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ABSTRAC

Texture analysis 1S an important aspect of- many image
analysis tasks. The texture or a surface is characterized by

properties such as fine, coarse, smocth, grianulated,

-

tippled, irregular, rardor, etc.

i

This thesis deals with three main problems of te%ﬁure
aﬁalysis; namely, ) texture description [Giver a textured
rejion, how can it ﬁe descrited?), texture discrimination or
classification {Given a textured rggioﬂ or samplé, to which

of a-finite number of classes does the éanple belong?), and

&iture Lased segmentation (Given a 'sceme, hcv can 1it be
iseguented.into -différe;t textucally' bomogeneous regions?f.
A c}}tical analysis Sf the texturé discéimination technique
yrogﬁsed by hRaafat, '1995 is performeg and the results.are
qompagéd with tﬁe spatial gray Yevel depgndence_yethod given

by Haralick et al., 1973. The resul;s‘obtaihedfindicate that

the schene p:opoéed by Raafat, 1985 could be as acturate as

the pethod proposed by Ha[alick'el al., 1973. Tte finmal fpart

of the thesis in;toduces-a' new segmentation algorithm based

.

on a region growvwing -tec¢hnjique. Varioué-adyantages apd

limitations of this method are also discussed.
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v CHAPTEE I

e —

With the aqvent_oi digital coaputers, it has become possible
to sirulate some aspects of huran ;ercéption ty machines.
IFor the 1last two decades a significagt asount of vork has
teen done in the area of image wunderstandirng and 1image
analysis. Tﬁe sain interest in this area is to extract image
information for - human intecpretation 5: for gachine
[COCE€SSinj. Iﬁ the latter case the extracted data must be in

_a form acceptable to digital computers.
. . . .- -

The problem of texture characterization and textﬁre based
sagmentation has becone critfca111; importart to maﬁy
researchers in varioﬁs fields of imaye processing. Several
approaches to this protlem bave been 'repottéd in the
literature (e.ge. Haralic;; 1979; Weszka,. 1976; Gupta, 1975)._

The areas of applications include scene analgsi:, remote

sensing ‘e. gJ. wmultispectral image apalysis, ciassification
and moniibriﬂa‘of urban areas etc.), - industrial automgiion
{c.y. parts identificaticn on assembly lines, defects and
lfau}ts inspectibn), medical iraging le.g. fadiOgraphs,

ghotcgraphs of thé ocular fundus and blood sawmples etc.),

and military applicaticans.
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It onas® long Leen recogniied tnat texture Fflays an
important rcle in establighing and classitying objects ani
rejlcns in 1 given imige {Ehrich et al., ﬁ977; dechsler -et.
ai., 1983}.. " Texture is iﬁporfant because it ﬁoveré the

entlre area of an object; For ihstance,.consider the contour
etectign prbtiem, vhere a 'Qis{inqt rectanjular ccntour is
givgn in‘dn aerial photoyraph (Figure 1). The shape of this
rectangular reg}on dces pot give sufficien:‘ infbrmaiién
abouf.thg ok ject; it mgy he'grgséland, foresﬁ, and sao cn. In-

such éases, the p:Ope:ties like color and ‘gray level are not
sufficient té descritke the object and we mhst consider more
coaplicated pidperties. For example,  in Pigure 2, - the
areas shown are 'not homogeneous on thé basis of Fointwise
gray le;el. " It is clear tﬂai they exhibit homdgeneous
groperties on a large basis. These conplicéted propé:ties
which'are reguired in order to describe the interibr cf an
object are referred to as textural properties \(Niemann,
1931y, 'h;so-according to Sklansky, "Lécal prcperties of a
rejion may be eohstant,' slc;ly varying, ‘or Epproximately
pqriodic, a discontipuity in the textu;al properties Letween
different adjacent regions can te detected énd kence ke used
to segment a given image". Iﬁ spite of its inporta;ce in
image anlysis.p:oﬁiems there is no rigid desdription of

texture and there is no agreement oR how to measure 1it.

Texture has been defined 1inpn different forms ty different

[
s

%, authors. A few of these definiticns are listed lelow.

.
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"Texture is the:terr used to caaracterize thte surrace of
. ] .
-2 givén paterial", [Wechsler ‘and Citron, 1930). Accerding to

Sklarsky, 1578, "2 reyien 18 an image has a constant texture

‘
Y

1i a set of local statistic§"£: other locdl froperties qf-

the picture function are %onstant, slowly varying, or
h 4

apprcximately' periedic". In ,QGng§al, ¥e can say that

texture is a regionai precperty of an imayge - functian which
A - . . "

tefers to the spatial distribution of intensity variaticns.
Aand it s Bhserved in the structural patterns of éurfaceszof
. objects such aé wveod, grain,'g:ass,,acloth, sard and s¢ on.
Eigﬁrp 2 shgus schne examples of texBures liké beach pekbles,

lizard skin,-handuovén oriental rattah, and plastic peilets-
. - ot

s X . o
.. .- s

Avisual texture is a difficult concept to define, Lut it
is commonly-éonsidered aslthe.re;etitive occurrence of local
patterns ih-the\.qiven' :egi;3.> ThUS“one' cac deséribe a
texture ty describing its local patterns and their pFlacement
Tule. A texhgre element }s a viéﬁal primitive with certain

invariant properties which occur Arepeatedly in different
\ ' - o
fositions,  deformations, and orientations inside a given

¢

textured region. - The elements which are smaller in size
thaving a diameter of a few pixels) forem a mricro-texture

. . L
wvhereas elements which are Lkigger in size fcrm a macro-

-
texture.

Ay

In this togic, there are three main problems cf interest,

o= ' _ :

ramelyz. : e e
1

L ]
1. Textyre Description
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Fig. 1 An Aerial Photograph’
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(b)

(a)

-

(b) Lizard Skin,

. (c) Hangwoven Oriental Rattan:

"(d) Plastic Pellets

Fig. 2 Textures (a) Beach Pebbles,
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Z- Texture Discrimination

3. Segmentaticr of a Given Textured Image

»

1.1 Texture Description-:

The problem of texture descripticn can ke defined gé:civen a
textured region, how can-it ke represented?

In this case one usually assumes the given sample to be
texturally horogenecus {(a Single textore €lement}).
According to Shen ang Wong, 1980, afﬂnzaﬁui texture
representation should enhance various aspects of image
tertures at different resolution levels ana‘ shouvld allow
for small cr no variations across different =samples taken

from the same texture.
) y

SA.2 Texture Discrimimation: . .

»
.

Here we define the protlenm as: Given a tef;ﬂred region, to

~— 4

vhich of 2 finite number of classes does the recion telong?
The“main ctjective is tpvdevelop an effective péocedure
so that classification of diffé:ént classes of textures can
be dcne by automation. fhe procedure should be as general as
Fossible so that one does not gave io dévelop a new
Erocedure or rule eﬁch tim% 2 nevw texture clqﬁ§ is gefihed,

e
'Y .
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1.3 Segmentation of a_Given Textured Image:

B

Tae fipal problen'can re- defined as: Given a textured image
cr a scene, bow can it be segmented intc different
‘texturally homogeneous regions?

Thig is the most difficult problem for a nuamkter of
reascens.: Eo:'example,atextural profperties may underge slow
spatial variations thatlare difficult to detect or quantify.

.Several techniques théi use image texture infermation have

teen proposed. Frequertly used texturally based approaches

“to image sedhentation are:

1. Region Growing .
‘. Region ngrgihg
3. Region Splitting

Region growiang and region merging are processes in which
adjacent . regions‘baving similar textures  are combined .Qr
merged. Region 5p1ittinq‘is a, process vhere the detection
of dissimilarity of:text'ure among tw¢ or more neighbtourhoods

sithir a region results in splitting the region into regioms

of greater hopogeneity. -

A bricf discussion on texture analysis algorithws is
given in Chapter II. This chapter also covers. a critical

€

[ .
review of scme of the existing seygmentation teckniques.

.The problem of texture descrirtiom is covered in Chapter

III. Texture can be considered as a global pattern arising

-



3.
. 1 -

fros the repetiticn of ome or aore locatl subpattﬁrns. S50 in
crder to characterize a given texture, it is impcrtant to
consider both local and global ‘aspects- Tae igportance of
sulti-resclution levels fcr an ideal texture representation
is reported in the first section of this chapter. Then the
local features !the gray level -f;ature and- the gradient
feature) .are extracted at different resolution levels using
‘a feature egtraction schere propcsed by Raafat, 1985. The
spatial organization of these features _is giver Ly tpe gray
level histogram 'and the gradient .Listégram- fo, a texture
tlock can « be described Lty a set of histograms of variods
Frimitive features at different resolutioﬂ; levels. .AN
experiment is demonstrqted at the end of this. chapter to '*
show little or no variations_in the_sﬁape of histograms if a

°

sample is taken from a homogenecus textured image.
- '

The probler cf teﬁ}ure digcrimingtion or- classification
{Givern a texture sanple, to which of a finite number of
classes does the sample belong?)'is addressed in cbipter Iv. |
Texture withir an image tlock is characterized by its gr4y\.

. - - , T N
level and its gradient histograms. Thus in order-to compare
tvo blocks, effective nmethods ~ are needed to <compare
histograms for a specific feature at differert resolution
levels. A traditional approach of comparing twc histograms

is the sysmetric difference method. Put this methcd doe§ not

take into account the event distance (i.é- the distance



9
tetween the' events o¢@f the two histograms), which 1is
iaportant ‘in. order tec evaluate the exact similarity tetween
tvo histograms (Shén ard %ong, 1980). “The tgxtqre distance
tetween two isage blocks is calculated by treatiny it as a
transgportaticno p:gblem that can be solved by the simplex
.methcd. This method is then ccnparéd vith tle gray level
depen&ence dethod :ﬁaralick €t al., 1973). .

-~ N -

In Chapter v, a computationally simple ard eificient
‘tecﬁnique for segmentaticn of a ‘given téxtured imagé is
propcsgd. This method Us€s. texture as thé basic information
for segmentation. The irage is first divided into cells of
blocks of egua;VSize- Each block is then represented ky its
gradient feature (i.e. gradient vector histograsm). Next} -the
gradient -vector bistcgram of tbe‘ff;rst image block is
compared to its neighltouring blocks by applying an
appropriate histogranm comparison technique {Chapter IV). All
neighﬁouring blaocks that geet the's%nilarity criteria becone
’part of the region being ggﬁwn. The neighbours of the newly
accefpted biocks are thep examined for further growth. The
Frocess is :epeated_recursively 'till no more tlocks can bg
added to the reéion under consideéation. Then a new region
is grown around a klock which has mot been previously
selected. When all the bloqks'have been assigned. aprropriate

labels, the process terminates.



Chapter VI, presents a brief suamacy of the sork docpe and

[

10

the future research possi




‘CHAPTER II

M _BEVIEW OF TEXTURE_ ANALYISIS SCHENES

Texture is a regional prcperty of an image. which refers to
the spatial distribution of intensity variaticns. It rany
cases a picture can be <c¢onsidered as a cogpositicn of

unifcrmly textured regiorns, Or as containing ckjects on a

tackground, where objects and 'ktackground differ in texture.

~Thus texture features, measuring specific ™ texture
characteristics, are cften «c¢f importance . for piciure
description and analysis. It is geperally agreed that

texture plays a fundamental role in classifyinc objects angd
outlining regions. .A critical review _ of the various

apprcaches tc texture analysis is given in Haralick, 1979.

-

A brief description of the frequently used techniques is

given in the next section.

.

Generally texture analysis“ techsiques -fall ioto the

'toilcuing t¥c categories:
: <.

T Statistical Technigues

Za - Modelling Technigues



=1 Statistical Technigues:

-

Scme cf the various statistical methods which are fregquently
used to analyse a given textured image -are giver telow. Fecr
more’ detailed algorithms see Haralick, 1979, Weszka et al.,

- -

19767 and Ccnrers 'and Earlow, 1950.

1. The Sgatial Gray ievel Degendence Hethod'

Za The Gray Levei Fun Length Method ;

3. "I‘he Gray ILevel Differenc% Method ' ,
h. The Power Specfral Method

2.1.1 The Spatial Gray_level Dependence gethé

L]

8

v

The spatial gray level dependence apgroach cémputes an

interiediate mat}ix of-'measures fron thg digitized image

dgta, aﬁd then defines features as f:ngticns on this

intermediate matrix. Given a picture functioh F with a set

cf discreje gray level values G, an intermediate naétix or
““

gray level co-occurrence matrix is cohputed Iy estirating

e .
the perability P{i,q) of a pair of gray levels (i,j)

Eccutring at a separation *d' ard ar angle '4'. A set of
statistical features progposed Ey Haralick et al., 1973
fAppendix A) ~can be used to extract textural inforwétion

’ trén these matrices. Weszka et al., 1976 used sone of these

features for terrain classifications.
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13

g1+ 2 The Gray Level Bur Length Method:

A gray level run is a set of corsecutive, collinear picture
Foints having the sase gray level value. This =method is

tased on an estimaticn of the nuoter of times an image

contains a run of length 'j* fcr gray level 'i' in a given

direction 'a',&c .vhere the length of the runm is the number of
plcture elements within the run. From these npatrices,
stdtisticai features like gray level bistribution, run
length distribﬁtion, cshort run emphasis etc. {(Appendix a)

o . A Y
are extracted vhich represent the underlying texture in the

giver irmaye.

£21.3. The Gray Level Diffe;gnce gethod;
) ;

1he gray level difference method is based on éomputing the
first order statistics.of 1oc§1 Froperty values. Consider a
gigiﬁal “image Fli,i)- For anf given dispiacemeni
'fh'=(d,;dz,, vhé:e d, énd d, are integers, let Gy {i.]j) be

the,difference of gray-levels of two points separated by the

'distanpe 'dr i.e. .

CGaTLI) = 1 L) - Plieds,deds,
Then the  gray level difference density function D:ﬁld),
associated with the fpossible values cf G can be defiped as:
D{kid) = P{Ggli,j) = k)
Ccrmonly used valqes of *d' are (0,s), [-s,0), !s,0}, &?r
{~s,s),-‘ vhere 's*' is the inter;sample spaéing distance.

From each of these density functions, a set of statistical



4
features éuch as contrast, angular seccnd-momert, entropy,
Fean, and ihversc difference roment :refef to Aprendix a)

are computed to charlcterize a given textured inrage.

]
="
[X]

l

-1-4 The Power Spegtral Metho

|

The fower sre€ctral method is tased on computing the two-
dimensional Fourier transform of a yiven image. The power
spectrum !{magnitude séqgred‘of the Fourier transform) of the
given image is then-evgluated. Thus if a texture is at all
per;cdic or directiona{i\\\the fcwer spect:um‘tendg to have
pe;ks forz‘corresponding séatihl freguéncies. Then.:adial
and angular features {Aprendix a) are méésured using the

Fover spectrun.

iészka et al., 197 perforred a cpmparative study to
' defermine the relative atilities of the spatial gray levei
deéendence method, the gray level run-length methcd, the
gray level difference pethod and the power spectral method.
. Conners et -al., 1580 alsordeveloped a theoretical evaluation
methodology to compare the relative logs of texture ccntext
information «¢n going frcm digital images to intermediate
matrices.:e.g.,gray level co-occurrence matrices, gray level
run lengéh matrices, ' gray level déﬁSity functions and pover
'spectrum). They concluded that the gray level dependence
methcd . is fhe most powerful methcé ‘of thé above four.

However the . Fower of this methed derends on tcw many and

. -
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which values are used for inter-sample spacing distance 'd'.
‘Hultiple values.'of 'd' 'and ' 8 ' must be used to c?mpletely
enbody the whcle information atout tne spatial distfihution
of intensity variations in some texture images. It was also
found that the gray level dirfference methed Jas more
Fowerful tham the power spectral method, and the gray lével
run length methcd vwas a foor method for texture dnalysisa
The above methods work well if an image of uniform
texture is provided. However if an image contains several
regions of different textures, it would not be geaningful to
compute these matrices for the ertire image [Niemann, 1979).
for such images, the first step will be to segmenf thenm in}o

texturally homogeneous regions. Then these matrices can be

computed for uniformly textured regions.

- 222 Bodelling Techpiques;

In  this approach, we have to define rmodels which
discriminate or characterize'd variety cf textures. Most of
the existing texture models use the statistical approach.
There are two broad classes of texture models:

. Statistical Models

-~

2« Structural Models



2.2.1 Statistical Models:

Statistical nodels are based upon an underlyirg generative

ELOCESS. The set of parametérs which characterize the
rodels ‘are used as ~ features required for texture
dis¢riminaticn. By studying the statistical jreperties of
the given textured image {e.g. auto-correlatice fumction)
McCormick et al., 1574 -pade a best. fitting time -series
analysis model. These mnodels are useful for texturé

synthesis purgoses.

Ip a thecretical study done by Conners and- Harlow,

H;gkov randcm fields were used to compare different texture’

analysis approaches, BAlttough statistical models have shown:

sowe success in discrimirating sets of textures, they are

less povwerful than the structural nodels that use

;robahilisfic subpattern selecticn and placement.

€222 Structural Models:

L] T e

Structural rodels are based on the notion that _texturé'is'

compcsed of texture primitives and the spatial arrangenment
cf these prirmitives. Serra et al., 1973 propcsed‘a model

that views a bipary texture as fproduced by a set of

translations & a structural element. Textural properties'

can be ottained by appropriately parameterizing the
structural e€lements. Serra et al., 1973 alsc pointqd out

4 A- 3 I = * &
that generalized covarience functions can be used to obtain

varicus texture features. . ’
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Zucker, 1576 proposed a model in .which he viewed ;’}edl
texture as teing a distcrtion of an ideal textuie. Certain
transformaticns were applied tc the primitives tc distort
them to providé a realistic ;exﬁure. Carlu;ci, 1972 used
primitivgs such as line seqments and open or clcse pclygdns.
lu et al., 1978 develcped a grammar syntactic apgroach to
texture analysis, Actualiy there is . no unigue yrammar for
any given te!tureil In fact there are an infinite set of
choices for rules and éymtois. " Few of the varicus grammars

used for drasratical mcdels are shape grammar, tree graammar

and array grasmar.

One of éhe main object#ves of texture anslysis problens

is to segmdnt a given image into texturally homogéneoué
“

regions :!zgions ‘having a uniform ' texture). Inage
seqmentatiop is the' division of an ipage inta different '
regicns each having certain prcperties. A detailég survey
of'image segmentation jis givén is Fu and Mui, 1981. It was
cﬁserved that almost all image segmentation techniques are
7 application dependent. The reason for not héving q'general
gptpcse imag seymentaticn algorithm is ttat a two-
dimensional image function caﬁ' represent a .potentially
infinite number of possitilities. Segmentaticn techniques

.

can fall into one of 'the two yeneral categories:

1. Point Dependent Techniques
ia Region Deﬁendqnt Techniques ’
L J
- \/‘
. "
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A summary of some of the techniques is provided in the

next section.

i

"

Inage thresholding is cne- of the éimplgst ard reascnably
.effective Pe;hniques. It thresholds tae giver irage into
different regicns accord ing to séne appropriately chosen
threshold values ‘e.qgq. if anp image has a bimodal gray Ievél
histcgram where one nmode represents the object and the 6ther
c¢ne represents the backgrcund, then the valley Fetueen these
wzodes can be usgd as a threshold value). This method works
.reascnably ueli vhen an appropriate threéhold selection is
possiﬁle. Eut it is difficult to aprly to tte situations
where an object consists of texturés made up cf pikels of
varicus gray levéls.

L]

Mﬁérle_and Allen, 1968 prorosed anothér technigue which
uses the statistical ©froperties of an inage bloack or image
subregion. Here, thc image is first divided into.b10cks of
gize 2x2 or 4x4 and so on. The first block is latelled as
*1'. + "The statistical features of this blcck ave then
compared with the statistical features of the neighktouring
blockﬁ. If they ar® simildr then .the blocks are merged
-together and a new setlof statistics are compﬁted,‘ If no
more blocks can te merged then the next unlabelled block is
given label 'Z' and the procedure is repeated until all the
blocks are lakelled. 1In tﬁis.méthod, tﬁe‘image'is segmrented .

\

into regions of hfmogeneous gray level statistics.
¥ ) '
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Ip ancther approach given by Niemaan, 1979, one stérts
with ;he entire 1image .and - splits it intc. homogeneous
regiéns, !Sere‘ a rejion is hcmogeneous if tte 'sean.gray
level of any cne of its éubregicns is_eéual to the neén gray

-

level of the regicn-’

»

<

Mcst of the region growing fechnigues are strictly based
on irage properties such as gray.level,_horder strength, and
regicn share. 50 lasically the merging «criteria is
influenced bty the interpretation cf the regién-

Muerle and Allen used a regiaonatl heighbour seafch,method
te merge regions of similar properties. Pavlidis,” 1972
partitioned thelimége into a coll }ibn of one dinmensional
strigs. These strips were approximated Lty a lirear
combinaton of some known sigple functions. Then the
appéoximated functiups were ver ged .together if the

apprcximating coefficients were close enougha.

-

Feldman et’ ai., 1973 proposed anotheE'metiod based on

semantic interpretation for regicn merging. They ezphasized

™ I3

'maxiszizing the probability that all regions anéd torders are

correctly interpteted;

-
. -
>

Gupta et al., 1974 used a minimume distance classifier in

which the-initial segegentation was done by usirg the schenme
v ' - b
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fropcsed by Hherle and aAllen. Then each initial fegion was
interpreted as cne of a small predetermined -nuaker of

- . : 3 -
differgnt classes such as ugter, ‘lizard skin, wood, etc.
Neighkltouring regicns ~ere then merged on the basis of their

class membershirg.

3 -

-

A clustering wmethod can be used to graup tte roints in
the charicteristic feature space 'into clusters. . These
clusters are then mapped Lack to the spatial demain to
groduce the segmentation of an image. fhe ckaracteristic
features that may be used ﬁre gray level; teituéé measures
etc. It is desirable to use two Or Dore feagures tc perform

" image segmentation because there may- be prcblems which
cannct be resolved using coe featuée. Swain et al., 1968,
Haralick et al., 1975, Schachter et al., 1979, and Aggarkai

et al., 1677 wused <clustering techaiques fer image

csegmentationa

The method profosed in this thesis uses texture as the
tasic information for segen;gtion. The image is f£first
pactitioned into blogks or suhregions of equal size. Each
tlock is represented ,by its ‘local features and global’
features. The global featwles of each block are compﬁred
with ‘the glokal features of' its neighbcuring blocks using a
distance measure technique proposed by Raafat, 1985. @ The

regicns are tbén merged according to a thresholding

N\
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4

criteria. A detajlled explabpaticr of this method is given in

chapter V.



CHAPTER III

"TEXTOEE DESCEIPTION

Iexturg can be descrited as being generated by one or uére
tasic local patterns which are replicated over an image
regicn. Texture hig generally -teen represented through the:
gualitative texture descriptors such .as coarsenmess and
directionality. Coarseness is cne of the important textu;e
features which depicts the sizé of the textu;e €lepents.
for example, if therc are two textured imagyes which differ
only in scale, then the magnified one is coarser. Also, the
larger the  element size and/or the less its elements are

repeated, the coarser it is. -2~ Directionality on the other

nand involves the shape of the texture elements and their

: v

Flacement rule. va

According to Haralick, 1979, texture.can ke viewed as a
two layer.p:ocess. The first layer is for describingrthe
tonal primitives' or lccal propfrties Jhich form the image
textur; and the second layer is fpr d;scribing the spatial
relationship of these tonal priritives. TonalAprinitivés
are regions with tonal precperties and are descrited in terms

-,
of averayge grgj level. " Ccnseguently, fcr - texture
characterization, the tonal prigitives or éhe local

- 22 -
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Froperties ‘as well as the spatial celationship letween these

tonal primitives pust te taken into consideraticna.

A survey of most cf the approaches  for tex'ture
¢

characterization is given in Haralick, 1979. Mcst of

’ . .
these sghébes tend to emphasize <ne Or the other asgect, but

not Loth. The nethcd used in this thesis for texture

]

description is the resqlution dependert texture
representation technigue rroposed by Raafat, 1985, amnd it
considers bcth the local and the,élobal aspects of texture.
The concept of résoluticn dependéncy for an ideal texture
tepresentation was devised bi Wong. and Shen, 1980.
According tolthisﬁ schem? an 1ideal textute,_rep:esentation
sgould be schematically general. It should alsc allow “Small
variat;ons across dif ferent samples taken from the sanme
texture and it should contain all essential texture
characteristycs with flittle redund;nt information." The
details of this rethcd-ace giver in the next section.

T
S

According to %Wong gt al., 1%80 and Rosenfeld, 1984, an
ideal texture representation shculd provide' inforrmation at
sultiple resoluticn levels. Eesolution is related to the
ability to discriminate finé details in the field of view,.
A multiple Eésolution scheme 'is imrortant because a gréy

level histogram may remain unchanged under the rearrangement

of pixels at resclution level one {original image). However
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vhen hijher rescluticn levels c¢r low Fesolutior images are
used, these histograms will be difterent. Tte rescluticn

levels are varied ty using chservation window% cf different

sizes. The resolution can te reduced witkin a given

with the average yray level of that pixel and its

neighbours.

The frimitive texture features chosen ares

1. The Gray Levél Feature -

2. - The Gradient Feature

Eoth features are used tc represent a texture qf different
résolution levéls. - Tte choicelff thége features were pade
¢h the basis of a study done sy gaafat, 1985. 1f resoldtion
is taken intg account, the most érimitive features to tre
observed in a window are the* gray level feature and the
gradient feature, where gradient is a3 tvo-dimensional v;ctor
(gradienf magcitude aﬁd directicn). Some of the inpoétant
definitions concernjng the feature extraction scheme_.;re

.

given below.

According to Wong ang Vogel, 1977, ‘ap observation window Wm
can te defined as a3 square, of Bimension_stm)xssn) Fixels,
such that sS{m > S(m-%) vhere 'm' represents a sSpecific

resolution level.
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In order to enable the centre of the window to te rlaced

g a pixel, the nupker of pixels in S!m) should ke an cdd
f“n
.Lumker.

m-1
S{m) =8

vhere f (>1) is the basic vwindow size farameter.

So if’B = 3 and r = 1 then window size = 1 x t;
if =3 and t = 2 ‘then window size = 3 X 3;
. and sc on. ; : .

42122  Reighkourhood;:

let X,(i,j) be the neighbcurhood specified by Wy, with centre

Fositioned at (i,j) for resoluticn level 'nm'.

323-3 Faaturq Observatiop Schege;

5

Let By = { kK 1°'k=0, 1, 2,uu., Ey-1 } be a set of discretized
*w values, wvhere’*'t' represents a specific texture feature and

ky is the total number of eventg. in.the set. The feature

extraction scheme is then defined as the mapping of the
: . e

feature contents inside the neighbournocd onto the set E,;.

v

d«2  Peatyre Extractjon:

ﬁgggj Gray level Peature Bxtraction; P
< .

-

' The images have been ottained by directly phbtcgraphing then
from the pictures in Erddatz, 1966, Lover resclution level

imagés vere obtained ty replacing the gray level of each



26
~fpixel withir an observation Hirdo; with theraverage gray
level of that pixgl and its neighktours.
Let Eg = ( k 1 k=0, 1, 2,..., Eg-1}

where Kg _is  the nuober of discretized gray

levels.

The gray level fecature extraction is thus defined as the
' - L3
mapping of the gray level values at different resolution

levels onto the set Eg.

y /

2-2.2 Gradient Feature Extrac iong

.

The_gradieng feature at tesolut@on level 'np° is calculated

.///f; ‘applying a Sobel- operator to a3 x 3 image region.

v/ Consider a 3 x 3 image region as shewn in Pigure 3, where
Aa,b,c,...,i represent the gray lgvel values. By applying
the Sobel aperator (Fig. 4) to this image region, the

gradient in the x-directicm can te defined as:
Gx(i:J')=(C*2f*i)'1a'a’2d*5)

~ ’
and the gradient in the y-directian can te defined as:

Syli,3) = {avzbec)~ fgeams i)

From this, the gradient magnitude G{i,J) at poirt 'e* can he
giver as:

»

G(i, g = ‘/Q 6 ti,d + 6 Wiy ¥
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(i, j) = tan™! (Gy/Gx)

 For compuS?r-implementaticn of the gradient macnitude, the

follewing first crder approximation 1is conputaticnally nmore

/ *

efficient:

1GIi, 3} 1 = I1Gx(i,3)1 + 1Gy (i,])1

A twvo-dimengsioral discretization scheme giver in fig. 5,
has reen used . to regresent the two-dimensioral gradiené
vector [gradient magnitude and gradient directicpality).
The gradient magnitude is discretized intc five intervals,
uhegeas the gtadient directionality is disc:eéized into
eight directions. . It is assumed that the_centhal- event
teacs no directicrality. Thus if the gradient is less than
'5', lirrespective of the direction, it will Le mapped onto
event '0' ‘Figure 5). Thus there are forty-cne events in
total. The cuter rirng has the maximum gfadient magnitudg
ppésible.

' &
let By = (k | k =0, 1, 2,0ue, K -1}

where K, is the number of yradient events {=U41).

Then gradient feature extraction can be defined as the
mapping of the gradient magnitude and the directiocnality

cnto one of the events in set E,. For example,



i
If 10 < G({i,j) < 15

I in
and --- < g(i,§) < ---
g . 3

then the rapped event will be '10'.

-

28
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Figure 3 A 3 x 3. Image Region
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(a) (b)
Figure A. Sobel Operator
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3.3 Spatial Belationshir of Primitive Peaturess
The histogram represcntation technigque is used to describe
the spatial relationship ¢f the features used.. A hlstcgram
is a set 0f values where each value represents the frequency
cf occurrence of a particular event. We define a gray level

histcgram for the gray level feature and a gradient vector

histcgram for tbe‘gradient feature. L ™

&t

3=3.1 Gray level Histegran:

Consider an image block 'a' of size 1 «x N. Tte gray level
feature is extracted using the feature extracticn scheme and

is mapped to the set Eg. The gray level histogram over thlS

- image block can then te defined as:

Hg = [ h{k) I k=0, 1, 2,..., Kg-1}

where h!k) is the frequency of occurrence of
~event k. T

3-.3.2 Gradient Histogram:

T . o e S e et

"For an image tlock 'a‘ of size & x n the gradient magnitude

and directicnality can be mapped onto the set E, using the

-

two dimensicnal discretization scheme. The gyradient vector

histcgram_is thep defined as:

v

»

~



a . -
Hv = { h(k) I K=0' 1' Lygwwwy Kv'-1 }

where h({(k) is the frequency of occurrence of
event k.

-

Thus given an image klock ‘'a' of size n x n, texture

e
-

-

-7 representation can be defined & a set of histograms of

various primitive texture features at differert resolution

levels. Also texture —represeatation of a ‘texturally
homogeneocus regien 1is defined as a set of the mean of the

histcgrams of ‘varipus primitive features obtained from all

ymage_ subregions ‘cavering that region at different

jfresolution levels (Wong et al., 1980).
I's

4

3 i Results:

A set of digital image data is selected from Brcdatz, 1966 °
to show how the histograwm representation characterizes the
underlying texture and also to =show little or cro variations
across different samples "taken from the same texture. The
images selected for this experiment are lizard skin, and’
sand. Botﬁqimages, of size 128x123; aré digitized into 256
gray levéls, ranging 0-25%5, '0' being the darkest. Lower
resolution Jimages cr‘ hig@er resoclution 1levels can be
cbtained by replacing the gray level of each pixel within an

cbservation window with the average gray level cf that pixel

and its neighloursa

A ¢



Figures 6 ({a)—-€{b) chow the iuageé of the tizard skin and
’ - . . ! _-- . .
its sample !€4x64). The corresgcnaing.gray level histcgrams.

3

at different :esclufion levels, with the gray levels mapped
to 32 values, are showr in figs. 6(c)-6(d). Figuf;s
e)~6f} - show tkte .ccrregonding gr;dieut vectcr'histcgrams-
at ' different resclution levels, with the g:adz&nt zafpped to;
fofty one evehts. 2Simi;arly figs. 7(a)—7(f)I‘Ftﬂ tbhe images

and their ccrrespeonding h1stograms for the sand.
- v N

Thg ‘yray level histcgram showr in fiy. 6(c) represents

the tlack.spots on the white background. It isgnoticed that-
the two peaks are nmore d1<t1nct at. resolutTUH’T{vcl twc. As

fnetresolutlcn decreabes, the curve tecomes more smooth with
Vextremal peints mov;ng inward. Figure 6:d) ° clearly shows
that there are very fittle variatians if samples afﬁ taken
from the stpe texture. The uidg ranye of yray.leve'l values

andl the high values of the gradient are also noticed. As

‘ - ' . *,
’

expected, when the resolut?pn decreases, tne Sradient tends

to shift toward the centre, dlthough the shif % slow due
- - g -

.to the wide range of gray level values {fig. 6 {€)-6[f)}+ The

« .geweral behaviour cof the gradient.vector histocran remained

the =ame for if§'sample.‘ underlyiny characteristics of

the texturéd'image and slight riations if a sample is
taken from a homogeneouc texture, are aléo'clear from fiys.

' 7 a)y-7:f).
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(b)

(a) Lizard Skin:

(b) Sample.of (a) (64 x 64) o

6

* Fig.



(d) |
Fig. 6  (c) Gray level relative frequency histogram of
Fig. 6 (a) ' ‘

(d) Gray level relative frequency histogram of
Fig. 6 (b}

¢

iy
- -3

35
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6(a)

Gradient vector histogram of Fig.

)

6(e)

liig.
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(c)

(dy L™ - (fj

(c) Gray level relative frequency histogram
of Fig.7 (a)

{(d) Gray level relative frequency hlstogram
of F1g 7 (b)
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CHAPTER IV

g

TEXTURE DISCRININATION
-

Texture discriminaticn or classification is an important
aspect of rany igaqe analysis proslems. In this tepe of
Froblem, an imagye -is kncwn.to contain data frem one of a
finite numkter of texture classes, and the aier is to find out
the froper tex{ure ¢lass to which that image telongs. In
this chapter, a critical analysis of a texture
classification technique proposed ‘by Baafat, 1985 1is
Fresented. The f{;;; section discusses the resclution
dependentuxexture classification techniqﬁe (Raafat, 1985);
the second secction of this chaﬁgggﬂdescnibes tte gray level
dependence method (Haralick et alf; 1973)- And then the
perfcrmance‘cf both methods are compared.

4.1 BResolution Dependept Textuge Classification:.»

s

In Chapter 111, it was shown that texture within an image

Elock can be represented by its histograms Itte gray level

.histcgram and the gyradient histograsm). S0 1in order to

‘

computp the similarity betiween two image blocks, we need to

campare the two hPstograms for a specific teature.

-~

.
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The commcnly used methcd for «comparing histograms is to

compute the " area of symretrac différence betveen the two

histcgrams and this is defined as the sum of the atsolute

vadues of the difference 1in the frequencies Letween
corresponding events.

T L

Area

. “ . a b
Cifference tetween histograms B and H -

According to Wong et al., 1980, this method fails in certain

cases because it doe¢s not take into consicderation the

distance efiect tetween the everts. ?or'example, consider

the fo]louifq three gray level histograms: .

1

K~={5,0,0,0,0,0,0}) :
) W = (0,5, 0,0, 0,0,0)
Hc 5‘{ 0, 0; 0: 00 00 Ols}

The gray level contrast tetween any two «cf the above
“

histogranms ig the same according to the symmetric difference
pethed, a%though it should not Le. Se tt is imécrtant.to
consider tkre distance effect Letweén events in crder to
canpare twe histograms. The method pro%bsed by Raafat,' 1945
- frovides an effective way for _texture clasEificg;ién or
‘disc:ipiﬁation and takes the event  Jdistances into

consideration. A formal exposure to this technique is given

telow.
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If Ey and H? are the two histcograms representing the
distribution of feature events within image blccks 'a' arnd
'b* respectively, then for a given feature 't' and a

resolution level *'m', find a texture distance between them.

Cefiriticn 4.17: Let Hf ~and H? ke the twc histoyranms

representing the feature distritutioen within itage tloéks a

-and Lk, for a specific feature 't', and are defired as:

«

s U 1 E=0, 1,2, 3heeey k-1
and ~ THP = g bg 8= 001, 2, Faee, K-1)
~— ) .
5 ., L
where H% 1s the fregquency of occurrence of evert P in image
klock t*a' and l% is the freguency ot occurrence - of event q
s in iczage bleck 'L' for a speciffc feature "t'. .
, ¢
Tefipition 4.2: The event distance set C hetuegq any two

events p and g for a specific feature *t' is detiggd as:

Ct= {Cylpe'g) | £ =0, 1, 2,00 k-1, g = 0, 1, 2pmaasKy=1)

where Cy{f,g) 1is the distance function betweer F and g.
A

.

4 -

For the ygray .level feature the distance function Letween
+-. % F and q can bhe giveﬁ by computing the absolute differerce of

the two evente.

~ >

>
&
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Fecr the gradient <feature, the distance function can be
computed by finding the radial distance and the anguldr
distance. In Chapﬂer III, it was assumed that the central
event bears nc directicn.. So if one cr toth ¢f the events
is *'C' that is the central wevent; then only the radial

compcnents cf the distance 'tetween two events .xi1ill be taken

into consideration.

The radial distance¢ between tvo events p and g is given

¥y their albsclute difiererce.

&~
The angular Q}stancs between events p and g is given by

their smallest angular separation. Thus the event distance
tetween two events. r and g for the gradient vector feature
is defined as:

If-p # Gand g = 0

then Cy(p,q) = K ® Bye

+

Tf p=0andg# C
then Cy {pyq) = K * Bqe

If p = 0 and q = €

then & (e,q) = 0.
else Cy !Frq) = K o |Fp- Rq‘l + minnAp-;{q_h N-a.Ap-Aqu.
_where K is theﬁjormaiizing Factor (=0.5 in this
thesis);

-

i



Ep is

. Rq- 1s
Ap is

Aq lg

and N is

The event distance

Lefiniticn 4. 3:

the
the
the
the

the

set

4o

Ciscrete Radial Value for event [

Ciscrete Fadial Value for event q:

Discrete

Discrete

Angular Value fcr p;

Angular Value fcr g;

nurber of distinct directions.

is illustrated in figure 8.

let dt(a,b)

Ee the distance

histcgrams H? and H?'and te defined as:

dy (a,b) = S5 Cy{Feq) **X(p,q)
P q - .

E Cy(P,9) is the event distance set and

r X{p,q) are

the weights associated with

the-events,p and d.

tetween two

between the two

can then tbe
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¥inirize dy (a,t) = 'jz: ZE: ‘ Ci (Peq) * XIE.4)

with respect to X!p,g} and subject tc constraints:

L3 Kt - 1 ~
) a
‘ (1) . ' Z X(ch) = hp | P=0' 1- 29--4-' K[ -1
g=0 '
' »
Ky = 1,
[} ' L — b —
:2) Z XiE, 9Q) = hq I g=0, YV, 2,a.., Kt - 1
. E=0 b l
. 4 l. . .
{3) - and X{keg) 2 0 v P,y
.
Accorhing tc Hiller and Lieberman 1980, any -linear:

progfamming problem #hat fits this special formulation dis of
the transportation prchblem type regacrdless of its physical
context.

Let us assume in general. that therg are B sovrces S,;, S,,
Sisesr  Sm with capacities a,, 4az, dzsec, am and n

destinations D;, Pz, D3z,e., Cpn vith reguirements k,, b,,

h,,--,_vbh respeétively. ‘The shipping cbst from the ith.

source to the jth destination is C;j and the amount sﬁipped
is X - It the total capacity of all sources is egual to the
total requiresents of all destinations, then the aim is to

find out the value of ¥jj with i=%, 2, 3,..., » and j=1, 2,
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i4---, N EOr the total shipping cost to ke a mirimuk. So the

cbjective function can ke defined as:

. o n
£ = DD t':j.xij
Si=1 =1 ’

?

.

The conditicns to ke impdted on the alkove objeotive.funétioh

can te stated as: }

[3) The total capaéity is egqual to the. total requirement

\
i.e: Zai =3 Lj. . .
i i ’ .

- Y

e
-

tb)  Theé ihdividual c&pgcity of each source must te utilized

.

likewise be:. fully sqtisfied. Fror this conditior it is clear

that we haveé o cafpacity constraints and n requirement

constraints. -  The «capacity ccnstraints impose on the

.solution the _conditicn that the” total shipsent te all
r

destinations from any ° source mﬁst‘bg equal to the capacity

' .

of that source i.e.

+
»

X,“ + A'x i2 tle et xin = ai I l=1’ 2' 3,..-,‘“‘-

The requirement constraints rejuire that tke demand of
every destinaticn be ' fully satisfied by the tctal shipment
. : . v

fram all SOUCLCes 1.0

e &

\ -lei + le f..."xmj = bj l -j=1' 2}’-3‘n.'_,_.—' De

‘ -

and the individual requirement of each destination wpmust
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. - -

{c} There is always ancther ccnstrairt called nco-negativity

[53

constraint i.e, xii 20 VvV i,

so firally tre transpcrtaticn groblem can be -cugaméd up in

the fcllowiny fcrrulation-

- 3 - \

z* D

DD itk : LT

i=1 §=1

"

Minimize £(X)

subject to:

n .
Q)] E w X = ay 1 i 2, 3., 0
3=1

-
[,%]
»
"
-
1
o
-
—
ks
"
-
-
[ %]
-
[#9]
-
[}
[]
]
-
j=

3y 7 and X4y 20 V i,j

.

. ,
The above modcl implies that the original frotlem will

"have a feasible =olution only if the sun of tte frguencies

of the two histograams is equal, i.e.

Y - : 7.
a . b
z:bp = E:hQ‘ . “
P q :

That is either blocks of the same size should be used or

scaling of histograms should be done so that the total sum
cf ftrequencies of the *histograms-to ke compared is egual. A
general form of cost and the Eequireﬁent table is given in

Fig. 9.
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Figure 10 =<shows the .féxture distance G[problem as a
transportaticn proctlea, where the ., demand is represented ry
the trequencies of histogran ﬁz of image block ‘'a', and
supply is regresented ty the ﬁrequen;ies‘of histeogranm H? of
iﬁage imaje Etlock 'b;. The ccst cf a shipment is replacéd by

the event distance set Cl -

".;.f’
Definitionlu.E: The total texture distance D !a,b), between
two, image - tlocks 'a' and "Bt &t a resolution level 'm' is

giver as:

Dla,t) = ——=-emmemmm - ———
{1 + 4)
vhere
g - represeﬁts the gray level feature;
vV - reprecsents the gradient feature;
‘ ¥ = _is the weighting factor.
1
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( -
Shipping cost per unit distributed *
Source Capacity
1 2 3 n )
1 C(l,1) €c¢1,2) ¢c(1,3) ... C(l,n) Ay
2 .20 7C(2,1) €(2,2) ¢c(2,3) ... C(2,n) Ay
3 €(3,1) €(3,2) €(3,3) ... C(3,n) Ay
o’ C‘(m,l) C{m,2) C(m,3)\\;.. C(m,n) Am
Demand By Bz B3 ) . Bp
/ .
Figune¥9 A General Form of Transportation Problem
N -



53

-
'S
o
fhipping coék'pef unit distributed
Source’ N Capacity
. : a
(ev;n:) 0 L .. K, Hy
. _ B a
0 c(f,0) c(0,1) C(0,K ) %
1 €(1,0) C(1,1) C(L K ) H
2 ccz.of  ce2, 1) cz,k) | B
5 - . .
. . s PR . . Q 1
4
K C(Kg,0) C(Ky\1) ENN S I .
. H? ‘,g hll) ’ R h:‘ | Demand
. - *
b 3 .
H? - Histogram represpenting feature distribution
of feature events within image block "a~”
. »
H? - Histogram represenﬁing feature distributiqp
of feature events within image block “b~
. a -
C(m,n) - Distance function between eventg m in Hy & a
n in H{
Figure 10 ‘Pgoblem Fo}mJLatioi
-
é}- ~ o s b
-
B - , -
‘).
' * ¢
- '-,’ , -
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-2 Experimental Besults:
\

A set of four textdpeLclasses, napely, teach petbles,

handwoven oriental rattan, lizard skin and sard 1is chosen

"from Rrodatz, -1966. Fach texture 1s divided irto different

samples of size éﬂxGU_pi;els. Figure 11 shows the sample

set selected for the-classificatiocn test. ‘Figure 12 shows

. M . »
- the texture distance matrix whose {i,j)th en€ry gives the

range of texture distances for tne gradient vector feature
. . . !
tetveen classes 'i' and 'j'. The gray level feature is not

consiaered,for Mhis analysis Lkecause it does not <ccrtain
sufticient information for discrimination. The.low diagenal

values in the matrix ic Fig. 1z are due to the Comparisons

made betveen the samples from the same class. §lsb it is
. »

cbvicus from this figure that the gradient vector feature

alene is suificient for the discrimination purposes and it

1

gives a classification rate of 100X. The classification

rate is calculated as the dva‘Fgg co:rectb.nlassification

rqté of all samples. °

s



(a)

!

Fig.ll' Textures

‘(c) Handwoven _Orien'%gl Rattan |~/

(d) Sand

(a)

(b)

(9

ach Pebbles, (b) Lizard Skin

>

55
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CLASSES
Tl T2 T3 T4
. 0.236- 2.531- 3.328- 2.413-
Tl . -
0.683 2.994 2.834 2.974
0.224- 2.613- 3.102-
T2
0.931 3.100 3.436
: . 0.102- 2.930-
T3 '
0.279 3.864
- 0.276-
T4
. 0.492
Tl - Beach Pebbles
T2 -~ Handoven Oriental Basket
T3 - Lizard Skin
f4 - Sand
] . -
Figdrelﬁ Texture distance matrix (Range shown)
- ’ T
- i,—&, &
' F 4



L . ot
level cb-occurrence matrix P!{d,@) as rollow:

4.2 The Spatial Gray Level Dependence Method:
.. {
%

The =spratial gray level co—océurrence matrices are¢ one cf the
most powerful sources cof feature extéaction {Haralick et
al.,‘ 1953) A gray level co-occurrence matrix isﬁformed ty
specifying the protability P(i,3) of a pair of gray levels
{i,j) occurring at a separation 'Jd' and anyle '©'. Given an

.

irage ¥, with a set of discrete gray levels G, we define for

each, a set of discrete values of o*dr and '9', the gray

1

<¥

e

P(d,8) = [E(i,j14,0)] | Lo

where P (1,314,8), an elerent cf the matrix, is defined as

" the frobability of going frcm gray level i to gray level j

tor a given inter-sample cspaacing 'd' and direction '@'. .
Tc 1illustrate the gray level ce-occurrence vrwatrices,
coiasider a 4 x 4 image (;IE: 13!a)) ‘uith four gray level
values, ranyging 0-3. A general form of a spatiel gray level
dependence patrix is giveﬁ in Figure 131b). AFig.
14 (a)-14b) gives the four spaéial gray level dependence
matrices for 'd'=1 and ‘@' = ¢, 455 90° 135° To deternmine
the elements of these matrices we count the nuskter of tines
gray'ievelsu'i' and ‘'j' h;ve been neighbours. "For exanrple
the element in éhe {0,2) _;csition.cf the horizcntal de,d;
matrix is the total n:;hﬁ{ ot 'times two gray levels of value

0 au&"Z' occurred hcrizontally adjacent to each cther.
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‘A set cf measures has feen rropcsed by daralick et al.
1973, which cap be used to'extract teftural infermaticre frcem
CO-OCCUrence Eatrices. The féllouing are a few ci the fea-

ture:s uvsed to characterize a given texture:

S

1. Energy . -
T bg—1 Ng-1 .
£{2,0) = 2. X iRlLI4e]?
‘ 4 i=¢ j=C |
2. Entropy | : ’ *
T Ng-1 Ng-1 | : ‘ | .
Enid,@) =0 9, 2, Pli,31d,0)log Pli.j1d,0) i
> Y i=¢  3=0 .
3. Iopal.ﬂcmogeneity §
----------------- Ng=1 Ng-1

. : - 1
Am (d,0) = - :E: 2: ----- —————= P{i,jld.0) 4
: . R R & b P _
. i=0 - j=0: . : \

4. lInertia ' //)
""'f- Ng-1 Ng-1 - |
T nae s D D u-ne * Fi.Ju.e)
©i=0 §=0 R

’
[

These measures relate to specifié texture chagacteristics
of the image such as bhomogeneity, contrast, and hature of 1
- gray level transitions which.occur in the imagécw Other tex-

A

1 features are def/ined in Afpfendix A.

5
\\ . . %
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0 1 2 0
.‘ 1 3 0 2

2 1 2 0

1 0 1 3’ )
L %

Figure 13(a) [ 4 x 4 Image with four
------ . gray levels ranging 0-3 ]

'Gray Level
0 1 2 3
G 0 #(0,0) #(0,1) #(0,2) #(0,3) .
r
a ‘ 7 :
y 1 #(1,0) #(1,1) #(1,2) #(1,3)
L h
e 2 #(2,0) #(2,1) #(2,2) #(2,3)
v
e .
1 3 #(3,0) #(3,1) #(3,2) #(3,3)
.
-
3
i .
\‘\. N
Figure ¥3(bJ General forn of any gray level co-
------ roccurrence patrix for image. data
given in 13(A). #(1,3j) denotes the
number of/times gray level { and j
~have been( neighbours. ‘

™ _ \

LR
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0 2 1 0 9
1 1 0 2 2 -
P(d,g) = - x |. - For 'd = L
R 2 1 0 0 g = 0
R =12
1 0O ©0 0O
N, 'd ‘
(a) ,_ ’
AN
— b
1 0 1 0 *
. 1 2 2 ¢ 0 ‘
P{d,9) = - x ; For d = 10
R L0 0 1 1 @ = 45
R =09
} ¢ 0 1 0O
. ' . (b)

Figure l4(a) Gray level co-occurrence matrices for

S e _ intersampli§g distance “d” = 1 and "
“0- = 0% 45. R.1is‘“the total number -
- of entries in a matrix ’
L
3 -
t
>
» X



P(d,8) =

=~ I

P(d,g) =

I

:Figure 14(b)

é1

)
- - .
01 2 90
1 0 2 1
For di= 1 ,
2 1 0 0 6 =90° . ;
R = 12
1 1 0 o
Y J
ks —
(c) e
P q ’
1 1 1 o .
6 2 0 0 '
* For d =1
0 0 1 1 : g = 135
R =9
1 0 1 o0
(d) ’ -
&

\ R .
.

. o
Gray level co-occurrence matrices for
‘intersampling distance “d” = 1 and
- = 9% 135% R is the total number
of entries in a matrix ’

~a
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-4.2.1 Ezperimeptal Besults:

Fcuﬁ clacses, narely, sand, lizard skin, bandwoven
criental rattan, and\beach pektles were selected for the

classification test. 1Ten samples of size 64x64 were taken

fronm each class. The gray levels of éach sampl? werce sagped
io 16 values, The gygray level co-occurrence ratrices vere
then cemputed for. each sample fdr an. inter-sasrle spacing
d=r 1 ang-directicps g = d{ ‘ufi 90% ¥3§i To iupieuenf
thi metﬁgq¢ eight features :Appendii-ﬂ) vere extracted from

each| of these co-ccculrence matrices.

t'I

»

If T1, Tz, Té, and lerepresent the four texture classes,
then let T;, amd T;, ke the.éamples of each class T; (i=1,
2, 3, 4. ?fgure HS(a)T(d) show tyrical texture feéture
values for each T;, and T;, {i=1, 2, 3, 4) for '91=0% 1350
Figure 15:e)-th)> show the normalized inter-sample textyral
“distances fecr 'd3=1'ana 'e-=oﬁ 90% HSS and 13§Irespebtivé1y-
. The results ottained' indicAted that the inter-class
-distances werc mucﬁ'éreater thao the intera-class dist;nces' "
even thoqgh sche ?ioblems did arise for samPles Ty2 and Ty,
af !9'=13§1 It was also noted thay the method uas sensitive

to change in di‘rection. N

-



4.3 Conclusiocn: .

Cn. the basis of the study done in this section. it seess that

. .
tLe gradient ve'ctor histogram method 1s wore computaticnally

-

efficient than the jJray level derendence methoc and pecforms

—

as accurateiy as _.the yray letel dependence methcda

3
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- F E A TIg%:/; S
Local
Energy ‘Entropy Homogeneity Inertia
(l10E-02) |* (10E-01)
s .
BE3
A Tl1 1.541 1.920 4.6015 4.551 ¢
M
T21 |  4.594 1.854 4.6623 6.794
P
L T31 4.283 1.612 7.2647 1.683
E
T4l 3.912 1.623 7.1234 1.347
S
FEATURES
Sum Sum Sum Difference
Average Entropy Variende Entropy
(10E+01) ‘ (10E+02) (1OE~O1)
S » N !
A Tll 2.071 1.313 4.0625 7.103
M - .
T21 1.152 1.312 ~1.5380 7.845°
P .
L~ T3l 1.983 1.302 3.7760 4.895
: 1
E - . I
T41 1.243 1.312 1.6637 4.812
S L

Figure 15(a)

Texture features computed for inter—-sampling
space “d“=1 and ~§-=0% T1(Sand);
T2(Lizard skin);
T4(Beach Pebbles).

T3(Handwoven oriental rattan);
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t Local
Energy, Entropy Homogeneity Inertia
{10E~-02) {10E-C1l)
S -
A T12 1.582 1.902 4.573 4.453
M -
T22 4.662 1.843 4.662 6.764
P
. rd
L T32 $.541 1.592 7.339 1.602
E R
T42 3.687 1.631 7.094 1.340
s -
FEATURES
Sum Sum Sum Difference
Averapge Entropy Varience Entropy
"(10E+01) (10E+02) (10E-01)
g .
A T12 2.080 1.290 4,0801 7.053
M S
T22 1.140 1.302 1.5185 7.832
P . R ‘ .
L T32 1.950 1.300 3.6702 4.770
E i ; - E
T42 1.260. 1.324 1.6980 ) 4.831
S ¢ '

Figure 15(b)

ra

Texture features computed for inter-sampling

spage “d”=1 and “9-=0% T1(Sand);

. ,fjl%;;a:d skin); T3(Handwoven oriental rattan);

T4f¢Beach Pebbles).
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L
FEAT/URES
o / Local
Ener Entropy Homogeneity Inertia
i ~(10E=02) (10E-01)’
. '\\\\ _ .
1.}gg\ 1.912///' 4.0403 7.002
M — !
T21 3.230, 70 3.5510 1.701
P . .
L T31 2.011 1.900 . 4.5310 6.100
E .
» T41 3.620 1.661 6.8700 1.781
r S \
FEATURES
1 Sum Sum ¢  Sum Difference
Average Entropy Varience. Entropy
(LOE+01) |. (10E+02) (10E-01)
S
A vT11 | 2.070 1.290 4.0421 7.900
N .
T21 1.150 1.290 1.4400 9.532 . .
P
L T31 1.980 1.300 3.7310 7.512
E ~ ..
. T4l 1.240 1.310 1.6608 5.201
s

Figure 15(c)

Texture features computed for inter- sampling
space “d =1l vand “8°=135; Tl(Sand);

T2(Lizard skin), T3(Handwoven oriental rattan),
T4 (Beach Pebblea)
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. i
FEATURES \
{
i
: Local
! Energy Entropy Homogeneity ‘Inertia
- (10E-02) (_lOE-Ul)
S
A T12 1.370 1.960 4.1453 6.510
Ay ’
M ) _
T22 3.270 1.970 3.6120 1.685
P
L ‘T32 2.100 1.890 4.4600 6.362
E i -
T42 3.290 1.690 6.7356 ¢ 2.020
S
. ‘ )
FEATURES
Sum- _ Sum Sum Difference
Average Entropy Varience Entropy
(10E+01) (10E+02) (10E-01)
A T12 2.080 1.280 4.0700 7.780
H 3R , _
T22 1.140 1.290 1.4220 9.500
P
L T32 1.950 ,1.290 3.6400° 7.580
£ T
T42 1.260 1.320 1.7043 5.380
S .

Figure 15(d)

Texture features computed for inter- sampling

space

“d”

=1 and

‘g =135
T2(Lizard skin); T3(Handwoven oriental rattan);
T4(Beach Pebbles).

Tl(Sand);

e

.—\
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Tl T12 T21 - T22 T3 132 " T4l T42
T11| o 022 1 25.0 { 25.3 | 30.6 | 28.2 | 37.6 | 36.1
T12 0 25.7 ) 26.0 { 29.5 § 27.1 | 36.5 ] 35.1
21 , 0 007 |57.9 | s6.6 | 58.3 | s58.5
T22 0 57.5 | 56.3 | s7.9 | s8.1
T31 0 091 | 5.79 | 5.55
T32 0 6.40 | 6.36
T41 0 .052

e
" T42 : 0

Figure 15(e)

»
a

"

TL;

T21,T22 ¢ T2;
T31,T32 € T3; T41,T42 € T4.-

"Texture distances for “dr=] and “4°=
"T11,T12 ¢

Y,
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T11,T12 € T1;
T31,T32 € T3;

T21,T22 €
T4l,T42 €

T2
T4.

Tll T12 T21 T22 T31 T32 T4l T42
T1ll 0 .207 35.8 36.3 2.3 1.87 35.7 31.4
T1l2 8 0 39.6 40.0 3.41 3.oc0 31.8 27.9
T21 . 0 .005 21.6 23.1 78.8 74.8
122 o | 22.0] 23.5 | 78.9 | 74.8
T31 0 .082 38.9 34.7
T32 0 40.9 36.6
&
T4l 0 .188
. £

T42 0

r\ '
/‘. L

Figure 15(f). Texture distances for “d”=1 and “6°=90°;



T1l1l

T12

T21

T22

T31

T32

T4l|

T42

Ti1

T12~.

T21 122 T31 T32 T41 T42
0 .152 | 18.4 { 18.7 | 2.74 | 1.67 | 51.9 | 49.0
0 18.1 | 18.5 | 2.10 | 1.25 | 47.5 |7 44.7
0 .o11 | 11.6 | 12.9 | 37.1 | 36.2
0 12.0 | 133 | 38.3 } 37.4
) 0 -162 | 33.3 | 31.2
0 38.0 | 35.7
0 .090
0

Figure 15(g)

.

Texture distances for “d"=1 and '0’-4Si;
T21,T22 € T2; '
T41,T42 € T4.

T11,T12
T31,T32

€ Tl;
€ T3;




T11 T12 T21 T22 T31 T32 T41 T42
11}~ o 406 | 100.5f 98.9 [-1.63 | 1.40 | 65.0 | s58.1
~T12 0 101.5) 99.6 | .895 | .s61 | 56.5 | so0.0
T21 1 o .023 _95.8' 97.8 | 148.6|. 142.4
T22 Q 0 93.9 1 95.9 | 145.2{ 139.0
T31 ) 0 078 | 47.8 | 42.0
132 0 48.4 | 42.6
T41 o .253 -
T42 . 0

Figure 15(h)

- —

T21,T22 € T2;
T41,T42. € T4.

Y

Texture distances for “d”=1 and ’9'-1350;
Tl1,Tl2 € TL;
T31,T32 € T3,

71
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CHABTEE V

EGMENTATION_OF TEXTURED INAGES

Image scymentaticn is defined as the partitioning cf an
imagye into different regicns each having certair Froperties.
In the previous chapters, methods for «characterizing and
classﬁﬁ%ﬁng a texturall}.homogeneous regioﬂ are giveh- In
many applications, images are compecsed of several regioné,
€ach possessing different characteristics, and it 1is
important to isolate ther. Ihé protlem of locating the

toundaries Letween regicns of different textures is kncwn as

a texture segmentation protlen.

- Frequently used éeiturally tased afpproaches to image
segmentation are: région grouing,lregion merging, and region
splifting., Several tairly extensive surveyé are yiven in
lZucker, 1576; Fu and Mpi, 198%; and Bosenfeld and Kak,

»
1982} .

The conceét of réqion based segmentation, na§ES use of
"the regional fproperties. Region growving and region merging
‘are processeé in which adjacent regions having similar
texture characteristics are conbined or ~merged. Region

splitting is 3 frocess where the detection of dissimilarity

T

o
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cf texture among two oL [@OILE neijhbourhoods within a region
r . N

-~

results in splitting the regicr into regions of greater
homogeneity. The segmentation process is. initiated by
dividing the image intc blocks of equal size. [Fach Llock is
represented Lty its textural features; Then lp; “textural
fuatures of the _first image tlock is compared to its

g

neighbouring 'blocks Ly applying an appropriate feature

/
similarity criteria become part of the Eegion teing grown.

comparison technique://ﬁll neightouring blocks that wmeet the
The neighboﬁrs of the newly accepted blocks are then
examined for fg:ther growth. The' rrocess 1is repeated
recursively until no ﬁore blocks can be added to the region
under cons¥deration. Then; a.new region 1s grown around a
block which has not been previcusly selected. W&hen all the

tlocks have been assigrped tc regions, tte algcrithm

terminatese.

Muerely and Allen, 1968, used this approach Ly comparing
/
the statistics of an image tlock with its neighbouring‘
tlocks. The regions found were homogenecus according to gray

level statistics. This agpproach was subsegyently tefined by

price and Femmema, 1974 who used pulti-regional heuristics.

This thesis enmpleys a region growing technique td;
estaklish the boundaries tetween different textured regicns.
A detailed explanation of this ®ethod can be fcund in the

next section.
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5.1 The Segmentation_Algorithm: A

Given a textyred image, -~ how <can it be sectmented into

« different texturally hcmogeneous regions?

L =3

) The proposed algorithm i Easgd on  Lkoth local and global

-

textural information. The prccess begins by dividing the
inmage into tlccks, of size NRxNC pixels, where NB and NC
r"i

%re‘\ﬁe nunker of rows and columns respectivély in‘thelimage
klock. . The size of the imag? block ‘for ; horogeneous
texture can be determingd bty finding ;he textural distance
tetween tw tbiocks of size 2x2, Ux4, 8x8, and so an. The
size at which thé textural distance starts to statlize can
be chosenh as the sizc of the izage hiock: fach. tleck i5 
then represented by its .gradiéht vector gdstﬁgramb The
gradient is a two-dimensional vector representing yradient

f_\
agnitude and directionality. - 4

ol
The region growing <concept -g:;Lts by setting d4ap a

labelled map of\ the same size as the divided image. For

example, consider ap image of size ?29x128 pixels. 1If the

Elock size is 32x3 -pixéls . thén the labtelled mafp will be a
4x4 array. <L55311'ng is initiated by’assigni:g the image

' ) N . . .
block at (1,1} t <iiijcl *1*. =By the application of a
suitatle sirilarity critéria it is then detereined if this
label can ke assigned to the'urlg¢ellgd'neighhcurs' cf the

7 .curreﬁt.image block. If any of the neighhgﬁis are assigned



e -15
-1 i A
- the current latel, then the addresses of these blocks are

stor€din a stack 'and all relevent driays aré urpdated. The.
. - ” :
addresses are then sequentially retrieved from the stack on

-a "first-in, first-out" basis and the neighbcuré of these

-\

tlocks are . tken exarified for label assignment. After, the

“N

first set of entries in fhe stack have been examined, these

) : °

If, at any stage éf the label propagatibnxjnc new entries
are aﬁded' ;o the stack, the propagqtion of that specific
label 1is terminated since further region grcwth is got
possible.’ At this stage, the stack is/gesat and the growth

of another regicn is initiated by assigning a new label to

tﬁe‘next uplatelled‘block. This process is repeated until
all the blocks in the latkelled. map have been assighed
apprcpriate labels.

At thé.end of thig.step, “all ghe image blccks have keen -
labelled and the Segmentation is'écmpleyed, although the
hoﬁndahiés betweZn ;diffecent-textufed regiohs are not well
defined due to the large size of the im;ge blocks. In ocder

to achieve a reascnatly tigh reéolution,‘ or equivalently,
- ' .

-j ,

.

detect small regions of horogeneous textures, the image . .

block shoula bte smaller in size, especially when the block

dontains the boundary Letueen differeat texture¢ regicns. In v

order to Jdefine the boundaries ;:opé:ly,_the irage Elocks in

Y

’
o
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tng vicinity of the Loundary muét te very spall. On the
cther hand the irage block must be large encugh to be a
valid texture sample. If a region of unifors texture is
sub-divided such that the image blocks do not adequately
reflect the texture characteristics, the upiform regicn will
te labelled as being nonuriform. Thus, in order tc avecid the
loss of texture information, an overlapping-schéme; can be
used where the comparisons are rade on the bacsis ‘of large

Ahlocks while the lakelling is dcne for the smaller tlocks.

A block diagram of the segmentaticn algorithrm is given in
fig. 165 - iguré 17 schematically depicts the labelling
frocess for a ‘cn-overla;ping cése; In order to define the
btoundaries proplerly, a ’overlappiﬂg schere must be used.
Figure 18(a) - =shows a x4 latelled ' map fcr the nom-
cverlapping case. ' The latelled.map of 7x7, olttained after
doing an overlagging 0{ half éhe size of the igage block in
the ﬁqrizon}al and vertical directions,’ is given in fige.
18(tk). Figure 19 illustrqtes the proces; of latelling in an’
overlapé;nglcﬁ;\‘. Here the latelling is dopne to scaller

blocks while the compariscns are made on the basis c¢f larger
. . .

-blocks., The essential.stegf\;n the- segmentaticr process are

-~

given next.

> N & o
I's - '
¢
A
C‘\‘ \.4_ - [



GRAY LEVEL IMAGE

'

.

DIVIDE IMAGE (NRxNC) IMAGE BLOCKS
NR - NUMBER ,0F BLOCK ROWS
NC - NUMBER OF BLOCK COLUMNS

-

g

FEATURE EXTRACTION SCHEME

.

<
{ CREATE LABELLED MAP OF IMAGE
- : BY .
LABEL PROPAGATION METHOD

1

BOUNDARY REFINEMENT

NEW LABELLED MAP

SEGMENTED IMAGE

Figure 16

Algorithm ,

- o
Block Diagram of The Segmentation
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ALGCRITEN —

- AR . A
As 7

+

Irput: (a) Gray level array for digitized izage
----- [Img(l,d), J=1, 2.---' Ni 1211 :l--'.l N}

fk) Threshcld value !TH)

Cutput: [a) Tvxturaﬁ%y seqmented 1mage

t) Nunmber-oi regions in the imaye.

Erocelure:

M -

1. Divide the image into NI} x NC imdage L1loOcks..

N = Number cf llock rcws ,
* « NC - Number cf tlocﬂ\;clumns

Za Set-up a labelled arra
as the divided image _
i.e. array (IL(I,J), d=1, 2,e.., NM13 1=1, 2,..., NM1)
N#1=(Size of the images$ize of éach block) -
- - - -
3. Set up arrays [(LX{.),LY!.)} for storing the A
co-ordinates of tne ftodr neighbours of an image block
and arrays ({LXT(.),LYT(.}} tor stonﬂﬁg Elock
co-orldinatecs, .

IL(+«¢-) Ot 3ame size

T Initialize:
IL1{.y.) <=- 0; NL <-- 0; ILL <= 1 é

€. Start Labtelling” {I, J represent- locaticns in the
lavelled array; 1 <=1, J <= NM1)a '
- : - -]
5{a). If array -IL{.,.) at, location {(I.,J) has label 'Q¢
then assign' *t with label ILL otnerwise
. increment J and go tc step 5.

5{B). Ccmpute the gradient vector histogyraazm (i1 1)
for image b}ock at lccation 21,3},

5{c}. Cecopute fcur ncighbouring blocks of
. image tlock (I,J) :
{LX!K) ,LY (K) ; K=1, 2, 3, 4].

5({d). Conmnpare-ecach neiqueEE with blcck at (1,J)
) ) y - Co



. e B2
- {For 1 <= g $F 470 K 15 the neiglieur being
ccmpared} .

It the neightour at location {LXYIK),LY 'K)}
is unlabelled then faind its jradient vector
histogyrar !HZ) ctierwise lrcrement K and

go to ster 5:1).

w
.
[1¢]
N
.

5(f). Evaluate the texture distance between H1 and
H2 and derote it by L[HY,H2).

909).. It DIHT,HZ) is less than the speciriel
= thfesacld (TH) then Ferfora tue tollovainy
- three steys:
v {IL(LX (K) ,LYK))} <-- ILL :
LXT(NL) <=~ LX{K); LYT(NL) <-- LY (5)

S:BJ; Incremgnt K and ga to step 5!:d4).

5{i)- If no more growth 1s possible ‘M.=0) then
go to step 5 (s) Cthereise perrorr the,
“fcllowing: .
NLT <= 15 NL2 <-- Wy

5(j)- Grow regicns around Llocks whose aidress
ate stcred on the stack (For NL1 <=-I7 <
where Id points to the €lement ct ‘the st
under €xarinationj. .

5(k). - Ccmpute H1 fer image bloc (LXT{IN ,LYT(I1)).

. %i11). Cenpute four nelghhourihg-blocks of -
. image tlock (LXT (I7) ,LYT (1)) :
. [LX(K),LY(K); k=1, 2,.3, 4}.\

= NL2;
ack

5tmj-. Ccmpare eﬁch neighbour.iﬁth bleck at
(LXT(I1)¢LYT111))'{FOE 1 <= K <= 4; K is tho
neighbcur being compared). .

. 5n). It the neighbour-ut'IUCdtlon.{Lx:K),LY:K)]
. “g;_un!%hulled then find its jrad:ient vector
histeyram ({2) ctherwise increment K and ¢
v, ' - 7 go tao ster Simp.
5(c). Evaluate tho texture distance tetween §1 and
e . - HZ2 and dcno%g it by C(H1,H2). !

-~ 5(P). If D{BV,HZ) is leug than the specriioed
- ? thresheld (TH) thuen perform the followinyg:
[TL{IX(K),,LY(K)}}] <-- ILL
. © NL <== HL¢1; LXTI!NL) <~-- Lald) i LYT(NL) <-- Ly k)

5(4)» Increment K ang 90 tc step S(m).

.



L]
[

4

S{r}. 11 all the elcnents ol the stack ﬁ&4€-beén
examined {NL2=N1l} th<n 40 to step 5(s) -
ctherwise perforr the following:

NL1 <-- NLZ+1; HL2 <=-- NL
go to step S!3) . i\
5(s). TLL.<=- ILL#1

S¢t). Increment J and gp tc step 5.

5!u). Increment ™ and co tc step 5.

€. rivi¥e boundary rlocks iatd four sub-blocks. Q\
' .

7. Connect €ach sub-tlcck to the opne with rinioun

texture distarce frcm 1t. -
) f. Merye all the isclated reglons wnich may not te

more thanr on¢ block size with tne largest
ad jacent regicn.
Lo . '

S. Uréate 4 seguoented image frcw the lavellel amape

L)

10. Stcep: End. : _ )

1.1 A _Threshold Selectiop Techpigque;

» ' .

lhe success of the segmentéticn algorithnm giveh in the '

Erevious sw;tioé depends upon the thieshold value used. The

methed proposed to evaluate the thresnold value makes use ‘of
texture distance statistics. -« The followincg steps are

required to calculdte the threshcld value:

. r '
*  The imaye is first divided into NiaxNC plocks whepe Nk anl_

NC are the nurber of hlock rows and columns resﬁectively.

7

-

-
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Each block is then represented by its gradient feature

-histcgram. The process initiates by choosing tLlock N,N.

.
The histogram of "this tlock is ccmpared with the histogran

Ccf its neightcuring bleccks and the results are stored in én
array D{.). The process is rereated recursively until all
the tlocks lave teen ccnsidered. At the ené of this step, we
hive an array containing all the possible texture distances.
The pean and the standard deviation of thege distances is
thfn computed. These results are used to calculate the
threshold valye.
| | ) ?
1. Hedﬂ: Lﬁ*‘ _ \

N
. 1
N :
I=1

where

N - 1s.the nuwmber of entries in D{.)

o» .

2. Standard beviaticn:

{
- N
1 -
AR "t 2:‘112:1)-#)? | (f
. . N -
L]
v. I=1 ’

The threshold value (TH) is given as:

TH = u-e.0 <

wvhere ¢ is a tolerance tactor.

' ) v ) ~



5.3 Disgcussions _and_Eesults:
Thig algorithm 1is ccmputationally simple &and easy to
izmplement. It has teen tested on . a variety cf textured

inages and yas.shown to work very etficiently if a groper
Flock size 1s chcseﬁ. The size .of the imaye tlock for a
hoaogeneous texture can be determined by finding the
teftuéal distance Letween twc blecks of size 2xz, 4x4, Bx8,
and.so on.. The size at Juhich the textural distance. -starts

to stablize can be chosen as the size of the image tlock.

The aigorithm fails however, to provide an exéct boundary
location between different textured reyions. In corder to
achieve a reasonakly highbresolution, the imége black mdst
te as small as Qoséiblg, eékgcial%y when the Etlock contain
the téupdary.tétueen different réﬁions._.Cn the other hand
the tlock =scize must Le large énoughﬂta be cohsidered. as a
valid texture samgles Thus in-order to maintain the textural.
infbrmatién: an overypppiﬁg scheme can be usec, where the
' comparis'ns are made - cn the basis of the ,laréeg blocks and
:the,labe\ﬁ}ng is d nelto the smaller blocks. A xore detaile@

explanation of overl
» .

:ring is illustrated in fig. 19.

'

1)

The images are direct gzphctbqraphed from Brcdatz, 1966.
In this experirment, thiee textures, nanmely, handwaoven
crierntal rattan,  lizard skin and water, and plastic pek%:ts-

are chosen. Fach imayg s digitized into 1:z8x128 pixels

T
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with €4 gray levels. Fibure 20 {a) shows the otiginal image
c¢f the handwoven oriental rattan :128xf28) after divid}ng it
into riock; ct size 32x32. The segmented image for the noun-
overlapping schemc is given in figye 20(k). Fig. 21{a) showvs
the image of the lizard skin and water and fig. 21°L) is tée
segmented irage.. Fiy. Z2({a)- (k) shoﬁs the original imagﬁ
and the segpented image of the lizard Skin and water, using
an overlapping ot half the size of the 1mage tlock ﬂin the
horizontal and vertical directicns. The segmented and‘the
ariginal image of. the ;lasticb pellets wusirg the nonf
cverlappihd and qurlapping seheﬁes are diven -in‘ fig.

<3(a)-(b) and fig. 24{a)~ (k) resgectively. Fronm the results
it is obvious that pverlapping works better ttan the non-
cveriappinq method fcr defining the boundaries Ttetween
different textured regions. Also it can’ be <ckserved that
there are scme extra reijcns in fig. 24(b) vhich are due to
some small intersity variations. These can te avoided by
' norgalizing fhé gradient vector histograﬁ Qith. resgpect to

the gray.level values.
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a)

(

(b)

(a) Lizard skin ,and water:

21

Fig.

(b) Segmented image (non-overlapping)
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(a) Lizard skin and water
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Fig.

(b) Segmented image (overlapping)
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(a) Plastic Pellets
- L
(b) Segmented image (non-overlapping)
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Fig. 24 (a) Plastic Pellets
(b) Segmented image (overlapping)
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SUMMMBY AND COBCLUSIONS

"Texture has beccné critically impartant to researchers in
‘the various areas ot image precessing because alrost all
natural surfaces are characterized by -1ocali intensity
variations. This tbésis has dealt with three main probleqs
cf texture.analysis, namely, texture descripticn, texture

discrimiratica or classification, . and segrentaticn of
' ¥
textured imaces.

«
[

A critical analysis of the wcrk dcne ty Raafat, 1985,ihas
teen given in Chapter ITI apd Chapter IV. Tle problem of
texture representation is efamined by extractiné»'features
through observaticn windows at ﬁiffereht resolution levels.
Iexiure is considered as a 'tvc layer process. fIhe firstr
liyer -is for descriting the togalv primitives c¢r -local
\propgrties and tke second is for describing the spatial
organization oé the§ertcﬂa1 Erimitives. Tte frimitive
texture teaturés used are the gray level feature and the
gradient vectcr féatu?e at different resolution levels. ?he'
spatial organization of these features"ére given Lty their

bistograms namely, the Qray level histogram ,and the gyradient

-
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vectcr histcgram. Thus texture descraption of a2 givep image
klock is yiven Lty a set of histcgrams of varicus primiti?e
texture .features at diiferent resclutior levels.

.

The [froklem of texture classification involves the
compariscn of twc texgﬁ:e samples. Here eacn samplé is
represented Lty f%slg:adiert and gray levei biSﬁfar;ms. The
troblem of histogram corpariscn 1is then’ for;ﬁlated aﬁ 'a
trinsportation problem. - This provides a texture . listance
tetveen tvo 1image blocks which is used for c{ass;fication
and segmentatipn purroses.

A new methodoleogy for segméntatich of a textured imayje
onto texturally hcmogeneous regions is giveﬂ ir Chapter V.-
The algorithm is initiated by dividiny the‘imag; into biocks
hf equal size. Fack block is then représented Ky its-
textural features. Hext,'the textur#l features of the first
iﬁagé block are campared to itkineigﬁbouring ‘blocks by
épplyiqg an approptiate feature ccmpariscn technique-:c$§§igr
Iv). All neighktouring blocks that ameet- thei sinilgéity

P .

criteria become part of ﬁhe region being ‘gfqvn. The
neigbbours cf ‘'the newly accepted blocks are then examined
for tfurther growvthe The process is repeated :ecursiveiy

.until ac mcre tlocks can te added .to the regiqm under

consideraticn. Then a new regicam is grown arcund a block

which has nct been previously latelled. When all the Lklocks
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have bteen acssigned to regicns, the algerithe terminates-
The following conclusions are dravn ch tae tasis of the

study and the rese€arch dcne in tbis prciect.

It was found that the representation of a texture sample
by its histograms shows little variaticns acrcss different
sanples taken frcm the same texturea T Alsc i;.lcontains
essential texture characteristics which define the textural
differences lLetween t;o sagplecs. -?or the 'classific;tioq

hY

furpcses, ‘it was fcurd that the performance <f the gzethcd

prbpcsed by Raafat, 1985 was computatidnally better than the
spatial gra} level dependence method [Haralick, 1973) - It
‘was also -ncticed that the gray level feature in-‘the first
scheme did  not give sufficient infcrmation  for

discrimination: purposes;- however the gradient feature alone

vas quite adequate for discrimipation aad segmerﬁ?tion-
A

L
-

The algorithm propcsed in Chagpter V doe=s not plovide well

defined topndaries between different textured regiome due to

.

the large size of the image blocks. ' This prcktler can. be
resolved by hsing image blocks that are smaller in size,

espe'cially ‘for " the, blccks containing the boﬁndariés.

However thé image block size aust te large encugh tc be a
Qa;id texture sanmple. Thus in crder to achieve a reascnably
high rescluticn,.éﬁ overlapping scheme should ke used. ..
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Future research is neecded for an dppropriate selection of
the image block size fer seggentation purposes. Alsc cther

textural features can te intrcduced for a better texture

description. Hesearch is also needéd for better location of

toundaries tetweer different textureg regions.

T
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Appendix A

TEITOURAL FPEATORES

fne followity 1is a reference supmary of the teatures usel:
for the extracticn of textural 1n£orma£ion. from the gray
level co-ocCCUurrence matrices, gray level run length

gatrices, gray level difference density functiors, and pover

spectrun (Haralick et al., 1973; Compers et dl-,'1980);

The textural features which can, be extracted from each of

the gray level coifccurrence matrices are giver Ltelcw:

]

_gb-
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Motaticns:
e . .
FII,J) - I, JYth entry 1n a jray level co-cccurréence
matrix
% . )
E'D) - Ith entry in the rmarginal-probability matrix
and is given as:
. he
= T -£11,3) 2 I=1, 2, 3,-.., N3;
J=1 - -
Ng - Number cf distinct gray levels
1. Angular Second-Moment:
ASH = Z Z (plr,d )2
I J .
2. Cecntrast:
2: Ng-1 dyg=-1
CCH = N2 Z Z {1,J) ) *
N I=0 J=0 : '
1I-J)=N *

1. Correlation:

\q " Ng=1 HNg

COR = ====-mm e m e e e —ee o
0‘!. O‘Y
where ‘
' . Ng—1 Ng-1 }
By z Z P{1,J) .

J?O
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Hy = E J P1,d)
J=0 1=0
Ng-1 Kg-1
oy = 2 (I- kx) 2 z : E(I,J)
J=9 K 1=0
At
‘Ng-1 . hg-"
gy = E :J-#y)zz 26 S} B

J=0 1=0

Lecal Heecgeneity:

——— - . ——————

T Z}t‘---/-j -------- PII,J)

1=0 J=0
Entropy:
Ng=1 Ng=1 .
Ep = - z "E P{I,J)lcg P(I,J)
I=C J=0 '
Sumr Entiopy: ﬁ
2Ng-2
Es = - E ‘Ps(I) leg{Ps (1))
. — ‘ _
wkere .
Ng-1 Ng-1 o
v
Ps{K) = E E gjrﬁa) s K=0, 1, 2,eac,
1-0 %0
K=1+J
‘5

93
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\\ . 7. Suz Varience: . Ss

2Ng-2 T

Sv i‘ E [ I - E= )2 Es{I)

1=0
‘ i3
8. Sump Average:
2Ng-2
. s

Sa = E I P=s(T)

I=0

9. L[ifference Entropy:

i ——— —— o~ ———

Le = - Z P& (I) 1cg(Pd(I);

I1=0
where’

Ng—-1 Ng‘-r . )
E 2{I,d) ; k=0, 1,...,Ng-1

I=0 J=
1I-J| =K

Pd !K)

The textural features extracted from the gray Ieiel run
length matrices are: .

Notations;
——————- .
E(I,J}) - {I,3)th eﬂtry of gray level run length
_ matrices . 3 }
- : Kg=-1 Nr
Ir - pt Z BR[I,J)
I=0 J=1

1p =~ Nuoter cf foints in the picture

B
N



5.

The statistical f
-fromn the gray leve

Nr . =~ NMumker ¢f run lengths i;\tge zatrix

Al
fkort Run Esfrhasis:

1

%, SFE = —-—
T

Lcng Eun Egphasis:

———— i i S i e e

LEE = ———
‘ 150 J=1

Ir

Gray Lgvel Cistrituticn:

~
——— ———— " —— . —

i 1 Kg—1 Nr
GID = —--
Tr 1=0 J=1

" Pun Lengtk Cistrituticn:

fun Percentagés;

e - o—— - e -

botations:

—————————

-

100

J2 R !I,J)

R{I,J)2 . .

E{1,0)2 Y

i,

atures used to extract textural 1nfornatlon
dlfference density functions are:

-

. F(I1d) ~- Estimated prolability associated with *I¢
. ~ . .

Ng ~ ' Number c¢f gray levels



'2.

The features commonly used with tke poser spectrun

a . - .any displacement = ral1,d42)

are integers

Ccntrast:

Entropy:

Ng-1
ENT= Zf
. I1=C.
kFean:
Ng=1
MUE= z
- I=C

F(I1d) Yoy (F(I]d})

)

»I P(I|d)»

Inverse Difference Kogent: }

———— A A T ———— o S S ————

Hg:}
Cfpe = z
p I=0
I

pethcd are given btelow:

¥otations:

— o ————

& [u,v) - is the' sampling pewer spectrum

-

F{I1d)

(I2 + 1)

Y 101

where d1 and 42

» W
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®a — Number cf annular rinés
Mw - Nurler cf wedges
Ms = Numler cf =lits

PR

1. Anrular-ring Sampling Gecmetry:

LS %+Ap R
./- ¢' (a,B)a da d8; j=1, 2,..., Ma
N 0 %p

a = ‘(524‘,2)
+
o

tan=1 (u/v)

2. uedge Sampling Gecnetry.
Rt S —— —-l“-?._

. Pmax 8+46;
WSG = ¢'la,0)a da A8 ; j=1, 24ec., Hu
Pmin Gj

3. Slit Eampl;ng Geometry:

———— e S ——— i -kt bl

£
536 = _[ d). (U'V) du dv ;'j=1; 2p0ae, Ms
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ERQGRAB LISTING




.. | . . loq .

{ .
Rtk ok k SEGMENTATION ALGORITHM . CokEkAk Ak

Purpose
This algorithm establishes boundaries between different
textured regions. - . -

Array Description

R T . . W e

Fr  [.,.] - Digitized Image

I [.,.] ’ - Labelled Array

cv [.,.] - Event Distance Set

Arl [.,.], Ar2 [.,.] ~ Texture Distance Arrays

**'*******t**********‘***********t*.t********i*************t***

}
Program Labover ;-
Label
Five ;
Type -

*Image = Packed Array ([l1..128, 1..128] of Byte ;
Storel = Packed Array [O. .40 0..40) of Integer ;
Store2 = Packed Array [1. , 1..8) of Real ;

Store3 = Packed Array (1. , 1..8] of Real ;
Storgg‘- Packed Array [1. of Integer ;
Store = Packed Array [0..40} of Integer ;
{** Declaration of Global Variables **}
Vat‘

) Infile : File ; N
Ian : File of Byte ; .
Inname : String [15] H
Fr : Image ; .

I1 ¢ Packed Array [1..8,1..8) of Integer ;
Cv : Storel ; .
Arl : Store2 ;

Ar2 : Store3 ; .
Count : Integer ;

Rows, Cols : Integer ;

Nr, Nec ¢ Integer*;

Nml, I, .J : Integer ;

Decision : Integer ;

Limit : Integer ;

Ans : Char ;

Threshold : Real ;

{**** This procedure reads in the input image file ****}-



-
Procedure Readfile ; ’ -

Label )
ReadAgain ;

Var .
I, J : Integéer ;
Okay = Char ;

Begin '

" ReadAgain : ClrScr ; -
Gotoxy (15, 10) ; Le

TextColor {(12) ; ) .

Write (° “:5 ,” Enter name of image file Y
Readln (Inname) ;

Gotoxy (10, @I3) ;.
Write (~ Enter Number of rows D I
Readln (Rows) ;

Gotoxy (10, 15) ; .
Write (~° Enter Number of Columns .”) ;
Readln (Cols) ; )
Gotoxy (10, 17) ;
Write (° Enter Number of block rows ~)
Reddln (Nr) ; i
Gotoxy (10, 19) ;
Write (° Enter Number of bloek cols 7)) ;
Readlg (Nc) ;
gNml := Round (Rows / Nr) ;
Gotoxy (10, 21) ; .
Write (° . Overlapping Yes(l), Ne(O0) ~) ;
Readln (Decision) ;
Writeln ; -
ClrScr ; .
TextColor (14) ;

Gotoxy (15, 10) ; .

Write (° Name of image file is “, Inname : 10) ;
Gotoxy (15, 12) ;

Write (° Number of Rows is “, Rows :3) ;

Gotoxy (15,,13) H

Write (° Number of Cols 1is ~, Cols :3) ;

Gotoxy (15, 15) ; '

Write (° Would you like to Change any Parameters ~) ;
Readln (Okay) ; - : .

If (Okay =,"y") or (Okay = "Y~) i

. |

aF
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~

Then goto ReadAgain ;

ClrScr ;
Gotoxy {(20,14) ;
Textcolor (10)7; . )
Writeln (- READING OF IMAGE FILE IN PROGRESS... ") ;
If (Cols * Rows = 16384) Then '
Begin C : .

Assign (InFile, Inname) ;

Reset {(InFile) ;

BlockRead (InFile, Fr, 128) ;

Close (InFile) ; ‘

For 1i:=1 to rows do ’

For j:=1 to cols do
Fr[i‘,j]:-r'ound(Fr[i“,'j]//Z.0+0’._5);/

-

End

Else .~
Begin

TextMode ;
 Assign (Jan, Inname) ;

Reset (Ian) ;

For I := 1 to Rows do .

For J := 1 to Cols do
Read(Ian, Fr[I,J])

Close (Ian) ; ' .
End ; . )
End ; ’

.y .

{**** This procedure writes the segmented image ***%}

Procedure Writefile;

Begin
LlrSer ; .
.Gotoxy (20,14) ; . -
Write ( “Enter the name of the output file *) ;
Readln (Innahe) ;
Assign (InFile, Inname) ;
Rewrite (InFile) ; . ’ .
Blockwrite (InFile, Fr, 128) ; -
Close {(InFile) ;
Eand ; ’
{**%* Thig procedure finds the neighbouring blocks %k}
{**** of the image block under growth ) kkkk )

Procedure Nb4 (I, J : Integer ; Var Lx, Ly : Sto;eG) H
Begin

Lx{l] := 1 ; Ly[1l]}
Lx[2] := 1 -1 ; Ly[2]



Ty -

Ly{3] := J + 1 ;

Lx[3] =1 ;
I+ 1 ; Ly[b4] := J

Lx[&4] :=
End ;

?

{**** This procedure calculates the threshold value A&k}
{**%x%  for labelling purposes kkkk}

Procedure Thresh ;

’ El
. * ‘ L=

Var
Sd, Mean, Th : Real ;
Sum, Count : Real ;
I, Jd : Integer 3
Begin
Sum.:=. 0 ;
For I := 1 to Limit do
* For J := 1 to (Limit-1) do
Sum := Suwm + Ari[I,J] ;
For I := 1 to (Limit-1) do
For J := 1 to Limit do
Sum := Sum + Ar2[I,J] ;

Mean := Sum / (2.0 * Limit * (Liwit = 1)) ;
Sum := 0 ;

For I := to Limict do
For J 1 to (Limit-1) do
Sum := Sum + Sgqr (Ax1[I,J] - Mean) ;

.
LI o

For I := 1 to (Limit-1) do
For J := 1 to Limit do
Sum := Sum + Sqr (Ar2[l1,J] - Mean) ;

Sd := Sqrt (Sum / (2.0 * Limit * (Limit - 1))) ;

ClrSer ;

Gotoxy (20,14) ;

TextColor (12} ; .

Write (- Enter the fractional value 7) ;
Readln (Th) ; '

Threshold := Mean - Th * Sd ;

writeln (- “:3, “Threshold is = ~, Threshold) ;
Ends ; '

{**%** This procedure creates a labelled matrix for hdkokok ]

{**%% the segmented image - A TTT !

Procedure Labelling (var Fr : image);
* \
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var . . .
Lxt, Lyt : Packed Array [l..10247 of Iateger ;
I11, N1 : Integer ; )

"1, Il : Integer ;
J, K : Integer ;
Nll, N12 : Integer ;
Limitl : Integer ;
Di : Real ;
Lx, Ly : Storeb ; | .
Rep : Boolean ;
Begin
" ClrScr ;

"Gotoxy (20,14} ; ‘
Writeln (~ S:CMENTATION IN, PROGRESS... *)-; '

I11 := 1 ; {** Starting Label *x}

If (Decision = 1) Then
- . m — ey
Limitl := Limit 1 ~ 3 ‘

Else Limicl := Limit ;
’ ' \
{** Initialization of labelled matrix **}

For I := 1 to Limitl do : )
For J := 1 to Limitl do -
I1fI,J] := 0 ;

For I := 1 to Limitl do
For J := 1 to Limitl do

-

Begin ' N
Nl := 0 ; {** Initialization of Stack Pointer **}
If (I1[1,J] = 0) Then .
Begin

I1[I,J] := Il1 ;
Nb4 (I, J, Lx, Ly) ;

For K := 1 to 4 do
Begin

{** Check for previosly labelled block or block
- outside of labelling array *#*} .

If ({(Lx[K] > 0) And

* (Ly[K] > 0) And (Lx[K] <= Limitl)
And (Ly[K] <= Limitl) And
(I1[Lx[K],Ly[K]] = 0)) Then

Begin

A
{** Fetch distance between current block .and
its neighbours . **}

a



b . -

If (K =

. Di =

. Else If
Di =

Else If

: Di :=
Else Di

1) Then
Arl(I,J-1]

(K = 2) Then
Ar2[1-1,J]

(K = 3) Then
Azl[I,J] - . ‘

:= ArZ[I J] ;.

If (Di < Threshold) Then

103

q

**}

4

Begin:
T1[Lx(K],Ly[K]] := L11 3
Nl := N1L + 1 ; -
Lxt[Nl}.i:= Lx(K] ;
Lyt[Nl] := Ly[K] ;
® End ; AU
.End ; )
End ; . -? v
1£. (N1 <> 0) Then "{** Grow regions around new **}
Begin {** blocks of same label
Rep-:= True ;
N1l.:= 1 ; .
N12 := N1 ; .
While (Rep = True) do :
" Begin .
For Il := Nil to_N12 do.’
, Begin
{** Fetch neighbours #*} i

Nb4 (th[Il] Lye(Il],Lx,Ly) ;
-1 to 4 do . .

For K
Begin

If ((Lx[K] > 0) And ' .
(Ly{K] > 0) And

(Lx{K]
(Ly[K}] <= Limitl) And .
(IlfLx[K],Ly[K]] = 0)) Then

Beg

in

If (K™=
. Di

E

E

1sé
Di

lge
Di

I1f

(Y

If

<= Limitl) And

1) Then- L
Arl{Lxt[Il],Lyt[I1l] ~ 1]

(K:-.Z) Then
Ar2 [Lxt[I1] - 1,Lyt[I1]]

(K = 3) Then .
Arl{Lxe[Il],Lyt[Il]]

.
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Else Di := Ar2[Lxt([Il],Lyt[Il]] ;

If (Di < Threshold) Then

Begin -
I1[Lx[K],Ly[K]] := I11 ;

"Nl := NI + 1 ;
Lxt{N1} := Lx{K] ;
Lyt[N1] := Ly[K] ;

End ;

End’ ;
End ;
End ;

If (N1Z <> N1) Then .
Begin

N1l := N12 + 1-;

N12 := N1 ;
End !

Else ‘ »
Begin o

I11 := I11 + 1 ;
. Rep := Falge : -
End H /
End ;

End

End ; .
End ; ’ ) : "

ClrSer ; {** Display labelled array **}
For I :=- 1 to Limitl do : .

Begin

For J := 1 to Limitl deo
Write (I1l[I,J], =~ ~) ;
Weiteln ’ :

End - ;

{** Create segmented image from labelled array

For I := 1,to Rows do

Begin .
Fr{I,l] :
Fr(l,®]
Fr[I,Rows]
Fr[Rows,I]- :

End ;

1

-0;
-0;

0
o

e us

If (Decision = 0) Then .
Begin - R
For I := 1 to (Limit-1) do

Else Il1 := I11 + 1 ; {** Increment label

**}

*k}

v

..
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Begin '
If (I1[1,I] <> I1[1,I+1]) Then
For J := } to Nec do
Fr{J,I * Nr] := 0 ;

If (IL[I,Limit] <> I1([I+1,Limit]) Then
For J := ({(Rows + 1) = Nr) to Rows do
Fr[I * Nr,J] := 0 ;
End

For I := 2 to Limit do
For J := 1 to (Lidir-1l)do
Begin
If (I1[1,J] <> I1[I ~ 1,J]) Then )
For'K := (J = 1} * Nr to (J-1) * Nr + Nr do
Fr{(I - 1) * Nr,K] := 0 ;

If (I1{I,J] <> I1[I,J + 1]) Then
For K := (I - 1] * Ne to (I - 1) * Nc + Nc do
Fr[K,J * Nc] ::= 0 ; .

. End ;
End
Else
Begin §
For := 17 to 112 do
Begin
r[17,1I] := 0 ;
Fr(ll2,I] := 0 ; : : :

Fr[I,17] := O ;
Fr[I,112] := 0 ;
End ;

Ne := Nr Div 2 ; R
Nr := Nc¢ ;

For I := 1 to (Limitl - 1) do
Begin i
If (I1[1,I] <> I1l[1,I + 1]) Then
For J := 1 to Nc do a
Fr[J + 16,I * Nr + 16] := 0 ;

If (I1{I,Limiel] <> I1[I + 1,Limitl]) Then
For J := (f{Rows + 1) - Nr) to Rows do *
Fr[I'-* Nr + 1 + 16,J - 16] = 0 ;
End ; -
For I := 2 to Limitl do
Fer J := 1l-to (Limitl - 1) do ’
Begin - :
If (I1[I,J] <> I1[Il - 1,J]) Then
For K := ((J=1)*Nr+16) to ((J-1)*Nr+Nr+l6) do

Y



End
End ;

{****
{****

If (I1[I,J]

End ;

Fr{(I-1) * Nr + 16,K] := 0

<> I1f{I,J + 1]) Then
For K := ((I-1)*Ne+16) to ({I-1)*Nc+Nc+16) do
Fr(K,J * Nc + 16}

= 0

112

This procedure computes the gf§§ﬁ2nt vector (hkkk}

histogram of a given image block

Procedure Histblk (A, B

Var
It

- G
Thet
M1,
Xy,

M, N,

Coun
Part
Gy,
P1i,

Begin

For
Fo

Pi
[%*
For

Fo
Be

{*i

a

Nl,:Mr, Is

K, L,

t

1, Part2

I, J

CountO

Gx, Xx

R, S

Integer ; Var Cc

Store)

Picked Array [1..32,1..32] of Byte

: Packed Array [1..32,1..32] of Integer

Packed Array [1..32,1..32] of Real

Integer
Integer
Integer
: Integer

": Integer

: Real ;
: Real ;

M := 4 to (A + Nr -

r N

t= 3,1

‘= 3 to
IrfM - A+ 1,N-B + 1] := Fr[M,N]

415927

(B + Nr

.
¥

s W wr e we

1) do
1) do

i***}

Initialize gradient and directionality arrays **}

I =
r J :
gin

Theta

1l to Nr do

=1 to

[1,J]

G[I,J] := ©
End ;

Ne do

:= 0Oe0 ;

Compute gradient and

.For I := 2 to (Nr - 1) do
For J := 2 to (Nc-1) do

Be

gin

Partl
Part2
Gy :=
Partl
Part2

im Ir[I+1,J-1]+

Part2

- -Partl

tm Ir[I-1,J-1]+

u
¥

i= Ir[I-1,J+1]+

r= Ir[I-1,J-1]+

directionality A}

[ NN

v

hd .o f

*Ir[I+1,J] + Ir[I+1,J+1]
*Ir[1-1,J] + Ig[I-1,J+1]

*Ir[I,J+1) + Ir[I+1,J+1]
*Ir[X,J-1] +/Ir[1+1,J-1]
. ,

-
re

/

C
)



-

Gx := Partl - Part2 :
Xx := Abs (Gy) + Abs (Gx) ;

G[L,J] := Round {(Xx-/ 6.0} + 0.5) ; {=* Normalize **}
N {** gradient =~ **}
If (Gx = 0) Then
Theta([I,J} := P1 / 2.0
. ¢
Else
Begin

Theta{I,J] := Arctan (Gy / Gx) ;
If ((Gx < 0.0) And (Gy > 0.0) ) Then 5o

.
2

Theta[I,J] := Theta[Il,J) + Pi

If ((Gy < 0) And (Gx < 0)) Then

Theta[I,J] := Theta[I,J] - Pi
End
End ; .

[{**x

discretization scheme %%} .

’

Count0 := 0

For I := 1 to Nr do
For J := 1 to Ne de
If (GfI,J] <€ 5) Then _
Coufit0 := Count0 + 1 ;
4
Cc[C] := CountO ;
Mr := 1 ;
Is := 8 ;
M = 5 ;
N ::= 10 ;
Xy = &4 ;
For K := 1 to 5 do

Begin
R := -P1 / 8.0 ;
S := P1 / B.O ;
For L := Mr to Is do
Begin B
Count :
For I :
For J :
Begin

0 ;
2 to (Nr-1) do
= 2 to (Nc~-1) do

-

k]

Evaluate gradient vector histogram using 2-D

If ((G[I,J] >= M) And (G[I,J) < n)) Then

Begin
. If (L <> (Xy

+ 1)) Then
Begin St

If ((Theta[I,J])-R)Aﬁd(Theté[I,J](B)) Then

Count := Count + 1 ;
End



— L il
Else
Begin
If ((Theta[I,J])-R)O:(ThetajI,J](S)) Then
Count := Count + 1 H
End ;
: End ;
: ,End ;

- Cc[L] := Count ;
If (L = xy) Then
Begin
R := 5 ; .
$ = -5 ;
End

Else
Begin

S:-S+Pi/4.0;

b
<
]
o
<
+ -
w

A****  This procedure evaluates the event distances kdok])

Procedure Cost ;
Var

Dist, Angle : Store ;
First, Last ! Integer

?
Icount, ‘k ! Integer ;
I, J, F, 1Ia 2 Jnteger ;
Ib, Ic : Integer ;
Begin . : ‘
ClrScr ; ;
TextMode ; !

TextColoxr (10) ;
Gotoxy (20,14) ;

Writeln (° EVENT DISTANCE CALCULATIONS IN PROGRESS..-')
Itount := 0 ;

-9



First := 1 ;
Last := 8 ;

For K := 1 to 5 do

Begin ™,
For I := First go Last\‘do
Begin

J := I - Icount ;

Dist[I] := K + 3
Angle[I} ::= J ;

End ;

‘First := First + 8
Last := Last + 8
Jcount := Icount + 8

End

b

-

*

.
)

.
¥

DistfO] := 0 ;
Angle[0] := 0 ;
F := 2 ;

For I :=. 0 td 40 do
For J := 0 to 40 do
Begin

If ((I = 0) And (J = 0))
Then Cv[I,J] := O

Else If ((I = 0) And (J > 0))
Then Cv[I,J] := F * Dist[J]

Else If ((I > 0) And (J = 0))
Then Cv[I,J] := F * Disgt[I]

Else

Begin R

Ia := Abs (Augle[l] - Angle[J])

Ib := 8 - Ta ; '

If (Ia < Ib)
Then Ic := Ia

Else Ic := Ib ;

Cv[I,J] := F * Abs (Dist{I] -

<

Digt[J]) + Ic ;

****}

En H
End 3
End ;
. {**** Thig procedure computes the texture distance **#%%}
{**** petween two image blocks using the trans— S kkkk)
{**** portation algorithm

Procedurelblst (Yy,Yyl:Store;L,H:Integgr;Atrays:Char) H

Var

L 4

\

’

}_l
Ul



Cpr, X : Storel ;
Nr, Ne, N : Integer ;
Nm, Zr, Zc : Integer ;
Icne, Imax : Integer ;
I, J, Minr : Integer ;
Mine¢, Comin :+Integer ;
Costl : Real ;

Begin .
Nr := 40 ;
Ne := 40 ;
If (Nr < Nc) Then
Begin '
N := Nr ;
Nm := N¢ ; .
End . !

Else
Begin
N = Nc ;
"Nm := Nr ;
End

Zr = 0 ;
Zc = 0O ;

Fagr I := 0
For J := 0

" Nr doe
o Nc¢ do

Begin
Cpr{I,J]) :e Cv[I,J] ;
X[(1,J) := H

End ;

Jent == 0 ;
Imax »= Nr + Nec 4+ 1 ;

While (Icnt < Imax)~do

Begin
Minr := 0 ; .
Mine := Q ;

Cmin := Cpr[0,0] ;
For I := 0 to Nr do,
For J := 0 to Ne do
- Begin
If (Cain > Cpr[I,J]) Then
Begin - :
Cain := Cprfl,J] ;
- . Minr := I ; .
Minc := J
End ; °
End ;

.'h

!



-

Ignt := Icnt + 1 ! .

If (Yy[Minr] < Yyl[minc]) Then
X[Minr ,Minc] := Yy[Minr]

Else X[Minr,Minc] := Yyl[Mine] ;

If (Yy[Minr] < Yyl[Minc]) Then
Begin . .
Zr = Zr + 1F;

» Yyl[Minc] := Yyl{Minc] - Yy[Minr] ;

Yy [Minr] := 0 ;
For J := 0 to Ne
Do Cpr[Minr,J] := Maxint ;
End

"Else If (Yy[Minr] > Yyl[Minc]) Then -

Begin® &

Zc 1= Zc + 1 . .
Yy[Minr] := Yy[Minr] - Yyl'[Minc] ;
Yyl[Minc] := 0 ;- -

For I := 0 to Nr deo
Cpr[I,Minc] = Maxint ;
End

Else
Begin ) .
Yy [Minr] := O ;
Yyl[Mine] := O ; .
If ((Nr - Zr) >= (Nc - Zc)) Then
Begin
For J := 0 to Nc de
Cpr[Minr,J] := Maxint ;
Zr = Zr + 1 ;

¢

End

Else.
Begin .
For I := 0 to Nr do
Cpr[I,Minc] := Maxint ;
! Ze = Z¢c + 1 ;
End ; : .
End ;.
End ; : : '

Costl :
For I :
For J :
Costl :

0
0

1 ©rr v

o Nr, do .
to}ﬁ? do
Codtl + (Cv[I,J) * X[L,J] / 4.0) ;
’ ’

[y

If (Arrays = “y“) Then - g
Arl{l,M] := Costl / Sqr (Nr)

——%



Else Ar2[1,M] := Costl / Sqr (Nr) ; .
End ; -

Procedure Hist ;

R

&

4

Var

Yy, Yyl : Store

A, B, C, D : Integer ;

I, J, Ky M : Integer ;

Sh : Packed Array [1..8,1..8,0..40] ¢of Integer ;
Begin

Clrser ;

TextMode ;

TextColor (10) ;

Gotoxy (20,14) ;

Writeln (° HISTOGRAM EVALUATION IN PROGRESS...") ;

For I := I to Limit do
For J := 1l -to Limit do
Begin
If (Decision = 1) Then
Begin - .
€C := Round (Nr / 2 * (I - 1) + 1) ;
D := Round (Ne / 2 * (J - 1) + 1) ;
End- .
Else -
Begin ’
C := Nr * (I - 1)
D := Ne * (J - 1)
End;
Histblk (C, D, Yy) ; ‘ fJ
For K := 0 to 40 do
Sh{I,J,K] := Yy[K] ;
End H v

ClrScr ;
Gotoxy (20,14) ;

Writeln (° TEXTURE=BISTANCE CALCULATIONS IN'PROGRESS...‘);
For I := 1 to Limit do

For J := 1 to Limit do < .
Begin ENY. -
If (J°<> Limit) Then ' ~-
‘Begtn )
For K := 0 to 40 do
Beg'ln

Yy{K] := Sh[I,J,K] ;
Yyl[K] := Sh[I,J 4+ 1,K] ;
, End ; )

Dist (Yy, YylL,I, J, “y7) ;

*



: . o - il
End ~

If (I <> Limit) Then
Begin
For K := 0 to 40 do
Begin
Yy[K] := Sh[I,J,K] ;
Yyl[K] := Sh(l + 1,J,K] ;

?

End *;
Dist (Yy, Yyl, I, J, "a") ;
End ; ‘ . .
End ; .
End ; '
Begin {** Main Program **}
ReadFile ; Sdfi
If (Decision = 1) Then
Limit := (2 * Nml) - 1 -
Else Limit := Nml ; -
Cost ; ’
Hist ;
Thresh ;
Labelling(Fr) ;
Five : Writeln ; -
Writeln ; _
Writeln ;

Write (° Do you wish to change threshold ~) ;
Readln (Ans) ;
If ((Ans - “y”) Or (Ans = “Y“)) Then
Begin 5
Thresh ; o
Labelling(Fr)
Goto Five ;
End ;
. WriteFile ;
End .

s
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