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_ V\/A_BSTRACT_ L
This dissertation deals with the solution of the
following flow problems in pplar fluidS'_” _
l. The motion of a polar rluid flow through a curved pipe
is studied ‘A perturbation method is used to solve the |
-system of differential equations which governs the motion.
The stream—lines in the central rlane of the pipe and in the
cross-section -are sketched for particular values of the
,couoling number, the length 'ratio and Reynolds number and
a comparison is made with ther case of Newtonian fluids. _ﬁe
‘ rate of flow. through the pipe is- calculated up to the second
approximation and it is observed that it decreases due to
the curvature of the pibe
2. Two—dimensional internal and’ external flows of polar
fluids for a circular cylinder are investigated. The motion
within a eircular cylinder generated by: - : - |
a) fluid entering and leaving through slots in the Cylinderﬁ
wall and | ‘
b) the rotation. of part of the wall
are considered. In both cases an analytical solution is

obtained,’ the Stream-llnes are sketched for special cases

and the deviation_from the Newtonian-fluid is observeda

An investigation of creeping flow of a polar fluld past
a circular cylinder is carried out and it is noticed that
this motlon is not possible as in the case of a Newtonian
flulg.
;

i1.
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3. The soldtieh of the Hamei'f1ow problem iIs discussed and

';it is shown that there does not exfet a purely radial flow

of a polar fluid which satisfies both the equations of motion
A
and the boundary conditions when the micro—inertia of the

6erticles.are-negligipte. .

If the micro-inertia terms are retalned it is observed
that the solution is possible, only for a particular relation

=
between the material.coeﬁficients,.and it has the same form

,as Tor the Newtonlan fluid.-

Also it is observed that the rotation of the particles
" of the fluid dees not.induce a secondary flow between two
ﬁon—perallel Infinite plates 1n the case of creeping flow.of

a polar fluid.

111
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CHAPTER I -

BASIC EQUATIONS AND OBJECTIVES

1.1‘ Introduction

The theory of polar fluids.and related theoriles are
models for flulds in which the microstructure of the material
plays a signifioant role. The applications of these‘theonies
have been to physical and biologlcal sciénces, for’ example to
blood flow and suspensions. The theory can also be apolied
to flulds .carrying charged particles and subjected to an
external electromagnetic field that causes the particles.to-
fotate relative to their neighbors. To treat.the mechanics
of flulds with microstruotufe, new continuum nodels - different
from the classical continuum model for wviscous flulos -~ have —

been suggested from different points of view by‘many'authors.

The theory of polar flulds was originally developed by
assuming non-central forces of interaction between~the'
partlicles. ' If the interparticle forces are not central
forces Iin a paﬂticle—particle interaction there 1is an inter-

Lparticle couple as well as an interparticle force. TUnder the
action of this cogple the fluild particle will have a tendeney
to rotate relative to lts neighbors The essential idea of
a polar fluld is obtalned by introducing a kinematic variable

-uto model'the rotation of the particle relative to its

" neighbors and a skew-symmetric stress tensor to model the

-forces that balance the action of the couple. The presence

> g



..of body couples and also of the micro-inertia of the particles

are allowed In the theory of polar fluids

‘In classical fluid mechahics the only kinematical yector'

field is the velocity field and a fluid element_rotates with

the local vorticlty. In the case of polar fluids the.

rotation of the particles cannot be represented bylthe
vortioit}walone. Hence the thecry employs two independent -
vector fields, the usual velooity field and an angular uelocity
field Mechanically, pelar fluid theory differs from the

classical cne in that-in the former case angular momentum

effects, such as couple stresses and asymmetry of the usually

symmetric stress tensor, are considered.

Grad [14] introduced the linear constitutive equations
for a polar fluld subsequent to & statistical mechanics
study. These constitutive equations relate the skew-symmetric

part of the usual stress tensor t& the difference between the -

_ barticle angular velocity and the vorticity field as~well as

the couole stresses to the gradient of the particle angular

velocity.

The same constitutive eouations have been advanrced from

L]

different view points by Aero et 2l.[ 1], Cowin fy1],

Condiff and Dahler [ 3], Dahler [ 8] and Eringen [13]. S -
Aero et al-[ 1] simply introduced the velocity and total
angular velocity-fields and postulated a disspation funetion

that-leads to Grad's constltutive equations. Cowin development

P



was based on a Cosserat continuum. He §§sumed;that eacﬁ\

B
N,

particle is outfltted with a rigid triad of vectors. The'
total‘angular velocity of the particle.is then repregented
by the aﬂgulﬁr velocity of the rigid triad. Eringen fl3]
obtained the coﬁstitutivé-eQuations for a polar fluild by
speclalizing his more geheral_theory of simple microf;uids;
[12]. ‘Each of these developments has heen from aﬁcontinuuml
mechanics vieypoint.’ Dahler [ 8]-develqpea the same

constitutive equations from statistical mechanics considé;ations.

. The theory of polar fluids has appeared 1n recent-
literature under a variety of different names. It 1s also
_called Cosserat fluids, asymmetric hydrodynamics, micropolar
fluids, fluids'with'antisymmetric stress, oriented fldids, .
... ete. A comprehensive account for the theory of polar,

fluids has been given by Cowin [ 6].

~

‘In Cowin's article, references to thed@glution of several
boundary value problems in polar fluids ﬁa::igsén listed. |
'More recently, solutions to another set of flow pfoblems in
polar f;uids have been discussed Ey Guram and Smith ([163-[1T7})-
:Guram [is] also gave references fo other worké not mentioned

in Cowin I 6£]. L
, -(\_,_,

. Cowin's terminology will be employedsthroughout the -

present work.
1 / | J ‘

.



1.2 Summary of Linear Polar-Fluid Theory

-

(1) Kinematics

The two inéependent kiﬁematical vector fields for the
motion of polar flulds are: the usual velocity field-»y(§,t)
and an axial vector field _§(x,t) which represents the total
angulap velocify of the ﬁolar‘fluid particle. The usual or

average angular vélo%ity field W(x,t) is given by
. b [l . -

N [

vxy oL | : (11

TR

-~

The relative angular velocity H(x,t), defined by

-
0o
1=

(L.2y

’r-is the” difference between the total angular velocity of a
2 partiq&p and the averége angular velocity'of the region in
which the particle is embedded. The spatial gradient of the

total angular velocity g willl be .denoted by

IR

L 2

v . | | (1.3)

and the symmetric part of the velocity gradient is given by
. Ch ,

~

s
-

Ligv + (vv)*) . (1.14)
2 o~ ~ .

’

D

(11) Balance Egquations '

The usual form of the mass conservation applies for

polar fluids which .can be written as



tr

(1.5)

where p 1s the density and the superimposed dot indlcates

the material time derivative.

The well-known differential form of Cauchy's linear

momentum principle is.

vV -T +.p§ = pv
where T 1s the usual stress tensor and g 1s the body
force per unit mass. Equation (1.6) has the same form as
in ordinary continuum except for the fact that the_stress

tensor T need not be symmetric. ) '

The balance’of angular momentum for polar fluids is

3>
+
he
10>
n
hel
-
1GY)

~
VvV -A + 2

~ ~
where A .is the cauple stress axial tensor, T 1s an

axial vector associated with the skew-symmetric part of the

usual stress tensor, c is a body couple and I is the

1,

inertla tensor of the polar fluid.particles. If we assume

that the particles are spherical, I can be written as

where k 5eing the radius of gyration of the partlcles and

1 1s the unit tensor. In this case equation (1.7) takes

the form

(1.6)

(1.7)



'V -At2T + pc = pk°G . (1.8

—

3 (111) Constitutive Equations

The linear constitutlve equations defining polar flulds

are:

‘T =-pl+ A1TrD+ 2D~ 2tH (1.9)

»>
"

a1 Tre+ (B+y) ¥ + (8-y) ¥ (1.10)

Here, p 1s the thermodynamic pressure, A 'énd B are the
usual viscosity coefficients and Tt i1s a re;ative rotational-.'
viscosity called, simply, the rotational viscosity. The:
coefficients o« , 8 and y are viscoslities assoclated with

the total rotational gradient and are calléd, for simplicity,
gradiant viscosities. Tﬁe constitufive equatidn‘(l.Q)

reduces to the Newtonian law of viscosity when 2TH,

vanishes. The viscésity coefficients A , v ,. T , @ 2 B and

Y are restricted by the inequalities

w>0 31+2u_>_0 R T>0

v
o

3a + 28 > 5 g >0 » Y20

” ' (iﬁ) Equations'of motion

When the material coefficlents are assumed to be constants
and the constitutive equatlons (1.9) and (1.10) are
' .substituted into the expressions'for‘balance of linear momentum

and angular momentum (1.6) and (1.8), one obtains



+ b= %o = oy

i >

(1+p)gg . v+ uV2¥ +-212 x
(a+85Y)VY - G + (B+Y)V2G - U7H + pc = pkZG

It 1s noticed that equation (1.11) reduces to Navier-

Stokes equations when 21V x E vanishes. Equation (1.12)

has no countefpart_in ordiﬁary continuum mechanics. If the

- polar fluid is assumed to be incompressible then (1.5)

reduces to
y,- v =20

and (1.11) and (1.12) ‘take. the form

(u1)7% + 27 7 x G + pb - ¥p = pv

(a+28)9Y - G - (8+Y)Y x (VxG) — 4tG + 27V x v + pc = pk°G
The system of equations (1.13) - (1.15) is a system of
seven ‘differential equations in the.seven.scalar unknowns

v,G and p .

(v} Dimensionless ParametefsQ

(1.11)

(1.12)

(1.13)

ﬁl.lh)

(1.15)

In*this subsection we introduce ‘two dimensionless numbers.

The first one is called the length ratio L and it is a’

ratio of a2 geometric characteristic lenéth LO to the

materlal characteristic length & which is defined by

——



e

N

4y

~

§i1) LB o (1.16)

We. notice that 2 is a real positive number which follows

from the restrictions on the material coefficients.. The

second number to be introduced 1s called the coupling number

L]

N and is given by

T 2 -
N=|— » 0O <N<1., (1.17)
_ | 2 . ;/
This number N characterizes the coupling of the conservation
of linear and angular momentum as may be seen from (1.11) and
(1.12). The coupling number N 1is a property of the fluid
and 1s a measure of the degree to which the particle 1is

constrained to rotate with the\ayerage angular veloclty in

"which it is embedded. The case N -+ 0 corresponds to

unconstrained rotations. For N = i > the. total angular
velocity a coincldes with the reglonal angular velocity w
and the theory of polar fluids reduces to Stokes [28]

couple stress theory. A complete dlscussiornt for the behaviocur
of polar fluids for the limiting cases of N and 'L is glven
by Cowin ({57, [ 71). |

(vi) Boundary Conditions

In elassical fluid mechanics, one employs the no-slip

conditlon for velocity on the solid boundary, namely;

L4

e



v.= v, at all solid boundaries (1.18)

.whefe Vo represents the wvelocity of .the boundary. In polar

fluids theorys the same boundary condition is hsed.“ For
spln, stress and couple stress there have been several‘
b&undary conditioﬁs suggested in the l;teratﬁre. The no-spin

condition on the boundary is the most frequently used one

for the‘tofal_angular veloclty that is

16>
|}

G, at all solid boundaries ' (1.19) .

where 90 _ié the angular‘velocity of the boundary.

-/

Aeroc et al. [ 1] suggested that the couple stress on-the
solid boundary might be related to the difference between the
angular velocity of the fluld at the boundary and the angular
velocity of the boundary by a friction factor, that 1is,

An=4(G - Gy) at all solid boundaries | (1.20)

where :n 1s the unit normal to the boundary and A is a
second-rank. tensor representing the fluid-wall friction. No
couple stress conditlon on the boundar& is fulfilled if - A

-1

vanishes. If A equal to zero then the condition (1.20)

reduces to the no-sﬁin condition‘(l;l9).

Condiff and Dahler [ 3] discussed the no-spin condition

13



and the vanishing of the skew-symmetric part of the stress
tensor ‘on the soliﬁ boundary. They noticed that these two
condltions represent opposite extremes. - These authors
suggested the formulation of a compromise boundary condition
.as a homogeneous linear combination,of the two extremes b&
introducing a new parameter 's . This condition can be -

~written as

bl

G-G,=sW, 0<s <1 onthe solid boundary. (1.21)

1.3 Scope of The Present Work

-+

The main objective of tnis work 1s to study the solution

of certain boundary value problems in the theory of polér

flulds.

- Chapter II'deels with the study of the motion of a polar
fiuid through a curued pipe. A perturbation method Is used
to solve the systemﬁof differential equations which governs
the motion. The stfeem—lines are sketched and compared with
those for a Newtonianlfluid.‘ The rate of flow through the
pibe Is calculated up to the second approximation and the

effect of curvature of the pipe is discussed.

The solutions for creeping two-dimensional Internal and
. T
external flows of polar fluids Qor a circular cylinder are -

presented in chapter III. In- the first part of the chapter



-

the motion of a polar fluid w;ﬁE}n a circular cylindér
generated by | E N |

(a) fluid entering and leaving through slots in the cylinder
- wall énd

(b) the rotation of part of the wall

is considered. In both cases analytical sclution ére obtained

and streamflinesfare sketched.

The last part of the chapter is devoted to an
investigation of a creeping polar fluid flow problem past

a circular cylinder.

In chapter IV, the solution of the Hamel flow problem

is studied in the case of polar fluids. The possibility of

-

exhibiting & sec0ndaf& fioﬁnfor a ﬁolar fluid between two

non-parallel plates 1s Investigated.

1l
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CHAPTER II
. - ' : ‘
POLAR FLUID FLOW THROUGH A CURVED PIPE
N " ' |
2.1 Introduction ' ’

During the past fifty years there has been an increasing
interest In the study of fluid flow behaviour through curved
pipes. There are many physical and industrial situations in
which such work is sf_interest as in the flow of blood in human
arteries. Dean ([é 1, [10]) first considered the problem of
steady viscous fluid in a tube, which 1s coiled in an arec of
a2 circle and which has a constant'cross-sectisn, under a
constant pressure gradient?ﬁfzean [9 1 obtained the solution
to the first approximation but failed to show that the relation
between the pressure gradient and the rate of flow through the
plpe is dependent on the cubvature. In the subsequent paner,

7z
Dean [10] used a\perturbation series to get ‘higher order

'approximations and showed that the rate of flow through the

Pipe is reduced due to the curvature. Topakoglu [31] employed
a somewhat different approach to the solution of such probiems
and also obtained results for the flow betwéen two concentrice

torus shaped pipes. Topakoglu [31]) observed that in order to

show the effect of curvature on the -volume flow rate it was

necessary to consider solutions of higher order approximations

than the first. The literature on viscous fluid flow inm curved

pipes 1is very extensive and a detailed account 1s given by

Smith [27].

12
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" For non—Newtonian.fluids‘in a curfed pipe, Jones-{lgl
ohtained the solution to the first approx;métion only. He -
pointed ogt that the second approximation ié neceséary to show
the effect of curvaﬁpré on .the volqme'fldw rate but it is too

difficult to calculate. Thomas and Walters {29] studied the .

r—
-~

problem for the case of visco-elastlic liquilds and shohed the
effect of elasticity on the fluld behaviour in the pipe and thé "
flux through it. . ' : | . ~

In this chapter an invgstigation of a steady flow of a polar
fluid through a curved pipe under a constant pressure gradient

is carried out.

2.2 Formulation 0Of The Problem

Figure 1 showé the coordinate system used for the
discussion of the motlon of a polar fluid through a pipe of
¢lrcular cross-section, c&iled in the form of‘a circle. The
axls of the ecircle in which the plpe is coiled ié 0Z and
C 1is the centre of tne section of the pipe cuﬁ by a plane.
'that makes an angle 6 with the fixea axial plane. OC 1is
of length R which is the radius of curvature of the coiled
tube. The plane passing through O and perpendicular to 02
wlll be called the "central plane™ of the pipe~and the circle ‘\4/
traced out by 'C , its “cenﬁral line". .Any point M 6f the
sectlon © = constant is referred to by the orthogonal
curvilinear cocordinates (r, ¢, 8) where r 1is the distance

CM and ¢ is the angle that CM makes with the line through



a
"

Figure 1. The coordinate system (r, ¥y, 6) chosen to

descripe thé motion in a cwrved pipe of
g

clrcular cross—section.

'

J
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. para to 0Z; the line element is given by o
© ad? = ar? + PPag™+ (R + rosin pPa0® ' (2.1)
The motion 13 expected to be a~steady one in which the
velocity V aﬁa\Fhe total angular velocity G {but not
the pressure p) are independent of 8 . It is assumed that
the motion of the fluld 1is due to a fall of pressure along

the pipe and that the general direction of flow is the direction

in which 8 .increases.

The componenté cf V,‘g respectively are U, G in

1
the direction of CM , V, G2 perpendicular to U, Gl and

in the plgne of the cross-section and W, G3 perpendicular

to this plane.

Using equations (1.13) — (1.15) the motion of such-a

4

fluid is described by

30 , U, _Usind 13v, Veosd _ g C(2.2)
ar r R+ r sin vy r Y R+ r sin ¢ :
2 2
p[u?;‘l+‘_fﬂ_v__ W sinw]=
ar 1 9y r R+ rsiny

SRy gy - (uerft s 805 Y LI 1
: r 3 R+rsiny r r 3y

el

a& G 'cdé ¥ .
+ 21(1 3, -3 ) (2.3)
r 3y . R+ rsiny




RN '
16
WLV, W . W cos d
pjU= + L &X ¢ Y _ . EC = -
\ ar r 3P r R+ rsiny
—la—p-+pb2+(u+-r) A sin ¢ )(ﬂ-{-l-lﬂ
-1 ar R+ r sin ¢ ar r. r 3
3G3 83 sin ¢ |
- 27 + _ (2.4)
ar R+ r sin ¢ '
0 p3W L V. 3W . _UW sin g _ + VW cos ¥ -
r r 3} R+rsiny R+ r sin v
_ 1 2 Py + (wtr) aw W sin y
R+ r sin ¢ 36. R+ rsiny
L 1 G, 1 3G
+ 23 lB_W_!_ W cos v +2'r(—g-+——2-—-—l (2.5)
rdir 3y R+ rsiny “{er r 3v :
. a& E & sin ¢ 1 aE -6 cos Y
(a+2s)— N + 242 }
- ar {3r r R+ rsiny r oY R+ r sin ¢
\ - 36, G. 1 3G
_(g-l-Y)i.a__q. cos ¥ 2-{._2._._.....}.
3y R+ r sin yfidr r 3
- 416y + 21 ;_a_w + —Weosy |, pe, = pkaGl (2.6)
‘ \r Y R+ r sin y
a& 8 _ &- sin ¢ 1 aé & cos U
(atop)2 231, 1, 71 + -2 -,2
r a3y {sr r R+ rsiny r Py R+ rsiny
| 3G, G, 1 3G .
+ (B+y) 2 + sin ¥ { 2, 2_ 2 _1} - 416,
dr R + r sin w_\ar “r r oY _
27|38, _Wsingy | pe, = pkG, (2.7)
ar R+ rsiny :
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3G G,stn v} 13 [138, &. cos v
(8+Y)——~§-l( 3+ 3 e o3y 3 )
ar or R+ r sinvy T3P ir.3p R+ r sin vy
- MTGB + 21— v + ¥ 130 + peg = pk263 (2.8)
- \er T r 3

The system of: equations (2.2) - (2 8) is somewhat >

" complicated and it is difficult to get its general solution.

Following Dean [10] one can assume that the curvature of the
pipe is small: that is a/R 1is smal:l where a 1s the radius

of the pipe. As a result it is possible to replace

sin v 13 - cos ¢

— 1 s 3 + and = — #
R+rsihy dr R+ rsin v " r3W R+ rsiny
by
l R 3_ and l a_
o ar r 3y

respectively. - e

Moreover, i1f one assumes that the body force b , the

-
-~

body couple C and the micro-inertia of the particles all

-

vanish, the system (2.2) - (2.8) reduce to

L+ D424 . ) (2.9)

___+__;'_ 2t 173 - (2.10)



18

WV LYW W W leosw . _ 13 [p
ar r ap r R r ay g
wbtl 3 fav . v 1 U 2& Gy | -
¢putz}y 2 ¥, ¥ _ L0} _ =t 3 (2.11)
P ar ar r r 3y 3r - .
UEE s LW _ 1 (~i + (BT 2%u ¢ 2 3W 1 EEE J ‘
ar  r a3y R 96 302 r ar 1l 3y
3. G 1 3G
\2:_(__2 222 - _ (2.12)
p \or r r 3¢ ‘ -
36. 6. 1936\ . [3G. G, 1 aG
ST L I | <s+~r>u__-x_2+_2-___1.)
ar |ar r T 3P r 3wiar r T av
+ 27 2 3W _ hr&i =0 (2.13)
- r 3y '
' 3.  G. 1 3G [36. 6. 136
(wrog)2 2 j L+ 1u = 2y (g |2+ 2o -2
r 3¢ |3r r r 3y ar \3r r r 3y
v
-2t &y, =0 _ (2.14)
ar
E'A . 2A
3%G., 193G, 1 3%
(8+Y) 23+“ 3*7 23)+2Tav y_1a
o r ar r 3y ar T r ay
- LITG3 =0 * o . (2.15)
%5

15 G2 and 'G3 are .independent of 8

As U, V, W, G

1t follows from (2.12) that- 2 must be of the form
Cp



of) (r,¥) + fz(r,w), and then from (2.10) and (2.11) that

fl(r,w) must be a constant. We can, therefore, write

_ 13 R} (2.16)
R 36 . -

FY

where A is a constant which may be termed the mean
_pressure gradlent; it 1s equal to the space-rate of.decrease f

in the pressure along the central line.

From equations (2.13) and (2.18) one gets

5 o (acl G, 1 aG

(V- —+ =+ -—=}=0 . C(2.17)
ar r T 9y
and
o o [36, G, 16} 3 ,
(V=) | —=+ =-=-—= - —=7W=20 (2.18)
ar T r 3y 2
where
232 .13 .1 3° 2 _ At
! - 3
ar° r or r2 3p2 1 g+ 28
and-:
l§= b :.
. Bty o
The continulty equation (2.9) suggests that one can
write
rU = - af , V= EE‘ ' (2.19)
oy ar - : .

where £ , the stregm function of the secondary flow, 1s 2
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‘function of r and ¢ only. 'Inserting these expressions

of U and V in (2.10) and (2.11) and eliminating bp
yields' '

Ea_._ﬁ_a_ V2f+§ﬂ TCOS_wﬂ_— 51n¢§H)=
R ar g

- ‘Eil) rvie + 2T TGy . | (2.20)
p .

Also, using (2.19) in (2.12) and (2.15), one gets

3G, G, o 1 3G
Llazaw _afaw) oA furr iR, 2t (T2 27 2 %) (a.a
r P p ar =+ r 3y

and

2
A

2

2 ,2.7 _ :
T -a%)eg =m0 (2.22)

~

respectively.

Equations (2.17), (2.18), (2.20), (2.21) and (2.22) can
be put in non-dimensional form by using the following
substitutions: - N

+ . 'A
r=2"%, W= Ww G, = Ggy
o

(2.23)
G2'= ng R 63 = Gg3 s r = ar
Sy {

. where WO is assumed to have the dimensions of velogity

‘and G has the dimensions of angular velocity. Thus, on
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using (2.23) in (2.17), (2.18) and (2.20) - (2.22) one

obtain5°
9L ‘1l 3g .
(v -k) % 4 +—_——3 0 ' ' (2.24)
ar' rt 3y -
3L g 1 ag
(vi - kg) 2,22 _ 71} _ nlviw = . (2.25)
or' r' r' 3P < ‘

80 3 .3 23 v§¢ + Fulrt cos ¢ B - sin p ¥ =
, ar! oy

u . 2 - .
- r‘Vl¢ + n3r'Vlg3 (2.26)
| ‘ g 8 1 3g
Lfas aw_meaw) gz o2, (f2, 5 2 ) D)
rt |ar' 3 3y ar't ar' ' r' 3y Rk
2 2 2. :
(Vl - kz)g3 + n2V1¢ =0 . (2.28)
¢
In the above equatlions:
02 = 32 S B | 2°
L ar'z r' ar! r'2 aw*e
2
2 4ta 2 _ lbra®
S lera
- a + 28 B + v
2 .
kW
+
n, = 2°0 . n, = 21 (u+1) (2.29)
2aG p(B+Y)G ,
‘_ 21Gazo ) _  21Ga
ng = > ny = —————
(u+1) (u+T)W,



=l
i

pa s ON'

| ) | _
a3 LS - A32
s C = . (2.30)
utT Wo (utT) ’
The constants X and C are related respectively to K
and © , as defined by Dean {[10], by the relations of the

form:
(1-x2)%k  and T = C(1-N%) (2.31)
where N 1; the coupling number defined by (1.17).

Following Dean [10], 1f the motion is slow, 'WO can

be taken to be the 6-component of the velocity of the fluid
at any point of the central line; and in this case, the
distribution of @-component of velocity apnroximates to that
occurring in t?e stralight-pipe problem. Consequently,

awop/u is then approximately equal to the Reynolds number
n , defined as 2Vap/p where ¥V is the mean veloclty over

the cross—seot%on. Thus for slow motion 1t follows that

2)2 a
R

¥ = 2n2(1-N (2.32).

2.3 Solution

In order to solve the system (2 24) - (2. 28);\one can
use the method of successive approximation in which it 1is

assumed that 81> gz,,g3, w and’ ¢ can be expanded in
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ascending powers of X (ef. Dean [10]).

When the pipe is straight, a/R and K are zero, and

also g = g3 = ¢ = 0 . Equations (2.25) and (2.27) then

reduce to
¢ .1 4 2f {982 _ &
— + e = k2 —_— + —
ar! r' dr! dr!* rt
- _._Zdaw TR - (2.33)
1 dr' r' odr " ;
and
_ 2 - dg g |
C + dw +1_ﬂ.... +nu._.._2+._2. =0 . . (2-3”)
dr? r' d4dr? ér?! rt .

respectiqsly. Equations (2.33) and (2.3&), subject to:

w(l) = 52(1) =0, w(0) and g5,(0)}. are finite (2.35)
are satisfled by . i a
. ‘ ' -
> [ s o | IACNL) — I, (NLrt) .
w=A82 1y _ a2 35-( 0 0 ) (2.36)
hawy | L II(SL)
[ I, (NLo')
gz = -%a_ I-T - ------~——l (2-37)
bug § I,(NL) Lo ) '

where IO and Il afe the modified Bessel funétions of the
first kind and order 0 and 1 respectively, L is the length

ratio and N 1s the coupling number.

o~
“—~

o
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When the pipe is curved, and a/R and X are

sufficiently small, following Dean [10] 1t 1s assumed that -

g = Kg:(Ll) + Kzg:(f) .+ ...... \
82 = géO) + Ks(l) + 'K'z (2) : ......
gy = Kggl) +iﬁzg§2) ..... ’ _ ) A (2.38).
W= w. + Kw, + Kow, + ...
0 1l 2ttty
%2 : /.

where g's, w's ahd é's are functlons of r and ¥ only.

On substituting (2.38) in (2 24) ~ (2.28) and equating
the coefficients of similar Dowers of K, g's w's and

¢'s can successively be found. The coefficients of zero .-

<
or&er in ¥ are coincident with (2.33) ané (2.34) and,
therefore, the solution for w, and géo) is glven by
(2.36) and (2.37) respectively.
Equating the coefficients of K one obtalns:
) 5 - 51) ggl) 1 agél}
(vl - kl) + + — =0 ., (2.39)
ar! r! r' Y
(v] - k5) + - — - n Viw, =0, (2.40)
) ar! . r! rl ab
y 2_(1) 3wy | |
_p! = —_ : '
r'Vi0q * n3r Vlg3 ! rt LA cos ¥ > _ (2.41)
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f
5 .agél) gél) 2 ag§.1) 1 3¢, awg
vy + my| =2 + S5 S (S i (2.42)
- ar’ r' r' 3y rt 3p art
(V3 - k3l + nyvde =0 L (2.43)

£

‘Elimination of ¢; between (2.41) and (2.43) gives

~"
: aw
F2 .52 2.2y (1) _ 0
Vl(Vl - N°L )337 = W, ;;T cos ¥ | (2.44)
which suggests that ggl) can be written as €
ggl) = Egl)(r') cos ¢ . o (2.45)

Using-(E.MS) in (2.44) we get the differential equation

2 . 2 -
d— l— d _ -1.-4d- -1~d
. (_2*' 2){@ > P = —

ar! r' drt pt rt r! drt
f dw .-
1 2.2 =(1) 0
(rrz )} 3 2 04pt . .
At thils point it is convenient to write ‘wo as
<
_ 2 |
Wg = AO [Al + Aer‘ + A3IO(NLP')] (2.47)
where
_ Aa2 _ 2N IO(NL)
Ay = = , Ay =1- ———
Huwo L Il(NL)
Ay = -1 , a,=2N_1_ : (2.48)

3= =
L Il(NL)
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In order to evaluate tﬂe particular integral of (2.46)
it is convenient to approximate the right hand side of this
\

equation. It 1s known that the.modified Bessel function

In(z) can’'be expressed as an Infinite series:

” (%Z)n+2m

' I (z) = } : . o (2.49)
m=0 T{m+1l)T(n+m+l)

This is a uniformly convergent series for all finite =z and
n . Hence, if a finite number of terms from the infinite

N dw
serles 1s used, W0:—9 can be approximated by
dr'

M

R
m=0 °

dwo >
 — =.A0
dr'

2m+l

W, (2.50)

where M 1is finite but arbitrary sugp that the remainder of

'the.series tends to zero. The constants y's are given by

:
t

_ _ 2
Ym = Em + A2A3NLCm_1 3 m i 2 ' (2.51)
, K
where \
= , \\\\ 2 .
\Em = 2A2A3Bm + A1A3NLCm + ABNLDﬁ”

and
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2 . \
B_ = . C = 2=
m (m!) ‘ LB m(mel):! |
' 2m+1 - > - (2.52)
(N—L) (2m+1)1
D = . .
m {m!(m+1)!}2 J

Using (2.50) in (2.46) and employing the properties of

modified Bessel function (ef. Magnus et al. [21]);the general ~
solution of (2.46) is given by

F
gt - 3 l(NLf") + FyKy (NLr') '~ 1 (F rt 4 _g)

g3 N2 \°1 .y
| Agng M%l 2m+1 ' ‘
- x_1r! ; (2.53)
N°L2 peg M o
where
K_ = g s
TgR0 w@ge)(ger) I
f - '
.{2_)2K' I (m+2)T (m+3) k> 0 -
NL T (m+2-k)T (m+3-k) - .
“%,m = < o © (2.54)
0 k <0

If one approximétes Il(NLr') by a polynomial of
_ degree 2M+1 , and employs the boundary conditions that

(l)CO) is finite and ggl)(l) = 0 , then
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. S
--(l) ,2m+l
837" = Fy {0 C,,T
M+l -
F,r' + Azn : K promtl (2:55)
1 02
n=0 . ' .
subjJect to'the relation
| | M+1
F3 z C —n F + A 2 K = - (2-56)
m=0 ™ , .
Equation (2.56) contains two constants F, and F3 s

‘and since there are no more boundary conditions on g(l)

.proceeds to determine ¢1 .

r

If one uses (2.55) in (2.43) and sets

¢1 = 31(1‘1)005 IIJ . ) . (2-57)
then
a%. 43 T IN : /’\
|2 1 ] l ry -— 2 13 '
r e L o M2
dr? drt - n, N L ‘
- 3;-F3 §-X Hm(m+l)C promtl _ kg Z C r'2m+3 ‘.
TI2 =0 . m—O
Ag M+1 om+1 M+l 2m+3 .
Y= I dm(ml)e pr@mLl_ k I k_rtel €2.58)
N*L m=0 m—0 :

The general solution of (2.58) is given as
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2
. F k 1
z 6 2 3
$, = Fcrt + = —— ——= P,
1 5 Pt 8n2 N2L2 1
_ Ei % c pramtl 2 u Cm r.2m¥
n, |m<0 ™ 2 m=0 4(m+1l)(m+2)
jAg' M+l 2y 2m+1 o MEL “mn 2m+3
‘!‘1—2'. X KmI" . - k2 - _I" (2.59)
N°LE im=0 - © m=0 4(m+l) (m+2)
Employing the'boundary conditions:
— %%y S 3¢y 2
" —= 1is finite a r* =0 and —m— = —==0 at rt' =1
ar’ ‘ ar! ay
one gets |
k2 1 1 " , M C_(2m+3)
F. - —— —E—E-F - —PF C.(2m+l) - k
5 n, N°L 1, n, 3Ym=0 ™ 2 m=0 4(m+1) (m2)
;A_g M+1 ' 5 Ml ' Km(2m+3)
N°L® (m=0 ' m=0 U4(m+1)(m+2)
kK2 1 . 1 % , M c_
Fo - — —5—x P, = — F C_ -k
2 8n2 N°L° T n, 3)pso ® 2 m=0 4(m+1l)(m+2)
Ag M+] , M1 k_ :
? - + —27- Z [ - k2 = 0. (2.62)

N°LS (m=0 ™ m=0 4(m+l) (m+2)

Now (2.56), (2.61) and7C2.62) are three equations in three

(1)
g3

unknow?s Fl, F3 and F5 . Hence

and ¢1 ‘are
-~

completely determined. | @
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The functlon ¢l can be wriltten as

M+2

¢y = IV rr2™mHL oos Y
m=0
é
where
_ 1 A
Vo = Fo ~ — F_.C. + K
07 s T T3t T 32 Ko
_ 1 K ! 2| kSk,
Vy = = — FoC. + «=e [CF, = ——= F. | + Ky =
T R RO T INRTErES R
1 C
v = - — FalCy - kg o=l
‘ n2 L”Tl(m'f‘l)
2 .
A K :
0 2 m-1
t ——s |k, - ky ———— 2 <m<M
N°L ( moe um(m+1)‘) ™ - -
K> P a2
v = 2 S, - =2«
" woey w2y |, M0 w2 M
| 2 2
v, = - 2 *0 K
M2 B(M+2) (M+3) NOLS NPT
To obtain -ggl), gél) ‘and w, one uses equations
(2.39), (2.40) and (2.42). On eliminating w; between
(2.40) and (2.42) one gets
- (1) (1) (1)
2 5 5 832 g5 1 agl a 1 8¢1 awo
(vl - N°L%) + - — = -ny ———=—.
ar! r' r' 3y rt 3y art

w

30

(2.63)

(2.64)

(2.65)



Using (2.37) and (2.63) the right hand side of (2.65) will

take the form \
) A
ny 1 a¢1 3w, A2 M+25 v2m¥l
rt Y arL/"“k\o m=0
.where
“m )
S = kZO kP mek
Ui
—= 0 <1 <M+ 2
AL .
0
\)i=
o, 1>M+2
Ag(24, + AJNLCy) 1
by =4 AGAZNLC, , 1
0 , i

On substituting (2,66) in (2

gil) (1)(r )cos ¢ . (1) = gg
one obtains
2 a° d 2.2 .2
r' 5 + rf— - (1 + N°LS r' )
dr!' dr!
’ 2M+2
= Agnl Gmr'2m+3 .
m=0

The solutlon of (2.69) is given as

31

sin o - (2.66)
- -
N
f (2.67)
= Q
<1 <M
>M . J
.65) and séttiﬁg
1)(r‘)sin ¥ (2.68)
E gD ) zV)
dr?'. b rt

C(269)
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dgél) | Eél) . E&l)

. = E,I.(NLr") + H.K,(NLr')
dr' . r‘ rf l l 2 l , .

. ‘ . /
~ 2 ' ¢
Aln, 2M+2
01 E - 2m+l
- 5% At (2.70)
N-L m=0 ™
where
_ 2M§2
A= 8.8
m J=0 j J—maj
{2 ¥ rme1)T(me2)
2 NL T(m+l1-k)T (m+2-k)
Bk,m =0 if k< 0 .

Using (2.68) in (2.39) one gets

. (1)} (1) —(1)
2. dg E g
{%'2 —g—§ + p! 4 _ (1 + kir'ei}( 1 + oL 4 2 =0 (2.72)
d

dr! - dr! dr! r' r'
which‘possessés the solution - . .
—(1 —(1 —(1 . " . .
. |
+ + = B, I.(k.r') + H;,K,(k,"). (2.73)
31t 1"
dr' Fall ! ]

Thé solution of (2.70) and (2.73) with the boundary

conditions:"gﬁl)(o) and Eél)(O) are finite if given as

~
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=

—ay _1[H Hy o
g~ == RS 5 (ko ) + Ly(kyrt)} + — {I,(NLr*') - I, (NLr')}
2 kl NL . B '
| Agn1.2M+2 ' iﬁ 12'+2 ;
tHg b =5 ) pe < (2.74)
NSL m=0 2{(m+l) (m+2) :
Hy = " H : :
—(1)} 1 3 St
g = = =2 {I.(kyr') = I (k,r*)} + — {I,(NLr') + I (NLr')!}
2 2["‘1 2t1 JotaT a2 P :
Agnin2m+2 T%(2m+3) - ém+2
- H - =5 r' I (2.75)
5 N 12 n=0 2(m+l) (m+2)
On employing the boundary. conditlons
‘(13(1) =g = o
one gets .‘ -
Hé ; H1
;T.{ 2(kl) + Io(kl)} + EZ {Ie(NL) - IO(N“)} + hs =
1
Agnl 2%{2 X . _
- =5 (2.76)
N°L m=0 2(m+;)(m+2)
H3 Hl :
— {Iz(kl) - Io(kl)} + EE {Iz(NL) + IO(NL)} - H5 =
1 -
2 -
, .Aonl 2M+2 lm(2m+3) .
2.2 (2.77)

NTL m=0,2(m+1) (m+2)
~—
Lhe remainder of this section 'is devoted to the .

calculation of W, . Rewriting equation (2. H2) as



: . (1) - (1) (1)
Vz _. 352 . g5 - agl o1 8¢1‘aw0
1M1 % Ty - ———} - — ——— and
ar' ' rt r' 3y art
. - g, gV ag{®)
substituting the expressions for + - -
; . ar! o r' 3y
i 3¢, 3w, A
and ». the last equatlon becomes
rt 3y 3r?
: 2M+2
2 " 2 2m+1
viwy, = | Ag mZO § ' - nu'{ﬁlll(NLr')

Equation (2.78) suggests that wy can be written as

w, = Ei(r‘) sin ¢ .

»

Hence the differential equation for Wy takes the form

o _

d™w dw . .
rre. % +rt —2 _ Ei = -nqur'zll(NLr‘)

drl dr!' "

2M+2 n.n /
2 1L 3. ,2m+3
+ + =
AO mZO (Gm N°L rm)rl

The solution of (2.79) subJect to the boundary condition

_w,(0) 1s finite turns out to be

2

3%

(2.?8)

(2.79)

Y
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_ -nu ; '
= L S t
W) = Hpr' — Hy) —= I, (NLr')
) N°L
) n.n B
: 18 — )
, A 2Me2 (5m My "m) omt3 |
+— : r' . (2.80)
4 m=C L (m#l)(m+2)
Hence the condltilion that there is no-slip at the boundary
requires
MMy —
nyI,(NL) Ag oM+2 { O F W22 ‘al |
HT_THI.:__ . (2.81)
N°L b =0 (m+1) (m+2)
The equations (2.74), (2.75) and (2.80) give the
=(1) =(1) — .
solutlions for 81775 &5 and Wy o, which contain four
arbitrary consﬁants Hl’ H3, H5 and H7 . 'It‘is observed
‘that equations (2.76), (2.77) and (2.81) are thrge'equations
in these four unknowns. Hence one more relatlon between
these constants 1s required. Since no more boundary
coqditions can be employed, the fourth relation is obtained
in the following manner.
: \
The dimensicnless form of equatibn"(2.13) is
3 1 g k21 3 [3g, g, 1 3g
2 (& 8, ey Az f (T2, %2 A}
ar' \ or! r'  r' 3y g r* av \ar’' r' r' 3y
ki 1l 3w 5 :
+nl_é____._klgl=0, . ; (2.82)
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)

Inserting the relations -(2.38) in (2.82) ,and equating

the coefficlents of X one gets

[ )

+ + —

ar ar? r' rt 3y

ki}_i(asgl) +g§1) 1 agil))

;g rt 3P ar! r! rt 3y
2 ‘ .
ki 1 3w : :
+n, & ——2 - K ggl? =0 . . (2.83)
k2 r' 9 . _
i

(1 (1),

Méreover, substituting the expressions for -8y s g5

W, , which have been obtained before, one finds that

—HS + T HT =0 . - (2.,8’4)

Equation (2.8L) together with (2.76), (2.77) and (2.81)

constitute a system of four linear algebralic equations in

the four unknewns Hl, H3, H5 and H7 . Consequently
(1) (1)~ ' ‘ d
8, s B and W, are now completely determined.

2.4 Stream-Line Projections

The differential equatioh of any strfam-line is given
by : |

dr _ rdy _ (R¢r sin ¢)de

U vV W

C(2.85)
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Dean [ 9] has pointed out that the relation between T, ¥
and 6 1s of little interest, and has drawn attention to
the useful projections of stream-lines represented by
(r,8) - and (r,y) -relations. The motion of the fluid is
of special simplicity in the central plane of the pipe. At
any point on OC , V. is either m/2 or 3n/2 ; in elther
case cos ¥ , and with it V , vanishes. At any such point
the direction of the velocity of the fluid lies in the central
piane; hence a particle of the fluid once In this plane does
not leave it in the subsequent motlion. The motion 1n one
half of the pipé.is, therefore, quite distinet from that in-
the other half and the central plane is clearly a plane of (

symmeéry of the motion.

The differentizl equatlion of the stream-lines in the

central plane 1is

| dr _ (R + r)ds . (2.86)
[N U W - -

'\
but with sufficlent accuracy one can ignore r 1in comparison

with R and write wy for W . .Then (2.86) 1s reduced

to -
dr . 248, (2.87)
U Wq
ety 1 9%
Writing U = -K( ) = and putting sin ¢ = 1 and

p T 3P
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W, = 42 [Al + Azr'2 + IOCNLr')] in equation (2.87) , one
. uuw :
gets
dr' ~de o
2n—23 Ay + Art° + AT (NLo') (2.59)
e 1 2 3 gV
Al + A3
where
- _ 2
n =n{(l - N°) (2.89)
and n 1s the ciassical Reynolds number.

Equaﬁion (2.88) will give a first approximation to the

stream-lines,
of the central line.
by putting sin y =

wrltes sin ¢ = -1

but only to those parts of them on the outside
It 1s noticed that (2.88) was derived
s thus to obtain the other parts one

N and the sign of (2.88) must be reversed

8 can be written as

)

" "The relation between r' and
' N
» 1
1 Al + A2r + A I (NLr
a8 = =
2n

(A1+A3) —_— ¢1

I.'l

drt . (2.90)

It 1s clear from (2.90) that it is not posslble to get a

closed expression for the relation between !

and . 8.

Hence numerical methods for integrating the right hand side

of that equatien can be

corresponding values of r°

“\\

\

used.

The values of 6

for

and for different values of N !

~
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and L are cempared with the values for Newtonlan fluld
in table 1. Numerical integration was carvried out by using
Simpson's rule, and Reynolds number was considered~to be

= 63. 3 as in Dean [9]. The values of 6 -are measured

from the point where the stream—line corsses the central line

rt =90

Table 1 shows that the values of 6 1increase steadily
.as N 1increases and therefore the curvature of the stream-
lines iIn the central pl&gg Increases. It is observed that
for small . N the values of 8 do not differ much from the
ones for the Newtonian fluid. Moreover, for fixed N but
L Increasing, the values of &8 ‘approach closer to the values
for Newtonlan fluid. Figﬁre 2 illustrates the dependence of
the form of the stream—lines on N and L 'in the cestral
vlane, curves belng plotted forlthe Newtonian fluids and for
Polar fluids when N = 0.5, L = 2.0.

1

The othetrsetﬂcf equations of interest are those giving

the movement oI fluld elements in relation to the central
‘1line. This can bhe visualized‘by constructing the projection
of a Stream-line on the sectlon & ='constant, taking the

projections as sufficiently represented by ¢l = constant,
where ¢, "1s glven by (2.63).
FPigure 3 shows the paths of particles projected on

the cross—section of the plpe, in the case of polar fluids

for which N = 0.8 and' L = 1.25, compared with the one for



FPigure 2.

Lo

The path of a particle in‘the central plane of

the pipe for a polar fiuid when N = 0.5, L. =2

(full line) and for a Newtonlan £1uld(broken line).



TABLE 1: The values of 8 correéponding to different r',
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.. N and L
. Type of
Lt etontan | PORAT Polar Polar “Polar
. N=0.1, 1=5 | N=0.1, L=10 | N=0.2, L=5 | N=0.5, L=2
0.0 0.0 0.0 0.0 0.0 0.0
0.1 6.6 6.8 6.79 7.63 19.22
0.2 13.3 13.78 13.76 15. 46 38.93
0.3 - | 20.3 - 21.14 21.10 23.71 | 59.69
0.4 28.0 29.12 29.07 32.67 82.22
0.5 36.6 38.10 | 38.02 42.73 107.54
0.6 be.8 48.65 48.56 54.57 137.29
0.7 59.5 61.86 61.75 69.38 174.50
0.8 77.0 80.14 | “80.00 89.86 . | 225.92
0.9 106.8 111.15 | 110.96 124.61 313.07
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Newtonian flufd. Tt can be seen that the form of the
projections of the stream—lines are not strongly dependent

on the 1nteraction between the particles; the position of

the neutral point, where the velocity 1in the eection vanishee,
" are slightly hearer the centre of the Pipe in the case of .
polar fluids, being at 'r' = 0. H28 w =0 or T when
N=0.8 L=1. 25, compared with r' = 0.429, y = or’

T for Newtonlan fluid. The data for Newtonlan fluid are

taken from Dean [ 9].

In table 22 below, 3, and dé,/dr' are tabulated

corresponding to r' = 0.0(0.1)1.0 for various values of
the parameters N and L . Using equations (2.19), (2.23),
(2.38) and (2.57), the first approximation for the velocity

components U and V. can be written as

Uy =L E g siny
p a
e (2.91)
vlzmg__lcosw.
p a dért
. ~ _331
Expressions (2.91) 2nd the values of ¢l and —= ,
. dr?

given in Table'2a, show that as N increases ‘the speed of _
the particles in the cross- section of the Pipe decreases. We
also notice that, for a2 fixed value of N , the speed 1qcreases
as L increases and becomes closer to the Newsonian one. ‘
The data for Newtonlan fluid is given 1n Table 2b. Hence it

can be concluded that the motion in ‘the cross-section of the
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— for Newtonian.fluid

. . a3,

TABLE ?b: The valueg of ¢l énd o
rt oy dé,/dr’
0.0 0.000000 0.006830
0.1 0.000669 | 0.006373
0.2 | o0.001245 | "0.005065
0.3 |. 0.001655 |. 0.003087
0.4 0.001850. 0.000715
0.5 0.002804 | -0.001682
0.6 0.001528 | =0.003685
0.7 0.001092 | -0.004866
0.8 0.000596 | -0.004819
0.9 0.000179 | -0.003255
1.0 0.000000 0.000000

T
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pipe is slower in the theory of polar fluids as compared to

the theory of Newtonian fluilds.

" 2.5 The Flux Of Fluid Through The Pipe

‘The rate of flow of a fluid, -Qc', flowing in a curved

kpipe of circular cross-section can be obtained by the

integration of the component of the velocity normal to the
plane of the cross-section over the area of the cross-section

of the pipe, i.e.,

Q, = Wy ar . _ (2.92)

Since wy .1is oroportional to sin ¥ , it makes nd
contribution to this lntegral. Consequently, to the firsﬁ—
order approximation, the flux through the pipe is independent

of the curvature, a fact observed in previous studles

."Dean-[lu], Thomas and Walters [26] and Topakoglu [31]; in

order to study the varizticn of the flux with curvature oné

must, therefore, introduce terms of higher order.

Although the relevant equations are complicéted, 1t is

possible to simplify the working when the variation of flux

wlth KQ bnly 1s required; the method of simplification used

is an extension of the method used already by Dean [10].



Again on substituting (2.38) in (2.25) - (2.281 and

equating the coefficients of Ke one obtains

(2) (2} (2}
38 g 1l 3g
2 ( _ 4 22 981 ) - n 2

2 : .
(V7 - k5) - — Viw, = 0
1 2 ar! r' ' 172

Ty 3 34, 3 ' aw aw
( T _) vie, + “'0(‘;' cos p — - sin p —=

y  ar' 3rt ar' L
oW o
i 0. o = - 5 2 (2)
+ r'hl - cos P = —rfvl¢2 +,n3r'vlg3

— - - —— A——— —— =

1 (acbl Wy 36 awl) 1 a'¢2 oy

rtlar' ay 3y ar' r' 3y 3Irt
72 2 2 1
%2 Ty ¥ -
C ar’ rt rt  3Y
2 2, _(2) 2 -
(Vl - I:cz)g3 + n2\71¢2 0.

On eliminating géz) between (2.94) and (2.96), and W,
3 .

between (2.93) and (2.95) one gets

4

. 1 {3e, -3 36, 3
2 2.2, .4 2 24 1 1 2
={V. = N°L®)V. o, = (VS - k) | — - — } V50
1 J1%2 1 2 L,(aw pt  3pt w) 1%1

awl awl awo
+ Wy r' cosw————-sj:r')yp— +w1—-cosw-
art 3y or?

7

(2.93)

(2.94)

(2.95)

(2.96)

- (2.97)



4g -

(2) ' 2y 3 L.(2)
72 - N2L2)-(352 L8 bR ) -
1 ) Brt r* rt 3y

1 (a¢1 3wy 3¢, awl)' 1 3¢, W,

ny|— =22 (2.98)
~~ rt \art oy 3y or? rt 3y or!

respectively.
Since ¢, = $i(r')cos Y and wy = Fl(r')sin v,
equation (2.9?) shows that ¢2l is proportional to sin 2y

and consequently (2.98) }mplies that

2
WO ) g2 1 sl
ar*-  r' Tt 3y

takes the form Ml(r‘) + M2(r')cos 2¢ . Using this in
(2.93) or (2.95) cne concludes that w, can be written as

hl(r') + hz(r‘)cos 2¢ . The second of these terms.need not

be calculated, as it does not affect the flux to order EQ .
Hence, it follows that ¢2, M2 and h2 need not be
evaluaTed.
In order to determine that part of Ws which 1s a
function of r' only, Ml(r') must be calculated.
Equation (2.98) together with
5f 62 1 (2 |
+ - — = Ml(r') + Mz(r‘)cos 2y (2.99)

ar't r' vt Y
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implies that the differential équation for . My (rt) 1s

2 : _ _
-G S TN B E R W SO By [
dr'™ ' dr'’ ‘ . 2r' ‘dr? dr!
. 3M+5 ’
-2 2 . .
= Agn; { Xy (F+1)e" J (2.100)
where
. .M-i:2 . ‘
Xy = vyay —_ (2.101)
37 4 V1% |
and
nu .
HT - — Hl » J =20
2NL

25-1 2.(5 il s )
- + A
n, {NL 1 -1 Y 3 A
o =ﬁ —H—u(-—-)w .+ 0 NTL

4

A
5 . , (2.102)
4y 2 Jrig+)r JCI+1)
J=1,...,M
~
| “1“u
as \%5-1t oz M
iy , 3= MHL,...,2M+3 .
k 4 J(3+1) .
The solution of (2.100) turns out to be
My (rt) = T I (NLrt) + T,Ko(NLrt)
. gnl 3M+5 23
- =23 Ly (2.103)

J=0



where

3M+5

R L

. 2 V3% } rime1)
Beom =| = O —
> NL [ (m-k+1)

(2.

_Ih order to evaluate the constants in (2.103), we note that

) (2}
_3 rag(2)) - EEL__:= M, (rt) + M, (r') cos 2y
ap 2 oy 1 ?
where

ﬁi(r') =r'M(') , 1=1,2.

The zbove equations suggest that one can write

r'g§2) = Nl(r‘) + Nz(r') cos 2y
g§2) = N3(r') - iﬂu(r') sin 2y .

Hencg, equations (2.105) and (2.107) imply that

Nl(r') = fﬁl(r*)dr*

Using (2.103) and (2.106) in (2.108), yields

(2.

(2.

(2.

(2.

50

104)

105)

106)

io7),

108)
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: I, (NLr") K Q)
Ny(r') = T;r" - T,rt
: NL NL
Agn, 3M#5 Wy 2942 . : '
-] T * Ty (2.109)

N°LS  3=0 2(j+1)

When the boundary conditions.. ggz)(o) is finite and

552)(1) =0 are employed in {2.109) and use is made of

(2.107), one gets

A2

n 3M+5 w
T,=T,=0, T, = —23*— "7 .
NLI;(NL)  J=0 2(j+1)

~

Hence, Ml(r‘) becomes

Agﬁl (3M+5 o, -) I,(NLr')

Ml(r') = )
NL J=0 2(3+1)J I(NL)
3M+5 T :
L7y wjrr2J o o (2.110)
NL 3=0 ,

Using the fact that w,o(r') can be written as
hi(r') + hy(r') cos 2y in equation (2.95) and substituting
“’% M, (r') from (2.110), the differential equation for hy (2")

takes the form
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“..\‘ 7 : .r‘
( 42 ’+ L el Agnlnu_ M5 wy I, (NLrt)
povr-Shiuveiey B T : |
dr' rt artl NL 3=0 2(J+1) [ 1I,(NL)
3M+5 jnong, '
2 17k 2J+1 .
.t Ag jZO {FEE Wy + xj(j+l)} r - | (2-'111)

The solution of (2.111) subject to the bbundary conditions:

wé(o)_ is finite and wz(l) = 0 , turns out to be

Agnlnu~(3M+5 o ) (IO(NL) - IO(NLr'))

hl(r') = 3
ST WELETERES I,(NL)
42 3m+5 {n.n 2142
o il (1-r! )

-— 1 (=9 xy(FL)

5 (2.112) -
4 3=0 | N°L :

(1+1)°

-

If one substitutes

_ = —=2
W = wo[w0 + le + K Ws f eres]

in (2.92) the flux through the curved pipe is then glven by:

. 1 L .
Qc = 21ra2wo jr‘[wo + K'ghl(?') + ee.. ldr

0

~ WAau . 5 N IO(NL) 1
= - _ —- —
8u 2L Il(NL) L
’ 2
o | Agnqny I, (NL). {3M+5
2ﬂa2W0K2 [ 01y 2 ( ]

snz)3 1) | g0 741

+

2
Ag

(2.113)

- IM+5 3M+5 ’
Glun o o oo l)
8 j(NL)® §=0 (3+1)(J+2)  J=0 " j+2

2
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The first term on the right-hand side of (2.113) is the
value of the flux of a polar fluid through a straight pipe

and it is clear that this amount of flux is less than the

-

' 4
_one in a Newtonian:fluid, which equals TAa

8u

The second

term represents the effect of the curvature of the pipe - on
the rate of flow through it. Since it is not easy to
determine the nature of this quantity in the ‘general case,

_this term canrsbe computed for special values of the parameters

. v

| . ~ W,

N and L . Ifone takes N =0.5, L=2 and ¢ = — s
" a

the rate of flow in the curved pipe is decreased by the value

2 2 2.2633575 I2(kl) + 1.0283436 Io(kl)

>ma UOAOK (2.114)

1.9666840 I,(ky) + 0.2714940 To(k;)

where ’ -

bra
a+23

o

On substituting

0= , K=2n(1x3)2 2
N R N

~

in /(2.114)  and employing the resulting expression in (2.113),

the rate of flow in this case turns out to be
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i

: 4

2 .
Q, = ™2 1(1 - 0.2401926) - ajn" ‘a-) .(0.019775)
. .C 811 . _ R -7
: | . 2.2633575 I.(k.) + 1.0283436 I (k.) |
- . 2 1 e . = (2.115)

1.966684 Izgkl) +°0.271494 IOCkl)

Hence, 1t can be concluded that the flux of a polar fluid

through a curved pipeée 1s decreased due to the curvature of

the pipe.

2.6 Cenclusion

Collecting the mgin results it is-gbserved that, in
comparison to the resﬁlts of Dean ([ éi;? [101), in the case
cf a polar fluid the cur;ature of the stream-lines in the

} central piane increases, the motion of thé particles in the
cross-section is slower and there 1s a decrease in the volume

flow rate of the fluld flowing through the pipe.



CHAPTER IIXX
TWO DIMENSIONAL INTERNAL AND EXTER&AL FLOWS OF

[

POLAR FLUIDS FbR A CIRCULAR CYLINDER

3.1 Introduction

Internal flows of viscous fluids within a circular cylinder |
have not received conSidgrable aﬁtenéion in—comparison ;;_;ISWB\\
pasﬁ.cyiindrical bodies. In the case of infernal flows, the '
motion within the c¢cylinder is assumed to be in a plane
perpendicular to the generators of the cylinder and is generated
by: | ‘

(a) 1injection of the flﬁid'into tﬁe cylinder through its wall

(b) the rotation of part (or all) of the cylinder wall.

The appllcations of type (2) problems arise, for instance,
in §he ventilation of the confined spaces while type (b)
problems arise in the recirculating motion in cavities in

aerodynamic surfaces.

These fluid_motions for viscous fluids were first cogsidered
by Rayleigh [25] for simplified type (2) and (b) problems.
Dennis [11] gave a numerical solution for a pfoblem of type
(a) and a problem of type (b) have been studied by*Burgraff [21].
Recently, Mills [24] gave analytical and numerical solutions °

for certain type (a) and type (b) problems. -

In4the present chapter solﬁtions are given for the inflow-
outflow problem and for a movihg~wa11 problem in-the case of
polar fluids. Also, in the last section the problem of creeping

polér fluld flow past .a oirculaf ¢ylinder is 1nvgstigated: '
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-
.

3.2  Governing Equations

" Consider a two-dimensicnal motion'and take plahe polar

.cobrdinates'/jr, 8) with velocity components v, 1in the

radial dirgction of the motion and vy in the tangential
direction. ‘The components of the total angular veloclty §

~

are Gl .in the radial direction, G2 in the tangential

direction and' G3' in 2 directioﬁ perpendicular to the plane
of the motion. Moreover, if the fluid is incompressible, the

equations (1.13) - (l.iS) take the form:

=]

av v 1l 3v : .
'___..r+_r+__—e=0 _ - (3.1)
ar r r 38
av,, v; v vg - ) v, 2 v,
pvr—+———-——=——+(u+r) er——z--—é-—
ar r 36 r ar r r- 396
| -~
1 3G3
) + 21 — —= + pb, (3.2)
r 36 - .
av., v, 3V, V.V 13p v, 2 av
P{Vs 8, 8_ 8,z 8l = o 2 = 4 (u+1) V?ve -'—% + —5._J;
- ar r 36 r r 38 r r- 38
3G3
- 2T —= + pb2 * (3-3)

or
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2 v..acl Ve 26, Vg6, _
T oar r 236 T
T8 [, 6. 1 ose.) 13 [36, G. -1 36
(a+eg)—{—2+ L+ - 2| (s (2,22 2%
dr |\ ar r r 38 r 386 {3r .1 - 98
- 416 + pey ’ o (3.4)
2 1y B2 Ve a%  VeCif _
T ar . r 38 r )
| 13 (36, G, 1 3¢ _ 3 faG, G, 1 aG
(at2B)- — |+ 2 Z 2y iS22 7
r 36 \ar r T af ar\ar r r 38
- 'uTG2 + 002 A * (3-5)

-

3G, v, 3G o .
pk2 V. 3.+ 8 3} (B+Y)V2G3 - 4G
ar r 36

— s 2T} peg (3.6) .

where .
22,13, 1 02
ar r ar ;g L1

For a class of flows in which the ilnertia terms the

micro-inertia, the body forces, the body couples and

~

Gl > G2 all vanish the governing equatlons of the motion



of the fluid rgducé.to

9V, . v, .1 av

-_I‘ + L + - _e = 0
ar r r ae'ﬁ.
b . ‘v .2 By 136
- == + (u+1) V2vr - —5-— —s Ly 223
ar ' r r 38 r 36
1 9p | v, 2 av 3G
- — —— (]_H"T) V2v6 - 76- + 1- —r - 27 _3 =
r 38 r r- 38 ,or

~ ~ , v, Vv 1l 5v .
(8+Y)7°Gy = 4xGy + 27 [—2+ 2 - = —E] =0
ar T r 328

Equation (3,7) suggests that one can write

Introducing the dimensionless varilables

v_ = Uv?® v, = =Uv}

r r 2 8 g » T =ar
G==d and £ = Uay
a .

where U has the dimension of velocity and a being a

e
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(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

characteristic length, in the equations of motion (3.8) - (3.10)

one finds that these equations can be expressed In terms of

the dimensionless stream function ¥ . and the dimensionless

angular veloclty G as
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2,52

v'y + 282936 = g : o (3.12)
2 2. 32 2 ‘ - -

(V=2")6 - — vy = 0 - (3.13)

' 2

where -
2.2 :
32 = L, wg1. S (3.14)
. 1-N

On eliminating G between (3.12) and (3.13) one

~obtains

L

-vh(v2

The solution of (3.15) can be written as

VR g+ wy - O (3.26)

where wo is the solution of the biharmonic equation

L=
>

and. wl satisfies the equation

-

(vzf; Nsz)wl =0 . | .. (3.18)

The most general solution of (3.17) was given by

Michell [23] (see Timoshenko and Goodier [301) as

- N%Lyy = g . - (3.15)

7'y, =0 s @aan



+

( : ’
= : . 2 2 2
w0~ ?0 + ay Inr + bor + cyT in r + dor 8 + age
a -
2+ r 8 sin § + (alr + blr3 + air-l + bir In rlcos 6
2
ch ﬁ
2 r 8 cos 8 + (c.,r + d r3 + c'r_l + dIr 1n r)sin
5 1 1 1 1 ]
T (ar” +1 rP2 4 ateT? g prrTM2y005 ng
n=2 n '
. n n+2 S r o mnt2
nzz(cnr +a.r _f e r o+ alr Ysin né .

Similarly the solution of (3.18) can be written as

T (NLr) + féKO(NLr)

-

o
z {£f_ I _(NLr) + fﬁKn(NLr)}cos né

{hnzn(NLf) + K, (NLr)}sin ne .

In exceptional cases fractional values of n would be

needed.

y——

Once 3§ 1s obtained, the total angular velocity G

can be

easlly calculated by using (3.12) and (3.13).

60

(3.19)

(3.20)
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3.3 Inflow-Qutflow Problem o o~

Figure 4. Inflow-outflow problem
-

. o~

Consider a steady two-dimensional motion of an
incompressible polar fluld which flows radia1ﬁ§ into a circle

with velocelty v, = -U and flows outward radially with

-

veloelty. v, = U as shown in figure 4., The inflow-outflow

oceurs over an arc subtending an angle 2a at the centre,

the outflow being over the arc for whichr -a i”&\iﬁu .
! ‘
From figure 4 it can be notilced that
p(r', 8) = -y(r", -8) (3.21)

where . 6 1is measured from the line bisect;ng thé angle 2a .

Thus © =0 when 6 =0, 6 =71 for all r', and the
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domain of the problem may be restricted to 0 < rt < 1,
019 i.ﬂ; .

- .It is possible to take G = (0, 0, G) . If the fluid
is a creeping one and 1f the micro-inertia, body.fdrceg and

_’/r}ody couples are negligible, then the motion is governed by .

(3.12) and (3.13). On the boundary it is assumed that vé

vanishes .for 0 < &< and v;' 2lso vanishes for

a <8 <T~-a. These boundary conditions can be expressed

in terms of the stream function Y as

8 for O_i 8 <a
P o= a for e <8< -aq
T -8 for T-a<8 <7 (3.22)
and ;
CLI. for 0 <8 <.
art '
?he—total angular velocity G 4is asstmed to-vanish on
rt =1 for 0 ifB‘Efn -
3.3.1 Sclution
e .
If one assumes that the solution of the Inflow-outflow
problem can be written as
= ] A (r')sin ne ' (3.23)
n=l ' Py

o
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then from (3.19) and (3.205,‘after dropping the primes,
A'(f) =c ' +da ™ 4 h 1 (ner) (3:24)
n+ n n nn _ S )
.where cﬁ, dn and hn are constants. On enploying the
boundary conditions (%;22), one obtains
2 {1-(=1)"
¢y + &, + h I (NL) = < {if?i)-l sin na (3.25)
. '-dIﬁ(NLr) '
+ + + = . .
ne (n 2)dnfﬁ h F o 0 €3.26)
oo 4r=1
Equations (3.25) and (3.26) are two equations in three
unknowns -cn; dn and hn-. One more equation is reguired
for:the complete determination of the constants. If one
uses (3.24) and (3.23) in (3.13), then the differentia]
equation for the total angular velocity G is
2 2 o n 2.2
- (VT-A%)e = & Z'{46n+1)dnr + h N"L"I NNLr)}sin ne (3.27)
w2 . n=1 :
The last equation Suggests that G(r, 8) can be written as
G = ] g (r)sin ne ~ (3.28)
. n=1- . N

Inserting (3.28) in (3.27), one finds that g, (r)

satlsfies the differentlal equation



- . . A

dzgn 1ag n® , a2 . -
+ - — - — + A g, = — [M(n+1)dnr + hnN L Id(NLr)]

dr r dr r 2 : .
which has the solution

(r) =D I (Ar) - 2(n+1)d_r® - L n 121 (NLr)
SQ n-n _ n 5 N7 TntTT
Hence
G(r,8) = ] {D I (Ar) - 2(a+1)a_r" - = h L°I_(NLr)}sin n8 (3.29)
| n=1. nn n 2 n I .

H

Thls solution must now satisfy equation (3.12) together with
the value of ¢ already obtained. Substituting (3.29)
and the value of ¢ in (3.12) e gets.
- -] . ‘ ‘ -
283 ¥ D I (Ar)sin 8 F O .
n=1 ° 0 /

This equation implies that G(r,8) 1is finally glven by

+}

G(r,8) = - 1} {2(n+l)dnrn + 1 hanln(NLr)}sin ne . (3.30)
. n=1 ’ 2 .
On employing the boundery condition .

G=0, 0<8 < on r =1

one finds that

2Tn+1)a, + 1 hnLEIn(NL) =0, . (3.31)
2
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Hence (3.25), (3.26) and (3.31) are three linear algebraic

equations in the three unknowhs Cho> d

7
n and hn . "Their

solution is given by

hn - 2-{1-(;1)n}(n+1) I sin na _‘ ’ (3. 32)
T n ;L In(NL) - (n+1)NLIn+l(NL)

provided that

1.2 '
SLEI(NL) = (ReLINLI, ) (NL) # 0
1 LzIn(NL) '
4 = - — - h ) (3.33)
n q ) (n+l) n : .
and -

- 2 (1-(-1)™} .
¢, = - dn - hnIn(NL) + ; ——j??———-sin ne . ) (3-3&)

At this point it is Interesting to study the convergence
of the infinite seriles
+2

[ ey + ¢ r™2 + n 1 (NLr)lstnne (3.35)

where h 4 and ¢, are given by (3.32) - (3.34).

n’® “n

Wnen n . is large enough, the modiflied Bessel function

In(z) is given by (ef. MacLachlan [22])
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-—’7

(,,,)

After simplification one finds that

2 (L")u
. 2

(n+1) 2! (n+l) (n+2)

I (z)

{ =
hnIn\NLr) e,

where
Y n5+ + D
ce.-TY
o = g{l-(—l)n}(giil sin na —= T 6 pn (3.36)
T n - Yin +°"'+Té .

. and Yo Yi,.f;.,yé are quantitles independent of

n . As a result one can write

' Y, n + ..ty
[en sin n8| < (n+1 l 6»rn . (3.37)

°'+Yé

The ratioc test Implies that the series
«© - 4 n5+ +
4 [n+1) Y1°F----tYe -
! - 3 r &
n=l T n !

. Yin +---.+Y6

converges for |[r| < 1 . ,

=,

Hence, by the comparison test one concludes that

the series . ] e  sin né converges for |r| < 1 . .<\

Consequently ) h I (NLr)sin n8 1is convergent inside the
n=1 ,

unit circle.
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Simllarly one can prove that the series

I a r™251n ng  ang )

¢ risin ng also converge 1in.
- n e
1 , _ n=1 ‘ »

Ir] < 1 . Hence it‘can be concluded téet the series (3.35)
coeverges inslde the circle [r] <1 . 'Also it can be
shown that the series (3. 30), which represents the solutilon
for the total angular velocity g » 1s convergent if

[r] <1

~

The regional angular veloclty W can be expressed in

~

terms of the stream funetion Y as

~

E'T = (0, O: - %Vzw)

(0, 0, =2 ¥ {i(nt1)a o 4 1 N°L2I_(NLr)}sin ne) . (3.38)
A n n n

Nes—1 8
—

n
Hence the relative angular velocity H 1is given by

Hy = - 20201082 ¥ h I (NLr)sin ne . (3.39)
2 n=1

If N=1, (3.39) implies that H3 vanishes and in this

-¢case the Darticles are constrained to rotate with the

vortieity.

3.3.2 Numerical Results ang Discussion

The stream function . Y. for the inflow-outflow problem

-is calculated for different values of r and &8 by using
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| .
the series (3.35). Computationé are carried out for a.= 6? .
and varlous values for the coupling number N and the length
ratio L . The senles is truncatediafter 35 terms which
'exhibits reasonable accuracy. The stream-lines corresponding
to these valueslof-the stream function are sketched for
N=0.5L=6 and N=20.9, L = 6 and are comparea with
the corresponding cones. for the Newtonian fluid in each case,
as shown in figures 5 and 6. From these figures it is
observed that, for fixed L , the deviation of the polar
fluid from the Newtonian one increases as the coupling

number N Iincreases.-

If the coupling number N is relatively smali the
values ¢f the stream function do not vary much from the
‘values for a Newtonian fluld as can be seen from tables 3

and 4.

I3
Tables 5 and 6 show that, for fixed N but L 1is
increasing, the values of ¢ increase steadily with L

at all points (r, 8) in the domain of the motion.
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3.4 Moving-wall Problem

4
. Figure 7. Moving-wall problem.

In this problem the motion within the circular cylinder
is generated by rotating the part of the circumference which
is bounded by «a < 6< B8 while the other part is fixed, as

shown in figure 7. The moving part rotates with tangenial

vglocity u.

If the motion is assumed to be =z steady one, the fluid
is incompressible and the inertia, micro-inertia, body forces
and bod& couples are negligible, then the‘polar flulid motion

-

1s governed again by (3.12) and (3.13).

The bounéary conditions, for this problem are on r = 1:

N

\ A~

. R ’
) ‘aLh_’ﬂ,, '
v . . . i . ’l "

-



v =0 @ <8 <21 +a
3y _ ) -1 a <8 < B. .
ar 0 B<B<2r+a & (3.40)
' 1 @ <8 <8
G =
) 0 B <8 <2m+a

3.4.1 Solution

Assume that the stream function ‘w for the moving-wall

problem is

$ o= By(r) + nzl{Bn(r)coé_ne + C (r)sin nél . | (3.41)
Hence, by‘choosing the .appropriate terms from the

expressions (3.19) and (3.20) one finds that ¢ 1s given

»

by
p=ay +'b r? + £,I,(NLT)
0 0 0-0
3 n -n+2 -
.+ ngl {anr +bT, + ntn(NLr)}cos_ne
+ 7 fe? + ar™? 4 n I (NLr)lsin - (3.42)
n=1 . _
Y .
where the'constants a,, b., ¢, d. s fn and h, 6 are to be

determined from the bohdary conditions.

. s . >



-

The total angular velocity G is obtained by a
procedure similar to the one use%yin-section 3.3.1. .In the

-

preésent case one finds that . : o

-

o 1.2
G = —2b0 - E L fOIO(NLr)
- L °f {sznln(NLr) + 4§(n+1)b_r"} cos né
2 n=1 n : 33
- n
- = ] LR I (NLr) + H(n+l)d,T } sin n8 (3.43)
2 n=1 : _
On employing the boundary conditions (3.&0)'in (3.42) and
(3.43) one obtains
N ’ ’ \
24 + bO + fOIO(NL) = 0 _
. a, + b, * fnzn(NL),i,,o ' g (3.44)
cn'+ dn + hnIn(NL) = {
] /
dIOCNLr) l1a-28 . h ) .
.2b0 + fo _— = - -
dr r=1 2 T
_ dIn(NLr) 1 sin ne - sin ng $ :
n(an-!-bn) +2b + £ == (3.545)
: dr _ T n .
r=1X
. ) dIndNLr) "1 cos nB .- cos na
n(cn‘f-dn) + Z(in + nn - =r-1; "
» r=1 ’ J
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LaIOCNL) =1a-8 \

2 T

by

.1 .2 . 1 8in ne - sin nB
2(n+1)b_ + > Lf I (NL) = = > ~L(j.-f169
T n
2(n+1)d + 1121 (NL) = 1 cos nf - cos na
n 2 nn /
oW ‘ n
The solution of the above equations for the consbant
coefficients turns out to he
£ =0 b, = -a, =2—8 - (3.47)
0 . ? O'r 0 uﬂv . .
, \
P _sin nB - sin ne ‘
D 2 12 (NL) - (n+1)NLI .. (ND)
2 n ‘ n+l
1 sin nae - sin nBg 1 ‘ ‘
b = =— - = £ NLI (NL) (3.48)
n o n 5.0 n+l >
@h T bn - ntn(NL)
T - /
_-1 cos na ~ cos nf }
on © P (NL) - (n+1)NLI_..(NL)
’2 n n+l.
a = L1 cos nB -&S ne " 1 h NLI_ ., (NL) ? i (3.49)
27 2 n . 2
_. \
cn = - dn - hnIn(NL) :
s
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If one inserts the coefficients (3.47), (3.48) and
(3.49) in the expression (3.42), then the stream function

for the moving-wall problem takes the form

) 2 o _ .
. {(1-r7) (B-a) + 2 ] sin n8 - sin na w1 cos nd
b L n=l n

2 z cos nq - cos nB rn sin né
n=1 n
+ L ? (sin ng - sin na)cos né + (cos na - cos nB)sin ne -
7 n=1 :2L L2 I,(NL) - (n+1) NL I, (NL)
1 2. n. n -
; NL n+l(NL) ¢« (1) V- In(NL)r +.In(er) .

(3.50)

The first term between the square brackets in (3.50)
_renresents the solution for the Droblem in the case of a
Newtonian.fluid and the second term is the contribution due

to the rotation ©f the fluld particles.

‘"With regard to the convergence of the above series, one
can prove In a similar manner to one used in section 3.3.1
that the series representing the stream function and the
L 4

total angular velocity for the moving-wall problem are

convergent in Irl <1 .
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The regional-angular velocity W 1s gilven by
o ‘ 1 2.2
w=10,0, -3 by + fq N°LTI (NLr)
b4 n 2.2
+ 7 {4(n+db r + £ N°LI (NLr)}cos né
n=1 -
! |
S+ §o{4(n+1)ar® + n N°LPT (NLr)lsin nef | . (3.51)
_— n n n

. Prom (3.43) and (3.51), the relative éngular veloclty

turns out to be

H]

]

=10, O,-—l-Le(l—Nz) 7 (f, cos n8 + h sin ne)In(NLr)). (3.52)
S\ 2 - n=1

It is observed that when N = 1 , the relative angular
velocity vanishes and the rotation of the fluid particles‘

is represented by the vorticity.‘

3.4.1 Numerical Results and Discussion

N In this section computations are carried out in a
special case when o =0 and B =7 which represents the
rotétion of the upper half of the cylinder wall while the
lower half is fixed. The series (3.50) is used and truncated
after 35 terms. |

. - ~ .
.In figu;§?8 the stream-lines are sketched for a polar

fiuid when N = 0.9, L = 6 .and also the corresponding ones

for a Newtonian fluid. The values of ¥ \ﬁqz\i’fewtonian
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fluld and for a polar fluid‘for various values of the
parameters N and L are tabulated in tables 7 ~ 10. From
thése tébles it can be noticedfthat, for a fixed value of r ,
¥ ‘attains its.maximum value at 6 = E- and -its minimum value

ét g = L . The values of ¢ - for a,ﬁolar fluid for any-
2 . :

values of N and L are the same as the values for a
Newtonlian fluid on the line 8 = 0 and 8 = . It l1ls also
observed that the values of ¢ in the case of a polar fluid

are greater than .the corresponding values of ¢ for a

Newtonian fluié when 0 < 8 < 7 . The situatlon, however, is

reversed when 7w < 8 < 27 .

From tables 8 and 9 one observes that,'for fixed L Dbut
N increasing, ¢ increases when 0 < 6 < 7 and decreases
when T < 8 < 27 . Also it 1s noticed from tables 9 and 10
ﬁhat,'if N is fixed but L 1s allowed to increase,:the
values of ¢ increase for 0 < 8 < = ané decrease for

T < §-< 27
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3.5 Polar Fluid Filow Past-a Cylind

Consider the motion of an incompressible flow of a polér
fluid past a circular eylinder. .As'iﬁ the preceding sections
the moti&n_is assumed to be a slow one, and the micro-inertia, .
boﬁ' forces, body gguples are negligible. Moreover,'onelcan

~

aésume-that Gl and G2 vanish. Hence the motion 1s governed

by (3.12) and (3.1%). : .

The boundary cond;tioﬁé of zero veloclity at the surface

‘can be writfen as.

Ay

v(1l, 8) = y.(3, &) =0 - . (3.53)
and the condition of unifornm flow upstream 1s

v(r, 8) ~r sin® as T > = . (3.5%)

3.5.1 Solution

The boundary conditioh (3.54) suggests that the stream
_ . j .
function U takes the form

g = £f{r)sin 8 . - - - (3.55)

Hence, by choosing the appropriate terms from (3.19) and

(3.20) one cobtains

-

P o= [clr + 4qT — + di r lnr + hlll(NLr)

r . o~

+ hiKl(NLr)] sin 8 . ) .///// (3.56)

e A



Tt can be shown that the total angular velocity G 1s

H\given by

. d} by hi
G = |- ddyr - = - = L Iy (“ r) - = L2 Ky(NLr) | sin @ (3.57)

T 2 2

-

Employing the boundary condition (3.5&} in (3.56) one

finds that

Clzl, d1=di=hl=0

' Hence, the expressions (3.56) and (3.57) rec{cﬁo

“c! o o
Y = {-—l- +r +hy (\TLr)}sin 8 (3.58)
r ’ ’
By o |
¢ = - —= LK, (NLr) sin 8 _ (3.59)

2

The exgressions (3.58) and (3.59) contain two constants

ci and hi which can be determined,from the boundary
bondifiqg;. However, there. are two conditions on ¥ and

a third condition for the totai angular velocity G which Is
more than the number of unknowns. To exam;ne the consistency

of the equatlons and the cond*tions, one can employ the’

conditions (3.53) in (3.58); leading to
¢ + niK,(NL) = -1 N

t 1 ! = -
~Cq + thLKl(NL)

—



89

,' ~ ~,
The last two equations imply. that

nl = —2 (3.50)

NLKO(NL) . :
and - |
2K, (NL)

] = - {17 (3.61)

NLKO(NL) '

But if one uses (3.60) in (3.59), the no-spin comdition

1

on the boundary is not satisfied. Hence, one concludes '
that the equations of creeping polar fluid flow past 2a

circular cylinder havé no solution of the form (3.55) which
_63 . .
satisfles both +he far and near boundary conditions,

~
-

simultaneously.

3.6 Conclusion

Summifg up the results of this chapter, one obseryés.
that bagic feature qf polar and Newtonian fluids for iﬁtérnal
and exéernal creeping flows for a circular cylinder are
similar. For both types of fluids, 1t 1s notliced that no
ex;ernal creeping flow past 2 cireular cylinder exists while .
.tﬁe solutions are possible for interlor prgblems. For
internal flows, the stream furiction for ﬁolar and Newtonlan
fluids are.différent due to the consideration of the rotation

of the particles and heﬁce the stream-lines are deviated

from each other. This deviation is found to be strongly
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ndent on the coupllng number as well as on the length

0.

30



CHAPTER IV

HAMEL FLOW OF POLAR FLUIDS

4.1 ZIntroductieon

. : -
Hamel [18] coﬂsidered a2 steady two-dimensional flow of an
incompressible viscous fluid in a channel bounded by two i
infinite non-parallel plane walls due to a sink or a source
at the intersection of the walls. He found that a purely
radial flow can be obtained which satisfles e#actly both
.equations of mot%on and boundary conditions. Hamél expressed -
his solution in terms of elliptic functions. Further

centributions to this problem were made by varilous authors -

leading up to a very extensive treatment by Rosenhead [26].

Langldis [20] considered the analogous problem for a
three-dimensional flow of a viscous fluid and showed that
there can be no purely radial flow in z coné in the zabsence
of body forces, and that there must be a component of velocity

in the 6-direction.

In the present worﬁ the existence of a purely radial flow
2 polar fluid in convergent and divergent channels is
investigatedi The possibility of exhibiting a secondary‘flow
in the case of a creeping flow of a polar fluid bétween two

non-parallel plates is also studied.’



[ o

4.2 Radial flow in conversing and diverging channels

.
-

Consider that an incompressible polar fluld is conbained

in the trough between two non-parallel walils. Consider
further that a line scurce (or sink) of unifornh output Q

per unit length 1igs along the line of intersection of the

walls as shown in Fifiie 9.

Figure 9.. Hamel flow problem.

olar coordinate system r, 8§ be defined so that

ct

[

et a plane

e

.

the walls correspond to 6 = *a . Tor a racdial flow one seeks

a solution of the equations of motion of-a colar fluid with

» T 0, v, =0 and the boundary conditions
v = Q at 8 = ta , (4.1)

along with the volume flow condition
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J[-rvrde = Q. B (4.2)

If one assumes that the body forces and the Hody couples -

are negligible and G = (0, O, G) +then the governing equations

of the radial flow are-gifen-by , \
.3V v, ‘ T
4+ =0, : (4.3)
ar r : . . A :
2. 2., -
Bvr _ 3p 3 V. 1 3vr. Vi 1.3 V.
oV, —= = = — *+ (pt1) |5t = —= - = T —3
r 2 2 2
r 3r or r or r r- @88
TS
~
) e
1 3G - g
yor —— (4.4)
r 38

1 %p . 2 v, 3G _
0= = —— % (1) — — - 2T — , ©(4.5)

r 38 r- 99 ar

, G 2c 1ae 1 3% 1 av_

pk"v, — = (8+y) | — + — — +t = | - 4G - 21— —= . (L.6)

ar ar r 3r r- 3G r 968

. .
The continu%Fy equation (4.3) reguires that

SR (5.7)

™
-

s

) |
Using’fﬁf?) in (4.4) - (4.6) and eliminating tbgﬁ\\\

pressure one gets ' . : ’j



gL

-
-

4.2

(peT)E™ 4 B(u+T)fT+ 20£80 + 2tV G =0, (4.8)
2 bt 2r £ _ pk° £ 3G

v2 - g - iy s 2 2= EENCRD
_Bty[ By rT TB¥Y r 3T

where prime denotes derivative with respect to 8 .

’

The solution of (4.8) and (4.9) 1s investigated in the

following two cases:

v

Case I: Whnen micro-inertia is negligible’

7 '
/  When the micro-inertla terms of the particles-vanish

equation (4.9) takes the form
2 41 2t ' ’ o -
(V - ———)G - ;§ =0 . FH.lO)

On eliminating G between (4.8) and (4,10) one obtains, after
some simplification,

\

P P P I S DL S L 22md - afen

s P (15 - 3262y (D) # 22 (27T = 0 . (4.11)

) utt . utt .
where ?

and
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2 _ . 1%

(8+y) (utt)

Ea) .
» -

.Ihtegration of equation (4.11) once wilth respect. to

8 -yields
(TV) 2,2 2v i 2...2 .2
£ 4 20 4 2T(AAS-AT)IET + B(26 + rT(MAI-ATE
+ P (16 - 2°r%)r% 4 22 (peryr = )

"h(r) . (4.12)
utt p+T - ' :

where h 1is an arbitrary function of r only.

Equation (4.12) can be rewritten as

eIV yoype & 28 (rovyry o+ 18{er + bp o+ £ 5P
B+t utT
F el asaa%yen 4 aaalaa®yr - £ 2% = n(r) L (4013)
1 1 T

Recalling that

one finds that (4.13) tzkes the form

|

h{r)}.

Qnml e )
a3 ] 48]

2
+ash e+ our e B2 AW 2w e g £ £2
U+

(4.14)



\-

The first term on the left hand side of (4.14) and the

expression (f" + Lf + 2 f2) are functions of 8 only.

o | B \

Kence one must have : 7 K\\
42 p 2 :
+ 16} | + 4f + — T = ¢ : (4.1%)
a8 BT R 1
LI J-If + P .02 = ' l{ 6 .
1 -1 C2 N (4.1 )
M .
Y ad

where ¢y and c, are arbitrary constants. From equation —

(4.18) one obtains

c
o+ hr + 2 f2 = ¢g cos 49 + ¢y sin By + % . (4.17)
' L outT . 16
AN
Equations (4.156) and (4.17) imply that ‘
e
——23——-f? = ¢, - R cqy cos 4 + ¢y sin 4o . _ (4.18)
plp+T) 16 , . - . o

The last equation determinesl £ in terms of the unknown
arbitrarf constants. Howevef; this value of f , in its
general form, does not satlsly (L.16). Hence one can conclude
that there does not exist a solution for f of the type
given by (L.18), which satiéfies simultaneously (4.16) and
(4.17).

When the constants c3 and ey are equal to zero,

»

then (4.17) reduces to

—~ 8 | | -
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- Equgtion (4.16) can be written as ' o T

-
. B « ~=

ettopone o B f2 + %EE—;— f2 =c, . o . (4.20)
- u+T pu+t), o :

From (4.19) and (4.20) one finds that

ok l cl
p(p+t)

. which means that £(8) is a constanQ; Hence, the toundary

condition (4.1) in

lies that f£{8) is: 1dentically zero.

Only when T = 0 (&Is noticed that (4.16) and (4.19)

are consistent if ¢y = lfc, and the-velocity component in

~

‘this case is the same 2s the veloelty in the case of a
~ HNewtonlan fluid. \? . .

-

- The total angular veloecity G is then determined
=5 : . |
[ independently by solving Laplace eguatlon
vee =0 (4.21)
subject to the no-spin condition on the walls 8 = % a
r
- and G remaining finite as r increases Iindefinitely. The
solution of (H.2l§ can be obtained by the method olNseparation

of variables and in the present case the solution is not

unique. One possible solution is of the form s
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. . o B -
7 6= ] Ssinlls (4.22)
' n=1 " a :
r

where B_ are arbitrary constants.

A
Case II: VWhenrt micro-inertia terms do not “yanish

-

-

The presence of the micro-inerti¥® terms makes it difficult

to eliminate f between the equations

(u+r)f” + 4(u+T)f + 2pfLt + 2TraV2G =0 . ©(4.8)
. -f:
) ‘ 2 : .
(vé‘__“f)c.-_zr o _owerae .9y
B+y B+y B4y r 3r - -

Equation (4.8) suggests that G can be assumed Lo be of the

form

a(r, 8) = EEL o ' (4.23)

- r

Using (4.23) in (4.8) and (4.9) one gets

(ptT)f™ + L(peT)Fr + 2p£8t + 27{g" + lg} = 0 (4.24)
252 ot 2 '
g" + g + P rg - S r°{2g + £} = 0 . (4.25)
4 B+Y 8+Y <
)

rom (4.25) one deduces that
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2g + £1 = 0 o ' (4.26)
and .
' ‘2k2p' :
gn-+ ug + _f‘g =0 . - ’ (u.27)
| Bty ‘ '
Using (N 26) in (ﬂ 24} and (4. 27(% one finds
21%p
£+ hpr o+ E5 0 per = g ' (4.28)
, . By '
and | A\\<\
Jfm o+ ouer + 2 Boger = g L C.(4.29)
H
respectively. )

When k2u = (8+y) , equations (4.28% and (4.29) are

identical and coincide with the govefning equation of the
radial fliow for a Newtonian fluid Hencé in this case the

solution reduces to Hamel solution for blscous fluids.

" One concludes therefore that if the micro—iﬁertia terms

are not negligible the solution to this problem is identically

Zero unless k2u = (B+y) , in which case the solution ¥ the

-

_same as for a Newtonlan fluid.
4

Some remarks as to why, in the case of a polar fluld, there

does not exist a radial flow are in order. In the case of a
visecous fluld oné notes thaf the relevant physical parametefs'

are the fluid density, its viscosity, the half-angle a. and
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the Sourcefoutput. The dimensions of th§e quantiﬁies are . :
(p) = ML™3 . ul =ML -
- , . : _ 12m=1 '
¢ : dimensionless Q] = LT .

No combination of these parameters yield a length. However,

*

Qp

in the case of a polar fluld the combination — 1s.2
' : B

. o ) TN
- . . o~ . —_
length, where £ 1s a gradient viscosity of dimension MLT l.

Thus from the point of view of dimensionsl considerations, tﬁe
dgifferential equations'fof the polar flu§d§_havé the
characteristic length inherent in theﬁ. It is because of
this reason, ﬁhat one can possibly assume the cccurrence of
a2 secondary type of flow, as bpposed to a radial flow, in

S .
-the case of polar fluids. This suggests that 6ne can include

the 6-component of the velogety intolthe analysis. Decause

of thé complicated nature cf redulting quations, only

[N
(Bl
D
QJ
2
3
ct

solutions to the creeping flow are stu

re

he following

section.

-

\
-
4.3 Creeping Flow ir Converging and Divergi;&eehannels

-

In this section it is assumed that there is a tangentizl

/;p.ponent 0f the velocity in addition to the radial one.

Hence the motion is a two-dimensional one in which Ve £ 0,

Va £ ¢ . One assumes that the flow is a2 creeping, body force,

v

body couple, and micro—-inertia are all negligible. It 1s also



[ 4
rossible tb'agéume that §= (0, 0, G). Hence the equations

governing the mction are given by

b 2.2

7ie + 28°9% = 0 , o (3.12)
! ._. )
2 .2 22 2 | ‘ |
(V)G - — Ty =00 e . (3.13)
. 2 . - ) \\\
. & g
where ' -\,
- 2.2
N L » -
e EL o wsn (5.14)
- l_N 11 '
The boungary conditions are s 7 )
v (r, ta) =0, . vlr, ta) = 0 (4.29)

along with the volume flow condition
. 4 .

o ! e _
J/;vrde = :? . ' (4.30)

The conditions {(4.29) and (4.30) can be expressed in terms

e

of the stream function ¢ as

ﬂ =0 s ﬂ’.b- = 0 ’ . (M.BI)
s, g2+o - ar G=+q ) ,
and
. p(r, 'c-\)\ - u(r, -a) = *Q . o (4.32)
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”

If one eliminates G between (3.12) and (3.13) and puts

in consideration that ¢ 1s an odd function in. 8 ,gone

finds : - - )

-s 3 r-3+2

s + CSKS(NLr)] sin sg& . S (4.33)

In (4.33) the positive powers . of r , In r and -IS(NLr)

were excluded bécause of their behaviour at infinity. On

"-"'- R, S .
employing the conditions (4.31) and (4.32) one finds that

-S "‘S+E r 3 4 - ) ' y . 1
s[A;r~ + B.r + cshs(er)] cos sa = 0 ﬁN.BL)
—s-1 L s+l N e e
[-sAsr + (-s+2)bsr + CSNLKS(NL¢)] sin sa = 0 (4.35)
and
(A rs+8 r_5+2 + ¢_K_(NLr)] sin sa = * Q . {4.36)
s s s”s 5

Equation, (4.34) implies that elther

A ™S + B_rT5 4 o K (NLr) = 0

or. cos sa = 0

The first of these possibilitiles shows that the solution

is the trivial one while the second one impllies that -

s =— ,n=1, 3, 5, ....
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Using this in (h.365 one finds-tbét
(ArS +Br 52 4 0k (NLp)) sin 2= 1 q . (4.37)
s st . s's 5 -
But'(u.37) cannot be true f%r all values of r . Hence the v

.

equations and the conditlons in the present case are not

compatlible and there is no solution for such motion.

(-—F‘
4.4 Conclusion

It can be concluded that there exists no solutigpffor
Hamel flow in the case of & polar fiuld except in two trivial_
cases. The first of these is when the micro-inertia vanishes
and the rotational viscosity 1s equal t¢ zero. The second
case is when the.micrd—inertia is not negligible and if the
materiaascoefficients are related by kgu = {B+y) . In both

the cases the velocity component 1s Phe same one as for a

Newtonian fluld.

Also, it has been shown that the coupling between the
particles does not exhibit a secondary flow for creeping polar

fluld flow between two non-parallel plates.

r

(r”’

p}
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