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ABSTRACT

L) : i
The elastic buckling load of a concentrically
.

léaded, pin-ended, slender‘metal cQl may be Mpncreased
. ' * ,
' many times by reinforcing it with an assemblage of pre-

-ten510ned stays -and rlgldly connected crossarm members
In thlS dlssertatlon, the buckling, sélutions for dlfferent
types of stayed columns are presented. The purpose of

" these solutlons is to predict the buckling lgad and the
-
correspondlng modes of 1nstab111ty The finite elemeﬁt

method has been used to obtain such a buckling solution.
Q -
The solution is applied with success to single, double

and triple crossarm stayed columns. An attempt has been

made to study the effect of stay eccentricity on the

column strength for a triple crossarm stayed column.’

This’ was 1mportant 51nce the length of the crossarms

-

has a 51gn1f1cant effect on the buckling load of a
]
triple crossarm stayed toelumn. Any other effort to

optimize the column properties to give the maximum
' strength was not made in this report.' Numerical

results are presented’and compéred with the existing

solutions. -

T (i)



" ACKNOWLEDGEMENTS

The author wishes to record his deep sense of
gratitude-té his tﬁesis advisor, Dr. M.C. Temple, for
his‘valuable guidance and constant encourdgement
throughout, the preparétion‘of this thesis. The author
also extends his special thanks to JDr. G.R. Monforton
for his éaiuable suggestions. ‘

Thanks ére also due to the Computer Centre at

the University of Windsor for running the computer

programs.
J




" TABLE OF CONTENTS

-~ e
lIl.ll....II!l.l.ll-.ll.u.l..l‘l...l!l...l... ii
ACKNOWLEDGEMENTS ........;.:.............mgc...u;..._iii
“LIST OFlILLUSTRATIONS L v
1,IST OF TABLES .vsee.. R T £
~’N0TAT10N-...;..;........»..,........................ vii

a,

& CHAPTER 1. . INTRODUCTION 4eeuveocnnsocsss Cerareaenas
L1l General ..... ceesesnssensressesiianaens
.2 Motivation and Choice of thod ..i.cveee
.3 The Finite Element Method S A
L4 ‘Scope of the WOXK .seecivecevenacnannes
.5

Basic Assumpﬁlons e asessaaassennasnas

el alatet
W

(22

CHAPTER 2. LITERATURE SURVEY cesessssetgrsenas creas

. "METHOD -OF ANALYSIS cevuwssecevonocnannnns
l General I'.;lll....l....‘ll'...l....ll'l
2 Generation of Elastic and Geometrical

O O

CHAPTER 3

3
3

Stiffness Matrices .isccessersccatcanens 12

‘.3.2.1‘ Stiffness Matrices for a Beam .
. COLUMN MEMDET «oseeseansnenassass 14

' 3.2.2 Modifications for Stays and.

- Crossarm Members cessansenseesiss 25
CHAPTER 4. APPLICATIONS ........................... 27
OAUCLLION cocvearvanetveccascssnsanns 27

2 Solut Procedure . |
3 Applications ..seseesescaartcscaiianoens 28
4.3.1 Example 1 .ccevidsccrrsedocncncanses 29,

, '4.3.2 Example 2 < B |
4.3.3 Example 3 eceveseereesealecenaseees 31

M
4.

L‘ CHAPTER 5. CdNCLUSIONS AND RECOMMENDATIONS .....as.- 33
5.1 Conclusions ....eesveesceesecasccanonocss 33
5.2 Future Research ...ccescecesccns ceeaeens 34

'BIBLIOGRAPHY o--o-------.c.:-.-'---n;o'---ooo.-----."j-‘-‘ 36
TLLUSTRATIONS .« ouoeiqengoesosnorassesnsogeetos .. 38

LI
l.‘

APPENDIX. TABLES OF RESULTS «.ecovcecacanssanasenss 47

VITAAUCTORIS .l.IIII...Ill--‘.lll...lll...'l-ll‘-....l SD

(iv). -




Fig. 1-1.

.Fig. 1-2.

Figu 3-1-

LIST OF ILLUSTRATIONS'

The Stayed Column :....l...q.............. 38

Types.of-Stayed C%}nmns ..:...........l.;‘ 39

Beam Element for Two-Dimensional .

Structures ..l-.l.....ll..-..ll'll.. ....... ..40
Buckling Cdnfiguration-of a Single Cross-
arm Stayed Column st s s s asge'sa e s e s 41

Buckling Configuration of a Double Cross-
arm Stayed Cplumn Ceeemasesennes veaeenses 42

Buckling Configuration of a Triple Cross-
arm Stayed Column (Example 1} ......%.:.. 43
' L

Buckling Configuration of a Triple Cross-
arm Stayed Column (Example 2} ...ccvevees ~ 44

Buckling Configuration of a Triple Cross-
arm Stayed Column (Example 2) cieereaess " 45

Stayed Columns used for Example %f....... 46.

”

{(v) - N

-

)



e

LIST OF TABLES

*

Table 4-1. Buckling,Léads of Stayed Columns ,.....,;. 47

Table 4-2. Résults of Triple Crossarm Stayed

OlUMNS .. ivseenssoeacnnsanonaansnssonssons 48

1

|

. _ . N
%hble 4-3. Comparison of Results ......fB\(.........{ 49
r . ' ' v .

- !

L

-

“ *
- -3
1}
i
i
!
|
- |
1
~ 1
8
" X
.
-t +
- 1
L]
{vi) -~
]
= TN e SRRk AR *._-‘- e —— ?

It

B T PR



NOTATLON
Engligp Alphabet - o
A - = cross-sectio allaréa
lE v = modulus of el sticity
I ‘= moment of inertia of alcross-section
(K] ' = master stiffness matrix
[FE]" = ﬁaster elastic stiffness matrix
(Kgl = masterx geome£rical'stiffness matrix
[Ké*} - ?aster_geometrical stiffneéé matrix
or unit values of the applied loading
[E}i)] = gtiffness matrix for the ith element
- .1n‘the local co-ordinate system
Iﬁéi{]| = elastic gtiffnesslmatrix.fo; the i¥%
: element in the local coaordlnate sgstem'
[ﬁéi)] = geométfigal stiffness matrix for the ith‘
. element in the local co-ordinate sysFem.
L‘ = lengfh ‘
a = half column lspgth -
£Ca = iength—of croésarm E
ééé = lengtﬁ of middle crosgarm (see Fig.f4—§)
2y m; = direction cosines offx—axis 1
'52,'m2 = direction cosines of.Y-axis ‘ |
(P} = load vectobr 1
. = initial loading |
 Pa = applied load on the column
P,y = critical load
P. = residual pretension force left in the.

stays at the instant of" buckling

{vii)
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}
r ' ' » )
_ ! - - ) ' . th
[T(l)] . = transformation matrix- for the i -
o element =, -
U(l) = strain energy of the ith element -
. S : . . S . .
Uo,Ul.& U, = see Bg, 3.15 . '
N(i) d . . ! . * ’ uth
{ua*™"} = dlsplaci?ent vector for the 1 element
. , in-the ocal co-grdinate system .
iu(l)} = displacement vector for the ith element
. in the global co-ordinate system
ulx),v{x) = the' displacement functions .
u ; - * = horizontal displacemenf at the nodes
. - : r
v ‘ = vertical displacement at the nodes
X,y = local co-ordinate axes
X,y - = global co-ordinate axes
Greek. Letters
{8} . = vector of nodal displacements
£ ) " = strain
. [
ey = initial strain
€ ' = additional strain ‘ : ‘ 3
L2
8 . = rotational displacement at the nodes
A | = eigenvalue , .
Mg : = strain energy per unit volume .
o4 = initial stress ‘

Special Symbols‘

(1 : = square matrix

{1} = column matrix

‘f’ = integration over the volume
v . .

(viii)
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o CHAPTER 1 '.

h e _ INTRODBUCTION

. -

1.1 General -

A stayed column can Be defined as a simple

"column reinforced with’an assemblagé of-pretensiohed

stays and crossarm meﬁberé'distfibutéd'élong its length.

A stayed column is showh in Fig. l—l.' These columns can

be used as 1) supports to hold plates in place. during
the erection of large ‘plate structures, 2) side booms

for the mast of a derrlck, and 3) masts for ships. Ties

.

are preten51oned in oxrder to prevent them fromabecomlng

- +

'

slack befo:e‘buckllng starts. The purpose of preten51oned'

stays and ‘crossarm members is to introduce, at several
points along the length of the column, restraint against
translation and rotation. -This effectively reduces the

maximum unsupported length of the column and helps in

increasing the buckling strength of the column.

Figure 1-1 shows a stayed column which is a three
dimensional symmetrical column. Because of'symmetry, it
can be considered as a ;yo dimensional problem and

buckling is assumed to occur in one plane.
. . k]

L
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fﬂ Dependlng ‘upon the number of crossarm members
dlstrlbuted along the Length of the column, a stayed
*column is classmfled into dlfferent types 172., single,

double and triple crossarm stayed columns (Fig. 1-2).

- s
< +

1.2 Motivation and Choice of Method

The recent paper by Smith, McCaffrey and Ellis(l)*

presented the formulation of the solutions governing the.
buckling behavior of the single'crossarm.stayed column

and a procedure to determine the critical buckllng load.

. The solutlon 1nvolved nuwnerous equatlons and would 1nvolve

many more equatlons for a double and a trlple crossarm
stayed column. This ﬁ;tlvated the author to devise a’
different method to solve any stayed column for its.
buckiing load. The method shouid take full advantage of
the computer's capability and should involve few
equqtiote. The automatic choice was the finite element

method which is a very versetile and widely used method

for the analysis of Civil Engineering Structures.

1.3 The Finite Element Method

The finite element method is, essentially, a

method by.which the whole structure is divided into a

number of "finite elements".: These elements are assumed

*Numbers in parenthesis refer to cited references in
the Bibliography. .



1
®

to be interconnected at a discrete number of nodal points.

* Since the finite element_displagement'methqd,has been used,

’ .

the displacements of these nodal points are the bésiq

paraméters. The,minimization of the total potential

energy, which is the sum total of the potential energy of

L}

[ . .
the individual elements, will always result in a stiffness

relationship given.by:

(K1{a) = (B} - .= (1)

P

where [K) is the stiffness matrix of the éomplete

structure

-

{A} is the vector of nodal displacements

LY

and {P} loads at the nodes

~

1.4 .Scope of the Work

First of all, work done by different research

_workers has been Hiscussed with special emphasis on the

conclusions drawn by each worker.
. oL

‘Then the finite.element method as_useé to solve
stabiliﬁy problems is formulated. For ﬁonlinear

problems, the stiffness matrix is cqmgfised of two .
components. One component of stiffness matrix {KEI,

which is termed the elastic‘;tfffnesé”matrix, is
independent‘of load level while the other component [K.I,
the geometrical stiffness matrix, is deﬁédaent on the

3

*
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1oad level. The $roblem of finding the buckling load
reduces to an eigenvaiue problem of tﬁe form

IK - X Kg*| = 0, which is comparatively easy to
solve using subroutlne EIGEN from the IBM System/360

Sc1ent1f1quubrout1ne Packagg?§). Alternatlvely, the

“problém can be reduced to the form |KE 1KG* - TI‘

which is solved u;ing Subroutine NROOT from the IBM -
System/360 Sc1ent1f1c Subroutlne Package.

Different types of stayed columns i. e.‘51ngle,
double and triple crossarm Btayed columns were then
solved using a Foftrén IV computer program. The
buckling loads calgulated we?e tabulated and compared
with the existing\;esu;ts. The computer progrém ’

calculates the buckling modes as well. The buckling

configurations were sketched and discussed in each

P
7/ case.

1.5 Basic Assumptions

The following assumptions are made in this
study of stayed columns:
1. The axlal deformation’ of the crossarms has .

been neglected_Since_it is so small to have a 51gn1f1cant

effect on the buckling of the-bolumn.
2. The connectiops betwéen the crossarm members and
column are assumed perfectly rigid. The connections o,

. between the stays and the column, and between the stays

B s ae— - o rr— ——d s bt Palen ool oo L



and the crossarm members are assumed to be ideal
_ hinges.’ |

3. The stayed column is complqteiy symmetrical
and ideally centrally loaded. “phis ‘means that there
is no iﬂit%al eccentricity and crookednesé. There will
be no lateral déflection Sf the column prior ta
buckling.-

4; It iQ assumed that there is some residual
pretension left in the stays at the instant of bucgling.
This means that all the stays remain effective when
buckling occurs.

5. The geometrical stiffness matrix [K;] is
neglected for the stays as well as the crossarm members
i?nce the in;tial stresses in the stays and crossarm

members are negligible as compared to the column.

6. It is assumed that buckling occurs in the

+ .

plane of a crossarm member. p

et e Mt sl e 2N e <t



CHAPTER 2

LITERATURE SURVEY

In 1963, Chu and Berge(3) aﬂalyzed a slender S
pin-ended column with tension ties arranged in equilaterai
rosettes around the column and bearing on several inter--
mediate'points along the column fhrough hogging frames.
The connections'between the hogging frame and the cdlumn,
and connections Between the ﬁies and the frame were
assumed to be ddeal hinges. The solution indicated that
the maﬁimum buckling load &oﬁld be a four-fold strengtﬁ
increase over the.Euler'Column. Any increase in the

" number of symmetrically placed intermediate frames did
not effect the strength increasé. Modelé of stayed
columns were also tested and found to agree satisfactor-
ily with the analytical results.:

To continue the work of Chu and Berge, Mauch and
Felton(q) deveioped an analytical foundation for the
rational design of the column; used by Chu and Berge(3x,

such as exists for simple columns. The "Structural

Index" (P/LZ{, which méy be considered as a measure  of

the loading fhyensity, was used. . Their analysis
N

jndicated that at 10w values of Structural Index,

B S il AL i g 2 St D Bk T e 77 " L e
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‘-
columns supported by tension ties offer'potential savings
of up to 50% of the weight of optimum simple'tubularl
columns; | ) )

In 1970, as a design-build—tést project, a. single
crossarm stayed column was studiéd by .the Civil Engineer-
ing Undergraduates at The Royal Miiitary College of

(5)

canada as their fourth year projects " ’. The crossarm

i

mémbers were welded to the column to provide restraint

against rotation of the column. The work included the

4

design and construction of the column as well. The

results indicated a seven-fold strength increase over

o

the Euler column. The seven—-fold increase, as compared
to Chu and Berge' 15 (3} paximum of four-fold increase; was
due to the fact that crossarms were’ flrmly flxed to the
columns. Thus the column had a rotational restraint -in
addition to the tfanslational restraint it had in-Chu
and Berge's column. ’ '

In 1971, PearSon(G) examined the behaviour of a
single crossarm stayed coiumn with a high slenderness
ratio when loaded to its buckling point. The effects on
column strength of stay eccentricity and pretenSLOn
force were exaélned experlmentally but not the;retlcally.'

The results indicated that buckling strength is dlrectly

proportional to stay eccentr1c1ty and pretension.

td



. \ég;;:ér experiﬁental study on a sinéle'croéigrm
stayed coiumn'was carried out by Clafke(j) in.1972. oo
The results verified thé conclfisions made by Peafsdn>\
Iﬁ'January i975, Smiéh, ﬁ;Caﬁfrey and Ellis(lyx
published a paper ip which_thef'deveioped_an analyt%cal\\
method to predict the bucklihg load aésociated with each
of two modes.ofJfailures for a singie croséarm stayed. 
column. Also, they demonsprated the ipfluence of various
stayed columq parameters on its buqﬁling behaviou; and
strength. The differential calculus approach was
adopted to derive the'theoretical solutions. Buckled
shapes were assumed to derive the buckling solutions.
There is a chance of missing thé firét mode ﬁhen‘the
buckled shape is assumed.

Work on stayed columns using a stiffness matrix

approach has siﬁultaneously been carried out by Temple(e)
at the University of Windsor.

) Experimental studies.on stayed columns are in

progress at ‘The Royal Military College of Canada.

\
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CHAPTER 3

- METHOD OF ANALYSIS

3.1 General
Many problems o
'in which” linearity is n

nonlinearities occur in

f practical s;gnificance exist
ot preserved. . Two types of

structural problems. They are

1) nonlinearity through material properties, and

2) nonlinearity.throdg

metrical changes in str

h large deformations $ha geo-—

ucture, so that the equations of " -

equilibrium must be formulated for the deformed config-

uration.

The nonlinearity through large deformations is

of great importance for &tability problems. The matrix

displacement method has been employed to include such a

nonlinearity.

The linear relationship {P} = [K}{A} between

the applied forces {P}

and the displacements {A} can no

longer be used in the nonlinear regime. However,

because of the presence of large deflections, as are

encountered in most of

gisplaéement equations

the buckling problems, strain-

contain nonlinear terms, which

“must be included in calculating the stiffness matrix .

PR P Y
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(Kj. Including the appropriate nonlinéar terms in .the
straitn displacement relations, the stiffness matrix [K]

can be modified asa

r{K] = [Kg) + [Ksr

Fl

z
in which.(Kg] = the conventional elastic stiffness
metili, and [K 1 = the geometr1ca1 stiffness: matrlx.'/
The elastic stiffness matrix is 1ndependent of load |
leVelfﬁhlle the geometrlcal stiffness matrix depends not
only om the geometry but also on the 1n1t1al 1nternal
forces e isting at the start of-the‘};;dlng.
--. To solve any structure fcr its buckling load,

the [K 1 and [K ]'matrlces are calculated for each

‘element of the structure and the total stiffness matrix

S

] - (3.1)

*v-l

[K + K ] is assembled for the possible nodal dlsplacements.-

The general stiffness relatiorship between the
-4 ) _ . ! .
) applied forces P and the displacements A can be expressed

in a matrix form as

=

{P} = [Ki{A} ; ' (3.2)

’
N

in which [K] is the stiffness 'matrix. For nonlinear
prohlems [K] will be showgpto comprise of {KE] and [Ké]

. as explained in Eq._3.1.-

f !

R ———
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The external loading P cgnkbe expressed

P = AP* L. (3.3)

~in which is a constant and P* represents the relative

magﬂitudes of the applied forces. Also, since the geo-

[}

metrical stiffness matrix [KG] is proportidnal to the

internal forces at the start of the loading step, then

[K

G] = A[KG*]ﬁ o (3.4)

where [KG*] is the geometrical stiffness matrix for unit

values of the applied loading (A = 1l). Hence Eq. l.l .can

f
be written as,

[Kp + A Kg*1{a} ="2{P*} (3.5)

At the buckling load, stiffness of the structure becomes
zero and no external digfurbances are required to displace
the structure. {4} cannot be zero, hence

|Kg-+ A Kg*| =0 © o (3.6)°

G
The lowest value of A multiplied by P* gives the buckling

load for the idealized structure which can be calculated

\

PN
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_using Subrdutine EMGEN or Subroutine NROOT from IBM/360

(2) o ) e

Scientific Subroutine Package

3.2 Generation of Elastic and Geometrital s+iffness Matrices

The first step in the finite element method is to

s -

divide the'structure into a number of substructures (or

.

elements). Having divided the structure into finite
elements, a function (6r functions) is chosen to define

uniquely the state of strain within an element in terms-

_ef the nodal displ:éhments. The approprlate terms for

nonllnear problems mast be 1nc1uded in the strain dis-
placement relatlonshxp Strain energy for the 1th . ‘ -
element ig then written in terms of these nodal displace- .
ments whlch results in a stiffness matrix for the element.

The stiffness matrix for -the complete structure is then

assembled by summing up the contributions of the

o

.individual elements.

R

A stayed‘column consists of the main'column, pre-

tensioned stays and the crossarm members. The column and

crossarm members can be ldeallzed as beam jcolumn members.

The stiffness matrices for a beam—column member will be
derlved only. Essentially, a beam-column member is a
modlflcatlon of the axlal force member.

x Tt will be .shown that the strain energy for the
ith‘element can always be expressed in guadratic form ae

follows:



U'(i)_;i ST RO m} ,' . e

v . L

iﬂ which'{3(¥)} = the displacement vector of the ith

element in the local co- ordlnate system, and [k(l) = the

‘stiffness matrix of the 1th

,

nate system. . _ \

element in the lqpal co-ordi-

Vo Let {u(l)} represent the displacement vectorhof“g’/
the ith element in the global or datum co-ordinate system.
LY 1 ~f
The relationship between {u(l)} and {u(lL} can always pe

exéressed by - . ‘ ’

a2

{'E(i)“} = ity \ (3.8)

where [T(l)] is a transformation matrix for the jth

e%ement.' - : »
i

Then,'Eé. 3.7 can be modified to read
o oo Ty ©(3.9)

where

)T, (1)

Ry ey (3.10)
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3.2.1 Stiffness Matrices for a Beam-Column MembeXxr

consider a straight, constant cross-section. beaﬁ
element for two-dimensional structures with nodal dis~
placements és shown in Fig. 3-1. Let A be thé cross-
sectional area, Ef the fl&xural rigidity, and L the
length of the beam element showﬂ.

- The displacemen£ functions u{x) and v{x) can be
‘selected very .conveniently for a simpie beam'element.
For bending v(x) must be a cubic éxpressidn. This is |
neéessary since the third derivative of v(x) {the shear)
is then a constant, which is consistent with the nodal
force pattern assumed for beam elements. Theréfore, a

I\Eubié.function in x for vi(x) would fulfill the usual
requirelents of ‘beam éheory for the case of gniform
shear along the member.

Since the total number of nodal degrees of
freedom (u, Vv and o at each node) is 51x, there should
‘be six constants in the assumed displacemént funcpions.
Hence, having justified the choice of v(x), u(x) is -
agceptgd as a linear function. Consequently, éhe

,displacement functions are chosen as:

.u(x) = Cl ; sz : /.

(3.11)

~

" . 2 3
vix) = Cy + Cyx + Cex™ + Cex

r
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Let €4 be the initial strain. As actual deformation
sthrts, additional strain g develops. The total strain
e is then . g
§ * _ _
- e =¢e; +ep C(3.12)
The totallétrain energy U may be expressed as:
U= .l‘u av : ' (3.13)
S .
v , ' -
v @

.where Mg = strain energy per unit volume. Mg can also be
expressed as:

o

= B
ug =3¢ . . (3.14)

Substituting for Mg from Eq. 3.14 into Eg. 3.13

yields

o

, U=k fEede
v -
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'Further, substituting- fxom Eq. 3.12 the following

is obtained

%'.AEL(si)z + Eey f'.ef%dv + % E f (eg)?

v - v

(=
[

po + Uy + U, ‘ | (3715)

The first‘term on the right haﬂd sfhe of Eq.-3.15 is the
strain energy before any additiopal disturbance is |
'applled. The second term, Ul' epends on the initial
stress and must_/@eld [Ks1. The third'ﬂbrm, Uy, depends
on the additional strain and w111 yield [(Kgl. Since U0
does not contribute to [K] we can drop 1t outl Eq. 3.15

I

then becomes, o ) <

U =10

S

The nonlinear strain-displacement equation islrepresented

1 * U (3.16)

by

' .. _ Gu dv. 2'_ dv
9 | €= dx‘jj?(dx) Y E;i | (3.17)

Ve

wheres Y is the distance from the centroidal suﬁface to
any point on the. section. -

»

RS U S




Substi i Eq. 3.17 into Eq. 3.16 : .
i- 2
- du _ é_‘i)
Ul Esl f(dx dez av
v

dv, 2" ... ‘ |

+ % Eeg f‘&i) av . - (3.18)

v

In the same manner, U, can be written as

. : 2 2.2
U, =% E f [(%—‘%2—2y%%d_%+yz(__d;).] av N
v | ‘ dx‘ - dx :
+ % E f (@44 83y @@y | e
dx dx ‘dx Tdx’ a 2 ztj
- ° v . X
. (3.19)
From Eq. 3.1l
du _
i ] ax ~ 2 ‘
i av _ . - :
; . Gx.= Cg * 2Cgx + 3Cgx- (3.20)
g 2 ’
a’v
E_E = 2C5 + GCEX
x .
L.
f 4 [l

PR Moa - | - i —" - - R L P U .
Canm . e e L L RN, Y
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With these substitutions Uy and U, may be expressed as

follows:

-

[ C, = Y(2Cg + 6Cgx) ] an dx.

(=]
'—J
1
=1
"' M
b
k__\ﬁ
:P‘\.

g | 1 SYM
r _I 2
N Ee/l f [C4 CS‘CG 2x* 4x
. x=0 A 3x? 6x° 9x*
C4 -~
'c5' dA dx \ (3.21)
/
6. |
) . N
syM |
U, =% E f f [c Cg C 6 -2y
x=0 A -6XYy 12xy2 36x2y2
Cal . L
. 2.4
| ~Cs dA dx + % E f f k(c + 2Cgx + 3Ccx")
! A x=0 A '
. Ce
. . 2.2 ' 2.2
;L +.Cyle, + 2¢5x + 3cex®)% - y(c, + 2Cgx + 3Cgx")

5

(2C5 + 6C6x),] da, dx (3.22)

Pl
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Only the guadratic terms in the displacements will
contribute to stiffness Coefficients. Therefore, lower
order terms and higher terms are dropped, as is also the
case in the classical nonlinear theory. The first
_integral in Eq. 3.21 and the second integral.in Egq. 3.22
are dropped for the reason given above.

Solving for constants in Eq. 3.11 by writing

u, v and 9 (dv/dx) at each node, then

Gy =y
c, - u, ;‘ul -7 .
. €3 = v1
C4 ) Vo ; vy ‘
Cy = -L3—2 (v, - vy) - £ (20, +6,)
c, = -L% (v = vy) +-§5— (6, + 8,)

(3.23)
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On substi%uting from Eq. 3.23 and using the fact that

AEe .’
i

Aci = Pi' the initial loading, the gquadratic part

of Ul can be written as:

o, =% @HHT ®Ehath (3.24)
where
~(1),T _ '
{ } vy 8,.vy 8,1
and
vy e, Vv, 8
[ 6/5L SYM

1/10 2L/15

tky i | ~e/5n -1/10 6/5L

'1/10  ~L/30 -1/10 2L/15

[i{l)l is termed as [iél)], the geometrical stiffness

matrix of the it element in the local co-ordinate
 system.
It is now a simple matter to expand the stiff-

ness matrix to order (6 x 6). This ca done by

adding columns and corresponding rows of zergs for the

e e a———— . a— FEE. e S B ) .- Y




added displacements (ui and u,)

R T T |
0
0 6/5L
( 0 1710 2L/15
~(i), _ 0 0 0
0 -6/5L -1/10
0  1/10 -L/30
o~

similarly writing U, in quadratic form as

U, = %{E(i)}T[Eéi)]{ﬁ(i)}

where

G4,T

21
A 80
SYM
6/5L
-1/10 2L/15
(3% 25)
(3.26) -

= [ul vy Bl u, v, 62]‘

[Eél)] = [Fél)l , is the elastic stiffness

" matrix of the ith

system and is given as follows:

element in the local co-ordinate
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uy V1 8y U2 V3 %2
_EA/L SYM
0 1281/1>
0 6ex/L? 4EL/L
[Kél)l = . |-EA/L 0 0 . EA/L ;
' o  -128r/13 -6EI/L? 12E1/L>
= ’ 2;1 2 :
| o 6ET/L°” 2EL/L 0 -6EI/L® 4EI/L
Ve - (3.26)
The stiffness matrices can be written in the
glbbal co-ordinate system.using Eq. 3.10. ® v
The transformation matrix, [T(l)], for a two-
i dimensional beam element can be w;itten as:
(o) (i) 1
£l l'l'll ‘ 0 Q 0 0
(1) - (i)
£2 m, 0 0 0 0
. ol o 1 0 o0
(1), -
S (i) (i) (3.27)
' '0 0 . 0 ﬂl my 0
(1) (i)
0 0 0 £2 m2 0
0 0 0 0 0 1
L J

-

where £l' ml are the direction cosines of X-axis
£2, m, are the direction cosines of Y-axis.
4 '
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Performing the matrix operdtioﬁé in Egq. 3.10,
the elastic-and geometrical stiffness matrices in-global
i

. .
.co-ordinate system are given as: ‘ '

-

1 1 1 %2 . 92

kll sym

| kyy Koo
k) = K k X, (3.28)
E 31 K32 Kaz (3.
' =kyy “kyy Tkap o kg
“kyy Ky “Ryp K1 Koz )
1 ky) K3p K33/2 “k3p “K3p Kaz

where,
22
Ky = (gg) N ﬂ2(12EI)
Y L3
_ 12EI .
ko = £y ¢ L) + Lm, (=557 .
/e
"2 AE 2 12EI '
.k22 = ml(—L—) + m-2 (-—L-T)
6EL
k = L, (—=)
31 272
-
| _ 6EL. ,
kyp = M2 _ ’
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ki3 =

4EIL -

L
tl, m, are the directions, cosines of X-axis
£2, m, are the directions, cosines of Y-axis

Note: £, = -m; and m, = 2

2 1*

' similar type of matrix is generated for [Kél)].

i h
ki1 ' SYM
ka1 K22
®(E)) < p kyp K3z K33
G i '
ki vkl Ry ky3
ko1 “Rap TRaa T kpy o Ko
kyp  kgp  K33/4 kg Tkyp Kaz
© (3.29)
where, -
| . B
ki1 = L
-3
k21 = £ mZ(SL)
2 2.6
k32 = M (50!



= s
K31 £,

_ 1
kyp = My (7

_ 2 N
kyy = 15 U

3.2.2 Modifications for Stays and Crossarm Members

25

To modify.these stiffness matrices‘for any
tensile axigl force member, the moment of inertia for
these members are taken as zero since they do not have
bendihg stiffness and hence all the teims‘containing I
are reduced to zero.‘ The geometrical stiffness
matrices for stays (axial force tensile member) and
crossarm members are dropped out since the initial
stresses due to appiiéd loading in‘these members are
assumed to be negligible as‘cdmpared o those in the
columﬁ. ' ' ’ | |

Té assemble the stiffness‘matrices for the
complete structure, the vyariable correlation scheme"”
has, been uéed. The procedure is simple and Reference
9 explains it thoroughly.

once the elastic and geometrical stiffness

matrices for the complete structure have been

1]
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generated, Eq. 3.6 can be used to'determiné the
buckling load.

: * : )
_‘[KE + A Kgl =0 - {3.30)
\ -
The buckling load is then determihed as the load at

which the minimum eigenvalue goes to zero. - It must be

-

noted that it yields the critical load in the column,-
\

and not the cirtical applied load. The applied load can

be given by

P. =P - P ; (3.31)

in which P_ is the applied load on the, column

P, is the critical load

and P, is the residual pretension force left 'in

the stays at the instant of‘bﬁckling.

3
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CENLE B
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-
CHAPTER 4
APPLICATIONS
4.1 1Introduction ' ” . -

A general EOmputer pfogrem has been deveipped
- - . '
to solve any type of stayed column for its buckling

1oad and the corresponding modes of instability.

4.2 Solution Procedure

Chapter 3 deéé;ibes'the detailed method but the
compute;-algorithm can be summarized as follows:
1. Knowing the co-ordinates of the nodes and
member properties, calculate the lengths .and direction
cosines of the ﬁembers. ' |

2. Calculate the-elemeht elastic #nd geometrical

stiffness matrices in the global co-ordinate systen

using equations'(3.28) end (3.29). Neglect the geo-
metrical stiffness matrix for the stays and crossarm
members for the reason mentioned in 3.2.3.

3. Calculate the master elastic and geometrlcal

stiffness matrices for the whole structure u51ng the

"yariable Correlatlon Scheme

ﬁﬁ Combine the two matrlces to obtain Eq 3.30.

27
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5. Obtain the bﬁhkling load using subroutine EIGEN

from IBM System/360 Scientific Subroutine Package(z).

at which the minimum eigenvalue goes to zero. This

routine also gives the corresponding modes of instability

for the structure which is the eigen vector associated

~

with the minimum eigenvalue.
To obtain'the buckling loa@ directly, i.e.

without using an iterative method, Subroutine NROOT, from

(2)

IBM System/360 Scientific Subroutine Package can be

used. Subroutine NROOT calculates the eigenvalues of
fK ~]_1[KG*] which are the reciprocél (1/3) of the

eigenvalues of [KG*Jﬂl[K

E

E]. The reciprdcal of the
maximum eigenvalue from ‘Subroutine NROOT gives the lowest
eigenvalue which corresponds to the buckling load of the

structure.

4.3 Applications

.The method has been applied to single, double
and triple crossarm stayea columns to study the
following aspects:

1. Increase in buckling strengﬁh of a column by
using stays and crossarm members.

2. Significant change in buckling strength of a
'triéle crossarm stayed column with the change in

crossarms lengths.
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3. To show that the accuracy increases with the
number of elements used. To get the reliability of
the results by ;omparing with the.existing solutions.

4. To study the buckling behavioﬁr of different

types of stayed columns.

4.3.1 Example 1

In this problem the methqd of solution was
‘applied to sho%}how much the buckling strength increases
over a simple column by us%ng single, double and triple
crossarm stayed éblumng. A Fortran IV computér_progrém
was used throughout. - )

The column and crossarm members were assuﬁeJJto
_be circular steel tubeé with an ouCZ;:e diameter of
2.25 in. and an inside diameter of 1.75 in. The léngth
of the column, 2£, was selected to be 16 ft. and the
stays were assumed to be 7/16 inch sfeel wire ropés.

»-

The modulus of elasticity of the steel tubing (which

implies, E, = E ) was taken to be 29.6 x 106
N C Ca

psi

where E; stands for modulus of elasticity of column and
Exa stands for modulus of elasticity of crossarm
members. Thé modulus of elasticity of the wire rope
was taken to bE.Q.é X 106 psi. The crossarm .member

lenéth was assumed to be 1 ft. for both single and

‘QOuble crossarm stayed columns while for triple crossarm

T~
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stayed columns, the lengths of crossarm members were
assumed to be 1 ft., 2 ft. and 1 ft. (see Fig.4-3).

The length 1 ft.‘applles to upper and lower_ crossarm '

‘members while length of 2 ft, applles to the mlddle

crossarm.. A simple Euler eolumn of same length {(i.e.
16 feet) was also sdlved for its buckling load. The
results are tabulated in Table I. The buckled config-

urations of all the columns.studied in this section are

shown in Figs. 421 to 4-3. The results were as expected

. because,, by adding stays and crossarm members,

restranﬂzls 1ntroduced against translation and rotatlon
and thereby decreaSLng the effective unsupported

bucklirng length of the column. Hence an 1ncrease in

strength was resulted. Also, the buckled configuration

- |
shows that the stays provide a horizontal force at the

-,

column~crossarm connection and thus providing extra

strength to the column. -

[}

The results for the triple crossarm stayed

column show that there is not much strength increase

from that of double crossarm stayed column.t This may
be due to the fact that with the lengths of crossarm
members used in Example i, the'stays remain straight

and thus offers very little resistance at the column-

crossarm connection.. Thus the need arises to study the

-

"triple crossarm stayed column with varying lengths of

»

cyossarm members.
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4.3.2. Examgleé

Two triple crossarm columns were analyzed_for
their buckling load using the computer program:developed
and the results were compared Q&th the triple c£ossarm
column of Example 1. ‘

The column, crossarm members and stays have the.
same membex propertles as descrlbed in Example 1 except
that two sets of crossarm lengths were used. In one,
lengths of 1.5 ft., 2 ft. and 1.5 ft were used while
in the other 0.5 ft., 2 ft. and 0.5 ft. were used. The
results are tabulated in Table II. The buckled config-
urations are shown in Figs. 4-4 an@4-5. The results
indicate that as xhé slopes of the stays are changed,

there is a significant change in- the buckling load of .

" the column.

4.3.3 Exam Ele 3

The purpose of carrying out thls example was
twogpld.l Firstly, to show that the accuracy fﬁéreases
with the number of elements used and secondly to get
the reliabilify of the results by comparing results
with the'existing solutions. Three stayed columns
w1th one, twoland three sets of crossarm members -were
-analyzed for thelr buckling load. The columns were.
divided into thce as many elements as were used in

Example 1 (see Fig. 4—6). Table III shows the



comparison of the results with the results given by
Re‘ferénces 1 and 8. The results are in close ag‘reemen{:.
The buckled configurations were not plotted since they
are essentially of the same shapes as shown in Figs.

4-1 to 4-3.



CHAPTER 5 ’

CONCLUSIONS AND RECOMMENDATIONS

5.1 ‘Conclusions

The finite element method as applied to
stability problems was reviewed. The method of
solution was applied to stayed columns. Single,
double and‘triple cfossarm stayed columns Qere solved
for their buckling lcad. A compleéel} generéi computer
program, requiring a minimum of data prepa¥ation, was

‘written. The first two buckling mgg;;\%ere studied

_ since they aré of greatest interest. 2n attempt was;
made to study the triple crossarm stayed column with
varying stay slopes. The following conclusions may
be stated:

s 1) It is possible to predict the buékling load
and the corresponding'buckled shape for a single,
double and triple crossarm stayed columns. The -
solution can very well be used to solve a multiple
crossarm stayed column.

2) The results have indicated that the buckling

4
load of a column may be increased many times by

33
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reinforcing it with a system of pretensioned stays and
_.rlgldly connected crossarm members.

3) - Tha buckled shapes show the effect of restraint
previded theppreten510ned,stays at the column—-crossarm
-coﬂhectibn.. .

4) The buckling load of a triple crossarm stayed
colﬁmn-ls greatly 1nfluenced by the slopes of the stays.

5) The solut10n procedure for a stayed column

P
»

requifes that all the pretension stays should femain

effective at the instant of. buckling.
6) The results indicate that ith complete fixity

of crossarms with column, the 1ing load can be

increased many times in comparison to Chu and Berge's(B)
pin connected column where the maximum increase was

four-fold.

7) The results for a. single crossarm stayed column
&
were in. close agreement w1th Smith, McCaffrey and

Ellls(l) The results £or all the three types, i. e.
single, double and triple arossarm stayed columns, were'

(8)

in gbod agreement with Temple

5.2 Future Research

Experimental studies should be undertaken to
determine the residual pretension left in the stays at
the instan? of buckling. The bqekling_strength as

obtained in this study should also be determined

'experimentaily.
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A theoretical study should .be made to determine
the amount of pretension needed in the sktays to prevent

the slackening of the stays, and to provide.effective'

“lateral support.

Thé—tnfluence of various stayed column parameters
for double and triple crossarm stayed columns must also

be studied.
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Pretensioned
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Crossarm Members
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Section X-X

CRUCIFORM.- CROSSARM

Fig. 1-1. The Stayed Column. -
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Nodes

MODE I

Leq=11t

20=16#

Fig. 4-1. Buckling Configuration of a Single

Crossarm Stayed Colunn.
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Nodes
y/
Q
L Wr__ —_
\\\Those'Stays are not
connected to-Column
J/
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- MODE I MODE 1

ip

- Fig. 4-2. Buckling Configuratdion of a Double
( Crossarm Stayed Column.
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Fig. 4-3. Buckling Configuration of'f a Triple
Crossarm Stayed Column “(Example 1).
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.)(connected to column

:

20-168t
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MODE 1 MODE 11

g

" Fig. 4-4. Buckling Configuration of a Triple
’ Crossarm Stayed Column (Example 2).

e

P . .



45

These Stays are_ not |
connected to Column '

‘ : . ' ,l 2/ =166
) , fcu:OSFt

! o
AT

Lea L} =2k

c«a=—

: -~
Leo

——— T
e,

40

Fig. 4-5. Buckling Configuration of a Triple
Crossarm Stayed Column (Example 2).
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