University of Windsor Scholarship at UWindsor

Electronic Theses and Dissertations

Theses, Dissertations, and Major Papers

1986

Cell formation in flexible manufacturing systems.

Gajanana. Nadoli University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Nadoli, Gajanana., "Cell formation in flexible manufacturing systems." (1986). *Electronic Theses and Dissertations*. 1378.

https://scholar.uwindsor.ca/etd/1378

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

National Library of Canada

Bibliothèque nationale du Canada

Services des thèses canadiennes ...

Canadian Theses Service

Ottawa, Canada K1A 0N4

CANADIAN THESES

THÈSES CANADIENNES

łŧ

NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30.

AVIS

La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'alde d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30.

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS REÇUE

NL-339(r.86/06)

. . .

CELL FORMATION IN FLEXIBLE MANUFACTURING SYSTEMS

ЪУ

Gajanana Nadoli

3

ŕ

A Thesis submitted to the Faculty of Graduate Studies and Research through the Department of Industrial Engineering in Partial Fulfillment of the requirements for the Degree of Master of Applied Science at the University of Windsor

Windsor, Ontario, Canada

C 1986

Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without his/her written permission. L'autorisation a été accordée à la Bibliothèque nationale du Canada de microfilmer cette thèse et de prêter ou de vendre des exemplaires du film.

÷.

r

L'auteur (titulaire du droit d'auteur) se réserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation écrite.

ISBN Ø-315-31996-8

. . .

;

 \odot

Gajanana, Nadoli 1986 Ì

All Rights Reserved

856244

-

I hereby declare that I am the sole author of this thesis. I authorize the University of Windsor to lend this thesis to other institutions or individuals for the purpose of scholarly research.

Gajanana Nadoli

I further authorize the University of Windsor to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

Gajanana Nadoli

The University of Windsor requires the signature of all persons using or photocopying this thesis. Please sign below, and give address and date.

\$1

Ð

ABSTRACT

In recent years the concept of flexible manufacturing systems (FMS) has emerged as a viable answer to the problems of low volume, medium variety production. The technological sophistication and correspondingly high investment in these systems necessitate sufficient planning effort both in the implementation and the operation stages. This research deals with the initial specification decisions in the pre-production planning stage. The cellular configuration of FMS is considered, in which a group of machines is dedicated to the manufacture of a particular family of parts. Two of the problems in cell formation viz., part family formation and machine group allocation are formulated. A fractional programming model defined on zero-one integer variables has been proposed for the part family formation. The parts are grouped based on their processing similarity. The machine group allocation problem is formulated as a zero-one integer program, to maximize the routing diversity available for the parts in different families. The availability of alternative routings has been considered in cell formation. The application of the formulations has been illustrated through a number of examples using realistic data.

- vi -

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude towards Dr. S.P. Dutta and Dr. R.S. Lashkari for their guidance and support during the course of this research. I would like to thank Dr. Y. Aneja for sparing his time to give useful suggestions. A special note of thanks to Jacquie Mummery and Tom Williams for their help from time to time. I would also like to thank the consultants of the University Computer Centre for their help.

LIST OF FIGURES

Figure

.

Page

٩

1.	TYPICAL ARRANGEMENT OF THE MACHINES IN	
	MANUFACTURING SYSTEMS	6
2.	SCHEMATIC DIAGRAM OF A CELLULAR FMS	11
3.	MATRIX MANIPULATION METHODS	24
4.	FLOW CHART OF THE ALGORITHM	54

LIST OF TABLES

Tabl	<u>e</u>	Page ,
-		
1.	ILLUSTRATION OG THE REGION (L,U) FOR P(R)	41
. 2	PART PAIR (1,2)	44
. 3.	IP, THE MINIMUM NUMBER OF PART PAIRS	44
4.	PRODUCT TERMS INDICATING MULTIPLE ALLOCATIONS OF	
		66,
5.	PENALTY WEIGHTS TO MULTIPLE ALLOCATIONS OF THE	
	MACHINES	68
6.	THE PROCESSING REQUIREMENTS FOR 15 PARTS	72
7.	BOUNDS ON THE OBJECTIVE FUNCTION FOR DIFFERENT	
	VALUES OF R	. 76
8.	SUMMARY OF TRIALS WITH DIFFERENT STARTING	
	CONFIGURATIONS FOR FIFTEEN PARTS EXAMPLE	. 78
9.	ITERATION LOG FOR THE APPROXIMATION PROCEDURE	
10.		
	PROCEDURE ITERATIONS	. 85
11.		
12	LIST OF MULTIPLICATION TERMS INDICATING THE	
	ROUTINGS FOR PARTS	. 90

- ix -

TABLE OF CONTENTS

ABSTRACT	vi ·
ACKNOWLEDGEMENTS	vii
LIST OF FIGURES	viii
LIST OF TABLES	ix

Chapter Page Ι INTRODUCTION 1 II SYSTEM DESCRIPTION AND OBJECTIVES 4 2.1 Flexible Manufacturing Systems 4 2.1.1 Definitions 4 2.1.2 Cellular Configuration Of FMS 5 2.1.3 Operation of the System 8 2.1.4 Advantages of Cellular Configuration .. 9 2.1.5 Design and Operation Problems in Flexible Manufacturing Systems 10 2.2 Objectives of the Research 12 2.2.1 Statement of the Objectives 12 2.2.2 Typical Problem Situation 14 2.2.2.1 Part range manufactured in in FMS 15 III LITERATURE SURVEY . 18 IV PART FAMILY FORMATION 28 4.1 Formulation 28 4.1.1 Statement of the Problem 28 4.1.2 Criterion for Grouping 31 4.1.3 Definition of Dissimilarity Coefficients 32 4.1.4 Formulation 33 4.2 Solution Procedure 35 4.2.1 Parametric Search Principle 35 4.2.2 Finding an Interval (L,U) such that L < R* < U 39

Chapter

\$ 1.

		/ ~ ~	_	_															
	•	4.2.3	Estal	blia	shii	۱g	Low	er	Bo	oun	d	(L	Bp) :	and	ł			
•		•	Upper	r Be	ound	ŧ (UB _n) 4	for	- 7	(P	'v	1	· ·		-			40
			4 . 2 . ;	3.1	Cor		r a f	nte			+ h	, ^	/ F		• • • •	••	• •		40,
					7/1	. v	1 G I		э. u		сu	e	r u	nç	C 1 (2n			·
			1. 2 .	2 1	Z(F	, A	<u>/</u>	• • •	• • •	•••	• •	• •	• •	••	• • •	• •	• •	• •	40
			4.2.3	3.2	COE	err	101	ent	C 16	of	t	he	\mathbf{F}	un	cti	101	n		4
	•			•	Z(F	ι,Χ)			- - -	• •	• ••	• •				• •		45
			4.2.	3.3	A15	zor	ith	m et	foi	. F	in	d 1	ng	L	80.	а	n d	-	
					UBF			1					0	~	- K				46 [°]
							•••	•••	•••	• •	• •	•••	••	••	•••	• •	• •		40
		4.2 4	S		~ F	- 1-	- 0	• ·		~		~	-						
		4.2.4		1 L Y	10	C N	e s	cei	ва	ΓO	r	20	Τv	in	g t	the	e -		
,			Form	1191	:10	1	• • •				• •	• •	• •	• •		• • •		• •	47
			()						-									
	4.3	Approx	dimat:	Lon	Pro) C P	dur	•											47
		4.3.1	Need	for	- 54	n d	4		- /			••		••		•••	• •	••	47
			0.1			LIIQ.	тив	a		300	a	Т	nı	τ1,	3 T		•		
			Solut	c 10 r	1	• • •	• • •		•••		• •	••	• •	••	• • •	••	• •	••	47
		4.3.2	Princ	ip)	le	•						•							49
			4.2.	3.1	Sir	121	e R	eal	110	са	t i	oп							49
			4.2.3	3.2	M 11 1	-0- +	·		1	1 -				•.•	•••	••	•••	••	
		1. 2. 2		1	nu		bre		241	. 10	ca	LL	on		• • •	• •	• •	• •	50
		4.3.3	AIGOI		1m .	• •	• • •	• • •	• • •	• •	• •	••	• •	• • •	• • •	• •		• •	52
										•									
V	MACI	IONE GR	LOUP A	LLC	CAI	CIQ.	N												55
																		••	
	5.1	Formul	lation																
		5 1 1	C	4 · ·	•••	•••	• • •	•••		•••	• •	••	• •	• •	• • •	• • •	• • •	• •	55
		2.1.1	. Stat	:еще	ent	or	τh	et	rc	DPT	em		••			• • •		• •	55
		5.1.2	2 ОЪј€	ecti	lve	•	• • •	• • •		••	• •	••	••	• • •	• • •			• •	. 56
		5.1.3	Conc	ept	: of	a	lte	rna	iti	ve	R	ou	ti	n e e					56
,		5.1.4	Foru	ula	tic	n -										• •		••	59
							•••			•••	•••	•••	••	•••		•••		• •	55
	5 2	S = 1 = 4	- n.		,								_						
	5.2	Soluti	on Pr	oce	dur	e	••	•••	•••	• •	•••	• •	• •			•••		• •	62
		5.2.1	. Line	ari	zat	:101	n o	f F	?ro	du	ċt.	T	eri	ns					62
		5.2.2	Some	e Re	duc	tid	ons	ír	ı t	he	N	ստվ	hei	r r	h f	p,	- ~ /	luct	
			Tera	នេ											-				63
					•••	•••	•••	• • •	••	••	•••	••	•••	• • •	• •	• •	• •	• •	63
	53	Theas	32313	•							_								
	5.5	Infeas	10111	сy	1 n	the	e M	ach	11n	e	Gr	ouj	P						
		Alloca	tion	••	• • •	• • •					• •	••	• • •				• • •		64
		5.3.1	Multi	ple	Fa	miJ	l y 🗌	a11	. o c	at	10	n d	of	Sc	me				
			Machi	ne(s)														64
		5.3.2	Mathe	mat	100	1 3	404	<u>_1</u>	+ -	т						• •	• •	• •	04
			machi				100	с.	с. с.	T	ue:		LIJ	γ t	ne				
			machi	nes		us;	rug	ΤÜ	ire	as	1 D	11:	tty	7	••	• •	•••	• •	65
	c /	•																• •	
	5.4	Summar	y of	ste	ps	foi	c S	0 1 v	'i n	g	the	e			•				
		Formul	ation			• • •				-									69
						-	· -				- •		- • •			• •	• •	•	0.9
VI																			
¥Т	AFFLI	CATION	UF T	нE	FOR	MUI	TA	1 O N	IS	•			• • •		••	• •	• •	•	70
	6.1	Proble	m dat	a			•••	•••											70
		6.1.1	Parte	· p n	чм	201		.							•••	• •	•••	•	
			~ • • • • • •	au	<u>a</u> 11	açı	1	2 び	٠						• •			•	70

- xi -

Page

		··· .	
Chapter			Page
6.	.1.1.1 Parts Spectrum		71
6.	1.1.2 Machines		71
	eneration of Problem Input P Routine		73
6.2 Part Fam 73	nily Formation -An Example	• • • • • • • • • • • •	-
• •	Inding the Interval (L,U)		75
6.2.2 T	nitial Solution through App	···············	75
	cocedure	LOXIMALION	77
	earch Log	• • • • • • • • • • • •	82
6.2.4 Sc	ome Computationall Consider	ations	84
			04
6.3 Machine	Group Allocation - An Exam	ple	88
6.3.1 Rc	outing Information		88
6.3.2 Sc	olution Procedure		88
6.4 Discussi	ion of Results		91
VII SUMMARY	· • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • •	96
REFERENCES			
APPENDICES			101
A. ALTERNATIVE	DEFINITIONS FOR THE OVERAL	r.	
DISSIMILARIT	TY COEFFICIENTT	_ 	101
B. PART SKETCHE	ES AND PROCESS DETAILS	•••••	104
C. COMPUTER PRO	OGRAM LISTINGS		135
-			
	OGS FOR DIFFERENT TRIALS OF		
APPROXIMATIC	ON PROCEDURE	• • • • • • • • • • •	178
VITA AUCTORIS	· · · · · · · · · · · · · · · · · · ·		188
			100

J

-

xii -

Chapter I

INTRODUCTION

In recent years the concept of Flexible Manufacturing systems (FMS) has emerged as a viable answer to the problems of low volume, medium variety production. These systems offer automated and flexible operation coupled withthe optimum exploitation of resourses. It is acknowledged that an integrated approach to parts manufacture from design conceptualization to operation stage is the pre-condition for the success of such systems.

The technological sophistication and the correspondingly high investment in these systems necessitate sufficient planning efforts both in the implementation and operation stages.

The efficient system design to facilitate the gradual implementation is very important. It can be achieved by conceiving the FMS to be made up of different groups of machines. In Group Technology terms these groups are known as cells. Chapter 2 briefly explains the flexible manufacturing systems, the types of arrangements of the manufacturing set ups, the advantages of cellular

- 1 -

arrangement and the system configuration under consideration.

The objective of this research is to model two of the problems related to the cell formation in FMS.

i) The part family formation

1

`ii) The machine group allocation.

A review of the previous research is given in Chapter 3.

The formulations of the above two problems are explained in Chapters 4 and 5 respectively. A fractional programming model for minimizing the processing dissimilarities between different part types has been proposed for the part family formation. A solution procedure is developed for this model taking into consideration the nature of the objective function. The procedure suitably adopts a general principle of search for finding the optimal solution. The infeasibility in allocation caused by restricting each of the machines to only one family (unique allocation) has been resolved. A simple mathematical model identifies the machines causing the infeasibility and the unique allocation constraint is relaxed for these machines.

Realistic data representing typical part and machine varieties have been considered in solving a number of problems to illustrate the formulations. The results are explained in Chapter 6. A summary of the research findings

 \mathbf{v}

÷

has been presented in Chapter 7.

3

Chapter II

SYSTEM DESCRIPTION AND OBJECTIVES

2.1 Flexible manufacturing systems

2.1.1 Definitions

An FMS is an automated, batch manufacturing system consisting of a set of numerically controlled machine tools with automatic tool changing capabilities. A computer controlled material handling system transports the parts from machine to machine.

These systems have been given a variety of names -Computerized Manufacturing Systems (CMS) and Variable Manufacturing Systems (VMS), for example, and have in fact been designed in a variety of configurations.

The cellular configuration of FMS is considered in this research. The definitions of the terminology [22], with reference to this type of configuration are given below.

Flexible Manufacturing Module (FMM): An FMM is defined as a Numerically Controlled Machine augmented by a

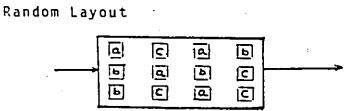
- 4 -

part buffer, a tool changer, a pallet changer etc. An FMM will be referred to as a machine throughout this report.

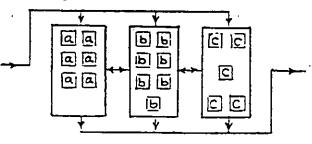
<u>Flexible Manufacturing Cell (FMC)</u>: An FMC consists of several machines, capable of producing a range of parts. Each of these FMCs are organized as independent facility set-ups. The term cell has been borrowed from cellular manufacturing in the conventional systems. The FMCs are referred to as cells in the discussions to follow. An FMS can be considered to be consisting of cells. Many a times individual cells themselves are considered as systems, indicating the independent nature of these cells.

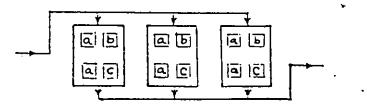
2.1.2 Cellular Configuration of FMS

There are various approaches to the arrangement of machines in a manufacturing system. In all the cases, it is necessary to conceive the system as a whole from design to installation.


The typical arrangements of the machines in the manufacturing systems are (Fig. 1):

i) <u>Random</u>: A number of machines are arranged in a rectangular shop. The disadvantage of this lay-out is that with larger number of machines, transfer paths are complicated and are likely to be longer than necessary.
ii) <u>Functional</u>: The machines are arranged according to function, such as turning, milling, boring and grinding, so


- 5 -


TYPICAL ARRANGEMENTS OF MACHINES IN MANUFACTURING SYSTEMS

Functional Layout

Modular Layout

Cellular Layout

that the workpieces flow through the shop from one section to another. The workpieces have to be moved many times between the sections, and material handling paths in this type of arrangement may be excessively long. iii) <u>Modular:</u> Here identical modules perform similar processes in parellel. This layout is likely to result in some redundant capacity, but can be an alternative to the functional layout, while redundancy may make it easy to cope with critical jobs or unexpected problems.

iv) <u>Cellular</u>: In this arrangement each cell is dedicated to a certain group of parts. It is an extension of the Group Technology (GT) concept. The cellular system is likely to give the best match of machining capability to the processing of various workpieces [18].

Group technology is a manufacturing philosophy that seeks to rationalize small and medium sized batch production by capitalizing on the similarity between the parts. GT is applied with respect to two aspects of part characteristics viz., geometric features and processing requirements.

The geometric feature based grouping has been mainly a part of design standardization effort for the various shapes of the parts. The concept has recently been considered in the computer aided process planning area, where an attempt to relate the processing steps to the geometric features is made to develop computerized systems for generating the process plans [9].

The grouping of parts with respect to the processing requirements forms the basis of cellular arrangement of the machines. A manufacturing cell is designed to produce the parts with similar machining requirements. Due to similarity of the parts, change over of processing from one part type to another on the machines causes minimal disruptions in terms of tooling requirements. Section 2.2.1 describes this issue. The cellular arrangement is an attempt to achieve the advantages of mass production in small batch production. Several conventional systems have been installed based on this principle [17].

2.1.3 Operation of the system

The FMSs can be viewed as highly automated job shops. A typical sequence of events involved in processing of a part in an FMS is as follows:

When a part is scheduled for an operation on one of the available alternative machines, the part is fixtured on a pallet and transported to the machine. The machine on which this part is to be processed receives the necessary part programs. If certain tools are not available on the machine, the handling system transports those tools also to the machine [18]. Once the machining for that operation is finished, the part is moved for its next operation.

- 8 -

Since different parts are in production simultaneously, conflicts in the requirements arise. Among other things, the automated control has to consider the important issues of scheduling of parts, queues for the machines and machine break downs.

The automated operation requires the proper operation logic to be programmed into the system prior to the start of production. The precise anticipation of all the operational exigencies is necessary in such an operation mode.

2.1.4 Advantages of Cellular Configuration

Dividing the system into smaller sub-systems (cells) is essential due to the complexity of operation as indicated in section 2.1.3. Such a division can be viewed as a method of aggregation leading towards a reduction in the size of the planning and scheduling problems [17]. It is a normal practice to install a small system first and then to build up the complete system in due course. Since apart from the machines, the peripheral equipment themselves constitute a large investment, a phased plan is necessary to implement these systems

An arrangement of machines in the form of a single system has the disadvantages of increased control problems, difficulty in keeping track of parts, increased part

- 9 -

movement distances and complex scheduling requirements.

The cellular arrangement of the machines in FMS has the following advantages [17]:

i) Implied reduction in control.

ii) Reduced material handling.

iii) Quick change over of part types within a range of parts.

iv) Better tooling control.

v) Reduced in process inventory.

vi) Reduced expediting.

A schematic diagram of the cellular FMS is shown in. Fig. 2.

2.1.5 Design and operation problems in flexible

manufacturing systems

The design and operation of any FMS involves a variety of problems. Many of these problems are typical of any manufacturing system. The classification and description of these problems have been given in [29,35]:

- i) Strategic Decision Problems
- ii) Facility Planning Problems
- iii) Intermediate decisions

iv) Dynamic Operations

The strategic decisions are concerned with such problems as the financial and policy decisions in

٢ ;

L

L

٠

L

S

S

M - MACHINES L - LOADING STATIONS S - STORAGES P - MATERIAL HANDLING PATHS

M . FMC 1 Р FMC 2 P. Μ

. .*

FMC 3

M

Μ

М

М

M

М

Μ

М

ş

Μ

М

Μ

М

11

implementing FMS.

The facility planning problems are concerned with decisions about initial specification and implementation of the production system. The initial specification decisions include the selection of the parts to be produced, machines & other peripherals and 'material handling system. The subsequent implementation decisions include layout of the machines, software development and the design of fixtures.

The intermediate range problems are the pre-production decisions on operation allocation, part mix ratio and allocation of other resourses.

The dynamic operations refer to the control problems due to conflicts in the production requirements. These are the in-production decisions on part release rules into the system, scheduling, sequencing, etc.

2.2 Objectives of the Research

2.2.1 Statement of Objectives

The objective of this research is to solve two problems related to the cell formation in flexible manufacturing systems:

- Grouping of the parts into families.
- Allocation of machine groups to families.

These are the initial specification issues in the

- 12 -

pre-production planning stage of FMS.

It is important to consider the relevant criterion for grouping the parts into families. The criterion for organizing the cells for manufacturing the parts is based on the processing similarity of the parts. The lack of such similarity has an adverse effect on the operation of the cellular system.

The tools have to be changed intermittently in the tool magazines if parts with different processing requirements are manufactured in the cells. Each tool change puts a certain demand on the system resources for the following activities:

The measurement of cutter compensation and tool offsets (to be supplied to the machines) may have to be carried out when a tool is loaded on to or transferred between the machines. This puts a load on the metrology facilities in the system.

The tool loading is usually done manually in the present systems (although there is an attempt to make this automatic, the use of such automation is not yet widespread [18]) and the frequent tool changing interrupts the operation of the machines.

Frequent tool changing also results in a constant flow of tools within the shop competing with the parts for the resources(trolley, scheduling time on computer etc.). It has been found in some cases that the flow of tools through the shop caused more problems than the flow of workpieces [18].

Hence the processing similarity is considered for grouping parts first to form the part families.

Once the parts constituting different families are determined, the machine group allocation problem will be solved. The objective of such allocation is to provide maximum number of alternative routings for the parts. The diversity in part routing is known to be a very helpful strategy in the operation of the system. It is possible to divert the parts to different machines when the designated machines break down or are busy serving some other parts.

The part family formation and machine group allocation problems are formulated in Chapters 4 and 5.

2.2.2 Typical Problem Situation

Most of the modern manufacturing plants have NC/CNC machines located randomly within the factory. Even though many such machines may be in operation, the net effect on production may not be as significant as can be expected with these versatile machines. The individual machines are really very efficient, but the way in which they are placed in the system may result in low utilization levels. They may be restricted by limitations such as production bottlenecks at other machines and material handling delays. In this situation, since the NC/CNC machines, which are the major components of FMS are already available, there is an opportunity to reorganize the system into an independent cellular FMS. The machines in the cells can be linked together through a material handling system. Once such a strategic decision is taken, it becomes essential to analyse the part range under consideration to form families and then allot the available machines to each of the families. As mentioned earlier, the implementation can be done in phases, organizing one cell at a time.

2.2.2.1 Part range manufactured in FMS

When the FMS capacity augments the conventional capacity, the part variety chosen for manufacturing in FMS is restricted keeping in mind the need to utilize other high cost plant and auxiliary equipment. The parts chosen are high value, critical components required in the downstream production facilities. A fabrication shop supplying the finished parts to an assembly section is an example of such a situation, where certain parts in the final assembly are invariably in short supply due to the difficulties encountered in manufacturing them in the conventional shops.

This is clearly illustrated by the reports on the existing systems and the restricted component variety they

- 15

encompass [2].

The literature on FMS [2,18] and experience in a light engineering industry indicates that the parts selected for manufacturing on CNC machines(and hence in FMS) have, in general, the following characteristics:

- i) The parts require a large number of processing steps. If loaded in a conventional machine shop these parts have to visit several machines, in most cases one machine carrying out one processing step. This results in a tremendous amount of handling and subsequently a tardy output from the shop. These parts are the right candidates to be manufactured in an FMS, since the CNC machines allow for a number of processing steps to be completed in one visit to the machine.
- ii) Heavy emphasis on the milling, drilling, boring and tapping. The existing systems indicate their strength in these processes basically due to the corresponding capabilities offered by the machining centres. 'Difficult' processes such as grinding and honing, mass production oriented processes such as broaching and not-so-common production processes such as planing and shaping (shaper), if required on a part, are usually carried out on the facilities operating in tandem with, but outside, the FMS.

• 16 •

111) Apart from the problem of excessive handling, the sheer difficulty involved in achieving the complicated process requirements of some parts (in conventional shops) makes them the automatic choice for manufacturing in FMS.

- 17

iv) The parts are mostly finished from raw casting state.

Chapter III

LITERATURE SURVEY

The problems of FMS design and operation have been considered using different Operations Research approaches. The major approaches used in the literature are Networks of Queues, Simulation, and Mathematical Programming.

The facilities design problem has two issues as mentioned earlier, the initial specification decisions and the subsequent implementation decisions. These decisions are generally one time decisions, especially the ones concerning the machines constituting the FMS cells. The implementation decisions about the number of pallets and the number of fixtures can be spread over the time of operation of the system.

The queueing network models provide some aggregate results and are perhaps helpful in the decision issues such as the number of pallets and the number of fixtures required in the system. The aggregation may not be acceptable for more specific decisions such as sequencing and scheduling of the parts and the number of buffer spaces required. Simulation is the approach for such problems.

- 18 -

The mathematical models are appropriate for the static decision issues of facility design, operation allocation in the planning stage and fixture & pallet allocation. In such pre-production planning decisions some criteria are used which have been proved to be effective either by experience or by theoretical research in the operation of the system. Providing alternative routings for parts, balancing workloads between machines, minimizing part handling distances, launching similar parts for production, etc., are some examples of such criteria. These would be basically indirect measures, which are recommended as static problem objectives.

Wilhelm and Sarin [35] provide a review about the issue of suitability and limitation of different modelling approaches.

In this research mathematical modelling has been adopted. The criteria adopted in this research are the processing similarity concept for part family formation and routing diversity concept for machine group allocation.

Buzacott and Shantikumar [5] have reported some simple models for the understanding of the FMS. Their approach is to consider the system as an automated job shop. The models are simple and aggregate in nature, but they demonstrate amongst other aspects the importance of diversity in job routing.

Chatterjee et. al [10] have developed a general

- 19 -

framework for manufacturing system specification. They present some scheme for manufacturing systems to identify critical distinctions between various types of manufacturing capabilities. They define manufacturing flexibility and identify the number of routings available for a part within a system as the routing flexibility.

Stecke [30] gives an analysis of FMS cell using the queueing network theory. It has been shown that the pooling of machines in FMS cells improves the output of the system. Under a seperate study of a real system through simulation [31], the same result was obtained. The system showed maximum output through the pooling in combination with some scheduling rule. The pooling of machines with reference to an operation means that there is more than one machine available for that operation and the part routing can be through one of the available machines depending on the scheduling decisions in real time.

Thus, providing maximum number of alternative routings has been proved to be a good strategy in operating the system.

One of the principles in Group Technology is to restrict a machine to only one part family (unique allocation). Thus, a certain machine group is made available to the parts in a particular family. However, in practice, some exceptions do exist. The scarcIty of certain machines may force the sharing of those machines by

20 -

3.

more than one family of parts. Certain overlapping referred to as 'cascading' is allowed in these situations. This possibility has been incorporated in the formulation of machine group allocation.

The literature on the grouping procedures is mostly limited to the conventional systems.

There are two issues in the grouping; part representation and grouping procedure based on this representation of the part. However, as pointed out by King and Nakornchai [20], in the past decade the emphasis has slowly shifted from classification schemes per se to the problem of developing methods for grouping. This has happened mainly due to the realization that most of the classification schemes have to be industry-specific anyway.

A review of the various grouping procedures is given by King and Nakornchai [20]. Recent work in this area includes [6], [8], [21] and [33]. The classification of the available techniques is as follows:

- i) Similarity Coefficient methods
- ii) Set theoretic methods
- iii) Evaluative methods
- iv) Other analytical methods.

Similarity coefficient is an approach drawn from numerical taxonomy, and first suggested by McAuley [24]. The basis of the method is to measure the similarity between each pair of machines and then to group the machines based on their similarity measurement.

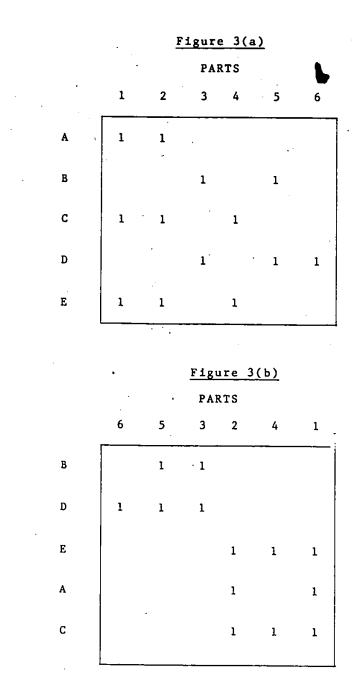
These methods are called 'hierarchical clustering methods' and are based on some 'threshold value' of coefficients. If a coefficient is less than a predetermined value, the coefficient will be ignored in the next stage of the algorithm. The selection of the threshold values is arbitrary. Rajagopalan and Batra [27] suggest a more systematic method of finding the threshold value; however, the arbitrary nature of the procedure still persists. The hierarchical grouping methods can be explained as follows:

- 22 -

First two parts are selected which have the greatest similarity to form the nucleus of the first group. A third part is added which has the most similarity with the first two. The fourth is added which has the most similarity with the first three and so on. At any stage, if there is no part which has a similarity above a particular level with the parts in the first cluster, a new cluster is formed with the remaining parts in the same manner.

Set theoretic method has been developed by Purcheck [25]. This method considers the lists of machines required for the parts as sets and does set union operations on them. This is a heuristic method for grouping the machines and parts.

Evaluative methods are based on the Production Flow Analysis [4], and basically use the judgement of the


0

analyst. The main feature of the evaluative approach is that it involves listing of components in different ways in the expectation that the groups can be found by careful inspection. This requires manual intervention to identify groups at each stage.

The other analytical methods are based on machine component matrix manipulation. King and Nakornchai [20] and Chan and Milner [7] reported algorithms using this approach. The procedure developed in [33] for finding the bottleneck machines also is based on the matrix representation. Some critisism about King and Nakornchai's algorithm is given in [33]. The principle used is to improve a criterion starting from initial grouping, through some manipulations in the grouping using graph theory. Figure 3 (a) illustrates the typical machine-component matrix used by these methods. In this example, the machines are labelled from A to E and the parts from 1 to 6. An entry of 1 in cell (i, j) indicates that some operation of part j requires processing on machine i, whereas a blank entry means that it does not. The cell entries of 1 are spread around the matrix in a random fashion, so that no particular pattern of machine component grouping is apparent.

Figure 3 (b) shows the same matrix, but after several exchanges of the relative positions of both rows and columns. It will be seen that the original cell entries of

- 23 -

MATRIX MANIPULATION METHODS

24

۲

۲.

~

M A C H I N E S

M A C H I N E S Fig. 3 (a) are preserved unchanged, but now, two machine component groupings (B,D,6,5,3) and (E,A,C,2,4,1) emerge naturally along the diagonal of the matrix as a result of a particular arrangement of the rows and columns of the original matrix. In some cases for geometric feature based grouping instead of having machine-component matrix, a code-component matrix is formed with the same basic idea of grouping the components and features together. The matrix manipulation methods are not mathematically rigorous [23].

Clustering is basically a yes/no type décision of allotting a part to a cluster. A 0-1 integer programming approach for the grouping of the parts has been reported by Kusiak [23], which employs a statistical clustering method [1]. This method considers the 'distance' between the parts and then considers each part as the 'median' of the cluster in the formulation. These concepts of 'distance' and 'median' are vaguely defined. The integer programming approach has also been used for grouping based on the geometric features.

. The literature survey indicates that:

i) In the grouping methods reported it is assumed that the operations are restricted to one machine. Based on this single and fixed machine allocation information for the operations a one to one relationship between the parts and machines is defined in the form of a matrix. This leads to a

- 25 -

simultaneous grouping of parts and the machines. The (dis)similarity coefficients and measures of (dis)similarity between two parts, have been adopted with the arbitrary specification of some 'cut off' values as the basis for grouping.

ii)

In conventional systems assumption (i) can be justified by noting that each operation on a part is generally restricted to one machine. The machine assignment for different operations of the parts acts as the basis for simultaneous grouping of parts and machines

This assumption is not applicable to flexible manufacturing systems since each operation on a particular part can be performed on alternative machines. In this case, the processing similarity between the parts should be determined by using the basic information about the processing steps required to manufacture the parts.

The necessity of achieving homogeneity amongst the parts to be produced in an FMS cell, as explained in Chapter 2 is incorporated in the model by defining a dissimilarity coefficient. This coefficient is defined using 0-1 decision variables and is used as the objective function in a fractional programming model.

The procedure developed for cell formation groups the parts first based on the similarity of the processes and subsequently allots the machines to each of the part groups(families).

- 26 -

In the problem of allocation of machines to the part families the concept of providing routing diversity for the parts has been used as the objective function.

• -

PART FAMILY FORMATION

Chapter IV

The mathematical formulation of the part family formation problem is discussed in this Chapter. First, the criterion for grouping based on the manufacturing attributes is explained. The objective function of the formulation is fractional defined on zero-one integer variables. A solution procedure for this situation is outlined. Due to the computational difficulty in solving this model for larger problems, an approximation procedure that yields a good initial solution is developed.

4.1 Formulation

4.1.1 Statement of the Problem

The part family formation is considered with respect to manufacturing attributes for eventually forming the cells.

The objective is to group the parts into part families based on their processing similarities. The

- 28 -

similarity based grouping is done to achieve minimum ⁴ disruptions in the production within the cells as the batches of different parts are launched into production.

Notations Used

N	Number of parts to be grouped
K	Number of families
ij	= Index for the part pair (i,j) $(i=1,2N-1;$
	j=i+1,i+2N)
d _{ij}	= Number of dissimilar processes between part i and
	part j
^s ij=	Number of similar processes between part i and
	part j ~
DISij	 Dissimilarly coefficient between part i and part
	٤
DCk	 Dissimilarity coefficient for family k
D _k	- Contribution of family k to the value of CDC
MF	= Family having highest value of D _k
CDC	Dissimilarity coefficient for a configuration of
	part families
A(X)	Linearized numerator of the coefficient CDC
B(X)	Linearized denominator of the coefficient CDC
P(.)	= Minimization problem of CDC
R	Parameter in the search procedure for optimal
	solution to P(.)

- 29 -

			• •
•	• • •		
	•	- 30 -	
	P (R)	= Transformed minimization problem with parametric	
	•	objective function	
	Z(R,X)	= Objective function of the problem P(R)	
	С	- Constraint set of the problems $P(.)$ and $P(R)$	
	Cl	= Reduced constraint set for problem P(R)	
	<u>Z</u> (R,X)	Minimum of the objective function Z(R,X) subject to C	-
	$\overline{Z}(R,X)$	= Maximum of the objective function Z(R,X) subject	• •
		to C	
	LBR	= Bound on function Z(R,X) for minimization	
,	UBR	- Bound on function Z(R,X) for maximization	
	(L,U)	= A range of values of R established such that	
		$L < R^* < U$	
	cR _{ij}	- Coefficients of Mijk variables in function	
		Z(R,X).(For convenience the superscript is	
		dropped and the coefficient is denoted by C _{ij}).	
	J	= Set of C _{ij} s for all (i,j)	
,	N P	= Number of positive C _{ij} s in the set J	
	NN	= Number of negative C _{ij} s in the set J	
	Decision	variables:	
		(= l if the part i is included in family k	
	Xik	= 0 if the part i is not included in family k	
*		These variables for all (i,k) are denoted by (X).	
	M _{ijk}	= Linearization variable introduced to replace the	
	2	product term X _{ik} . X _{jk}	
		JK	
			•

4.1.2 Criterion for grouping

As stated earlier, the objective of the part family formation problem is to group the parts with similar processing requirements. For a part pair (i,j) in a particular family, we would like to have a low ratio of dij/sij, indicating that the parts i and j have more operations in common than dissimilar operations. An Example:

Consider the part pair (i, j) having the processing requirements as shown: Processes -> 1 2 3 5 7 part .i 0 · 1 0 1 1 1 1 1 part j 1 0 1 1 0 1 For this part pair, $s_{1j}=3$ (processes 1,4 and 7) and

 $d_{ij} = 4$ (processes 2,3,5 and 6).

The dissimilarity between two parts is relevant only when they are grouped together into the same part family. The dissimilarity of two parts in different families is of no concern, since these parts are manufactured in different cells. The grouping should be done such that within the families formed, parts have the minimum dissimilarities and the maximum similarities in terms of processing requirements.

Based on this concept, the coefficient of dissimilarity between part i and part j is defined as:

· 31, -

DISii

$\sum_{i=1}^{K} [d_{ij}/s_{ij}] \cdot X_{ik} \cdot X_{jk}$

This coefficient is used as the basis for defining the objective function for grouping the parts. The value of DIS_{ij} would be d_{ij}/s_{ij} or 0 respectively, depending on whether parts i and j are grouped in same family k or not.

4.1.3 Definition of Dissimilarity Coefficients

The objective function for the part family formation would be the minimization of an overall measure of processing dissimilarity between the parts. The definition of such a measure considered in this research is explained next. It represents the overall average of the pairwise dissimilarity coefficients. This is similar to the coefficient considered in [12]. Alternative representations for the overall measure of processing dissimilarity are indicated in Appendix A.

The dissimilarity coefficients are defined for each of the families and for the overall partitioning of the parts into families.

i) Dissimilarity coefficient for the family:

The average of the pairwise dissimilarity . coefficients of all the parts in family k is given in Eqn.

(1)

(2). A high value of this coefficient indicates that the family k contains parts which are highly dissimilar to each other.

DCr		N-1 E 1=1	N ∑ j=i+1	đij	. X _{ik}	• X _{jk}	
K		N-1 E 1=1	N ∑ j=1+1	^s ij ·	X _{ik}	. X _{jk}	- (2)

ii) Dissimilarity coefficient for the configuration:

The average of the dissimilarity coefficient of all the part pairs in the configuration can be expressed as:

ĸ N-1Σ Σ $\Sigma d_{ij} \cdot x_{ik} \cdot x_{jk}$ j=i+1 k=1 **i=**1 CDC (3) ĸ N-1N Σ $\sum_{\substack{j=i+1}}^{s_{ij}} \cdot X_{ik} \cdot X_{jk}$ Σ k = 1**i=**1

This coefficient is taken as a measure of the overall dissimilarity between the parts in different families in a particular grouping. A high value may indicate the possibility of decreasing the dissimilarity by reallocating some parts from the present configuration. This idea is used in the approximation procedure for allocating the parts between the families to get a good initial solution.

4.1.4 Formulation

The problem could be formulated as follows:

33 -

Minimize the overall dissimilarity coefficient:

Minimize Z_l = CDC

Subject to the following constraints:

i) Each part is allocated to only one family:

$$\sum_{k=1}^{K} X_{ik} = 1 \text{ for } i=1,2,3....N \quad (5)$$

(4)

ii) Each part family should at least have some specified number of parts say, L. This constraint may or may not be specified.

 $\sum_{i=1}^{\Sigma} X_{ik} \ge L$ for k=1,2,...K $X_{ik} = 0, \text{ or } 1 \text{ for } i=1,2$ Nord

111)

X_{ik} = 0. or 1 for i=1,2,...N and k=1,2,...K

Let constraints (i),(ii) and (iii) be denoted by C_{1} .

The objective function in (4) is a ratio of two non-linear functions. As a first step in solving the problem, the numerator and denominator of the objective functions are linearized. The linearization scheme [14] is explained next.

Consider the term X_{ik}, X_{jk} ; both X_{ik} and X_{jk} are 0-1 integer variables.

Each of the terms X_{ik} . X_{jk} can be replaced by ^Mijk with the addition of the following constraints: iii) $X_{ik} + X_{jk} - M_{ijk} \leq 1$ (7) iv) $M_{ijk} \leq X_{ik}$ (8) v) ^Mijk < Xjk

The above constraints force the variable M_{ijk} to assume the values O-1. Let the set of constraints (iii), (iv) and (v) for all i,j and k be denoted by C₂.

With the linearized numerator and denominator, the formulation can be written as follows:

N-1К N Σ dij • ^Mijk Σ Σ **i**=1 j=i+1 k=1 A(X)(10)Minimize Z₂ = N-1 К N Σ Σ ^sij • ^Mijk Σ 1=l k=1 Subject to: C1 and C₂

Let C denote the constraint sets C_1 and C_2 .

4.2 Solution Procedure

The objective function in (10) is a ratio of two linear integer functions A(X) and B(X). This type of problem is referred to as fractional programming in the literature. Methods have been reported for solving the fractional programming models with continuous decision variables [11,32,34]. The objective function in (10) being defined on zero-one integer variables, does not lend itself to these methods. Hence, in this case, a general search principle [9] has been adopted which involves solving a series of linear/non-linear problems to arrive at the optimal solution

(9)

to a fractional programming problem. A description of this principle is given in section 4.2.2.

Section 4.2.2 also describes a method developed for this model to restrict the search area and subsequently to reduce the search time. This method identifies a range of values in which the optimal value for the ratio A(X)/B(X)exists.

4.2.1 Parametric Search Principle

The objective function (10) can be expressed as: $\frac{P(.):}{X \in C}$ (11)

Let (X^*) be the optimal solution to P(.)

Then,

Min $A(X)/B(X) = A(X^*)/B(X^*) = R^*$ X&C

and

 $A(X^{*})-R^{*}.B(X^{*}) = 0$

Consider the following problem:

= Z(R)

The function Z(R,X) for a particular (X) decreases with increasing values of R, since, both the functions A(X)and B(X) have only positive coefficients (d_{ij} and s_{ij} respectively) and are defined over the same set of non-negative variables (Mijk's). It follows that the optimal value of Z(R,X) will also behave in a similar manner with respect to changes in R. This characteristic of Z(R,X) helps in deciding the direction of search for the optimal ratio A(X)/B(X). The value of the parameter R which gives a value of $\underline{Z}(\mathbf{R}) = 0$ is the optimal ratio A(X)/B(X). This will be clear from the following:

a)

3

a) Suppose R=R₀ and Optimal (X) = (X₀)
Then,
$$Z(R_0, X_0) = A(X_0) - R_0 \cdot B(X_0) = 0$$
 (say)
Since Min A(X) - R.B(X) = A(X₀) - R₀ \cdot B(X₀) = 0
X < C
=> A(X₀)/B(X₀) = R₀
Now, A(X) - R₀ · B(X) ≥ 0 for all X < C
=> A(X)/B(X) $\geq R_0$
=> R^{*} = R₀ = A(X^{*})/B(X^{*}) (13)
b) Suppose R=R₁ and Optimal (X) = (X₁)

Then, $Z(R_1, X_1) = A(X_1) - R_1 \cdot B(X_1) > 0$ (say) Since Min $A(X) - R.B(X) = A(X_1) - R_1.B(X_1) > 0$, XEC $A(X) - R_1$. B(X) > 0for all XCC

 \Rightarrow A(X)/B(X) > R₁

 $=> R^* = A(X^*)/B(X^*) > R_1.$ (14)

¥.

c) Suppose $R=R_2$ and Optimal (X) = (X₂) * Then, $Z(R_2, X_2) = A(X_2) - R_1 \cdot B(X_2) < 0$ (say)

 $= A(X_2)/B(X_2) < R_2$

38 -Since $A(X_2)/B(X_2) < R_2$, The optimal solution, Min $A(X)/B(X) = A(X^*)/B(X^*) = R^* < R_2$ X€C $A(X^*)/B(X^*) < A(X_2)/B(X_2) < R_2$ i.e (15) Hence from (b) and (c), $R_1 < R^*$ < R₂ (16) Now, consider $R_3 = (R_1 + R_2)/2$ R^{11}_4 R¹4 R₁ R3 R2 If $\underline{Z}(R_3) = Min A(X) - R_3 \cdot B(X) > 0$ X€C R₃ < R^{*} < R₂ (from similar arguements in (b) and (c)) then, Now consider $R_4^1 = (R_2 + R_3)/2$ and continue the search. If $\underline{Z}(R_3) =$ $Min A(X) - R_3.B(X) < 0$ X€C $R_1 < R^* < R_3$ (from a simialr arguement in (b) and (c)) then,

Now consider $R^{11}_4 = (R_1 + R_3)/2$ and continue the search.

The solution for problem P(.) is obtained from a binary search for the parameter R which gives Z(R) = 0.

In other words, the search for R^* can be carried out by solving a series of problems P(R) with different values of R, each time selecting the value of R depending on the optimal solution of the previous problem.

4.2.2 Finding an Interval (L,U) Such that $L < R^* < U$

39

By initially choosing a value of R too far away from R^* , a considerable amount of computation will be required to converge on R^* . Hence it is necessary to identify a range of R in which R^* lies. This can be done by finding the upper bound and lower bound for the function Z(R,X) at different values of R with some constraints relaxed. If for a particular R, both these bounds are positive, the problem P(R) need not be solved, since it is known beforehand that the optimal solution to P(R) cannot be zero. A similar argument holds for the case when both the upper bound and the lower bound are negative.

Consider P(R) : Min $Z(R,X) = \underline{Z}(R)$ XéC and Max $Z(R,X) = \overline{Z}(R)$ XéC

Let C^1 be any subset of set C (Constraint set C has been defined earlier). Consider the minimization and the maximization of Z(R,X) under C_1 (i.e., fewer number of constraints).

Let Min $Z(R,X) = LB_R$, the lower bound. $X \in Cl$ Max $Z(R,X) = UB_R$, the upperbound. $X \in Cl$ Now, for all R,

 $LB_R \leq \underline{Z}(R) \leq UB_R$ (17)

 $LB_R \leq \overline{Z}(R) \leq UB_R$ (18)

It is evident that only those values of R which give a negative LB_R and a positive UB_R have to be considered in the search for R*. The changes in values of LB_R and UB_R with respect to the changes in R are indicated in Table 1. R* lies in the region (L,U). In this region the binary search principle outlined in Section 4.2.1 can be applied with R as the parameter.

Another point to be noted here is that, although a strict binary search plan requires the whole region (L,U) to be searched, actually it is possible to restrict to the lower end of the region (L,U). The basic strategy of the search is to solve the problems with different values of R, looking for a value of R that gives the value of $\underline{Z}(R)$ equal to zero. Since LB_R is a relaxed solution to the minimization of Z(R,X), it can be expected that this will occur (i.e., $\underline{Z}(R) = 0$) at those values of R giving LB_R value closer to zero on the negative side.

Establishing the interval (L,U) will reduce guesswork and the computational requirements of the search.

4.2.3 Establishing Lower Bound(LB_R) And Upper Bound(UB_R) for Z(R,X)

4.2.3.1 Constraints on the function Z(R,X)

Consider P(R): Min A(X) - R B(X) $X \in C$

Illustration of the Region (L, U) for P(R)

 Sign of

 Value Of R
 LB_R UB_R

 0
 +
 +

 0+s
 +
 +

 0+2s
 +
 +

 0+k_1s
 +

 0+(k_1+1)s
 +

 0+(k_2s)
 +

 0+(k_2+1)s

 0+(k_2+1)s

 0+(k_3s)

î

s is a small increment.

- 41 -

Min Z(R,X)1.e. XEC N-1 N К N-1 ĸ N Σ Σ d_{ij}.M_{ijk} i.e., Σ - R. [E Σ Σ sij·Mijk] k=1..i=1.j=i+1 k=1 i=1 j=i+1 XEC N-1 ĸ N i.e., Σ Σ (d_{ij}- R.s_{ij}) M_{ijk} Σ (19) k=1 í=1 j=<u>1</u>+1 XEC Let $(d_{ij} - R.s_{ij}) = C^{R}_{ij}$. In the discussions to follow the superscript R has been dropped for convenience. The following conditions are implied by the constraint

set C.

M_{ijk}'s are zero-one variables (forced to assume values of 0/1).

(ii') Let $S_{ij} = [M_{ij1}, M_{ij2}, M_{ij3} \dots M_{ijK}].$

Since each of the parts i and j can be allotted to '

only one family, at most one variable in the set

Sij can assume a value l

This can be illustrated by Table 2.

(iii) At least IP number of variables M_{ijk} should have a value 1 where IP is given by the following expression:

> IP = [N/K]. {[N/K]-1}/2 * K +(N - K.[N/K]) * [N/K]where, [N/K] is the largest integer less than or equal to N/K.

- 42 -

This expression represents the minimum number of part pairs (which in turn corresponds to the minimum number of M_{ijk} variables taking the value 1) that have to be formed while grouping N parts into K families. It is impossible to form K families out of N parts without forming at least IP part pairs. The expression for IP has been derived by trial and error.

This can be illustrated by the number of distinct possible groupings possible for different values of N given in Table 3:

For N=2 and K = 3 IP=0

N=3 and K = 3 IP=0 N=4 and K= 3 IP=1

Since this is true for all N, it follows that at least a minimum number of M_{ijk} 's must take the value of 1 in any feasible solution to P(R).

(iv) Some combinations of Mijk's cannot take the value

of 1 in the same solution. For example, consider the part pair (1,2) has been in family 1.

Then $M_{121} = X_{11} \cdot X_{21} = 1 \cdot 1 = 1$ In this case, the variable $M_{132} = X_{32} \cdot X_{12} = 0$ Since, $X_{11} + X_{12} = 1 \& X_{11} = X_{12} = 0$ i.e., M_{121} and M_{132} cannot take a value 1 at the same time.

TABLE 2

Part pair (1,2)

K, the number of families = 2

No.	Alloca	tion	Value of			
	Fl	F2	M ₁₂₁	M122		
1	1	2	0	0		
2	2	1	0	0		
3 ·	1,2	-	1	0		
4	- `	1,2	0	1		

Note: $M_{121} = X_{11} \cdot X_{21}$ and

 $M_{122} = X_{12} - X_{22}$

It is clear that at most one value in the set

· _ _

S12 takes a value of 1

TABLE 3

IP, The Minimum Number Of Part Pairs

K, the number of families = 3

N	Distinct groupings	Fl	F 2		io of art	pairs
2		1	2 🖻	-	0	*
2	2	1,2	-	-	1	
3			2	3	0	*
5	2	1	2,3	-	1	
	3	1,2,3	-	-	2	
4		1	2	3,4	1-	*
•	2	1,2	3,4	-	2	
	3	1	2,3,4	-	2	
	4	1,2,3,4	-	-	3	

If any one of these conditions are violated by a variable M_{ijk} , some of the constraints in the set C will be violated. The constraint set C minus the violated constraints is denoted as C¹.

The procedure explained in the next section neglects condition (iv) and finds' the maximum (UB_R) and the minimum (LB_R) of the function P(R) under a reduced set of constraints C¹. As shown in Section 4.2.2, UB_R and LB_R will be the bounds on the objective function P(R) for maximization and minimization respectively subject to the constraint set C.

4.2.3.2 <u>Coefficients of the function Z(R, X)</u>

The M_{ijk} 's are 0-1 variables. Hence the objective function Z(R,X), is the sum of all C_{ij} 's corresponding to the M_{ijk} 's taking a value of 1. From conditions (i), (ii), (iii) and (iv) it follows that:

- If C_{ij}'s are positive for all (i, j), then both the upper bound and lower bound would be positive (Case I).
- If C_{ij}'s are negative for all (i,j), then both the upper bound and lower bound would be negative (Case II).
 - 3) If some C_{ij} 's are positive and some C_{ij} 's are negative, then the value of R may correspond to

Case III. It is necessary to find the LB_R and UB_R in this situation.

- 46 -

4.2.3.3 Algorithm for finding LB_R and UB_R

Although each C_{ij} is a coefficient for K linearization variables, from condition (ii) in Section 4.2.3.1 it can be counted in only once for any solution.

The lower limit (upper limit) of Z(R,X) can simply be found by counting in all the negative (positive) C_{ij} s. However if the condition (iii) is not satisfied some positive (negative) terms should be counted in.

Algorithm

Sort the set J in ascending order.
 Sum_L = 0

 Add all the negative C_{ij}'s to Sum_L
 If NN > IP go to step 3.0
 If NN < IP then add to Sum_L the first (IP-NN) positive terms in set J

 Sum_U = 0

 Add all the positive C_{ij}'s to Sum_U
 If NP > IP go to step 4.0
 If NN < IP then add to Sum_U the last (IP-NN) negative terms in set J

4.0 $LB_R = Sum_L$ and $UB_R = Sum_U$

As indicated earlier, this algorithm neglects ... condition (iv) implied by the constraint set C.

4.2.4 Summary of the steps for solving the formulation

In brief, the steps in solving problem P(.) are:

- 1. Set up the objective function P(R).
- 2. For different values of R starting with O find $\label{eq:LBR} LB_{\rm R} \text{ and } UB_{\rm R}.$
- 3. Establish the interval (L,U) by the method explained in Section 4.2.2.
- 4. Carry out the binary search' for the value of R^* in this interval (L,U).

Or

Choose a smaller interval (R_1,R_2) in the lower end of the range (L,U) and carry out the search for R^* (since R^* is expected to be at the lower end of the region (L,U)).

5. Stop when a value of R yields Z(R,X)=0

4.3 Approximation Procedure

4.3.1 Need for Finding a 'Good' Initial Solution

The grouping problem is combinatorial in nature.

Each of the N parts can be allocated to one of the K families independently. Hence the number of feasible solutions to the family formation problem is K^N, which becomes too large with increasing values of N. The solution time required for the problem P(R) will also increase rapidly.

It is clear that the time required for the search as outlined in section 4.2.1 is dependent on the number of problems P(R) solved in the process. The number of problems P(R) required to be solved depends on the interval (R_1,R_2) chosen initially.

If the time required for each problem P(R) is high, it is desirable to limit the number of such problems solved to as few as possible. This means that a tight interval (R_1,R_2) has to be selected.

The approach suggested in this case is to find a 'good' solution and choose the corresponding CDC as the upper limit on the value of R. Any procedure for finding such an initial solution should be expected to satisfy the following requirements:

a. The solution should be 'good'. An initial solution is considered to be better than others if the corresponding CDC is nearer to the value of L
(L is the lower limit on the value of R). This results in a shorter search interval.

b. The time required to arrive at that solution

should be justifiable.

An approximation procedure has been developed for this purpose. Both the above requirements have been found to be satisfied by the procedure in the several problems solved.

4.3.2 Principle

delee

The approximation procedure also uses the IP formulation described in section 4.1.4. In this case however, a number of smaller problems are solved instead of a single large problem. The procedure is based on a method of clustering first reported by Friedman and Rubin [13]. Whereas the principle in [13] is single reallocation based, the procedure developed in this section is multiple reallocation based.

A random partitioning of N parts into K families is considered initially to start off the approximation procedure. Let $n_1, n_2, \ldots n_K$ be the number of parts in families 1,2,....K, respectively.

4.3.2.1 Single Reallocation

The principle as applied to part grouping problem is given below:

Start with a random partitioning of parts into K

families. The parts are considered in a particular order for moving into other families. The part selected is moved to some other family such that it brings about the maximum favourable change in the objective function. This reallocation generates a new configuration, and causes the coefficients to assume new values. The procedure restarts each time a reallocation move is made. If the reallocation fails to bring about a favourable change, the part is retained in its present family and the next part in the order is selected. This continues until no part can be moved from its present family to another.

This approach to part grouping has been applied by Dutta et.al [12], for the part family formation. Different trials were conducted with varying starting partitions. The final objective function values were very close to each other irrespective of the starting configurations.

4.3.2.2 <u>Multiple Reallocation</u>

It can be noted that in the single move algorithm, each time a part is considered for reallocation, a decision is taken with respect to each family about moving the part to that family. The value of the objective function is calculated for all the possible reallocations. This, in effect, means that a problem with 1 x K integer variables (0-1) is solved each time by complete enumeration.

- 50 -

Extending the same principle, all the parts of a particular family 's' (to be chosen based on some criterion) can be considered for reallocation.

If there are n_8 parts in family 's', the number of feasible reallocations is $n_8 \times K$, which is quite large even for small values of n_8 , if a complete enumeration has to be attempted. However, the reallocation of these n_8 parts can be considered using the formulation in section 4.1.4. The allocation of all the other parts in other families is fixed and the reallocation of the n_8 parts into K families is considered.

A series of smaller sub-problems are solved, until a stopping criterion is reached. The criterion for choosing the family to be considered for reallocation is the value of D_k for different part families(k=1,2,...K)'. We define for a family k,

D_k =

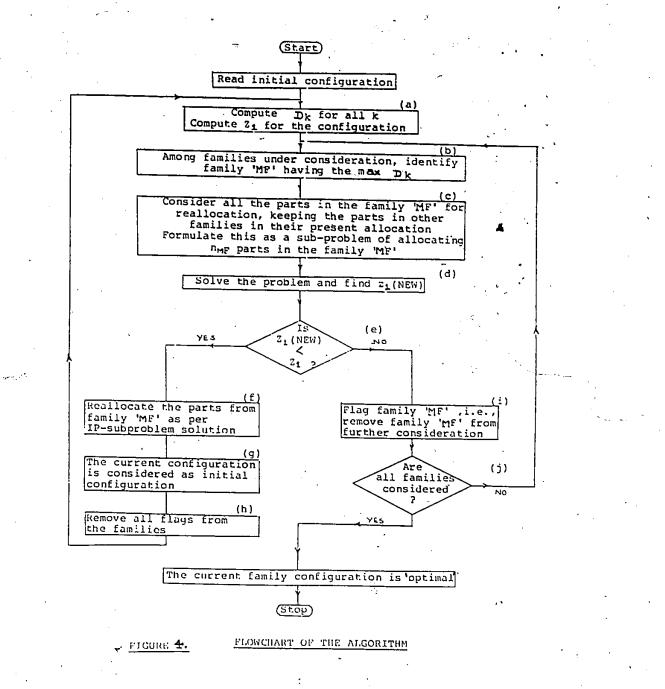
 $\begin{bmatrix} \Sigma & \Sigma & d_{ij} & X_{ik} & X_{jk} \end{bmatrix} / B(X)$ (20) i=1 j=i+1 (20)

A high value of D_k indicates that the parts in family k are such that the contribution from the part family k to the value of CDC is very high, which suggests the presence of highly dissimilar parts in that family. This means that the parts from this family are the candidates for reallocation. The family with highest D_k (family, MF) is considered for reallocation of parts at an iteration of the algorithm. As indicated, a sub-problem of the form P(.) with MMF x K integer variables is solved in an iteration. After each successful iteration (iteration causing an improvement in the objective function), the algorithm returns to a stage similar to the initiad configuration with an improved bound on the value of the objective function. The algorithm terminates when the reallocation of parts from any family fails to bring about an improvement in the objective function

4.3.3 Algorithm

The flowchart of the algorithm is s(own in Fig6 1. A brief explanation of the flowc art blocks follows.

- Block (a) initialize the algorithm by computing the values of the objective function Z_1 and D_k for all the families.
- An iteration of the procedure involves reallocation cosideration of all the_y parts in a family for improving the value of the objective function Z₁.
- Blocks (b), (c) and (d) represent the main steps in an iteration. The reallocation subproblem is solved as an IP of the same form as formulated in section 4.1.4


Decision block (e) indicates whether a reallocation of the parts has to be made or not. The loop (e)-(f)-(g)-(h)-(a) represents the steps involved when a decision to reallocate the parts from family 'MF' is made.

53

When it is impossible to reallocate the parts in family 'MF' under consideration, the loop (e)-(i)-(j)-(b) represents the choice of another family for considering reallocation of parts.

Block (i) identifies the families from which the parts could not be reallocated within an iteration.

- The procedure terminates when the decision block (j) returns a result YES.

Chapter V

MACHINE GROUP ALLOCATION

The assignment of machine groups for the production of the parts segregated into part families is discussed in this chapter. The availability of alternative machines, for each of the operations on the parts is considered. Our objective is to maximize the number of available alternative routings for the parts within the cellular system. The formulation allows for the individual machines to be allocated to only one part family. When such allocation is infeasible, the machine(s) causing this infeasibility is(are) identified through a mathematical model. The condition of allocation to only one family is relaxed for these machines.

5.1 Formulation

5.1.1 Statement of the Problem

All the parts of a particular family have to be processed completely within the corresponding machine

ł

- 55 -

group. These machine groups constitute the FMCs or cells.The aim of this problem is to allocate a group of machines to each of the part families.

5.1.2 Objective

The objective is to provide the maximum possible number of alternative routings for the parts within their respective machine groups. The availability of alternative routings is known as the routing flexibility. Routing flexibility is maximized taking into account the operation requirement of the parts in different families. The routing for a part is defined as a sequence of machine visits needed to complete the operations required. Consider a part with three operations. A sequence of visits to the machines 3,2 and 5 represents a routing for that part.

5.1.3	Concer	pt d	of Alternative Routings	
	Notati	lone	3	1
	N	=	Total number of parts	
	к	=	Number of part families	

- Number of machine groups to be formed
- n_k = Number of parts in family k.

 $\sum_{k=1}^{K} n_k$

Therefore,

à

	jk	-	Index for part j in family k (j=1,2,3n _k)
	⁰ (jk)	, –	Number of operations on a part indexed by
			the part identity jk
	м	-	Number of available machines
	PR [.] jk		Maximum possible number of routings for
•	•		part jk
	^{F P} jk	' =	Number of alternative machines
			available for operation p of part jk.
	^{NR} jk	-	Number of alternative routings available
			for part jk
	S _k .	=	Product terms of the decision variables
			(to be defined later) to indicate the
	•		allocation of individual machines to k
		•	families (k=2,3K). Pi,k indicates the
		•	product term i in set S _k .
	Wk	•	Penalty weight to k family allocation of a
			machine in the model to identify the
			machines causing infeasibility in the
			machine group allocation formulation.
	The	feas	ible routing for the operations is
	repr	esen	ted in the form a matrix as explained below:
	Cons	ider	a part jk with $O(jk) = 3$. Assume $M = 9$.
			ix A _{jk} , with elements a(jk)pm indicates

. - 57 -

different available machines.

<u>.</u>.

the feasibility of operation p of part jk on

			•	•	• .		•.				
0p	Mc-	1	2	3	4	5	6	7	_8	9	• .
1		1	Ō	1	0	1	0	0	0	1	4 feasible machines
2		0	1	0	0	. 0	0	1	0	1	3 feasible machines
3		0 Ø	0	0	1	1	. 1	0	1	0	4 feasible machines

58

For example, operation 1 can be done on machines 1, 3, 5, or 9.

This information is assumed to be available based on the technological capabilities of the available M machines, which can be expressed by a matrix for each part jk.

Decision variables

Imk

= 1 if machine m is allocated to cell k.
= 0 otherwise.

Referring to the previous example, if all the machines 1, 2,..., 9 are assigned to family k, all the possible alternative routings, PR_{jk} will be available for the part jk.

 $PR_{jk} = \begin{bmatrix} \# \text{ of machines} \\ available \text{ for} \\ first \text{ operation} \end{bmatrix} \begin{bmatrix} \# \text{ of machines} \\ available \text{ for} \\ second \text{ operation} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \# \text{ of machines} \\ available \text{ for} \\ third \text{ operation} \end{bmatrix}$ $PR_{jk} = \begin{bmatrix} M \\ \Sigma & a(jk) 1m \end{bmatrix} \cdot \begin{bmatrix} M \\ \Sigma & a(jk) 2m \end{bmatrix} \cdot \begin{bmatrix} \Sigma \\ m=1 \end{bmatrix} \begin{bmatrix} a(jk) 3m \end{bmatrix} (21)$ $m = 1 \end{bmatrix} = 4 \cdot 3 \cdot 4^{2} = 48$

This may be the most desirable situation as far-as

the production of part jk is concerned. But, all the machines cannot be allocated to family k, since there will be a requirement of these machines for parts in other families. Due to these requirements, allocation of the machine groups has to be done for each of the families with the objective of maximizing the number of routings: available.

5.1.4 Formulation

Consider the decision variable I_{mk} which represents the allocation of machine m to family k. Each machine can be allocated to only one family.

If a machine m is allocated to family k, it offers a routing possibility for all the operations in that family that can be done on machine m.

A formulation with the objective function to maximize the number of alternative routings available will try to allocate those machines to a particular family, which offer routing to a large number of operations.

For operation p on part jk the number of alternative machines available is given by:

	м	,			
^{FP} jk≝	Σ a(jk)pm · m=l	Imk	、 •	·	(22)

- 59

The number of available routings for part jk is then given by:

- 60 -

$$NR_{jk} = F^{I}_{jk} \cdot F^{2}_{jk} \cdot F^{3}_{jk} \cdot F^{4}_{jk} \cdots F^{0}_{jk}$$
(23)

The total number of alternative routings over all the parts in all the families is given by:

$$Z = \sum_{k=1}^{K} \sum_{j=1}^{n_{k}} [P^{1}_{jk} \cdot F^{2}_{jk} \cdot F^{3}_{jk} \cdot F^{4}_{jk} \cdot \cdots F^{0}_{jk}]$$
(24)

The objective function can be stated as :P1Maximize Z(25)

Subject to the following constraints:

 Each operation p on the part jk must have at least one feasible machine in the corresponding group. This ensures that for operation p at least one routing is provided in the corresponding group of machines,

$$\begin{array}{c} M \\ \Sigma \\ a(jk)pm \\ m=1 \end{array} \begin{array}{c} I_{mk} \\ for \\ j=1,2,3....K. \end{array}$$

$$\begin{array}{c} (26) \\ p=1,2,3....n_k \\ p=1,2,3....n_k \end{array}$$

2. Each of the available machines can be allotted to one cell only.

$$\Sigma I_{mk} = 1$$
 for m=1,2,3.....M (27 k=1

3. Integrality constraints:

 $I_{mk} = 0 \text{ or } 1$

for $m = 1, 2, 3, \dots, M$ $k = 1, 2, 3, \dots, K$

(28)

Example of the expression for NR ik

The objective function of this formulation is the sum of alternative routings available for all the parts.

The expression for the number of alternative routings available for part jk is developed as follows:

 $F^{1}jk = \sum_{m=1}^{M} a(jk)pm \cdot Imk$

= $1 \cdot I_{1k} + 0 \cdot I_{21k} + 1 \cdot I_{3k} + 0 \cdot I_{4k} + 1 \cdot I_{5k}$ + $0 \cdot I_{6k} + 0 \cdot I_{7k} + 0 \cdot I_{8k} + 1 \cdot I_{9k}$

 $= I_{1k} + I_{3k} + I_{5k} + I_{9k}$

Similarly.,

 $F^{2}_{jk} = 12k + 17k + 19k$

Υ.

 $F^{3}jk = I4k + I5k + I6k + I8k$

NR jk, the number of alternative routings available for the part jk =

 $(I_{1k+I_{3k+I_{5k+I_{9k}}}) \cdot (I_{2k+I_{7k+I_{9k}}}) \cdot (I_{4k+I_{5k+I_{6k+I_{8k}}})$

- 61 -

5.2 Solution Procedure

The objective function Z is non-linear in integer variables. The non-linear terms, each of which represents the possibility of a routing are the product terms of the decision veariables I_{mk} .

These terms are linearized by introducing ædditional variables using a scheme suggested in [12,13]. This is similar to the method adopted in the part family formation problem, where product terms of two integer variables were considered. In this case however, each term corresponding to a routing for a part jk will be a multiplication of O(jk) integer variables.

5.2.1 Linearization of Product Terms

The scheme for linearizing the product terms of zero-one variables is [12,13]:

Let Q be the index set of the variables in a particular product term.

- . Replace each of the product terms of the type $(x_j)^k$ by x_j .
- . Replace each of the product terms of the type : πx_j by x_Q and add the constraints, $j \in Q$

$\sum_{\substack{i \in O}} x_i - x_Q \leq q - 1$

and,

×q <u><</u> ×j

where q is the number of elements in Q.

The linearization strategy adopted for the problem of part family formation is a specific case of this with q = 2.

This formulation is straightforward once the product terms are linearized.

5.2.2 Some Reductions in the Number of Product Terms

The number of variables in the formulation is problem specific, depending on the number of operations for the parts, number of possible machines for each operation and the number of machines. It was mentioned that each routing possibility for a part is denoted by a product term of O(jk) decision variables. However a careful consideration while generating the problem can result in a reduction of the actual number of terms.

For example, a routing for a particular part in the family k may be through machines 1-2-3. This routing will be identified by the product term $I_{1k} \cdot I_{2k} \cdot I_{3k}$. It can be noted that, this product term will also represent the routings 1-3-2 and 3-2-1 for any other operation for

- 63 -

the parts in that family. Taking care of these situations while generating the problem for input to an IP routine would be helpful.

5.3 Infeasibility in Machine Group Allocation

It is assumed in Section 5.2 that one or more allocations of the machine groups to the families exist, such that each machine is allocated to only one family.

The condition that one machine should be allocated to only one family may not be possible sometimes due to the problem data.

The reason for infeasibility is the absolute necessity of some machine(s) to be in more than one family. The infeasibility can be removed from the problem by relaxing the assignment constraint (27) on the machine(s). These machines are allowed to be allocated to more than one family.

5.3.1 Multiple Family Allocation of Some Machine(s)

As mentioned earlier, the requirement of some machines in more than one family causes the infeasibility in the machine group allocation problem, Pl. The possible cases are the requirement of some machine(s) in two, three,.... or K families. The problem Pl can be made feasible by relaxing the allocation constraints on the machine(s) as follows:

Allow for some machine(s) to be allocated to two families and check for the feasibility of problem Pl. If the problem is not feasible, then allow for some machine(s) to be allocated to three families and check for the feasibility of problem Pl, and so ón.

The rationale of the above strategy is to allow for sharing of some machine(s) by the least possible number of part families to make problem Pl feasible.

An objective function is defined in the next Section that implements this strategy and identifies the machine(s) for which the assignment constraints have to be relaxed.

Consider the constraints of problem Pl, with constraint (27) modified as follows:

 $\begin{array}{c} \kappa \\ \Sigma I_{mk} \leq \kappa \\ k=1 \end{array}$ (27-a)

Let S_1 denote the decision variables I_{mk} (Number of decision variables = M.K). The possible multiple allocation variables defined by the original decision variables are listed in Table 4.

5.3.2 Mathematical Model to Identify the Machines

Causing Infeasibility

All the product terms in S_2 , S_3 ... S_K take the

TABLE 4

Product Terms Indicating Multiple Allocation Of Machines

Description of Product Example of a Number of Allocation Terms product term product terms Two families s₂ Imk . Iml м. 29 2 Three families S3 Imk . Iml . Imj м. K families s_K I_{mk} . I_{ml} . ImK м.

66 -

values 0-1 depending on the value of the decision variables in each of these product terms. Consider the minimization of an objective function Y involving the above product terms.

Based on the strategy explained earlier, the coefficients of the product terms in Y should be such that:

- No term in S₂ takes a value of 1, if the constraints can be satisfied by having the decision variables I_{mk} to assume the value of 1 without any multiple assignments.

No term in S3 takes a value of 1 if the constraints can be satisfied by having the terms in S1 (without any multiple assignments) and S2 to take a value of 1.

- No term in S_K takes a value of l, if the constraints can be satisfied by having the terms in

S1 (without any multiple assignments),

 $S_2, \ldots, S(K-1)$ to take a value of 1.

Consider a weightage of zero for the terms in S₁, indicating no penalty to the objective function value for any single family allocation of a machine.

The terms in S₁, S₂,...S_K are given increasing values of penalty weightages. An example is given in Table 5, which satisfies the conditions listed above. Any non-negative value for D will give the same solution to the TABLE 5

Product Ferms We	eightage_Equation_	۵		
•				
S ₁ 0	· · · ·		•	
⁵ 2 W2 =	= 0 . M . K + D			
S ₃ W3	■ Q • M • K + ₩2	$M \begin{pmatrix} K \\ 2 \end{pmatrix}$	+ D	
S4 W4	= 0 . M . K + W2	$M = \binom{K}{2}$	+ W3 M $\binom{K}{3}$ + D	

Penalty Weights to Multiple Allocation Of Machines

.

•

.

- 68 -

minimization of Y i.e., the formulation is independent of the value of D chosen.

The mathematical model to identify the machines causing the infeasibility can now be written as follows:

•		•		K	•			
INF ·	·	Minimize	Y	₹,Σ`	Σ	Wk	•	Pi,k
				^{.,} " k≖1	Pi,ke	Sk		

Subject to constraints (26), (27-a) and (28).

5.4 <u>Summary of steps for solving the formulation</u> Allocation Problem

In brief the steps to be followed are:

- i) Solve the problem <u>INF</u> to identify the machines which have to be allocated to more than one family.
- ii) Relax the assignment constraints in the formulation Pl for the machine(s) identified in (i).

iii) Solve problem Pl for the allocation of machines to maximize the number of routings available for the parts.

Chapter VI

APPLICATION OF THE FORMULATIONS

The application of the formulations of part family formation and machine group allocation is illustrated in this chapter. Section 6.1 gives a description of the problem data. Details about the software written for generating the input problem matrix for a the integer programming routine of SAS/OR (Version 5) [29] are provided in section 6.1.2. Solution procedures for the two problems are discussed in detail in Sections 6.2 and 6.3. A discussion about the application of the formulations and the scope for future work has been included in Section 6.4.

6.1 The Problem Data

6.1.1 Parts and Machines

The problem data considered represent the typical part spectrum characteristics and the machine tool variety in the Flexible Manufacturing systems.

6.1.1.1 Parts Spectrum

A set of fifteen parts suitable for manufacturing on CNC machines and hence the natural choice for manufacturingin an FMS are considered. Sketches of these parts are given in Appendix B.

Process details required for the part family formation have been written for these parts and are also provided in Appendix B. A^osummary of the process requirements is given in Table 6.

When a part visits a machine, a number of processing steps can be carried out and this set of ... processing steps constitutes an operation. Referring to the process details for Part #1 (HOUSING), 'Rough Mill Surface (A) ', is a processing step whereag, (1) which is a combination of nine processing steps is an operation.

These parts have the characterestics explained in Section 2.2.2.1 .

6.1.1.2 Machines

The machines assumed to be available for allocation to part families are basically the variety of 'machining centres found in FMSs. The two major types of machining centres are Horizontal Spindle and Vertical Spindle. Heavy boring operations are done on designated

SUMMARY	OF	PROCESS	REC	UIREMENTS

TABLE 6

1

- 47

PART ŧ	ואטא	BER OF	T001	S ANI) THE	TOOL				SUMED))
l	26	M 501 M6 03 R13 0	M1 08	M 503	M 504	D2 01	D142	M1 02 D1 09	M1 03 D2 02	M301 D130	M702. R142
2	18	M1 01	M1 03	M1 04	M1 05	M9 01	M6 02			M 508	M4 02
3	23	D201 M403 M102 B115	M4 04 D2 02	M7 01 D128	M4 01	M412	M405	M4 06	M7 02		
4	23	M 501 M 301 B112	M 518 M 302	M 502 M4 01							
5	29	M1 02 M1 01 D1 08	M4 01 M7 01	M1 03 M7 02	M4 02	M 508	M4 06	M610	M3 01	M305	M 503 D2 01
6	18.		M 504	M 502	M415	M412	M416	M9 01	M9 02		M 507
7	28	M1 02 M 502	M4 01 M7 01	M1 03 M7 04	M1 05 M7 02	M404 M413	M 511	M4 02 M 508	M 512 M6 01		
8	20.	M1 01	M1 08	M 501	M4 01	M1 02		M7 02	M3 01		
9	24	M102 M508 T115	M4 01 M3 01	M1 03 M6 03	M105 M604	M4 02	M1 01	M1 06	M 501	M 506	M 502
•	24	M 501 D11 5	M 509 D2 02	M7 03 S1 01	M 502 T115	M4 01	M4 02	M9 01	M9 02	M7 01	D2 01
11	15	M112 D116		M1 04 B1 09			M4 02	M410	D2 01	D130	D202
	21	M112 M702 S102					M1 06 D2 02				
	3 O	M7 01	M8 01	M8 02	M4 02	M405	M413 M501 R120	M 502	M 506	M 508	D2 02
14	27	M1 02 M7 01	M4 01 M7 02	M1 03 M4 03	M105 M405	M 508 M 4 06		M 509 M6 02	M415	M412	M1 01
15	21	M105	M7 08	M1 02	M7 02	Ml 08	M3 02 B1'08	M4 01			

72 -

machines, with sturdier structure. The light operations of drilling and tapping are done on special CNC drilling machines when necessary. In total, twelve machines of these different types are assumed to be available for allocation to the part families.

The physical dimensions of the Problem under consideration can be summarized as follows:

15 parts.

12 Machines

4 Horizontal Spindle Machining Centers
3 Vertical Spindle Machining Centers
3 Boring Centers (Heavy Machining)
2 NC Drilling and Tapping Machines

Three cells

6.1.2 Generation of Problem Input to An IP

Routine

The problems are solved using the integer programming routine of the SAS/OR package (Version 5) on an IBM 4381 computer.

The input problem matrix has to be generated through a program for each of the problems, since the problem sizes are too large for manual input.

A series of program modules in Fortran have been written for the generation of the problem matrix in SAS/OR

- 73 -

5 format for different problems listed below.

a. P(R), the parametric objective function problem in the part part family formation.

b. Finding upperbound and the lowerbound for the

problem P(R) for varying values of R (to find the

interval (L,U)) by the algorithm in Section

- c. Subproblems of type P(R) to be solved in the iterations of Approximation Procedure.
- d. Finding the upperbound and lowerbound for the subproblems P(R) in the Approximation Procedure for varying values of R, to find the interval (L,U).
- e. Problem <u>Pl</u>, the machine group allocation formulation.
- f. Problem <u>INF</u>, for identifying the machines causing infeasibility in the machine group allocation problem.

The program listings are given in Appendix C.

6.2 Part Family Formation - An Example

The solution procedure for the fractional programming formulation of the problem involves a search procedure as indicated in section 4.2. The problem size for the data in Appendix B is as follows.

3

N=15 and K=3.

Problem size:	
# of integer X _{ik} variables	: 30
# of continuous X _{ik} variables	: 15
∉ of M _{ijk} variables	:315
TOTAL # OF VARIABLES	:360
# of type (i) constraints	: 15
# of type (ii) constraints	:NIL
# of type (iii) constraints	:315
# of type (iv) and (v) constraints	:630
TOTAL # OF CONSTRAINTS	:960

The computations involved in solving the problem are **s** indicated Sections +o follow.

6.2.1 Finding the interval (L,U)

The values of LB_R and UB_R were calculated using the algorithm in section 4.2.3.3 for the values of R from 0.05 to 10.50 in steps of 0.05. The partial listing of the values is tabulated in Table 7.

From the table:

L = 2.45; $LB_{2.45} = -5.10$; $UB_{2.45} = -5.10$; $UB_{2.45} = -5.10$; $UB_{2.45} = -5.10$

U = 6.10 ; $LB_{6.10} = -2272.2$; $UB_{6.10} = 0.20$ Based on the proof in section 4.2.2 we have,

 $2.45 \leq R^* \leq 6.10$

The argument about restricting to the lower end of the

TABLE 7

BOUNDS ON THE OBJECTIVE FUNCTION FOR DIFFERENT VALUES OF R

TOTAL NUMBER OF CIJ'S = 315

-

R	<pre># OF NEGATIVE CIJ[´]^B</pre>	UPPER BOUND	LOWER BOUND
0.05 .	. 0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0.10	. 0	734.45	3076.54
	0		3033.09
0.15	· 0	707.35.	2989.64
•	•	•	
• ,	•	•	•
2.45	27	-5.10	1041.59
2.50	33	117.50	1005.00
•		117:50	1005.00
	•	•	•
· 10	· ·	•	•
6.10	282	-2272.29	0.20
6.15.	282	-2313.44	-7.70
6.20	282	-2354.59	-26.80
•	•	•	
•	•	•	
•	• .	-	· ·
9.95	309	-5536.75	-605.15
•	- · -		-003.13
	. –	•	•
	•	•	•

.

region (L,U) in the search for R^* is evident from the values of LB_R and UB_R in Table 7.

6.2.2 Initial Solution through Approximation Procedure

The total solution time requirement for solving the part family formation problem is dictated by the number of problems P(R) solved during the search. Each of the paroblems P(R) to be solved in this case is of thee size indicated earlier.

Considering the problem size and the solution time required, the importance of starting with an initial solution nearer to the optimal solution is evident.

The approximation procedure as outlined in the section is applied in this case to find an initial solution. The result from a single trial of the approximation procedure with some random starting configuration solution is sufficient to get an initial solution.

As indicated earlier, the requirements of such an approximation procedure are arriving at a 'good' solution (near to optimal) and doing so in a reasonable amount of time (time comparable to the solution time of one problem P(R)). With a view to test the procedure, trials are carried out with different starting configurations. Table 8 provides a summary of these trials. The typical

TABLE 8

Summary of Trials with Different Starting Configurations for Fifteen Parts Example.

37

#	Starting Config.	Initial ODC	# of I/ter	Final Config.	Final ODC
1.	[1,6,7,12,13 [2,5,8,11,14 [3,4,9,10,13	3] 3.6653 4]	/ 1	[1,3,4,8,15,13] [2,6,11,12] [5,7,9,10,14]	2.8158
2.	[1,6,7,12,1 [2,5,8,11,1 [3,4,9,10,1	4] * 🔪 👘 🗤	8	[1,3,4,8,15,13] [2,6,11,12] [5,7,9,10,14]	2.8158
3.	[1,5,7,9,13 [3,6,11,15] [2,4,8,10,1	/	8	[1,3,4,5,8,13] [6,11,12,15] [2,7,9,10,14]	2.79999
4.	[1,5,8,10,1 [3,9,7,13,1 [2,4,6,11,1	4]	5	[1,3,4,8,15,13] [2,6,11,12] [5,7,9,10,14]	2.8158
5	[1,3 9,12,1 [4,5,7,10,1 [2,6,8,14,1	1]	7	[1,3,4,5,8,13] [6,11,12,15] [2,7,9,10,14]	2.79999

- 78 -

TABLE 9

79 -

's r

ł

.....

Iteration Log for the Approximation Procedure

.

Number of Parts = 15

Random Starting Partition = 1

F	INITIAL Alloc- Ation	R	INTEMEDIATE AND FINAL ALLOCATIONS	OBJ FN. Z(R,X)	NEW CDC C	omments
	[1,6,7,12,13] [2,5,8,11,14] [3,4,9,10,14]		sed on range a 3.55	nalysis	choos	e
0	MF=1 CDC=3.665	3.55	[2,5,8,11,14, 1,12] [3,4,9,10,15, 7,13] [6]		3.349	High, Choose 3.349
•		3.349	Same as above	0	3.349	OK
	[6] [2,5,8,11,14,1, 12] [3,4,9,10,15,7,		sed on range a 3.349	inalysia	s choos	e .
	MF=3 CDC=3.349	3.20	[6,3,15] [1,2,5,8,11, 12,14] [4,7,9,10,13]	0.4	3.201	OK
j	3,6,15] [1,2,5,8,11,12, [4]		ed on the ran 2.90	ge anal	ysis ci	1005e
2 M	[4,7,9,10,13] 2 MF=2 CDC=3.201	2.90	[3,6,15,8] [2,11,12] [4,7,9,10,13 1,5,14]		2.895	High Choose 2.895
		2.895	5 Same as abov	e 0	2.895	ок

(Contd.)

 \sim

OBJ Itr INITIAL INTEMEDIATE AND FINAL FN. NEW No. ALLOC-R ALLOCATIONS Z(R,X) CDC Comments ATION _____ _____ Based on range analysis choose [3,6,8,15] [2,11,12] R = 2.70[1,4,5,9,10,13, 14] 2.70 [3,6,8,15, 54.9 2.869 Low, Choose MF=3ī,4] [2,11,12] 2.869 CDC=2.895 [5,7,9,10, 13,14] _____ 2.869 Same as above -0.01 2.869 OK _____ * Based on range analysis choose [3,6,8,15, R = 2.851,4] [2,11,12] [5,7,9,10,13, _____ 14] 2.85 Same as 6.45 2.869 Low, Initial Choose MF = 32.869 CDC=2.869 _____ 4 2.869 Same as -0.01 2.869 OK initial Family configuration not changed Choose the family with next highest D_{k} . i.e MF=1 R = 2.85 ______ -----2.85 [1,3,4,8, -0.05 2.845 OK 15] [2,6,11,12] [7,9,10,5,14] 13,1,5,14]

۰. م

5

(Contd.)

- 80 -

TABLE 9 (Continued)

Itr INITIAL No. ALLOC- ATION	R	INTEMEDIATE AND FINAL ALLOCATIONS	OBJ FN. Z(R,X)	NEW CDC Co	omments
[1,3,4,8,15] [2,11,12,6] [5,7,9,10,14]	* Basec R=2.8	l offerange ana: 345	lysis cl	hoose	
MF=3 CDC=2.845 5	2.845	[1,3,4,8, 13,15] [2,11,12,0] [5,7,9,10, 14]	-9.3	2.815	Hogh, Choose 2.815
· · · ·	2.815	Same as above above	-0.01	2.815	ок
[1,3,4,8,15 13] [2,11,12,6] [5,7,9,10,14]	 2.815	on range anal 2.815 Same as Initia configuration			OK ed.
MF=1 CDC=2.815	Choose	the family wit e., MF=3 Base s choose R =2.		 h/.l.	
 ;	2.815 s Family d	Same as initial configuration	l O has not	2.815 change	OK ed
•	Choose t Based or R= 2.815	the next family the range and	y i.e., alysis,	MF=1 choose	· · · · · · · · · · ·
	2.815 S Family c	ame as Initial onfiguration i	. 0 2 .s not c	 8.815 hanged	ок
		families are c			

iteration log maintained for the first trial is given in Table 9. The iteration logs for other trials are listed Appendix D.

From Table 8. two points are evident:

i) The final CDC's obtained by the procedure are very close to each other (Similar result has been reported in [10]).

ii) The solution obtained is close to the optimal

solution(R^* should be in the range 2.45 - 2.7999,

- since L = 2.45).

The solution times required for different subproblems in each of the iterations are given in Table 10. The

total times required are :

Starting	Approximate
Config.	Total Time
1	2.48 Min
2	8.03 Min
3	2.31 Min
4	3.90 Min
5	. 1.53 Min
	•

6.2.3 Search Log .

The problem is then solved using R = 2.7999 (the value obtained through the approximate solution procedure) as the upper limit on the value of R^* .

i.e., the search range chosen is [2.45,2.799]

First the problem is solved at the midpoint of this

range, i.e, at 2.625.

The optimal solution to the problem P(2.625) = 173.25=> R^* > 2.625

Hence, the value 2.7999 is chosen as the R for next P(R). The problem P(2.7999) gives the optimal value as 0. => $R^* = 2.7999$

83

The solution times required for the above two problems P(R) are:

-P(2.625) ---- 21.28 Mins

P(2.799) ---- 22.29 Mins .

It also turns out that the optimal solution is obtained in some of the trials of the approximation procedure, and close to optimal solution in other trials. Thus the solution obtained through the approximation procedure is 'good' (in fact optimal in this case. It can not be gauranteed to be optimal, however). Also, the solution time required for the problems P(R) confirms the importance of starting the search at a 'good' solution. If the problem were to be attempted with some other initial value as the upper limit, say with R=3.00, then the number of problems P(R) solved would have been more (each of them taking a time of about 20 Minutes) resulting in a larger solution time. 6.2.4 Some computational considerations

The solution times (CPU) for the series of problems solved in the course of approximation procedure iterations are listed in Table 10 along with the number of integer variables in each of the problems.

84

Whilst these times should be strictly associated with a specific Package-Computer combination (SAS/OR and IBM 4381), they are indicative of the computational behaviour of these problems viz.,

i) The solution times increase even for a small increase in the number of integer variables.
ii) For the same number of integer variables, different problems require different solution times, sometimes varying widely from each other.

Several problems have been solved using variations of the original data. It is observed that in all the cases the solution procedure converges to the exact solution. And, it appears that for the values of R close to the value of R^* , the optimal allocations obtained by P(R) would also be the optimal allocation corresponding to R^* .

The problems P(R) are solved steps, halting the IP routine intermittently to check the sign of the objective function any intermediate solution that might have been found. If the sign turns out to be negative, problem P(R)

Т	А	В	L	E	1	0

4

TYPICAL SOLUTION TIMES FOR THE APPROXIMATION PROCEDURE ITERATIONS

Starting	Iter-	Problem	# of Integer	Solution time
Config 👔 👘	ation	No.	Variables	Min : Sec
	0	1	10	0 : 3.38
		2	10	0:3.38
	1	1	14	0 :26.43
	2	1	14	0:7.52
	3	1	16	0 :36.27
_	· · · · · · · · · · · · · · · · · · ·	2	16	0:36.27
1	4	1	12	0 : 5.10
	£.	2	12 •	0 : 5.09 6 : 4.89
	<u> </u>	3.	12.	
	.5	1	12	0 : 4.91
		2	12	0:4.89
``	6	1	12	0 : 5.20
		2	10	0 : 3.38
		3	<u>8</u>	0 : 2.12
			TOTAL	2.48 Min
	0	1	12	0 : 4.89
		2	12	0 : 4.79
	1 .	1	16	0 :36.27
		2	16	0 :36.27
	2	1	20	1 :32.22
		2	20	1 :35.41
		3	20	1 :37.85
	3	1	16	0 :21.77
		2	16	0 :18.80
2		3	10	0 : 3.09
	•	4	10	0 : 3.09
	4	1	16	0 :17.13
		2	16.	0 :14.61
	5	1	12	0 : 5.10
		2	12	0 : 5.09
		3	12	0:4.89
	6	1	12	0 : 4.91
		2	12	0:4.89
	7	1	12	0 : 5.20
		2	10	0:3.38
		3	8	0 : 2.12
			TOTAL	8.0295 Min
	0	1	12	0 : 5.61
		2	12	0 : 5.58
3	1	1	16	0 :25.87
4		2	16	0 :20.05

_

86

TABLE 10(Contd.)

Starting	Iter-	Problem	∉ of In		Solution time			
Config	ation	'No	Variab	les		: Sec		
•	2	1	16	-43°	0	:16.14		
		2	1.6		0	:26.26		
•	3	1	12		0	: 5.15		
		2,	10		0	: 3.38		
		3	10		0	: 3.38		
	4	, 1	. 12	:	0	: 5.58		
		2	· 10	,	0	: 3.50		
		3	10		0	: 3.50		
	5	1	14		0	: 7.75		
3		2	14		0	: 7.75		
•	a 6	<u> </u>	12		0	: 5.05		
	9	2	• • 10	•• .	ō	: 3.50		
•	•	3 ·	8		õ	: 1.91		
	- <u></u>			TOTAL		314 Min		
	. •			* A T U M	** * *	· · · · · · ·		
	0	1	10		0	: 2.98		
	2	2	10		· Õ	: 2.92		
	1	1	18		1	:19.61		
	Ŧ	2	18	\$	1	:57.18		
	2 ·	1	12	<u>_</u>	0	: 5.04		
4	£ -	2	10		Ő	: 3.00		
+			10					
	- <u></u>	3			0			
	3	1	12			: 4.91		
	<u>. </u>	2	1.2		0	: 4.89		
\	4	1	12		0	: 5.20		
· \		2	10		0	: 3.38		
	` <u>`</u>	3	8		0	: 2.12		
				TOTAL	3.	900 Min		
	0	1	10		0	: 3.25		
	• !	2	10		õ	: 3.38		
	•	3	10		ŏ	: 3.29		
	1	1	14		0	: 8.03		
	L	2	14		0			
	2	1	12		0	$\frac{: 8.21}{: 6.72}$		
	2							
		2	10		0	: 2.88		
	3	1	14 -		0	: 8.14		
_		2	, 14		0	: 8.69		
5		3	10		0	: 3.03		
		4	10		0	: 2.90		
	4	1	14		0	: 7.45		
		2	14		0	: 7.19		
	5		12		0	: 5.28		
		2	10		0	: 2.85		
	6	1	12		0	: 3.05		
		2	10		0	: 3.50		
		2 3	8		0	: 1.91		
				TOTAL		529 Min		

8

с.

is terminated since the optimal solution must be negative. This approach is helpful in cutting down the actual time required to solve the problem. For this reason, intutively it is better to approach the value of R from the negative side.

The solutions obtained by solving the problems P(R)can be used to get a short-cut in search procedure compared to binary principle. At each value of R, at least one feasible solution is found before diciding on the next course of action. Each feasible solution gives a particular allocation of parts to the families. For this allocation, the value of A(X)/B(X) can be calculated. The value of R* should be less than or equal to the calculated value for this feasible solution. The calculated value A(X)/B(X) thus is helpful in the search for R*.

6.3 Machine Group Allocation- An Example

۲.

The machine group allocation problem is illustrated by an example. The infeasibility occuring in the problem is resolved using the formulation in Section 5.3.2.

6.3.1 Routing Information

. 4

The routing information in the form of matrix A_{jk} as described in section 5.1.3 is given in Table'll.

- 87 -

this type of information about the feasibility of certain operations on the available machines is assumed to be available.

6.3.2 Solution Procedure

1

The machine group allocation problem has been solved for the part families formed with fifteen parts.

The family configuration obtained by the part grouping in Section 6.2 is given below:

Family 1 : parts 1, 3, 4, 5, 8, 13

Family 2 : parts 6, 11, 12, 15

Family 3 : part 2, 7, 9, 10, 14

From the routing matrix for these parts (Table 11) a list of multiplication terms for each family is generated as explained in Section 5.1.4 . For example, the operation 1 and 2 of the part 6 can be done on machines 1 and 4 respectively, and the product term $I_{12}.I_{42}$ represents this routing. The sample of such a list is given in Table 12.

The size of the problem is :

M = 12 K = 3

Number of integer Variables = 12 x 2 = 24
Number of Free variables = 12
Number of product term variables representing the routings for the parts =117

TABLE	2 11

MACHINE ROUTING DATA

		~~	~~~~	~~~~	~~~~		~~~~	Hac	 hine						
Part No.	₿ Of Opns	0pn #	H1 1	H 2 2	НЗ 3	Н4 4	V1 5	V 2 6	V3 7	B1 8	82 9	83 10	D1 11	D2 12	Total
1	3	1 2 3	0 1 0	0 0 0	0 0 1	0 0 0	1 0 0		1 0 0	0 0 0	0 1 0	0 0 0	1 0 1	0 0 0	3 2 2
2	2	1 2	1 1	0 0	0 0	1 0	0. 1	1 0	0 0	0 0	Ö O	0 1	0	0	3
3.	2	1	0 0	0 0	0 0	0 0	1 0	1	0	1	0	1	0 0	0	4
4	3	1 2 3	0 0 0	0 1 0	0 0 0	0 0 1	0 1 `0 1	0 0 1	1 0 0	0 0 0	1 0 0	0 0 0	0 0 0	0 1 0	2 3 2
5	3	1 2 3	0 0 0	1 0 0	0 1 0	0 0 0	0 0 0	1 1 1	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	2 · 2 1
6	2	1 2	1 0	0 0	0 0	0 1	0	0	0	0	0 1	0 0	1	0	2.4
7	4	1, 2 3 4	0 0 0 0	1 0 0 0	0 0 0 0	0 0 1 0	0 0 0 0	0 0 0	0 1 1 1	0 0 0 0	0 0 0	1 0 0 0	0 0 0	0 1 0 0	3 2 2 1
8	3	1 2 3	1 1 0	`0 0 1	1 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 1 0	0 0 1	0 0 0	0 0 0	0 0 0	2 2 2
9	3	1 2 3	0 0 0	1 1 0	0 0 1	0 0 0	0 0 0	1 1 0	0 0 0	0 0 0	0 0 0	1 0 1	0 0 0	0 0 0	3 2 2
10	2	1 2	0 0	1 0	0 0	0 1	0 0	1 0	- 0 1	0 0	0 0	1 Q	0	1 0	4 2
11	3	1 2 3	1 0 1	0 0 0	1 0 0	0 1 0	0 0 0	0 0 0	0 0 0	0 0 0	0 1 1	0 0 0	0 0 0	0 0 0	2 2 2 ·
12	3	1 2 3	1 0 1	0 0 0	0 0 0	1 1 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 1	0 0 0	0 0 0	0 0 0	, 2 2 2
13	3	1 2 3	0 0		0 0 1	0 0 0	1 0 0	0 0 0	0 0 0	0 1 0	0 0 1	0 0 0	U 0 0	0 0 0	2 2 2
14	4	1 2 3 4	0 0 0 0	0 0 0 1	0 0 1 0	0 0 0 1	0 0 0 0	1 1 0 0	1 0 1 0	0 0 0 0	0 0 0	0 0 1 0	, 0 0 0 0	0 0 0 0	2 1 3 2
15	3	1 2 3	1 0 0	0 1 0	1 0 1	0 0 0	0 1 0	0 0 0	0 0 0	0 0 0	0 0 	0 0 0	0	1 0 0	3 2 2 2 2 2

89 -

٩.

<u> </u>		Number of routings represent						
		Number for	of rou the par			ented		
No.	Product Term	6	11	12	15	<u> </u>		
1 ·	I ₁₂ .I ₄₂	1	1	2	0	,		
2 ·	I ₁₂ .I ₅₂	1	0	Ū	0			
3 _.	I ₁₂ , I ₆₂	1	0	0	0			
4	I ₁₂ .I92	. 1	2	0	0			
5	I ₁₁₂ .I ₄₂	1	0	0	0			
6	I ₁₁₂ .I ₅₂	1	0	0	0			
7	I ₁₁₂ .I ₆₂	1	0	0	0,			
8	I ₁₁₂ .I92	· 1	0	` 0	0			
9	112.142.192	• 0	1	1	ο.			
10	I32.I42.I12	0	1	0	0	•		
11	132.142.192	0	1	0	0 ·			
12	132.192.112	, ,	1	0	. 0			
13	132.192	0	1	0	0			
14	1 ₁₂ .1 ₁₂₂	• 0	0	1	0			
15	I ₁₂ .I ₁₂₂ .I ₉₂	0	0	1	0			
16	142.192	0	0	1	٥.			
17.	I42.I122.I12	0	0	1	0			
18	I42.I122.I92	0	0	1	0			
19	I ₁₂ .I ₂₂ .I ₃₂	0	0	0	1	Ň		
20	I12.I22.I112	0	0	0	1	·		
21	I12.I52.I32	0 [`]	0	0	1			
22	I ₁₂ .I ₅₂ .I ₁₁₂	0	0	0	1			
23	I ₃₂ .I ₂₂	0	· 0	. 0	· 1			
24	I ₃₂ .I ₂₂ .I ₁₁₂	0	0	0	1			

Ò

TABLE 12 LIST OF PRODUCT TERMS INDICATING THE ROUTINGS FOR PARTS PART FAMILY 2

I32.I52

I32.I52.I112

The problem is infeasible with the constraint of allocating one machine to one family only. The mathematical model developed in Section 5.3.2 is applied to find out the machine causing infeasibility. The value of the optional weightage D is chosen to be 1. The optimal value of the objective function is 2. Two of the machines are identified to be the ones causing infeasibility.

Machine 2 is absolutely essential for families 2 lnd 3. Machine 6 is absolutely' essential for families 1 and 3. The allocation constraint for these two machines was relaxed by giving a RHS value of 2 in the corresponding constraints of type (27). Problem <u>P1</u> is then solved to find the optimal solution to the allocation problem. The optimal machine group allocation(after the relaxation • for machines 2 and 3) to the families is given below.

> Maximum number of routings acchieved = 38Machines allotted to family 1 : $3,5,\underline{6},8,9,12$ Machines allotted to family 2 : 2,1,4,11Machines allotted to family 3 : 2,6,7,10,

6.4 Discussion of Results

The cell formation is an initial specification problem in the pre-production planning stage. This research presents new formulations for this problem.

The examples illustrating the formulations involve

91 -

grouping of fifteen parts into three families and then allocating twelve machines to these families. The problems are solved on an IBM 4381 computer using the integer programming (IP)routine of SAS/OR package.

The part family formation example for the above data has 15.3 = 45 decision variables. In the input to the $\frac{1}{2}$ routine 15.2 = 30 variables are explicitly stated to be of 0-1 integer type. The remaining 15 are forced to take 0-1 values due to constraints of type (i) in the formulation. The solution time for the problems solved during the search procedure (Problem P(R)) is about 20-25 Minutes.

The solution times for several problems of smaller size are listed in Table 10.

An example of twentyfive parts using variations in the data given in Appendix B has been attempted. The solution time for the problems solved during the search procedure has been found to be in excess of 150 Min. The experimentation with larger problems has been limited. However, based on the results it appears that with a comparable computer-package combination, problems with 40-50 variables could be solved in a 'reasonable' time. In physical terms the corresponding problem size is 20-25 parts to be grouped into 2-3 families.

Further computational experimentation is necessary for the larger problems considering the following issues. <u>Branch and Bound Strategy:</u> Several search heuristic options are available for the rules of selecting branching nodes and branching variable at the nodes. The experience with the smaller problems can not be directly extrapolated to larger problems, since the strategy that works well for a particular problem size may not work well as the problem size increases [29].

i)

11) Linearization Strategy: Some variations involving reductions.in the number of extra constraints generated have been suggested by Glover and Woolsey [15]. A brief discussion of these is provided by Stecke [30]. The experimentation with these different strategies could be a possibility for the larger problems. (The program written to generate the input for the problem P(R) provides options for implementing different strategies as indicated in [30]).

The bounds established on the objective function could be used to determine the maximum possible variation of the objective function value for any feasible solution from the optimal value. This would be useful especially for large problems.

The approximate solution procedure developed is an extension of the 'single move' heuristic to a 'multiple

move case. The results from the procedure have been found to be near-optimal in the problems solved. Also, starting with different configurations the procedure converged to solutions with objective function values very close to each other. This result is comparable to the 'single move' implementation of the heuristic in [12].

The solution obtained through the approximation procedure provides an upper limit on the objective function value.

The formulation of machine group allocation has 12.3 = 36 decision variables. In the input to the IP routine 12.2 = 24 variables are explicitly stated to be of 0-1 type. The remaining 12 are forced to take 0-1 values due to the assignment constraints. The solution time for the problem is about 2-3 Min. The formulation for identifying the machines causing infeasibility in the problem required less than 1 Min.

The implementation of the formulations gives the system specification in terms of the cell configuration and the parts manufactured in the cells. The contributions of this research are :

- Defining a dissimilarity coefficient as the objective function of the part grouping formulation.
- Developing an algorithm for finding the bounds on the above objective function.

- 94

Extension of a clustering method of 'single move' type to a 'multiple move' case. Consideration of the availability of alternative machines and the routing diversity in machine grouping problem.

Developing a mathemativcal model to identify the machines causing infeasibility in the machine group allocation problem.

The computational aspects for larger problems have to be further tested for larger problems as explained earlier. Also a matter of consideration could be to impose other constraints on grouping. For example, one of the constraints could be to consider the quantities of the parts to be manufactured with a view to balance the work load in the cells.

Some of the direct consequences of grouping are reduction in the work in progress, reduced lead times and reduced scheduling complexity. A study by Purcheck [26] confirms that the cellular systems have better operating charecterestics as measured by these factors. The reduced work in progress and reduced lead times result in financial gains. An approach for analysing such gains due to grouped system has been suggested by Boucher [3]. Such an analysis could be done after the cell formation problem has been solved using the formulations presented. This research deals with the initial specification decisions in the pre-production planning stage for Flexible Manufacturing Systems. The problems of part family formation and machine group allocation have been formulated as 0-1 integer programming models.

CHAPTER VII

SUMMARÝ

The formulation of part family formation is a fractional program. 'The dissimilarity between the parts in 'terms of processing requirements has been represented by a coefficient and is defined as a function of 0-1 variables. By identifying the specific nature of the objective function a general search principle has been suitably adopted for solving the formulation.

As a method for providing a starting solution to the search procedure, an extension to a clustering principle reported in the literature has been developed. This extension is based on the fractional model.

The concept of routing flexibility, or the number of available routes for the parts within the cellular system has been adopted in the machine group allocation.

96 -

This aspect has not been considered by the Group Technology researchers in conventional systems. *

The formulations have been applied to a set of realistic problem data. Several problems have been solved.

The computational experience with these problems indicates that the formulations are applicable to FMS installations manufacturing low or medium variety of parts.

As indicated in Chapter III, many of the systems which operate in tandem with conventional facilities have been, in general, used for the manufacture of critical, high value parts. Many of the FMSs reported in the literature fall into this category. The proposed procedure is applicable for these systems.

The solution procedure developed for the fractional programming model is also applicable in other clustering applications where the pairwise ratio criteria

In summary, the main contributions of this thesis are the development of a new formulation for part family formation, extension of a heuristic procedure in clustering and adopting the availability of alternative routings for the parts as the criterion in machine grouping.

REFERENCES

 Arthanari, T.S., and Dodge, Y., Mathematical Programming in Statistics, John Wiley, NY. (1981).

 Bilalis, N.G., and Mamalis, A.G., The Flexible Manufacturing Systems (FMS) in Metal Removal Processing: An Overview, J. Applied Metal Working, 3, 400-409 (1985).

3 Boucher, T.O., and Muckstadt, J.A., Cost Estimating Methods for Evaluating the Conversion from a Functional Manufacturing Layout to Group Technology, AIIE Trans., 17,268-275 (1985).

- Burbidge, J.L., Group Technology in the Engineering Industry, Mechanical Engineering Publications Ltd., London (1975).
- Buzacott, J.A., and Shantikumar, J.G., Models for Understanding Flexible Manufacturing Systems, AIIE Trans., 12, 339-349 (1980).
- 6. Chakravarthy, A.K., and Shtub, A., Selecting Parts and Loading Flexible MAnufacturing Systems, Proceedings of First Operations Research Society of America/The Institute Of Management Sciences Special Interest Conference on Flexible Manufacturing Systems, Ann Arbor, Michigan, 284-289 (1984).
- Chan, H.M., and Milner, D.A., Direct Clustering Algorithm for Group Formation in Cellular Manufacture, Journal of Manufacturing Systems, 1, 65-75 (1982).
- Chandrasekharan, M. P., and Rajagopalan, R., An Ideal Seed Non-Hierarchical Clustering Algorithm for Cellular Manufacturing, Int. J. Prod. Res., 24, 451-464 (1986).

 $< \delta^*$

*

- 9. Chang, T.C., and Wysk, R.A., An Introduction to Automated Process Planning Systems, Prentice-Hall, New Jersey (1985).
- 10. Chatterjee, A., Cohen, M.A., Maxwell, W.J., Miller, L.W., Manufacturing Flexibility: Models and Measurements, Proceedings of First ORSA/TIMS Special Interest Conference on Flexible Manufacturing Systems, Ann Arbor, MI, 49-64 (1984).

98 -

- Dinkelbach, W., On Nonlinear Fractional Programming, Management Science, 13, 492-498 (1967).
- 12. Dutta, S.P., Lashkari, R.S., Nadoli, G., and Ravi, T., A Heuristic Procedure for Determining Manufacturing Families from Design Based Grouping for Flexible Manufacturing Systems, To appear in Computers and Industrial Engineering (1986).
- Friedman, H.P., and Rubin, J., On some invariant criteria for grouping data, J. Am. Statist. Ass., 62, 1159-1178 (1967).
- 14. Glover, F., and Woolsey, Converting the 0-1 Polynomial Problem to a 0-1 linear program, Operations Research, 22, 180-182 (1984).
- 15. _____, and ____, Further Reduction of Zero-One Polynomial Programming Problems to Zero-One Linear Programming Problems, Opns. Res., 21, 156-161 (1973)
- 16. Gongavare, T.A., and Ham, I., Cluster Analysis applications for group technology manufacturing systems, Cited in Hyer, N. L(ed.)., Group Technology at Work, Society Of Manufacturing Engineers, Dearborn, MI. (1984).
- Green; T.J., and Sadowski, R.P., Cellular Manufacturing Control, Journal Of Manufacturing Systems, 2, 137-145 (1983).
- 18 Hartley, J., FMS at Work, IFS (Publications Ltd.,) U.K., (1984).
- 19. Jagannathan, R., On Some Properties of Programming Problems in Parametric Form Pertaining to Fractional Programming, Management Science, 12, 609-615 (1966).
- King, J.R., and Nakornchai, V., Machine component group formation in group technology:Review and extention, Int. J. Prod. Res, 20, 117-133 (1982).
- 21. Kumar, K.R., Kusiak, A., and Vannelli, A., Grouping of Parts and Components in Flexible Manufacturing Systems, European Journal of Operations Research, 24, 387-397 (1986).
- 22. Kusiak, A., Flexible Manufacturing Systems: A Structural approach, Int. J. Prod. Res., 23, 1057-1073 (1985).

- 24. McAuley, J., Machine grouping for efficient production, Prod. Engr., 51, 53-57 (1972).
- 25. Purcheck, G.F.K., Machine Component Group Formation: An Heuristic Method for Flexible Production Cells and Flexible Manufacturing Systems, Int. J. Prod. Res., 23, 911-943 (1985).
- 26. ______, Computer Aided Organization for Manufacture, Int. J. Prod. Res., 23, 887-910 (1985).
- 27. Rajagopalan and Batra, J.L., Design of cellular production systems: A graph-theoritic approach, Int. J. Prod. Res., 13, 567-579 (1975).
- 28. Ranky, P.G., The Design and Opeartion Of FMS, IFS (Publications) Ltd., North Holland Publishing Company, U.K (1984)
- 29. SAS Institute Inc., SAS/ORTM User's Guide, Version 5 Edition. Cary, NC: SAS Institute Inc., pp 347 (1985)
- 30. Stecke, K.E., Production Planning for Flexible Manufacturing Systems, Ph.D thesis, Purdue University, University Microfilms International, (1981).
- 31. ______, Loading and Control Policies for a Flexible Manufacturing System, Int. J. Prod. Res., 19, 481-490 (1981).
- 32. Swarup, K., Linear Fractional Functionals Programming, Operations Research, 13, 1029-1036 (1965).
- 33. Vannelli, A., and Ravikumar, K., A method for finding minimal bottle-neck cells for grouping part-machine families, Int. J. Prod. Res., 24, 387-400 (1986)..
- 34. Wilhelm, W.E., and Sarin, S.C., Models for the Design of Flexible Manufacturing Systems, Proceedings of Institute Of Industrial Engineers Annual Conference, Atlanta, (1985).
- 35. Wagner, H.M., and Yuan S.C.J., Algorithmic Equivalance in Linear Fractional Programming, Management Sciences, 14, 301-106 (1968).

- 100 -

APPENDIX A

ALTERNATIVE DEFINITIONS FOR THE OVERALL DISSIMILARITY COEFFICIENT

.....

x

- 101 -

ALTERNATIVE DEFINITIONS FOR THE OVERALL DISSIMILARITY

COEFFICIENT

The overall dissimilarity coefficient defined as the objective function in the part family formation problem is an average of all the pairwise dissimilarity coefficients. The overall measure also can also be defined as follows:

a)
$$CDC_1 = \frac{1}{N \cdot (N-1)} \cdot \begin{bmatrix} \Sigma & \Sigma & \sum (d_{ij}/s_{ij}) \cdot X_{ik} \cdot X_{jk} \end{bmatrix}$$

k=1 i=1, j=i+1

b)
$$CDC_2 = \frac{1}{K} \cdot \left[\sum_{k=1}^{K} \left[\begin{array}{c} \sum \\ j=i+1 \\ N-1 \\ \sum \\ i=1 \\ j=i+1 \end{array} \right] \right]$$

c) CDC₃ =
$$\frac{1}{K} \cdot \begin{bmatrix} K \\ \sum_{k=1}^{K} \begin{bmatrix} \sum_{i=1}^{N-1} & N \\ j = i+1 \\ ----- \\ n_k \end{bmatrix} \end{bmatrix}$$
where,

 $n_k = \sum_{i=1}^{N} X_{ik}$

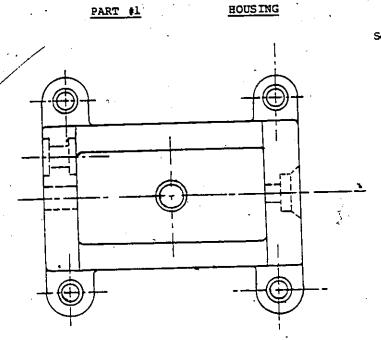
CDC₁, CDC₂ and CDC₃ are the other possible definitions of the objective of the minimization of dissimilarities and maximization of similarities between the parts. A formulation with CDC_1 as the objective function would be similar to the problem P(R).

The formulations CDC₂ and CDC₃ as objective functions would be more complicated to solve. Both these functions can be simplified into a single ratio of non-linear integer functions. The difference would be that in these formulations, the functions would have polynomial terms of higher degree (unlike the formulation for CDC which has only the product terms of degree two). Hence, the method developed for establishing the region (L,U) would not be applicable to these formulations. The general search principle however, still holds in these cases.

The reasons for adopting CDC as the objective function are:

- Using as objective function a similar expression as reported in [12].
- The expression CDC incorporates a weighted average of all dij/sij values.

- 103 -


APPENDIX B

PART SKETCHES AND PROCESS DETAILS

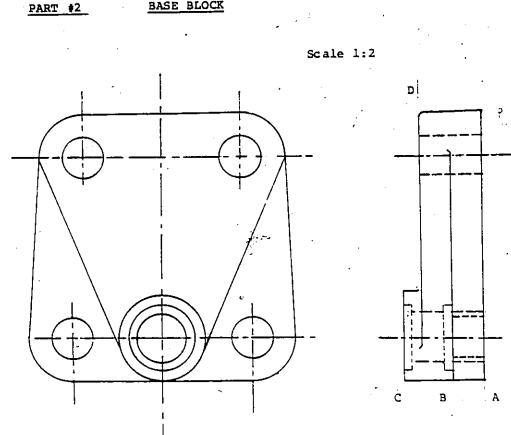
3

10

ċ.

105

Scale 1:6


H I F D C J Τ Ξ G

_ ****

PART NO. : 1

PART NAME: HOUSING

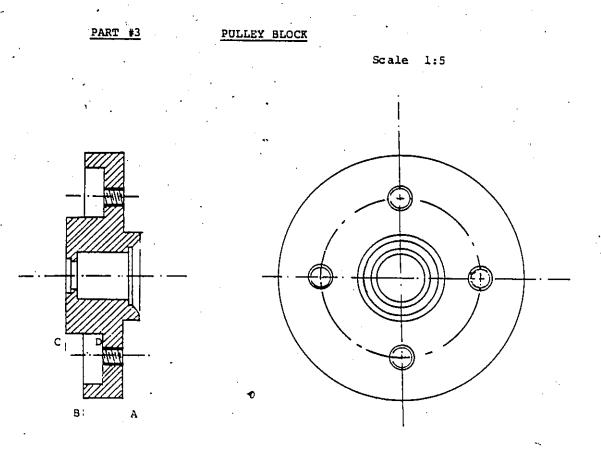
OPERATION	DESCRIPTION OF THE	TOOL(S)
NO.	OPERATION	REQUIRED
	Rough Mill Surface (A)	M501
	Finish Mill Surface (A)	M502,M701
	Center Hole (1)	D201
	Drill 42 Dia Hole Thro	D142
(1)	Ream 42 Dia Hole Thro	R142
	Chamfer	D109,M602
-	Rough Mill Edge (B)	M101,M401
	Rough Mill Edge (C)	M101,M401
	Rough Mill Edge (D)	M101,M401
-	Rough Mill Base Projections	M102
	Finish Mill Base Projections	M103
	Center Holes (4)	D202
	Drill 30 Dia Holes Thro ⁽⁴⁾	D130
	Ream 30 Dia Holes Thro (4)	R130
(2)	Chamfer (4)	D109
<u> </u>	Peripheral Mill Surface (J)	M301,M101
	Finish Mill Surface (J)	M302,M102
•	Rough Mill Face (G)	M301,M102
	Finish Mill Face (G)	M301,M102
	Bore 42 Dia Hole Thro	B108
	Finish Bore 42 Dia Hole Thro	B109
	Counter Bore 72 Dia 36 Deep	B101
	Chamfer	M702
	Contour Mill (F)	M603,M108
	Face Mill Surface (H)	M503
	Finish Mill Surface (H)	M504
	Rough Mill Surface (I)	M603,M108
	Finish Mill Surface (I)	M503
<u>(3)</u>	Bore 48 Dia Holes Thro (2)	B108
	Finish Bore 48 Dia Holes	
	Thro (2)	B115
	Ream 48 Dia Holes Thro' (2)	R148
	Counter Bore 78 Dia Inside	B101
	Counter Bore 78 Dia Outside	B106

BASE BLOCK

٠.

- 108 -

PROCESS DETAILS

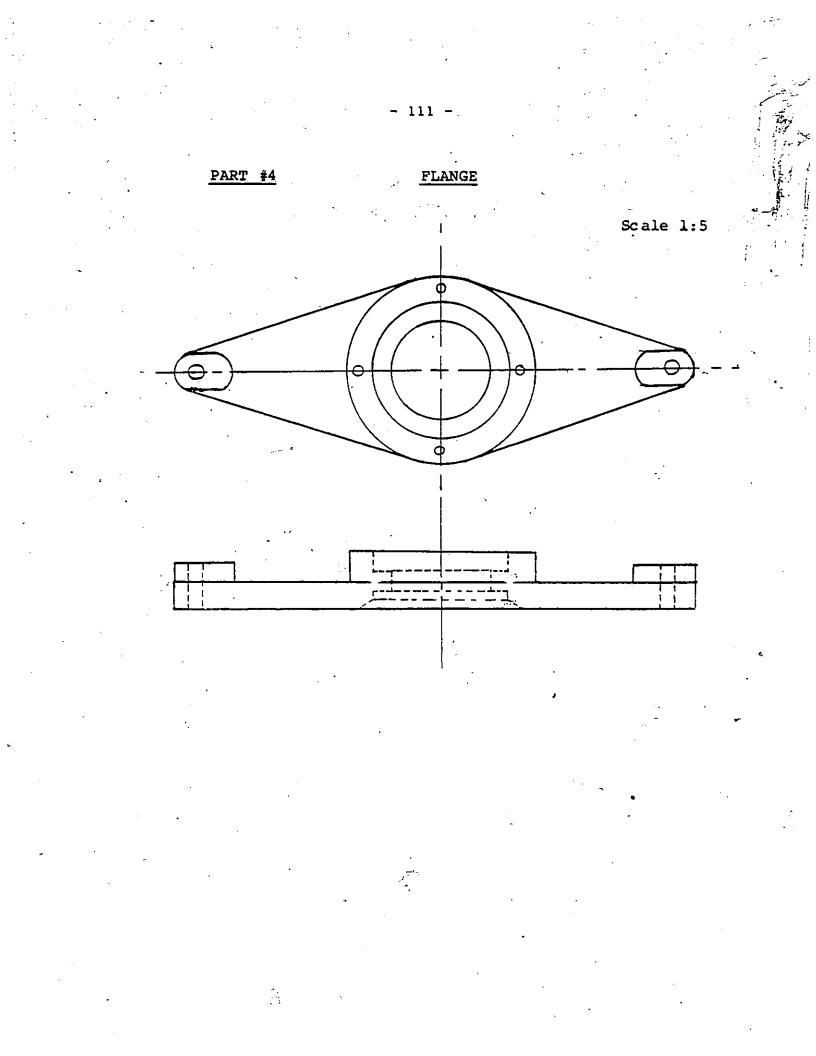

d

PART NO. : 2

PART NAME: BASE BLOCK

OPERATION	DESCRIPTION OF THE	TOOL(S)
NO.	OPERATION	REQUIRED
, ' -	Rough Mill Bottom Face (A)	M101
(1)	Finish Mill Bottom Face (A)	M103
<u> </u>	Rough Mill Sides	M104
	Finish Mill Sides	M105
	Mill Contours (4)	M901,M602
	Face Mill Surface (D)	M501 -
	Finish Mill surface (D)	M501
	Face Mill Surface (B)	M506,M508
	Finish Mill Surface (B)	M506,M508
	Center Holes (4)	D201
(2)	Drill Dia 28 Holes Thro ⁺ (4)	D125
<u> </u>	Ream Dia 28 Holes Thro (4)	R128
	Deburr	S104
	Face Mill Boss	M101,M402
	Rough Bore 34 Dia Hole Thro´	B101
	Finish Bore 34 Dia Hole Thro	B109
	Step Bore Outside Step (Rough)	B105
	Step Bore Inside Step (Rough)	B105
		B104
	Finish Bore Inside Step	B104

ţî tu


PART NO.

3

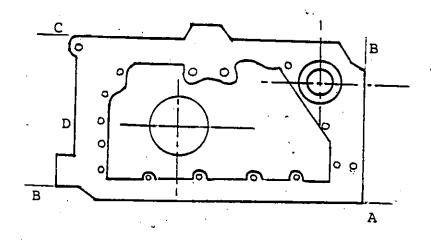
110

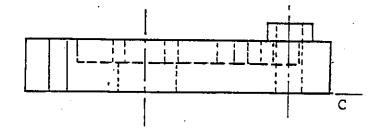
PART NAME: PULLEY BLOCK

OPERATION NO.	DESCRIPTION OF THE OPERATION	TOOL(S) REQUIRED
	<i>[</i>	
	Face Mill Periphery (B)	M403
<u>ب</u>	Finish Mill Periphery (B)	M404
	Rough Mill Face (C)	M701
(1)	Finish Mill Face (C)	M702
	Rough Mill Grove (D)	M401
,	Mill Peripheral Edges	M412
	Bore 50 Dia Hole Thro	B108 ·
• ¹	Finish Bore 50 Dia Thro 🔧 🐇	· B109
	Counter Bore 35 Dia 8 Deep	B101
	Finish Counter Bore	B102
▲ 100 100 100 100 100 100 100 100 100 10	Enlarge Bore Dia Thro' from step	B115
	Rough Mill Side A	M405
	Finish Mill Side A	M406
(2)	Center Holes (4)	D203
· .	Drill Holes 30 Dia Thro~(4)	D128
	Ream Holes 30 Dia Thro' (4)	R130 '
	Tap Holes 30 Dia Thro'	T130
	Finish Bore 80 Dia	B106
L.	Counter Bore Dia 105	B112
	Chamfer edge	M702,M712
	Rough Mill Periphery	M101
	Rough Mill Outside Periphery	M102

PART NO. : 4

÷


PART NAME: FLANGE


OPERATION	DESCRIPTION OF THE	TOOL(S)
. NO.	OPERATION	REQUIRED
	Rough Mill Bottom Face	 M501,M518
45-	Finish Mill Bottom Face	M502
A	Center Hole (1)	D202
	Drill 50 Dia Hole Thro 🔭 📍	D150
(1)	Rough Bore 110 Dia Hole Thro	B108
<u> </u>	Finish Bore 110 Dia Hole Thro	B112
	Counter Bore 175 Dia Deep	B112
	Finish 175 Dia Bore Deep	B112
	Chamfer	M701,M71
5	Rough Mill Sides	M211,M10
يە ب	Finish Mill Sides	M212,M10
	Face Mill Top Surface	M501,M50
	Counter Bore 175 Dia Deep	B112
		B112
]		D202
	Center Holes (4)	D120
(2)	Drill 20 Dia Holes Thro [*] (4)	S109
1	Deburr Tap 20 Dia Holes Thro' (4)	T120
	Tap 20 Dia Holes Thro' (4) Face Mill Bosses	M503
· ·	Finish Mill Bosses	M503
· ·	Center Holes (2)	D201
ι		D120
	Drill 20 Dia Holes Thro ⁻ (2)	DILO
	Mill Periphery of Projections	M301 .
(3)	Finish Periphery of Projections	M302
	Face Mill Top Surface(Rough)	M501
	Mill Periphery Of Bosses	M401,M40

PART #5

BASE

Scale 1:8

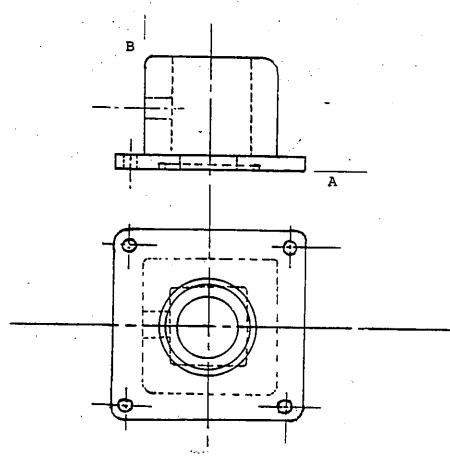
:.

:

PART NO

5

:


PART NAME : BASE

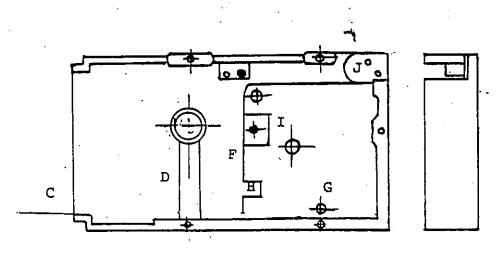
DPERATION	DESCRIPTION OF THE	TOOL(S)
NO.	OPERATION	REQUIRED
	Face Mill Side (A)	M102,M401
•	Finish Mill Side (A)	M103,M105
(1)	Angle Mill Side (B)	M602
	Finish Mill Side (B)	M603
(2)	Rough Mill Bottom Face (C)	M501,M513
• •	Finish Mill Bottom Face(C)	M503,M502
	Face Mill Top Edge	M101,M701
	Finish Mill Top Edge	M103,M702
	Peripheral Mill Boss	M401
	Face Mill Boss	M401
	Center Holes (15)	D201
	Drill 8 Dia Holes (15)	D108
	Deburr	S101
(3)	Ream 8 Dia Holes (15)	R108
	Center Hole (1)	D201
	Drill 50 Dia Hole Thro´	D150
	Bore 56 Dia Hole	B106
	Finish Bore 56 Dia Hole	B109 ·
	End Mill Pocket (rough)	M501,M402
	Finish Mill Pocket	M508, M402
	Peripheral Mill Sides	M406
	Contour Mill Projections	M610,M602
	Center Hole (1)	D203
	Drill 50 Dia Hole (1)	D150
	Drill 70 Dia Hole	D170
	Bore 120 Dia Hole	B108
	Rough Mill Sides B,C and D	M301,M305

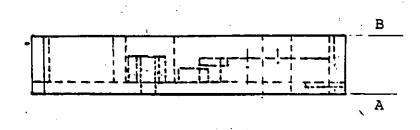
Scale 1:6

PART NO. : 6

PART NAME: CAP

OPERATION NO.	DESCRIPTION OF THE OPERATION	TOOL(S) REQUIRED
	Rough Mill Bottom Face (A)	M501, M504
•	Finish Mill Bottom Face (A)	M502
•	End Mill Grove	M415, M412
<u>(1)</u>	Finish Mill Grove	M416
	Center Holes (4)	D201
·	Drill 18 Dia Holes Thro' (4)	D118
	Deburr	S102
•	Rough Mill Top Face	M501
	Finish Mill Top Face	M504
	Bore 96 Dia Hole	B108,B112
(2)	Finish Bore 96 Dia Hole	B109
	End Mill Base Edges	M401,M412
•	Rough Mill Face C	M507
	Finish Mill Face c	M509
	Center Hole	D201
	Drill Dia 30 Hole Thro' Wall	D130


· •.

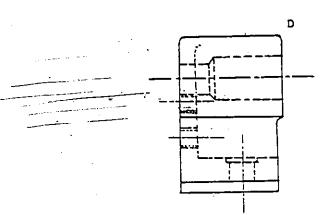

PART #7

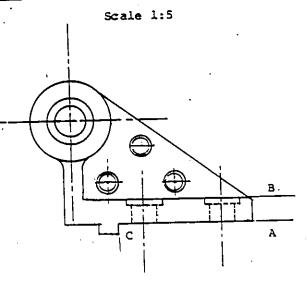
PANEL SIDE COVER

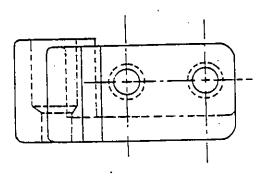
117

ŝ

PART NO. : <u>7</u>


PART NAME: PANEL SIDE COVER

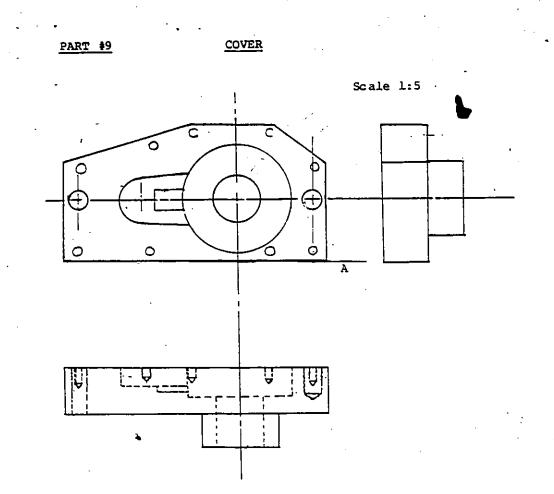

, - ri


OPERATION	DESCRIPTION OF THE	TOOL(S)
NO.	OPERATION	REQUIRED
(1)	Rough Mill Bottom Face (A)	M102,M401
	Finish Mill Bottom Face (A)	M103,M105
,	Rough Mill Top Edges (B)	M404,M511
	Finish Mill Top Edges (B)	M402,M512
·	Center Holes (5)	D201
	Drill 8 Dia Holes 25 Deep (5)	D108
,	Deburr (5)	S102
	Tap 8 Dia Holes 25 Deep (5)	T108
(2)	Box Mill Inside Edges (Rough) (C)	M401,M407
<u>(2)</u>	Finish Mill Inside Edges (C)	M402,M408
	Rough Mill Sides Of projection (D)	
	Face Mill Boss (E)	M401,M408
•	Finish Mill Boss (E)	M402
	Center Hole (1)	D201
	Drill 20 dia Hole Thro (1)	D120
	Ream 20 Dia Hole Thro (1)	R120
	Deburr (1)	S102
	Side Mill addres (Devels) A (D)	
	Side Mill ridge (Rough) ⁽⁾ (F) Finish Mill Ridge (F)	M502
(3)	Finish Mill Ridge (F) Face Mill Surface (G)	M502,M701
<u>()</u>	Finish Mill Surface (G)	M701,M704
	Center Holes (3)	M702
		D201
	Drill 15 Dia Holes 10 Deep (3) Drill 15 Dia Hole 25 Deep	D115
		·D115
4	(for notch H)	
	Finish Mill Notch (H)	M413
	Rough Mill Pocket (I)	M506
	Finish Mill Pocket (I) Center Hole (l)	M508
		D201
	Drill 8 Dia Hole 10 Deep (1) Tap 8 dia Holes 10 Deep	D108
	rab o dia mores io peep	T108
	Step Mill Edge (Rough) (J)	M506
	Finish Mill Edge (J)	M508
<u>(4)</u>	Contour Mill to Finish (J)	M601,M402
	Center Holes (2)	D202
	Drill 5 Dia Hole 5 deep	D105
	Deburr	S101
		~ ~

:-

- 119 -

BRACKET


PART NO. 8 :

PART NAME

E :	BRA	CKET

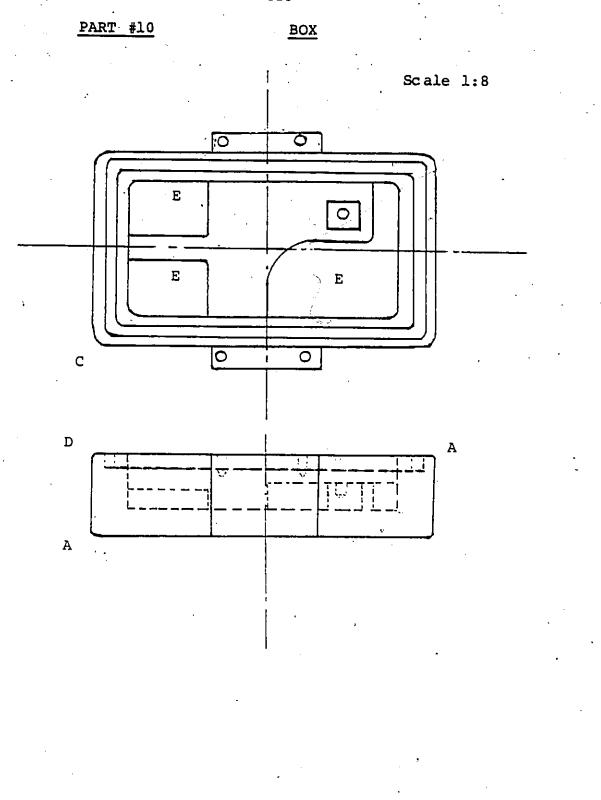
OPERATION	DESCRIPTION OF THE	TOOLOG
NO.	OPERATION	TOOL(S) REQUIRED
		REQUIRED
· 1	Rough Mill Bottom Face (A)	M101,M108,
<u>(1)</u>	Rough Mill add	M501
<u> </u>	Rough Mill sides (C)	M401 /
	Finish Mill Bottom Face (A)	M102,M502
	Finish Mill Sides (C)	M401
(2)	Rough Mill Top Face (B)	M101
<u> </u>	Finish Mill Top face (B)	M102
	Center Holes (2)	D201
•	Drill 25 Dia Hole Thro	D125
	Drill 40 Dia Hole Thro	D140
•	Counter Bore	B105
	Deburr	\$102
	Rough Mill Face (D)	M702,M301
	Finish Mill Face (D)	M702,M301 M703
	Centering Holes (3)	D203
(a x	Drill Dia 25 Hole (3)	D125
<u>(3)</u>	Tap Dia 25 Hole (3)	
	Rough Bore Thro	T125
	Enlarge Bore (Rough)	B108
	Chamfer	B109
	Finish Bore Thro	B110
		B112

۶

- 121 -

`.

2


Ċ.

PART NO. : 9

PART NAME: COVER

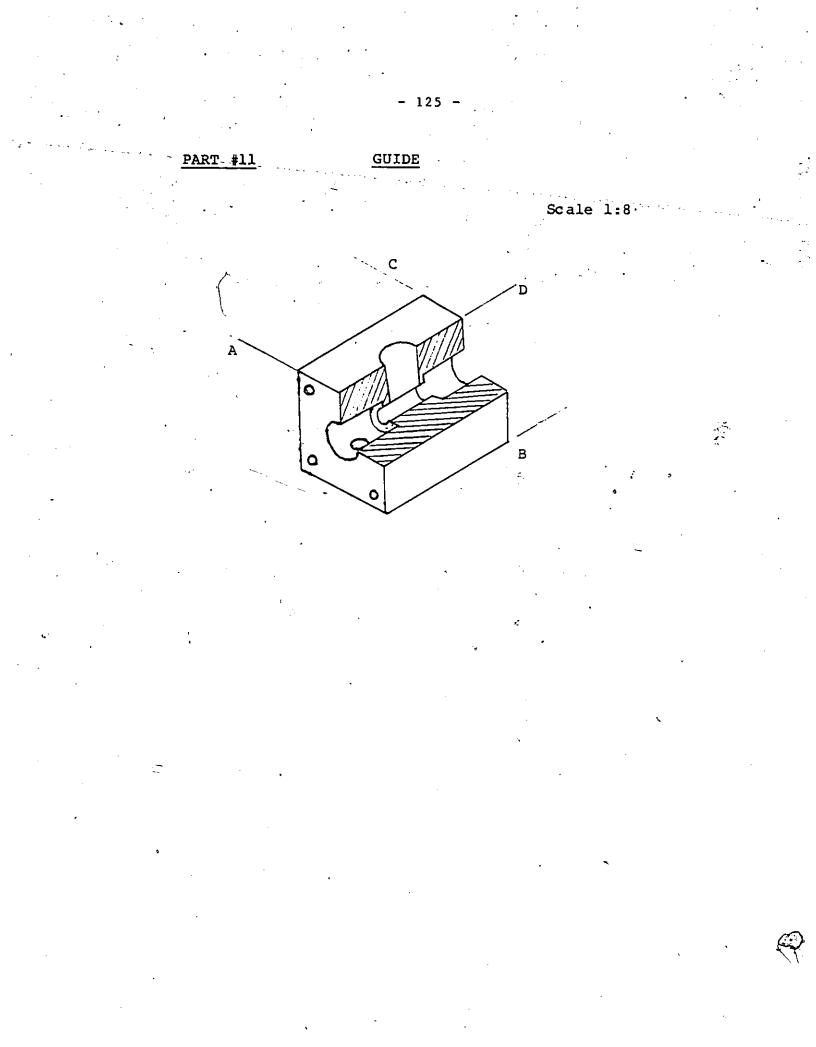
	DESCRIPTION OF THE	TOOL(S)
NO.	OPERATION	REQUIRED
-	Rough Mill Side (A)	
	Finish Mill side (A)	M102,M401
. •	and a side (A).	M103, M105,
•	Rough Mill Top Face	M402
-	Finish Mill Top Face	M101
	Center Holes (9)	M101
1)	Drill 15 Dia Holes (9)	D203
	Center Holes (2)	D115
	Drill Dia 30 Holes (2) Thro	D203
	Deburr	D130
		S101
	Tap 15 Dia Holes (9)	T115
	Circular Milling (Rough)	M501,M506
:	Circular Milling (Finish)	M502
	Thro' Bore 80 Dia (Rough)	B107
	Thro' Bore 80 Dia (Finish)	[™] B109
·	Counter Bore (Rough)	B112
(2)	Contour Mill (Finish)	M402
	End Mill Pocket (Rough)	M501,M508
	End Mill Pocket (Finish)	M502
	Side Mill Pocket Edges	M301
	Shape Milling (Rough)	M603
	Shape Milling (Finish)	M604
	Mill Pocket (Small)	M404,M402
<u>(3)</u>	Finish Mill Pocket(Small)	M402
	Finish Mill All Sides	M302

- 122

ø

- 123 -

1.1


PART NO. : 10

9

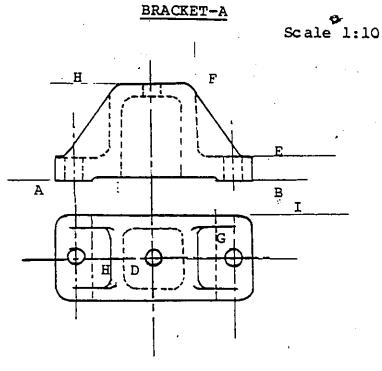
PART NAME: BOX

OPERATION	DESCRIPTION OF THE	TOOL(S)
NO.	OPERATION	REQUIRED
(1)	Rough Mill Bottom Face	M101
······································	Finish Mil Bottom Face	M103
	Face Mill Side B (Rough)	M104,M503
	Face Mill Side B (Finish)	M105
	Face Mill Side C (Rough)	M104,M503
	Face Mill Side C (Finish)	M105
	Rough Mill Top Face (D)	M408,M106
	Finish Mill Top Face (D)	M403,M103
	Mill Grove (End Mill)	M415,M407
<u>(2)</u>	Center Holes (4)	D201
	Drill 15 Dia Holes (4)	D115
	Face Mill E (Rough)	D115 M501,M509 M502
•	Face Mill E (Finish)	M502
	End Mill Edges (Rough)	M401 '
•	End Mill Edges (Finish)	M402
C .	Contour Mill (Rough)	M501
	Contour Mill (Finish)	M902
	Face Mill Boss	M701 /
	Center Hole	D202
	Drill 15 Dia Hole 24 Deep	D115
	Deburr	S101
•	Tap 15 Dia Hole 24 Deep	T115

-124 -

• 2

PART NO. : 11


PART NAME: GUIDE

5

PERATION NO.	DESCRIPTION OF THE	TOOL(S)
NU.	OPERATION	REQUIRED
	Rough Mill Face B	M112,M401
(1)	Finish Mill Face B	M104,M412
	Center Hole	D201
·	Drill 30 dia Hole	D130
	Rough Mill Face A	M405
<u>(2)</u>	Finish Mill Face A	M402,M410
•	Rough Mill Face C	M405
	Finish Mill Face C	M402,M410
	Bore Dia Hole Thro	B101
	Finish Bore Dia Hole Thro	B109
	Enlarge Dia Bore Deep	B105
	Center Holes (4)	D202
(3)	Drill 16 Dia Holes 40 Deep	D116
	Tap 16 Dia Holes 40 Deep	T116
	Enlarge 80 Dia Bore 100 Deep	B109
	Center Hole (4) (Face C)	D202
	Drill 16 Dia Holes 40 Deep	D116
	Tap 16 Dia Holes 40 Deep	T116
	Rough Mill Face D	M112,M401
	Finish Mill Face D	M104,M412
	Enlarge 80 Dia Bore Thro	
	to Centre	B109

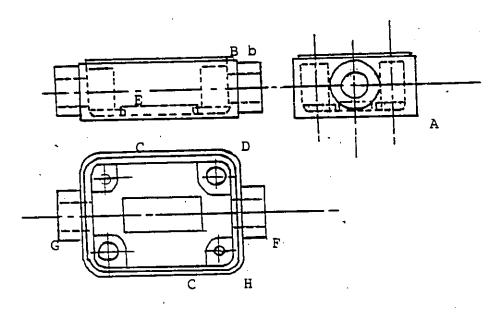
- 126

- 127 -

PART NO. : 12

r

PART NAME: BRACKET-A


OPERATION NO.	DESCRIPTION OF THE OPERATION		
	OFERALION	TOOL(S) REQUIRED	
		· · · · · · · · · · · · · · · · · · ·	
<u>(1)</u>	Rough Mill Bottom Edges A & B Finish Mill Bottom Edges A & B		
	Finish Mill Bottom Edges A & B	M112,M401	
		M104,M105	
	Rough Mill Cavity D		
<u>(2)</u> (<u>3)</u>	semi-finish Cavity n	M101,M106	
	Finish Cavity D	M104	
	Center Hole	M104	
	Drill 30 Dia Hole Thro	D201	
	Ream 30 Dia Hole Thro	D130	
		R130	
	Mill faces 'E & F (Rough)		
	Finish Mill Feces E & F	M401	
	Vencer Holpe (2)	M402	
	Drill 25 Dia Hole Thro ⁽²⁾	D202	
	Deburr	D125	
	Bore 30 Dia Holes Thro (2)	S102	
	Finish Bore 30 Dia Holes (2)	B108	
	Face Mill Surface H	B109	
	Rough Mill Surface (u)	· M505,M710	
	Rough Mill Surface (G)	M107,M401	
	Rough MI11 Surface (I)	M702	
	S- all Surrace (I)	M702,M704	
		M502	

- 128 -

PART #13

JUNCTION COVER

Scale 1:8

- 129 -

PART NO. : 13

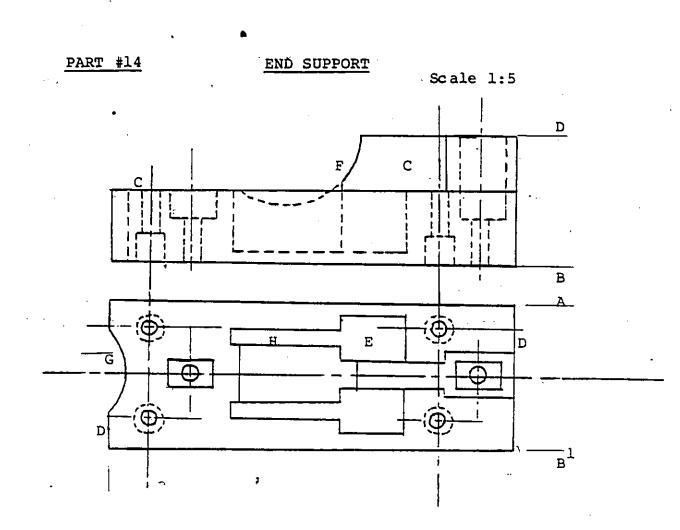
. .

PART NAME: JUNCTION COVER

PERATION NO.	DESCRIPTION OF THE OPERATION	TOOL(S)
		-REQUIRED
<u>(1)</u>	Rough Mill Face A	M701,M101
	Finish Mill Face A	M702,M102
	Rough Mill Around Periphery B	M401,M413
	Finish Mill Around Periphery B	M402,M406
	Step Mill Around Periphery B	M301
	Finish Step	M302
	Rough Mill Surface C	м301, м306
	Finish Mill Surface C	M302,M315
	Rough Mill Round Edges	M801
	Finish Mill Round Edges	M802
	Rough Mill Bosses Finish Mill Bosses	M701
	Center Holes (2)	M702
	Drill: 40 Dia Holes (2)	D202
(2)	Ream 40 Dia Holes (2)	D140
<u> </u>	Tap 40 Dia Hole	R140 T140
	Center Holes (2)	D201
•	Drill 20 Dia Hole	D1201
	Ream 20 Dia Hole	R120
	Tap 20 Dia Hole	T120
	Rough Mill Face E	M401
	Face Mill Face E	M402
•	Rough Mill Inside Bottom Surface	M402 M405
	Rough Mill Inside Edges	M301
	Face Mill F	M501
	rinish Mill F	M502
	Center Hole (1)	D201
	• Drill 30 Dia Hole Thro Wall	D130
	Deburr	S102
	Bore 56 Dia Hole Thro' Wall	B108
· つ 、	Face Mill G	M501 [°]
(3)	Finish Mill G	M502
	Center Hole (1)	D201
	Drill 30 Dia Hole Thro' Wall	D130
	Deburr	S102 ·
	Bore 56 Dia Hole Thro' Wall	ت D130
	Deburr -	S102
	Bore 56 Dia Hole Theo' Wall	B108
	Rough Mill Face H Finish Mill Face H	M501,M506
	- Infon MIII Face N	M502,M508

- 130_-

PROCESS DETAILS


PART NO. : 14

1

PART NAME: END SUPPORT

PERATION	DESCRIPTION OF THE	TOOL(S)
NO.	OPERATION	REQUIRED
(1)	Rough Mill Face A	M102,M401
<u> </u>	Finish Mill Face A	M103,M105
	Rough Mill Face B	M401,M508
	Semi Finish Face B	M402,M509
	Finish Face B	M402,M415
``	Center Holes (4)	D202
	Drill 25 Dia Holes Thro' (4)	D125
	Ream 25 Dia Holes Thro´ (4)	R125
	Bore 35 Dia Holes Thro' (4)	B102
	Center Holes (2)	D201
	Drill 25 Dia Holes Thro [*] (2)	D125
	Deburr	S102 ·
•	Ream 25 Dia Holes Thro (2)	R125
	Tap 25 Dia Hole	T125
	Face Mill Surface (C)	M401
	Finish Mill Surface (C)	M412
(2)	Face Mill Surface (D)	M101
	Face Mill Surface (D)	M102
-	Rough Bore Dia Holes (2)	B102
	Finish Bore Dia Holes (2)	B103
	Rough Mill Face Bl	M102,M401
	Finish Mill Face Bl	м103,м105
(3)	Face Mill C	M701
	Finish Mill C	M702
	Face Mill D	M701
·	Finish Mill D	M702
	Mill Bottom Face of Recess E	M401,M415
	Finish Mill Bottom of Recess E	M403,M705
	Rough Mill Walls of Recess E	M103
	Finish Mill Walls Of Recess E	M102
<u>(4)</u>	Rough Mill Recess Projection H	M405
	Finish Mill Recess Projection H	M406
	Rough Mill Contour F	M601
	Finish Mill Contour F	∝ M602
	Rough Mill Contour G	M603
	Finish Mill Contour G	M604

- 131 -

CASING

133

Scale 1:10

PROCESS DETAILS

PART NO. : 15

¢

PART NAME: CASING

. .

NO.		FOOL(S) REQUIRED
<u>(1)</u>	Kougn Mill Surface A	M105,M708 M102,M702 M108,M302
<u>(2)</u>	End Mill Edges 5 Finish Mill Edges B Rough Mill Boss C Finish Mill Boss C Center Hole Dettl 50 Dia Hole Thro	M401,M412 M402 M401 M408 D201 D150 B108 B109 M412 M416,M508 M417
<u>(3)</u>	Finish Face (E) Center Hole (1) Drill 45 Dia Hole Thro´ to Centre Bore 50 Dia Hole Thro´ to Centre Finish Bore Hole Thro´ to Centre	DILL

- 134 -

135 -

APPENDIX C

COMPUTER PROGRAM LISTINGS

÷

83

2

```
JOB (R240, NU7, 10, 5), 'GAJ', CLASS=B, REGION=2048K
//PA
TT^{*}
       EXEC WATFIV
//FT08F001 DD DSN=WYL.R240NU7.FAMOUT,UNIT=DASD,VOL=SER=WORKPK,
11
     DISP=(NEW, KEEP), SPACE=(TRK, (80, 10)),
                                                        ٩.
11
     DCB=(LRECL=80, BLKSIZE=15440, RECFM=FB)
//GO.SYSIN DD *
SJOB
      WATFIV
                       REF. SECTION 4.2
C -----
 CELL FORMATION IN FMS - PART FAMILY FORMATION PROBLEM
С
  С
С
   AUTHOR - GAJANANA NADOLI
           GRADUATE STUDENT, DEPT. OF INDUSTRIAL ENGINEERING
С
           UNIVERSITY OF WINDSOR, WINDSOR, ONTARIO N9B 2Z2
С
C THIS PROGRAM GENERATES THE INPUT FILE OF THE PROBLEM P(R)
C FOR THE SAS/OR (VERSION 5) INTEGER PROGRAMMING ROUTINE
C
                     ____
С
   THE
        INTEGER NUMOP(40), SIM(40,40), DISIM(40,40)
        INTEGER OPI, OPJ, A
        INTEGER X(2500), XIND, XVARS, MVARS, XINDI, XINDJ
        INTEGER RHS, KX(2500), KM(2500)
        INTEGER MK(40,3), MEM(40,3), NNN(3)
        REAL LANDA, M(2500), COEFF(40,40)
        CHARACTER CTYPE*8, FLAG*8, OP*4(40, 50)
        COMMON OP, NUMOP, SIM, DISIM, OPI, OPJ, COEFF, I, J, IFAM, K,
        L, NM, MP, MN, N, K1
   THE DATA INPUT AND CALCULATION OF SIMILAR AND DISSIMILAR PROCESSES
С
    BETWEEN THE PARTS
С
                                     ******
       * READ(5,10) N,K
        READ, LAMDA
        FORMAT(12,1X,12)
 10
        DO 100 I=1, N
          READ(5,20) NUM, (OP(I,J), J=1, NUM)
          NUMOP(I) = NUM
 20
          FORMAT(12,10(1X,A4),/,(3X,10(A4,1X)))
 100
        CONTINUE
        NM1 = N - 1
        DO 200 I=1, NM1
        II = I + I
        DO 300 J=IF.N
          SII(I, J)=0
          NTERMI = NUMOP(1)
          NTERMJ=NUMOP(J)
          DO 400 OPI=1, NTERMI
            DO 500 OPJ=1, NTERMJ
              IF (OP(I, OPI).EQ.OP(J, OPJ)) SIM(I, J)=SIM(I, J)+1
 500
            CONTINUE
.400
          CONTINUE
          DISIM(I,J)=NUMOP(I)+NUMOP(J)-2*SIM(I,J)
          COEFF(I, J)=DISIM(I, J)~LAMDA*SIM(I, J)
 300
         CONTINUE
200
        "CONTINUE
C CREATING THE SAS FORMAT INPUT DATA FOR PART FAMILY FORMATION PROBLEM
Ċ
                                    *****
        METH=3
        CALL TINIT
        NBLOCK=0
        EXECUTE ALLCLR
        EXECUTE TIMEL
```

۰.

EXECUTE OBJROW EXECUTE TIMEL EXECUTE ALLOC EXECUTE TIMEL IF (METH.EQ.1) THEN EXECUTE CNSTR EXECUTE MLIM EXECUTE INTGER EXECUTE UPPER ENDIF IF (METH.EQ.2) THEN EXECUTE CNSTR2 EXECUTE MLIM2 EXECUTE INTGER EXECUTE UPPER ENDIF IF (METH.EQ.3) THEN EXECUTE CNSTR2 EXECUTE TIMEL EXECUTE MLIM EXECUTE TIMEL EXECUTE INTGER <u>ه</u> : EXECUTE TIMEL EXECUTE UPPER EXECUTE TIMEL ENDIF IF (METH.EQ.4) THEN EXECUTE CNSTR EXECUTE MLIM2 EXECUTE INTGER EXECUTE UPPER ENDIF IF(INSOL.EQ.1) EXECUTE BASICS GO TO 9999 REMOTE BLOCK TIMEL CALL TUSED (MSEC). NBLOCK=NBLOCK+1 PRINT, 'TIME USED FOR BLOCK', NBLOCK, ' IS ', MSEC CALL TINIT ENDBLÖCK REMOTE BLOCK ALLCLR ***** REMOTE BLOCK ALLCLR DO 3030 II=1,N DO 3030 IIFAM=1,K XIND= (II-1)*K + IIFAM X(XIND)=03030 CONTINUE NM1 = N - 1DO 3040 II=1,NM1 IIl=II+1 DO 3050 JJ=II1,N DO 3060 IIFAM=1,K LI=II LJ=JJ LIFAM=IIFAM EXECUTE MIJKA M(MINDEX)=03060 CONTINUE 3050 CONTINUE 3040 CONTINUE

С

. . . .

- 137 - -

	- 138 -
	ENDBLOCK
	C REMOTE BLOCK MIJKA ************************************
	REMOTE BLÓCK MIJKA Ninda=0
	LI1=LI+1
	ISIGM =LI-1 IF (ISIGM.EQ.0) GO TO 3064
	DO 3065 IX = 1,ISIGM
	MINDA=MINDA + (N-IX) * K 3065 CONTINUE
L.	3064 MINDEX=MINDA+ (LJ-LI1)*K +LIFAM
	ENDBLOCK C REMOTE BLOCK OBJROW ************************************
	REMOTE BLOCK OBJROW
	NM1= N-1 Do 3100 I=1,NM1
	I I = I + I
	DO 3110 J=I1, N
	DO 3120 IFAM=1,K LI=I
•	LJ=J
	LIFAM=IFAM Execute Mijka
	M(MINDEX) = COEFF(I, J)
	3120 CONTINUE
	3110 CONTINUE 3100 CONTINUE
	CTYPE= MIN'
	FLAG='OBJROW' EXECUTE PUTROW
	ENDBLOCK
	C RENOTE BLOCK PUTROW ************************************
	REMOTE BLOCK PUTROW XVARS=N*K
	MVARS = N*(N-1)/2 *K
	IF (FLAG.EQ. OBJROW) THEN WRITE(8,4000) (X(II),II=1,XVARS)
	4000 FORMAT(15(~~,I4))
	WRITE(8,4002) (M(JJ),JJ=1,MVARS) 4002 FORMAT(8(~~,F9.2))
	4002 FORMAT(8(~ ,F9.2)) ELSE
	DO 7856 II=1,XVARS
	KX(II) = X(II) 7856 CONTINUE
	DO 7857 JJ=1, MVARS
	KM(JJ)=M(JJ) 7857 CONTINUE
~	WRITE(8,4112) (KX(II),II=1,XVARS)
	WRITE(8,4113) (KM(JJ), JJ=1, MVARS)
~ •	4112 FORMAT(15(~ ',14)) 4113 FORMAT(15(~ ',14))
	ENDIF
	IF (FLAG.EQ. OBJROW) THEN
	WRITE(8,4010) CTYPE 4010 FORMAT(11,A8,111)
	ELSEIF (FLAG.EQ. ALLOC') THEN
	WRITE(8,4020) CTYPE,RHS ,4020 FORMAT(1 1,A8,1X,15)
* ۲	ELSEIF (FLAG.EQ. CNSTR) THEN
	WRITE(8,4020) CTYPE, RHS

ELSEIF (FLAG.EQ. MLIM) THEN WRITE(8,4020) CTYPE, RHS ELSEIF (FLAG.EQ. INTGER) THEN WRITE(8,4010) CTYPE ELSEIF (FLAG.EQ.'UPPER') THEN WRITE(8,4010) CTYPE ENDIF 4.5 EXECUTE ALLCLR ENDBLOCK C REMOTE BLOCK ALLOC REMOTE BLOCK ALLOC · . FLAG= ALLOC ٦ CTYPE=[EQ] RHS=1DO 3200 I=1,N ' DO 3210 IFAM=1,K XIND = (I-1) * K + IFAHX(XIND) = 13210 CONTINUE EXECUTE PUTROW 3200 CONTINUE . ENDBLOCK C REMOTE BLOCK CNSTR **** REMOTE BLOCK CNSTR FLAG= CNSTR -CTYPE='LE' RHS=1 NM1 = N-1DO 3230 I=1,NM1 Il=I+1DO 3240 J=I1, N DO 3250 IFAM=1,K LI=I . LJ=JLIFAM=IFAN EXECUTE MIJKA M(MINDEX) = -1XINDI= (I-1) * K + IFAMXINDJ = (J-1) * K + IFAMX(XINDI) = 1X(XINDJ) = 1EXECUTE PUTROW 3250 CONTINUE 3240 **ČONTINUE** 3230 · CONTINUE ENDBLOCK C REMOTE BLOCK CNSTR2 **** **REMOTE BLOCK CNSTR2** FLAG='CNSTR' CTYPE='LE' NM1 = N-1DO 3400 I=1,NM1 DO 3410 IFAM=1,K: XIND=(I-1)*K + IFAM RHS = N - IX(XIND) = N - I1+1=1I DO 3420 J=11, N LI=I L J = J

۰. L

نها

71

٠<u>.</u>

LIFAM=IFAM EXECUTE MIJKA $M(MINDEX) = -1_{-1}$ XINDJ=(J-1)*K+IFAMX(XINDJ)=1 3420 CONTINUE EXECUTE PUTROW 3410 CONTINUE 3400 CONTINUE ENDBLOCK C REMOTE BLOCK MLIM REMOTE BLOCK MLIM FLAG="MLIM" CTYPE='LE' RHS=0 NM1 = N-1DO 3260 I=1,NM1 Il=I+lDO 3270 J=11,N DO 3280 IFAM=1,K LJ≠J LIFAM=IFAM EXECUTE MIJKA M(MINDEX)=1XINDI= $(I-1) \star K + IFAM$ X(XINDI) = -1EXECUTE PUTROW LI=I LJ = JLIFAM=IFAM EXECUTE MIJKA XINDJ=(J-1)*K + IFAMM(MINDEX) = 1X(XINDJ) = -1EXECUTE PUTROW 3280 CONTINUE 3270 CONTINUE 3260 CONTINUE ENDBLOCK C REMOTE BLOCK MLIM2 REMOTE BLOCK MLIM2 FLAG= MLIM CTYPE='LE' RHS=0DO 3500 I=1,N DO 3510 IFAM=1,K XIND=(I-1)*K+IFAMX(XIND) = I - NDO 3520 J=1,N IF (J.EQ.I) GO TO 3520 LI-I LJ=JLIFAM=IFAM EXECUTE MIJKA M(MINDEX) = 13520 CONTINUE EXECUTE PUTROW 3510 CONTINUE 3500 CONTINUE

ENDBLOCK C REMOTE BLOCK INTGER REMOTE BLOCK INTGER FLAG="INTGER" CTYPE= INTEGER DO 3300 I=1,N K11=K-1 DO 3310 IFAM=1,K11 XIND= (I-1) * K + IFAMX(XIND)=13310 CONTINUE 3300 CONTINUE EXECUTE PUTROW ENDBLOCK C REMOTE BLOCK UPPER REMOTE BLOCK UPPER FLAG= UPPER 1 CTYPE= UPPERBD' DO 3700 I=1,N DO 3710 IFAM=1,K XIND=(I-1)*K + IFAMX(XIND) = 13710 CONTINUE 3700 CONTINUE NM1 = N-1DO 3730 I=1, NM1 I1 = I + 1DO 3740 J=11, N DO 3750 IFAM=1,K LI=I LJ=JLIFAM=IFAM EXECUTE MIJKA M(MINDEX)=13750 CONTINUE 3740 CONTINUE 3730 CONTINUE EXECUTE PUTROW ENDBLOCK 9999 STOP E ND SENTRY 25 03 2.45024 26 M501 M502 M701 M602 M101 M401 M102 M103 M301 M702 M603 M108 M503 M504 D201 D142 D109 D202 D130 R142 R130 R148 B108 B109 B101 B115 18 MIO1 MIO3 MIO4 MIO5 M901 M602 M501 M506 M508 M402 D201 D125 R128 S104 B101 B109 B105 B104 . 23 M403 M404 M701 M401 M412 M405 M406 M702 M712 M101 :1102 D202 D128 D203 R130 T130 B108 B109 B101 B102 B115 B106 B112 23 M501 M518 M502 M701 M712 M211 M101 M102 M212 M503 M301 M302 M401 M405 D202 D150 D201 D120 D202 B108 B112 S109 T120 29 M102 H401 H103 M105 M602 M603 M501 M513 M502 M503 MI01 M701 M702 M402 M508 M406 M610 M301 M305 D201 DIO8 D150 D203 D170 R108 B106 B109 B108 S101 18 H501 H504 H502 H415 H412 H416 H901 H902 H401 H507 3509 D201 D118 D130 B108 B112 B109 S102

	-										
2	8 1102	M401	M103	M105	M404	M511	M402	M512	M407	M408	
	M202	M701	M704	M702	M413	M506	M508	M601			
	D120	·D115	D2 02	D105		S101		R120			
2	0 M101	M108	M201	M401			M702			D201	
:	D125	D140	D203	B105	B108	B109	B112	B110	\$102	T125	
2	4 M102			M105	M402		M106			M502	
	802H	M301	M603	M604	<u>M404</u>	M3 02	D2 03	D115	D130	\$101	
	T115	B10.7	B109								
2	4 M101	M103	M104	M203	м105	M4 0 8	M106	M403	M415	м407	
	អ501	8509	M703	M502	M401	M402	M901	M902			
	D115	D2 02		T115						52.01	
1.	5 M112	M401	M104	M412-	M405	M402	M410	D201	0130	D202	
	D116	B101	B109	B105	T116				0100	<i>D</i> L V L	
2	1 M112	M401	M104	M105		M106	M402	M505	M710	¥107	
	M702	M704	M502			D2 02	D125	B108	B109		
	S102							DICO	5105	K120	
- 31	0 M701	м101	M702	M102	M401	9413	M406	M301	м302	м306	
	M315	M801	M802	M402		M501					
	D140	D201			R140		T140				
2	7 M102	M401	+	M105		M402		M415			
	M701	M702	M403	M405			M602		M604		•
		D201		B102		S102		1005	2004	0202	
2	L M105	M708		M702			M401	M412	M402	M408	
	M416	M417			D150	8108	B109	D2 02	D145		
	B118		•			0100	5107	02.02	0140	5112	
\$1	LBSYS								•	•	
\$ 5	STOP							•.			
1	/ -										

÷

٦

Ł

ې

4

_

ٽ

+ . s

```
JOB (R240, NU7, 10, 5), 'GAJ', CLASS=A, REGION=2048K
//PB
11
        EXEC WATFIV;
//FT08F001 DD DSN=WYL.R240NU7.FAMOUT,UNIT=DASD,VOL=SER=WORKPK,
     DISP=(NEW, KEEP), SPACE=(TRK, (40, 10)),
11
11
      DCB=(LRECL=80, BLKSIZE=15440, RECFM=FB)
//GO.SYSIN
             ממ
SJOB
       WATFIV
                                    REF. SECTION 4.2.2
C -
C CELL FORMATION IN FMS - PART FAMILY FORMATION PROBLEM
C
                               ------
С
   AUTHOR - GAJANANA NADOLI
С
             GRADUATE STUDENT, DEPT. OF INDUSTRIAL ENGINEERING
             UNIVERSITY OF WINDSOR, WINDSOR, ONTARIO N9B 222
C ----
C THIS PROGRAM IMPLEMENTS THE ALGORITHM FOR FINDING THE
C LOWER BOUND AND UPPERBOUND FOR FUNCTION P(R) WITH
C DIFFERENT VALUES OF R TO ESTABLISH THE REGION (L,U).
С
С
     THE
         VARIABLE DECLARATION SECTION ****************
          INTEGER NUMOP(40), SIM(40,40), DISIM(40,40)
          INTEGER OPI, OPJ, A
          INTEGER X(500), XIND, XVARS, MVARS, XINDI, XINDJ
          INTEGER RHS
         REAL LAMDA, M(2500), COEFF(40,40), S(435), LBOUND
          CHARACTER CTYPE*8, FLAG*8, OP*4(40,80)
          COMMON OP, NUMOP, SIM, DISIM, OPI, OPJ, COEFF, I, J, IFAM, K,
          L, NM, MP, MN, N, K1
    THE DATA INPUT AND CALCULATION OF SIMILAR AND DISSIMILAR PROCESSES
С
С
    BETWEEN THE PARTS
                                        ******
          READ(5,10) N.K
 10
          FORMAT(12,1X,12)
          DO 100 I=1, N
           PRINT, "PART NUMBER =",I
            READ(5,20) NUM, (OP(I,J), J=1, NUM).
            NUMOP(I) = NUM
 20
            FORMAT(12,10(1X,A4),/,(3X,10(A4,1X)))
            WRITE(8,20) NUMOP(I), (OP(I, J), J=1, NUM)
С
 100
          CONTINUE
          NM1 = N-1
          DO 200 I=1,NM1
  ..
          II=I+1
          ВО 300 Ј≡11,М
            SIH(I,J)=0
            NTERMI = NUMOP(I)
            NTERMJ=NUMOP(J)
            DO 400 OPI=1,NTERMI
              DO 500 OPJ=1, NTERMJ
                IF (OP(I,OPI).EQ.OP(J,OPJ)) SIN(I,J)=SIN(I,J)+1
 500
              CONTINUE
 400
            CONTINUE
            DISIM(I, J) = NUMOP(I) + NUMOP(J) - 2 * SIM(I, J)
 300
           CONTINUE
 200
           CONTINUE
          WRITE(8,4018)
4018
                   BOUNDS ON THE OBJECTIVE FUNCTION FOR DIFFERENT VALUES
           FORMAT (
        OF R
               - )
           JRITE(8,4053)
           WRITE(3,4024)
           FORMAT ( T)
4024
           WRITE(8,4024)
```

•						
		•••	$\rightarrow 144 \rightarrow$			
•		WRITE(8,4026) N	G.C.C.			-
	4026	FORMAT(" # OF PA	ARTS= ^,12)			
	4027	WRITE(8,4027) K FORMAT(″ ≇ OF F4	AMILIES= ,12)		· · · · · · · · · · · · · · · · · · ·	
		WRITE(8,4024) WRITE(8,4029) N**	(M-1)/2*K		nte nte <u>n</u> tente	
	4029	FORMAT(" # OF NO	ON-ZERO COEFFICI	ENTS = ",15)		
		WRITE(8,4053) WRITE(8,4024)		• •		
•		WRITE(8,4024)			•	
		WRITE(8,9000)				
· .	9000	FORMAT(R	# OF NEGATIVE	OBJECTIVE	FUNCTION)	
	9001	WRITE(8,9001) Format(~	COEFFICIENTS	LOWERBOUND	UPPERBOUND)	
		WRITE(8,9002)				J.
	9002	FORMAT(~~)	
		EXECUTE ALLCLR DO 18 LLAMDA=5,10	00.5			
		LAMDA=LLAMDA/100.				
		NM1=N-1 DO 21 I=1,NM1				
		Il=I+1	· ·			
		DO 22 J=I1,N		· T \/ T \		
	22	CONTINUE	SIM(I,J)-LAMDA*S	. []([,])		
	21	CONTINUE				•
		DO 89 JM=1,435				
-	89	S(JM)=0.0 CONTINUE			,	
3		EXECUTE OBJROW				••
	18	CONTINUE		•		
•	C REMO	GO TO 9999 TE BLOCK ALLCLR		****	*	
,		REMOTE BLOCK ALLCL	_R	•		
		DO 3030 II=1,N DO 3030 IIFAH=1,K	e			
		XIND = (II-1) K +				
	2020	X(XIND)=0				
	3030	CONTINUE $NM1 = N - 1$				
		DO 3040 II=1,NM1				
•		III=II+1	a t			
		DO 3050 JJ=II1,N DO 3060 IIFAM=			+	
		LIHII				
	L	LJ=JJ	۰ مر	,		
		LIFAM=IIFAN 'EXECUTE MIJB	KA			
		M(MINDEX)=0				
•	3060 3050	CONTINUE CONTINUE				
	3040	CONTINUE				
		ENDBLOCK				
	C REX	MOTE BLOCK MIJKA REMOTE BLOCK MIJKA		*****	*	
	· .	MINDA=0	n .			
		LI1=LI+1				
		ISIGM =LI-1	0 TO 106%			•
		IF (ISIGM.EQ.0) GC -DO 3065 IX = 1,ISI		、		

.

•

· - P

```
MINDA=MINDA + (N-IX) * K
- 3065
          CONTINUE
 3064
         MINDEX=MINDA+ (LJ-LI1)*K +LIFAM
     ENDBLOCK
REMOTE BLOCK OBJROW
 С
        REMOTE BLOCK OBJROW
         NM1= N-1
          NEG=0
            MS = 1
         DO 3100 I=1,NM1
           Il=I+1
           DO 3110 J=I1,N
             DO 3120 IFAM=1,K
               LI=I
               LJ=J
               LIFAM=IIFAM
               EXECUTE MIJKA
               M(MINDEX) = COEFF(I,J)
               IF(COEFF(I,J).LT.0) NEG=NEG+1
               IF(IFAM.EQ.1) THEN
                  S(MS) = COEFF(I, J)
                  MS=MS+1
                ENDIF
 3120
             CONTINUE
 3110
           CONTINUE
 3100
         CONTINUE
         CTYPE= MIN"
         FLAG= OBJROW
         IES=N/K
         IPAIRS=IES*(IES-1)/2*K + (N-IES*K)*IES
         MPAIRS = N*(N-1)/2
         LBOUND=0.000
         UBOUND=0.000
         ICOUNT=0
         DO 889 KI=1,435
           INTS=S(KI)*10000.000
           IF (INTS.NE.O) THEN
             ICOUNT=ICOUNT+1
           ELSE
             GO TO 889
           ENDIF
           IF (S(KI).LT.0.00) THEN
             LBOUND=LBOUND+S(KI)
           ENDIF
           IF (S(KI).GT.0.00) THEN
             IF(ICOUNT.LE.IPAIRS) LBOUND=LBOUND+S(KI)
           ENDIF
  889
         CUNTINUE
         ICOUNT=0
         DO 399 KI=1,435
           INTS=S(435-KI+1)*10000.000
           IF (INTS.NE.O) THEN
             ICOUNT=ICOUNT+1
           ELSE
             GO TO 899
           ENDIF
           IF (S(435-KI+1).GT.0.00) THEN
             UBOUND=UBOUND+S(435-KI+1)
           ENDIF
           IF (S(435-KI+1).LT.0.00) THEN
```

IF(ICOUNT.LE.IPAIRS) UBOUND=UBOUND+S(435-KI+1) ENDIF 899 · CONTINUE EXECUTE PUTROW ENDBLOCK C REMOTE BLOCK PUTROW ************ REMOTE BLOCK PUTROW . XVARS=N*KMVARS = N*(N-1)/2*KEXECUTE ALLCLR ENDBLOCK 9999 STOP -END ŞENTRY THE INPUT DATA IS THE SAME AS THE ONE LISTED FOR THE PROGRAM 1. .

\$IBSYS \$STOP //

۰.

1

٠.

```
147 -
```

```
//PC
       JOB (R240, NU7, 1, 5), TRAOT, CLASS=Z, REGION=2048K
        EXEC WATFIV
TT
//FT08F001 DD DSN=WYL.R240NU7.FAMOUT,UNIT=DASD,VOL=SER=WORKPK,
// DISP=(NEW,KEEP),SPACE=(TRK,(40,10)),
// DCB=(LRECL=80,BLKSIZE=15440,RECFM=FB)
//GO.SYSIN
            DD *
SJOB
       WATFIV
                             REF. SECTION 4.3.2
C ----
С
 CELL FORMATION IN FMS - PART FAMILY FORMATION PROBLEM
С
      С
   AUTHOR - GAJANANA NADOLI
            GRADUATE STUDENT, DEPT. OF INDUSTRIAL ENGINEERING
С
            UNIVERSITY OF WINDSOR, WINDSOR, ONTARIO N9B 222
С
  THIS PROGRAM GENERATES THE INPUT FILE OF THE SUBPROBLEMS
С
C OF THE TYPE P(R) TO BE SOLVED IN THE ITERATIONS OF THE
C APPROXIMATION PROCEDURE, FOR INPUT TO THE SAS/OR(VERSION 5)
C INTEGER PROGRAMMING ROUTINE.
С
С
         THE
          INTEGER NUMOP(30), SIM(30, 30), DISIM(30, 30)
          INTEGER OPI, OPJ, A
          INTEGER XIND, XVARS, MVARS, XINDI, XINDJ
          INTEGER RHS
          INTEGER MK(30,3), MEM(30,3), NNN(3), FAMN(3), FAMD(3)
          INTEGER FSIM(30,3),FDISIM(30,3),NSIM(30,30)
          INTEGER NDISIM(30,30)
          REAL LAMDA, OP*4(30,50), COEFF(30,30), FCOEFF(30,3), M(500), X(500)
          REAL FAMC(3), MINC
          CHARACTER CTYPE*8,FLAG*8
          COMMON OP, NUMOP, SIM, DISIM, OPI, OPJ, COEFF, I, J, IFAM, K,
          L,NM,MP,MN,N,K1
С
     THE DATA INPUT AND CALCULATION OF SIMILAR AND DISSIMILAR PROCESSES
     BETWEEN THE PARTS
                                         *****
 C
          READ(5,10) N,K
  10
          FORMAT(I2, 1X, I2)
        - DO 100 I=1,N
            READ(5,20) NUM,(OP(I,J),J=1,NUM)
            NUMOP(I) = NUM
  20
            FORMAT(12,10(1X,A4),/,(3X,10(A4,1X)))
            WRITE(6,20) NUMOP(I), (OP(I,J), J=1, NUM)
  100
          CONTINUE
          NM1 = N - 1
          DO 200 I=1,NM1
          I_{1} = I + I
          DO 300 J=I1.N
            SIM(I,J)=0
            NTERMI=NUMOP(I)
            NTERMJ=NUMOP(J)
            DO 400 OPI=1,NTERMI
              DO 500 OPJ=1,NTERMJ
                 IF (OP(I, OPI), EQ, OP(J, OPJ)) SIM(I, J)=SIM(I, J)+1
  500
              CONTINUE
  400
            CONTINUE
            PRINT, 'SIMILARITY BETWEEN', I, 'AND', J, 'IS', SIM(I, J)
            DISIM(I, J) = NUMOP(I) + NUMOP(J) - 2 * SIM(I, J)
           PRINT, DISSINILARITY BETWEEN [, ] AND [, J, ] IS [, DISIN(I, J)
  300
           CONTINUE
  200
           CONTINUE
 C READING THE INITIAL CONFIGURATION
```

X

	- 148 -	
	LAMDA=2.4562420	
	DO 2010 IFAM =1,K	
	DO 2010 I=1,N	
	MK(I, IFAM)=0	
2010	MEM(I,IFAM)=0 Continue	
2010	DO 2020 IFAM=1,K	
	READ(5,2030) NUMF, (MK(I,IFAM), I=1, NUMF)	
	WRITE(6,2036) NUMF,(MK(I,IFAM),I=1,NUMF)	
2036	FORMAT('INITIAL CONFIGURATION', 12, 10(1X, 12))	
	NNN(IFAM)=NUMF	
2030	FORMAT(12,20(1X,12))	
2020	CONTINUE Do 2050 IFAM=1,K	
	DO 2060 I=1,N	
	LU-NNN(IFAM)	
	DO 2070 LL=1,LU	
	IF (MK(LL,IFAM).EQ.I) MEM(I,IFAM) =1	
2070	CONTINUE	
2060	CONTINUE	
2050	CONTINUE TFAMD=0.0	
	DO 2200 IFAM=1,K	
	N1 = N - 1	
	FAMN(IFAM)=0 .	
	FAMD(IFAM)=0	
	DO 2240 I=1,N1	
	II=I+1 DO 2240 J=I1,N	
	FAMN(IFAM)=FAMN(IFAM) +MEM(I,IFAM)*MEM(J,IFAM)*DISIM(I,J)	
	FAMD(IFAM)=FAMD(IFAM) +NEM(I,IFAM)*NEM(J,IFAM)*SIM(I,J)	
2240	CONTINUE	
	TFAMD=TFAMD+FAMD(IFAM)	
2200	CONTINUE	
	DO 188 IFAM-1,K FAMC(IFAM)-FAMN(IFAM)/TFAMD	
188	CONTINUE	
100	MINC=0	-
	DO 2260 IFAM=1,K	
	IF (FAMC(IFAM).GT.NINC) THEN	
	MF=IFAM	
	MINC=FAMC(IFAM)	
2260	CONTINUE	
	POSING THE MF ********	
	MF=2	
	NEWN=NNN(MF)	
	DO 2300 NI=1,NEWN1 NI1=NI+1	
	DO 2400 NJ-NI1, NEWN	
	I=MK(NI,MF)	
	J=MK(NJ,MF)	
	IF (I.LT.J) THEN	•
	NSIM(NI,NJ)=SIM(I,J)	
	NDISIM(NI,NJ)=DISIM(I,J)	
	ENDIF IF (I.GT.J) THEN	
	NSIM(NI,NJ) = SIM(J,I)	
	NDISIM(NI,NJ)=DISIM(J,I)	

Ţ

·

•

	ENDIF
2400	CONTINUE
2300	CONTINUE
	DO 2401 I=1,N
	DO 2410 IFAM=1,K
	FSIM(I,IFAM)=0
	FDISIM(I,IFAM)=0
2410	CONTINUE
	CONTINUE
2401	DO 2430 NI=1, NEWN
	NPART=MK(NI,MF)
	DO 2440 IFAM=1,K
`	IF (IFAM.EQ.MF) GO TO 2440
	DO 2460 $J=1,N$
•	IF (J.EQ.NPART) GO TO 2460
	FDISIM(NI, IFAM) -FDISIM(NI, IFAM) +DISIM(NPART, J)*MEM(J, IFAM)
	ELSE
	ELSE FSIM(NI, IFAM)=FSIM(NI, IFAM) +SIM(J, NPART)*MEM(J, IFAM)' -
,	FDISIM(NI, IFAM)=FDISIM(NI, IFAM)+DISIM(J, NPART)*MEM(J, IFAM)
	ENDIF
2460	CONTINUE
	CONTINUE
2440	
2430	CONTINUE
	N1 = N - 1
	DO 2462 I=1,N
	11 - 1+1
4	DO 2470 J=I1,N
•	SIM(I,J)=0
	DISIM(I,J)=0
2/7.)	CONTINUE
2470	CONTINUE
2462	
	NEWN1=NEWN-1
	DO 2480 NI=1, NEWN1
	.NI1=NI+1
	DO 2490 NJ=NII, NEWN
	SIM(NI,NJ)=NSIM(NI,NJ)
	DISIM(NI NI)=NDISIM(NI,NJ)
	COEFF(NI,NJ)=DISIM(NI,NJ)-LAMDA*SIM(NI,NJ)
2/00	CONTINUE
2490	CONTINUE
2480	
	DO 2550 I=1, NEWN
	DO 2560 IFAM=1,K
	FCOEFF(I, IFAN)=FDISIM(I, IFAM)-LAMDA*FSIM(I, IFAM)
2560	CONTINUE
2550	CONTINUE
	N = N E W N
	C=0.0
	DO 58 IFAM=1,K
	IF (IFAM.EQ.MF) GO TO 58
	IF (IFAM.EQ.MF) GO TO TO TO TAKE
	C=C+FAMN(IFAM)-LAMDA*FAMD(IFAM) C=C+FAMN(IFAM)-LAMDA*FAND(IFAM)
	PRINT , CONSTANT , IFAM, IS , FAMN(IFAM)-LANDA*FAMD(IFAM)
58	CONTINUE
	PRINT, THE CONSTANT FACTOR = ',C
	DO 45 I=1,N
	DO 46 IFAM=1, K
	IF (IFAN.EQ.MF) GO TO 46
	PRINT, FSIH(', I, IFAM, ') =', FSIM(I, IFAM)
-	PRINT, 'FDISIM(',I,IFAM, ') = ',FDISIM(I,IFAM)
	PRINT, PDISIN(, 1, 1PAR,) = PDISIN(1, 1PAR)

J

- 149 -

•

, e .

r

• •

46 CONTINUE CONTINUE 45 C CREATING THE SAS FORMAT INPUT DATA FOR PART FAMILY FORMATION PROBLEM С ***** METH=3 EXECUTE ALLCLR EXECUTE OBJROW EXECUTE ALLOC IF (METH.EQ.1) THEN EXECUTE CNSTR EXECUTE MLIM EXECUTE INTGER EXECUTE UPPER ENDIF IF (METH.EQ.2) THEN EXECUTE CNSTR2 EXECUTE MLIM2 EXECUTE INTGER EXECUTE UPPER ENDIF IF (METH.EQ.3) THEN EXECUTE CNSTR2 EXECUTE MLIM EXECUTE INTGER EXECUTE UPPER . ENDIF IF (METH.EQ.4) THEN EXECUTE CNSTR EXECUTE MLIM2 EXECUTE INTGER EXECUTE UPPER ENDIF GO TO 9999 С REMOTE BLOCK ALLCLR ****** REMOTE BLOCK ALLCLR DO 3030 II≃1,N DO 3030 IIFAM=1,K XIND= (II-1)*K + IIFAM X(XIND) = 03030 CONTINUE NM1=N-1DO 3040 II=1,NM1 . III=II+1 DO 3050 JJ=II1,N DO 3060 IIFAM=1,K LI=II LJ=JJ LIFAM-IIFAM EXECUTE MIJKA M(MINDEX) = 03060 CONTINÚE 3050 CONTINUE 3040 CONTINUE ENDBLOCK С REMOTE BLOCK MIJKA **************** REMOTE BLOCK MIJKA MINDA=0 LIl = LI + 1ISIGM =LI-1 LF (ISIGM.EQ.0) GO TO 3064

DO 3065 IX = 1, ISIGM MINDA=MINDA + (N-IX) * K 3065 CONTINUE 3064 MINDEX=MINDA+ (LJ-LI1)*K +LIFAM ENDBLOCK С ****** REMOTE BLOCK OBJROW REMOTE BLOCK OBJROW NM1 = N-1DO 3100 I=1,NM1 Il=I+1DO 3110 J=I1,N DO 3120 IFAM=1,K LI = ILJ=J LIFAM=IFAM EXECUTE MIJKA M(MINDEX) = COEFF(I, J)3120 CONTINUE 3110 CONTINUE 3100 CONTINUE DO 3121 I=1,N DÖ 3121 IFAM=1,K XIND=(I-1)*K+IFAMX(XIND) =FCOEFF(I,IFAM) IF (I.EQ.1) X(XIND)=X(XIND)+C 3121 CONTINUE CTYPE= "MIN" FLAG= "OBJROW" SEXECUTE PUTROW ENDBLOCK ******* C REMOTE BLOCK PUTROW REMOTE BLOCK PUTROW $XVARS = N \times K$ MVARS=N*(N-1)/2*KWRITE(8,4000) (X(II),II=1,XVARS) WRITE(8,4002) (M(JJ),JJ=1,MVARS) FORMAT(9(' ',F7.2)) FORMAT(9(' ',F7.2)) IF (FLAG.EQ.'OBJROW') THEN 4002 4000 WRITE(8,4010) CTYPE FORMAT(,A8, 4010 . 1) ELSEIF (FLAG.EQ. 'ALLOC') THEN WRITE(8,4020) CTYPE, RHS FORMAT(- , A8, I2) ,A8,I2) 4020 ELSEIF (FLAG.EQ. CNSTR') THEN WRITE(8,4020) CTYPE, RHS ELSEIF (FLAG.EQ. 'NLIM') THEN WRITE(8,4020) CTYPE, RHS ELSEIF (FLAG.EQ. 'INTGER') THEN WRITE(8,4010) CTYPE ELSEIF (FLAG.EQ. 'UPPER') THEN WRITE(8,4010) CTYPE ENDIF EXECUTE ALLCLR . ENDBLOCK C REMOTE BLOCK ALLOC ****** REMOTE BLOCK ALLOC FLAG= ALLOC CTYPE='EQ' RHS = 1

- 151 -

DO 3200 I=1,N DO 3210 IFAM=1,K XIND= (I-1)*K+ IFAM X(XIND)=1 3210 CONTINUE EXECUTE PUTROW 3200 CONTINUE ENDBLOCK C REMOTE BLOCK CNSTR REMOTE BLOCK CNSTR FLAG="CNSTR" CTYPE=1LE1 RHS=1NM1 = N - 1DO 3230 I=1,NM1 I1=I+1 DO 3240 J=11,N DO 3250 IFAM=1,K LI = ILJ=J. LIFAN=IFAM EXECUTE MIJKA M(MINDEX) = -1XINDI = (I-1) * K + IFAMXINDJ = (J-1) * K + IFAMX(XINDI) = 1X(XINDJ) = 1EXECUTE PUTROW 3250 CONTINUE 3240 CONTINUE 3230 CONTINUE ENDBLOCK C REMOTE BLOCK CNSTR2 REMOTE BLOCK CNSTR2 FLAG= 'CNSTR' CTYPE='LE' NM1 = N - 1DO 3400 I=1,NM1 DO 3410. IFAM=1,K XIND=(1-1)*K + IFAMRHS=N-I X(XIND) = N - IIl = I+1DO 3420 J=I1.N LI = ILJ=J LIFAM=IFAM EXECUTE MIJKA M(MINDEX) = -1XINDJ=(J-1)*K+IFAMX(XINDJ)=13420 CONTINUE EXECUTE PUTROW 3410 CONTINUE 3400 CONTINUE . ENDBLOCK C REMOTE BLOCK MLIM REMOTE BLOCK MLIM FLAG= MLIM CTYPE=1LE1

- 152 -

RHS=0 NM1 = N - IDO 3260 I=1,NH1 Il=I+1DO 3270 J=I1,N DO 3280 IFAM=1,K LI=I LJ=J' LIFAM=IFAM EXECUTE MIJKA 🐨 ••• . M(MINDEX)=1 XINDI= (I-1)*K + IFAMX(XINDI)=-1 EXECUTE PUTROW LI=I LJ=J LIFAM=IFAM EXECUTE MIJKA XINDJ=(J-1)*K + IFAMM(MINDEX)=1 X(XINDJ) = -1EXECUTE PUTROW 3280 CONTINUE 3270 CONTINUE 3260 CONTINUE ENDBLOCK C REMOTE BLOCK MLIM2 REMOTE BLOCK MLIM2 FLAG= MLIM CTYPE="LE" RHS=0DO 3500 I=1,N DO 3510 IFAM=1,K 'XIND=(I-1)*K+IFAM X(XIND) = 1 - NDO 3520 J=1,N IF (J.EQ.I) GO TO 3520 LI=I LJ=JLIFAN=IFAN ---EXECUTE MIJKA M(MINDEX)=1 3520 CONTINUE EXECUTE PUTROW 3510 CONTINUE 3500 CONTINUE ENDBLOCK C REMOTE BLOCK INTGER REMOTE BLOCK INTGER FLAG= "INTGER" 7 CTYPE= 'INTEGER' DO 3300 I=1,N K11=K-1 DO 3310 IFAM=1,K11 XIND= (I-1) * K + IFAMX(XIND) = 13310 CONTINUE 3300 CONTINUE EXECUTE PUTROW ENDBLOCK

153 -

۵

•

-

	- 154 -
C REMOT	TE BLOCK UPPER
•	REMOTE BLOCK UPPER
	FLAG="UPPER"
	CTYPE="UPPERBD"
	DO 3700 I=1,N
• •	DO 3710 IFAM=1 K
	XIND=(I-1)*K +IFAM
	X(XIND)=1
3710	CONTINUE
3700	CONTINUE
	NM1=N-1
• •	DO 3730 I=1,NH1
	.Il=I+1
	DO 3740.J=I1,N
	DO 3750 IFAM=1 K
	· LI=I
	í LJ=J
	LIFAM=IFAM
	EXECUTE MIJKA
	M(MINDEX) = 1
3750	CONTINUE
3740	CONTINUE
3730	CONTINUE
	EXECUTE PUTROW
0000	ENDBLOCK
9999	STOP
	END
ŞENTRY	
\$IBSYS	
\$STOP	
11	

.-

٠

X

-1

- .

ł

JOB (R240, NU7, 3, 5), 'GAJ', CLASS=A, REGION=2048K //PD - EXEC WATFIV Π //FT08F001 DD DSN=WYL.R240NU7.FAMOUT,UNIT=DASD,VOL=SER=WORKPK, DISP=(NEW, KEEP), SPACE=(TRK, (40, 10)), DCB=(LRECL=80, BLKSIZE=15440, RECFM=FB) $\cdot H$ 11 DD 🔺 //GO.SYSIN WATFIV \$ JOB REF. SECTION 4.3.2 C ---C CELL FORMATION IN FMS - PART FAMILY FORMATION PROBLEM C' ______ C AUTHOR - GAJANANA NADOLI Ø GRADUATE STUDENT, DEPT. OF INDUSTRIAL ENGINEERING C UNIVERSITY OF WINDSOR, WINDSOR, ONTARIO N9B 222 C _____ C THIS PROGRAM IMPLEMENTS THE ALGORITHM FOR FINDING THE C UPPER BOUND AND LOWER BOUND FOR SUBPROBLEMS OF THE TYPE C SOLVED IN THE ITERATIONS OF THE APPROXIMATION PROCEDURE C CALCULATING THESE BOUNDS WITH DIFFERENT VALUES OF R ESTABLISHES THE REGION (L,U)' FOR THESE SUBPROBLEMS. С С VARIABLE DECLARATION SECTION ***** С THE INTEGER NUMOP(30), SIM(30,30), DISIM(30,30). INTEGER OPI, OPJ, A INTEGER XIND, XVARS, MVARS, XINDI, XINDJ INTEGER RHS INTEGER MK(30,3), MEM(30,3), NNN(3), FAMN(3), FAMD(3) INTEGER FSIM(30,3), FDISIM(30,3), NSIM(30,30) INTEGER NDISIM(30,30) REAL LAMDA, OP*4(30,50), COEFF(30,30), FCOEFF(30,3), M(500), X(500) REAL S(315), LBOUND, FAMC(3), MINC CHARACTER CTYPE*8, FLAG*8 COMMON OP, NUMOP, SIM, DISIM, OPI, OPJ, COEFF, I, J, IFAM, K, L, NM, MP, MN, N, K1 THE DATA INPUT AND CALCULATION OF SIMILAR AND DISSIMILAR PROCESSES c ********** С BETWEEN THE PARTS READ(5,10) N,K FORMAT(12,1X,12) 10 DO 100 I=1,N READ(5,20) NUM, (OP(I,J), J=1, NUM) NUMOP(I)=NUM FORMAT(I2,10(1X,A4),/,(3X,10(A4,1X))) 20 WRITE(6,20) NUMOP(I),(OP(I,J),J=1,NUM) 100 / CONTINUE NM1=N-1 DO 200 I=1,NM1 Il=I+lDO 300 J-I1.N SIM(I, J) = 0NTERMI=NUMOP(I) 'NTERMJ=NUMOP(J) DO 400 OPI=1,NTERMI DO 500 OPJ=1,NTERMJ IF (OP(I, OPI), EQ.OP(J, OPJ)) SIM(I, J)=SIM(I, J)+1 500 CONTINUE 400 CONTINUE PRINT, 'SIMILARITY BETWEEN', I, 'AND', J, 'IS', SIM(I, J) С DISIM(I,J)=NUMOP(I)+NUMOP(J)-2*SIM(I,J) PRINT, DISSIMILARITY BETWEEN ', I, ' AND ', J, ' IS ', DISIM(I, J) С 300. CONTINUE 200 CONTINUE

	LAMDA=1.00 DO 2010 IFAM =1,K	
	DO 2010 I=1,N	
	MK(I, IFAH)=0	
	MEM(I,IFAM)=0	•
010	CONTINUE	
	DO 2020 IFAM=1,K	
	READ(5,2030) NUMF,(MK(I,IFAH),I=1,	NUMF)
	<pre>WRITE(6,2036) NUMF,(MK(I,IFAM),I=1,</pre>	NUMF)
036	FORMAT('INITIAL CONFIGURATION', 12, 1	.0(1X,I2)) -
	NNN(IFAM)=NUMF	
030	FORMAT(12,20(1X,12))	
020	CONTINUE	.:
	DO 2050 IFAM=1,K	
	DO 2060 I=1,N	•
	LU=NNN(IFAM) Do 2070 LL=1,LU	
	IF (MK(LL,IFAM).EQ.I) MEM(I,IFA	(M) = 1 · · ·
070	CONTINUE	111 j = L
060	CONTINUE	
050	CONTINUE	· · · ·
	TFAMD=0.0	
•	DO 2200 IFAM=1,K	
	N1=N-1	
-	FAMN(IFAM)=0	•
	FAMD(IFAM)=0	
	DO 2240 I=,1,N1	a 1
	I1=I+1	`
	DO 2240 J=I1,N FAMN(IFAM)=FAMN(IFAM) +MEM(I,IFAM)*MM FAMD(IFAM)=FAMD(IFAM) +MEM(I,II	
2240	FANN(IFAH)=FAMN(IFAM) +MEM(I,IFAM)*M	
2240 2200 *	FAMN(IFAH)=FAMN(IFAM) +MEM(I,IFAM)*M FAND(IFAM)=FAND(IFAM) +MEM(I,I CONTINUE TFAND=TFAMD+FAND(IFAM) CONTINUE	
<i>,</i>	FAMN(IFAH)=FAMN(IFAM) +MEM(I,IFAM)*M FAND(IFAM)=FAND(IFAM) +MEM(I,I CONTINUE TFAND=TFAMD+FAND(IFAM) CONTINUE DO 188 IFAM=1,K	
2200 🐤	FAMN(IFAH)=FAMN(IFAM) +MEM(I,IFAM)*M FAMD(IFAM)=FAMD(IFAM) +MEM(I,I CONTINUE TFAMD=TFAMD+FAMD(IFAM) CONTINUE DO 188 IFAM=1,K FAMC(IFAM)=FAMN(IFAM)/TFAMD	
<i>,</i> ,	FAMN(IFAH)=FAMN(IFAM) +MEM(I,IFAM)*M FAMD(IFAM)=FAMD(IFAM) +MEM(I,I CONTINUE TFAMD=TFAMD+FAMD(IFAM) CONTINUE DO 188 IFAM=1,K FAMC(IFAM)=FAMN(IFAM)/TFAMD CONTINUE	
2200 🐤	FAMN(IFAH)=FAMN(IFAM) +MEM(I,IFAM)*M FAMD(IFAM)=FAMD(IFAM) +MEM(I,I) CONTINUE TFAMD=TFAMD+FAMD(IFAM) CONTINUE DO 188 IFAM=1,K FAMC(IFAM)=FAMN(IFAM)/TFAMD CONTINUE MINC=0	
2200 🐤	<pre>FAMN(IFAH)=FAMN(IFAM) +MEM(I,IFAM)*MI FAMD(IFAM)=FAMD(IFAM) +MEM(I,I) CONTINUE TFAMD=TFAMD+FAMD(IFAM) CONTINUE DO 188 IFAM=1,K FAMC(IFAM)=FAMN(IFAM)/TFAMD CONTINUE MINC=0 MF=1</pre>	
2200 🐤	<pre>FAMN(IFAH)=FAMN(IFAM) +MEM(I,IFAM)*ME FAMD(IFAM)=FAMD(IFAM) +MEM(I,I) CONTINUE TFAMD=TFAMD+FAMD(IFAM) CONTINUE DO 188 IFAM=1,K FAMC(IFAM)=FAMN(IFAM)/TFAMD CONTINUE MINC=0 MF=1 DO 2260 IFAM=1,K</pre>	
2200 🐤	<pre>FAMN(IFAH)=FAMN(IFAM) +MEM(I,IFAM)*ME FAMD(IFAM)=FAMD(IFAM) +MEM(I,I) CONTINUE TFAMD=TFAMD+FAMD(IFAM) CONTINUE DO 188 IFAM=1,K FAMC(IFAM)=FAMN(IFAM)/TFAMD CONTINUE MINC=0 MF=1 DO 2260 IFAM=1,K IF (FAMC(IFAM).GT.MINC) THEN</pre>	
2200 🐤	<pre>FAMN(IFAH)=FAMN(IFAM) +MEM(I,IFAM)*ME FAMD(IFAM)=FAMD(IFAM) +MEM(I,I) CONTINUE TFAMD=TFAMD+FAMD(IFAM) CONTINUE DO 188 IFAM=1,K FAMC(IFAM)=FAMN(IFAM)/TFAMD CONTINUE MINC=0 MF=1 DO 2260 IFAM=1,K</pre>	
2200 🐤	<pre>FAMN(IFAM)=FAMN(IFAM) +MEM(I,IFAM)*ME FAMD(IFAM)=FAMD(IFAM) +MEM(I,I) CONTINUE TFAMD=TFAMD+FAMD(IFAM) CONTINUE DO 188 IFAM=1,K FAMC(IFAM)=FAMN(IFAM)/TFAMD CONTINUE MINC=0 MF=1 DO 2260 IFAM=1,K IF (FAMC(IFAM).GT.MINC) THEN MF=IFAM</pre>	
133	<pre>FAMN(IFAH)=FAMN(IFAM) +MEM(I,IFAM)*ME FAMD(IFAM)=FAMD(IFAM) +MEM(I,I) CONTINUE TFAMD=TFAMD+FAMD(IFAM) CONTINUE DO 188 IFAM=1,K FAMC(IFAM)=FAMN(IFAM)/TFAMD CONTINUE MINC=0 MF=1 DO 2260 IFAM=1,K IF (FAMC(IFAM).GT.MINC) THEN MF=IFAM MINC=FAMC(IFAM)</pre>	
2200 ÷	<pre>FAMN(IFAM)=FAMN(IFAM) +MEM(I,IFAM)*MF FAMD(IFAM)=FAMD(IFAM) +MEM(I,I) CONTINUE TFAMD=TFAMD+FAMD(IFAM) CONTINUE DO 188 IFAM=1,K FAMC(IFAM)=FAMN(IFAM)/TFAMD CONTINUE MINC=0 MF=1 DO 2260 IFAM=1,K IF (FAMC(IFAM).GT.MINC) THEN MF=1FAM MINC=FAMC(IFAM) ENDIF CONTINUE MF=3</pre>	
2200 ÷	<pre>FAMN(IFAM)=FAMN(IFAM) +MEM(I,IFAM)*MF FAMD(IFAM)=FAMD(IFAM) +MEM(I,I) CONTINUE TFAMD=TFAMD+FAMD(IFAM) CONTINUE DO 188 IFAM=1,K FAMC(IFAM)=FAMN(IFAM)/TFAMD CONTINUE MINC=0 MF=1 DO 2260 IFAM=1,K IF (FAMC(IFAM).GT.MINC) THEN MF=1FAM MINC=FAMC(IFAM) ENDIF CONTINUE MF=3 NEWN=NNN(MF)</pre>	
2200 ÷	<pre>FAMN(IFAM)=FAMN(IFAM) +MEM(I,IFAM)*MF FAMD(IFAM)=FAMD(IFAM) +MEM(I,I) CONTINUE TFAMD=TFAMD+FAMD(IFAM) CONTINUE DO 188 IFAM=1,K FAMC(IFAM)=FAMN(IFAM)/TFAMD CONTINUE MINC=0 MF=1 DO 2260 IFAM=1,K IF (FAMC(IFAM).GT.MINC) THEN MF=1FAM MINC=FAMC(IFAM) ENDIF CONTINUE MF=3 NEWN=NNN(MF) NEWN1=NEWN=1</pre>	
2200 *	<pre>FAMN(IFAM)=FAMN(IFAM) +MEM(I,IFAM)*MF FAMD(IFAM)=FAMD(IFAM) +MEM(I,I) CONTINUE TFAMD=TFAMD+FAMD(IFAM) CONTINUE DO 188 IFAM=1,K FAMC(IFAM)=FAMN(IFAM)/TFAMD CONTINUE MINC=0 MF=1 DO 2260 IFAM=1,K IF (FAMC(IFAM).GT.MINC) THEN MF=1FAM MINC=FAMC(IFAM) ENDIF CONTINUE MF=3 NEWN=NNN(MF) NEWN1=NEWN=1 DO 2300 NI=1,NEWN1</pre>	
2200 *	<pre>FAMN(IFAM)=FAMN(IFAM) +MEM(I,IFAM)*MF FAMD(IFAM)=FAMD(IFAM) +MEM(I,I) CONTINUE TFAMD=TFAMD+FAMD(IFAM) CONTINUE DO 188 IFAM=1,K FAMC(IFAM)=FAMN(IFAM)/TFAMD CONTINUE MINC=0 MF=1 DO 2260 IFAM=1,K IF (FAMC(IFAM).GT.MINC) THEN MF=1FAM MINC=FAMC(IFAM) ENDIF CONTINUE MF=3 NEWN=NNN(MF) NEWN1=NEWN-1 DO 2300 NI=1,NEWN1 NI1=NI+1</pre>	
2200 *	<pre>FAMN(IFAM)=FAMN(IFAM) +MEM(I,IFAM)*MM FAMD(IFAM)=FAMD(IFAM) +MEM(I,I) CONTINUE TFAMD=TFAMD+FAMD(IFAM) CONTINUE DO 188 IFAM=1,K FAMC(IFAM)=FAMN(IFAM)/TFAMD CONTINUE MINC=0 MF=1 DO 2260 IFAM=1,K IF (FAMC(IFAM).GT.MINC) THEN MF=1FAM MINC=FAMC(IFAM) ENDIF CONTINUE MF=3 NEWN=NNN(MF) NEWN1=NEWN=1 DO 2300 NI=1,NEWN1 NI1=NI+1 DO 2400 NJ=NI1,NEWN</pre>	
2200 ÷	<pre>FAMN(IFAM)=FAMN(IFAM) +MEM(I,IFAM)*MM FAMD(IFAM)=FAMD(IFAM) +MEM(I,I) CONTINUE TFAMD=TFAMD+FAMD(IFAM) CONTINUE DO 188 IFAM=1,K FAMC(IFAM)=FAMN(IFAM)/TFAMD CONTINUE MINC=0 MF=1 DO 2260 IFAM=1,K IF (FAMC(IFAM).GT.MINC) THEN MF=1FAM MINC=FAMC(IFAM) ENDIF CONTINUE MF=3 NEWN=NNN(MF) NEWN1=NEWN=1 DO 2300 NI=1,NEWN1 NI1=NI+1 DO 2400 NJ=NI1,NEWN I=MK(NI,MF)</pre>	
2200 *	<pre>FAMN(IFAM)=FAMN(IFAM) +MEM(I,IFAM)*MM FAMD(IFAM)=FAMD(IFAM) +MEM(I,I) CONTINUE TFAMD=TFAMD+FAMD(IFAM) CONTINUE DO 188 IFAM=1,K FAMC(IFAM)=FAMN(IFAM)/TFAMD CONTINUE MINC=0 MF=1 DO 2260 IFAM=1,K IF (FAMC(IFAM).GT.MINC) THEN MF=1 DO 2260 IFAM=1,K IF (FAMC(IFAM).GT.MINC) THEN MF=1 CONTINUE MF=3 NEWN=NNN(MF) NEWNI=NEWN=1 DO 2300 NI=1,NEWN1 NI1=NI+1 DO 2400 NJ=NI1,NEWN I=MK(NI,MF) J=MK(NJ,MF)</pre>	
2200 🐤	<pre>FAMN(IFAM)=FAMN(IFAM) +MEM(I,IFAM)*MM FAMD(IFAM)=FAMD(IFAM) +MEM(I,I) CONTINUE TFAMD=TFAMD+FAMD(IFAM) CONTINUE DO 188 IFAM=1,K FAMC(IFAM)=FAMN(IFAM)/TFAMD CONTINUE MINC=0 MF=1 DO 2260 IFAM=1,K IF (FAMC(IFAM).GT.MINC) THEN MF=1 DO 2260 IFAM=1,K IF (FAMC(IFAM).GT.MINC) THEN MF=3 NEWN=NNN(MF) NEWNI=NEWN=1 DO 2300 NI=1,NEWN1 NI1=NI+1 DO 2400 NJ=NI1,NEWN I=MK(NI,MF) J=MK(NJ,MF) IF (I.LT.J) THEN</pre>	
2200 *	<pre>FAMN(IFAM)=FAMN(IFAM) +MEM(I,IFAM)*MM FAMD(IFAM)=FAMD(IFAM) +MEM(I,I) CONTINUE TFAMD=TFAMD+FAMD(IFAM) CONTINUE DO 188 IFAM=1,K FAMC(IFAM)=FAMN(IFAM)/TFAMD CONTINUE MINC=0 MF=1 DO 2260 IFAM=1,K IF (FAMC(IFAM).GT.MINC) THEN MF=1 DO 2260 IFAM=1,K IF (FAMC(IFAM).GT.MINC) THEN MF=1 MINC=FAMC(IFAM) ENDIF CONTINUE MF=3 NEWN=NNN(MF) NEWNI=NEWN=1 DO 2300 NI=1,NEWN1 NI1=NI+1 DO 2400 NJ=NI1,NEWN I=MK(NI,MF) J=MK(NJ,MF) IF (I.LT.J) THEN NSIM(NI,NJ)=SIM(I,J)</pre>	
2200 *	<pre>FAMN(IFAM)=FAMN(IFAM) +MEM(I,IFAM)*MM FAMD(IFAM)=FAMD(IFAM) +MEM(I,I) CONTINUE TFAMD=TFAMD+FAMD(IFAM) CONTINUE DO 188 IFAM=1,K FAMC(IFAM)=FAMN(IFAM)/TFAMD CONTINUE MINC=0 MF=1 DO 2260 IFAM=1,K IF (FAMC(IFAM).GT.MINC) THEN MF=1 DO 2260 IFAM=1,K IF (FAMC(IFAM).GT.MINC) THEN MF=3 NEWN=NNN(MF) NEWNI=NEWN=1 DO 2300 NI=1,NEWN1 NI1=NI+1 DO 2400 NJ=NI1,NEWN I=MK(NI,MF) J=MK(NJ,MF) IF (I.LT.J) THEN</pre>	
2200 *	<pre>FAMN(IFAM)=FAMN(IFAM) +MEM(I,IFAM)*MM FAMD(IFAM)=FAMD(IFAM) +MEM(I,I) CONTINUE TFAMD=TFAMD+FAMD(IFAM) CONTINUE DO 188 IFAM=1,K FAMC(IFAM)=FAMN(IFAM)/TFAMD CONTINUE MINC=0 MF=1 DO 2260 IFAM=1,K IF (FAMC(IFAM).GT.MINC) THEN MF=1 DO 2260 IFAM=1,K IF (FAMC(IFAM).GT.MINC) THEN MF=1 MINC=FAMC(IFAM) ENDIF CONTINUE MF=3 NEWN=NNN(MF) NEWNI=NEWN=1 DO 2300 NI=1,NEWN1 NI1=NI+1 DO 2400 NJ=NI1,NEWN I=MK(NI,MF) J=MK(NJ,MF) IF (I.LT.J) THEN NSIM(NI,NJ)=SIM(I,J) NDISIM(NI,NJ)=DISIM(I,J)</pre>	
2200 *	<pre>FAMN(IFAM)=FAMN(IFAM) +MEM(I,IFAM)*MM FAMD(IFAM)=FAMD(IFAM) +MEM(I,I) CONTINUE TFAMD=TFAMD+FAMD(IFAM) CONTINUE DO 188 IFAM=1,K FAMC(IFAM)=FAMN(IFAM)/TFAMD CONTINUE MINC=0 MF=1 DO 2260 IFAM=1,K IF (FAMC(IFAM).GT.MINC) THEN MF=1FAM MINC=FAMC(IFAM) ENDIF CONTINUE MF=3 NEWN=NNN(MF) NEWNI=NEWN=1 DO 2300 NI=1,NEWN1 NI1=NI+1 DO 2400 NJ=NI1,NEWN I=MK(NI,MF) J=MK(NJ,MF) IF (I.LT.J) THEN NSIM(NI,NJ)=SIM(I,J) NDISIM(NI,NJ)=DISIM(I,J) ENDIF</pre>	

ar and the

	NDISIM(NI,NJ)=DISIM(J,I)
	ENDIF
2400	CONTINUE
2300	CONTINUE
	DO 2401 I=1,N
	DO 2410 IFAM=1,K
	FSIM(I,IFAM)=0
	_ FDISIM(I,IFAM)=0
2410	CONTINUE
2401	CONTINUE
	DO 2430 NI=1,NEWN
	NPART=MK(NI,MF)
	DO 2440 IFAM=1,K
	IF (IFAM.EQ.MF) GO TO 2440
	DO 2460 J=1,N
	IF (J.EQ.NPART) GO TO 2460
	IF (J.GT.NPART) THEN
	FSIM(NI,IFAM) =FSIM(NI,IFAM) + SIM(NPART,J)*MEM(J,IFAM)
	FDISIM(NI,IFAM) =FDISIM(NI,IFAM) +DISIM(NPART,J)*MEM(J,IFAM
	ELSE
-	FSIM(NI,IFAM)=FSIM(NI,IFAM) +SIM(J,NPART)*MEH(J,IFAM)
	FDISIM(NI,IFAM)=FDISIM(NI,IFAM)+DISIM(J,NPART)*MEM(J,IFAM
	ENDIF
2460	CONTINUE
2440	CONTINUE
2430	CONTINUE
	N1-N-1
•	· DO 2462 I=1,N
•	I1=I+1
	DO 2470 J-I1,N
	SIM(I,J)=0
	DISIM(I,J)=0
2470	CONTINUE
2462	CONTINUE
	NHNEWN
	WRITE(8,4018)
4018	FORMAT(BOUNDS ON THE OBJECTIVE FUNCTION FOR DIFFERENT VALUES
*	OF R ⁽)
	WRITE(8,4053)
(02)	WRITE(8,4024)
4024	FORNAT(1)
	WRITE(8,4024)
1026	WRITE(8,4026) N (1.2)
4026	FORMAT(# OF PARTS = , 12)
(WRITE(8,4027) K
4027	FORMAT(1 # OF FAMILIES=1,12)
	WRITE(8,4024)
(020	WRITE(8,4029) N*(N-1)/2*K+N*K
4029	FORMAT(" # OF NON-ZERU COEFFICIENTS = ,14)
	WRITE(8,4053)
	WRITE(8,4024)
	WRITE(8,4024)
2000	WRITE(8,9000)
9000	FORMAT(" R # OF REGATIVE OBJECTIVE FUNCTION BOUNDS")
	FORMAT(' R # OF REGATIVE OBJECTIVE FUNCTION BOUNDS') WRITE(8,9001)
9000 9001	FORMAT(" R # OF REGATIVE OBJECTIVE FUNCTION BOUNDS") WRITE(8,9001) FORMAT(" COEFFICIENTS LOWERBOUND UPPERBOUND")
9001	FORMAT(" R # OF NEGATIVE OBJECTIVE FUNCTION BOUNDS") WRITE(8,9001) FORMAT(" COEFFICIENTS LOWERBOUND UPPERBOUND") WRITE(8,9002)
	FORMAT(" R# OF NEGATIVEOBJECTIVE FUNCTION BOUNDS")WRITE(8,9001)FORMAT("COEFFICIENTSLOWERBOUNDWRITE(8,9002)FORMAT("")
9001	FORMAT(" R # OF NEGATIVE OBJECTIVE FUNCTION BOUNDS") WRITE(8,9001) FORMAT(" COEFFICIENTS LOWERBOUND UPPERBOUND") WRITE(8,9002)

;

ø

· · · ·

LAMDA-LLANDA/100.00 EXECUTE FAMIL NM1=N-1 DO 21 I=1,NM1 I1=I+1DO 22 J=I1,N COEFF(I,J)=DISIM(I,J)-LAMDA*SIM(I,J) 22 CONTINUE 21 CONTINUE DO 89 JM=1,315 S(JM)=0.089 CONTINUE EXECUTE OBJROW 18 CONTINUE GO TO 9999 C REMOTE BLOCK FAMIL REMOTE BLOCK FAMIL NEWN1=NEWN-1 DO 2480 NI=1, NEWN1 NI1=NI+1 DO 2490 NJ=NI1, NEWN SIM(NI,NJ)=NSIM(NI,NJ) DISIM(NI,NJ)=NDISIM(NI,NJ) COEFF(NI,NJ)=DISIM(NI,NJ)-LAMDA*SIM(NI,NJ) 2490 CONTINUE 2480 CONTINUE DO 2550 I=1, NEWN DO 2560 IFAN=1,K FCOEFF(I,IFAN)=FDISIM(I,IFAM)-LAMDA*FSIM(I,IFAM) 2560 CONTINUE 2550 CONTINUE C=0.0 DO 58 IFAM=1,K IF (IFAM.EQ.MF) GO TO 58 C=C+FAMN(IFAM)-LAMDA*FAMD(IFAM) IF(LANDA.GT.0.15) GO TO 58 PRINT , CONSTANT , IFAN, IS , FAMN(IFAM)-LAMDA*FAND(IFAM) С 58 CONTINUE IF (LAMDA.GT.0.15) GO TO 76 G PRINT, THE CONSTANT FACTOR = ',C . DO 45 I=1,N DO 46 IFAM=1,K -IF (IFAM.EQ.MF) GO TO 46 _ · PRINT, 'FSIM(', I, IFAM, ') =', FSIM(I, IFAM) PRINT, 'FDISIM(', I, IFAM, ') =', FDISIM(I, IFAM) C С 46 CONTINUE 45 CONTINUE 76 DUMM=0.00 ENDBLOCK REMOTE BLOCK ALLCLR С ۲) REMOTE BLOCK ALLCLR DO 3030 II=1,N 3030 IIFAM=1,K DO $XIND_{2}$ (II-1)*K + IIFAM. X(XI(D)) = 03030 CONTINUE NM1=N-1 DO 3040 II 1, NM1 II1 = II+100 3050 JJ=II1,N

- 158 -

DO 3060 IIFAM=1,K LI=II LJ=JJ LIFAM=IIFAM EXECUTE MIJKA M(MINDEX)=03060 CONTINUE 3050 CONTINUE 3040 CONTINUE ENDBLOCK REMOTE BLOCK MIJKA С ***** REMOTE BLOCK MIJKA MINDA=0 LI1=LI+1 ISIGM =LI-1 IF (ISIGM.EQ.O) GO TO 3064 DO 3065 IX = 1, ISIGM MINDA=MINDA + (N-IX) * ~K 3065 CONTINUE 3064 MINDEX=MINDA+ (LJ-LI1)*K +LIFAM ENDBLOCK С REMOTE BLOCK OBJROW ***** REMOTE BLOCK OBJROW NM1 = N-1NEG=0MS = 1DO 3100 I=1,NM1 I1=I+1DO 3110 J=I1,N ___D0.3120 IFAH=1,K LI=I LJ=J LIFAM=IFAM EXECUTE MIJKA M(MINDEX) = COEFF(I,J) IF(COEFF(I,J).LT.O) NEG=NEG+1 IF(IFAM.EQ.1) THEN S(MS)=COEFF(I,J)MS = MS + 1ENDIF 3120 CONTINUE 3110 CONTINUE 3100 CONTINUE DO 312 I=1,N DO 312 IFAM=1,K XIND=(I-1)*K + IFAMX(XIND)=FCOEFF(I,IFAM) IF (I.EQ.1) X(XIND) = X(XIND) + C312 CONTINUE CTYPE= "MIN" FLAG= OBJROW LPOS=N*(N-1)/2*K-NEGCALL SORT(315;S) IES=N/K IPAIRS=IES*(IES-1)/2*K+(N-IES*K)*IES MPAIRS = N*(N-1)/2LBOUND=0.000 UBOUND=0.000 ICOUNT=0 DO 889 KI=1,315

- 159 -

....

```
INTS=S(KI)*10000.000
          IF (INTS.NE.O) THEN
            ICOUNT=ICOUNT+1
          ELSE
            GO TO 889
          ENDIF
          IF (S(KI).LT.0.00) THEN
            LBOUND=LBOUND+S(KI)
          ENDIF
          IF (S(KI).GT.0.00) THEN
            IF(ICOUNT.LE.IPAIRS) LBOUND=LBOUND+S(KI)
          ENDIF
889
       CONTINUE
        ICOUNT=0
       DO 899 KI=1;315
            INTS=S(315-KI+1)*10000.000
          IF (INTS.NE.O) THEN
            ICOUNT=ICOUNT+1
          ELSE
           GO TO 899
          ENDIF
         IF (S(315-KI+1).GT.0.00) THEN
            UBOUND=UBOUND+S(315-KI+1)
          ENDIF
         IF (S(315-KI+1).LT.0.00) THEN
           IF(ICOUNT.LE.IPAIRS) UBOUND=UBOUND+S(315-KI+1)
  ٠.
      ٠.
         ENDIF
899
       CONTINUE
        DO 891 I=1,N
          TM=-10000000.00
          TL=+10000000.00
          DO 892 IFAM=1,K
            XIND=(I-1)*K +IFAM
            IF(X(XIND).GT.TM) TM= X(XIND)
IF(X(XIND).LT.TL) TL=X(XIND)
892
          CONTINUE
       ENDBLOCK
C REHOTE BLOCK PUTROW
                                         *******
       REMOTE BLOCK PUTROW
       EXECUTE ALLCLR
       ENDBLOCK
9999
        STOP
        END
ŞENTRY
ŞIBSYS
SSTOP
11
```

7

//PE JOB (R240, NU7, 5, 5), 'GAJ', CLASS=A, REGION=2048K EXEC WATFIV Π //FT08F001 DD DSN=WYL.R240NU7.FAMOUT,UNIT=DASD,VOL=SER=WORKPK, DISP=(NEW, KEEP), SPACE=(TRK, (40, 10)), Π DCB=(LRECL=80, BLKSIZE=15440, RECFM=FB) 7/GO.SYSIN DD * SJOB WATFIV REF. SECTION 5.2 C ---_____ С CELL FORMATION IN FMS - MACHINE GROUP ALLOCATION С. _____ AUTHOR - GAJANANA NADOLI GRADUATE STUDENT, DEPT. OF INDUSTRIAL ENGINEERING C C UNIVERSITY OF WINDSOR, WINDSOR, ONTARIO N9B 2Z2 C ----THIS PROGRAM GENERATES THE INPUT FILE OF THE PROBLEM С 'P1' FOR THE SAS/OR INTEGER PROGRAMMING ROUTINE. C C ALLOCATION OF MACHINE GROUPS TO THE PART FAMILIES FORMED. С ***** С VARIABLE DECLARATION SECTION INTEGER N(50), P, OPN, A(30, 3, 30, 30), NUMOP(3, 30), ROUTES(30, 3) INTEGER X(500),XIND,M(5000),IRR(30) INTEGER TABL(3,1300,50), IENTRY(3), JCOUNT(30), KCOUNT(30) INTEGER RPTF(3,1300), LID(99), RHS, NLID(15), CARQ, OPN1 INTEGER ONEOBJ(15,3), ONEAVL(15,3,30) CHARACTER CTYPE*8, FLAG*8 -READING THE OPERATION DATA FOR THE PARTS ******* С MAXOP = 15MAXMLT=1300 MAXWID=MAXOP+2+20 MQ=MAXOP+1 MSLN=MAXOP+2 READ(5,10) NMACH,K,(N(IFAM),IFAM=1,K) 10 FORMAT(12,2X,12,10(2X,12)) WRITE(6,10) NMACH, K, (N(IFAM), IFAM=1, K) DO 100 IFAH=1,K NUM=N(IFAM) DO 110 J=1,NUM READ(5,20) OPN WRITE(6,20) OPN 20 FORMAT(12) NUMOP(IFAM, J)=OPN DO 120 P=1,OPN READ(5,30) (A(J,IFAM,P,IM),IM=1,NMACH) WRITE(6,30) (A(J,IFAM,P,IM),IM=1,NMACH) 30 FORMAT(15(11,1X)) 120 CONTINUE 110 CONTINUE 100 CONTINUE DO 200 IFAM=1,K DO 210 ISL=1,MAXMLT RPTF(IFAM, ISL)=0 DO 220 IWID=1,MAXWID TABL(IFAM, ISL, IWID)=0 220 CONTINUE 210 CONTINUE IENTRY(IFAM)=0200 CONTINUE DO 4100 IFAM=1,K DO 4110 MMM=1, NMACH ONEOBJ(MMM, IFAM)=0

--162 -

л. м.

NPARTS=N(IFAM)
DO 4120 JJJ=1,NPARTS
ONEAVL(MMM, IFAM, JJJ)=0
4120 CONTINUE
4110 CONTINUE
4100 CONTINUE
C MAIN SEGMENT OF THE PROGRAM
EXECUTE MTERMS Execute clrall
EXECUTE OBJROW
EXECUTE AVAIL
EXECUTE ALLOC
EXECUTE TYPIO1
EXECUTE TYP201
EXECUTE INTGER
EXECUTE UPPER Execute out
GO TO 9999
C REOTE BLOCK OBJROW
REMOTE BLOCK OBJROW
EXECUTE MCOBJ
EXECUTE MLTOBJ
FLAG= SPL -
CTYPE=^MAX^ Execute putrow
ENDBLOCK
C REMOTE BLOCK MCOBJ
REMOTE BLOCK MCOBJ
DO 1000 MM=1, NMACH
DO 1010 IIFAM=1,K
XIND=(MM-1) *K +IIFAM X(XIND) =ONEOBJ(MM,IIFAM)
1010 CONTINUE
1000 CONTINUE
ENDBLOCK
C REMOTE BLOCK UPPER
RENOTE BLOCK UPPER
DO 700 MM-1,NMACH DO 710 IIFAM-1,K
XIND = (MM-1) * K + IIFAM
X(XIND) = 1
710 CONTINUE
700 CONTINUE
MIND=0
DO 711 IFAM=1,K
NENTRY-IENTRY(IFAM) DO 712 IE=1,NENTRY
MIND=MIND+1
M(MIND)=L
712 CONTINUE
711 CONTINUE
FLAG= SPL CONTRACTOR STATE
CTYPE='UPPERBD' Execute putrow
ENDBLOCK
C REMOTE BLOCK MTERMS
REMOTE BLOCK MTERMS
DO 2000 IFAM=1,K
NUM=N(IFAM) DO 2010 J=1,NUM
00 0010 <u>0</u> -1,000

•

.

.

.

OPN=NUMOP(IFAM, J) EXECUTE GEN 2010 CONTINUE 2000 CONTINUE END BLOCK C REMOTE BLOCK GEN REMOTE BLOCK GEN ROUTES(J, IFAM)=0 IA=1 . P=1 ID1=0ID2=0 _ID3=0 ID4=0 ID5=0. ID6=0ID7=0ID8=0ID9=0ID10=0 ID11 = 0ID12=0ID13=0 ID14=0 ID15=0DO 3010 ID1=1,NMACH IA=1 IA=IA*(A(J,IFAM,1,ID1)) IF (IA.EQ.O) THEN GO TO 3010 ENDIF IF (OPN.EQ.1) THEN ROUTES(J, IFAM)=ROUTES(J, IFAM)+1 EXECUTE RTFILE GO TO 3010 ENDIF DO 3020 ID2=1,NMACH IA= 1 IA=IA*(A(J, IFAM, 2, ID2))IF (IA.EQ.O) THEN GO TO 3020 ENDIF IF (OPN.EQ.2) THEN ROUTES(J, IFAM)=ROUTES(J, IFAM)+1 EXECUTE RTFILE GO TO 3020 ENDIF DO 3030 ID3=1,NMACH IA=1IA=IA*(A(J, IFAM, 3, ID3))IF (IA.EQ.O) THEN GO TO 3030 ENDIF IF (OPN.EQ.3) THEN ROUTES(J, IFAM)=ROUTES(J, IFAM)+1 EXECUTE RTFILE GO TO 3030 ENDIF DO 3040 ID4=1,NMACH IA=1

15

163 -

4.5

IA=IA*(A(J,IFAM,4,ID4)) IF (IA.EQ.O) THEN GO TO 3040 ENDIF IF (OPN.EQ.4) THEN ROUTES(J, IFAM)=ROUTES(J, IFAM)+1 EXECUTE RTFILE GO TO 3040 ENDIF DO 3050 ID5=1, NMACH ' IA=1 IA=IA*(A(J,IFAM,5,ID5)) IF (IA.EQ.O) THEN GO TO 3050 ENDIF IF (OPN.EQ.5) THEN ROUTES(J, IFAM)=ROUTES(J, IFAM)+1 EXECUTE RTFILE GO TO 3050 ENDIF DO 3060 ID6=1,NMACH IA=1 IA=IA*(A(J, IFAM, 6, ID6))IF (IA.EQ.O) THEN 5 GO TO 3060 ENDIF IF (OPN.EQ.6) THEN ROUTES(J, IFAM)=ROUTES(J, IFAM)+1 EXECUTE RTFILE GO TO 3060 ENDIF DO 3070 ID7=1,NMACH · IA=1IA=IA*(A(J, IFAM, 7, ID7))IF (IA.EQ.O) THEN GO TO 3070 ENDIF - IF (OPN.EQ.7) THEN ROUTES(J, IFAM)=ROUTES(J, IFAM)+1 EXECUTE RTFILE GO TO 3070 ENDIF DO 3080 ID8=1,NMACH IA=1 $IA=IA*(A(J, IFAM, \underline{8}, ID8))$ GO TO 3080 ENDIF IF (OPN.EQ.8) THEN ROUTES(J, IFAM)=ROUTES(J, IFAM)+1 EXECUTE RTFILE GO TO 3080 ENDIF DO 3090 ID9=1, NMACH IA=1 IA=IA*(A(J, IFAM, 9, ID9))IF (IA.EQ.0) THEN GO TO 3090 ENDIF IF (OPN.EQ.9) THEN

.

...

ENDIF

IA=1 -IA=IA*(A(J,IFAM,10,ID10)) IF (IA.EQ.0) THEN GO TO 3100 ENDIF IF (OPN.EQ.10) THEN ROUTES(J, IFAM)=ROUTES(J, IFAM)+1 EXECUTE RTFILE GO TO 3100 14 ENDIF 'DO 3110 ID11=1,NMACH .• IA=1 IA=IA*(A(J,IFAM,11,ID11)) IF (IA.EQ.O) THEN GO TO 3110 ENDIF IF (OPN.EQ.11) THEN ROUTES(J, IFAM)=ROUTES(J, IFAM)+1 EXECUTE RTFILE GO TO 3110 ENDIF DO 3120 ID12=1,NMACH IA=1 IA=IA*(A(J,IFAM,12,ID12)) IF (IA.EQ.O) THEN GO TO 3120 ENDIF IF (OPN.EQ.P12) THEN ROUTES(J, IFAM)=ROUTES(J, IFAM)+1 EXECUTE RTFILE GO TO 3120 ENDIF DO 3130 ID13=1,NMACH IA=1IA=IA*(A(J,IFAM,13,ID13)) IF (IA.EQ.O) THEN GO TO 3130 ENDIF IF (OPN.EQ.13) THEN ROUTES(J,IFAM)=ROUTES(J,IFAM)+1 EXECUTE RTFILE GO TO 3130 ENDIF DO 3140 ID14=1,NMACH I A'= 1 IA=IA*(A(J,IFAM,14,ID14)) IF (IA.EQ.O) THEN GO TO 3140 ENDIF, IF (OPN.EQ.14) THEN

ROUTES(J, IFAM)=ROUTES(J, IFAM)+1 EXECUTE RTFILE GO TO 3140 ENDIF

DO 3150 ID15=1, NMACH

		,	•
	IA=1		•.
	IA=IA*(A(、	, IFAM, 15, ID15)	`
	IF (IA.EQ.	0) THEN	,
	GO TO 31	.50	,
	ENDIF	•	
•	IF (OPN.EQ	15) THEN	
	ROUTES(J	, IFAM) =ROUTES()	T TRAMNES
	EXECUTE.	RTFILE	, iranj t i
	. GO TO 31	50	
-	ENDIF	,	
3150	CONTINUE		
3140	CONTINUE		
3130	CONTINUE		
3120	CONTINUE		
• 3110	CONTINUE		
3100 '	CONTINUE		
· 3090	CONTINUE	•	
3080	CONTINUE		
· 3070	CONTINUE		
3060	CONTINUE		
3050	CONTINUE		,
3040	CONTINUE		
3030	CONTINUE		
3020	CONTINUE		
3010	. CONTINÚE		
	ENDBLOCK	•	
C REMOT	E BLOCK RTFIL	E	
		RTFILE	
·	IDUP=0		
	LID(1)=ID1		
-	LID(2) = ID2		•
•	LID(3) = ID3		
•	LID(4)=ID4	<u>-</u>	:
	LID(5)=ID5		<i>r</i> *
	LID(6) = ID6		-,
·	LID(7) = ID7		
	LID(8) = ID8		
	LID(9) = ID9		
	LID(10)=ID10		
	LID(11)=ID11		
	LID(12)=ID12	24	
•	LID(13)=ID13		
· •	LID(14)=ID14		•
	LID(15)=ID15		
	`DO 1 IXX≖1,	,15	
1	NLID(IX)	()=0	·
. •	CONTINUE		
	CARQ=OPN		
4	OPN1=OPN-	-1	•
·	DO 2 IX=1,0	PNI	
	IF (LID(IX).EQ.999) GO	TO 2
	***-1**1		~ '
	DO 3 IY-	IX1,OPN	
2	IF (L	ID(IY) EQ.LID(I	X)) THEN
	` ьт	D(IX)=999	
	CA	RQ=CARQ-1	
3	ENDIF		
3 2	CONTINU	E	2
•	CONTINUE		
	NC = 0	1	

- 166 -

: **:**:

. .

:

.

• .

ENDBLOCK C REMOTE BLOCK MLTOBJ REMOTE BLOCK MLTOBJ MIND=0 DO 2100 IFAM=1,K NENTRY=IENTRY(IFAM) DO 2110 IE=1, NENTRY MIND=MIND+1 M(MIND)=RPTF(IFAM, IE)+1 2110 CONTINUE 2100 CONTINUE ENDBLOCK C REMOTE BLOCK AVAIL REMOTE BLOCK AVAIL MINDF=0 DO 2140 IFAM=1;K IF (IFAM.NE.1) MINDF=MINDF+IENTRY(IFAM-1) MIND=MINDF NENTRY=IENTRY(IFAM) NPARTS=N(IFAM) DO 2150 JJ=1,NPARTS DO 2160 IE=1, NENTRY MIND=MIND+1 IREP=MSLN+RPTF(IFAM,IE)+1 IF (IFAM.EQ.1) THEN С c IF(IE.EQ.3) PRINT, "RPTF+1", RPTF(IFAM, IE)+1 С ECELF = MSLN+1 MCOEF=0 С DO 2170 IX=IB, IREP С IF (TABL(IFAM, IE, IX).EQ.JJ) MCOEF=MCOEF+1 C24170 CONTINUE JPOS=MSLN+JJ; MUOEF=TABL(IFAN, IE, JPOS) M(MIND)=MCOEF 2160 CONTINUE DO 4600 MMM=1, NMACH XIND=(MMM-1)*K+IFAM X(XIND)=ONEAVL(MMM, IFAM, JJ) 4600 CONTINUE CTYPE='GE' RHS = 1EXECUTE PUTROW MIND=MINDF 2150 CONTINUE 2140 CONTINUE ENDÈLOCK C REMOTE BLOCK TYPIOI REMOTE BLOCK TYPIO1 MIND=0 DO 2300 IFAM=1,K NENTRY=IENTRY(IFAM) DO 2310 IE=1, NENTRY MIND=MIND+1 M(MIND) = -1OPN=TABL(IFAM, IE, MQ) DO 2320 IJ=1,0PN IX=TABL(IFAM, IE, IJ) XIND=(IX+1)*R +IFAM X(XIND) = X(XIND) + 1

DO 4 IX=1, OPN IF (LID(IX).NE.999) THEN NC=NC+1 · NLID(NC)=LID(IX) ENDIF CONTINUE 4 ¢ PRINT, J, IFAM, NC², J, IFAM, NC² IF (CARQ EQ.1) THEN DO 4500 IXY=1,0PN . IF (LID(IXY).NE.999) THEN MMM=LID(IXY) ONEOBJ(MMM, ÌFAM)=ONEOBJ(MMM, IFAM)+1 ONEAVL(MMM, IFAM; J)=ONEAVL(MMM, IFAM, J)+1 ENDIF 4500 CONTINUE GO TO 8 ENDIF IF (IENTRY(IFAM).EQ.0) THEN - GO TO 6500 ELSE 0 LIENT=IENTRY(IFAM) DO 6000 ICHK=1,LIENT IF (IDUP.EQ.1) GO TO 6500 IF (TABL(IFAM, ICHK, MQ).NE.CARQ) GO TO 6000 DO 6010 JM=1, NMACH JCOUNT(JM)=0 DO 6020 IX=1,CARQ IF (NLID(IX).EQ.JM) JCOUNT(JM)=JCOUNT(JM)+1 6020 CONTINUE KCOUNT(JM) = 0DO 6030 IY=1,CARQ IF (TABL(IFAM, ICHK, IY).EQ.JM) KCOUNT(JM)=KCOUNT(JM)+1 6030 CONTINUE IF (JCOUNT(JM).NE.KCOUNT(JM)) GO TO 6000, 6010 CONTINUE IDUP=1IDUPSL=ICHK 6000 CONTINUE ENDIF 6500 IF (IDUP.EQ.1) THEN RPTF(IFAM, LDUPSL)=RPTF(IFAM, IDUPSL)+1 С JPOS=MSLN+1+RPTF(IFAM, IDUPSL) TABL(IFAM, IDUPSL, JPOS)=J С JPOS=MSLN+J TABL(IFAM, IDUPSL, JPOS) = TABL(IFAM, IDUPSL, JPOS)+1 ELSE IENTRY(IFAM)=IENTRY(IFAM)+1 NENTRY=IENTRY(IFAM) DO 6550 IX=1,CARQ TABL(IFAM, NENTRY, IX)=NLID(IX) 6550 CONTINUE TABL(IFAM, NENTRY, HQ)=CARQ TABL(IFAM, NENTRY, MSLN) = NENTRY JFIRST=MSLN+1 С TABL(IFAM, NENTRY, JFIRST) = J JPOS=MSLN+J TABL(IFAM, NENTRY, JPOS)=TABL('IFAM, NENTRY, JPOS)+1 ENDIF DUZM=0.00 d

 \geq

2320 CONTINUE RHS=OPN-1 CTYPE='LE' EXECUTE PUTROW 2310. CONTINUE 2300 CONTINUE ENDBLOCK C REMOTE BLOCK TYP201 REMOTE BLOCK TYP201 MIND=0DO 2400 IFAM=1,K NENTRY=IENTRY(IFAM) DO 2410 IE=1,NENTRY MIND=MIND+1 OPN=TABL(IFAH, IE, MQ) DO 954 MREP=1, NMACH IRR(MREP)=0954 CONTINUE DO 2420 IJ=1,0PN M(MIND)=1 IX=TABL(IFAM, IE, IJ) IF (IRR(IX).EQ.0) THEN $XIND=(IX \rightarrow I) \star K + IFAM$ X(XIND) = -1CTYPE="LE" RHS=0EXECUTE PUTROW ENDIF IRR(IX)=12420 CONTINUE 2410 CONTINUE 2400 CONTINUE ENDBLOCK C REMOTE BLOCK INTGER REMOTE BLOCK INTGER DO '2600 INTM=1, NMACH INTK=K-1DO 2610 INTFAM=1, INTK IXIND=(INTM-1)*K +INTFAM X(IXIND)=1 2610 CONTINUE 2600 CONTINUE CTYPE = "INTEGER" FLAG= SPL EXECUTE PUTROW ENDBLOCK C REMOTE BLOCK PUTROW REMOTE BLOCK PUTROW IXTRMS = NMACH*K IMTRMS = 0DO 2500 IIFAM=1,K IMTRMS = IMTRMS + IENTRY(IIFAM) 2500 CONTINUE WRITE(8,7000) (X(IPR), IPR=1, IXTRMS), (M(IPR), IPR=1, IMTRMS) 7000 FORMAT(20(1X,I3)) IF (FLAG.EQ. SPL) THEN WRITE(8,7010) CTYPE 7010 FORMAT(1X, A8, - . -) ELSE WRITE(8,7020) CTYPE; RHS

IMTRMS=IMTRMS+IENTRY(ICLRF)

, . 7020 ń

FORMAT(1X, A8, 1X, 12) ENDIF FLAG="REG" EXECUTE CLRALL ENDBLOCK C REMOTE BLOCK CLRALL REMOTE BLOCK CLRALL DO 2700 HCLR=1,NMACH DO 2710 ICLRF=1,K XIND=(MCLR-1)*K +ICLRF X(XIND)=02710 CONTINUE 2700 CONTINUE /

IMTRMS=0 DO 2730 ICLRF=1,K 2730 CONTINUE DO 2750 LMIND=1, IMTRMS 2750 CONTINUE FLAG='REG' ENDBLOCK

5010

5000

XIND =(IIM-1)*K + IFAMX(XIND) = 1CONTINUE RHS=1 CTYPE=1EQ1 IF (IIM.EQ.2) THEN RHS = 2. ENDIF IF (IIM.EQ.6) RHS=2 EXECUTE PUTROW GONTINUE ENDBLOCK

M(LMIND)=0

REMOTE BLOCK ALLOC DO 5000 IIM=1, NMACH DO 5010 IFAM=1,K

PART

8

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 🖤

000.00000

50

1 υ 1 0

1 0 ł

									:	
03	F	PAR	т	13	4				. 1	
0 1	0	0	1	ō	0	0	0	0	0	Ó
0 0	0	0	Ō	Ō	Ő	1	Ō	ō	Ū	ĩ
0 0	1	0	0	()	0	0	1	0	0	0
02	I	PAR	τ	6						
1 0	Ò	0	0	0	0	0	0	0	1	0
0 0	Ó	1	1	1	0	0	1	Û	0	0
03		PAF		11						
1 0	1	0	0	0	0	0	0	0	0	0
0010	0	1	0	0	0	0	1	0	0	0
1 0 03	0	0 PAF	0	0	0	0	1	0	0	0
14.0	0	1	0	ô	0	0	0	Û	0	0
0 0	õ	î	ŏ	Ö	õ	õ	ŏ	ō	ŏ	1
1 0	õ	ō	0	ō	Ŭ	õ	1	õ	õ	ō
03	-		R'	-	15	•	•	-	-	•
1 0	1	0	0	0	0	0	0	0	0	0
0 1	0	0	1	0	0	0	0	0	0	0
00	1	0	0	0	0	0	0	0	1	0
02	Pź	AR I	r :	2						
1 0	0	1	0	1	0	0	0	0	0	0
10	0	0	1	0	0	0	0	1	0	0
04		PAI		7	_					
0 1	0	0	0	0	0	U	0	1	1	0 0
0 0 0 0	0	0 1	0 0	0	1	0	0	0	0	1
0 0	0	0	0	0	1	0	0 0	0 0	0	0 0
03		PAE		9	+	0	U	0	U	U
0 1	0	0	ō	í	0	0	0	1	0	0
0 1	0	Ū	0	1	ō	0	· Ō	ō	0	D
0 0	1	0	0	0		0	0	1	0	0
02	P	AR :	r	10						
0,1	0	0	0	1	0	0	0	1	Ű	1
0 0	0	1	0	0	1	0	0	0	0	0
04		AR 7		14						
0 0	0	0	0	1	1	0	0	0	0	0
0 0	0	0	0	1	0	0	0	0	0	0
0 0	1	0	0	0	·1	0	0	1	0	0
0 1 \$1B\$	0	1	0	0	0	0	0	0	0	0
\$18: \$ST(5	•							
3510	<i>)</i> r									

11

•••

•

Ś

).

9

		· · · ·
•		R240,NU7,5,5), GAJ, CLASS=A, REGION=2048K XEC WATFIV
		1 DD DSN=WYL.R24ONU7.FAMOUT,UNIT=DASD,VOL=SER=WORKPK,
		P=(NEW,KEEP),SPACE=(TRK,(40,10)),
		= (LRECL=80, BLKSIZE=15440, REGFM=FB)
	//GO SYSI	
	C	REF. SECTION 5.3.2
		ORMATION IN FMS - MACHINE GROUP ALLOCATION
/	´C;	
	C AUTHOR	R - GAJANANA NADOLI
	C	GRADUATE STUDENT, DEPT. OF INDUSTRIAL ENGINEERING
		UNIVERSITY OF WINDSOR, WINDSOR, ONTARIO N9B 2Z2
	-	
		COGRAM GENERATES THE INPUT FILE OF THE PROBLEM
		FOR THE SAS/OR INTEGER PROGRAMMING ROUTINE.
		FICATION OF THE MACHINES CAUSING INFEASIBILITY IN
		GROUP ALLOCATION.
•	C C VARIAI	LE DECLARATION SECTION ************************************
	, C TRAINI	INTEGER N(50), P, OPN, A(30, 3, 30, 30), NUMOP(3, 30), ROUTES(30, 3)
		INTEGER X(500), XIND, M(5000), IRR(30), XINDJ, XINDK
		INTEGER TABL(3,1300,50), IENTRY(3), JCOUNT(30), KCOUNT(30)
		INTEGER RPTF(3,1300), LID(99), RHS, NLID(15), CARQ, OPN1
	,	INTEGER ONEOBJ(15,3), ONEAVL(15,3,30)
		CHARACTER CTYPE*8, FLAG*8
	C READIN	NG THE OPERATION DATA FOR THE PARTS ******************
		IMPOS=2
		MAXOP 15
		MAXMLT=1300
		MAXWID=MAXOP+2+20 MQ=MAXOP+1
)		MSLN=MAXOP+1
		READ(5,10) NMACH,K,(N(IFAN),IFAM=1,K)
	10	FORMAT(12,2X,12,10(2X,12))
		WRITE(6,10) NMACH, K, (N(IFAM), IFAM=1, K)
		DO 100 IFAN=1,K
		NUM=N(IFAN) -
		DO 110 J=1,NUM
		READ(5,20) OPN
	2.0	WRITE(6,20) OPN
	20	FORNAT(I2)
	-	NUMOP(IFAN, J)=OPN DO 120 P=1,0PN
		READ(5,30) (A(J,IFAN,P,IM),IM=1,NMACH)
		WRITE(6,30) (A(J,IFAM,P,IM), IM=1, NMACH)
	30	FORMAT(15(11.1X))
	120	CONTINUE
	110	CONTINUE
	100	CONTINUE
		DO 200 IFAM=1,K
		DO 210 FSE=1, MAXMLT
	-	RPTF(IFAM, ISL)=0
		DO 220 IWID=1,MAXWID
	220	TABL(IFAM, ISL, IWID) =0
	220 210	CONTINUE
	210	CONTINUE IENTRY(IFAM)=0
	200	CONTINUE
		DO 4100 IFAM=1,K
		······································

Ì

NIIE

220	CONTINUE
210	CONTINUE
	IENTRY(IFAM)=0
200	CONTINUE
	DO 4100 IFAM=1,K
	DO 4110.MMM=1,NMACH
	ONEOBJ(MMM, IFAM)=0
ť	NPARTS=N(IFAM)
	DO 4120 JJJ=1,NPARTS
	ONEAVL(MMM, IFAM, JJJ)=0
	CONTINUE
4120	CONTINUE
4110 4100	CONTINUE
4100	MTRMS=NMACH*K*(K-1)/2 +NMACH
C MAIN S	EGMENT OF THE PROGRAM
C MAIN S	EXECUTE CLRALL
	EXECUTE NEWOBJ
	EXECUTE MINI
	EXECUTE ALLOC EXECUTE LIN1
	EXECUTE INTGER
,	
	EXECUTE UPPER
	GO TO 9999
C REMOTE	BLOCK NEWOBJ REMOTE BLOCK NEWOBJ
	DO 1001 MM=1,NMACH
	DO 1011 IIFAM=1,K
	XIND=(MM-1) * K + IIFAM
• •	X(X) = (AA - 1) $X(X) = 1$
	CONTINUE
1011	CONTINUE
1001	MIND=1
	DO 8000 MMS=1,NMACH
	K1=K-1
	DO 8010 JFAM=1,K1
	K2=JFAM+1 /
	DO 8020 KFAM=K2,K
	M(MIND)=37
	MIND-MIND+1
8020	CONTINUE
8010	CONTINUE
8000	DO 8030 MMS=1,NMACH
	M(MIND)=1369 MIND=MIND+1
	CONTINUE
8030	DUMMM=0.00
8500	
	FLAG=`SPL` CTYPE=`MIN`
	EXECUTE PUTROW
_ ···	ENDBLOCK
C REMOT	
	REMOTE BLOCK MIN1 ·
	DO 9000 IFAM=1, K
	NUM =N(IFAM)
	•

DO 9010 J=1,NUM OPN=NUMOP(IFAM, J) DO 9020 P=1, OPN ÷, DO 9030 MMS-1, NMACH XIND=(MMS-1) * K + IFAM X(XIND)=A(J,IFAM,P,MMS) 9030 CONTINUE CTYPE="GE" RHS=1EXECUTE PUTROW 9020 CONTINUE 9010 CONTINUE 9000 CONTINUE ENDBLOCK C REMOTE BLOCK UPPER REMOTE BLOCK UPPER DO 700 MM=1,NMACH DO 710 IIFAM=1,K XIND= (MM-1) * K + IIFAMX(XIND) = 1710 CONTINUE 700 CONTINUE MIND=1 DO 8005 MMS=1,NMACH K1 = K - 1DO 8015 JFAM=1,K1 K2 = JFAM+1DO 8025 KFAM=K2,K M(MIND)=1HIND=HIND+1 8025 CONTINUE 8015 CONTINUE 8005 CONTINUE DO 8035 MMS=1,NMACH M(MIND) = 1MIND=MIND+1 8035 CONTINUE 8505 DUMMM=0.00 С MIND=0 С DO 711 IFAM=1,K С NENTRY=IENTRY(IFAM). С DO 712 IE=1,NENTRY С MIND=MIND+1 С M(MIND) = 1C712 CONTINUE C711 CONTINUE FLAG= SPL CTYPE=~UPPERBD~ EXECUTE PUTROW ENDBLOCK REMOTE BLOCK LIN1 KHIND=1 DO 8002 LMMS=1,NMACH K1 = K - 1DO 8012 LJFAM=1,K1

•

. - . .

¥

	•
	K2=LJFAM+1
	DO 8022 LKFAM=K2,K
	<pre>XINDJ=(LMMS-1)*K + LJFAM</pre>
	XINDK=(LHMS-1)*K + LKFAM
	X(XINDJ)=1
	X(XINDK)=1
	M(KMIND) = -1
	CTYPE= LE
·	RHS= 1
•	EXECUTE PUTROW
	X(XINDJ) = -1
	M(KMIND) = 1
	CTYPE= LE
	RHS=0
	EXECUTE PUTROW
	X(XINDK) - X
	M(KMIND)=1
· •	CTYPE="LE"
	RHS=0
	EXECUTE PUTROW
	KMIND=KMIND+1
8021	CONTINUE
8012	CONTINUE
8002	CONTINUE
	DO 8815 KMM=1,NMACH
	M(KMIND)=-1
	DO 8018 IFN=1,K
	IXIND = (KMM - 1) * K + IFN
	X(IXIND)=1
8018	CONTINUE
8018	RHS=2
•	CTYPE='LE'
	EXECUTE PUTROW
-	DO 8609 IFN=1,K
	M(KMIND) = 1
	IXIND=(KMM-1)*K +IFN
	X(IXIND) = -1
	•
	- RHS=0
	CTYPE='LE'
	EXECUTE PUTROW
8609	CONTINUE
	KMIND-KMIND+1
8815	CONTINUE
	ENDBLOCK
C REMOTE	BLOCK INTGER
	REMOTE BLOCK INTGER
	DO 2600 INTM-1, NMACH
	INTK=K-1
<i>,</i>	DO 2610 INTFAM-1, INTK
	IXIND=(INTM-1)*K +INTFAM
	X(IXIND) = 1
2610	CONTINUE
2600	CONTINUE
	CTYPE = 'INTEGER'
•,	FLAG= ~ SPL ~
	EXECUTE PUTROW
	ENDBLOCK

.

\$

~

175

2

÷

EXECUTE PUTROW ENDBLOCK C REMOTE BLOCK PUTROW **REMOTE BLOCK PUTROW** IXTRMS = NMACH * KС IMTRMS=0 С DO 2500 IIFAM=1,K С IMTRMS=IMTRMS+IENTRY(IIFAM) C2500 CONTINUE WRITE(8,7000) (X(IPR), IPR=1, IXTRMS), (M(JPR), JPR=1, MTRMS) 7000 FORMAT(15(1X,14)) IF (FLAG.EQ. SPL') THEN WRITE(8,7010) CTYPE 7010 FORMAT(1X,A8, - . -) ELSE ÷., WRITE(8,7020) CTYPE, RHS 7020 FORMAT(1X, A8, 1X, 12) ENDIF FLAG="REG" EXECUTE CLRALL ENDBLOCK C REMOTE BLOCK CLRALL REMOTE BLOCK CLRALL DO 2700 MCLR=1,NMACH DO 2710 ICLRF=1,K XIND=(MCLR-1)*K +ICLRF X(XIND)=02710 CONTINUE 2700 CONTINUE MIND=1DO 8001 MMS=1, NMACH K1 = K - 1DO 8011 JFAM=1,K1 K2 = JFAM+1DO 8021 KFAM=K2,K M(MIND) = 0MIND=MIND+1 8021 CONTINUE 8011 CONTINUE 8001 CONTINUE DO 8031 MMS=1, NMACH M(MIND) = 0MIND=MIND+1 8031 CONTINUE 8501 DUMMM=0.00 REMOTE BLOCK ALLOC DO 5000 IIM=1,NMACH DO 5010 IFAM=1,K XIND =(IIM-1)*K + IFAMX(XIND) = 15010 CONTINUE RHS = 3·CTYPE="LE" EXECUTE PUTROW 5000 CONTINUE

- 176 -

- 177 -

賂

ENDBLOCK 9999 STOP END SENTRY \$1BSYS \$STOP //

•

•

÷1.

...

Сĭ,

APPENDIX D

1

ITERATION LOGS FOR DIFFERENT TRIALS OF APPROXIMATON PROCEDURE

Numl	ber of	Parts =	15					
Rand	iom Sta	arting Par	tition	.= 2	2 - X.	, `	:	2. 2. •
No.	INITIA ALLOC- ATION		R	AND F	DIATE INAL ATIONS	FN.	NEW CDC Co	omme ret
	14] [3,4,9	11,12,13, 9,10,15]		sed on 3.50	range a	nalysis	choose	2
[5,6,7,8] 0 MF=1 CDC=3.697		3.55	[3,4,9	,10,15] ,8,1,12		3.283	High, Choos 3.283	
	·		3.283	Same a	s above	0.01	3.283	ок
		,10,15] ,8,1,12,		sed on 3.05	range a	-	choose	e
. 1	F = 3 CDC=3.	283		[3,4,9),10,15, 13,14] .2]	1.8		Low, Choos 3.053
			3.053	Same a	is above	0.01	3.053	ок
[2,11] [3,4,9,10,1 1,5,7,13,14 [6,8,12] MF=2 CDC=3.053	3,4,9, ,5,7,1	3,14]		ed on t 2.70	he rang	e analy	vsis cho	oose
	-	2.70	14]	,15] 9.,10,13, 12,1,3,4	73.7	2.931	R low Choos 2.93	
			2.93	[2,11] [1,4,5 10,13 [6,8,1	5,7,9,	-0.10	2.93	<u>ок</u>

TABLE 9 b

•	TABLE 9 b (Continued)	.*
		7
tr INITIAL o. Alloc- Ation	INTEMEDIATE OBJ R AND FINAL FN. NEW ALLOCATIONŠ Z(R,X) CDC Commen	ts
[2,11] [1,4,5,7,9,10, 13,14] [3,6,8,12,15]	* Based on range analysis choose R=2.775	
NF=3 CDC=2.93	2.775 [2,11] 55.1 2.927 Low, [5,7,9,10,13, Choo 14] 2.92 [3,6,8,12,15, 1,4]	se
	2.928 Same as above 0 2.928 OK	
[2,11] [5,7,9,10,13, 14] [3,6,8,12,15,	* Based on range analysis choose R = 2.93	:
1,4] MF=3 CDC=2.93	2.93 [2,11,12] -12.2 2.895 Low, [1,4,5,7,9, Choo 10,13,14] 2.89 [3,6,8,15]	s
	2.895 Same as above -0.02 2.895 OK	-
[2,11,12] [1,4,5,7,9, 10,13,14]	* Based on range analysis choose R=2.80	-
[3,6,8,15] 5 MF=2 CDC=2.895	2.80 [2,11,12] 22.6 2.869 Low, [5,7,9,10,13, Choo 14] 2.86 [3,6,8,15,1,4]	s
	2.869 Same as above -0.01 2.869 OK	_
	/ Refer iteration 4, step 2 onwards in R #1	s

R.

d

8

- 180 -

TABLE 9 c

Iteration Log for the Approximation Procedure Number of Parts = 15 Random Starting Partition = 3 INTEMEDIATE OBJ R AND FINAL FN. NEW ALLOCATIONS Z(R,X) CDC Comments ITR INITIAL No. ALLOC-ATION [1,5,7,9,13,14] * Based on range analysis choose [3,6,11,15] R=3.10 [2,4,8,10,12] 3.10 [7,13,14] 7.90 3.124 Low, [3,6,11,15] Choos 3.12 MF=1 0 CDC=3,157 Choose [2,4,8,10,12, 3.124 1,5,9] 3.124 Same as above O 3.124 OK [7,13,14] * Based on range analysis choose [3,6,11,15] R = 2.90[2,4,8,10,12, 1,5,9] -------------1 2.90 [7,13,14] 22.4 2.961 Low, [3,6,11,15] Choo [2,4,8,10,12, 1,5,9] MF = 3CDC=3.124 2.961 Same as above 0 2.961 OK ----[1,4,5,7,8,9, * Based on the range analysis choose 13,14] R = 2.825[3, 6, 11, 15][2,10,12] 2 2.825 [1,4,5,8,9, 15.56 2.876 Low, MF = 1i3] Choose CDC=2.961 [3,6,11,15] 2.876 [2,10,12,7,14] 2.876 Same as above 0.01 2.876 OK

(Contd.)

- 181 -

- 182 -

TABLE 9 c (continued)

LTT INITIAL No. ALLOC- ATION	R	INTEMEDIATE AND FINAL ALLOCATIONS	OBJ FN. Z(R,X)	NEW) CDC C	Comments
[1,4,5,8,9,13] [3,6,11,15] [2,7,10,12,14]		ed on range an .876	alysis	choose	
MF=1 CDC=2.876	2.876	Initial		2.876	OK
	Family	configuration	not cl	hanged	
	Choose i.e., R=2.80	the family wi MF=3. Based on	th next the ra	t highe ange ar	est D _k nalysis
· · · ·	2.80	[1,4,5,8,9, 13] [3,6,11,12,15 [2,7,10,14]		2.875	Low Choos 2.875
	2.875	Same as above	-0.01	2.875	0К
[1,4,5,8,9,13] [3,6,11,12,15] [2,7,10,14]		ed on range an .75	alysis	choose	
MF=2 CDC=2.875	2.75	[1,4,8,5,9, 13,3] [6,11,12,15] [2,7,10,14]	22.2	2.819	Low, Choos 2.818
	2.818	[1,3,4,5,8, 9,13 [6,11,12,15] [2,7,10,14]	0	2.818	ок
·				(Contd	

183 -

TABLE 9 c (Continued)

Itr INITIAL No. ALLOC- ATION	R	INTEMEDIATE AND FINAL ALLOCATIONS	OBJ FN. Z(R,X)	NEW CDC Co	omment:
[1,3,4,5,8, 9,13] [6,11,12,15]		sed on range a 2.725	nalysis	choose	2
[2,7,10,14] 5 MF=1 CDC=2.818	2.725	[1,3,4,5,8,13 [6,11,12,15] [2,7,9,14]] 23	2.799	Low, Choos 2.799
ι	2.799	Same as above	0	2.799	ок
[1,3,4,5,8,13] [6,11,12,15]		ed on range an .799	alysis	choose	
[2,7,9,10,14]		Same as initi configueratio			
6 MF=1 CDC=2.799	i.e.,	the family wi MF=3. Based o R=2.799			
		Same as initi configuration			ок
	Choose R=2.79	MF=2 and base 9	d on ra	inge an	alysis
		Same as initi configuration			OK
	All fa	milies conside STOP	red for	reall	ocatio

C

TABLE 9 d

Iteration Log for the Approximation Procedure

Number of Parts = 15

.

Random Starting Partition = 4

ALLOC- ATION	R	INTEMEDIATE AND FINAL ALLOCATIONS	OBJ FN. Z(R,X)	NEW CDC Co	omments
3,9,7,13,14]			Lysis cl	hoose	
MF=2 CDC=3.44	3,.30	[1,5,8,10,15, 7,9,13,14] [3] [2,4,6,11,12]	-40.5	3.20	R high Choose 3.20
	3.20	Same as above	0	3.20	ок
<pre>[1,5,7,8,9,10, 13,14,15] [3] [2,4,6,11,12] MF=1 CDC=3.204</pre>		3.05			Low, Choose 3.105
<u> </u>	3.105	Same as above	0.02	3.105	0К
<pre>[5,7,9,10,13, 14] [1,3,8,15] [2,4,6,11,12] 2 MF=1 CDC=3.104</pre>	3.1	05 Same as initi	al 0.0	2 3.1	05 ок
	Family Choose i.e.,	configuration 	not ch th next	anged. highe:	st D _k
	CDC=3.44 [1,5,7,8,9,10, 13,14,15] [3] [2,4,6,11,12] MF=1 CDC=3.204	$3,9,7,13,14] = R=3.2$ $2,4,6,11,12] = 3,30$ $MF=2$ $CDC=3.44$ $[1,5,7,8,9,10, \\ 13,14,15] & * Bas$ $[3] & R = 1$ $[2,4,6,11,12] =3$ 3.05 $MF=1$ $CDC=3.204$ $[5,7,9,10,13, & * Bas$ $14] & 3.1$ $[1,3,8,15] &3$ 3.104 $Family$ $MF=1 &3$ $CDC=3.104 & Choose$ $i.e.,$	3,9,7,13,14] 2,4,6,11,12] MF=2 CDC=3.44 [1,5,7,8,9,10, 13,14,15] [2,4,6,11,12] 	3,9,7,13,14] R=3.30 2,4,6,11,12] 3,30 [1,5,8,10,15, -40.5 MF=2 7,9,13,14] CDC=3.44 [3] [1,5,7,8,9,10, 3.20 Same as above 0 [1,5,7,8,9,10, * Based on range analysis [3] R = 3.05 [2,4,6,11,12] 3.05 [5,7,9,10,13, 15.7 MF=1 14] CDC=3.204 [1,3,8,15] [5,7,9,10,13, 14] * Based on range analysis 3.105 Same as above 0.02 4. 3.105 Same as above 0.02 3.105 CDC=3.104 Choose the family with next i.e., MF=3. Based on the r	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

(Contd.)

TABLE 9 d (Continued)

 INITIAL Alloc- Ation	R	INTEMEDIÀTE AND FINAL ALLOCATIONS		NEW	nments
 	2.95	[5,7,9,10,13, 14] [1,3,8,15,4] [2,6,11,12]	-31.7	2.846	High, Choose 2.846
	2.846	Same as above	-0.01	2.846	0K
 	Refer	to Iteration 5	onward	s in RS	-

٢.,

- 185 -

- 186 -

TABLE 9 e

Iteration Log for the Approximation Procedure

.

Num	ber of Parts -	15		,	. 5	
Ran	dom Starting Par	rtition	≖ 5		X	
	INITIAL ALLOC- ATION	к R	INTEMEDIATE AND FINAL ALLOCATIONS			· - - - -
	[1,3,9,12,13] [4,10,11,5,7] [2,6,8,14,15]		sed on range an 3.35	nalysis	choose	2
o	MF=2 CDC=3.665	3.35	[1,3,9,12,13, 4,5,7,10] [11] [2,6,8,14,15]	-60	3.209	High, Choose 3.209
		3.209	[1,3,9,12,13, 4,5] [7,10,11] [2,6,8,14,15]	-3.7	3.197	High, Choose 3.197
		3.197	Same as above	0	3.197	ок
	[1,3,4,5,9, 12,13] [7,10,11]		sed on range an 3.10	nalysis	choose	2
1	[2,6,8,14,15] MF=1 CDC=3.197	3.10	[1,3,4,5,9,13 [7,10,11,12] [2,6,8,14,15]] 6.6	3.123	Low, Choose 3.123
ł		3.123	Same as above	-0.01	3.123	ок
	[1,3,4,5,9,13] [7,10,11,12] [2,6,8,14,15]	* Base R=2.	d on range ana 95	lysis c	hoose	
2	MF=3 CDC=3.665	2.95	[1,3,4,5,9,13 8] [7,10,11,12,1 [2,6,15]		2.95	ок,
					(Cont	↓ d.)

6

- 187 -

TABLE	9	e	(Continued)	

	INITIAL Alloc- Ation	R	INTEMEDIATE AND FINAL ALLOCATIONS	OBJ FN. Z(R,X)	NEW CDC C	omments
	13] [7,10,11,12,14]	Base R=85	d on range ana	lysis c	hoose	
3	[2,6,15]	2.85	Same as initi	al 33	2.95.	Low, Choose 2.95
	CDC=2.95	2.95 Famil	Same as above y configuratio	0.03 on not c	2.95 hanged	ОК 1.
		Choose family with the next highest D _k , i.e., MF=2. Based on range analysis Take R=2.85				
		2.85	[1,3,4,5,8,9 13] [7,10,14] [11,12,2,6,1]		2.86	Low, Choose 2.86
		2.86	Same as abov	e 0	2.86	ок
	[1,3,4,5,8,9,13] [7,10,14]	* Ba R	ased on range =2.80	analysi:	s choo	se
4	[11,12,2,6,15]	,2.80	[1,3,4,8,13] [7,10,14,5,9 [11,12,2,6,1]	2.83	5 Low, Choose
	MF=1 CDC=2.861	2.83	5 [1,3,4,5,8,1 [7,10,14,9] [11,12,2,6,1		5 2.83	5 OK
	[1,3,4,5,8,13] [7,10,14,9] [11,12,2,6,15]		ed on the rang 2.775	e analy	sis ch	
5	MF=3 CDC=2.835	2.77	5 [1,3,4,5,8,1 [7,9,10,14,2 [6,11,12,15]	·]	2.79	
	_	Refer	to iteration	6 of RS	₽ #3	

VITA AUCTORIS

1958	Born in Hosmat, India, on 14th of December.
1974	Completed higher secondary education from Government High School, Kadaba, India.
1976	Completed Pre-University Course from Sri. Bhuvanendra College, Karkala, India.
1981	Graduated from The National Institute of Engineering, Mysore, affiliated to the University Of Mysore, India with a Bachelor's degree in Mechanical Engineering.

1981-84 Worked as an Industrial Engineer in the departments of Management Services and Industrial Engineering at Bharat Electronics Ltd., Bangalore, India.

1986 Curerently a candidate for M.A.Sc. degree in Industrial Engineering at the University of Windsor, Windsor, Ontario, Canada.

- 188 -

· 37