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Abstract

A data warehouse is a database consisting of huge amounts of data collected from
different source databases of an organization over a long period of time. Warehouse data
are used for analytical purposes to make accurate and timely decisions based on
previously integrated facts. Data warehouse is accessed using different kinds of analytical
queries. One of the most critical issues is that those queries be responded to quickly and
accurately. The size and logical schema of data warehouse systems make it difficult to
apply existing query optimizing techniques originally developed for traditional database
systems. Indexes are data structures, which help to locate the specific records in the

database with minimum number of disk accesses.

Bitmap indexing is a promising technique for data warehousing systems, but space for
bitmap indexes is a major problem. This thesis proposes the use of range-encoded bitmap
index to calculate aggregates. By using space optimal range-encoded bitmap index for
range predicates and aggregates, the need of separate indexes for these operations can be
eliminated. The range-encoded index is efficiently used for evaluating range predicates.
We are proposing algorithm to evaluate aggregates with the same index that gives equal
performance, which was previously achieved by storing a separate index for these
operations. This will reduce the space requirements and maintenance overheads
considerably without losing performance for aggregates. The proposed indexing scheme
is easy to maintain and use the population ratio of 1°s in a bitmap to decide if the bitmap
has to be scanned from the disk.

Keywords: Data warehouse, query response time, optimization techniques, indexing,
bitmap indexes, bitmap encoding schemes, bit-sliced index, range and aggregate
predicates
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1. INTRODUCTION

Database management systems are widely accepted as a standard tool for manipulating
large volumes of data. To enable fast access to stored data according to its content,
databases use structures known as indexes. The concept of an index is the same as the
index of a book in which the page numbers can be found where a specific word has
appeared. Database indexes are used to find the location of a specific record on a disk in
order to get it in minimum number of disk accesses. For example, for a certain record, if
its disk block address is known, it can be brought into memory for processing with only
one disk access rather than with many disk accesses, which occur when a more
exhaustive search is used. The disk access is the most expensive operation in a query
evaluation process. The goal is to minimize the number of disk accesses either by
minimizing the number of accesses for reading the data or by evaluating the query by
using indexes only, without accessing the database at all. Some indexes eliminate the
need for accessing the database altogether and are able to answer the query by

themselves. Bit-sliced index and projection index are the examples of those kinds of
indexes.

While indexes are optional, as data can always be located via exhaustive search, they are
the primary means for reducing the volume of data that must be fetched and processed in
response to a query. Because query performance (response time) is a crucial issue in data
warehouse systems, indexing techniques have always been an area of intense research
and development. Advances in indexing techniques are primarily driven by the need to
support different data models for data warehousing systems [BOS97].

1.1 - Data Warehouse

A data warehouse is a platform with integrated data of improved quality to support many
Decision Support System (DSS) and Executive Information System (EIS) applications
and processes within an enterprise. Data warehousing improves the productivity of
corporate decision-makers through consolidation, conversion, transformation, and
integration of operational data, and provides a consistent view of an enterprise. A formal



definition of the data warehouse is offered by W. H. Inmon: "A data warehouse is a
subject-oriented, integrated, time-variant, nonvolatile collection of data in support of
management decisions” [BS97, RMFO00]. It is an integrated database established by
collecting data from a number of source application databases. A data warehouse
contains mostly non-changeable historical data produced over a long time horizon (up to
ten years). It is organized around major subjects (entities) of an enterprise, and not around
functions [EzOl]. Information is available that allows knowledge workers to make
informed decisions, regardless of which database the data was originally collected from.
Furthermore, data warehousing should work on integrated data without significantly
reducing the performance of a company's transaction systems. Many data warehousing
queries involve retrieving enormous amounts of data and joining many large tables. It is
very hard to perform complex warehouse operations without suffering in the speed.
Warehouse data are used for analytical purposes to make accurate and timely decisions
based on previously integrated facts. This process is often called On Line Analytical
Processing (OLAP). In the simplest terms, a data warehouse is a very large database in
which both current data and historical data are stored. The historical data can be viewed
from different dimensions for efficient decision-making.

A data warehouse can be viewed as an information system with the following attributes

[BS97]:
e [tis a database designed for analytical tasks, using data from multiple applications.

¢ [t supports a relatively small number of users with relatively long interactions.
e Its usage is read-intensive.
e [ts content is periodically updated (mostly additions).

e It contains current and historical data to provide a historical perspective of
information.

e [t contains a few large tables.

e Each query frequently results in a large result set and involves frequent full table scan
and multi-table joins.



e It is a database that supports On-Line Analytical Processing (OLAP) for decision
support system and is mostly non-changeable collection of data.

Client Apps & OLAP wols
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Figure 1.1 presents the general idea of a data warehouse, in which the data taken from
different data sources is used to establish a data warehouse in a single repository by
overcoming software and hardware incompatibilities and after cleaning the data by
applying different techniques. The user queries can be posed to that single repository.

As an example, we have two departmental stores belong to the same chain. Each one has
its own transactional databases for daily business operations. Furthermore, each of them
is using different DBMS (Oracle, FoxPro, Access etc.) and one is using a PC-based
system while the other is using Macintosh hardware. For efficient decision making (i.e.
inventory on hand), management needs to be able to ask a question such as “how many
BBQ items were sold in each store broken down by the year, by the month and by the
day” or “how much revenue was generated by ski items in January in each year for the
last five years”. To answer these kind of queries, the transactional databases are not
enough. The information has to be available from all data sources within a single

repository and independent of the software and hardware incompatibilities of the
underlying data sources.



In other words, we need a data warehouse. The following is the schema of source
database one (Sd1) and two (Sd2) respectively:

Sdi:

Order: (OrderNo, OrderDate, Customerld, Productld, Qty, TotalPrice)
Customer: (CustomerNo, Cname, Cadress, Ccity, Cphone)

Product: (Pnum, Pname, Pbrand, Psize, Pweight, Packagetype, Unitprice)
Employee: (EmpNum, Ename, Eadress, Ephone, Ehiredate)

Store: (Storeld, Sadress, NumEmployees, Managerld)

Sd2:

Order: (OrdNum, ODate, CustNum, ProdNum, Qty, TotalPrice)
Customer: (CustNo, Cname, Cadress, Ccity, Cphone)

Product: (ProdNo, Pname, Pbrand, Psize, Pweight, Packagetype, Unitprice)
Employee: (EmpNum, Ename, Eadress, Ephone, Ehiredate)

Store: (Storeld, Sadress, NumEmployees, Managerld)

Figure 1.2 presents the data warehouse formed by the integration of the above data
sources. The data warehouse consists of a central fact table, which is joined by the other
tables called dimension tables. Every tuple (fact) in the fact table references a tuple in
each of the dimension tables, and may have additional attributes. References from the
fact table to the dimension tables are modeled through the usual mechanism of foreign
keys. Therefore, each tuple in the fact table is related to one tuple from each of the
dimension tables. Vice versa, each tuple from a dimension table may be related to more
than one tuple in the fact table. This kind of schema is called star schema. The data from
the above two databases are integrated into the star-schema of data warehouse as follows:



Fact Table

Sales: (OrderNo, ProductID, CustomerlD, DateKey, Storeld, Quantity, dollar_amt)
Dimension Tables

Order: (OrderNo, OrderDescriptn, OrderDate)

Customer: (CustomerNo, Cname, Cgender, Cadress. Cphone)

Product: (ProdNo, ProdName, Brand, Size, Weight, Package_type, UnitPrice)
Date: (DateKey, Day, Month, Year)

Store: (StorelD, StoreAdress, ManagerID, NumEmps)

ORDER PRODUCT
OnderNo ~ ProdNo
OrderDescripm Fact Table ProdName
Weight
QnderNo Package_type
ProductiD UnitPrice
Customer(D W
I CUSTOMER %&“
Quantity
CustomeriD dollar_amt \ DATE
CGender glyﬁﬁﬂ
Grhene Mo
STORE
StorelD
StoreAdress
ManageriD
NumEmps

In this example, each tuple of the SALES table is a fact of each transaction, while
dimensions are attributes about the facts. These facts can be viewed by different
dimensions. Examples of dimensions are the product types purchased and the date of
purchase. A business question can be asked against this schema much more



straightforwardly because we are looking up specific facts (Sale of Items) through a set of
dimensions (STORE AREA, PRODUCTS, TIME). It is important to notice that, in the
typical star schema, the fact table is much larger than any of its dimension tables. This

point becomes an important consideration of the performance issues associated with star
schemas.

While the query performance issues of On-Line Transaction Processing (OLTP) systems
have been extensively studied and are generally well understood, data warehousing is still
evolving as indicated by the growing active research in this area [CD97]. Current
database systems, which are optimized mainly for OLTP applications due to their
different requirements and workload [Ed95] cannot be used for mostly read only
environment of data warehouse technology. There are two techniques used to improve
the response time for a warehouse. (1). Pre-calculate the frequent queries and materialize
their results as views also called summary tables. A data warehouse is a combination of
these summary tables and the base tables. (2). Use indexes to provide fast access to data
of tables. The fact that OLAP queries are in most cases ad-hoc queries means that all
queries can not be predicted and materialized. It is therefore important to develop
sophisticated indexes on base tables to provide adequate performance. The next section
presents the existing indexing methods for data warehousing systems.

1.2 - Existing Indexing Methods for Data Warehousing

The existing indexing methods for data warehousing and On Line Analytical Processing
(OLAP) systems are classified into four groups. The first class consists of methods that
are based on using multidimensional arrays. The second class includes conventional
muitidimensional indexes originally designed for spatial data. The third class consists of
hierarchical methods and finally the methods of the fourth class are based on bitmapped
indexes [Sa97]. All four classes are briefly explained.

1.2.1 - Multidimensional Array Based Methods
Logically, the materialized view or OLAP data cube can be viewed as a multidimensional
array with the key attributes forming the axis of the array. The ideal indexing scheme for



this logical view of the data would be a multidimensional array if the data cube were
dense. Any exact or range query on any combination of attributes can easily be answered
by algebraically computing the right offsets and fetching the required data. For example,
the data in OLAP presented as tuple (shoes, WestTown, 3-July-96, $34.00) will be
presented as a cell of an array whose subscripts are [shoes, WestTown, 3-July-96] and the
value of that cell is $34.00. The data values are already stored in fixed positions
determined by those dimension values, which are made the subscripts of the array and
can be determined very quickly.

1.2.2 - Multidimensional Indexes

Another alternative for indexing OLAP data is to apply one of the many existing multi-
dimensional indexing methods designed for spatial data. In [Gu84], Gutman presented
the idea of multidimensional B-trees and called it R-tree. There are many variations of R-
trees such as R+-tree, R*-tree, cube-tree etc. These indexing techniques are mainly used
for spatial databases and they are not well explored in the commercial arena of OLAP
technology. However, some of these indexing methods offer certain advantages, which
can be deployed in indexing OLAP data, with some modifications. One of the key
features of several R-tree like indexing schemes is symmetric treatment of all dimensions
without incurring the space overhead of the hierarchical indexing methods.

1.2.3 - Hierarchical Indexing Methods

A different approach is used by the hierarchical indexing methods as proposed by Powers
and Zanarotti [PZ93] and then by Johnson and Shasha [JS96]. For example, if we have a
data warehouse of a chain of stores, in which the information on products is kept, we first
build an index tree on the product dimension and store summaries at the product level.
Each product value contains a separate index at the store level and stores summaries at
the product-store level and so on. Summaries at the store level are kept in a separate
index tree on store. In general, the number of such index trees can grow exponentially.
[JS96] discusses how to cut down the number of trees based on commonly asked queries.



1.2.4 - Bitmapped Indexing Methods

When data is sparse, a good option is not to index the multidimensional data space but to
index each of the dimension spaces separately as in bitmapped indexes. This is a popular
method used by several vendors, i.e., Sybase IQ [Er95]. Different vendors have different
variants of the basic method [0G95]. In the simplest form, a bitmapped index is a B+-
tree where instead of storing Row IDs (RIDs) for each key-value at the leaf, a bitmap is
stored (4 B+-tree is a balanced tree structure of key values and at the leaf level, it stores
the list of RIDs in which this value entry exists). Bitmap indexing has been proven to be a
promising technique for creating indexes on warehousing base tables. The performance

of bitmap indexes is a popular topic of today’s research and is a main subject of this
thesis.

This thesis focuses on calculating aggregates efficiently with range-encoded bit-sliced
indexes. Bit-sliced index is a form of bitmap index. The bitmap index and its variants are

explained in next sections followed by the performance issues related to them.

1.3 - Bitmapped Indexes

As explained above, a bitmapped index is a B+-tree where a bitmap stored at leaf-level
for each key-value. The database indexes provided today by most database systems use
B+-tree structures to retrieve rows of a table with specified values involving one or more
indexed columns [Ed95]. The leaf level of the B+-tree index consists of a sequence of
entries for index key values. Each key value reflects the value of the indexed column or
columns in one or more rows in the table, and each key value entry references the set of
rows with that value. A B+-tree is a balanced tree structure of key values and at the leaf
level, it stores the list of RIDs in which this value entry exists. For example, if a value
‘A’ exist in rows 2,3,and S of a 10 records table, and ‘B’ exist in 1,6,and 10, the leaf of
‘A’ points to a list of 2,3,5, where the leaf of ‘B> will point to the list of 1,6,10. In a
bitmap index, instead of pointing to the list of RIDs, the leaf level points to a vector of
bits. Those bits are set to 1 in which the value exist and the rest of them will be set to
zeros. In the above example, the leaf “A’ and the leaf ‘B’ will point to a bit-vector of 10



bits each and the vector for ‘A’ will have only bit position 2,3,and 10 set to 1 and for
value ‘B’, the bit positions 1,6, and 10 will be set in its vector.

Traditionally, B+-tree indexes reference each row individually as a RID, a Row ID,
specifying the disk position of the row. A sequence of RIDs, known as RID-list, is held in
each distinct key value entry in the B+-tree. In indexes with a relatively small number of
key values compared to the number of rows, most key values have a large number of
associated RIDs and the potential for compression arises by listing a key value once, at
the head of what is called RID-list fragment. In a traditional index, each key value is
associated with the list of RIDs of tuples having this value for the indexed column. RID
lists can be quite long. Moreover, when using multiple indexes for the same table,
intersection, union or complement operations must be performed on such lists.
Therefore, alternative, more efficient implementations of RID lists are important. A
bitmap is an alternate method of representing RID-lists in a B+-tree index. Bitmaps are
more space-efficient than RID-lists when the number of key values for the index is low.
The basic idea is to represent the list of RIDs associated with a key value through a
vector of bits. Such vector, usually referred to as a bitmap, has a number of elements
equal to the number of tuples of the indexed table. Each tuple in the indexed table is
assigned a distinct, unique bit position in the bitmap; such position is called the ordinal
number of the tuple in the relation. Different tuples have different bit positions, that is,
different ordinal numbers. The i element of the bitmap associated with the key value is

equal to 1 if the tuple, whose ordinal number is i, has this value for the indexed column; it
is equal to 0 otherwise.

For example, assume a database schema with a table PRODUCT (pid, brand, size,

weight, product_type, price), as shown in figure 1.3. A field of the PRODUCT can be
used as the indexed column.



Table PRODUCT

b Ordinal
product_id rand size weight package_type  UnitPrice "
120 XXX 30 50 A 33.87 001
122 XXX 30 40 B 54.60 002
124 YYY 20 30 A 12.50 003
127 XXX 20 20 A 80.00 004
130 YYY 30 70 C 66.40 005
131 YYY 20 80 C 43.60 006
970 ZZZ 30 80 B 2230 150

Figure 1.3: A dimension table

Bitmap 150 bits

<4 >
A 1 0 11 0 O..... 0
B 01 0 00 0. 1
C 0 0 001 1. 0
Posl

Pos2

Pos3 Pqs 150

For example, package_type is chosen as the indexed column. The domain of this attribute
consists of 'A’, 'B' and 'C’, means that bitmap index consists of three bitmap vectors, each
representing a value of this attribute in its domain. A bit vector is created for 'A’. Another
bit vector is created for ‘B’ and another bit vector is created for 'C' and the three vectors
combined make the bitmap index for this attribute. In the PRODUCT schema given in
figure 1.3, the bitmap index for the package_type attribute is a 150 by 3 matrix of bits
where the first row represents the index entry (vector) for attribute value 'A’ for each of
the 150 tuples in the table. Similarly, the second row represents the index entry for
attribute value "B’ while the third row represents the index entry for attribute 'C’. The
bitmap index for the package_type attribute of PRODUCT table has been presented in

10



figure 1.4, which consists of three bitmaps of 150 bits each, representing each value of
the package_type domain.

The first row of the bitmap index is for attribute value 'A’ and each tuple value is set to 1
if it has an 'A' value for package_type for this tuple, otherwise it is set to zero. For
example, tuples 001, 003 and 004 in the database table of figure 1.3 have the value of

package_type as'A’ and the bitmap entry for 'A’ for these tuples are set to 1 while the rest
are set to 0.

Similarly, as another example, figure 1.5(a) presents a projection of an attribute Age of a
relation R, whose values are presented with the duplicates preserved. The values of this
column are 0,1,2,...8 and the cardinality of the relation is 12, meaning that there are 12
tuples in this relation.

me® B B B B B B B B B
}’ 3 0 0 0 0 0 1 0 0 0
2 2 0 0 0 0 0 0 1 0 0
3 1 0 0 0 0 0 0 0 i 0
4 2 0 0 0 0 0 0 1 0 0
5 8 1 0 0 0 0 0 0 0 0
6 2 0 0 0 0 0 0 1 0 0
7 2 0 0 0 0 0 0 1 0 0
8 0 0 0 0 0 0 0 0 0 1
9 7 0 1 0 0 0 0 0 0 0
10 5 0 0 0 1 0 0 0 0 0
11 6 0 0 1 ) 0 0 0 0 )
12 4 0 0 0 0 1 0 0 0 0

The bitmap index of this attribute is a 12 by 9 matrix of bits with one vector of 12 bits
each for each of the values in the domain of 4ge. Figure 5(b) presents a bitmap value list
index for attribute 4ge. There are nine bitmaps, which is the cardinality of the attribute
domain while each bitmap is equal to the cardinality of the relation in length, which is
twelve in this case.

11



The bitmap representation is very efficient when the number of key values in the indexed
column is low (as an example, consider a column sex of a table PERSON having only two
values: Female and Male) [OQ97]. In such a case, the number of 0's in each bitmap is not
high. In contrast, when the number of values in the indexed column is very high, the
number of 1's in each bitmap is quite low, thus resulting in sparsely populated bitmaps.
Comparison techniques must then be used. The main advantage of bitmaps is that they
result in significant improvement in processing time, because operations such as
intersection, union and complements of RID lists can be performed very efficiently by
using bit arithmetic. Operations required to compute aggregate functions, typically
counting the number of RIDs in a list, are also performed very efficiently on bitmaps. For
example, the query “Find all records of the relation R where the Age = 4’ can be
evaluated with the bitmap index of figure 5(b) by scanning the bitmap B* only, meaning
by scanning 12 bits or 2 bytes from the disk. Another important advantage of bitmap is
that they are suitable for paraliel implementation [OG95], meaning that the CPU can do
the processing on part of index while other tasks can be carried out in parallel to this,
which includes the processing of another bitmap from same index. The whole index does

not have to be in memory.

Another advantage of bitmap indexes is that complex selection predicates can be

computed very quickly, by performing bit-wise AND, OR, and NOT operations on the

bitmap indexes. Furthermore, the indexable selection predicates can involve many
attributes. As an example, assume that there is a warehouse table customer with schema

CUSTOMER (Name, Lives_in, Works_in, Car, Number_of_children, Has_cable,

Has_cellular)

e Suppose that we want to select all customers who live in the New York City tri-state
area and who drive a car that is frequently purchased in the state in which they live.
Then the selection condition is, (Lives_in= "NJ" AND (Car = "Ford Expedition” OR
Car = "GMC Suburban")) OR (Lives_in = "NY” AND (Car = "Honda Accord"” OR
Car = "Ford Taurus")) OR (Lives_in = "CT" AND (Car = "Mercedes 500SL” OR
Car = "Cadillac Seville")).
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While conventional indexes in general cannot handle these types of selections easily,
bitmap indexes have led to considerable interest in their use in Decision Support Systems
(DSS). If bitmaps are available, the above query can be evaluated directly by the
intersection and then union of the bitmaps of these attributes. The database will be
accessed only to fetch the records after all intersections and unions have been performed
and the records in the foundset have been decided. The foundset is a term which is used
for a list of record IDs determined to be included in the result set. To understand this
example more clearly, consider how the first part of the query (Lives_in= "NJ” AND (Car
= "Ford Expedition” OR Car = "GMC Suburban”)) is evaluated with the B-+-tree index
on columns Lives_in and Car. First the query optimizer finds the row IDs which have
Ford Expedition or GMC Suburban in them. Then, it will check if any of those rows have
the value “NJ” in their Lives_in attribute. All the rows, which fulfill this condition, will
remain in the result set. On the other hand, if we had bitmap index on both of these
attributes, the query was going to be answered in the following steps. First the query
optimizer is going to perform OR operation on the bitmaps of Ford Expedition and GMC
Suburban and then just perform an AND operation on the resultant bitmap with the
bitmap of NJ value of Lives_in attribute. This is obvious that the second option is much
faster and if the cardinality of indexed attribute is small, it saves a lot of space too.

1.4 - Variations of Bitmap Indexes

The bitmap indexes have different forms and each one is designed for a specific purpose.
A brief discussion of each variation is given next to help the reader have a better
understanding of bitmap index design.

1.4.1 - Join Index and Domain Index

While traditional table indexes map column values to containing rows in a single table,
usually through references to a row identifier, join indexes typically associate column
values and rows of two tables. This way, the join index represents the fully pre-computed
join. It is a special form of a materialized view. Typical organizations for join indexes
include B+-trees or hash indexes organized in any of the following ways: lookup by
common join column value listing record identifiers or row Ids (RIDs) in both tables that
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join with that value; lookup by RID for each row of one table giving a list of RIDs of
second table for rows that join with the first row; lookup by (non-join) column value of
one table giving a list of RIDs of a second table for rows that join with the rows in the
first table having that column value. Variations of these include the use of single column
values extended to multiple columns. By using the pre-computed join, it is also possible
to access rows of one table through arbitrary column values in a second table using a
process that determines rows with given a column value in the second table and then
transitively relates those rows through the join index by joining rows of the first table.
For example, if we want to maintain a join index of tables PRODUCT and SALE (figure
1.6), which are having Product_id as their joining column, and this is also a primary key
of table PRODUCT, we will maintain a dynamic list of RIDs of the table SALE having
the same value in Product_id attribute as of PRODUCT.

Dimension table Fact table
—~PRODUCT SALE
RID , . . Ordinal
Product_id brand  size weight package: type Product id - id n
) umbers
POOL | y59  xxX 30 50 A 120 C25 | 0001
PO0Z 1 333 xxx 30 40 B 12 C25 | 0002
POO3 | 124 yyy 20 30 A 120 C26 | 0003
POO4 | 127  xxX 20 20 A 120 C28 | 0004
- | 130 YYY 30 70 c 3(1’ g 0005
131 YYY 20 8 ¢  jjw@e o7 |..
.................. . ¢ 131 C40
120 c70
970 Zzzz 30 80 B
122 c25
130 cso | 1800
(@)
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As presented in figure 1.6(c), for value 120 of Product_id of PRODUCT, we have the
row numbers 1,3,4,6 ... etc of SALE in the dynamic list of joining attribute list, similarly,
for value 122 of PRODUCT, we have row IDs 2,9 ... etc. of SALE having same value in
their Product_id attribute.

The join index technique aims at optimizing relational joins by pre-calculating them. This
technique is optimal when the update frequency is low. In OLAP applications, joins are
very frequent and the update frequency is low, so the join index technique can be
profitably used here. Join indexes are particularly suited to relate a tuple from a given
dimension table to all the tuples in the fact table. Note that the bitmap representation can
be combined with the join index technique, thus resulting in a bitmap join index [0G95].
An entry in a bitmap join index, allocated on a fact table and a dimension table, will

associate the RID of a tuple ¢ from the dimension table with the bitmap of the tuples in
the fact table that joins with ¢.

For example, referring to the dimension and fact tables of figure 1.6(a) and 1.6(b)
respectively, suppose that a join index is allocated on relations Sales and Customer for
the join predicate Customer.cusotomer_id = Sales.customer_id. Such join index would
list for each tuple of relation Customer (that is, for each customer), the RIDs of tuples of
SALES verifying the join predicates (that is, the sales to the customer). Figure 1.7
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presents an example of a bitmap join index on Product_id for the first tuple of the
dimension table PRODUCT to the tuples of fact table SALE. The ordinal number of first
tuple is p001 and the value of Product_id is 120 in that tuple. Figure 7 shows the bit
vector for p001 which has 1800 bits in it and exactly those bits are set to 1 where the
value 120 appears in 1800 tuples of warehouse fact table. That bit position is 1 in 1800
bits long bit vector and the rest of the bits are 0's. Similarly, according to the same
principle, the rest of the ordinal numbers p002 to p030 have their own bit vectors each
and they all jointly form bitmap join index for above two tables. Actually, this bitmap
index is a matrix of 30 by 1800 bits, since there are 30 products and 1800 tuples in the
fact table. There are many compression techniques to reduce the size of these vectors for
storage purposes, which is one of the benefits of using bitmaps.

1.4.2 - Projection Index

A projection index is an access structure whose aim is to reduce the cost of projections.
The basic idea of this technique is as follows: Consider a column C of a table 7. A
projection index on C consists of a vector having a number of elements equal to the
cardinality of T. The i element of the vector contains the value of C for the i® tuple of T.
Similar to the bitmap representation, this technique is thus based on assigning the same
ordinal numbers to tuples in tables. Determining the value of column C for a tuple, given
the ordinal number of this tuple, is very efficient. It only requires accessing the i entry
of the vector. When the key values have a fixed length, the secondary storage page
containing the relevant vector entry is determined by a simple offset calculation. Such
calculation is a function of the number of entries of the vector that can be stored per page
and the ordinal number of the tuple can then be calculated. When the key values have
varying lengths, aiternative approaches are possible. A maximum length can be fixed for
the key values. Alternatively, a B+-tree can be used, having as key values the ordinal
numbers of tuples and associating with each ordinal number the corresponding value of
column C. Figure 1.8 presents an example of a projection index on attribute Unit_sales.
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Fact table

SALES

Product_jd customer_id .... Unit_sales Unit_sales Yrdinal numt
Number of index entries
0001 120 C25 50 50 0001
0002 122 C25 20 20 0002
0003 120 C26 20 20 0003

121 Cc28 30 30

120 C25 70 70

130 C37 50 50

120 C40 50 50

120 C70 70 70

122 ca2s 20 20
1800 130 C40 50 50 1800

(a) (b)
Figure 1.8. An example of projection index on attribute Unit_sales

Figure 1.8(a) is the fact table SALES and figure 1.8(b) presents the projection index on
Unir_sales which is just a projection of that column with duplicates preserved and saved
with the same ordinal numbers as the tuples of the SALES table. Now if a query arrives
like “Find the number of unit sales where Product_id is 120 or 122", simply row Ids
(ordinal numbers) of those tuples in which the Product_id have 120 or 122 can be
determined by using any index on Product_id say a B+-tree or bitmap join index and then
unit_sales can be found by accessing the projection index for those ordinal numbers,
which are required. The fact table does not need to be accessed. Projection indexes are
very useful when very few columns of the fact table must be returned by the query and
the tuples of the fact tables are very large or not well clustered. For typical OLAP
queries, projection indexes are typically best used in combination with bitmap join
indexes. Recall that a typical query restricts the tuples in the fact table through selections
on the dimension table. The ordinal numbers of the fact table’s tuples satisfying the
restrictions on the dimension table are retrieved from the bitmap join indexes. By using
these ordinal numbers, projection indexes can then be accessed to perform the actual
projection. Note that the actual tuples of the fact table need not to be accessed at all.

For another example, if we have to evaluate a query like “how many total units are sold
where the product_id = 120", the ordinal numbers of the fact table can be determined
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from the bitmap join index of figure 7, where product_id is '120' and then projection
index of figure 8 can be used to find out the aggregate of total units for that product. Note
that the original fact table does not need to be accessed at all, which could have been very
time consuming in most of the cases. Similarly, a projection index can be used for the
aggregates of total sale amounts (total_amt), total revenue etc.

1.S - Bit-Sliced indexes

A bit-sliced index (also referred to as binary bit-sliced index) of an attribute is a bit-wise
projection of that attribute. The following example explains the bit-sliced index in detail:
Consider a table SALES which contains rows for all sales that have been made during the
past month by individual stores belonging to some large chain. The SALES table has a
column named dollar_amt, which represents for each row the dollar amount received for
the sale. Now interpret the dollar_amt column as an integer number of pennies
represented as a binary number with N+ bits. For row with ordinal number n in SALES

with a non-null value in the dollar_amt column, we define a function D(n, i), i = 0,..., N,
as follows:

D(n, 0) = 1 if the ones bit for dollar_amt in row number n is on, else D(n, 0) =0
D(n, 1) =1 if the ones bit for dollar_amt in row number n is on, else D(n, 1) =0

D(n, i) =1 if the ones bit for dollar._amt in row number n is on, else D(n, i) =0

For a row numbered n with a null value in the dollar_amt column, we define D(n, i) = 0,
for all i. Now for each value i, i = 0 to N, such that D(n, i) > 0 for some row in SALES,
we define a Bitmap B; on the S4LES table so that bit n of Bitmap B; is set to D(n, i). Note
that by requiring that D(n, i) > 0 for some row in SALES, we have guaranteed that we do
not have to represent any bitmaps of all zeros. For a real table such as SALES, the
appropriate set of bitmaps with non-zero bits can easily be determined at create index
time [OQ97]. Thus, in general terms, the Bit-Sliced index on the column C of table T is
the set of all bitmaps B; as defined in the above example.
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The bit-sliced index is further illustrated with the following example.
Example:- Suppose we have an attribute dollar_amt of a fact table SALES of figure
1.6(b). Figure 1.9(b) presents the projection index on the column. The projection index

simply is the projection of the column with the duplicates preserved stored with the same
RID numbers.

(Fact Table) Sales Projection Index
Product_jd  customer_jid .... dollar._amt dollar_amt
Ordinal No

0001 120 C25 970 970
0002 122 C25 860 860
120 C26 950 950
121 c28 041 041
120 C25 870 870
0006 130 C37 859 859
1800 | 120 C40 272 37
(a) (®)

Figure 1.9: An Example of projection Index

Figure 10(a) presents the bit-sliced index of the same column. The values in projection
index are represented in their binary equivalent and they are stored in slices of bits on
disk. Figure 1.10(b) presents those bit-slices separately as bit-vectors. The vectors (bio —
bis) are all zeros, so we skip them in the figure. The number of bit-vectors is equal to the
memory size of the attribute’s data type in bits (16 in this case for a short data type), and
the length of each bit vector is equal to the cardinality of the indexed table.

R dollar_amt
OrdinaiNo  L— 1 . by by b, bg bs b, by b, by by
0001 0000000001111001010 ol i1l li1lololitfo]i}]o
0002 0000000001101011100 oltlrjolrfjoflrt]li]li1]lol]o
0003 0000000001110110110 oltfrfilolililoli]1]o
0004 0000000000000101001 cjojlololofi1lolifolo]:
0005 0000000001101100110 oltjrloftlrlofoli}ir]o
0006 0000000001 101011011 olttirjoftrt]lolililoli!l
1800 | Giooooossstooonoose | {5 |5 |7 |5 |5 fa|ifs|a]s]s
(a) ®)

Figure 1.10: An Example of Bit-Sliced Index
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1.6 - Bitmap Encoding Schemes

The bitmap indexes are stored by different encoding schemes to optimize their

performance[CI98]. The most important encoding schemes are the equality-encoding and
range-encoding.

Equality Encoding: As has been described earlier, the value-list index is a set of
bitmaps, one per attribute value. In other words, if one views this as a two-dimensional
bit matrix, the focus is on the columns. If the focus moves on the rows, however, then the
index can be seen as the list of attribute values represented in some particular pattern. As
there are a large number of possible representations for attribute values (integers in this
case), but each attribute value has its unique representation. The following example
explains this in detail:

Example of Equality Encoding

Revisiting figure 1.5 for a value list index of an attribute Age of relation R, it can be
observed that the first row in the index has only one bit set to 1 and that is in the bitmap
B?, which corresponds to the value 3, the rest of the bits are set to Os. So, if there are b;
bits, one for each possible value, the representation of value v; has all bits set to 0 except
for the bit corresponding to v;, which is set to 1. Similarly, record number 5 has value 8 in

its Age attribute, the bitmap B® has a 1 in its bit position 5 and rest of the bitmaps B°
...B” have 0’s in that position.

Clearly, an equality-encoded component consists of b; bitmaps, where b; is the cardinality
of the indexed attribute. In this example, 4ge has cardinality of 9, so there are 9 bitmaps.
The Value-List index, which is the simplest, most commonly impiemented index, has a
single component and is equality-encoded. There are a few problems with saving a
bitmap index in an equality-encoded scheme. It does not perform well for the range
predicates of the type 4ge <= 4. To evaluate predicate like this, the bitmaps B0,B1,..B4
have to be scanned and ORed together to get the RIDs in which values are less or equal to
four.
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7R B B B B B B B B B
1 3 0 0 0 0 0 1 0 0 0
2 2 0 0 0 0 0 0 1 0 0
3 1 0 0 0 0 0 0 0 1 0
4 2 0 0 0 0 0 0 1 0 0
5 8 1 0 0 0 0 0 0 0 0
6 2 0 0 0 0 0 0 1 0 0
7 2 0 0 0 0 0 0 1 0 0
8 0 0 0 0 0 0 0 0 0 1
9 7 0 1 0 0 0 0 0 0 0
10 5 0 0 0 1 0 0 0 0 0
1l 6 0 0 1 0 0 0 0 0 0
12 4 0 0 0 0 1 0 0 0 0

Researchers have proposed another encoding scheme called range-encoding for bitmaps

which can efficiently be used to evaluate range predicates. Range-encoding is explained
next.

Range Encoding: There are b; bits again, one for each possible value. The representation
of value v; has the v; rightmost bits set to 0 and the remaining bits (starting from the one
corresponding to v; and to the left) set to 1. Intuitively, each bitmap b,; has 1 in all
records whose i value is less than or equal to v;. Since the bitmap By; .; has all bits set to
1, it does not need to be stored. So a range encoded component consists of (b; - 1)
bitmaps. The range-encoded index corresponding to the equality-encoded index of figure
1.5 is presented in figure 1.11. There are b; =9 bitmaps again. For any value vi, (say 3 of
the first row), the rightmost bit corresponding to 3 and all bits to the left are set, while the
bits to the right of 3 are all Os in RID 1 of the bitmap index. The value 11111000

standing for a 1 in bits B* to B” and 0 for bit B® to B Since B® has all of its bits set, so
there is no need to store it.

21



w,
%
@,
%
%
o
w
%

Ta(R)

PONNONNOON—NW
S el e e i = BN
— et et O b b b D b s et b
Ot Ot bt O rd et e
O QO = = Oyt
QO QOO r 1+t O+t it gt 1
OCOOQOO - et O == 0O
[oNeNoNoN JNoNeNoNoR oo ]
[eNeoNoNeoN JNoNololeNoNo o)

Each encoding scheme has its own advantages. The advantage of range-encoded bitmap
over equality-encoded bitmap is that for range queries, fewer bitmaps need to be scanned.
For example, to answer a query “get all tuples with the value of Age less than or equal to
4 (Age <= 4)", with the range-encoded bitmap index, only bitmap B* is scanned since the
answer to the query consists of those tuples where B* has a value of 1. On the other hand,
answering the same query with the equality encoding-bitmap index requires scanning of
B ... B* to obtain the tuples with values 1 in all these bitmaps.

1.7 — Multiple Components Bitmap Index

While the bitmap index is a very attractive alternative, there is a problem if the
cardinality of the indexed attribute is high. For example, in the above discussion, if the
cardinality of attribute 4Age is 100 (0 — 99) instead of 9, we might end up having 100
bitmaps in an index (one for each value). Similarly if a numeric attribute has its values
ranging from 0 to 999, we cannot store 1000 bitmaps for them. Fortunately, the
researchers [On87] have provided a very good solution to this problem. For example, if
we have values ranging between 000 to 999, for all three-digit numbers, we can have a
separate component of bitmap index for each digit. So, instead of having 1000 bitmaps,
we will have only 3 components of 10 bitmaps each. In each component, the value can
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range between 0 and 9; we have to have one bitmap for each expected value. If the values

have different base than decimal, each component will have number of bitmaps equal to
the base of the digits.

Ta®)o  Ta(R)s B B B B B! B/’
1 3 10 — > |0 1 0 0 0 1
iy 2 - | 02 0 0 1 1 0 0
3 1 01 — 0 1 0 1 0
4 2 02 0 0 1 1 0 0
5 8 22 —_— |1 0 0 1 0 0
6 2 02 0 0 1 1 0 0
” 2 02 —_—p |0 0 1 1 0 0
g 0 00 0 0 1 0 0 1
9 7 21 —_— ] 0 0 0 1 0
10 5 12 0 1 0 1 0 0
1 6 | 3 i I 0 0 0 0 1
12 4 11 0 1 0 0 1 0

2 —_—

For example, the value list index of figure 5 can be saved as a two component base-3
index. The decimal 3 is equal to 10 in base-3 numbers and decimal 8 is 22. So if the
projection of attribute 4ge is stored as two digits base-3 numbers, the values will be equal
to two digit numbers of figure 1.12(b), which is a projection of the same attribute in base-
3. A separate component of value-list index for each list of digits is created and presented
in figure 1.12(c). Base-3 numbers can have only one out of three digits in them (0,1, and
2). Thus, each component has a maximum of three bitmaps, one for each expected digit.
By breaking it from single component of base-10 to two component of base-3 index, we
are able to reduce the number of bitmaps from 10 to 6. The index of figure 1.12(c) is
referred to as base <3,3> equality-encoded index in the literature, where count of
numbers between < and > represent the number of components in the index, and the
value of each number represents the base of that component. Figure 1.13 presents the
range-encoded base <3,3> index of same attribute whose equality-encoded index has
been presented in figure 1.12(c). For range-encoded index, the bitmap for the most



significant digit is not needed to be stored since that has all 1’s in it, so the index of figure
13 has two range-encoded components of base-3 with two bitmaps each.
B,' B B,' B/’

— D et O st et gt D et e et
OO OO et vt gt O 1t b = O
—rt Dt = OO OO = O =
O OO0 OOO0OO0OO0O0O ™

Figure 1.13: Base-<3,3 > Range-Encoded Bitmap Index
By reducing the base and increasing the number of components, we can save some space,
but there is a trade-off between space and performance, especially for range queries, so a
number of factors should be considered before making a choice.

1.8 — Existing Techniques and Motivation for the Thesis

Various bitmap indexes [0Q97, OG95, On87] have been designed for different query
types, including range queries, aggregate queries, and OLAP-style queries.
Understanding the space-time tradeoff of the various bitmap indexes is therefore essential
for a good physical database design. However, as there is no overall best bitmap index
over all kinds of queries, maintaining muitiple types of bitmap indexes for an attribute
(presently) may be necessary in order to achieve the desired level of performance.
Maintaining multiple indexes for an attribute, however, further increases the disk space
requirement for data warehouse applications. The bit-sliced index proposed by O’Neil
and Quass in [0OQ97] gives good performance for aggregate queries, but is not suitable
for use in answering range queries. Another disadvantage of this algorithm is that it scans
all stored bitmaps of the index whether they make any difference to the solution or not. If
a bitmap has all zeros in it and is not stored, the index will have to be recreated each time
an update is made to the fact table. For range queries, [OQ97] proposed another type of
index called Range-Encoded index. There is still a need for an index which can perform
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reasonably for both range and aggregate kinds of queries, an index which meets the space
constraints and can be used to answer most type of queries without sacrificing
performance.

1.9 — Contribution of the Thesis

This thesis presents an algorithm that uses a range-encoded scheme for bitmaps to
calculate aggregates. It reduces the disk space overhead by eliminating the need of
keeping multiple indexes. On average this algorithm performs better than the algorithm
proposed by [OQ97] since it scans a bitmap only if it is needed and the index does not
have to be re-built each time a fact table is updated. The algorithm uses the population
ratio of 1’s in a bitmap, which has already been done in the previous research for range
queries, and scans a bitmap only if it affects the solution. In the worst case, this algorithm
takes as much space as a regular bit-sliced index [0Q97], and performs as good as the
bit-sliced index while it can be used for range queries by the latest techniques proposed in
[CI98] and [Wu99], without sacrificing the performance of aggregate operations.



1.10 — Outline of the Thesis

The rest of the thesis is organized as follows: Chapter 2 reviews existing work related to
the query evaluation techniques for aggregate and range predicates using Bit-Sliced
indexes. Chapter 3 presents a detailed description of the new algorithm for calculating
aggregates. Chapter 4 presents the performance analysis and system implementation
details and finally chapter 5 gives the conclusion and discusses future work.
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2. PREVIOUS/RELATED WORK

In this chapter, the previous research for evaluating predicates with bitmap indexes is
reviewed. The algorithms for calculating aggregates and range predicates proposed by
O'Neil and Quass [OQ9] are discussed in section 2.1. The algorithm proposed by Chan
and Ioannidis [CI98] is discussed in section 2.2 and the algorithm by Wu [Wu99] for
evaluating range predicates with tree reduction technique is discussed in section 2.3.
Section 2.4 discusses the limitations of these algorithms for evaluating all kinds of
queries.

2.1 - Calculating Aggregates and Range with Bit-Sliced Index [0Q97]
O'Neil and Quass [OQ97] have proposed an algorithm for efficiently evaluating sum,
count, and average of an attribute using bit-sliced indexes. In most of the cases, bit-sliced
indexes are more space efficient and outperform the traditional value-list and projection
indexes. When it comes to evaluating a sum, average, or count aggregates like SELECT
SUM(dollar_sales) FROM SALES WHERE <condition>, bit-sliced indexes give the best

(Fact Table) SALE
Product_id customer_id .... doller_amt
Ordinal No

001 120 Cc25 970
002 122 Cc25 860

120 Cc26 950

121 c28 041
120 C25 870
006 130 C37 859
123 c22 847
008 120 C40 272
009 125 Cc32 182
010 130 Cc10 945
011 123 ca28 864
012 120 C40 NULL
013 120 C20 950
014 121 ca2s8 027
015 125 C33 426
016 130 cie 994
017 130 C32 559
018 123 co2 NULL
019 120 Ca4 283
020 125 C30 782

Figure 21 A Facttsble with 20 tuples

27



performance. For the rest of our discussion in this chapter, we are using the fact table
SALE presented in figure 2.1 with 20 tuples. The attribute dollar_amt represents the
amount of sale for each transaction in that tuple. We illustrate the algorithm presented by
[0Q97] with the following example: suppose we are evaluating a query like “find the
total amount of sale for the products where product_id is 120 or product_id is 122".

If the bitmap join index on product_id is available, the foundset is simply the union of
bitmaps for value 120 and 122. It is assumed that the foundset has already been
determined and represented by a bitmap By along with the bitmap B,, for all the non-null

values in the column. Figure 2.2 below presents the bit-sliced index of the attribute
dollar_amt.
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The bit-sliced index of figure 2.2 on dollar_amt is created by taking each value from the
projection of dollar_amt column and then converting the projected values to binary
numbers. Next, get bit slices from the binary values By, B;...B;s. For example from fact
table of figure 2.1, the dollar_amt value 970 is equal to 0000001111001010 in binary and
value 860 is 0000001101011100 in binary. All dollar_amt values are stored, and columns
representing each bit position (e.g., bit B15,...B0) are the bit-slices. In this example, each
bit slice has 20 bits. These values are stored in vertical form of bitmaps which are also
called bit slices. The advantage of this method is that either the bitmap of all zero’s is not
needed to be stored or can be compressed to save a lot of space. The algorithm proposed
by O’Neil and Quass [OQ97] to calculate aggregates, and is presented in figure 2.3 and
an overview of their algorithm is given next followed by the analysis.

Overview: First of all two bitmaps namely Br and By, are scanned from the disk. If the
tuples of the foundset have null in their dollar_amt attribute, there is no need to proceed.
So, to evaluate this, an AND operation is performed on them and then the result is
counted by performing a COUNT operation on the result. If there is no tuple in the
foundset which has a non-null value in its dollar_amt attribute, the algorithm will retumn
null and finish. If there are some tuples in the foundset which have some values in this
attribute and need to be summed up, the algorithm proceed to the next step. The next step
is to initialize the SUM and scan all bit-slices one-by-one in the FOR loop.

/* We are given a Bit-Sliced index of dollar_amt, containing bitmaps Bi, i = 0 1o N (N = 16),
B, for not-null values and By for the foundset */

If (COUNT (B; AND B,,) ==0)
Return null;
SUM =0.00;
Fori=0toN )
SUM +=2' * COUNT(B; AND B¢);
Return SUM;

It is assumed that B¢ stays in memory once read. The FOR loop is executed for as many
times as there are bit-slices in the index. In each execution of the FOR loop, a bitmap B;
is scanned from the disk, it is ANDed with the Br and then a COUNT is performed on the
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result of that AND. That count is multiplied with the appropriate exponent of 2 to get the
sum in decimal format. Finally, when all the bitmaps are processed, the calculated SUM
is returned to the calling module. Next, we will evaluate the performance of this
algorithm using the number of bitmap scans and the number of operations on bitmaps
when they are brought into memory.

Analysis: The algorithm scans B¢ and By, and then scans all 16 bitmaps of bit-sliced
index. Since the assumption is made that B¢ remains in memory for the rest of the
processing, there is a total of eighteen bitmap scans. There is a total of seventeen AND
operations performed on those bitmaps and then seventeen COUNT operations on the
resultant bitmap of that AND operation. Since these operations are much less expensive
than a bitmap scan, especially, the COUNT operation is much less expensive than any
other operation, they don’t have significant effect on the performance of an indexing
scheme. As many compression techniques can be used with bitmaps, especially those
bitmaps, which have all zeros or all one’s in them, this is an attractive alternative. This
algorithm performs best for aggregates (refer to [0Q97] for the comparative analysis of
bit-sliced index with other techniques). The main disadvantage of this algorithm is that it
scans all the bitmaps whether they are needed or not. For example, it is assumed that if a
bitmap has all zero’s in it, is not stored. The major disadvantage with this option is that as
soon as we insert some values in the table, the bitmaps have to be rebuilt to fulfill the
definition and to find bitmap with all zero’s in it. Because of this procedure, there is a lot
of overhead each time the fact table is updated. To avoid these overheads, all the bitmaps
can be stored in most cases. But if a bitmap is stored, the algorithm provides no
mechanism for skipping it if that is not needed. The bitmap with all zeros in it results in
adding 0 to SUM, so scanning and processing of that bitmap does not affect the solution
(SUM) and can be skipped.

O’Neil and Quass [OQ97] also proposed an evaluation algorithm for range predicates of
the type (i.e., A op v| op € {<,>,<=>=}). Their algorithm scans all bitmaps of the bit-
sliced index and performs 4 operations on each of them, and proved not to be suitable for
range queries. For the fact table of figure 14, and bit-sliced index shown in figure 15, it
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comes to 16 bitmap scans and at least 64 bitmap operations. Since the binary base bit-

performance, we skip its details and focus on another

ood

giveag

algorithm proposed by the same authors to evaluate range in the same publication. They

-

sliced index does not

proposed [OQ97] an algorithm to evaluate predicates for range queries with non-binary
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Input: n is the number of components in the range-encoded index
<bn, bn-1, .., bl> is the base of the index. <10,10,10> in our case
op is the predicate operator, op € {<,>, <=,>= = 2}
v is the predicate value
By, is a bitmap representing the set of records with non-null values for indexed attribute
By and B, are the bitmaps of all zeros and all one’s respectively

Output: A bitmap representation of the set of records that satisfies the predicate “4 op v"”

Bgr=Bir= By

Beo = Bu:

Let v=vyvyi..vis
Fori=ndownto | do
If ( v; > 0) then
Bur=Bur v (Bg OR B;"7%);
If(v; < b;-1) then

Bor = Bor OR (Bg AND (B;*')’);
Bep = Bgy AND (B;** XOR B;"*™%);
Else .
Bsg = Beg AND (B;"%);
Else
Ber = Bor OR (Bg AND (B;®)’);
By = By AND Bio;

Bxg = (Bgg)’' AND B,
= Bur OR Bgo; Bge = Bor OR Begs
Return Bgg;

Figure 2.5: RangeEval Algorithm

Note that the algorithm is developed for a range-encoding scheme. We will evaluate its
performance for a 3-components base-10 bit-sliced index on dollar_amt of fact table
SALE, which is presented in figure 2.4. The overview of the algorithm is given next
followed by the analysis. The algorithm itself is presented in figure 2.5.

Overview: The algorithm scans B., and assigns it to Bgg. Next, it breaks the predicate
constant v into components of the digits according to same base as its components. For
our example, if we have the predicate like “dollar_amt <= 759", the predicate constant
is 759 and it will be broken into digits of 7,5 and 9 with a uniform base of 10. Then for
each component, the required bitmap is scanned in memory. If a component has more
than two bitmaps (it depends on the base of the component, base-10 component has nine
bitmaps in it and so on) at-least two bitmaps will be scanned from each component.
Depending on the value of op, the algorithm performs at least four bitmap operations in
each pass of the for loop. The for loop is executed equal to the number of components.
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The algorithm evaluates each range predicate operator by computing two bitmaps: the
Bgq bitmap and either the Brr or Bgr bitmap depending on the predicate operator. For
example if the predicate is “>=", then the result bitmap Bge is obtained by computing the
bitmaps Beq and Bgr, steps that involved By, Big or Byg are not required. The final
result bitmap that is returned is either Bir, Big, Bor, Bae, Beg, or Bng corresponding to
the predicate operator “<”, “<=", “>" “>=" “=> «“x> respectively.

Analysis: The performance of the algorithm varies with different factors. It primarily
depends on the type of predicate being evaluated, the number of components, and the
base of each component. We evaluate the algorithm with a 3-component uniform base-10
range-encoded bit-sliced index. Our predicate is “dollar_amt <= 864”. As there are 3
components, n = 3, v = 864 and op is <=. For this predicate, the algorithm performs six
bitmap scans and in each pass of the for loop, performs at least three bitmap operations,
which comes to total of 6 bitmap scans and 10 bitmap operations. See [CI98] for a
detailed discussion of this example. Although, this is a significant improvement from
evaluating aggregates with equality encoded bit-sliced index and the projection index, the
algorithm calculates the "<" and " 2" type predicates by first calculating "<" and ">"
predicates respectively and then ANDing this with the results of "=" predicate. This two
step process is eliminated by Chan and Ionnadis [CI98], and an optimized range
evaluation algorithm is proposed by them. The next section discusses the algorithms
proposed by Chan and Ioannidis [CI98].

2.2 - Optimization in Range Evaluation with Bit-Sliced Index [CI98]

Chan and Ioannidis present an improved algorithm to perform the range evaluations with
range-encoded bit-sliced indexes. The algorithm to which they called RangeEval_Opt
reduces the bitmap operations by about 50% and requires one less bitmap scan for a
range predicate evaluation. Algorithm RangeEval_Opt avoids the intermediate equality
predicate evaluation by evaluating each range query in terms of only the “<=" based on
the following three identities:

(. A<v=A<=v-l 2)-A>v=(A<=vV) (3)-A>=v=(A<=v-1)
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The algorithm has been evaluated next for the same predicate “dollar_amt <= 864". The

overview of the algorithm is presented next followed by the analysis. The algorithm is
itself presented in figure 2.6.

Overview: The algorithm initializes the resultant bitmap B equal to B;, which is the
bitmap containing all 1’s in it. Then, the value of the predicate constant is adjusted
depending on if op is one of the two < or >=. Then, it executes only the part of the code
that is needed. If we are evaluating any of the equality predicates = or #, it will execute
the second part of the algorithm. If we are evaluating any of the range predicates, the first
part of the algorithm will be executed. In either case, it scans only one bitmap from the
first component and two bitmaps from subsequent components. In every execution of the

Jor loop, it performs two bitmap operations. At the end, it returns the updated bitmap B as
resultant, according to the value of op.

Input: n is the number of components in the range-encoded index
<bn, bn-1, .., bl> is the base of the index. <10,10,10> in our case
op is the predicate operator, op € {<,>,<=,>=,=,%}
v is the predicate value
B, is a bitmap representing the set of records with non-null values for indexed attribute
By and B, are the bitmaps of all zeros and all one’s respectively

Output: A bitmap representation of the set of records that satisfies the predicate “4 op v

B =B;
If(op e {<, >}thenv=v-I;

Letv= v vy ..V}
If(op € {<,>, <=,>=}) then
Iflv; <by-1) then B=B,""
Fori=2tondo )
If(v;2br-1)thenB=B AND B" ;
If(v;20)then B=BORB" ;

Else
Fori=1twondo
If(v;=0)thenB=BAND B, ; )
Else If ( v; = b;-1) then B =B AND (B™*?)";
Else B=B AND (B;" XOR B;"*');

If(ope {>, >, %} then

Return (B” AND B.,):;
Else

Return (B AND B.,):

Figure 2.6: RangeEval Opt Algorithm



Analysis: The algorithm RangeEval_Opt is evaluated for the predicate “A <= 864”.
Since op is <=, the first part of the if statement will be executed. The algorithm scans a
bitmap from the first component and assigns it to the resultant. Then, the FOR loop is
executed for the rest of the components and in each execution of the FOR loop, the
algorithm performs two bitmap scans and two operations. For this example, there are
three components, so the FOR loop will be executed two times and will perform four
operations during the execution of the FOR loop. The total bitmap scans come to five and
the total operations are five too. This algorithm evaluates the queries with less bitmap
scans and far less operations on them than does the algorithm RangeEval.

Increasing the number of components of a bitmap means that we have a small base for
components and each component consists of a small number of bitmaps. For example, a
base-3 component will have only three bitmaps in it since there are only three digits in
base-3 numbers. In range-encoding scheme we do not store the bitmap for the highest
digit. Thus, a base-3 component will have only two bitmaps for bits by and b,. Similarly,
a base-10 component has 9 bitmaps in it since decimal numbers have 10 digits and we do
not store the bitmap for digit 9. Fewer components implies that we have more bitmaps in
each component and we will have to scan less bitmaps to evaluate a range predicate,
though each component will require more space. The range-encoded base<10,10,10>
index of figure 17 can be stored as a range-encoded base<2,2,2...2> 16 component
bitmap index. Each component will have only one bitmap in it since there is no need to
store a bitmap for highest digit, which is 1 in this case. By expanding it to a 16
component index of one bitmap each, we can reduce the number of bitmaps from 30 to
16. But there is a price for this space saving, as there will be more bitmap scans for
evaluating a range predicate. Chan and loannidis [CI98] provided a framework for
getting an optimized solution for tradeoff between time and space. Evaluating the
predicate “dollar_amt < 864 with a 16 component bitmap index of uniform base two
will require one bitmap scan from each component and one operation on them which
makes it a total of 16 bitmap scans and 16 bitmap operations and might not be considered
an acceptable performance in most of the cases. This number can be reduced by applying
the tree reduction technique on this index. The tree reduction technique was proposed by
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Wu [Wu99] to reduce the bitmap scans, extending opportunity for space optimized range-
encoded indexes for range queries. The tree-reduction technique is discussed next.

2.3 — Using Tree Reduction for Query Evaluation with Bit-Sliced Index [Wu99]
Further improving upon RangeEval-Opt, Wu [Wu99] proposed an execution tree
reduction technique. Using the same example, we are given a 3-component range bit-
encoding with decimal base on attribute “dollar_amt” and the predicate “dollar_amt <=
864”. Using algorithm RangeEval-Opt to evaluate the predicate results in the execution
tree as shown in figure 2.7(a). Suppose that for some certain running state of a database,

@ _, (O — —

51 (oD 7 (D [ o | e
"1 Fl D [n

by’ o , o

3
b.* bt 1 ' B
(a) Original execution (b) Reduction of the execution Tree
Tree
Figure 2.7: T ) ion of tion r <=864

the second digit of all the values of dollar_amt is no larger than §, i.e., in the component-
2 of the index, the bit vectors by’, by, b,’ and b,® are all set to “1”. By replacing the
corresponding bit vectors with 1’-vectors, we have the first tree in figure 2.7(b). By
applying x . I = x (identity law) and x + I = I/ (domain law) of Boolean algebra, the
execution tree is reduced down to one node, i.e., instead of § bitmap scans plus 4 logical
operations, only 1 bitmap (the bit vector bs® of component-3) is read.
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In order to be able to apply such a reduction, the information about the percentage of
population of each bit vector is needed. Without much extra cost, this information can be
computed at the time of index creation and can be synchronized every time the index is
changed [Wu99]. The revised version of RangeEval-Opt, which suppresses some
unnecessary bitmap scans as described above, is shown in figure 2.8. An overview of this
algorithm is given next followed by an analysis.

Input: n is the number of components in the range-encoded index
<bn, br-1, .., bl> is the base of the index. <10,10,10> in our case
op is the predicate operator, op € {<,>, <=,>=,=,#}
v is the predicate constant
By, is a bitmap representing the set of records with non-null values for indexed attribute

B¢ denotes the j-th bit vector of i-th component and for a bit vector B/, O(B/) denotes the
percentage of 1’s in B/

Output: A bitmap representation of the set of records that satisfies the predicate “4 op v"”

B=1;
If(ope {<, >} thenv=v-I;

Let v=v,Vy,..V}]

If (op € {<,>, <=,><=}) then
If ((v; <b;-1) AND (B(B;*") # 1)) then B =B,""
Fori=2tondo
If ((vi#bi-1) AND (8(B"™) # 1)) then B=B ANDB," ;
If (( vi 2 0) AND (8(B,"") £ 1)) then B=B ORB,"';

Else
Fori=1tondo
Switch (vi)
Case v;=0:if (B(B,") # 1)then B=B AND B/ ;
Case v; =by-1: if (B(B*?) # 1) then B =B AND (B*2)’
Else return (B =0);
Case 0 <vi<bi-I:
If (if (0(B:") #I)ANDif(O(B.'“) #1) then B =B AND (B;" XOR B;*');
Else if (B(B;"™') = 1) then retun (B = 0)
ElseB= BAND(B."")'
End Switch

If(ope {>, >,#} thenReturn B’ AND B.;
Else Return B AND Bp.;

Overview: The improved algorithm pmented by Wu [Wu99] petfonns as good as the
original algorithm in the worst case. But it considers the situation in which we end-up
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scanning and performing on an unnecessary bitmap, which has all 1’s in it. The
population ration of 1’s can be used to decide if a bitmap should be scanned from the disk
at all. The algorithm proposes a very small change to RangeEval_Opt, it processes a
bitmap only if it does not have all 1’s in it and passes the condition of if statement (i f
(0(B,"*) = 1) before scanning it, where 0 (B;**) is the ratio of 1’s in the bitmap. There
is no need for scanning and performing an operation with a bitmap of all 1’s, since the
same results can be obtained by applying the identity law and domain law as described
above.

Analysis: If the range predicate “dollar_amt <= 864" is evaluated by the tree-reduction
using the 3-component base-10 index of figure 15. We make the assumption that all the
digits in component 3 are less or equal to seven for some state of the data warehouse fact
table. So this query is evaluated when Bs® and B;’ have all 1’s in them. The algorithm
scans the B,* and assigns it to B (the resultant bitmap). Now in the execution of FOR
loop, for component 2, bitmaps B,® and B’ are scanned and one AND operation and one
OR operation is performed on them respectively. Next, for component 3, the ratio of 1’s
in bit vectors B;® and B;’ is checked and it is found that both of them have all 1’s in them,
so there is no need to scan them. The result has already been evaluated. Scanning these
two bitmaps has no effect on the resultant bitmap B. By using this technique, we are able
to answer the query by scanning 3 bitmaps and performing only two operations on them.
However, in the worst case, when B;® and B;’ are also scanned, the algorithm gives the

same performance as RangeEval_Opt.

2.4 - The Limitations of the Existing Techniques

The bit-sliced index proposed by [0Q97] for aggregate calculation is known for the best
performance when calculating sum, average, and count aggregates although it scans all
the bitmaps of a bit-sliced index if stored. For evaluating the range predicates, they have
proposed range-encoded bit-sliced index with multiple components. This scheme is
improved significantly by Chan and Ioannidis [CI98] with a reduction in number of
bitmap scans and operations on them and is further improved by Wu [Wu99] with the use
of tree reduction technique. The two later techniques address the problem of evaluating
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the range predicates and require that the bit-sliced index is to be available in range bit-
encoding. It is assumed that the regular equality-encoded bit-sliced index is also stored
and can be used for aggregates using the algorithm proposed by [0Q97]. There is an
advantage of having specialized bitmaps for certain operations, e.g., having bit-sliced
bitmap index for aggregate queries and range-encoded bitmap index for range queries.
The space and maintenance overheads remain a problem for these techniques and having
multiple indexes worsens this problem. The other disadvantage of calculating aggregates
with bit-sliced index [OQ97] is that either the bitmap is not stored at all if it has all zero’s
in it or it will be scanned if it is there. In the case where the bitmap is not stored, the
index has to be rebuilt each time the fact table is updated. We are proposing an algorithm
to calculate aggregates with the range-encoded bit-sliced index that results in an
improvement in performance without increase in space. Since, the bit-sliced index is in
range-encoded form, it can efficiently be used for the latest algorithms to answer range
queries. The index does not have to be rebuilt each time the fact table is updated. The
proposed method will also eliminate the need for maintaining separate indexes for range

and aggregate predicates, which will reduce the space requirements and maintenance
overheads considerably.
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3. CALCULATING AGGREGATES USING RANGE-

ENCODED SCHEME

There are two challenges faced by data warehouse designers. First, the space for storing
the bitmap index should be reduced so that maintenance cost should be as low as
possible. Secondly, low time complt;.xity is desirable, so that the query should be
answered as quickly as possible. In this thesis, an algorithm is proposed to perform
aggregate operations with the use of a range-encoded bitmap index. The disk read/write is
the most expensive operation in query evaluation. Our algorithm improves the response
time by reducing the number of bitmap scans significantly. We are proposing a space
optimized range-encoded bitmap index, which can be used by the latest techniques for
evaluating range predicates. We will calculate both aggregates and range predicates in the
evaluation of this technique and will compare its performance with the other techniques.

For our discussion in this chapter, we are using the fact table S4LE first presented in
figure 2.1. Since dollar_am is a short data type with memory size of two bytes and 16
bits, that is the reason the bit-sliced index of figure 2.2 has 16 bitmaps in it. If we develop
a range-encoded uniform base-2 bit-sliced index on the same attribute, that will have 16
components in it, because any value of short data type can have up to sixteen digits and
each digit will be either O or 1. So, for a space optimized range-encoded bit-sliced index
of binary base, we need to have sixteen components of two bitmaps each. As they are
stored in a range-encoded scheme, we do not have to store the bitmap for the most
significant digit, which is 1 in this case. Thus, we only need to store the bitmap for digit 0
in each component. The index is presented in figure 3.1. As obvious, this index consumes
the same space as the bit-sliced index of figure 2.2. Although it looks like as if all
bitmaps are stored, in practice, the bitmaps of all 1°s do not need to be stored since they
can either easily be generated within memory without incurring significant cost or can be
compressed to a2 mere four bytes with any compression technique. The difference is that
this is a range-encoded bitmap index of 16 components. Note that this index is exactly the
complement of the bit-sliced index of figure 2.2.
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3.1 - Evaluating Aggregates

When it comes to evaluating a sum, average, or count aggregates like SELECT
SUM(dollar_sales) FROM SALES WHERE <condition>, bit-sliced index gives the best
performance of the techniques evaluated [OQ97]. We illustrate our algorithm for the
same kind of aggregate so it will be helpful for comparative analysis later. In the rest of
the discussion, we also assume that the foundset has already been determined and

represented by a bitmap Br along with the bitmap By, for all the non-null values in the
column. '
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The overview of the algorithm is presented next followed by a detailed comparative
analysis. The algorithm itself is presented in figure 23.

Input: We are given a n-component base-2 Bit-Sliced index for an atribute
n is the number of components in the range-encoded index ( n= 16 in this case)
By is the bitmap of foundset, B, represent the bitmap of non-null values

B¢ denotes the j-th bit vector of i-th component and for a bit vector B} , 0(B/) denotes the
percentage of 1’s in B}

Output: The sum of the attribute values satisfying the found set

If(COUNT (BrANDB_,)==0)
Return null;

CNT = COUNT(By;
SUM =0.00
Fori=lwn

If (B(BY) # 1) then SUM +=2%~" * (CNT - COUNT (B AND By));

Overview: First of all two bitmaps B¢ and By, are scanned from the disk. It performs an
AND operation on them. If all the tuples in the foundset have null values in their required
column, the algorithm will return null and finish. Next it performs a COUNT operation on
the foundset and stores the result in a variable named CNT. It initializes the SUM and
goes into the FOR loop. The FOR loop will be executed for the same number of times as
there are components. There are 16 components so the FOR loop will be executed 16
times. In each execution of the loop, the bitmap is scanned only if it does not have all 1’s
in it or its population ratio is not 1. In other words, if it satisfies the condition of the if
statement, provided in the single statement of the FOR loop. If the bitmap has all 1’s in it,
it is not needed to be scanned and operated upon; since that bitmap has zeros in all of its
attribute values for that digit, it does not affect the value of SUM. If a bitmap is scanned,
it will be ANDed with the foundset B;, which stays in memory for the rest of the
processing after it has been scanned from the disk the first time. Then a COUNT
operation is performed on the result of that AND operation. This count is subtracted from
the variable CNT and the resultant figure is multiplied with appropriate exponent of 2.
The SUM is then returned to the calling module.
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Analysis: The algorithm must scan two bitmaps namely B¢ and B,,. They are ANDed and
a COUNT is performed on the result of the AND operation on those two bitmaps. If the
result is not zero, the algorithm proceeds. It counts the number of 1’s in the foundset by
performing a COUNT on the bitmap B The result is stored in a variable CNT. The
algorithm executes the FOR loop for the number of components. In the worst case, it will
scan all the bitmaps in each execution of the loop. If all the bitmaps are scanned, there
will be 16 bitmap scans in the loop. In each iteration of the FOR loop, if a bitmap is
scanned that will be ANDed with the By, then the COUNT operation is performed on the
result of AND operation between B¢ and B’ For each iteration of the FOR loop, the
algorithm scans one bitmap and performs two bitmap operations. For a short data type,
the algorithm scans 18 bitmaps and performs 17 AND operations on their pairs and it
performs 18 COUNT operations on those bitmaps (worst case scenario). Any operation
on the bitmap is much less expensive than a bitmap scan and a COUNT operation is even
less expensive than an AND operation. So with the total of 18 bitmap scans and 35
bitmap operations, this algorithm gives as good performance as one proposed by [0Q97].

Practically, it is much less likely that, for any data type, all the bitmaps will have to be
scanned from the disk. In our example, for a short data type and the bit-sliced index of
figure 20, the bitmaps of last 6 components have all 1’s in them. So it will perform only
12 bitmap scans and 23 bitmap operations. This is a significant improvement over the one
proposed by [OQ97] if all bitmaps are stored. If all bitmaps are not stored, the proposed
algorithm gives the same performance as that algoritbhm. So there is no loss in
performance for aggregates. Also, the proposed index is a space optimized range-encoded
index and can be used for the latest evaluation techniques for the range queries.

3.2 - Evaluating Range

Next, we will see how a range query like “dollar_amt <= 864" can evaluated with the
proposed index. For a range query like this, the algorithm of [Wu99] can be used. The
bitmaps of last 6 components have all 1’s in them. There are only 10 bitmaps which will
pass the criteria of the if statement, so only 10 bitmaps will be scanned and the algorithm
will perform only one operation on each bitmap. So the above query can be evaluated
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with 10 bitmap scans and 10 bitmap operations which is still within the reasonable
bounds as compared to the bitmap index of base <10,10,10> which has 30 bitmaps in it
and takes 5 bitmap scans and 5 bitmap operations. Considering that with two indexes, one
bit-sliced index with 10 bitmaps and second range-encoded 3-component <10,10,10>
with 27 bitmaps in it, the aggregates can be evaluated with 18 bitmap scans and 34
bitmap operations, and the range can be evaluated with § bitmap scans and 5 bitmap
operations, while with our single index of 10 bitmaps, the aggregates can be evaluated
with 12 bitmap scans and 23 bitmap operations on them and the range can be evaluated
with 10 bitmap scans and 10 bitmap operations. The choice of another index is still there
for optimizing range queries with higher base index.



4. PERFORMANCE ANALYSIS

4.1 — Performance Analysis from Theory

Consider a data warehouse having a fact table SALE, in which data is integrated for all
transactions of all stores during the first week of November of last year, and a dimension
table PRODUCT having the details of all products being sold across all stores. The fact
table and dimension table have the following schema and are represented with some data
in them in figure 4.1.

Sales: (OrderNo, ProductID, Storeld, Quantity, dollar_amt)

Product: (ProdNo, ProdName, Brand, Size, Weight, Pkg_type, UnitPrice)

(a) Dimension table PRODUCT
RID | prodNo ProdName  Brand Size  Weight Pkg type UnitPrice
p001 120 Golf Clubs 30 50 - A 150
p002 122 Golf Shoes 30 40 - B 80
p003 124 YYY 20 30 - A 10
p004 127 XXX 20 20 20 A 20
130 77z 30 70 30 C 40
131 3 20 80 50 Cc 35
p007 | 970 SSS 30 80 10 B 200
(b) Fact table SALE
Ordinal
numbers| OrderNo ProductID StoreID dollar_amt
001 ROO1 120 $25 970
002 R002 122 S25 860
003 R420 120 S26 950
004 RO10 120 S28 041
005 R300 121 s25 870
R130 120 S37 859
P00O3 131 S40 847
P004 120 $70 272
P200 122 25 182
- P210 970 S26 945
P220 124 S28 864
P320 122 $70 NULL
P110 127 S26 950
RO1S 131 S40 027
R400 120 S37 426
P190 131 S25 994
P500 970 S40 559
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Now the administration has to make a decision that if they want to keep on-hand
inventory for the golf items for coming winter. Golf is a summer support but a new trend
has arisen of playing golf indoor during winter. The management needs to know if they
want to keep inventory for the golf during the month of November this year and wants to
find out how much revenue was generated by the golf items last year. So the expected
question is “how much total revenue was generated by all stores where the item name is
Golf Club or Golf Shoes”. As it is obvious that this kind of arbitrary queries are not
predictable and the results can not be stored in summary tables for them, but with the use
of sophisticated indexes, such kind of queries can be evaluated very easily.

We assume that a bitmap join index exist between the two tables through the joining
attribute of ProductID. If the above query is translated into an SQL query, it looks like
the following

“SELECT sum(S.dollar_amt) “Golf Revenue’ FROM sale S, product P

WHERE S.productID = P.prodNo and P.prodName = ‘Golf Club’ or p.prodName =
‘Golf Shoes* ”';

The above query is evaluated by the following sequence of steps:

First of all where clause is executed and the RIDs of Product are selected in which the
product’s name satisfy the required condition, we get RID p001 and p002 from
dimension table Product which satisfy this condition. The sum is to be calculated from
fact table, so the next step is to find the records from fact table, which are joined with the
dimension table having the product id p00! and p002. This is done by using the bitmap
join index between the two tables. The bitmap join index for p001 is:
rj¢oj1jrjoy|trijojrjoiojojojojojrjojojojojo
and the bi Jjoin index for p002 is:
ofrjofojojojojojriojofrjojojojojojojoio
The foundset or the set of rows from which the final result should be calculated, and these
are the rows present in either of these bitmaps. So bitmap (By) of the foundser can be
determined by ORing the above two vectors. The B for the above query is following:
Ifjrjrjrjojrjofjrjrjojojrjojojrjojojojoijo




The next step is to calculate the sum of dollar_amt attribute for those rows which are
selected in the foundser. For this step, the index on dollar_amt can be used and the goal is
to have the best index, which can perform this task by scanning the minimum data from
the disk. There are three types of indexes that can be used for this purpose. Table 1
presents the cost and performance of using all these indexes in the worst case. Worst case
occurs when none of the bitmap has all zeros in it and all of them are to be stored on disk.

Let j is the memory size of data type. i.e., long data type has 64 bits and short has 16 bits.
N is the number of tuples in the table.

Table 4.1: Performance of different indexes for aggregates in worst case

Size on | Bitmap AND COUNT Total Data
Disk | Scans Operations | Operations Scanned
Range Encoded | J*N bits J+2 J+1 J+2 J*N +2*N bits
Bit-Sliced Index
Regular Bit- | J*N bits J+2 J+1 J+1 J*N +2*N bits
Sliced Index
Projection J*N bits N/A N/A N/A J*N +2*N bits
Index

From the above table, we can figure that in worst case, all three indexes perform equally.

But this is extremely rare when none of the bitmaps have all zeros in them. For a long
data type, this is less likely that we have the highest numbers stored in them. Similarly,
for a short data type of dollar_amt, it is less likely that we have amounts in thousands of
dollars, so there is a great chance for highest digits to be zero. Thus we get the bitmaps
for higher digits containing all zeros in them. This gives the opportunity of improving the

performance. The table 2 below presents the cost and performance of these indexes with
the fact table of this example:
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Table 4.2: The performance of indexes with the above fact table

Size on Bitmap AND COUNT Total Data

Disk Scans Operations | Operations Scanned

Range Encoded 10%20 12 11 12 240 bits
Bit-Sliced Index bits

Regular Bit- 10%20 12 11 11 240 bits
Sliced Index bits

Projection 16*%20 | N/A N/A N/A 360 bits
Index bits

As this is obvious from table 1 and 2 that the first two indexing schemes do not perform
worse than the projection index in any case. Thus the projection index is not an option. If
we compare the performance of the first two schemes, we can figure out that both are
equal in size and scan the same amount of data from disk. They both perform same
number of AND operations but first perform one more COUNT operation than second.
The count operation is the cheapest among all operations of this processing, so that is
highly insignificant. The first index is a range bit-encoded index which also gives good
performance for range queries and very straight forward to maintain, while the second
one is useful only for aggregates and has to be rebuilt when a data warehouse is updated.
Next the performance of different indexes is evaluated for the range queries.

As an other example if the management needs to know that how much revenue was
generated through the transactions in which transaction amount was less than $400, the
question can be asked in form of following query ““SELECT sum (S.dollar_amt)
“Revnue” FROM sale S WHERE S.dollar_amt <=400 ”;

For the above query, the attribute dollar._amt needs to be scanned. Again, this is the goal
that the above query should be answered by scanning minimum data from the disk. If a
projection index is present, the whole index needs to be scanned and each value has to be
compared with the specified amount to figure out the values in the result set, and then
those values will be added together. As quick response time is a critical for data
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warehouse queries, there are some alternatives to projection index which can be used to
optimize the response time for such kind of range queries. Following tables present the
comparative analysis of all alternatives in space and performance. We will compare the
performance of projection index, space optimized range-encoded bit-sliced index
proposed in. this thesis, uniform base-10 multiple component range-encoded index, and
regular bit-sliced index proposed by [0OQ97]. Table 3 presents their comparison in worst
case and table 4 presents it for this particular case.

q is the number of components in a range-encoded index

Table 4.3: Performance of different indexes for range queries in general

Size on | Bitmap Bitmap Total Data
Disk | Scans Operations Scanned
Range Encoded | j*N bits j j J*N bits
Bit-Sliced Index
Regular Bit- | j*Nbits j 4% J*N bits
Sliced Index
Base-10 q*9*N q- (g-1)*2+1 | ((q-1)*2+1)*N
multiple bits 1)*2+1 bits
component
Projection 16*N N/A N/A j*N bits
Index bits

q is the number of components and its maximum value depends on the data type of the
data we are using. For a short data type which cannot have a value greater than 65535,
the q can not be more than 5 for base 10 components, since there are maximum five digits
in any value. If we make higher base components, the miximum possible value of q will

be even less and we will have fewer components and less data will be scnned from the
disk.
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Table 4.4: Performance of different indexes for range queries with above tables

Size on | Bitmap Bitmap Total Data | performance
Disk | Scans Operations Scanned
Range Encoded | [0*N 10 10 10*N bits Reasonable
Bit-Sliced Index bits
Regular Bit- 10*N 10 40 10*N bits Slowest
Sliced Index bits Not good
Base-10 27*N 5 5 5*N bits Fastest but
multiple bits 3 times more
component space
Projection 16*N N/A N/A 16*N bits Slow
Index bits

As we can see from the above table, higher base multiple components bitmap perform
best for range queries but the cost of storing them is high. In this example, the size of 3-
component base-10 index is three times greater than the first two indexes. The proposed
index takes three times less space and perform better than the other two schemes, at the
same time this index performs equal to the best (bit-sliced index) for the aggregates.

4.2 — Performance Analysis from System Implementation

In this section, a performance comparison of space optimized range-encoded index
proposed in this thesis with bit-sliced index [0Q97] is introduced with the system
implementation of both. The range-encoded bitmap index and bit-sliced index are
constructed with various sizes and various ranges of data in the indexed attribute. The
programs to construct these indexes for the numeric attribute of a fact table are developed
in C. The table ACTIVITIES (CustomerID char(4), Acocounttype char(4),
Transactiontype varchar2(10), Time char(12), Amount number(8,2)) represents a
banking warehouse database fact table, which has each of its tuple representing a
transaction record of bank. The fact table is generated with a PRO*C program. The two
algorithms for calculating aggregates and two algorithms for evaluating range with each
index are implemented. All four algorithms are implemented in “C”. The implementation
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has two different phases. The first phase is to construct all types of indexes for the

numeric attribute of the generated fact table, i.e., transaction amount for a bank’s data
warehouse with the example fact table.

The experiments are performed on two different platforms. The first set of experiments is
conducted on a general-purpose computer system in the university called SGI Challenge
XL. The SGI Challenge XL has 16 R4400 processors with 12 processors at 150 MHz, 2
processors at 200 MHz and 2 processors at 250 MHz. The other four sets of experiments
are conducted on a stand-alone SUN (Ultra 60) workstation with processor speed of 450
MHz, 512 megabytes of memory and Solaris operating system.

4.2.1 - Experiment 1:

The first set of experiments is carried out by generating a FACT table called
ACTIVITIES having 100,000 records in it. The table ACTIVITIES is generated by a
PRO*C program. A projection index is built on the AMOUNT attribute. The bit-slice
index and binary range-encoded bitmap index are built from that projection index.

Aggregate Evaluation: The aggregate queries are evaluated for a variety of different
Joundsets with each index. Each time a different foundset is generated randomly for
calculating aggregates, the same foundset is used with both indexes to evaluate their
performance. The percentage of the foundset is started from 10% and goes up to 100%
with an increment of 10% in each set of experiments. A foundset of 10% means that
1/10" records of fact table are in the result for which we have to add the attribute values.
With each percentage of foundset, two to three aggregates are evaluated with both
indexes. The time is noted in number of CLOCKS taken by the algorithm to perform the
aggregate with each index. CLOCK is the smallest unit used to calculate execution time
for a program. The experimental resuits are shown in table 4.5. The first column of the
table stands for the percentage of foundset for the predicate to be evaluated, the second
column stands for the number of runs and the third and fourth columns represent the time
taken by bit-sliced index (Bs) and range-encoded index (Br) respectively. The fifth
column represents the difference in time for both indexes. The positive value in this

51



column represents the time saved with proposed index, and negative value represents that
the proposed index took more time and the sixth column represents the percentage gain.
Table 4.5: Performance of both indexes for 27 aggregate queries with foundset 10%-100%

Percentage Number Time (CLOCKS) with Time (CLOCKS) with Difference | Percentage
of Foundset Of Runs __Bit-Sliced Index Range-Encoded index  B,-B, Gain
10% 3 210000 210000 0 0%
20% 1 210000 200000 10000 5%
20% 1 170000 150000 20000 12%
20% 1 130000 130000 0 0%
30% 1 210000 220000 -10000 -5%
0% 2 200000 220000 -20000 -10%
30% 1 170000 150000 20000 12%
0% 1 200000 210000 -10000 -5%
40% 1 160000 150000 10000 6%l
40% 2 210000 200000 10000 5%
40% 1 220000 210000 10000 5%
50% 2 130000 120000 10000 8%
60% 1 200000 210000 -10000 -5%
70% 2 200000 210000 -10000 -5%l|
80% 2 200000 210000 -10000 -5%|
90% 2 170000 150000 20000 12%
100% 3 210000 200000 10000 5%
Graph 4.1: Performance of both indexes for 27 aggregate queries of table 4.5
Aggregate Evaluation
250000
% 200000
3 150000 | @ Bit-Skced Index
§ 100000 'l Range-Encoded Index:
&= 50000
0

By observing the results, we can see that both indexes perform the same for aggregate
queries most of the time. Depending on the foundset, some times the proposed algorithm
perform slightly better than the previous algorithm, and some times the previous
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algorithm performs slightly better than the proposed algorithm. The time unit CLOCK is
so small that 10,000 is the smallest number reported, and 10,000 CLOCKS means a few
microseconds. In the above experiment, there was a net gain of 40000 CLOCKS in the
time for the proposed index.

Range Evaluation: Different range predicates are evaluated with both types of indexes.
The range was evaluated for a variety of values to gain the general response time for both
indexes. The predicate like AMOUNT <= 500 is simply represented as (<=500) in the
tables below. The first set of range was evaluated for the records having values less or
equal to 100 (<= 100), less or equal to 450 (<= 450) and less or equal to 800 (<= 800).
Then three queries are evaluated for the records where the values are not equal to 150 (!=
150), not equal to 375 (!= 375), and not equal to 750 (!= 750) respectively. The next set
of range queries was evaluated for the records having values greater or equal to 100 (>=
100), records having values greater or equal to 450 (>= 450), and records having values
greater or equal to 800 (>=800). The next set of queries is evaluated for the records
having values equal to 250 and 650, for the records having values less than 50 and 850
and finally for the records having values greater than 200 and 700.

By observing the experimental results from table 4.6, we can infer that the range-encoded
index perform faster than the bit-sliced index. Both indexes scan the same amount of data
from storage, but bit-sliced index perform more operations on the data, the larger bitmap
means more time difference in their performance. The last column of the table represents
the time gained by the range-encoded index. The gain in time ranges from O in one case
to 130,000 CLOCKS in another.
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Table 4.6: Performance of both indexes for different range queries

~ & -

Number of Runs

13
15

Predicate Bit-Sliced Index Range-Encoded Index GAIN Percentage
Type Time in Clocks Time in Clocks in Time | Gain in Time
<= 100 160000 130000 30000 19%
<= 450 180000 170000 10000 6%
<= 800 320000 250000 70000 22%
1= 150 270000 260000 10000 4%
I= 375 300000 290000 10000 3%
1= 750 310000 290000 20000 6%
>= 100 370000 370000 0 0%
>= 450 300000 290000 10000 3%
>= 800 150000 140000 10000 7%
= 250 210000 120000 90000 43%
= 650 200000 120000 80000 40%

< 50 220000 180000 40000 18%
< 850 360000 230000 130000 36%
> 200 350000 340000 10000 3%
> 700 180000 160000 20000 11%

Net Gain 540000
Graph 4.2: Performance of both indexes for range queries of table 4.6
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4.2.2 - Experiment 2:
The second set of experiments are carried out by generating the values of AMOUNT
attribute randomly. There are one and a half million (1,500,000) values ranging between
0 and 999 (up to three digit numbers). The bit-sliced index and binary range-encoded
bitmap index are built from the projection of this attribute. This set of experiments is
conducted on a SUN workstation with Solaris operating system. Similar predicates are
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evaluated for these indexes as have been done in first experiment (section 4.2.1). With
each foundset (10% to 100%), five predicates are evaluated in these experiments.

Aggregate Evaluation: There are fifty aggregate queries evaluated for a different
foundset each time but same foundset is used with each index. Each time, foundset is
generated randomly. The experimental results are shown in table 4.7.

Table 4.7: Performance of both indexes for 50 aggregate queries with foundset 10%-100%

Percentage Number Time (CLOCKS) with Time (CLOCKS) with Difference| Percentage
of Foundset Of Runs Bit-Sliced Index Range-Encoded Index B, -B, | Gain in Time
10% 3 2910000 2920000 -10000 0%
10% 1 2900000 2910000 -10000 0%
10% 1 2920000 2900000 20000 1%
20% 1 2920000 2910000 10000 0%!
20% 2 2900000 2920000 -20000 -1%
20% 1 2920000 2910000 10000 0%
20% 1 2910000 2920000 -10000 0%
30% 1 2920000 2910000 10000 0%
30% 2 2900000 2920000 -20000 -1%
30% 1 2910000 2900000 10000 0%
30% 1 2820000 2910000 10000 0%
40% 1 2910000 2910000 0 0%
40% 1 2910000 2920000 -10000 0%
40% 2 2900000 2910000 -10000 0%
40% 1 2910000 2900000 10000 0%
50% 1 2910000 2900000 10000 0%
50% 1 2920000 2900000 20000 1%
50% 1 2900000 2920000 -20000 -1%
50% 1 2900000 2910000 -10000 0%
50% 1 2910000 2910000 0 0%
60% 2 2910000 2910000 0 0%
60% 1 2890000 2910000 -20000 -1%)
60% 1 2900000 2920000 -20000 -1%
60% 1 2910000 2900000 10000 0%
70% 1 2950000 2570000 -20000 -1%
70% 3 2950000 2960000 -10000 0%
70% 1 2950000 2950000 0 0%
80% 1 2950000 2960000 -10000 0%
80% 2 2940000 2960000 -20000 -1%)
80% 2 2950000 2960000 -10000 0%
90% 2 2910000 2900000 10000 0%
90% 3 2300000 2910000 -10000 0%
100% 3 2300000 2910000 -10000 0%
100% 2 2900000 2900000 0 0%
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Graph 4.3: Performance of both indexes for 50 aggregate queries of table 4.7

Aggregate Fvaluation
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By observing the results, we can figure that both indexes perform the same for seven
predicates. Twenty-one times, the proposed index took 10,000 more clocks than bit-sliced
index, while ten times, bit-sliced index took 10,000 more clocks than the proposed index.
Ten times, the proposed index took significantly longer (>=20,000 Clocks) than the bit-
sliced index and two times the bit-sliced index took significantly longer than the
proposed index but that significant difference is not more than a few microseconds. As a
general rule, their performance will be considered equal.

Range Evaluation: Range predicates of the same types are evaluated with both types of
indexes as in the first experiment (section 4.2.1). The first set of range predicates was
evaluated for the records having values less or equal to 100 (<= 100), less or equal to 450
(<= 450) and less or equal to 800 (<= 800). Then, three queries are evaluated for the
records where the values are not equal to 150 ( != 150), not equal to 375 (= 375), and not
equal to 750 (!= 750) respectively. The next set of range queries is evaluated for the
records having values greater or equal to 100 (>= 100), records having values greater or
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equal to 450 (>= 450), and records having values greater or equal to 800 (>=800). The
next set of queries is evaluated for the records having values equal to 250 and 650, for the
records having values less than 50 and 850 and finally for the records having values
greater than 200 and 700.

Table 4.8: Performance of both indexes for different range queries

Predicate Bit-Sliced Index Range-Encoded Index GAIN Percentage
Type Time in Clocks Time in Clocks in Time | Gain in Time
<= 100 2830000 2770000 60000 2%
<= 450 4680000 4580000 110000 2%
<= 800 6550000 6360000 190000 3%
1= 150 7590000 7330000 260000 3%
i= 375 7560000 7360000 200000 3%
= 750 7580000 7370000 210000 3%
>= 100 7050000 6850000 200000 3%
>= 450 5200000 5070000 130000 3%
>= 800 3370000 3290000 80000 2%
= 250 2310000 2270000 40000 2%
= 650 2300000 2270000 30000 1%
< 50 2560000 2520000 40000 2%
< 850 6760000 6590000 170000 3%
> 200 6530000 6330000 200000 3%
> 700 3880000 3800000 80000 2%
Net Gain 2000000
Graph 4.4: Performance of both indexes for range queries of table 4.8
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By examining the experimental results from table 4.8 and graph 4.4, we can observe that
the range-encoded index performs much faster than the bit-sliced index for larger tables.
The time gain ranges from 30,000 clocks to 260,000 clocks. The performance gap widens

because the indexes are larger and each operation on them takes a little longer than the
previous experiment.

Next two experiments are carried out to confirm these results with different data and
different table sizes. Both of the following experiments are conducted on same SUN
Solaris machine of experiment two.

4.2.3 - Experiment 3:

The third set of experiments carried out by randomly generating the values of AMOUNT
attribute between the range of 0 — 9999 (up to four digit numbers). There are four
hundred thousand (400,000) records in the table. The bit-sliced index and binary range-
encoded bitmap index are built from the projection of this attribute and similar sets of
experiment are carried out again with different predicate values. Since the attribute values

are larger, more bitmaps are needed to store this data. In fact, each index has 14 bitmaps
in them.

Aggregate Evaluation: There are forty aggregate queries evaluated by generating a
different foundset each time. The same foundset is used with both indexes to evaluate
their performance. The experimental results are shown in table 4.9.
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Table 4.9: Performance of both indexes for 50 aggregate queries foundset (10% - 100%)

Percentage Number Time (CLOCKS) with Time (CLOCKS) with Difference| Percentage
of Foundset Of Runs Bit-Sliced Index Range-Encoded Index B.-B, | Gainin Time
10% 2 1130000 1140000 -10000 -1%
10% 3 1140000 1140000 0 0%
10% 1 1140000 1150000 -10000 1%
20% 3 1130000 1140000 -10000 -1%
20% 2 1140000 1140000 0 0%
30% 3 1130000 1140000 -10000 -1%
30% 2 1140000 1140000 0 0%
40% 1 1130000 1140000 -10000 -1%
40% 1 1140000 1140000 0 0%
40% 1 1140000 1150000 -10000 1%
40% 2 1130000 1150000 -20000 2%
50% 2 1130000 1150000 -20000 2%
50% 2 1130000 1140000 -10000 1%
50% 1 1140000 1140000 0 0%
60% 2 1130000 1150000 -20000 2%
60% 2 1140000 1140000 0 0%
60% 1 1130000 1130000 0 0%
70% 3 1130000 1140000 -10000 1%
70% 1 1120000 1140000 -20000 2%
70% 1 1140000 1140000 0 0%
80% 4 1130000 1140000 -10000 1%
80% 1 1130000 1150000 -20000 2%
90% 1 1140000 1140000 0 0%
90% 4 1130000 1140000 -10000 -1%
100% 5 1130000 1140000 -10000 -1%
Graph 4.5: Performance of both indexes for 50 aggregate queries of table 4.9
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By observing the results of table 4.9, we can figure that both indexes perform exactly the
same for fourteen queries. About twenty-eight times, there was an insignificant difference
in their performance and for eight times bit-sliced index took 20,000 less CLOCKS than
the range-encoded index.

Range Evaluation: Following the same pattern, range predicates are evaluated with both
types of indexes. The first set of range was evaluated for the records having values less or
equal to 1000 (<= 1000), less or equal to 4500 (<= 4500) and less or equal to 8000 (<=
8000). Then three queries are evaluated for the records where the values are not equal to
400 (!= 400), not equal to 3750 (= 3750), and not equal to 7500 (!= 7500) respectively.
The next set of range queries were evaluated for the records having values greater or
equal to 1000 (>= 1000), records having values greater or equal to 4500 (>= 4500), and
records having values greater or equal to 8000 (>= 8000). The next set of queries is
evaluated for the records having values equal to 2500 and 65000. For the records having
values less than 500 and 8500 and finally for the records having values greater than 200
and 7000.

Table 4.10: Performance of both indexes for different range queries

Predicate Bit-Sliced Index Range-Encoded Index GAIN Percentage
Type Time in Clocks Time in Clocks in Time |Gain in Time
<= 1000 960000 950000 10000 1%
<= 4500 1430000 1400000 30000 2%
<= 7500 1920000 1880000 40000 2%
i= 400 2190000 2150000 40000 2%
1=3750 2190000 2140000 50000 2%
i= 7500 2220000 2140000 80000 4%
>= 1000 2060000 2010000 50000 2%
>= 4500 1580000 1540000 40000 3%
>= 8000 1110000 1080000 30000 3%
= 2500 810000 810000 0 0%
= 6500 820000 810000 10000 1%
< 500 880000 880000 0 0%
< 8500 1980000 1940000 40000 2%
> 200 2170000 2120000 50000 2%
> 7000 1230000 1210000 20000 2%

Net Gain 490000




Graph 4.6: Performance of both indexes for range queries of table 4.10
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By observing the experimental results from table 4.10, we can again infer that the range-

encoded index performed faster than the bit-sliced index. The gain in time ranges from 0
to 80,000 CLOCKS.

4.2.4 - Experiment 4:

The fourth set of experiments was carried out by randomly generating the values of
AMOUNT attribute between the range of 0 — 65535 (up to five digit numbers). There are
three hundred thousands (300,000) records. Bit-sliced index and binary range-encoded

bitmap index are built the same way and stored in their respective files as done
previously.

Aggregate Evaluation: Again, there are forty aggregate queries evaluated by generating
a different foundset each time and using the same foundset with both indexes to evaluate
their performance. The percentage of the foundset is not controlled this time, each found
set happened to be generated between 45% to 55%. Since the data values are even higher
in these experiments, so there are more bitmaps in the index. The experimental results are
shown in table 4.11. The graphs of following two tables are not included, since the result
can easily be found from the last column of the table.
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Table 4.11: Performance of both indexes for 40 aggregate queries

No. of Bit-Sliced Index Range-Encoded Index Difference
Runs Time in Clocks Time in Clocks in Time (Br - Bs)

19 980000 980000 0

2 970000 970000 0

3 990000 970000 20000

3 980000 8970000 10000

10 970000 980000 -10000

1 980000 990000 -10000

2 970000 990000 -20000

From table 4.11, we can observe that, both indexes perform same for twenty-one times,
fourteen times, one performed slightly better than other. Three times, the proposed index
performed significantly better than bit-sliced index and two times, bit-sliced index
performed better than the proposed range-encoded index.

Range Evaluation: Similar range predicates are evaluated with both types of indexes.
The first set of ranges were evaluated for the records having values less or equal to 1000
(<= 1000), less or equal to 30,000 (<= 30,000) and less or equal to 55000 (<= 55000).
Then three queries were evaluated for the records where the values are not equal to
20,000 (!= 20,000), not equal to 37500 (= 37500), and not equal to 63,000 (= 63,000)
respectively. The next set of range queries were evaluated for the records having values
greater or equal to 1000 (>= 1000), records having values greater or equal to 25000 (>=
25000), and records having values greater or equal to 58000 (>= 58000). The next set of
queries is evaluated for the records having values equal to 2500 and 65000, for the
records having values less than 5000 and 55000 and finally for the records having values
greater than 2000 and 57000. Table 4.12 presents the results of range queries with the
predicates provided in the first column.
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Table 4.12: Performance of both indexes for different range queries

Predicate Bit-Sliced Index  Range-Encoded Index GAIN
Type Time in Clocks Time in Clocks in Time
<= 1000 720000 700000 20000
<= 30000 1170000 1150000 20000
<= 55000 1570000 1520000 50000
i= 20000 1730000 1680000 50000
I= 37500 1740000 1680000 60000
1= 63000 1720000 1680000 40000
>= 1000 1720000 1690000 30000
>= 25000 1330000 1300000 30000
>= 58000 820000 820000 0
= 2500 700000 680000 20000
= 65000 690000 690000 0
< 5000 770000 760000 10000
< 55000 1560000 1520000 40000
> 2000 1690000 1640000 50000
>57000 820000 820000 0

From table 4.12, it can easily be observed that the bit-sliced index is out performed by 0
to 60,000 CLOCKS in each query.

4.2.5 - Experiment §:

The last set of experiments was carried out by randomly generating the values of
AMOUNT attribute between the range of 0 — 999 (up to three digit numbers). There are
1.9 million records. Bit-sliced index and range-encoded bitmap index were constructed
similarly and were stored in their respective files as have been done previously.

Aggregates: The foundset was generated randomly and its percentage was varied from
10% to 100%. With each percentage, twenty aggregates are evaluated with both indexes
using the same foundset. The mean of execution time is calculated for each percentage of
foundset. For each index, the standard deviation of their mean is calculated and test of
significance (T-test) is performed for the difference in their mean time of execution. The
T-test is a test which evaluates the significance of a hypothesis. In this case, the
hypothesis was made that the mean time of execution with both indexes is same. The T-
test was performed on the hypothesis that the mean time of both indexes were same with
95% confidence. The results of the T-test are presented in table 4.13. The mean execution
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time for bit-sliced index is 3482500 CLOCKS, and for range-encoded index is 3490450
CLOCKS.

Table 4.13: T-test results for aggregate evaluation

t-Test: Paired Two Sampie for Means
_Bit-Sliced Index Range-Encoded index

Mean 3482500 3490450
Variance 61055276.38 62610552.76
Standard Deviation 7813.787582 7912.683032
Observations 200 200
Pearson Correlation 0.371837043

Hypothesized Mean Differenc 0

df 199

t Stat -12.75589521

P(T<=t) one-tail 6.31645E-28

t Critical one-tail 1.652547326

P(T<=t) two-tail 1.26329E-27

t Critical two-tail 1.971957317

By observing the results of T-test for aggregates, we can see that the ¢ statistic is —12.755,
which is less than ¢ critical value of 1.971, so we cannot reject the hypothesis. In other

words, we can say with 95% confidence that the mean time taken by both indexes for
calculating aggregates is equal.

Graph 4.7: Performance of both indexes with their mean time for aggregates
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Range: The range predicates were evaluated with both indexes. There were fifteen
evaluations with each type of range predicate. The mean execution time was calculated



for both indexes for their performance with range queries. The T-test was performed on
the hypothesis that with 95% confidence, it can be claimed that the mean time of both
indexes is same for evaluating range. The mean execution time with bit-sliced index was
5844400 CLOCKS, and with range was 4984000 CLOCKS. The results of T-test are
presented in table 4.14. By observing those results we can see that the t statistic is 21.111
and t critical value is 1.986, so we conclude that the hypothesis should be rejected. In
other words by looking at the difference of those values, we claim with 95% confidence
that the mean execution time for range-encoded index was far less than the bit-sliced

index.

Table 4.14: T-test results for range evaluation

t-Test: Paired Two Sample for Means

Bit-Sliced Index | Range-Encoded index

Mean 5344000 4984000]
Variance 3.9382E+12 3.82619E+12
Standard Deviation 1984488.613 1956065.071
|Observations 90 80
Pearson Correlation 0.996733093

Hypothesized Mean Difference 0

df 89

t Stat 21.111318

P(T<=t) one-tail 1.02559E-36

t Critical one-tail 1.662156137

P(T <=t) two-tail 2.05119E-36

t Critical two-tail 1.986977622

Graph 4.8: Performance of both indexes with mean time for range queries
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S. CONCLUSIONS AND FUTURE DIRECTIONS

A space optimized range-encoded bitmap index is proposed to replace the bit-sliced
index. The proposed algorithm gives at least similar performance for the aggregate
evaluation with the advantages of easy maintenance and the possibility of using it for
range predicates more efficiently. The option of multiple indexes is still there for better
query performance for range queries with an index of higher base components. There are
two options for storing the bitmap of all 1°s. First, it can be stored and compressed by the
data compression techniques, second, only the information like the size of a bitmap of all
1’s can be stored and can be generated in memory whenever needed. From the evaluation
of both indexing techniques, it is obvious that the proposed index gives similar
performance for aggregates and performs considerably better for the range queries. The
experimental evaluation is done with a variety of values and predicates. The execution is
taken in number of CLOCKS, which is the smallest time unit returned by the computer.
The reason behind using the CLOCKS is simply to emphasize the difference in
performance. The performance gap between the two widens for range evaluation when

the underlying data set is huge while the performance for aggregates remains the same.

The use of these algorithms can be generalized for different data types. We have
restricted ourselves to the use of short data type and the attribute values of integer type.
However, the attribute values are necessarily fractional values. Our proposed scheme can
easily be adapted for other data types. In the experimental analysis, we restricted
ourselves to short data type, which has 16 bits in it, resulting in 16 bitmaps maximum for
eacn index. This restriction can easily be removed with the use of long or other data
types.

Future researchers should look into the development of efficient algorithms for

evaluation of aggregates with higher based (base 3 or more) multiple components bitmap
index.
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