from that used by other authors.

In order to facilitate thg study of the various
problems‘considered, an alternate form for the general
solutions of the'creeping gotioq equétions of a viscous_
fluid was developéd based on the use of cartesian tensors.
fhe accuracy and utility of thgse solutions are indicated
through the use of a number of well knowm examples. The
solutions are also extended to include micfo?olar flui&

flows.

The solutions for the uniform creeping flow of a fluid
past a solid sphere are determined for the cases where the
fluid is either viscous or micfopola;. The same problem is
also solved for the fluid sphere case using the four ‘

possible combinations of viscous and Cosserat fluids.

-
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To make comparison with known results direct and easy,
the solutions for all of the above problems are generated
by means of the stream function technique. The solutions
for some of these Broblems by means of the method mentioned

previously are also discussed, but in less detail.

For sll of the problems mentioned above, the drag is
determined and, wﬁere‘applicable a comparison with the
classical results is made with a subsequent discussion of .
the significance of some of the parameters involved
Additionally, a number of tables are also included which
show how, for various stresmlines the angles are affected

by changes in the various parameters.

Lastly, a variety of linear shear flow problems are
solved using the alternate method mentioned previously As
before, the fluid flow is considered to be a Stokes' flow
past a'spﬁerical body. The sphere under comsideration was -
either solid or fluid, and the fluids considered were
either viscous-or micropolar. For all of these problems,
the effective viscosity of the external fluid is caleulated

and, where-applicable, comparisons are made.

iv-
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CHAPTER I

INTRODUCTION

Section 1. Background.

.The equations of motion used to describe the motion of
a viscous Newtonian fluid ﬁere first given by Navier (1822)
aﬁd later by Stokes (1851). If the fluid motion is ver}
‘slow (the Reynolds number is small) |

then the creeping'motion, or Stokes, equations

‘are used. For motions where inertial forces are not
negligible a perturbation scheme has been developed whereby
Stokes type solutions are valid near an object immersed in
the fluid, and Oseen type solutions are needed for flow far
from the body. M. VanDyke (1975) gives an excellent

discussion of perturbation theory.

A general so%ption to the creeping motion equations was
put forward by Laﬁb (1911). Because of their great
generality, these solutions have become the most popular
method for dealing with.such motions. However, the stream
function technique, given by Lagraﬁge (1781) and Stokes
(1843), is widely used for two-dimensional problems and for
those three-dimensional problems that exhibit some type of

symmetry. More recently, the singularity method, first



used.bf Lorentz (1897), has Seen revitaliﬁed by Chwang &
Wu (1974,1975) as another method for ﬁolving these problems.
For micropolar fluids the streand fimetions technique ar-ld
the singularity method have been extended by Ramkissoon &
Hajumdar (1976,1976) .

The creeping motion equations as describéd|above were
designed to consider the flow of a single phase fluid. In
a way these are an idealization because particles are
normally found suspended in almost every fluid. This
generated an interest in what is now commonly called
éuspensiou rheology. The first major works in this area
were done by Einstein (1906,1911), Hadamard (1911) and
Rybezynski (1911), and a very great interest in the study
of these types of fluids has persisted siﬁce that time, as

seen in the review articlés by Brenner (1972) and Leal

(1980).

The original investigations of creeping flow problems
mentioned above have.dgalt with viscous Newtonian fluids.
It has been found, however, that not all fluids are
Newtonian in nature. A number of theories have been put
forward to describe various types of non-Newtonian fluids.
The theory of microfluids was introduced by Eringen (1%64)
- and later Eringen (1966) developed the theory of
micropolar fluids. Micropolar fluids, a2 subeclass of



microfluids,. are fluid; that exhibit microinertial effeéts
and can support stresses and body couples. Cowin (19g8)'
has discﬁsseé}polarffluid the;ry very completely, and
expressed critiecism of certain boundary conditions that
have been used by some authors. .Publications dealing with
micropolar fluids are having the same genesis as those
‘which have dealt with viscous Newtonian fluids, but at a

much faster rate.

N
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Section 2. Outline of present work.

‘ Much work has been done on the low Reynolds number
flow of both viscous Newtonian'and micropolar fluids.
Three basic methods of approach are used to determine the
solutions to problems arising in these afeas. However,
each method suffers from various deficiencies. Lamb's
" gemeral solutions though applicable to the widest range
of problems are cumbersome and sometimes digficult to use
because of their extreme generality, especially for
considerations deéling with micropolar fluids. The stream
function technique, though relatively easy to use is
useful only for strictly two-dimensional problems or for
those three-dimensional problems which display some form
of symmetry. The singularity method ié.also easy to apply
Jbut requires much guesswork to determine the appropriate

si?gglarities necessary to solve any particular problem. -

In this work, a new form of general solution, having
its foundations in tensors, will be developed. This
solution will be given in suffici;nt generality to solve a
great number of problems taken from both viscous Newtonian
and micropolar fluid theories.

N

In the subsequent section the basic equations for a

micropolar ffuid, following Eringen (1966), will be given

and reworked td a form more suited to this work along with



constraints on the constants appearing in the equations.
The creeping motion equations are rewﬁrked so that the

velocity and microrotation vectors are uncoupled.

In chapter II sect;on 2, the new form for the general
solution to the creeping motlion equations of a viscous
Newtonian £luid will be developed. Section 3 will give the
solution for the uniform flow of a viscous fluid past a
_ stationary fluid sphere by using both the stream functioﬁ
technique and the new form as developed in section 2. Also,
a4 number of singular flow problems and the standard problems
dealing with flow past a solid spherical body for visccus"
Newtonian fluids will be solved using this new form.

Section & develops the solutions to the-creeping flow
equations for micropolar fluids'by extending the results in

section 2.

Chapter III discusses the problem of a uniform fluid
fiow past a fluid sphere. It is one of those rare problems
which can be handled by both the stream function technique
and the present method. Hence, the solution is given by
both methods. However, in ordeéhto compare results directly
and easily, without going over a lot of old ground, with
the work of previous authors (viscous flow past a solid
spﬁere Stokes (1851), viscous flow past a viscous sphere

Hadamard (1911) & Rybezynski (1911), miecropolar flow past a
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. .> " :
solid sphere Ramkigssoon & Majumdar (1976) ) the stream
function technique is discussed in greater detail. All

possible ‘combinations of viscous Newtonian and micr0polar

* fluids are considered , -

Chapter IV deals with a variety of linear shear flow
problems, using the technique developed in chapter II.

Some of the problems considered include the flow of a

- mlcropolar fluid past a solid sphere, the flow of a .

cicropolar fluid past a viscous Newtonian fluid sphere and
the flow of a micropolar fluid past a micropolar fluid
sphere. The expression for the effective viscosity is

obtained in most cases.



[ Iy - : . o
' Se;tion 3. Equations governing micropolar fluids.

The equgfions vhich need to be considered when
- discussing a micropo}ar fludd flow p;;blem are:
(i; the constitutive equations
(ii) the restrictions on the viscosity
coefficients , )
(iii) the fluid equatioms. A .

Eringen’ (1966) developed the theory and set forth the

general equations which are reproduced here.

(1) Congtitutive Equations. The constitutive equétions-
’ A

"relating the stress tensor and the couple stress tensor to

‘the rate of deformation tensor and the microrotation vector

were éiven by Eringen (1966) as
Cre™ ('P+Aur,r)skx+ u(dk,£+ Fz,k) + ‘(uz,k_eklrvr) 1.1
Pee™ & Vr,rfre FB Vi o Y Vi a2y
where Gki'is the identity tensor, €ryp 1S the alternating
tensor, is the k-th component of the wvelocity vector,
vy -1s the k-th component of the microrotation'féctor, p is

the thermodynamic pressure, and «,8,Y,k,d,u are constant
. . B 1

viscosity coefficients;

(ii) Restrictions on Viscosity Coefficients. If the

Clausius-Duhem inequality is satisfied locally for all A\p\
independent processes, then Eringen (1966) determined that



the viscosity coeff}cients listed above must satisfy the
inequalities . .
(32 + 2w )20, 2uhe0 , x>0 o
. . (1.3)
(Ba + 8 +7)>0 , -y<g<y , v>0

.K (ii1) Field Equations. The general field equations;

| églecting thermal effects, for an incompressible

~///2icropolar fluid with isotropic microstructure were giéen
by Eringen (1966) as ‘

V.u=20 ) (1.4)
oD um ~Up + oF + (ptx) Vou + x(Vxv) (1.5)
be ~ - ~ -
03D v= -2yt oL +(aH) V(T.¥) + 7 vk x(Vxw) (1.6)
where L u vélocity vector
¢5) v micrérotqtion vector
(iii) p therﬁodynamic pressure
(iv) » density
(v) j micro-inertia
(vi) F body force éer mit mass
(vii) L _ body couple per umit mass

(viii) «,B,v,x,u viscosity coefficients .
In the event that the motion is steady, that inertial effects
are negligible and that there are no bedy forces or body
couples then these equations reduce to the following

V.u =0 (1.4)

Y =(wtx) 7 ute(Txy) 1.7)



r(Vx E) - 2:3 -(a+8) V(V.f) - szv.. (1.8)

From.taking the divergence of (1.7) comes ,
V P=0 . - (1.9)

Taking the curl of (1 8) and simplifying with (1. 4) yields
¥ u = (1 L v (7 x 2 ’ (1.10)

Using fiow the operator (1 - i%-v ) on (1. 7) and using (1.9)

and (1.10) in the resultant gives

Vp = (pix) CI-ZIEV)V'E-;_VZE

Or in simplified-form

2 2 4 ’
(V = L)YvVvu=- 2 p (1.1
_ T Y (uFx)y
L = 2u+x (1.12)
Y (et

The curl of (1 7) and the divergence of (1.8) give
Cu 2 V (Vx u) = V v - V(V. v) L _ (1.13)

2r (V.g) - (a+8+y) V (V‘Y) = 0

or alternately with & = a+g+y (1.14)
2 .
(v -~ 2¢) (V.v) =0 (1.15)
< -~ ‘

Defining @w =Y x u and using the operator

2
(V- - 2¢) on (1.13) produces -
&

'

2
2K) V(v - yhe @] =0
3 - k. =

Hence, it is seen that it is possible to take

=t o + H (1.16)
K

t<

g-V¢+Vx§ (1.17)
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provided that the following is satisfied _ —

. 2 2 ' .

(v -2)V E=0 (1.18)
- - ]

A

By taking the divergence of (1.16) using (1.17) and (1.15)
‘the following devolves ’
2 2 '
(V -2x) V 6= 0 . (1.19)
K3 : '

Substitution of (1.16) in (1.8) and simplification of the

resultant gives

2 2 2 2
+ V-1 - =2 VxB)- &(V -2x)V 1.20
Yt ¢ ) @ =Y (720 (TxB)- (7 20076 (1.20)

Combining the Laplacian of (1.20) and the curl of (1.11)
2 2 2 2
- (V -2x)V (VxB) - 8 (Vv - 2x) V (Vo) =0
7 EE' Y - 2 K3

which irn conjumection with (1.19)'indicates that

-2 2
(V-2)97 (WxB) =0
Y

From substitution of (1.17) in (1.18) and using (1.19)
2 2
(V-2¢) V (VxB) =0
K3 v -

The net result from these last two expfessions is that
2
v (v x §) =0
Using this in (1.8) along with (1.16) yields, finally, the
LY

desired result

-

2
ve % [1 + yCQuix) Vv Jw+ & v (1.21)
- YRl ¥ Tet &
where ?=V2¢ must satisfy the relation
2 : i
VY=27 , (1.22)
= .

Hence, the final form for the equations to be solved is
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. |
vVp=0 . . (1.9)
VL) Vum-2¢  vp o (1.11)
- ) ‘ '
2
(V-2¢) v=0 ° . .
20 | | (1.22)

subject to the requirements
V.au=0 | , L (L.4)

2
ve [1+y@u+e) V 1 (Vxu) + & 7Y - (1.21)
. 2 _ y 2%

where the coefficients L,8 are defined as
2

L = :52u+:! ) (1.12)
Y (u+x ;

' § & (a+pty) , (1.14)

Equations (1.21) and (1.22) are worthy of special
mention because they give the actual form for the micro-
~ rotation vector when dealing with the creeping motien of -
a micfopolar fluid. Various special forms of the above
results have been used by such authors as Avudainayagam
(1976), Ramkissoon & Majumdar (1976), Rao & Rao (1971) and
Cowin\<1968).

Also, when k + 0 the equations (1.1) - {1.6) reduce to

the equations governing the creeping flow of an

incompressible, viscous, Newtonian fluid.



CHAPTER II

TENSOR SOLUTIONS AND SOME BOUNDARY VALUE. PROBLEMS
 FOR_VISCOUS NEWTONIAN FLUIDS.

Section 1. Introductory Comments.

| When solving problems involving the Stokes, or creeping
motion, equation;, use is normally made of either the
solutions derived by Lamb (1932) or the singularity method
as described by Chwang & Wu (1974, 1975) or the stream
function technique as deseribed by Happel & Brenner (1965).
- Most fluid flow problems commonly encountered can be solved
by at least one of these methbds. In many instances,
hoéever, the boundary cenditions are“péesented in a fashion
that is not readily translated'to‘a fotg that is directly
applicable to any of these metheds. In the literature the
boundary conditions are often given in é cartesian tensor
form which cannot always be easily put into a form that ig

usable for any of the forms mentioned above.

The objective in this chapter then is to develop,
partially, another form for the géneral solution based on
the use of cartesian teﬁsors. The solution thus generated
will be directly applicable to problems for which the
boundary conditions are given in cartesian tensor form and

to those that can easily be written in this manner. This

12



form for the general solution has previously been used in a
highly specialized form by Peery (1966) and Schowalter (1978).
The solution presented here will genéfalize and extend the

results obtained by these two authors.

In this chapter, use will be made of arbitrar&.
spatially constant, second and third order temnsors to
generate a partial general solution. It is found that the
solution so obtained is sufficient enough to solve most of
.éhe boundary value problems ﬁormaliy encountered in the

literature,

In section 2, the general solution will pe developed
starting with the pressure equation and thence proceediné z//q
- to the equations of motion..'Finally, the restrictions that
arise out of the continﬁity equation are imposed on the |

solution.

Section 3 will consider the problem of the slow uniform
flow of an incompressible viscous Néwtonian fluid past a
stationary Newtonian fluid sphere. The solution will be
given in two forms, by using the stream function technique
and by employing the form of the general solution developed
in section 2. Both methods are given so that the results
. from the new form of the geheral solution can be compared to
a known solution. The advantages for this new form will

also be pointed out. Additionally in the following

~
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subsections a mumber of examples will be detailed to _
further illustrate the applicability of this method. The-'
three standard examples of flow past a solid sphere will

be detailed in part.B{ In part C a number of singular
flows will be considered.

Section 4 extends the results for viscous Newtonian
fluids to micropolar fluids, the main thf;st of “this _
Present work, Exampleé of the application of thesé results
will not, however, be included in this section but will be

considered in the following chapters.

Section 5 will entail a discgssion of the solutions
gegérated in section 2 and a donsideration of possible
applications to other types of flow problems will be
pointed out. Further, the advantages of this form for the
general solution over each of the other three main types of

solution will be mentioned.



Section 2, Dévelopment of the solution,

From chapter I, section 3 the equations to be solved
for the slow steady flow of an incompressible, inertialess,

viscous Newtonian fluid are

Vzt__!. = Vp : . 2.1

V.u=20 | | - (2.2)

where p = 1 'p! and p! contains any conservative extraneous
body forces. It is well knoﬁn that the solutions for the
above system are equivalent to finding the solutions of
Vip a0 - (2.3)
VeV (2.1)

subject to the constraint that u once determined must be

15

restricted so that the continuity condition (2.2) is satisfied.

In order to generate solutions which will involve
cartesian tensors it is necessary to first of all, determine
the scalar invariants invelving these cartesian tensors in
combination with the position vector r. For any sﬁatially

constant second and third order tensors aij' Aijk respective-

:1y, the scalar invariantsllinear in aij' Aijk are

(B ayy
(A1) ey3p235%
(141) &y %X,

@) Ay

o

(2.4)
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™) ApiaXy
(viii AijkxinXk

Hence, a general form for p(r) is assumed to %e

P(x) = H'(r)aii + H‘(r)eijkaiji~+ H’(r)Aimmxt‘

+ H’(r)%imxi + H"(r)Am:LXi + g% (r)aijx xj
+ gt (r)AiijinX.k ' (2.5)
wvhere T = (X)) , 1€ {1,2,...,n} ' " 2.6)

Since a4, Aijk are general tensors, in order to satisfy
(2.3), the functions EP(r) must satisfy equationsfof the

form

g;r BP(r) + n+g§m-1) %_f EP(r) = G(r) | (2.7)

where n 1s the dimension of the Euclidean space with n<3
and-m 1s the order of the coefficient temsor and G(r) is
either known or zero. For the actual specific forms for

¥p, Vip, Uz’m., Uy g Uz,mm see the appendix. Solutions

will be given for n=3 throughout the main body of this
section and at the end, mention will be made of the special
changes necessary for the case n=2. Thus for the function
p(r), it is foumd that .

@) B(m)m - LA e @D 00 1,0

1 1
(1) HI(z)= A" + A,

2

6 _ 2 _ 6
(111) B3 ()= - » Ay~ 2D pomy] . x Apr?

6 _ 1 s 6
(iv) B3 (&)= - E%Z Ayr (n+2)+A,r n+A2— ﬁ%? A,r2
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[} - o+ \ 8 [} [ ]
E'%'-Z AsT (n 2)+A.11' n'i'A,_— n—-—-z-}_ Agrz

(vi) B3 (D)= Avr @) 4 a; |
4 il
‘(vil) BS(z)= Ayr- oY) }4/\/ | (2.8)

From equations (2.1) and (2.5) the general form for the

(v) HM (D)= -

veloclty component in the direction Xp 1s given by |
up(r) - h;(r)aiixg\k‘h:(r)eijkaijixp + h (r)epjkakj
+ h; (I)A Xij% + h: (r)%m + h]_ (r)AmimXiXp
fl' h:(r)Ampm + h; (r)AmiXiXp + hz(r)Amp

5 s s

+ + +

h;(r)aijxixjxp hz(r)apjxj h;(r)ajpxj
[ 1 6 .

+ I, (r)Aiijinka + hZ(r)%jkxjx'k

+ h,(r)AkaX Xk + h.a. (r)Ajkp ij l\,\ (2.9)
.Substltution of (2.9) and (2.5) in (2.1) requires that the
functions hg(r) satisfy the following differential equations

(1) & BP(x) + ntQmil) & BP () + g1 (D)
dr? T dr '
where Pe {0,1,.-.,6} ] (2.10)

(11) 4 hP(r) + nt(m=3) d hP(x) = g2(7)
dr? 4 T dr 1

where q¥l, p € {0,1,...,6}
with n,m as before and gi(r), g:(r) are either known

functions or zero. As before, see appendix for the specific

forms for u , U The solutions for egquations (2.10)

prqq p’q.

-

for n»3 are given by

(1) hi (D)= 2 AS e ) R T (2R ety
nn
(
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U0 . -1,
(11) By (r)mA,r~ @2)4 gplmmy )

3 . 1 . 1 2‘-'!1) 1 1 1
(111) h,(r)= - 1A, r P+a,r$2 ™ iply alon! 2
2 3 3 -1 [ 2 5 LY
(1v) h;(x)= -1 Ay (Ot - (042) 4y 2 0 (2.11)
' n

2 [ 1 [
+A, - éA‘+§n+22A,2 r?
_ nt+l) (n .
(¥) hi(z)= 1 A ®2)_ gA‘,+2§n+23 [Aj+A; )r D
(@2 (o+L) n+ '

2 - 2
+ AP ™Al al-20a0at 1y ato2a%y o
2n 2(:1&2) (#FZ)

(vi) h,(r)= "__];_Z:A:r' (@) pasr™ (@F2) 33 pom

n
+ As - gA:+§n+2%A:)r'= | (2.11) -
n+ n
3 € _-(n+2) & 3 6. e
(vii) h,fr)= 1 A,r - (A +2(nt2) [A+A, DT
’ (m+2) (m+%) ? ! Zn(m+2) =%

+Asr 2™l (A:-2[A1+A:1)r=-§A:-2A;) r
2n o+ n

; . S -(mts) v -(@+2),,,% -n
(viil) h, ()= -1 A,r +A,r +:A T

n
+ Ay - (As+(F2)AL) r? (2.11)
n+t n+ -
(1x) h, ()= 1 A ™D liamea) tateally o
m+2) (n+d) 2n(n+2)

- & (1
+a,r P gt adoalatea’ h 2o gaz-mfg r
Zn n n

(@) by ()= Abr™ (W84l - () o

L ' - 5 _(n_*_z) 5 .n, .S S s .
(Xi) hz (r)- - 1 Asr +A5I' +A5+ A.z"ZAa r-
' (m+Z) Z(n¥2)

(2,11)



s o s S ., S s 3
(x11) h;(r)- -1 AsT (n+2)fﬁyr n+A|+ As~2A,r2
: : '

o

n

Geiit) by (r)m Agr @6yt = (ot) ¢ Can

n

3 (3
+ Az-2A~ r’

n

. ‘ ' " . -
(xv) hs(z)= -1 Asr™ (ML -(42) ) 48 0nt Lo

[ 4 [ &
(xvi) ha(x)= -1 Asr™ (nM)'i'A r

(nhéd)

o+

2(m+4)
(n+2) & 6 [ 2
+Ay e+ Aa-2A,.r

(2.11)

Substitution of (2.9) using £2.11) in (2.2) glves rise to a

set of differential equations of the form

r g_h&"(:) + (otm) hY(x) = g, ()

r

(2.12)

where n,m &re as before and gs (r) involves hg(r) for q#l and

their derivatives.

the following restrictions of the AR

(1) A=
(11) 3A:'
(111) 24.=
(iv) Aq=
V) =
]

) Apm
(vii) Ap=

j
-2(n+2) [Ag+Ay+Ay ]
- (n+l) (o+6) A,

-n(oth) A,
N

"\
Ay X

-2(2-n) A, f[

This set of equations when solved impose

(2.13)

(2.13)

~£n-1) (n+2)A.,] 28,0~ nCALHALY

3
-2 (2"11) As

(2.13)

19
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-(n-1) (n+2)As + 24, - n(Aie+A¢)

2 2
A;- -2(2-!1) As

(viil) As=

x)

(x) Ai-
(xi) A= -2
(xi1) Ag=

(xii1) Ag= 0
(£1v) nA.=

- [A: + A:]

~(n-1) (n+2) AL + 2A¢ -n (Ay HAro)

(2-n) A;

-(n-1) (n+2) A.

(2.13)

When the changes indicated by (2.13) have been made in 2.8),

(2.11) the functions BEP(r), hg(r) fo n>3 are as follows

")
(i1)
(ii1)
(iv)
(V)
(vi)
(vii)
(viii)

(ix)

(x)

R® (x)=
H(r)=
B (z)=
HY (z)=
B ()=
H’(r);
HE (r)=
h:(r)-

hi(r)-

1
hz ()=

- Az T4 - - Aaz? (2.14)
Arr T4, A
D[ AstArtagl o~ (B2 1plmyn? = A
2[A:+A:+A:]r_(ﬁ+2)+A:r'n+A:— E%Z-A:rz

2L As+Ar+ASl o= (BF2) pp ) Byt E%Z‘Azéz

Arr (W2 4y

oD Al £

1 _ ! . 1
A;r (n+2)+%A1r o - m)l-c-ﬁ:z)Az

20
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(xi)

(xii)

(xiii)

(xiv)

(xv)

21

by (2)= Sk Agp s e (DL lemm ) g

2 [ 3 4 & L
- [A "ZA dn(A,+A ] e n A r2
2 & 8 4 -
hz (I)- zm])-—(m A,r (n+2)+ %—[A;'*'A,'PA;] r n

+ e Ary (2T n)+A + (otD) [Az-24, 142 (A, +A“'lr2

TE-IY T a-1) (2t 2y
_ — n+3 - A:r"
1(1')' L agr (g Al Dy galr

[A3-2A5+n(§‘+As)] _ DA r?
- D @+ (oF2) (aF8)

3 5 _ 13 6 3 -

& ~—
3 - Yy .
1

+

+ fotl) [Az 2Aa] +2 [A: +Au] r?
Z(n-1) (nF2)

_ n+3 A
nt2y (@re) 42T (2.14)
x(l‘)" L aer @+ 44 r'(n+2)+ gA r
N ¢ N 5
- [Az"ZAl o'*'ﬂ.(As+A,)] - naA r2
(n-1) (n+2) n+l) (8+2) (n
h: (r)= -(E_?z)—l(mA T (n+2)+ 1 [A5+A7-A3] r_n

1 » (2_ ) L) ’
* Ty AT A (2.14)



r:

(2.14)

(evit) By (e g Ol D 2

s - s -]
(xvill) ha(r)= gz Ast” PHDuasr Rt B2 Ay
. 5 s s _ 5 5
(Gix) Ra()= g AT TR g Ry 2
[ 3 [ 4 13 [ 3 6
(xx) hi(r)= Asz~ (TMO) _enioy (ac+asr+a, 1pm (OFE)
3 [ 4
- Zn+ISZE$S)A2

(x=x1) h:(r)-;;:}; Asr~ (BHE) faf - (m#2) ¢

n+3

t @D @) Asr?

Gxil) hs(r)= - Al () 1,8 -2y,

n+3
t D @) Azr?

(xxiii) he(r)= E-% Aer- () a0 - (m¥2) ¢

n+3
t T (o98) Aax? (2.14)

The funetions Hp(r) and hg(r),as given in equations
(2.14), are valid in an n-dimensional Euclidean space where
n>3. However, for the special case of n=2, the funetions
presented abo;;Jare still valid provided that certain minor

changes are made. The necessary changes in equations (2.14)
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are
(L) ™ +nr

(1i) 2'(n—1—'2)' A + -xAf

where s € {1,2,3,4}.

Equations (2.5) & (2.9) together with (2.14) comstitute
the general solutions of the Stokes' equations (2.1) & (2.2).
Once the boundary conditions for a specific problem are
prescribed, the corrésponding general solutios 1s easily
generated from these equations. Since these solutions are
not complete to the same degree as those of Lamb (1932), it
is natural to illustrate some of the flow situations where
~ they can be applied. In the next section, a number of

examples are detailed.
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Section 3. Examples.

A. Uniform Flow.

In this subsection the problem of the slow uniform
flow of an incompressible viscous fluid pqét a fluid sphere
will be considered. The solution will be generated using
both the stream funetion technique and the new form of the
general solution as given in section 2. One purpose for
doing this is so that the similarities and differences in
the final form can be considered almost side by side.
Aﬁother reason for &oing the work in such detail is that the
solution of this problem is required in the subsequent chapté;fﬁ

The equations to be considered and the boundary
conditions for the uniform flow of an incompressible
viscous fluid past a stationary fluld sphere are found to be

vy =0 | | (2.15)
wa, =P, | (2.16)

(1) u®e=Te
i

Z

(ii) IB ] «cw @z =0 (2,17

(1i1) u @ ¢ = y * r=1 @ra=1

) -@fnr=ul . @lnr er=1

?? - (E.E?r)r - E?r - (r.g?r)r @r=1

(v)

(1) Stream Punction Technique

= |

- e - . - -~ - by
E = Uez U cos Ber U sin eee
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X Ur + U cos 8, Ua+ ~U.sin 8 ag r + ®

Hence, it is assumed that

g - Ur(r,a) e. + Ue(r,e) eq
From (2.15) the restrictions on U, Uy are

2 -
%g (? -8ind Ur) + 3 (r sinB Us) 0

r . oF |
‘I Ur- 1 ay |, U -1 )4 (2.18)
r¥ sind 38 r sinf 3t ‘

then (2.15) is satisfied identically, and (2.17 (1) ) becomes

¥ g T sin ]

By taking the curl of (2.16) the required equations of

motion become

Vx (Vx 8 =0=-vig ’ (2.19)
where §EVx1__1=2c3
However, using (2.18) in the definition of @
) le w=r1rle (r Oy - B (Ur)
- ar
M m-r_le¢[_13_z_!'_-l 8 ( _1 ¥ ),
- sIne “3r2 T238 sins ae
= - 1 (3%¥ + sing _3 = )]e¢
r sine 3r? rt 36 ‘sing 38
and (2.19) thus requires solving
= . (2.20)

3% + sine
[F —"_5_6-(_1—_ BB)] ¥

If the function ¥(r,8) is taken to be such that
¥(r,8) = £(r) sin?s (2.21)
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then equation (2.20) will de satisfied identically if
- 2;* £(r) = 0
dr* 2
Thus it is necessary to choose
£(r) = C Ar™+ Br + Cr? + Dr' ) (2.22)
which when substituted in (2.21) and subsequently in
(2.18) gives ’

P - 2
Q= (24 +2B+2C+0Dr

( & ) cos® -

- - - - 2
UB e %T % 2C 4Dr ) sin®

and (2.17 (1)) requires that D=0, c-z% .

For the internal flow to be finite @ r=0 from (2.17(i1))
it is necessary to choose A = B =-0. From the normal
velocity conditions (2.17(iii)) come the set of equations

2A+ 2B+ U =0

C+D=20
and from (2.17(iv)) it‘is found that

A-B~-Um=-2C-4D

and the COntinuity'of taﬁgential stress (2.17(v)) @ f—l gives
6u{®a = 6,T)p

In tabular form, the values for the coefficients for

the interior and exterior flows are, with g = ¥

L@

U



}
-+ k3
A o 0
B - 0(20+3 0
To
- (2.23)
‘-v -GU
ket
i ' ol
EiI-}'O‘s

In order to determine the pressure, these expressions
for ul, ge must be substituted back into (2.16) which must

—

then be solved.

(i1) New Form

Using now the method outl:.ned in §(2.2) for the same

pProblem written in tensor form

U g o= 0 (2.24)
uuz'm = p,2 : (2.25)

(1) ui'n = es:zazi'. U6£3

-

1) Jul] <= @ =0
(i11) ufX, = uix, = 0 @ r=1 (2.26)

(iv) uz - ungxz - ui - u;'xjxl @ r=1
(V) 5%y - LK X, = tijxj 'tézxkxzxi @ =1

8

27
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< From (2.26(1)), (2;5), (2.9) the appropriate choice in
(2.14) is A‘j“ =0,V $1 "8, =T, a;3 =0 otherwise

.1 T
1) P = (Arr 7+ A,) TR,

r_ 1 2
(1) wy = (Asr™+ BAx™'- Iy A)UX X,

| 1, - I - ! 1.} 2 - '
+ (- X Asr 4+ XA T 4+ A + 5 AT )Uszs (2.27)

From bouhdary condition (2.26(1)) it ié found necessary to
R | 1
choose A2 =0 , A¢ = 1 and from (2.26(11)) for the
1 1 '
inner flow As = A;y =0 5 2
-For thg normal velocities at the boumndary the following set
of equations are derived ;

2 1 1.
3‘A3+A1+1=0

P}

Ae + v Az = 0
‘ -
Io A: -
v
and from (2.26(iv)) 1t is found that
1 1 : 1 1
%—As-%Al-l'-As-%f'Az

Lastly, from the continuity of tangential stress (2,.26(v))

Iﬁ tabular form, when solved,the values for the coefficients

for the interior and exterior flows are as follows, with
w(e)
g =

u | i

28
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| ( )
1 o
A X R TeC=))
1 o]
70 A 0 IYeE=32
*

These coefficients also determine the’ pressure funetion

for this problem.

Clearly, once the general solution is found by each
method, the amount of work necessary-to determine the
numerical value of the-coefficients for each is approximately
the same. The new form for fhe general solution, however,
‘already determines the value for p(r) both inside and
ldutside the sphere while much work must still be done to
detefmine p(r) for the stream funcfion techniéue. This
_makes it desirable to use the new form for the general
solution instead of the stream function technique whenever

the value of p(r) “is required.

In the next two éubsectioms a number of examples will be considered,

29
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in less detail, to further illustrate the method. .The boundary
conditions will be written in cartesian tensor form using the

simplest possible forms for the tensors 253 and A, The

ijk’
structure of the general solution is deduced from the primary
boundary conditions. It must be emphasized that the éxamples-
included, while not exhaustive, represent a sample of the kinds

of problems that .can be handled by this approach.
B. Flow past a Solid.Spherical Body,

The three standard examples of flow past a solid
spherical body will be discussed. For the uniform flow and
quadratic shear flow examples, the standard solutlons can be
found in the book by J. Happel & H. Brenner (1965) while the
linear shear flow example can be found in G.K. Batchelof (1967).
1. The boundary conditions for the uniférm creeping flow of-

a fluid past a stationarf solid spherical body are given by

(L) P ® Po
(i) u, = Ue (2.29)
(i41) w=0 @z =1

The cartesian tensor forms for these boundary conditions are

. ] )
i1y p, 334 /

(1) - 7 P €5 5%%K3 (2.30)

(1ii) u, =0 @r =1

L
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The simpiest cartesian tensor forms required for the
matching of (2,29) and (2.30) are given as -
' ¢)) aii"rpa , @213 = U , aij = 0 otherwise = (2.31)

A At 0 Yy

From the carteslan temsor forms of the boundary conditions,

the most natural choices for the coefficients in (2.14) are

_ .
A3 =0 .-:m $0,1 | (2.32)
Substitution of (2.14) using (2.32) in (2.5) & (2.9) gives

-] 1 1
P - -3
(l) D Azaii + (A1r + Az)eijkaiji
0 _ I _ 1 _ 1
(11) u, = Asr™%a X, + (A,x %+ XA, - rlG Az)eijkaiji

+ (- %A;r'% XA, T I A + 5 Asr )ezjkak_]
(2. 33)
In order for (2.33) to agree with the first two of (2.30), it
is necessary to choose A: =1, A; =0, A: = 1. Agreement

with the surface boundary condition in (2.30) necessitates
0 1 3 1 3
Ay =0, Ay = A= o- 7. Hence the general solution (2.39)

will describe the uniform creeping flow of a fluid past a
fixed spherical solid provided that

‘(i) Az =1 . N

1 !
O (2.34)

! 3
Ciii) Ay, = z;
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(iv) Af =1

(V) A; = As =0 (2.34)

2. Any linear shearing flow for a fluid past a solid
spherical body is described by the following set of
boundary conditions

i) p_=0

(1) u, = 2%, | ‘. (2.35)

(111) u, = %[alj - aj£ Xj] @r=1

The propef choices for the tensors aij & Aijk in this case

are
(1 a;4 =0 (2.36)

(i1) Ays = 0 v

Consequently, from an examination of (2.35), the appropriate
choice fér the coefficients in-(2.14) 1is
m_ o 3
Ay =0 Vp?* 5 | (2.37)

With this choice, the general solution obtained by
substituting (2.37) in (2.14) and subsequently in (2.5) and
(2.9) is '

5 o 5
1> p = YA;r %+ AZ)_aijxixj



s - 3 -
(1) u, = (A,r THEAT ’f f%-A:)aininxz | (2.38)

s . 5 5
+ (- © Asr S+ Agr 3+ Ay + é; 4,r=)azjxj

5 5 _ - 5 5 .
Agr 5. Asr 3+ A. + H Azrz)aj”Xj

Ui U

+ (-

The general solution (2.38) will satisfy all of the
boundary conditions of (2.35) 1if

(1) A, = -5 N
(11) As =3 ‘\
5 (2.39)

(111) A¢ = 1 | | N

(iv) A = Al = Ay =0
3. The last eﬁample to be considered is the quadratic
shearing flow of a fluid past a uniformly translating,
axially located, solid spherical body. The boundary
conditions for th%s gimple example of a quadratic flow are
given by
(1) p, = po + 4b32

—

T om ' : 2 2 - . .
/,(ii) u, [a + b(x? + vy )] e, (2.40)
({i1) w=Te, @r=1
These same boundary conditions written in a form suitabdle

for the type of general solution found in this chapter can

be expressed as

33
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(1) p_ = a5y +2Aimmxi ' | .

(11) u, - Azijij + oA, (2.41)

(111) u, =T, @r =1

where the appropriate choice for the tensors a3 4 & Aijk are

found to be

(1) a;; = po, 854 = 0 otherwise (2.42)
(11) As1: = Asza = b Aijk = 0 otherwise
a

and a = 35 - The temsor form for the boundary conditions

(2.41) and the assumed form for the coefficient tensors

suggest that the appropriate choice for the coefficients is

Aj-O V7‘026 ) (2.43)

Substitution of (2.43) in (2.14) and thence in (2.5) and
(2.9) yields

0 6 6 6 o 2 _ ¢
(1) P = Aszayy +[2(As + Ay + AT + Ayr ’+A,] Ay Xy
6 6 “ -, 6
+ [-10(As + Ay + Ay T+ Aa Aijkxixjxk

(ii) uz-A:r-3aiiX£+[- %Agr'7+ﬁir'5+%A:r_3- f%

{A:'ZA:+3(A:+A:0)}‘ slnﬁzr’]Af XiX, ) (2.44)
1.6 -3 1 .6 6 2 - 2 o 2 1
+ B'SASI. + 3-(A7+A,-A,)'r 3+%A1r 1+A5+ 2‘0‘

{4(Az 2A5)+2 (An""Az o)}rz Tz Azr] zmm
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35

¢ _ ¢ & _
+[A,r ’-S(A:+A7+Ag)r 7. Ilz-A:]Aiijixjkaz

+

jﬂ*

- [ s _ 5 1.8 ] 1
- 7 5
[ T +A.5!.' +A‘+ IzAgl': Aljkxjxk

[
-

‘The general solution (2. 44) will satlsfy the first two

+

“ﬂd

6 b
s'_*‘Alf*' Izl A:rz
d

N =7
s +Agr

1!—‘

AgieX5%
(2.44 )"

boundary conditions of (2 41) provided that Az = 1, A; -2,

2
Ag ZE’ Az - 0, A; + A. + A,, = 1. In order to satisfy the

surface boundary condition in (2. 41) the coefficients must

[ 2 3 . 2 -3 11 . 6
be AS - 01 AI - mm_a)_%r AS - §S(U-a)+ _B— = %AS '

6 . [ 1] B [ 5 1] 6 [ 3
Ay = 5(As +A, +A, )nAs"g'As » A7 FAy = X 4+ Ap
2

Ag = 2%-. Thus the Tequired values of the coefficients in

(2.44) necessary to produce the flow given by (ZL{L) are

4]
(i) Az = 1
2 3 ' | -
(1) Ay = % (U-a)-%
(111) A: = 2 (2.45)
(1v) Ay = 32 (v-a) + 3L - gl
2 a
(v) Ay = 35
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\ 36
3 ‘ .
vi) Ay = 35 - : (2.45)
g8
6 -6
Vll) Ag = é - As
8
3 6 6
Viii) Ag - % + As - A7 >

6

ix) Arg= 1 - Ag ~ A,

/ -
6 6 &

x) Ag, A,, Ay arbitrary

. o 6
Xi) .A3 == Az- 0

C. Singular Flows

L. A number of singular flows, some Of which are detailed below,
can also be deduced from the general solutions given in sec-

tion 2.

One of the Primar¥ singular flows is the flow due to a
source’located at r = 0. For this flow

1) p'= a..
ii (2.456)

ii) u2 = N aii Xg

The simplest tensor forms for aij’ Aijk in eqhations(z.s)and
(2.9) are .

i) a5 = Py aij = © otherwise | ‘ (2'47).

ll)-Aijk = o V lf jl’ k

If a1y = a,;, = a,;, = p, + then equations(z.ﬂ,[2.9)using(2.l4)
S =
describe source flow if
0
A, =1
_ 0 s
ias +1la,=¢
6
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S 5 5 5 S

iii) A,, Aj, Ag, Ag, A are arbitrarj (2.48)

If, however, not all of Q11+ @22,.833 are the same, then

o

i) A, = 1
0

ii) Ay = o

. 5 5 S 5 5

iii) Al_Az"A3_A5-A5—0
. 5

iv) As is arbitrary

(2.49)

2. Closely associated with the problem above is the flow

due to a doublet located at r = o. In this example
, E

i) p=a, | (2.50)
. . : =3 _s

J.:.)‘u2 = B, sijkakj r -3 Blsijkaijixz r
which dictates that the simplest tensor forms for aij,fgijk
are

i) a.. = p_, a,. arbitrary for i#j (2.51)

ii o ij

ii) Aijk = o\fl, i, k

Thus equations (2.5) (2.9)with(2.14) will describe doublet

flow if
0 : .
i) A, =1~ ) . .
1 )
ii) A5 = =3B,
8 1 1 1 5

iii) By = A, = A, = B¢ = 0, Aj =0 (2.52}

3. Another primary singular flow is the flow due to what is
commonly called a Stokeslet located at r=o. The pressure

and velocity expressed in cartesian tensor form are
s i

i) gl-Zsijkaiji r (2.53}
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-3 _1
B omg T ey XX T T eggedys T

Clearly, an appropriate choice for the coefficient tensors
is
i) a,. arbitrary \f i,] )
3 ' (2.540
ii) Aijk = 0 Vlfj,k
Equations (2.9, (.9} along with(2.l4)reproduce flow due to
a Stokeslet located at r =o if
' 1
i) Ay =1 .
. 1 1 1 ‘ )
1) Ay = Ay m J, =0 KZ-SS)
0 s
111)Ak=Aj-0 Vkrj |
4. As the doublet is associated with the source, so.also is

the rotelet associated with the Stokeslet. For a rotelet

.

located at r—=o

oe=agy

il) u, = a X, ¢ - ’ (2.56)

573

whereb)}\_ the simplest appropriate choices for the coefficient

-~

tensors are

i) aii = po, aij = _aji for :L'f‘j

ii) .zxijk -0 Vl,j,k {2.57)

If ai1: = az2 = as; =po then equations 2.9, (2.9)with (2.14)
3

describe rotelet flow if

s |
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<}
i) A, =1
5 5
ii) AS o AB
5 _ .
1ii) Ag = 3 -, (2.58)
0 5 :
iv) A, - -1 2a,
.5 56 1
V) A, A, ‘arbitrary . {vi) Aj = 0 Vj
- \_, . *
On the other Mand if not all of a,,, 422+ 233 are the same
then
0
i) Az = 1
s
0 5 5 s 5 s G.s59)
lll) Ay = Ay = A,= Ay = Ag = Ag =0
1
~ oiv) Aj =0 ‘{ J
5. The final example known as Hill's spherical vortex is
somewhat different in-—the sense that this flow PoOssesses a

singularity at infinity rather than at the origin. For this

example

PP magy ot Reyga X

. L2.60)
[ - + 2 . 2 -
ii) u, %[eijkaijixi T {a 2re) evgjkakj]
Hence, the coefficient tensors are
i) a5 ™ Py aij arbitrary for i
(2.64)
ii) A, =o Vi, ik

1jk
and the appropriate choices for the coefficients in egquations

(2.14) so that equations (2.5], (2.9) represent Hill's
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spherical vortex are

3 0
l) Az

& . 1
il) Az

1

iii) A,

0
lV) A3

) 5
v} A.
J

- A
1
- —-a2 Az
10 ' (2.62)
1 1
- A1 - A3 - 0.

e Vs E
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© Section 4,

In section 2, solutions were developed which were
suitable for problems dealing with the steady creeping flow
of a viscous Newtonian fluid. Much of the emphasis inythis
work, however, is on the steady creeping flow of_micropolar
fluids. The form assumed for-the velocity and pré;sure |
functions in seétion 2 is;found to be suitable fér'use in
the equations governing the flow of micropolar fluids also.

. As a result, the technique is extended to obtain the general
solutions for such fluids, whose goverﬁing equations are

>

vlp = 0 ) ‘ -- . (2.63)

Vzg.a -2_}1'2 v (2.64) :
P (vZ_Lz)Y = H‘ . (2.65)

.- N

(v~ 2y = 0 . 2.66),

The solution of equafion.(2.63) is given by equations
(2.5) & (2.8), and the sqlutions of equations (2.64) with
suitable modifications can be deduced from éﬁuations 2.9) &
(2.11). The functions ¥ , v , in equations (2.66), (2.65),
will be assumed to have the same structural form as the-
functions p , u as expressed by equations (2.5), (2.9).

The general forms for ¢(E) and v(E) "are, thus, taken to be
' P
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i+

¥ (_:r_:) = 'Fo (r) aii+Fl (r)eijkaijiﬂ?: (r)A:me
+F’ (r)‘l\nimxi'w.. () A Ifiw’ () ainin +

+ F“(r)Aiijixjxk B | (2.67)
v£(5) - f; (r)aiixz-i-fi (r)eijkaiji.}{1+f;(r)ezjkakj :l-

X, +

2 3‘

lom L
3 ‘ N N
2 () Apy it Er (D) A Ry X +Ea (DA, +

5 5 5
+£; () aininX£+f; () aLij+f, (x) aj zxj +

6 ' 3
6 &
+£, (r)Aj %ijk + £, (r)Ajkzxjxk . | (2.68)

In general,; the differential equations satisfied by .
the fumections FP(r) and fg(r) are the homogeneous and’

inhomogeneous Bessel differential equations

g2 n+(2m-1) d 2 -
= P wZe-D) 4 §P(ry- -G—KFP(r)‘ K(r) (2.69)
L B+ TEWD 4Ry 12R(r) = ki) (2.70)

dr?



4 D otCme3) 4 = bl
E;:fq(r>+__£%___ HEfg(r)-szg(r)f‘*kygfzij q¥l

(2 71)

where n > 2 is the dimension of the Euclidean space, m is
the order of the coefficient tensor and the funetions R(x) ,
k, () k (r) are either known or zero. ~ The actugl specific
forms of the above differential equations are given in the
appendix. Further, since the flow problems considered in
this work deal only with n = 3 and also only with linear
shearing flow and unlform flow, the solutions are developed

only for those functions which involve the coefficient

tensor aij’ Hence, it is found that

5
F ()

~# [DSI + DT |
y 1L (¥y) + D, g(y)J

Fi(r) =yt Dir_é ) + Dilicy>
L r

[ | D;
fu)-y%nh%@>+ﬂgw>-%:?@>-

D2 Ii‘(Y)] - ‘ Co(2:72)

' 2x
- z = e

whene y = Mr | M 5 - ~_
The solutione for the functions fg(r) associated with

the tensor aij are

3
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(A1) £1(2)

(1i1)  £,(2)

i) £ ()

1 5 2 5 ' '
+ ryr(As- %ﬁz?l‘z"' x"‘}[ B:I_q_.(x) +

0 B: B2 .
+BZI_}(x)‘ 3T I_.'!’.(X)“ ST Ii_(x)]

-1,.1 1 - - I
= fr(As+ %Ax)r 3+ %—’Hr 3‘_f:'5~_ +

+ _i_ 1 1 |
X B;I_é(x) + BzI_;(X)]

1 1 . 1 .
= szt 2arm Lasemi

| (2.73)
) 1 1 1

+ prai-a0) + girac Babre +

-3 1 1
+ x “[?,I_%(x) + B.I%(x) -

Bl T
- ok Iy - % 1;(::)]
- [F(Ay+ -l;]‘lA r’7 + Lars - T}, Au +

-3 5 s
+ x BII-‘E(X) + BzI%CX)]
(2.73)
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5 . 5 _ s 5
W £ ) = Leagr Wply sl 0 1,0 28
SL -n . Lz L2 n
+ (A.+ L--~-A2)1'2 + x-i [B:I i(x) +
SL? -

L3

. 5
e 4 B B
+ B.Ié(x) .- EEZL I_{_(x) - ;L—:- I; (X)]

5 10 1,5 - 2
(vi) f£4(x) = —-(Aa+ ——A1) - =A,r - ——(Aa' —Az) +
’ . 5L2 L2 L2

' 5 2 s _ 5
+ L(;‘Lg"' L’%z)rz + x -i [B;I é(X) -+
SLz . n . .7 '

H

5 B, B
‘*" B.I%(X) - 5—1-";- I.%(X)- 5L2 I%(X)]

(2.73)

- 2 =’ Kn ‘w K(2u+K)
where x =1Lr , L y(utx) Y (u+i)

Application of the continuity condition, equation (1.4),

to the functions fg(r) , in equation (2.73), imposes the
.4 . v
following restrictions on the coefficlents A? , BT

J

(1) A = 0

(11) Ay = —F (AstAD)

1 1
(111) L AL = L 4,
L? 5n

(2.74)
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. 1
W) - 2 Ay = oL
1 s 4 s
(v) =-A, = — A,
(vi) A, = -4
0 5 5
(vii) B, = - $ _(Bs + By)

(viii) By = - § (B. + BL)

' 1 2 1
(ix) B, = - 35,

1 2 1
: (x) B, = - L 5,
. L
x1) B, = - L2 (8, + BJ)
.- 5
(xii) B, = - %2 (B, + B3)
2.74)
- Hence, the general solutions for the velocity in a
micropolar fluid flow are
) 5 5 0 5
@) £,00) = 2ocag+ Halyrss Lalms 145 -{Ag+A 1)
512 n L2 3L2 n

EI;A’rz G330, *[ OB §<xﬂ



(11)

(1it)

(iv)

v)

(vi)

1
£:(x) .=

1
f2(x) =

5
£1(x) =

5
fa(z) =

.
f1(x) =

- 47

- 1 1 - .1_ I
;%(A,+ TRERE R

§§1-x'§[§§i_§(x) + Bili(xﬂ

1
1 éAx
n

1
——(Ay+
3L

- 1 1 1
Yr S+ i—A,r 1+ I-‘l—z(%-Ag-A;) +

2 fz-2+x'3131 I.()+-’5I o+
S g NS ] |

-3 1
x * B, [Ik(x) + %Ii(x)]
“1,,5, 10,5 -5 . 1,5 -5 ‘4 S
Lz (A3+ ?Al)r + nﬁklr - m Az -

3 | (BB y(x) +(BetBL) T, (x)
== .35_,;.555_

5 105

- 5 _ l s s
—l—-(A3+ —AI)I' 5. L.AsI' S. i-(A.s---%:.‘!lz) +
512 n 12 12 n

D 5r"-+ x“} BSI ()+§(BS+BS)I +
zﬁAz s = 1+Bs _,}(x)

BuIy(x) + $(BitBy) I.E(x)]

5 5. - 5 -
—I—(A,-i-EA;)r S+ l_.A r 3- L(A:__Z_As) +
5 2
SLZ n L2 LZ n

- Avri+ x| BII L ()+HBABDT L(x) +
m 2 3 __i_ 3 3 _%

BeI (%) + $(Bi+B,) I;(x)] (2.75)
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Section 5. <Discussion.

This chapter has presented a new form for the general

solution\ro\-the steady creepiné.motion equations for a
viseous Newtonian fluid. This general form can be applied
to a great variety of examples in creeping motion because of

the general nature of the tensors'aij and Aijk‘

‘This form for the geheral solution &isplays #dvantages
over the other methods of determining solutions for particu-
lar problems. When a comparison to Lamb's general solution
is made, it is found that, even though Lamb's solution can
solve a great many more problems, the new form presented in
this chapter is much easier to apply beéause so few
coefficients are left to determine once the boundary

—Eﬁnditions are written dowm and this new form élso indicates
which powers of r can be combined for any particular type of
flow problem. The singularity method is as easy to apply as
this new form of solution once thémsingularities have been
determined. The requlsite singularities are, however,
normally very difficult to determine for a particular
problem;:it is basically a trial and error method, which ?
makes the new form in this chapter more easily applicable.
The stream function technique, as found in seétion 3, is no
more difficult to use than the nmew form found in this
chapter, but its chief disadvantages are that it is useful

only for strictly two-dimensional flow or for three-
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“dimensional flows exhibiting some sort of- symmetry and that
the function p(r) is still not known explicitly once the

stream function is known.

This new form can also be used for problems other than
the steady creeping flow of a viscous Newtonian fluid. Some
of the other areas where this new form can be used include-
the quasi steady and unsteady creeping motion of a viscous
Newtonian fluid, when the time dependence is separable, and
for the steady, quasi-steady and unsteady creeping motion of
a micropolaf flﬁid. In fact, Lamb's solutions and the
singularity method are not appiic&ble to micropolar fluid’
flows and the stream function technique has the same
limitations for micropolar fluids as for viscous Newtonian
fluids. This form for the general solution is also ideally
suited to problems concerning a fluid to fluid interface and
for Stokes' solutions in perturbation theory. Other areas
for application might also arise from the fact that this
general solution is valid in an n-dimensional Euclidean

space where n<3.



CHAPTER III

-

A FLUID SPHERE IN A UNIFORM FLOW FIELD

Section.l. Introduction.

In recent years considerable attention has been'given to
fluid mechanical theories in which the coupie stress, in
addition to the ndrmal Cauchy stress, and ;he spin of the
fluid particle, over and above the usual velocity-vector,
play a significant role. ‘These fluids have been suggested to
describe the co lex hesggiour of sﬁch materials as liquid
crystals, fluid suspensions and the flow of blood. Eringen
(1966) has introduced a theory for such fluids, which he
calls micropolar fluids, in which the fluid can support
stress aﬁd body couples and possess a rotation field whieh is
independent of the velocity field. The theory, thus, has two
independent kinematical variables: the velocity vector uy
and the spin or microrotation vector vy - The linear
constitutive equation for the stress conta!hs'an additionai
material éoefficient, which describes the coupling between
u; and vy. The linear equation for the coupl; stress
‘contains an additional three ﬁiscosity coefficients. These

equations along with constraints on the viscosity coefficients

and the field equations have already been detailed in

50



chapter I sectton 3.

The standard solution for the flow of a visecous fluid
past a viscous fluid dfOp can be found in Happel and Brenner
(1965). Because of uncertainty of the appropriate relation
between the microrotation and the vorticity at the interface
"of the two flulds a parameter S has been 1ntroduced which
- turns out to have a significanq effect on the drag along
with the viscosity ratio. The viscous fluid drop in a
viscous fluid was first considered by Rybezynski (1911) and
Hadamard (1911). Ramkissoon and Majumdar (1976) calculated
the drag for the uniform flow of a micropolar fluid past a
solid sphere and it is found that the solution‘presented in
section & reduceslto their solution if the viseous fluid

sphere is assumed to tend to a solid sphere.

In section 2 the basic equations along with their
solutions in terms of the stream function will be presented.
The stream function will be used because this is one of the
few micropolar fluid flow problems for which it will work.

The solutions will be for both viscous Newtonian and

micropolar fluids.

In section 3 the flow of a viscous Newtonian fluid past
a micropolar fluid drop will be discussed. The complete
solution in terms of velocity and mierorotation components,

the stream function, the stress and the drag will be



-computed., Additionally, a comparison of the drag for this
prublém will be made to the drag for the flow of a viscous
fluid past a viscbus fluid drop.

In sections 4 and 5 the identical procedure will be
carried out as far as possible. The\flows in these two
sections, however, will be the flow of a micropolar-fluid
past a viscous Newtonian fluid drop and the flow of a

micropolar f£luid past a micropolar fluid drop.

Section 6 considers the problém of the uniform flow of
a micropolar fluid past a viscous Newtonian fluid sphére
and the problem of the uniform flow of a viscous Newtonian
fluid past a micropolar fluid sphere. The method used is
that developed in Chapter II.
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Séction 2, Basie equations and their solurions.

- ) -

The basic equations, neglecting thermal effects for an

inéompressible steady micropolar f£luid where it is assumed
that there are no body forces or bdody couples and that
inertial effects are negligible were ﬁresented in section 3
of chapter-Ii They will be given again here along with the
boundary conditions and other simplifying assumptions.

The constitutive equations for the stress tensor =

and the couple stress tgnsor o , are
S T T TR I vy ) F
+ E(ul,k = Ek!.r?r) (3.1)

e = V. 6, +Bw o ™We (3.2)

The restrictions on the viscosity coefficients necessary to
- maintain non—négative energy dissipation are
(37 + 2p +<)> 0 , 2p + x>0 , k> 0

_ (3.3)
(3a + B +y) > 0, -y By, >0

The field equations under the éssumptions outlined above are

from chapter I, section 3 given by

=

Vip = 0 (3.4)
- = -zr - :
(v? Lz)vzg Ty vp (3'.5)

-

AP | (3.6) -
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where the following must also hold
v.u =0 | ' - (3.7)

v = [}+ IS%;El- 1 (V x 2)~+ § Vé (3.8)

Inflpe above equations, the various quantities have the

following meanings: u is the velocity vector, v 1is the

microrotation vector, p is the thermodynamic pressﬁxe,

a,B,Y,x,A,u are constant viscosity coefficients, Erg is
the Cauchy étrefg‘teﬁgor, Ty, is the couple spress tensor,
6k£ is the identity temsor, €xor is the altgrnating tensor,
§ = atphy , 12 = SHAME)

| The boundary conditions for the various probleums ;o be

considered are

(L gci) = U;z ) Y(e) finite as r + @
(1i) 9(1) , v finice @r =0
. (3.9)
i) @@ a0 erea
(iv) E(e)_(g(e) r)r - u(l)—(‘l}(i) 'E)E @ r - 3

@ e Qx-e{Prxx, = e Px-exz, % @r=a

(Vi) v = s s€fo.]] ez-a

Since the flow far upstream from the body is uniform, it is

possible to introduce the Stokes'_stream funetion as shown in
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chapter II section 3, That 1is, if
R S {
@ Y Y. r¥s1n0 39

-1 Y '

L.

- 1 -~
- m¢e¢ = (m Ez?)e¢

Mg

(1it) vx

, 9% .sin® 3 1 3
(tv) E* = ar* t 5 3F (sine 539

‘From the boundary conditions (3.9) and the field equations

(3.4) - (3.8) it is easy to deduce that V.v = 0. Hence it

is necessary in (3.6) and (3.8) to choose

Also equation (3.7) is satisfied identically and taking the
curl of (3.5) the following is obtained
(E2 - LI)E*Y? = 0 (3.12)

and using (3.11) and (3.10) in (3.8) yilelds .

- 1 px ‘ )

Since the operator in (3.12) is linear and commutative, it

is convenient to write o
v =9, + 9, (3.14)
where -

E*v, = 0 (3.15)

(E*-L2)¥%, -‘s? | (3.16)
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Following Happel & Brenner (1973) it is assumed -

~

7 - [f,(r) + fz(r)] sin?g ] - (3.17

With this form for ¥ the differential equations to be solved

are

w [&-- Ji]zfxcf>.- 0

dr? 2
- (3.18)
, .dz - 2 2 . )
1) |=— " (=#u)] f.(x) =0
 dr? r? ‘
The solutions to (3318) are
(1) £:(x) = (A,;x7'+ Byr + Cyr? + D,r%)
' (3.19)

) £ = @0F [E1, an + FiI, (o))

However,Nsince

I‘i‘ (Lr)% ‘cosh Lr - (Lr) ! sinh Lr]

I"i‘ (Lr)-’\/v%r .Sinh Lr - (Lr) ! cosh Lr]

]

3

@

the solution f,(r) can be rewritten

(1) £.(x) -\E- [(EI- %rx) cosh Lr +(F,- %}) sinh 1.;]

or ' (3.20)
(11) £,(x) = [Ez(l— Ll?) elT + F, (14 ,}E)e‘“]

Hence the expressions for the streanm fgnction, the velocity
components, the microrotation vector and the tangential

Cauchy stress are



v - [A,r"' + By + Cyr? + pyrt + E: E=Del” +

+ Fz(Efnge‘Lr] sinlg

u, = [m,r‘s + 2By} + 2C, + 2D,r? + 2L2E, @El)el‘r +

L33
¢ + 2L=F2(L£il)e'Lr] cose
L3
: >
- - . a2
U, - [é,r Y -B,r ! -2C, -4D,r? -L-‘Ez(LL—r———I‘—]:E!‘-)eLr +
: . L!rl

. 22 _‘
+ Lo, (LIZHLOHL Lr] sine
Llrs ~

v, - [—B,r‘z +5D,r + a‘%‘—LzEz(L—;%)eLr +
. I

+ 1xper, (B2 LT ) ine
‘ Lr2 .

‘ N - <1292 -
tre m "(211"'::)[31\;1' LIS 3D1r + L’Ez( Lix2+3Lr B)eLr +
‘ Ltz®

242 -
-!-""L’F2 (-I—'.r_m'_gr_s_) e Lr] sing
Ltx*

| (3.21)
From Happel & Brenner (1973) the solutioég; in terms of the

stream function, for a viscous Newton;an_Fluid are

¥ = EA::” + Bgr + Cor? + Dzr‘] sin?s

= 2Azr-’ + 2321'—'1 + ZC:-_ + 2D23'.'2 cosh. |
b . (3.22)
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Cwy = [Aer™ - Bar™ - 2¢s - 4D,r7Y sine
Wy = [—13.::-‘z + SDQ\J\.'] sing

€. = -2y [3A;r"‘ + 3n=r] sin6 - (3.22)

9
Fi_r;é.lly, the formula for calculating the drag on the sphere
is given by ' .

- 2 - ‘ ) )
D Zwaﬁ (tn,cose trrsine)lsine de (3.23).
r.= a

A

PP |
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Section 3, ' Micrepolar drop in a viscous Flutd.

In this section the uniform flow of a viscous Newtonian
fluid past a micropolar f£luld drop will be considered. The
boundary conditions (3.9) once th%dstream function has been

assumed to exist become

i) vie), g r?sin?s as r + o
(11) ¥ is finite  @r = 0
i) o® =@ oo @r=a
(3.24)
(iv) ﬂge) = ugi) @r=aga ' . .
@ 6O 2D eras
(vi) v w ggled Rr=a
A ¢
From equations (3.22) the exterior viscous flow gives
¥(e) = [A,,r'1 + B,r + g-rzl sin?g
u(s)- [ZAzr-’ + 2B,r ! + U] cos8
u(® = [arrr - BT U] stne (3.25)

(e)

w'y’ = -B.r 2s5ine

tgg) ~-61%A,r " *sing
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In a similar fashion from (3.21) for the interior micropolar
flow
' !(i)

[c1r=+ D,r + 2E,( cosh Lr- —2+Bh I'r)]sinz
(3.26)

u(i)- {%Cx+ 2D,r2+ ﬁgi( cosh Lr- —EEEE—EE5] éose

: 2423 .
u{R- [—2c1- 4D,r? + Er:_( cosh'Lr- HLTD) siny Lz)]sine |

MO [SDIr + 2000 LR cosh 1r- Ll}"h—LE)] sine

t(i)- - (2yrtx) 3D1r +2E, 3 cosh Lr-—(3+Lzr2) sinh Lr\ ine
s : »3 s Lr ’

From the velocity and tangential stress boundary conéitions
in (3.24) come the ﬁdllowing

- Z .
a1A2+aBz"-g-§-— /

C, + a2D, = -2a”2E, [cosh La - —ﬁ%]
a"*A, - aB, + 2a%C, + 4a‘*D, =

Ua? + 2, [ cosh La - (1+Lza")im1'§—1'§-]

2 _ -
zﬁ; 3a A, - 3aD, = 2a ‘E, [3 cosh La-(3+L7a=)ii%E]

The final boundary condition in (3.24) gives

SB2+52°D,+ g‘:—ﬁ)— L2E, [a cosh La-—g—j‘-%é—l‘é] =0
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The solution to this system of algebraic equations with the

. . 3 ) 2“ .
changes M = a cosh La, N = _EEEE_EE, o, = ziie " is

- Dal 3 ) L2a? ..
b T ey oz (MW - M E

asz = 3+20' Ua’

m (M'N) —3-—N} E,

3 =
asc, z%t%%:> ZTI%ETT {Sa,(M-N)--£§§£:§3L=a=N} 2,

3 - 2n2
a.SDx - %tgﬁ::l)'f‘ 2%%_:.—0% {(M"'N)- L—B—Na } Ez
- . :
(3.27)
EZ- 2E= -
4 -
- 3x 135 + 2¢(S-3)g, | L
K}20:- . -N)-L%a g1) (uﬁ)(H-N)Pa‘]_

When the solutions (3.27) are compared with the solutdons
(2.23) in chapter II section 3 it is seen that the first term

in each of A,, -2?B,, a’C,, a’D, are essentially the same as
the solutions given there. The other terms related to f,

are due to the presence of the spin in the micropolar fluid,
As 1s to be expected, these terms systematically disapﬁear
in the limit asxand/or ytend to zero. Because of the
axisymmetrical nature of the flow assumed and because of the-
similar dependence on the 8 co-ordinate terms in both the
classiéél (viscous fluid drop in a viscous fluid) and in the
present case, the overall pattern of the stream-lines appears
similar in both cases. 1In particular, the circulation

within the droplet, as is observed in the classical case, is
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also predicted in the present situation, The difference in
the present case is, however, that stream-lines are
displaced towards or away from the origin deﬁending on the
magnitu&es of S and 0; . Similar remarks apply for the

stream-lines outs;de of the aphere.

Ihe drag can be caleulated using (3.23) or if it is
calculated for the undetermined coefficients it is found that
B = 4neB | ’ (3.28)
where ¢ = 2u® or ¢ = 24® + «© depending on ﬁhether the
flow is viscous Newtonian or micfopolar. For the classical

case of a viscous drop in a viscous fluid

o .

R = e e P
u€ |

where g = ;I

For the case of a micropolar fluid drop in a viscous

Newtonian‘flui&, the calculated drag is
B 4m(2u®) [ 2(3#201)0a = 5 (M-N- Lialyy Bl
‘ H - +0, Z{T40y) 3 a2

When the value for E,in (3.27) is substituted and the
resulting expression is appropriately regrouped the

expression for the drag becomes
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5 - _[que'(lﬂua)ﬂa]g .

(It+ay)

N
[ 13% 3Q4-N) -L2a?N1H6 (L+os) (uhxDIL2a? D) |
5

<y [3or-(2+9)] (304-N)-L2a%K} + 6(Ltoy) (i axHIL2a (e-W) ]

e e -
or since oy= E—%E—I £ g = QI it is possible to write -
u o u

g =[5K1[QU1+21(20’L"3H{3(M N) _L282N}+6 (1+01) (11 +D: )L2a2 ('M—N)]
1

5t [30,-249)] (304 -L2a2m146 (Lo, el L2a 00w

(3.30)
A graphical represén;ation of this relationship is given on
the next page. From eQuation (3.30)it is easy to ngfiée
that g , apart from other quantities, depends significantly
upon the values of g, and S. It is seen that for large

values of ¢, i.e. when ¢, > 0.375 and for all S € [0 l]

% < 1. Howevertjbhen g, .< 0.375 there is a small region
1 . .

where D > 1 is possible for different values of S. The

1-

obvious conclusion reached here is that when fluid inside of
the sphere is a micropolar fluid, the drag on the sphere will,
in general, be smaller that when the. fluid inside of the ‘
sphere is a viscous Newtonian flulid. However, it is possible

to ﬁaye an increase in drag through the approprlate choices

—"/

of [« X and S. - v
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"DRAG COMPARISON FOR A MICROPOLAR SPHERE IN A' VISCOUS FLUID.

Lo’i- ——————— ‘f - - £’ifji_
0.9 1
0.8 -%>1 ' GI-R%%.
0.7
0.6 1
zj? 05 ] g<1
0.4 1
0.3 °
0.2 3
0.1 T

0.1 0.2 0.3 0.4 o5 0.6 0.7 0.8
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On ﬁhe next few pages a number of tables are given to
show how variations in the parameters, which arlse for mlcro-
polar fluid flows, affect ‘the angle of intersection between
various streamlines and lines ©f constant radius. In all of

the tables that follow

Ke [6&n, ani is the coupling viscosity

Le [5.1, lo] is the characteristic length

sg [6, ]] is the parameter appearing in the
compromise boundary condition

e [5.1, Lﬂ - is the ratio of external to internal
viscosity

H = 4(l+‘)9’ can be determlned from (2.21) and

g (2.23) (Viscous) and (3. 26) and

(3.27) (Micropolar) N



TABLE 1.

Changes in the value of theta for variable s.

€
H=-0.125 x =0.1 2 = 0.1 o = 4.6

- " 0.1 0.4 0.7 1.0 Viscous
& 46.7 47.8 49.0 50.3 74.7
.45 43.8 4.7 45.6 46.7 61.6
.5 41.4 42.1 42.9 43.8 564.7
.55 39.6 40.2 40.9 41.6 50.3
.6 38.3 38.8 39.4 40.0 47.4 -
65 | 37.6 | 38.1 38.6 392 45.7
.7 37.5 | 37.9 38.4 39.0 45.0
.75 38.2 38.6 39.1 39.6 45.5
.8 40.0 4.5 | 410 | 415 47.4
.85 | 43.8 444 44.9 45.5 52.1
9 52.6 53.3 54.0 54.8 64.3




TABLE 2. Changes in the val\ue of theta for variable o

H=-0.125 «= 1.0 4= 0.1 8 =1.0
G ‘ <
r 0.1 0.7 4.6 10.0 Visdous
4 40,5 83.8 54.1 49,7 74.7
45 | 36.1 65.3 | 47.8 | 44.3 61.6
5 33.0 57.7 43.5 0.6 54.7
.55 30.8 52.9 4.8 " | 37.9 50.3
6 29.2 49.9 38.3 36.2 [ 47.4
.65 28.1 48.2 37.7 | 35.2 45.7
7 27.6 47.6 37.4 34.9 45.0
75 27.6 48.3 38.0 35.4 45.5
8 28.4 50.8 39.8 37.1 47 .4
.85 30.3 56.6 43.8 40.6 52.1
9 34,8 73.3 52.8 48.6 64.3




TABLE 3. Changes in the value of theta for variable

£

H = -0.125

4

L = 0.1 s =1.0 c=10.4
2\ 0.1 1.0 10.0° . Viscous -
& 72.8 | 76.5 27.0 74.7
45 60.9 | 62.5 | 62.8 | 6l.6
5 S4.4 55.4 1 s4.7
.55 50.1 5Q.9 50.3

Ll .6 47.3 42§e~*\ 4ra
.65 45,7 46.3 45.7
.7 45.0 45.6 45.0
.75 | 45.5 46.1 45.5
.8 47.5 48.1 47.8
.85 52.2 53.0 52.1
.9 64.5 65.8 64.3
|
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L .
TABLE 4. Changes~in the value of theta for variable 3

B =-0.125  .=0.1 s=1.0 = g=0.4
‘ ‘ _ —

. - r

N 0.1 lL 1.0 10.0 Viscous

& 72.8 | 2.9 0.0 74.7

451 60,9 | 302 0.0 61.6

.5 L 544 3.6 0.0 54.7

.55 50.1 4.0 0.0 50.3

.6 47.3 | &.b 0.0 | 47.4

.65 65.7 | 4.8 0:0 - 45.7

.7 45.0 5.4 0.0 45.0

.75 . 45.5 6.1 0.0 45.5

.8 47.5 7.1 0.1 47.4

.85 52.2 8.4 0.1 52.1

.9 64.5 10.5 0.1 64.3
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Section 4. Viscous drop in a mieropolar flutd,

This section will deal with the uniform flow of &
micropolar fluid past a viscous Newtonian fluid drop A
similar 1 es_pigation for a solid sphere has been carried
- out by Ramkissoon & Hajumdar (1976). The value determined
for the drag in this section will be compared to the drag = . -
for the flow of a mieropolar £luid past a solid sphere, The
boundary conditions will be identical to Fhos given in -

(3. 2&)“ The values for the stream funetion, velocity
components, vorticity, microrotation and tangential stress
Tor both the internal and external flows differ from those
given by (3.25) and (3.26). Fér this problem, they are
given by -

From equé.tions (3 ."21) for the exterior micropolar
fluid flow the following hold g :

‘ :
?(e) - [A,r"i';+ B,r + g-rz-f- F, (Lﬁl) ] sin2g

ol® o [231;-‘ + 2Byr ' + U + 2L=Fz(1—ﬂ‘£)e'l‘:] cosg
r - T. Lar!

&
uge) - [f\,r-’-.Blr-‘- Lze(w)eﬁLr] sing

1/’:4——\
. e e .
0}- [-B,r'=.+ we oy, (LI olr ]sine
K Lx . o
x

tf_g) - (2u%+c®) | 38,27 %+10F, {M} 'Lr]sine
L/I'
(3.31)



For the flow of the interior viscous fluid (3.22) gives

() . [c;rz--%-. Dzlr“]-s'in’e.. .
‘uk‘(i) - [ZC: l+ ZD;r% cose"
u(g) - [-2(:; - 4D=_f€l sing

(D P
m¢\ - SDzr sing

tf_g-), - -2ph [3D,r]‘sine

From the boundary conditions for the velocity and tangential

stress in (3.24) come the following
C; + &zDg - é

Ay + a8, = T2 _F, (E*LLIL%}e La

~ h 2,2
A1 - a%By + 2aC; + 4a’D, = Ua’ - F, (Alailial,

3A __gE__ BaSD -V_F (3+3L8+Lza:) e-La
1 2u+: ) 2 1 :

~

TKe final- I&oundéi’y condition Qf (3.24) now gives

Bl + Sa’SD; B +K Lze c1+La)
K

“The solution of this system of equations produce the-

following values&or the coefficients

. - U&’ - 3+2q 2.2 Fz
,A; ZTI;EET {?FL&+ o, L*a E;rz

¢3.32)

e 12

(3.33)
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' -(3+25,)0a® , 20 s
2 - 2.2
on - St fren L e
2’C: = 77ro B+ ey et — i
2 +Uz Le a
a’p,= (o] Ua’ - g L2a2 Fz

12a? F2_ - 3e®{3+(2-55) 02} ~ Ua®
Yz~ z ‘
Le™ 131(2-58)021x® - 6(1+0,) (1) (1+La) 2

(3.33)
In‘the present case, as in the previous eiample, the

general features of the stream—liﬁes,'boph inside and
outside the déép, are similar to those observed in the
claséical cﬁse. The presence of the micropolar fluid
ocoutside the drop changes the streamlines inside the drop {
‘slightly. However, circulation inside the droplet is still
predicted. When ¥ + 0, the above results reduce to the
‘classicai case as given in chapter II section 3, while when
02 + 0 (i.e. when the sphere is considered solid) the above

expressions reduce to those given by Ramkissoon and

Majumdar (1976). : T

The drag is again calculated by using equation (3.28),
which after some simplification is



~6x.n€ + ."e_).'cy&a«. ). Ua
B -~ "2 _ 2 X

1+0,
- 6 (1+9,) (%) (1+L2)
X 6C1+02) (W ®) (14La) - x®{3+(2-58)02}

. e
o= EI , and the definition
u

: e, e
Using the faet that g, = %E_;E_
2u

of Dy in equation (3.29) it is possible, as before, to write

b . 5(1+°z)(lle+fe) (1+La) -l ¢3.34)
b 7 |6(1+0s) (1®c®) (1+La) - re{3+(2—53)og}J

A graphical interpretation of this result appears on the

. next page. Also from (3.34) it is possible to observe that

D >D; when s is small i.e. when s < 0.5, for all values of

.
0:. However, for values of s closer to ome and o; > 1 there

1s a region where D < D,. Moreover, for o, < 1 and for all

values of s it is found that § > D,. It is thus possible to
conciude.that the drag on'a viscous sphere moving in a
micropolar fluid is, generally speaking, gréater than the
drag for a viscous sphere in a viscous fluid. This result
1s just the opposite of the result in the previoﬁé seétion.
The drag found in this section depends strongiy-on the
cholces of ¢, and s and expr%sses a result which is slightly
different from the result foé‘a solid sphere in a micropolar
fluid which Ramkissoon and Majumdar (1976) conclude is

always greater that the classical drag.
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On the next few pages a number of tables are given to

illustrate how changes in the various parameters, which

appear in the study of micropolar fluids, affect the angle of

intersection of various streamlines and lines of ,constant

radius.
KE
e

s5€

Ce

In all of the tables that follow

{o.l_n, l]on]
[o, 1] -

[o.l, 1o] |

4{1lto) ¥
a}

is the coupling vis cosity
is the characteristic length

is the parameter that appears in the
compromise boundary condition

is the ratio of external to internal
viscosities \

éan be determined from (2.21) and (2.23)
(Viscous) and (3.31) and (3.33)
(Micropolar)

Fp



TABLE 5a. Change in the value of theta for variable s.

E=1 < = 1.0 t =10.0 ¢ = 7.6
r 0.1 0.4 0.7 1.0 Viscous
11| 417 48.0 57.7 83.1 50.1
1.6 13.9 14.5 15.2 15.9 14.7
2.1 9.2 9.3 9.4 9.6 9.3
2.6 6.8 6.9 6.9 7.0 6.9
3.1 5.5 5.5 5.5 5.5 5.5
3.6 4.6 4.6 4.6 4.6 4.6
4.1 3.9 3.9 3.9 3.9 3.9
4.6 3.4 3.4 3.4 3.4 3.4
5.1 3.0 3.0 3.0 3.0 3.0
5.6 2.7 2.7 2.7 2.7 2-7
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TABLE 5b. Change in the value of theta for variable s.

H=1 <= 1.0 g = 10.0 o= 4.6
r 0.1 0.4 0.7 1.0 . Viscous
1.1 56.9 68.6 - 78.5
1.6 17.5 18.3 19.1 20.0 18.7
2.1 11.4 11.6 11.8 12.0 11.7
2.6 8.5 8.6 8.7 8.7 8.6
3.1 6.8 6.8 6.9 6.9 6.9
3.6 5.7 5.7 5.7 5.7 5.7
4.1 4.9 4.9 4.9 4.9 4.9
4.6 4.3 4.3 4.3 4.3 4.3
5.1 3.8 3.9 3.9 3.8 3.9
|56 | 3.4 3.4 3.4 3.4 3.4




¢ TABLE 6a.

\

Change in the value of theta for variable g

(micropolar)
H=1 kK = 1.0 L = 10,0 s = 1.0
o 0.1 2.5 4.6 7.6
1.1 i/ - 83.1
1.6 56.9 25.9 20.0. '15‘.9
2.1 31.3 15.5 12.0 9.6
2.6 22.1 11.2 8.7 7.0
3.1 17.1 8.8 6.9 5.5
3.6 '14.0 7.3 5.7 4.6
4.1 11.8 6.2 4.9 3.9
4.6 10.2 5.4 4.3 3.4
5.1 9.0 4.8 3.8 3.0
5.6 8.1 4.3 3.4 2.7
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TABLE 6b. Change in the value-of theta for variable o

(viscous)
H=1 k= 1.0 g = 10.0 s =1.0
A 0.1 2.5 4.6 7.6
1.1 50.1
1.6 69.7 26.7 18.7 14.7
2.1 32.5 15.2 1 11.7 9.3
2.6 22.3 11.1 8.6 6.9
3.1 17.1 8.8 6.9 5.5
3.6 13.9 7.3 5.7 4.6
4.1 11.8 6.2 4.9 3.9
4.6 10.2 5.4 4.3 3.4
5.1 9.0 4.8 3.9 3.0
5.6 8.0 4.3 3.4 2.7
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TABLE 7. Change in the ‘value of theta for variable «

H=1.0 2 = 10.0 s=1.0 =76
¥ 0.1 | 1.0 10.0 | Viscous
< 1.1 83.1 83.1 83.1 50.1
1.6 15.9 15.9 15.9 14.7
2.1 9.6 9.6 9:6 9.3
2.6 7.0 7.0 7.0 | 699
3.1 5.5 5.5| 5.5 5.5
) 3.6 4.6 4.6 4.6 | 4.6
% 4.1 3.9 3.9 3.9 | 3.9
4.6 3.4 J 3.4 3.4 J 3.4
5.1 3.0 | 3.0 3.0 ’ 3.0
| 5.6 2.7 2.7 2.7 ) 2.7




TABLE 8. Change in the value of theta.for variable ¢

E=1.0 < = 0.1 s =1.0 o= 7.6
N 0.1 1.0 10.0 Viscous
1.1 51.6 75.4 83.1 50.1
1.6 14.8 15.8 | 15.9 14.7
2.1 9.4 9.6 9.6 9.3
2.6 6.9 7.0 7.0 6.9
3.1 5.5 5.5 5.5 Ysis
3.6 ‘4.6 46 | 46 4.6
4.1 3.9 3.9 3.9 3.9
4.6 3.4 3.4 3.4 ! 3.4
5.1 3.0 3.0 |« 3.0 3.0
5.6 2.7 2.7 | 2.7 2.7




Section 5. ' Micropolar @rop in' a micropolat ¥iwld, |

IN order to complete the study of umniform flow in this
chapter the work in this section will deal with the uniform
flow of a micropolar fluid past a micropolar fluid sphere.
The final boundary condition of (3, 24) will be changed and
another boundary conditi&ll be added. These two new

be

boundary conditiqns will aken to be o
v(e)--v(i)_ @r =g
-(3.35)
MO - u®  era,

Using equations (3.21) for the external flow it is found

ole) | [A,r"+B;r+ g-r"i-F:(l%-l—')e'Lr]sinzB

Uf_e) = [’ZA,r +231r ‘+U+2L2F1C1+Lr Lr]cose
' L3y}

2 -
uge) - [A;r _B,r !-THLIF, (LtLr+liz?, ‘1 sing
L3ip?

\’(E) ‘- B!r 2+ u 'H: LzF (1+Lr) ‘Lr ine
° € ‘ - Lr?

2.2 _
t(e) = -(21%®) [3A;r"+L’F2 (______3+3Lr+L e Lr]sine
b - . Lbrh
. e, e e, .e 2.2 -
1(_2) - [Z(Ye_se) By _ 2y -:c [(ZY +8:)(1+La)+ye‘L a;lee I‘al.sine
. r’ Y LI" -,

(3.36)
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In a similari fashion frem (3 . 2-1) fcfr' the internal flow
- ' ‘. ‘ R . ) i - ' B
!(i)-[c,:=+n,r~+2zz (coah‘ i: - %h-l-_‘-‘) stnZg
. : L T o '

_ ) 4710 |
‘11(-1)' 2C;+2D, r2+ égi—(cosh Lir— %_L_r) cosd

(i) Ezc -4D;r2+ Qz- cosh Li 1 nh L r)] stng
r“

(i) = 5D, r-i-g-ﬂi—)- Lﬁl cosh L - sich L r)]

r!

: ' 1 i
1) f s¢yE-s1yp, 2 e (2y1sgl [cosb. Lr _sinh [, rl_
Ds [’(Y ) “"_f_T- { Y H87) _: Lo

o i .
o Y:.(Li): Sinh#}gz] sins

tg) -(2u -h: )[3D,r+2Ez(—cosh L r HQI r) sinh L r)]sins

L™ r _
(3.37)
From the bmdary'con&itions remaining in eqﬁation (3.28)

_ : i
: i sinh L™7a
come the following with M= a3 cosh La , N = T
: o < L

»

. . . ) ) .
A’_ + 8231 + Fz (T1+L8)e La - —Z—Ua

a’C, + a®p; + 2E; (M-N) = 0

A, -a2B,+F, (Jf"'Li*'Lzaz)e'La - Ua’=-283C,-4a’D,+2E, [(H-N)-(‘L-ia)zlﬂ

e, e 2.2y _ .
P EA,+F= e L‘5‘]-3‘-3513,4,25: [Borm-atay]
TR 'S LT . - .
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The. £inal two boundary conditions as expressed in equations
(3.35) glve |

LY

e, e i 1
a8+ p2azr, (L8 Tous,sp 42 )
|

K

atore,fo] -

% ®-g®yarp, 2t I'(zye+ﬁe)(1+1.a)+fr_=a= 5,0 L2
T

i.4ip . | '
=5(y*-gh)a®p,; 2P [(271'4'81) -1 -y Lta) =n] a?E,
’ R | .

The solution of this set of equati&hs produces for the

e, e
coefficients the following values with ¢, = QEIiEI
2p et

Ua’ 1 3+20’ 2 o2 F e-La ' .
s ol bl Tecrobats lun mamald G-39)
S i
-+ I¢E=I0) {3&(-N]"(L a)2N} B,

-La
- =(3+20,)0a% | 3+2¢ Foe 2 _

- sty Bk - alom g,
'-La

a’C;' E-(i__T-O E?: + 6—(%?_—71.2&2 g-ler— -

150..&4 '35 (2- 30.)@ 2)2N, g

(1to,)

- asp. = Zt%;géy - L2a2 EAE_Ei
1 . +o. +o',. L

-

§2+305.) (3fu-n] - (L a)=n} £,

(3.38)
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& -
B ~La

. e -\ SRR “&a_‘\c‘a e . ti.ag
L o0 2045 a+o..)t1+L_a)_ z

Lz az

—

L 5x (1-c.){3fu- N - a)N}- 2(1. a) 2 it )(1+c..)|':n-ﬂ 2,
‘ ®(1-04) -2 (u e %) (L40.) (14La) - T T

¥

\_\
- [

- &(uo.)cﬁni) [c2r®+8%) (1412) 4712 2]
—~x® [s ri-glyo,+2 (r€-8%) (3420, )'} X

g 5t Q- o) (3]-N - ataymy-2 1 ta) ? (ptee ) Qon) o] |
6k (1+os )[ (1-04) -2 (1% )(1+o.)(1+r.a)]

 (304-2)+10 B=){3 1t ’N}_
+ (E(1+o [flg —

_ uraebyroyt +85) P - @ta) =N}]§2
¥ ‘

- [{6 (r+8%) (1+o) - [5(yE-8 Ty 042 (34204 (r®-8%) (u®+®))

(1412)+2y%(1-04)L%a% =

v

+ re(l—c.)-Z(ue+:e)(l+c.)(1+La)] X E§i'

-

As in the pPrevious examples the drag is still to be caleculated
using either (3.23) or (3.28).

The latter will again be used
here to give. |



"D = 4 Qﬁe+ne{%3{ﬂa:§ LY 7‘!\“'La} -

- 3.(1?23. {3[1{-@' - '(Lfa) 2N} i—;]

{-
¢

e Ke 2 .
a “6T(eH 1{)(1+30~)U§/
— 140,

X

2ue+re

e |
Since u%+ 52- 2 1% and o, =
2uTH

. - e .
= (J = 31- this can be
M .
~ rewritten in the form ]
-La iy2
b:op,|1-—2 (L=a=F=e ) 0t -] - L2,
] [ 30a% \ L (3+20,)0a? [ ]

| (3.39)
-La -
— where LzazFJE—- and E; are given in (3.38). The value for

the drag as determlned :Ln equatiod (3.39) will Teduce to that
in equation (3.34) 1f E;= Q0 and if s = 1 in (3.34). In an
A analogous fashion, equation (3.39) with F; = 0 is the same as
. equation (3.30) with s = 1,
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Section 6.

In séccions 3; 4 the problems of the ﬁniform flow of a
viscous Newtonia;'fluid past a micropolar fluid drop and of
a'micropolar fluid past a viscous Newtonian fiuidgdrop were
considered in detail by using the stream function approach.
In this section, the solutions to both of these problems
will be sketched using the technique developed in chapter 1I.

LS ‘ .
For a viscous fluid subjected to a uniform flow the‘
general solutions to the equations;of motion are

.

p(f) - (A:r_s-i- A;) eijk&iji C (3.40)

1. 1 ! - 1 .t .
- 54 = s_
uz(f) (AT 5+ - A r 5y Az)eijkaijixl f

1 -, 01 .t - B 2 1
- 3 = 1 2
+ ( }A:r +T'| A1r + As + 5; Azr)Egjkakj

(3.41)
oL ales o LA - -
w0 = G A - A (e I (3.42)
X Y\n 1 5 1 1 ‘
2 - 6 - 6
. (3.43

X, | XF %

1 3., -
t!'m? - tpq 2 T - - E‘ (2_A3r 64 s'n—Azr I)Emjk(ajq'aqj)qu‘k
| (3.44)

1f the viscous fluid is outside of a spherical body,

-

N~



then

(1) .A; =0

B

o~ | (3.45)
- (i1) A, |

Cn the othér hand, for a viscous fluid inside of a
spherical body
(L) Ay = 0 ,
. (3.46)
(i) Ay = O

For a micropolar fluid subjected to 2 miform flow, the

general solutions to the equations of motion are
1 o 1 ‘
P(E) = (A r 3+A2)eijkaij_i 13.47)
(£) = (Ayr7s- LL ajrmsy L2 42 X,X, +°
Vo D) = (AsT - T AT - Add ey XX,
boy L2, o0 -7:2‘1.2 1, N

&
n

1 1 1 - 1 ) S 1 1

2 1 2 1l -
- %—— C,d-} (x)ex'!" '3-%— nga CX)E xieijkaijixx +

+[3-%5-(A;+ ;"A{i—'% Lar b A
r ’ \ .
+ & Ayr? + Cy (5 +d *
5;1' 2T Cs(Td7(x) s(x))e™ -
1 x2 ) “x
- gh( v d,(x) + ds (x))e ef.jkakj

(3.49)
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X
3 d:-dc X L -
+ 51 (KX e ](azq )%y (3.50)
X - 1 1 - ' ) S 1.
t{_nm "ri y—}-- - 32—( ré‘-(A NI 2 n Ayr 3+ %Az-

1y

1 _ v 1 - .
-6L3Cyds (x)e™ + 6L2C.d4 (x)e x-)eijkaiji

3 (3.51)
Com fé,_s_ toq ]Eg&% - - r21'(-_ %r(A;'*' %Aisr"+ -
‘ + = A:r‘*-sLsg;%ﬁex +
+ 3L'=cfd.(x)e"‘)emjk(ajq-aqj)quk (3.52)

. If the micropolar fluid is outside of a spherical body,
then /

(1i) Ag = -L2 - o (3.53)

-3

(1) As = 0

' 1
(1i1) Csy =0

If, however, the micropolar fluid is on the interior of
a spherical body, then

(L) A, =0
(1i) Ay = 0 | (3.54)
(111) C; = Cu |



Theﬁndary conditions used in the fluid aphere case
 when a micropolar fluid is involved are

(L) uex - uixi = 0 @Qr=a
X X .
e e - i 2 -
(i‘i) u!.-upr? u- ?? @r_a
. e
(11 X, - pq ﬁfq X = ¢3.55)
-

i ‘ .
Com’y - T %&% @r=a
(iv) \;,-59 | o @r=a

In the.fingl boundary condltion w 1is associated with
the viscous Newtonian fluid while v - 1s coupled with the
micropolar fluid,

-For a.viscous Newtonian sphere in a micropolar fluid
subjected to uniform flow by using equation (3.46) in
equations (3.40) - (3.44) and (3.53) in equations (3.47) -

(3.52) in the boundary conditions (3.55)

1
(1) 2 (A, + ji A,)a 34 % Aa f+ 1+

3L2 n®
2.2 -La !
+ (L a da(La) - ds (La))e Cg = 0

. 1 l 1
(11) A + Aza? = 0
© 5 e (3.56)
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(iii) —-(A+—A) la’a‘1+1-'
P J3L l .

L2a?
-5 d,(La) 4+ d (La))e Laci- Agt 52'-1- Aza?

—

, e ._2 106 1. - ' - 1 1
v n | [;(Aﬁr o Aida 43L2d, (La)e I“'@'C.] - ni[ %_Az]

1, - 3'd;‘a-d -La,! - X
(v) _ﬁ- A‘a 3-"1- 23( S(LL; K(La))e aC; = 2% Az

' . e e
From equation (3.56) with- gi= I = QL+§L
' o on ~2n
/’ .

17,1 g o - -La

1
) o7 4287 = prdy - agtey de@ade™ 0 C,

. 1 - L -

(ii) XA, = I(l'?‘—c)_ + n-%_l.—o_)- de(La)e C:

.... 1 -
(1ii) -T]-]'-A,a Im —é—%ﬁ%— + 2 +3 de(La)e La C:

‘ 1
(iv) - — 6 1
31,2 (A + = A )a 3 = Zl-_(l'f'_c)_ -

o

- E(I%&T (ds(La)+2(l+a)Lza=d,QLa))e;La c.

- 1
) eL2 ¢, =

- k€{3+(2-55)q} La
x®{3+(2-55)6} - 6(ux)®(1+0) (1+La)

(3.57)



For a -micropolar sphei;e in a viscous Newtonian fluid
subjected to uniform flow by using equation (3 45) 'in
~ equations (3.40) - (3.44) and (3.54) in equations (3.47) ~
(3.52) in the boundary conditions (3.55) |

(1) 348”3+ %-A:a'l +1=0

(1i) = (% AL-AY) +A§%-A;az + C:_[-(Lzazd,(La)-ds(La))eLa
L2 : :

+ (L2a2d,(La) - d (La))e‘LE] - 0

3 [ 3 .
(141) 51; G ai-a0 + £ ajart c) [c‘—‘%i d, (La)+d(La))el® -

L.2ga2

- (5~ d,(La)+d‘(La))e-La] -

- - A2+ %Aia_l +1
(iv) ot [g% A,- 3L2(d,(La)e™? - d,(La)e'La)C;] -
= ne[ZA:a--']

. \ v) - Zl;,' A; - g{} [dg(La%-;dg(La) JLa _

L3

_ 4 <La%;d.(La>e-La] ¢l =5 alas

’ | (3.58)

e e
From equations (3.58) with ¢ = Oy = _2u1_
n 2yhe)

p



1 8 .
BECE L DR ) [Lz.a’d.v(t-a-)e“ -

- Lzazd,(La)e‘La] Cu

a .

1,2 40, -
(ii) ;I-:;.(E Az"A‘) - RI_GF?;Y + R-SFU)— Lzazd7 (La)eLa -

1

-.Lzazd.(La)e‘La]c. -
- x [ds(LamLa - 4 cLa>e'La]c1
. ) |
iit) - ala™ - - G BED i utate qael -
- i,u?-azd, (La)e'La]Ci
I - L]
W) § Asa™> = grriy - gty [Lzazd’“‘a’em. -

' - L2a24, (La)e™ L8 ] C.

(¥) Cu = (3s+(25-5) 0} 5 1{ (s+2) -3} {L2a2d, (La) e E-

-L2a24, (La)e-La} + 6(u+:)i(1+0')

*
La{(d; (La)+d, (La))el? -

- (d.(La)-d, (La))e )

(3.58)
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.CEAPTEYRIV'

SOLUTIONS FOR A ?EUID SPHERE
-~ IN A LINEAR.SHEARENG FLUW‘FIELD

N
Section 1. Introduction,

The linear shearing flow of a viscous Newtonian fluid
past a spﬁerical body was flrst considered by Einstein
- (1906, 1911) when he found an expression for the effective

viscosity if a solid ;;Eéfe‘is gresenﬁ in the fluid. A
‘consideration of the case of a viscous Rewtonian sphere in
‘E?e linear shearing flow of a viécous Newtonianﬂ}luid-ﬁas
carried out by Taylor (1932)."fhe_effeétive viscosity is

. the measurable value of the viscosiﬁy of a fluid containing

a number of particles when treated as a homogeneous medium.

-

 Any linear shearing flow is wofthy of study not only
because a determination of-;he effective viscosity can be
made but also because this is the most eaSily stﬁﬁied of
all flows for which a stream function does not exist. -
Hence, in this chapter an exhaustive study of the linear
shearing flow of a fluid past a sphere will be carried out.
The external fluid will de either a viséous Newtonian fluid
or a micropolar fluld and the sphere will be either solid or

94
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oiquid, in which case it will be efther-a viscous
Newtonian fluid or a micropoiar £fluid,

- Section 2 will present, again, the bgsig equation; for
a micropolar fluid flow and will also give the solutions
using the method a§ outlined in chapter II and the Appendix.,
The Bessel functions appearing in_éhese general solutioﬂs
will be expressed either in terms of hyperbolic functions '
or exponential functiong.rwhichever is better suited to a

particular boundary value problem. ¢

My

In section 3 the values of the undetermined coefficients
and the effective viscosity will be calculated. for the flow
of a viscous Newtonian fluid past a solld sphere and also for

the flow of a micropolar fluid past a solid sphere.

‘In sections &, 5, 6, 7 the same calculations will be
made for the flow of é viscous Newtonian fluid past a
viscous Newtonian sphere, for the flow of‘a viscous -
Newtonian fluid past a micropolar fluid sphere, for the flow
of & micropolar fluid pﬁst a viscous Newtonian fluid. sphere
and for the flow of a micropolar fluid past a micropolar
fluid sphere respectively. The results bbtained will be
compared to ﬁhe results for the solid sphere in each

-

example as far as is possible.

[
.
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‘Section' 2, - Basic eguations wnd\ thedr: ssluttomns .

-

_ .In this section the basic equatioﬁs for the flow of a
mih:_:opolar fluid as developed in chapt-er I section 3 will bde
restat_:ed an.d their solutions, -uaiﬁg the form fownd in
chapter IX will be giv&ﬁ In addition to the Laplacian, the
inhomogeneous HelmHoltz operator ¥s also needed to generate
the geueral solutions, The solutions approgﬁque to the
linear shear flow problem will be found in the appendix.

‘A,- . B S ' . L
Basic equations with‘ n e, L ;tﬁggy

) n

9ip =0 ' CC4,1)
27,2392y m 2K - -2L% .
(v:-L3)y 13. m vp = V‘_D (&.2)
72y = 2K : . ' (4.3)
v § v '
i e 5 |
v = R vfemn + £ v | C4.4)
V.ou =0 - | R ()

Because of the linearity of the éperators involved in

equation (4.2) it shall be assumed that

(v*-1u =v | ¢4.6)

~
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and v‘g = ;i%f;y 43 f S (6T
N
B. Solutions,
e /S

~ Also for any linear shearing flow the upstream’
boundary condition g, = &.r indicates that the appropriate
choices for p, V., u are . e
. l ‘s' - . 3 ) -
P = (Ayr 5+ A,)aijxixj_ ' (4.8)
Vo= oAt I ey o X +
e

: s _. s _ s 125 s
+ ( ‘*Asr 5+A5r 3+A‘-'§'(—TI"A=""A.A.)

-

e SIS
+ ( %‘A’r S+A7r 3+A3-*‘(‘—A2+A~ )rz)ajb j (4.9)

-3 s )
w, = [——-(A,+—A )z 7+1A rs- l?@‘.,-r-c,d1 (Lr)elT-
1

H] -
C.ds (Lr)e L‘] a

- +
ijxixjxp
+ ['——'(Ag ) lA r ’+—(—Az-A;)+—(A.+-—A;)r2
1.2 L? 5L2

- S—L(Lr)zd (Lr)eLrT(Lr)zd (Lr)e"Lr+C ds (Lr)el®
L2

5. -Lr 1,5 -
.C..d.(l.r)e apjxj [—(As'i'—.é.;) - £-2A7r 3+
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+ A cA.Fa,"’ ’> P e (o), el

1 .
- ;C:(I_.r)zdz(l.r)e' + C,d,(I.r)e -c.d.,(Lr)e 1:"""-] a5 j

(4.10)

By the continuity condition in (4.5) it is found that the
coefficients must satisPf the following relations
72

A: + A: = 0 / \\ <
J&s 41,2 ‘ ’

N ZlnA-O

(4.11)

5 <ST.2 s s
C; = 3L (ci+ ¢h)

5 - 2 -1 5
c. ~ 32 (co+ cf)

Hence the general solﬁtions to (4.1), (4.6), (&.7) using the

results in equation (4.11) are

5 - 5 k
P = (AT 5+ Az)adjxixj (4.12)

| v~ [F(A + =A )r 7+ EAs -5-"2-%;9‘: -

5 5
- §£i£g41913d1(Lr)eLr+§§-cc +Coyd, (Lx)e” ] ay 5%, X j

1 10,3 1,5 =-,,1,2,5 .5 S,
+ 04 - A TR (2a0 A%y 2 4
[51,2 Artiian 25T T GRem A AT
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"%C : [(L::)zd; Lr)+3d, (Lr)]. eLr\'-%C: [(Lr) *ds (Lr)+3ds (Lrj e LT
305 (L) 2 ds (L) e‘"“_-%cf (Lr)?d2 (L¥) e“f‘-”] 2%y

105 10,5 ms Lot msnl 2,5 5. 5,5
+[-5—I-.2—(A:+-,TA:)1' A -’*‘;;"ﬁ*"”*-)*rr,?‘fr’
+§c: [(Lr) 24, (Lr)+3d, (Lr)] eLr-%-C: [(Lr) 2d, (Lr)+3da (Lr)] e LT

+§c: (Lr)?d, (L) eL’-'-%c: (Lr)*d, (Lr) e‘L’-’] 24X,
| | C4.13)
From the general form for the vorticity vector as deduced
froﬁ equation (4.13) it is seen that in order for ‘the
microrotation vector to have_thé same functional structure
as the vbfticity vector, it is essential‘fo choose!tﬁe

general form for the fumection ¥, to be

?\J = g(r) Eijkaiji . (4.14)

From equation (4.3) and the appendix it is found that b

. 3 s -
?v-[Cvds (Mr) T -Cods (Mr)e Mrleijka'iji (4.15)

;;_ 2k
where M T
Using now equations (4.13), (4.9), (4.6), (4.15) in the

defining equation for the microrotation vector as given dy

equation (4<4) it is found that



C: d..(Hrb)(;df(Hr) e'Hr] ptm ljxjx +

+
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+ [A:(isw Ayrms - B2 | nielsct) [Q(Lr{‘;ds (m] el

n L2 n Y

5 -
- ME(c,-co)d, (LryelT 4

n

+ 2% c:(d;(Mr)+(Mr) [d;(Mr)+d3 (Mr)])enr =
- £ c:(d_.. @)+ fa, ot -4, mﬂ])e'ﬁr] *pun®nm

(4.16)



C. Viscous fluld case.

In the event that one is dealing with a viscous
Newtonian fluid rather than a micropolar fluwid, then the
basiec equations as given by equations (4.1) » (4.5)

Teduce to
v2p = 0 ' | (4.17)
z 1 ' - o
Vig = T vp _ . . (4_.18)
v.u=0 . (4.19)

The solutions to this system of equations, using the form

as outlined in chapter IY are
s _ 5 '
P = (A% + Az)aijxixj . (4.20)

. 5 2 1 S . 2 3
= ] s .
U.!. (A,r + ZF At m Az)aininXL +

s _ s _ s g5 s
_ s
+ ( ‘}A,I’ + Acr 3 +A5 + m Azrz)azjxj +
| 5 . 5 o 5 \5 5
+ (—-}A,r 5 - Asr 3+ Aa + m- Azrz)ajzxj (4.21)
\
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Section 3, Flow past a solid sphere .,

In this section two problems will be solved The-
two problems dealt with will be the flow of a viscous
Newtonian fluid past a solid sphere and the flow of,a
micropolar fluid past a solid sphere. The solutions to
each of these problems will be .complete in the sense that
‘the boundary conditions will be stated, the values for
all of the coefficients will be'calcufated, énd the
effective viscosity will be determined for each flow and a
comparison of the two valués will be made,

A, Viscous Newtonian fluid.

For .the linear shearing flow of a viscous Newtonian

£luid past a solid $phere, the general solutions are given

——

by equations (4.20) & (4.21). TFor this type of flow

situation, the boundary conditions in tenserial form -

.appear as
p+0 | : ‘as r e = (4.22)
u, - azjxj as T + o | (4.23)
u, = k‘azjxj - ajzxj] @r=g (4.24)

The boundary conditions (4.22) & (4.23) when applied to
the general solutions (4.20) & (4.21) require that
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5 . 5 .
A, =0, A =1, A, =0, From the final bowndary
condition (4.24), when applied to equation (4. 21). comes
the following set of linear equations

-

Aja™s + 2—-A,a Y =0

-§4§a‘s + A:g‘r%A % | (4.25)

s - 5 |
~Hya S - Aga = -}

Tﬁé solution of the system (4.25) along with‘thg’pfgvious
coﬁstraints on the coefficients require that, in order for
equations (4.20) & (4.21) to represent the linear shearigg
‘flov of ‘a viscous Newtonian fluid past a solid sphere, it

is necessary to choose

. .
A,--%la’ ;on = 2y

v?u‘#?u

‘ s S 5

A, = A, = A, = 0

In his book, Batchelor (1967) has given a general method
for the determination of the effective vigcosity for a
dilute suspension of particles in a linear shearing flow.

He has determined that the effective viscosity, n*

the relation

(4.26}'
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where n is the viscosity of the ambient fluid, V, is

A
the volume of the region under copgideration and pA; is
the stm of the values Al for all particles involved. For

a single particle having coefficients as glven by (4.26) it
is found that

N . S
A 1+-§ (4.28)

4oal
I

where ¢ is-the volume fraction . This is exactly:

the value determined by Einstein (1906, 1911).

-

B. Micropolar fluid.

The solutions for the lﬁgsar shearing flow of a
micropolar fluid .past a solid spherical object are glven by
equations (4.12), (4.13), & (4.16). The tensorial form
of the boundary conditions is |

p+0 aAS ¥ + @ (4.29)
u, + azjxj -as rl¢ - “ " (4.30)
v, finite | as r + = 64.31)
u, = %(azjxj - aj£Xj) at r = a | (4.32)

v, = § gzjkékj at r=a (4.33)



—

The boundary condftions (4. 29), (4.30), (4.3I) when applied .

105

to the general aolutiona 4. 12) “4 13), & (4 16) require

that the coefficients A: - A. - C, = C; - C7 = 0 and

that - relie 1. The final six boundary conditions as
. L ‘

found in equatioms (4.32), (4.33) when applied to the

solutions (4.13), (4.16) result in the set of 3inear

equations

5 _ _cy2 S5 s ._
y (A: j—'—A ya~7 + %A:a Sm —53I=-—(C.+Cs)dz (La)e~L2

. 5 _ -4 -
-—(A, 1n—0A ya~ iza,a Sm -L+IC. [a.a)=d, (La)+3d, (La)] e L8y
5L? L

+ +c: (La)*da (La)e 12

s 5 -
10 ""ihlgﬁsa Sm -HEC, (La)?d, (La)e ta +
L® '

+ $C0 [cear 2 Lay+3a, (La)] e Lo

5 c g - =
s - - 5 -1 - -
3As a = '3%(4@(*‘05) (db (Lil d. (La)) e La +

+ uLﬁ: C:(d.—(}{al){;d. @{a)) e"Ma

(As N éé-;-)a‘s- S{%(C:Mc:) (d:(La)igu (La)) e—La

s fq° -
- —_.h_:.u" Ca (_%gﬁ_@_ﬂ).’t ~d» e M2

uhe 4, (ra) (ci-clye 2

8 - et
g [a.ma>+cua> [d..ma>-__d.cua)]]c,e oy @



The solutions to this set of six iinea: algebraic.

equations with pn = 2y+r are

E—-(A o+ 10, 1° 9 [1+(2L a? )+d (La)) ¢c +c.)e‘1"]
%Ai -- %—’[l-d.(pa) (cf+cf)e"’*a]-

L4l -5 qqa)ci-cheTe

-

(cicdye e a -3¢ L3as
cL2a? + n[3 + 3La + Lzaz]

4

Cre ™ MBu(s_1)cas

_ (1+La)(c C‘) 6(2+2H8+H282)
L3 MY

Cirke) [(3+3LA+L=a=)+2—(ﬁ- :,,_: (1+La)] (C:_C:)'e-.l.a 4+ <
- L®

+es (M’c:e—m - 0
M3 ,
(4.35)

Again, using equation (4.27) it is found that the effective
. viscosity for the linear shearing flow of a micropolar

fluid past a solid spherical body is given by

N . g br Sa’ a’ 1+La.) -3kL3a3
2 Lias’ fx(LFaf) M (G+3Latl%a?)

L +57g {n (3+3LA+L2a2)+x (3+3La+L2al )}

(4.36)
n(3+3LatL2a?)+x(L2a?)
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A:close examination of the value of the effe;tive viscosity
as expressed by equatidn (4.36) shows that the ratio of
effective viscosity to external viscosity is independent of
the choice of parameter S used iﬁ-the compromise boundary
condition (4.32)., Also, this effective‘viscosity ratio is
always going to be greater than the effective viscosity
ratio for the linear éhearing flow of a viscous fluid past
a solid sphere as e;prcséed in equation (4.28). As before

¢ 1s the volume.fraction é%%— and it is noted that (4.36)

reduces to (4.28) 1f k = 0, Also it is noted that the
first portion of the value for eacﬁ of the coefficients in
this solution are essentially the same as the value in

the corresponding power of r. for the viscous Newtonian
flow case. The second-portion is due to the presence of

the microrotation in the flow £fleld.

-

In the work which éppears in the next sections, we follow
the assumption of Taylor and others when dealing with fluid
sphere problems. The assumption made is that the drops are
small enough or the flow conditions slow enough‘so that inter-
facial ten51on keeps the drop nearly spherical. In this way,

the normal stress balance, to this order of approximation, can

be neglgcted. However, the shear stresses are balanced and a.

condition of zero net force and torgque is assumed to hold.

Ve
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Section 4. Viscous sphere in a viscous fluid.

The solutions for a viscous Newtonian fluid subjected
to a very slow ligfff/shear giow past a viscous Newtonian
fluid sphere were first obta;ned by Taylor (1932). The
method uéed by Taylor, however, employed Lamb's general
solutions. For completeness in this work these solutions
willlagain be developed using the method developed in
Chapter II and the appendix so that a ready rgference is
available for the following seétions. The general solutions
are given by equations (4.20) & (4.21). In this section the
boundary conditions will first be stated and then the
general-solutions_for both the internal and external flows
will be listed and used in the boundary conditions to.
determine the reﬁaining coefficients and the effgc%ive .
viscosity. A comparisofi’ of this value for the effe&tive
viscosity is made with the value for the solid sphere
(equation 4.28).

“The boundary conditions for the linear shearing flow
of a viscous Newtonian fluid past a viscous Newtonian fluid

sphere are expressed in tensor form by
p(e) - 0 as Tr - - (4.37)

uge) d az.Xj

3 as r +wm ' (4.38)

ui) inire at T =0 (4.39)



ul®x - _u(i)x -0 at r = a (4.40)
(e)_ u(e) _n_& - u(i) (i)fhfﬁ at ; = a 64_41)
2 P N

f§j°>xj té:) x“‘xn X,= t(g')xj - tg)xm—a—x“-xi
at r = g (4.42)-

Using the conditions (4.375 & (4.38) the preéssure and
velocity distridution for the external flow are, in general

with n(e)_ ?u(e)’ found to be given by

p{® = alr" *a;y%,%, , (4.43)
uge)- CAsr 7+ n—(%)- Afr'.S)aijxixjxl+

+(-§A:r'5+'A:r'=3-1) azjxj+(-§A§r'5-A:r_3)aj Xy
(4.44)

In a similar fashion using the condition (4.39) with

(i) - 2u<i) the pressure -and velocity distribution for

the internal flow are described by —
.p(i) - Azaijxixj - | (4.45)
(i) 2;‘_-; A:)aininX£ +
+ (A‘+§%—Azr2)a£jxj + (A:+§%_A2rz)ajng
(4.46)
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 Applying the boundary conditions (4.40) - ‘(4.42) to the
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internal and externai-flowé‘results in the following set of .

linear algebrate gqﬁationa for the ﬁﬁéétermined coefficients

s _ s _ ‘
iA,a s j‘ 7%)- Ala 1 =0
n -
L 5 5
72-ﬁ Az&z 4+ A‘ + A. = 0

L - | 5 o 5 . 8§ ]
--}A,a + Aga 31 = m Azaz + A,

5 . 5 . s 5
“}A,& S - A58 3 --rzi—ﬁ- A:az + AB

. ' 5 s )
(e) ga’a-? 1 a® msiam2] o (D _16 SAgtAs]
" :!Asa +nm Aaa .+a n 211-1(1)-“2 a: i

(@) [eatamssl plamsnan’amsuql e (D16 5 5.,
“- n ;gﬁ_,a STET A:a. 3+3A53. 3,+1] n [WZE%A‘?‘Aq-

(4.47)
€8

Defining ¢ = = the _solutions to the system of equations

n
(4.47) are found to be

1% . o(50t2)
nzesaa ! ‘o

(4.48)

Y QOO
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3.
EJ%-As‘O

AL = 20-1
AN .. o+5 . T .
\“‘\\f 2 . S (4.48)
In order to determine the value of the effective viscosity
. s

it is necessary to use the value of the COeffzbient Ay
as given in equation (4.48) in the. formula for the effective
viscosity as expressed by (4.27). Hence,

* . . had .
N ,1+§2¢;[<1:_Ij€] : (4.49)

> n

‘-This result is in total, agreelenmt with that expressed by

Taylor-%1932) and also reduces to (& 28) if n(i) + =
(i.e. the solid sphere case).

Peery (1966) considered a similar problem in his thesis
but no consideration of the effective_viscosity was included.
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“Section 3, wuiurgpulh:\xphyru\in\nxwiubbﬁa\iluid.
- e B . LA}
/

A natural extension of the results in the previous

sectlion is the consideration of a linear shearing flow of
an inertialess viscous Newtonian fluid past a micropolar
fluid sphere. The general solutions for both the external
.(equations (4.20) & (4.21)) and the internal (equations
(4.12),(¢4.13), & (4. 16)) flow will be restated after
boundary conditions are detailed The boundary conditions
will then be applied to the general solutions and the
resulting set of linear algebraic equatibnS'will be solved.
From the caleylated value of Ai the effective viscosity
will be determined and a comparison will be made with the
values expressed in (4 27) & (4.49),

The boundary conditions for the linear shearing flow
of a viscous Newtonian fluid past a micropolar fluid sphege
!

in tensor form are found te be o

1

p(& L 0 .
(.) } as ¥ + = . (4.50)
. ‘
Be T T 35y 4
P fingee ]
f at r = (4.50)
\)Ei) finite J - ’



u(e)xz- - um-x -0 | at r = a  (4.52)

x |
(e) (e) fE!_.. uy (1) fgté' _at T =a  (4.53)

.tg‘?)xj-tlgg) u’n - Dy t:("")x’”}SJ

T R T Ny Ryt e Xy (458
| at r = a
"z(i) -3 Ezjk“!gﬂ, - 0541 at r=a  (4.55)°

Using conditions (4,50) in the general solutions as given
by equations (4.20) & (4. 21) the pressnre and velocity

distrubution are given by

1:,(f-:)

() = ¢aSmrp 1 .5 -
u, (AyT 7+ e AT s)aij 1XjX£ +

+(_-§A:r'5+A:r:\’+1) aljxj+(-§A:r‘5.-A:r' ’)aj zxj

where n® = 2,€

In a similar fashion applying the conditions (4.51) to the
general solutions for the interior flow as expressed by
equations (4.12), (4.13) & (4.16) it is found that the

appropriate solutions are e

p) o A:aijxixj 4.58)

-A:r'saijxixj o 3 (4.56)
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ufi) ““’" ——§9=—L’ cd, (Lr)e Tid, (Lr)e” )]aijxixjxl-»
+ F%—?;%A:-Af)ﬁi ri- T-(c.+c.)cd, (Lr)elTag, (Lr) e LTy

- C: fd, (Lr)TLr + 4, (Lr)e'l‘r)J a!'jxj + .

1.2
+[ff‘;f“*=““ ’“ZT‘“ ~EEECI4C)) (4 (Lr) T+, o))

' C, (d, (L) e + 4, (Lr)e Lr)] 24,%;

(4. 59)
(i) [—A:-r-g;(m +C )(d (Lr)+d (Lr) Lr dL(Lr) d, (Lr) —Lr)

®pem?e 3 %55

5 - > - '
Ayt a3, s falweyHd, ey L d, (Lr)-d, (L) -Lr
.+[3-;+a;<c..+4c‘>( e o001

. X Mr d -H:-
+ C:(‘Lm%:d e e )] pem?3 e X5
[—%ﬁi&) u(c -C0) (d, (Lr)e T, Lryelty _

-8 c:([d,mr)+mr)'(d,'(ur)'+d,mr))]eM"+

+[d,, (Mr)+ (M) (d, (M) -d, (M) )] e;H:)] €pom®mg

(4.60)

-
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The application of the boundary conditions as given dy
equations (4. 52) - (4.54) to the internal and external flows
results in the following set of linear algebraic equations

for the coefficlents

S -sp 1,8 .-.'. '
$Asa *+ =— A;87%4+1 =
ne

rlr(;%'-— A':- (A:+A:)) "?i{ A:az"'(C:'*'C:) [(Lz&zdl (La)-ds(La) e;‘a+

+(L232dz (La) -d. (La)) er-‘LEl ]-- 0

—‘&Asa 5+A58. !+1 - -r(—I Az-As)+ ﬁ: Aza -

-(cf+cf)[ L a%) (d,(La) eLa-!-dz(La) eL"-‘-)] -

s .
-Ca [d; (La) eLa-%-d-. (La) e-La]

5

Basa~S-asa? = L2 5 A5)+—i-5 Aza?
- LT:} =858 - - 2= 28 -
LI 21n

-(C i+C :‘)[Q;a—zl (d 1(La) eLa-i-dz (La) e—.La)-] -

- -
~Cefasayelran(raye LE,’]
e '5 : s . s _ i . 5 -5 H
P CYCI WAL TR [P Ll,-(i*{ Az-(Arf'As)) +
n . n )

5 s
2,2 - E
+—.15—l Asa- 2(°~"‘§‘)L a [(Lad;(La)+3d1(La)+Lad1(La)) ela

21n

+(Lad;(La)+dz (La)-Lad z(La)) e La ] - (4.61)
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-2c, [ (Lad; (Layd;(La) +Lad, (Lg.)’ el +
+ (Lad: (La)+d, (La) -Lad, (La) ) e b2 ]

s
-8 [d,cua)e“a + 4, 0m)e M

-~

. | ‘
%—[‘{éﬁia - — Az = T] _i (_4{' A;-(A:-i-A:)) B
_ ziz Az + T(C~+C‘) [ (Lad (La)+3d, (La)+Lad1 (La))
n \

¢ frticrssean-tasaa) ]
+ 217 (Ce+Ce) [ (Léd; (La) +diﬂ-a>+LadL@3)-)eLa

_L2a?

LZ az

N (I;ad;QLa)+d., (La)-Lad, (La) e-—La]

(4.61)
The ‘final boundary condition as expressed by equation (4.55)
leads to the following '

5

A 1 s s [di(La)+d,(La) La, d.(La)-dy(La) -La\_
_:\;.'+%7(4C~+Cs)(’ Tz L T € .

3n

~ .

_c;(d, Qta) +4, () e, 41.(ia) i @a)e-ua) -

5 5 - b
g%(%A1+3A5)35 ‘ g l
n T

i - | \
P (Cat4Cy) (d’(La%:dl(La) el + dy (La) -4 (La) -La}\

La

: S’HL»
o

‘ “ _ 5 2
+C: (ds (Ma%;a'ds (Ma) eMa+ dw mﬁ;'dh (Ha)e M“3-) -g(nieél "3A5)a . 5
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5 s _ _ :
-Cg;:Au) - u:K (g:-c:)(d,(La)eL4+d~(La)e'La) -

- e, [[HadI (Ma)-+d, (Ma) +Mad s (Ma)) ™2 +

+ (Mads (a)+, Qta) -Maq, (42)) e’H"] - § (2a5a7341)
| (4.62)

When the system of equations as given by the equationms.
(4.61) & (4.62) is solved, it is found that the values of

i
the coefficients, with ¢ = HE , are’
’ n

Alamse 50, So- [(7L=a=d',aa>-2L§(d§(La>+d,(La))eLa)+
' \

2(1¥o) ZZI+05“_

. (7L=azd: (La) —2La§d: (Lay-d, (La)) e-I"a) ] (Co+Ce)

n al

s |
A - 5-8%)@- oy [[n=a=d,(1,a) ~2La(d, (La)+d, (La))] L3+
+[7L=a=d2 (La) -2La(d, (La)-d, (La) )] e 2 ] (Ca+Cl)
S 5 . ’
1,2 ,5 .5 2g-1 CotC.) - .
= (n—f ha-ho) - Ty - st [[7L2a2d‘ﬂ)+2La(d, (La)+d, (La)) -
~(20+2) ds (La)] e @ +[7L=a=c12 (La)+2La(d. (La)-d, (La))-

N . .
-(20'+2)d..(La)]e'La ++[t20La(d,(La)+d,(La))+

+(20+3)d; (La)] e +:[cha(d:(La) -4, (La)) +
+2o+3)dy L)) e ™2 feci-ch) +
+4 [d, (Ma)e”a+d..-dxa>e"‘a] >

n ' .
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. I 5. s o |
L 02 .55y _ =(2a¥5) (€ 4C]). po -
(- A,-A,) = - {}7L2a2d, (La)+2La(d, (La) +
X Craeh r&%r’i%m[ , ;
H, L)~ (20+2)d, L) el -+[7L2 224, (La)+2La(d] (La)-
-d L&)~ 20+2)d, (L) Je 12 -y [201acd] (Lay+e, Lay)+

H2et2d, @) ) & +f20tae] (L) -6, art 240 4, (L)) e L

O - 3¢[e, e i, Qe M)l T
Qs |

b s 1 1 .
e A2 = I * Tyt [ZcLa(d, (La)+d, (La) )~
-(25-5)L2a%4, (1..‘.1)]&*a + [2cr;a(d: (La)-d, (La)) -

-(2¢-5)L2a24, (La)] e L2 } (qf+c:) —_

5 : .
.%-} = % {[La(d,(La)-I-d, (L)rd, (La)]eLa +

Hrace wa) -a,Lay)+a, ay) ety (ciocly +
+ 3—‘503_-’ [d, (Ma) e‘Ma-Fd~ (Ha)e-Ma] Ci':'
n

‘ (4.63)
' 5 5 5 -
where the values for the coefficients C,, Cq, Cy as

calculated from (4.62) are

(Cotc, - 3c[sso+2s-7)] & [6:302-{"(6:-8”’)0-8(114::)] |
[Laca; warras ctads) e 2efracel (ay -, cLany] e Loy
-7 [(2+35)0-5] {L?-azdé\cr_a) el®i12a24, (Laye~12}
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1,1 . % -
(et 'Sr [La.(ds (La)+ds (La))e + La(d. (La) -ds (La))e La.] -

K

;Sc[d.(La)eLa+dsCL8)e"L§]} (C:-C:).-

i
. 6_:[ 1 [Ha(ds(Ha)+ds(Ha))e H!a(ddﬂa) ~du (Ma))e Mﬂ] +
n

-

+So [d, (Ma) 244, (a)e M2 }rce =0

{S%E [La(d; (La)+d, (La)) eLa+La(d: (La) -d, (La)) e‘L‘*] +

(L-DU . )[d, (La)el SdvLaye ] 1eu-co) +

i1 . . |
+ & ¢ [na(d, (Ma)+ds (Ma)) eMB4Ma(dy (Ma) -4, (a))e ™) +
e P P

LY

+ ((S-%)c + D )[d;(Ha)e 2ide (Ma)e Ma] }Ci - %_9;

. (4.64)

As in previous sections, the effective viscosity for a
micropolar fluid drop in a viscous Newtonian fluid is
determined by the substitution of A1. as given in (4.63),

into the general equation (4.27). When this is done, it is
found that
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* . ) . -
g1 5 (g{.) [1+ serzt [7ea%4, (e -20tacd; cLa) +

+d, (La) )] el? 4+ [ 7L2a2d, (L&) -2¢La(d, (La) +

+dy (L)) e 712} (clivc? )]
I C4.65)
where

——

-

(CotCl) = 3¢ [55o+(23-7)]%[ 6550+ (6x-81) 0-8 (1)) t[racd; Lay+
+dy(La))] e + [ Lacelqray -4, (La )] e Ly
-7.:[(2-!-35)0-5]{1.2&2:1, (La)el®+L2524, (La)e L2

A comparison of equations (4.49) & (4.65) makes evident the
similarities and differences in the two values. A ‘
* relatively simple calculation will show that (4.65) reduces
to (4.49) 1if the coupling parameter x approaches zero.
And it has been.explained Previously that if the interior
Viscosity becemes infinite (a solid sphere) then (4.49)
reduces to (4.28). Thus (4.65) also redices to (4.28) when
the interior viscosity becomes infinite. A problem similar
to the one discussed immediately above has. been discussed
by Avudainayagam (1976). 1It is, however, felt that some
doubt is cast on the validity of his results because of the
nature of the boundary conditions assumed at the interface

and also because of the technique employed.



The example considered in this section leads,
naturally, to a consideration of the reverse phenomenon

(1.e. - a study of the linear shearing flow of a

micropolar fluid past a viscous Newtonian fluld sphere)..

This example is dealt with in some detall in the next

section,

7]

‘_,
{,-‘./a
LT,

121



- 122

Section 6. Viscous sphere in a micropolar fluid,

_ Continuing the progression of the work in this chapter,
the next problem to be considered is the linear Shearing.
flow of a micropolar fluid past a viscous Newtonian fluid
sphere. The general solutions for the external and

internal flows are given by.equations (4.12), (4.13), (4.16)
and (4.20), (4.21). | |

The boundary conditiens for the linear shearing flow
of a micropolar fluid, where inertial terms are ﬁeglected,

Past a viscous Newtonian fluid sphere, in temsor form, are

glven by

p(e) + 0 a8 I+ w 1
(e) | .

ul - 8zjxj as r e+ w ‘ (4.66)

vge) finite as r+ =

ugi) , p(i) finite at r - 0 (4.67)
&)y _ . (Dy . _ =

uz‘ Xl u, X£ 0 at r= 3 (4.68)

uée)-u(e) xgxz = ugi)—uéi) §2X1 at r =g (4.69)
P r2 _ r? .
\

X
e(&x (&) Jn'n %, = e, e xm}:n <

J ] Tmn r2 r i

at r = a (4.70)
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(e) . S ) \ ‘
Ve 7 %23k %3, 0 1351. - (4.71)
The c;nditioné (4.67) when used iw the gé.neral solutions
for the interior flow as glven by equatiens (4.20), (4.21),
with nl = 2,1 | give

i s
P - Azay 4 XX, C4.72)
-u(i) - (- 4 As)a X, XX + (As+ 3 Asrz)a X +
L ‘21';{ ITLIMTIMT B 21ni 2 233
+ Ay + 2 Alrtya. x : (4.73)
Xéia I_Zl_nf 2 . 8j1 5 . .

-

In an’ analogous manmer the conditions in (4.66) when applied
to the general solutions for the external flow as given by

(4.12), (4.13), (4.16), _With n® = (2,4x)® | give

'(e) - 3 s h ‘
P (417-' )aijxixj . (4.746)
(e o f. L (As-l;l—o ADTH L alems g

k) L= (Bstre 4 ATt

4 5 5 -
+ %-(c.+cs)d2 (L) e Lr )aininX£ + .
5. - -
+(51.1:,(A:+ 2 ayrs. fr AsT™ 4+ 1 -
n
A _
- 304 (L2rid; (Lr)+3dy (Lr))e™LF -

1.3 2.2 -Lr
3 Csl?r2d.(Lr)e )azjxj +



(srr(AsH;)r + flrﬂs i

L4

- § Co@irid, (Lr)+3d, @)yel¥ -

1l .5 -Lr
T C.L2r2d, q..r)e. )ajLKj

| s 5 e -
vf('e) - (%(éé' - I%Aj_)r"'s.l. #(4(::'{‘{::) (d'l (Lr%‘;dn (Lr))e-Lr -

f.nmémjx_‘l xn +

'Ce Ce (40{1') -d. (Hr))e -Mr
(u+l<) A

I

5 : 5 e -
+ |51+ Fooyemse Dcclrcy) (B AD)y oLx
¢ 3¥e Lr )

. o . ‘ . ‘
+ (u_:’:)e C:(d"(HI})i;d.’ (}&))e-m) Emajmxjxn +

> e 5 s
Cl- fare s - Q’L;L (Ca-Co)du (e LT -
- x

K

- z—' C,(Hr(d.(Hr)-d (Mx))+d, (Hr))e-Hr)

(4. 76)
Appl:.catlon of ‘the boundary conditions (4.68) , (4.69) & |
(4.70) to the solutions for the internal and external flows

as given by (4.72) - (4.76) results in the following set

of linear algebraic equations
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- *(ii‘f,ﬁ:":) -+ A: + A: =0 -
n

(A,+ l_o.Ai) _]-'. A!a ’+1.+(Lzazd (La) -d (La))e-La(cs"'cs)
n 'ﬂ
=0
é(—rzf Aja?) + A, -‘511.-5-(A§+ lg- ApaTs- rlr AjaT+ 1 -
n . n

-d, (La)e"Lacf—i(Lzazdz (La))e"l‘a(c:+c:)

5 5 5 ' - -
5'(‘21%' Aa?)+A = 3-%‘-!-(A,+ 10 5 ) 5+‘r1!- A:a 3-d, (La)e Lac: -
n n® .

- i<L=a=dcha>>e‘La<cf+c2>

N

(4<-—4_~ A + (éii‘;@ SL-,(A + 20 ahamre Latamsa
v n < .n .
+a~2- %,—-[—saza.aw 5(d~(11(:) -d,(La))
+\%’:§%‘%L] 1e +cs))
i 4 .8 3 =8 (a’y 10, 1
n (4(5;"{ Azaz)+A5+A:)- ‘ﬂe (SL-!-(A,-'- )a. 54 ;—-A 18 T+

5

-+ f:é‘rﬁ:a"+1— %’-[-SLzazdz (La) +

+8La(d, (La) -d, (La))+6d, (La)]Zz'La -

s
s -935- -8L%a?d, (La)+2La(d, (La) -d, (La)@"a-f
- T e . ~
- ‘s_e da (Ma)e‘Ma c;) 4.77)
n ; ‘
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4 * . . 1 " . - /‘
and the final boundary conditiggz, equatton (4.71), result in .
the following set of algebraic equations

sl goabanse 18 SRR, elichets -

. . . _
_ & (d*m‘)ﬁg‘@‘"’)c:e'ﬁa - zas_( &4

Cxeh Al Fade 1 @) dh Qe (cligcpye e 4

. ne 3yE
S e altmeae), b,
. d -ds (Ma -Ma _ -78 St
+ —£ (= . )Cse - ( Ay)
o ) TS
\ .
=1 5 -y (utx) ® 5 .5, -La
R : I:r Asa_. Fe— e da (La) (CQ“CG)e -
’ K
- . -‘-\
s€ - .5 Ma § ., 5.5
P GISORNCUEE NS LS g JOWS
X : .
, (4.78)
) ﬂi . ‘
. With o = =— the values of the coefficients in equations
n .
(4.77) & (4.78) are found to be -

S

Leate D00%yamsm 38 S foraan, (L 2 (La) Cdl L) -d (LoD )
LT\ -ne 1 i m {l+o [ & calia 2 Ve e

+ 30dy(La) + 3] (CotCore @



¢ scfz) [ZLa(d;S;g) =da (L2)) -dy (La)] (C:"'C: Yol

E]%A: a‘s;.[La(du (La) -‘gb'(lﬂ) Y+ds (La)] (C: -C: ) e-L& +

e 5 _
+ f—e" d§(M8) Cge Ma
n

—=1 A~

2;;:2 SN [zLa(d.<La)5d..(La))+3d.(La)](c:+C:)e-La

| - L
R 4%{ .*é_) [ZLa(d. (Lz)(ljl_; )(La))+3d.. @a)] ey el

- [zLa<d§ (La) =g (La))+5d, (La)]ccf cheld 4

e 5 _
S dMa)C,e™d
3n '

-+

(42(‘1’:2) ) 4{2La(d._(La) (<11., (La))+3d, (La) ] (ci+c )e-La

.-

{2La(d.f (La)'_-dg (La) )_+5d. (I.a)] i clyela

e 5 _
_45.5_& dy (Ma)Cpe ™2
n
- (4.79)

' : 5 5
and the values of the coefficients C,, Ce¢ and C, as

deterﬁinéq from (4.78) using (4.79) are
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(C:+C:)e'La = 3x®{50+(2-78)} > 3:"{50%(2-75)}:1. (La) +

H 2% (50+(2-75))+10® (1+0) }La(ds (La) -du (La))

n®Cwe®) (%, (La) ~u®La(ds (L) -ds (La)) } (ClmC e L8 4

whe e

{ Grie) ®dy (a)+n®Ma (do (Ma) - d..cna))}c.e =0
n®{26® (1-S)La (de (L) -, (La))+(6u S+ (8-55)x®) . (La)} (Ce-Co)e Lo+

+6%{3n°Ma (d, (Ma) -dy (Ma) )+(615+(5-25)k®) du (Ma) }Cre M-

‘.

= 3c®y® (1-8) . , . N
) (4.80)
5 S 5 _r.
Using now equation (4.27) and the values of A, and (CatCq)e La

as given in equations (4.79) & (4.80) it is found that the‘
effective viscosity for a micropolar fluid haﬁing suspended

in it a sphere of a viscous Newtonian fluid is given by

-

_j -1 _;[a-l—é (iLa(d. (La)-dy (La)) - (o) La)) (cites )e-Lej

: (C~+Cs)e = 3e®{50+(2- 7S)}-3ne{5cr+(2 75)}d. (La) + -

+{2Ke(50+(2-75))+10ﬁe(1+U)}La(d:(La)-dg(La)

(4.81)
If, in equations (4.81) it is assumed that ¢ + o , the



solid sphere case, then the result in (4.81) reduces to that
given by (4. 36). If instead, it is assumed that the
coupling viscosity coefficient x + 0 , then it is found
that equation (4 8l), as expected reduces to. the value
given by equation (4. 49)

The linear shearing flow of a micropolar fluid past a

micrbpolar fluid sphere is a naéural extension of the'_'

preceding sections and will be considered inthe next section.
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Section 7. Micropolar sphere in a micropolar fluid.

The last probleﬁ'to be dealt with in this chapter
considers the linear shearing flow of # micropolar fluid , |
past a ﬁicropolar fluid sphefe. The boundary conditions, the
Pressure distributions and tﬁe compoﬁents of ﬁhe velocity

and the microrotation vectors both internal ‘and external

_are presented as are the solutions for the coefficients.

Lastly, the effective viscosity for a suspension of this

.type is calculated by using equation (4.27).

' N
N

An examination of the solutions for the internal 9nd

external flows of a micropolar flu{ﬁ, as ?resen
previous sections, reveals that, in the fgFesent ca;e, a

total of twelve boundary conditions are needed to evaluate
dll of the coefficients; Since the boundary conditions for
the linear shearing flow of a viscouq/&ewtonian fluid past a
viscous ﬁewtonian fiuid sphere form a éotal of six boundary
conditions, it is necessary to prescribe another six
boundary conditions. Three of these conditions are obtained
?nggsuming that the microrotation vector, v , is continuous
at the interface. For tge final three boundary conditions

an assumption made by Avudainayagam (1976) 1is used, although
the form in which it appears is different. The assumption
used here is that the coﬁple stress vector is continuous

at the interface. This vector form parallels the assumption

that the tangential Cahchy stress wvector is_ continuous at
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the Interface. Additionally, this doundary conditic;n also

agrees with the bomdary’ condition used in chapter IIIX

section 5. The bouﬁdary conditions in tensor form for this

- problem- are

e
u, + azjxj
vi finite
p:L , ui , vi finite
e i, o
uzxz uzxz 0
X . X

e&-1® }i L . ui—u; }EE £
L P r2 L 2

X
t%.x,-t& X

.
ME3%y = Mp%

as 1T »

as T »

a8 T =

a8 T =

at r =’

at r =

at r =

a

1«

(4.
(4.

(&.

(4.
(4.

(4.

where tij , Mij are as gi:ven by equatic;ns (1.1) & (1.2).

82)

83)

84)

85)

86)
87)

88)

From equations (4.58) - (4.60) & (4.74) - (4.76), the

general solutions for thé internal and external flows are

i s
P = A, aijxixj

(4.

89)
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- | e A2 5Lz (c +C; )(d Loy el (Lr)e“L‘ %X, +
21, % 13%4%y

Lir2

+[§;(ffai-A:)+ #21‘2- —ch +Ce) (4, (Lryel T4d, (Lr)e "
-C, (d, (Lr)e™T+d, (Lr) e‘L‘)] a, Xy +

e

Q[I}—(@{Af -Ay)+ -21%.{ If{—‘(c +3) (d, (Lr) eLT4d, (Lrye LTy -
n ) M

-C; (d, (L) elT4d, (Lrye” .)] 5.5
4.90), .

[_A,, + —D-{(AC +C )(d (Lr)+d (Lr) Lr (LrI)‘;d_ ch)e_Lr)_.

&, Q) +a, Qi) oo 4<Mr> d, (M) M
( + ] €y pmpi X3 tm’

o{_é;. + _n_i_(c +4C )(d (Hr)+d (Lr) Lr, d- (Lr) -d, (Lx) -Lr)

d +d, (Mr) Mr, d, (Mr)-d, (Mr) -M
( (Hrl @) oz, & Oy —a, (i), r)] ,,pm;pxj%“‘

5 5 i .
+[‘—(A‘—‘f9 - Lt el -c?) (4, (L) e, (Lrye LTy -
2L K

- z—é;ci(ur [(d§ (Mr)+ds (Mr) ) e+ (du (Mr) - d, (Mr))e'Mr] +
| 4

+ d, (Mr)e +d., Mp)e™ )]Eznmamp
(4.91)
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N

e 5 -
- a4 5 .
( ‘! r ) aij Xixj .‘ R (4 . 9-2) .

1

1
n® ¢

u . —_— s ' . .
Se [L (A s ——A;)r 7'!‘ —A T S+ ——3—-(65"‘(‘.‘:)(1: (I_.r)e‘LrJaijxixjx,_+

1

-+l 10,5 s_ s . ‘Lir2 .S _5s | _
_ [ A+ O SASTTHL L (B0 da (Lrye LT

512 n

- A + s 1 LZ 2 5 3
- [51. (A, —A;)r + —"Asr 3- “3—(Cute) da (Lryelx .

n

X

L3

- o d~(Lr)e'LrJa ’

Lz

5
- 'C‘ d. (Lr)e-LrJ ajz j | ’
. (4.93)

5+ . 5
Ay | 3Agy - € amSiaty ode(LT) -
5(5L - Bty ety (R4 0D, o x

vgi[
f
RE

n® L2

x5 d. (Mr)-d -
2 (G 0y Hr} zpm pJXJ% +

‘L2

L 5 .
A, 3A - e s s -
(=L + =) 54+ ;33 (Co+4T,) (Q_(Lr%;da (Lr))e-Lr‘_'_

s,
- me ip

5

A, - € '
el LLL:; @v-80)dy (Lrye™Lx .

5Ca5p- -
- —'ECa (Mr (ds (Mr)--d, (Mz) )+d, (HI)J e-Mr] Elpmamp

(4.94)



134

Application of the botmdary conditions (4 84) - (4.86) to
. the solutions (4. 89) - (4 94) yields

- 5 - s _ . - 5. .58
—-—f(A,+ %A:)a 54 ieA.,a ’+1+(L=a=d, (La) -d. (La) Ye L2(2,+25) =0
5L n n ' ' .

- » "
<

0 = —(—fA (As"‘Aa))'*' —Iﬁz&“*(Lz& d, (La)-d, (La-))eLa(C.-*-C;)'{-

. R -La .5, .5
+ (L?a*d, (La)-d,(La))e (Cy+Ce)

Looady 10,5y =5 1,35 -3, ,L%a%d,(La) ’ ~Lans_
E(A;'}' n—eA1)8 ;?58 +1 (ﬁi-(—’ +d.(La))_e C5

.
r

- 5 5 - 5
—3—d (La)e Lat (—iAZ-AS)'*' _Els—ilega‘- .
n ) n. .

- G‘;a—z(d; (La)eM24d, (La) e L)+, (La)elBrd, (La) e‘La] C.-

2 ’ =T : s .
- 1 B2 el + dp(raye La.)] ce © (4.95)
- .
1 10 se 1 L2a2 “LaxS_
= (As'*' ﬂ& da s+ ;A —3——d 2 (La)e o,

L2a2d, (La) |.-taas _1,2,5 .5
-[—S-L.L + dg‘(La)]e Cs ;(n—i‘Az Ag)'i‘

+ et [—3—(d (Laye 2+, (La)e‘“)] c. -
1

‘ _[L_Tzaz (d, (Le) eI""a‘-i-d2 (La) e—La)+d, (La) eLa+d.. (La) e"La] C:



135

n

8 S . - 2
e[;L—(A,-I- :—0 Apats- Lala =-1+[—313'-“—<1 (La)+

(4.95) .

+ 238 (d (La)-d, (La))+d, (La)] 'L'*CC.*-C.)]

- 5 5 s s
Tl —‘*{ Ar-(AHA)) - =2 Ala® +
L g 21ln

+[_3___-8L=a= (d, (La)e“B+d, (La),“-:La)'*' 213‘_%- ([d; (La)+d, (La)] e
+ [d: (La)-d, (La)] e'La)+('ds (La) eLa+d. (Lale_L,a)] (c :ﬂ:)]
n [g— (A+1—°A)a ’+<-A+rr"s) i

-

b B2 o aye a2 _[3_1-;3_2(‘5{_;1_1)3-1.3 .

2L"at"‘ci.L(La.)e'I"a S 2L2a2 d;@a)—d.,(l.a) ~La aF
+ ag- 3 I'a e cs =
Lzaz -
~, -
S 8 ~Ma
n -

&f—(d (La)el'®+d, (La)e 12y (ci+C)) -

~rt

_Lzaz{g(di(La%:ds(La)eLa; d~(L§;-d~(La?e'La) +

+ 2(d (La)e +d, (La)e” )}C:- 2L2a2£i;(La)+d,(La)eLa +
1,232 3 La

. ‘ 1 |
+ da(lad)-d, @a>e-7-a}_c§- 8-(d, (Ma) eMB+d, (Ma)e ™) C§]

n (4.95)

-—
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The solution to this séstem of algebraic equations, with

E—cm«» lQA:) - ey + %[g: (La)W&‘Eﬂ(ci’wf)-

3_[70 (hi (La)+hz (L:)a)) -20Lah: (La)] (c.+c.-.)

2(1l+o
Vo~ ‘
nie*‘*:a" - -Eso+z>+[c50+z%€%-2maz'@a>] Eetle) -

_[7o (s (La)th (1a)) -20Lah: (Le) ] ity

’

1 s _ . e
-;;A:a o= %r[gzl(La)H..ag: (La)] (C:-C:)+ %—gg (Ma) se— ci -

- . i
- §[b: (La)+Lan: L] (Ca-Co)- Sz i) 5 c
n

—(—Iﬂz-A ) = ﬁﬁZU 1>+[£= <La>*g%g)g=ﬂ~a>] (Evile) -

p - _e
-|2g2(La)i2tag, <L"3‘3] (Ee-Ce)- T 8208) S 2 -
n

[ 7h (La)+(5-20)h2(La +20'La.h‘ L oAt
o0 = a)](c"*'c‘) *

. - s s . i s
N (20+3)h2(La()y-i-2crLahz(La)] (Co-cor+ T haa) & co
'n

-

.

(4.96)



‘ EF r'%u[mg%_@;@] it s

+[§g! (La)is-ZI'.agg (La)}(c: -C:)+ %‘ g2 (Ma) 6_:' C: =
. " l

- 7h1 (La)+(5- 22)(;:: CL&)+20'Lahz (La)] (c:.p.ci) -

F | si
_{¢26+3)n, (La)+2crLah~ (T-a)] (Ci-ciy- 3 ha (ta) & S 2

_

b 5o 1 3gs Layeonag: o ) RSN
E?Azaz = [-&dj%mm]w.ws)f

‘{(5_2?) (h, (i,gg_)-f-h2 (g,a) )+20L8h;(1'-8)] (C:+C:)

31+
(4.96)

‘where .O' = D.i_ = M
n®  (Quhe)®
g, (p) = [Pzda ® - d, (P)J e’P

i
g2(P) = d,(p)e’P , g (p) = [d.. (p) - d.(;&)] e P

by (@) = [p2e) ) -ds ()] P + [p24, py-a, ()] &P
ha(p) = dy(p)eP + d, (p)eP |

p2(®) = [61) + 4, @] P + [l - 4 ()]
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The constant L appearing with the external coefficients '
s :/ s s
Ay , Ay , As , Cs Cc » C¢ 1is defined by

L’-/‘_ﬁ__ _ .
Y& (ute) © '

Similarily, the L appearing with.theinner coefficients

5 s 5 s 4
A2 , A, , A; » Cv , Cg¢ , C. is defined by '
\kini
L = T 7
Y (utx)

. -1 S 5 . -1 3 -1
The coefficients & , & , & , Cu, Cs , Cy are

détermined by solving the sysﬁem of equations that arises
- as a result of substituting (4.91) & (4.94) in (4.87) &
(4.88). This system of six equations in six unknowns is

53 355) s+ o 53-%) (42u+Te) - Egé—)

- 4l KOGl | g

3]

=

5 . - -,
AL+ 355y g“_:. 1D @z af@el .
Y. -

_-A nhLa) h )]
g;a+;1- (c+¢c>+—1%c

o (4.97)
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:gi 2T N e g, (La) c_c‘.;f-“-i); ﬁ;[g'zoh)%s:(ﬂa)] g, -
-- (A;;\) -yt o, Lay (ci-ch - :?—::-i[h== m)*#aimﬂ c,
%-;Lm’)_e Asa™s- 32neLAe a5+ IL.["g_(g (La)‘ =) -
i} Z;.e_ 5;7%)] 2+ :;[%ﬁgg;‘@-e;)+ 3;%))4 3}; g;(;.a;] g.-
_[Ge(g;‘(na) + E-i%)-);lﬁue gééu—a)]t‘.': -
st o 0 ]
+113_-[§3—Chz(1-a)+ E"E'—))'*' 19;{%)]0: - .- b
| | ) (4.97)
- [sicn;'cita& BaQia)y 4 5ot *—‘éa-@’]cz
ﬂﬁ_ Aga™s- L_mL AlaTs+ n-[ (g2 (La)+- L"5‘)l) +
+ Zg_ La)]c + B—[—g—cg (La)+ La’) —§— ‘ La)]c:t
o g o)t -
| ~—




TTr— . | _ . ot ';40 |
@t n;'[é;.(h“@a & (La)]c?
ﬂ%—"—s PO A . . —ZL—] .

+ IL"[48 (hz (I.a)-i- hT-(—> h—zL&)]Cs
[ o w250 st ] o

A

e e _°
3(ety) - BL‘) Asa™S+(aty)® 1. &)@l gl -
z y

- [Ge(g;‘(Ma) + 82y 4 (4gnye &ﬁqﬂ;@]ci -
. i - |
= et By ol ey

- [s i 0w + 2y 4 (ouzy by | o]

‘ (4.97)

Using equation (4.2?) and the value Af given in
(4.96), the effective viscosity for a micropolar fluid
having a micrépolarlfluid sphere suspended in iﬁ is

*

D=1 4 %; [i""s +(5L382(La) (ot 2. (La))(c +3
n

& -

-

20, . - 79 (h (La): );
- ELan; (La) -lﬁ(%h;ﬂ-.a)‘*'hz (La) >> (Circe)

, (4.98)
5. _s : .
where (C.+C¢) & (C:+C:) are determined from (4.97).
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A. Derivation of resuits'used-in Chapter II

4

In chapter II, soluticns to the equations of motion were
presented which were based on the use of the scalar and vector
invariants of spatially ccnstant second and third order ténsors
in combination with the position vector r. The only
© assumptions made were that the invariants of the second order
tensor were cons;dered independent of the lnvarlants of the
third order tensor and that the n-dimensional space being
considered was Euclidean in the sense of J. L. 'Synge and
A. Schild (1949). .

Here, a general scalar'function and a general vector
function will be’ considered and certain representative
soluticns involving these functions and their partial
derivatives will be elucidatéd.

If H(x) is any scalar functlon of the position vector r,

then with H’l = 3B (r) and H% dg (p)
axz de _
- g% 2 _ .
H(E) H () aii'T Hi(x)e. ]kaijl + H (r) A. mmxi Al
: 3 : 4 R N .
T HY () Amimxi + H* (r) Ammlxl T HY () aijxixj T
£ 176
TE (r) Aljk i ]Xk
o~ 1’ : 1 . 2’ .
Heyg % 233%,t % €i9k%k3%3%y T B €;ajka}c;j"”""‘?:r- Almmxlxz T
N R + g3 % % oo oprb an C -
TE Agm ¥ %‘ Pnimi%y T HY fnem 'fg Aami¥i¥y T
kR b
T H AmmE, ¥ . A.2
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- . -

_ + %5 g% XX, t Pt (25 T 2550 X, t %s' 151Kt Jxkx + "
TES Ggge Ay Ay XX - '
H'ln - (g:” _ 53 ) al-z.xf.x + % ’11.62n T (%:“ - g ;
19k XX ¥pt Hl (Cnix®k3¥e T €p9xc%nT
+ :ij kj i J?.n) T (32 - %2’) Ainunxixi’.xn.'%
¥ %2' (‘nfnmmx._?. T A mnn 1.-'Aimmxisl?.n) T .
ﬂ%zn - %:‘) Amlmxlxlx i 53 (A@xi %Amslmxn‘f
. LI f(gz" - %:’) AKX Xt A3
;+ %h’ (Ammnxﬂ. T Az'an'x'l?.xn .-i- Ar:rrru?.xn T Arnznixiézn) T
+ %z" - gi ) aljxlxjxix + H5 (anjxjx£-+ ajnxsz +
* azjxjxn T ajngx + -a , ng‘n) + H® (-':12;.n Ta ).t
T (gs“ - %2 R A 51%3 85 %X %n *.gs’ Aofe T 2ymXet
g + ] +

Aike¥n T Ri5®i%en) X% 4

=1 : = =
TE P T 20T ok T B T Ak T Ann) X%

If N is the dimension of the space and g =n, then

- - - -

Hopp = (B0 1 N-1 B® + 28%) a;; t (H' ¢+ NfLE')  Al4
r ) ' r -
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y 7 6 W
FNRLED 3 2m%) AX o+ (8 t

-

T (% + N#3 HS ) 2;5%:%5 * (B®  + Ni5 8% ) a

r J r

For any wvector function, hﬁ(r), which is a funet

position vector r.
- 1

1
o}
he (r) = hy (x) a; X, + h1(r)e.jkaijixR t+ ha(x)

i

2 2
* hy(x) Aimmxixz + hs(xr) Azmm + hl(r)

3 L L .
PR Agn Bhi() A, T RI) A 4

. 5 5
T hi(r) aijxixsz t h, (x) agj 3

<6 6 6
T hy(x) Aijkxixkxz'T h?(r) Azjkxjxk T h3(r[ A,

-

6 -
T hy (r) Ajkzxjxk
, 17

-

11 27p i

Lo 4.0 , -
hz,p %l‘ a..X, X T h; a‘igzp + E% Eijkaij
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1
-+ -
T h, Eijkakjcéipxﬁ T Xisgp) t hg Egjkaijp 1

-

. 2
A, X.X X + h,; A. .
imm L Lp 1mm ip

. 3
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e
b
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173787 p
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23°Jo
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. %l ;5% XXX hy a,
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. 2" X - 2" 3 ‘ S’
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A
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s
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T NHL B+ 28®) A %+

17
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2

5
X. T hi(r) a. Xx. +

BEaNN

]

iXEXp T

(8 XR + Xiézp) 4
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13531 %5%
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-

g% T
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3 [
+ h3 ajgsjp 1'_2_1_ Aljk 4 Jxkx thy Ay (Gipxjxkxz +

X 1 ijkX 1 X, XJG kX2 t X, X stpz) T 2 Agjkxjxkxp t

O ‘ 5 6
Phy Apl (85X T X8 ) %j_ AL XXX, Ths Ay (8, Xt
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In equation A.6 if N is the dimension of the space and if

p=£, then

V.h hg’g (rhlﬂ

~

-~

o
T ho
r

-

6
t hy)

o o

6
T h,_

-4
o

o ] 5
'T'Nh;[ ‘f‘hz 'f'h3) ai

1 .
) oeigk®s¥ T ey

3~
imm™ i

. .. : 3 ‘.,
A X. + (rh1 -t (N'f'l) h1 + hJ_ +

6 . ua
T h“)'Amimxi #_(rhl

[3 5 -
<
i hg) Amz-xl + (rh;
G -
} oa..X.x. + (rh1 +

l1 -~

.
;P (thy . (Ntl)hy .4
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. 2 6
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r
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+ (Nt1) R, Th, +
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. 5 5~
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& 6. - g
(N#3) hy + By 4 hy
r r

In equation A.7 if N is the dimension of the space and if

-

g = p, then

2 o
v h2 f h£)pp = (hj
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T 2hy) A, XX
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1»-~ 1 -
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f2n) AL XX, t (hh 4 N;_l-hif t 2n; t2n3) A+
b oo vo 6 S 4. u'la “eA.9
T (hy T % h, + 2h.17) Arrunixixf. t+ (h, | + N_;]; h, +
4 6 ' 5 -~ S - ‘ 5.
t 2h; *+ 2h“l A omg T (hy ot y%g h, ) aijxixjx2 +‘(h2 t
5 - s ' 5. 5. 5
T Ntl h, + 2h;) a,.X. t (hy + N+lh; + 2h}y) a,

X, +
r 233 r ;

3273

$(hy + w7 ;) R RS ey nt3 hy 4 -
6 . - 6 - 6 T -
* 2hy) Agjkxixk T (h, + g%; h; + 2h;) Ajgkxjxk t (h, +
6 - [
+ ggg hy ot 2R) Ag XX

To solve a vector equation of the form ¥2 b (r) = AV H (r)

it is. necessary, using equations A.2, A.9, to solve A.10
equations of the form
0"~ - o7 5 0~ -
h1 ';‘ E‘?_‘_ hI '?' 2h1" A E
r r
5. 5~ 5~
hl + E’fé h1 ' = A E
r r
54 5 - 5 5 A.1l

d

3 .
where HO (r} ,H (r) are known functions of Tr..

Homogeneous and inhomogenecus Helmholtz type eguations are
also solvable usiﬁg this technigue. For example, if a

solution is needed to a problem of the form . ~

2 2 -
(V. - C)H (r) =0 ATL2
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@

then.with H (r) as given by A.l it is necessary to solve

equations of the form

oaa O» 2 o 5 Q'A
H $+ N-1H =-C H =—2H C; :
= . | (N
' : J A.13
54 5~ 2 s . <
H +Nt*t3 H - C H =20 '
r

The solution to the second of these equations with p = Cr
is

5 (Nt2) s s
H(r) =p-(2) A, I E%g (p) + Az K Nt2 (Oi] A.14
) . 5 .

For the first of these equations if it is assumed that the
particular solution is
o 2-N . (p) . {p)
H = (r) =p 2 [ D I Ni2 + E K Ni2
then the complete solution is
0 ZNF o - .0 By
HO(r) = p 2 LA] In-2 (p) + Bz Ky52(p) = NK? I y+2(p)
ai miz 273 =N =
- NK*> K 2 (p)
Another inhomogeneous Helmboltz equation which may occur
quite often is™ .
2 B
g" t Nf2e T 1 g'-Cg=2%r
r
The Solution of this Bessel type differential equation is

-~

(G. N. Watson 1944)

A.1l6°
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g(x) _ o "@%ﬁ{“ Nt2a (p) 1°°NF2a (o)t A 19
\ - ' T2 2 - )
L s Nt2a (ip{]
‘gz BTl 3
C .
/ where I (o), K. (p} are modified Bessel functions of the

first and second kind respectively and Sa b (q) is a Lommel
. r

function:

x

Throughout the main body of the 2sis the only Bessel funct-
ions encountered were of half integer order. These Bessel

functions are -expressable in terms of more elementary

functions.

- \

\JT° 7 EHE) = L coshe - ;e"ue“j- Y CNE
2 < Ne} p :

e’ td:(0) e -p)' | y

Ep-élﬁ(p)ﬂi sinh'p?_'
> T3 5
1e® -1le —]-k(dﬂp) e? - a,(m) e "p)
b o
TP e 3% (o) = 1 sinh p - 1l coshp =
2 . p? p? ,
i[e - e -1 t1) e._]'=é(da(p) ® — a, (o) e"f)
2 3 2 3
b o 0 .
'\E" TR () = 1 cosho -
DZ

i sinh p =

p?
il -1yt Tl }' d; (p) e + a, (b)e"j
p?  p° -p2 3 ;

A.18
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"\‘, .
< -
- 5 .5 ' : .
.ﬁp__{ 1-p) = - éks:.nh_p + (la + _I_’:_s) cosh p =
et e} P

s -3 +3)%e v (@ t3 +g)e'°'§(ds(p) e
o*~ o* p° - p* et o y

t dg (p) e ‘°)

‘\/fp--‘;«z I % (p) = =3 coshpt (L t3)sinhp =
> . ‘ :

P p¥. p . - B
2 {a -3 +3)eP-a +§'%§)e'°4'5(d5(o)e°-
o Pt P pd ' @3
, & (p) e °
-7 .
Tp “»I 5 {p)= (L + 15 ) sinh p - (6 + 15 ) coshp=
2 e ot p° 55 o7
!

1L - S - L X
—‘§(d7 (p) &P - ds (p) EE'“)

T ‘I (p) = (1L % 15 ) cosh p - (6 -1 15 ) sinhp
2 P Pt e o° o7

=if@ -6 t15-15) e+ (L t6 t15°%15)
ot P 0T 97 ot p% po° o’

e 'p)— 3 (67 (0) e + ds (p) e '°}

B. Angular velocity and stress vectors

((; -6 t15-15) e’ - (L t6 +15+15)e_'°)

In chapter III and IV the vorticity vector, the microrotation
vector, the shear stress vector, the normal stre‘ss- and the
couple stress vector are needed in the ‘appli.cation of
various boundary conditions. .Eacﬁ of these will be given
first for the uniform flow case and then for.the linear

shear flow case.
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For micr0polaf fluids subjected io uniform flow

V (r) - £,(xr) €. jkaijlx2 T £,(x) eﬁjkakj B.1
UQ(E) - P, (r) e'jkaijixﬁ tF, (r) Ezjkakj B.2
O E'EE[ pas®s,q T L Foqe z.q] ”—h{w‘ - Fz b
+§ (Ey-fq+ ]a - x] | ~ B.3
L(-—L—?—) (PJ JP) 3 - )

- . —
where use has been made of the identity
“parpik -Aﬁqjﬁik - quaij . B.4

Another relation which is to be used subsequently is

‘ s .

XX = E .- . L8 -
Eijkaijlxi L3k (ajp apj) prk Tr Ezjkakj B ?

From equation (l1.l) the stress vector tg (r) is- deduced to

tR(E);: - 0%, +_gg%£ (um’£ T uz,m) Xm + ok eﬂmp (wp - u;) Xm - :
- pXi T (z%iﬁ) (Z:F: T 4F, T %2 (£, - rz))eijk )X Xk +

(2;1#) £2 ('22:F; + '45'1 + %_g;) eljka'k'j : o B.§
t(f) ftlx2 -rz[ -p T 33%5 (2:?; f 4F1 +,£§;)]Eljkaijg_ B.7 3
8 () - £, = 2yt ('f.F; fi G - g;)') Cosx (3372,5) B-8
prk |

From equation (1.2) the couple stress vector is-calculated as

-
-

Mg )= M (BGFL - Fa F B, £y fy S £ ) 3.9
r K r ) ’

T (B-v) (F, --F;'i' £ —f;—f:j(a.. - a..) X.
CRRE RS h S B U

~
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For v;scous Newtonlan fluids. subjected to unlform flow

Ll

u (r) - gl(r) eljkaijlx1 + gz(r) Ezjkakj . . Bflo

mo.ﬁf) - i,(gx - %1) (apj - ajp) Xj a B.1l

t£(£)— —pxg T u(?rgl t 3glA+ %1) eﬂjk (ajpi- apj) prk B.12

2 Rl ' - oo ) _
tur (2rg; t 4g, f%gzl Eijkakj ‘
20 . . - . )
t (E) =X = [-p + u(2rgy, ¥ 4g; T %g;{]egjkaijj B.13
t (f)—t X, = -u(§{/+ g;) €,:, (&, —a .S X Xk B.1l4
LR ‘ - 23k "T3p T3 o

If a viscous Newtoggén'fluid is under the influence of a

[

 linear shear flow, then

Y (r) = g, (r) a. 3x1x3x2 T gu (r) azjxj + gs () ajixj . B.1l5S

wp(g) -3 (g3 - %i) spmnamjxjxn t & (g; - %&) EpéﬁaijJXn +

< - N L d
T3 (g4 - 95) € mninm B.16
t (D)= -pX, T u [2r_g3 t 493 T (g ; 35)}:=1mn}':mx1_l:~:2 +
2 - .' . . . )
tuls g trel totaw T 9] 2, x . . B.17

2- -
T U[l' g3 Trgs T (g, tgs) Ja‘mgxm

t - t£X2 - r [-—p + u(2rg3 + 6g; T 2(3 gs) +
B.l8
£, - %2 x, = | -29, - (E!r-}' gs) - 2(5,r+ gs)j & X X Xt

T Uf/r gz 'f' rgy, t (g, 'i'gs)]amxm"}' : B’/l'g
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?u[r gs T rgy T (gs T 95)] amzxm

\ . . :
. For a micropolar fluid subjected to a_linear shear flow .

VE(E) = £,(r) a; JxlX3X2 T £, () agjxj + fs.(r) ajng B.20
ug' (£) =F3 (r)a,; i3 J_xjxi + F‘.. (f)azjxj +Fs (r) 250%5 B.21
b, () = H(r) eljkakj i . | 'B.22
‘;__ v {r) = [(F, - _:_) +y (£ - f_:) + _Lg_'-_

{(utk) P < 2k r 2{(utk) r

€ emn®mp¥p¥n %[(Fa C 'E';) ¥ g—E (£5 --ﬁ-; ) - thc) ErI] ?'23

: F, - Fs) T v - £o) 4 ‘
zmapmxpxn T[( 4 s) _'g_ (£, s) T Z(S‘h() (rH ‘?‘.H)]

€}Zimnanfn"' u'hc [ Gy (x) Ef.mn mpxpxn

-+

£
Gz(r) €£mnapmxpxn V

G;(r) e v

.ﬁsmnanm]

t, (r) = pX, T _121_[21'5‘3 + 6F,; + %2 (2f, - (f..r‘r fs)la jxlx]x2 +_

B.25
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B.24 -

- 3 2
+3[2rFu1‘2F,,-i(rfa—rf;,—(f,.-f)') QH]aX'i'
: « L2 n
+ n[ZrFs + 235 +1 (r £, - rfs T+ (£, - £5)) - G.H]amﬂ.xm
L, ) n i
£ (z) = tyx, = r?[-p + n (22F, + 6F, t 2(Fu_t FyN) + B.26
- 2 - : r

1-2(5';. TP§J 15 :.3

tg -t X - n[- 2(Fy_t Fg) = 2(Fy % Fjﬁ- 1 (2f3-{fk+f§))]
r r r L, r
2 - .. . B-27
X X Xz + n [szq + 2F, - ; (r £; =~ rf, - (£, - f5»+
‘ L, ‘ .

'i‘ % H]aZme 'i' %[szS + 2F5 - %2‘ ‘(r2f3 - rfs "}' (fg - fs))— -
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M=o U Xt By, .X. ty u. X,

i r,xri i,] R TR S

- [B r G; t (e +28 ~ y) Gy = @G .t (aty)
'i'rB r G; T {ax-+ 28 ‘.'Y) G, - ‘d G; - (aty)

tfate: - 6 * (etsty) ggjsimamxpxp
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