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N ABSTRACT -
This work presents the development of complex digital signal
processing algorithms using number theoreric techniques. :
Residue number principles and techniqdeg are applied to process
complex signal informaticn in Finite Impulse Response (FIR) and Infinite
Impulse Response {IIR) digital filrers. Residue coding of complex samples
and’ arithmetic for processing complex data have been presented using
principles of quadratic residues in the Residue Number System {(RNS). 1In
this work, 'we pave presented modifications to the Quadratic Residue Number
System (QRNS))which we have termed the Modified Quadratic Reéidue Number
System (NQRNS)}EO process complex integers. New results and theorems have
been obtained‘for th%,selection of operators to code complex integers into
the new MQB§S Trepresentation. A.nével schemé fof residue to binary con-

.

nd

4]

version has been pfesented for implementation using both the QRNS

~

MQRNS.

LAY

Hardware implementations of multiplication intensisF complex non-

-

recursive anazrecdrsivetdigital filters have been presented where the

» .. A .

;QﬁNS épdiﬂQRNS struétures are realized using a bit-slice architectural
lépbfoach. Tﬂe computation of Complex Number The;retic Transfo;ms (CNTTs)
and the hardware implementation of a radix-2 NIT butterfly structure,
using high density ROM arrays, are presented iﬁ.both_the QRNS ana MQRNS
systems.: As an illustration, the cbmputaFion of the CNIT developed in

this work, is used to compute Cyclic Convolution for complex sequences.

These results are verified by computer programs.



The recursive FIR filter st c V_r,gniformly spaced frequency
samples on the unit circl$<de§eﬁ$pg¢:by é&apting the Complex Number

A

. -
Theoretic thra25£o¢m;

s .

this ggrkaﬂﬁh'fﬁiltéf’stfuétﬁré‘is extended for non—uﬁiformly spaced fre—

asﬁﬁéén Ymplemented using the QRNS and MQRNS. ., In

. R It
-, - Lo Tl R .
~quéncy:samplés “and has ‘been termed the generalized number theoretic

-
s iﬂfilterfstructure.. It is shown that for the implementation of this
A .
generalized structure, the MQRNS is more efficient than the conventiocnal

RNS; the QRNS does not support éppropriate fields for the generalized

structure. : ’ N

Tk
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Chaprer 1

INTRODUCTION .

During the recent years researchers havé devoted considérablb )
effort in the practical implemept;tion of the number theoretic tech-
niques including the theory of the Residue Number System (RNS), for
the implementation of digital signél prbcessing algorithms.

" The earliest known work in the Residue Number System was by a

H -

Chinese maEhematician, Sun-Tsu, of the first century AD, who stated
the Chinese Remainder Theorem‘ih its original form. Although the
theoretical Eoundatiohs,of the residue arithmetic were developed
by mathematicians, such as Euler, Fermat and Gauss, in the eighteenth
and nineteenth centurie;, the application of number theory has become .
prominent in the last two decades. )

In the RNS, the binary operations of addition, éubtractiog;and
multiplication can be implemented with the absence of carry propagation which
provides RNS an inherent speed advantage compared with the conven-
tional weighted number system. The binary operations are performed in
.L independent parallel paths; the req;ired dynamic range can be obtained
by varying the number of parallel paths in the RNS. Thege characteristics.
lend themselves to fast arithmetic operations in digital tomputer aréﬁi—
tectures.

In the early 1960's researchers explored the basic properties of
the Residue Number System (RNS) and demonstrated the advantages of the

RNS for general purpose, high speed computer applications. The early

inveétigators such as Savaboda and Valach [6] were interested in using

v



(v

tﬁe RNS for the design and comstruction of a general purpose éompucér
which resulted in the EPOS genéral purpose computer. In this respect
the work of Szabo and f;naka [79] is‘a*ve£y important reference. In
[7], Garner studied the'aritﬁmetic properties of residue numbers with
the objective of deriving error corre;tingNEpdés for compﬁters. Since
the RNS is an integer number system, divisioa is, unfortunately, not,
in general, a closed operatio&. The RNS has difficulties in imﬁlement-
ing operafion; of division, scaling, sign détection ana magnitude com—
périson; For example, ;;gnitude comparison in the RNS is known to beu
difficult to achieve. All the reported overflow detection algorithms
make use of the Chinese Remainder Theo?em (CRT) or the mixed-radix
conversion aigorighms. Since tﬂe above said operations are awkward

in the RNS, it was abandoned for general purpose computers.

Although many shortcoﬁings still exist’in applying the RNS to
general purpese computer design, tﬁe techniques are well suited to the
implementation of digital signal processing algorithms [46,84]. The
operations required are only addition, subtraction, multiplication and.
scaling (division) operations. -A gestricted form of division in which
the divisor is a fixed constant is usually required in digital filters
to prevent overflow and to optimize the signal to noise ratios in various
parts of the filter. An efficient i;plémentation of the scaling operation
was reported by Jullien [1] in 1978.

The RNS architectures for Finite Impulse Response (FIR) digita&?:'

filters were proposed by Jenkins and Léon [2] in 1977. The épplication
P



to FIR filtering requires only addition and multiplication, the fast

RNS operations. Jenkins and Leon showed how gocod cost/performance figure
coul& be obtained using the RNS filters based upon the read only

memory (ROM) look—up table approach.

In the case of finite Impulse Response filters (FIR) algorithm which
employ indirect filtering via transforms, have provided efficient im-—
plementation, using the residue number S{Efem techniques. These specific
classes’ of algovithms have been referred to in the literature, as Number
Theoretic Transform (NTT) for which the transform is defined over Q
finite field (or vring) rather than the field of complex humbers over
which the commonly used transforms are defined. Digital filtering by
means of finite field transforms requires no scaiing, and'sc it can take
advantage of the strong featpres of the RNS. NTTs computed over residue
ciass rings or fields have been extendeé to the more gene;al setting
that includes the so calied Complex Numbgr Theoretic Transforms (CNTTs).
Unlike ﬁFTs, the NTT bagﬁd filters are error free and fast. Recently,
various authors have proposed Number Thecoretic Transforms over different
finite fields and>rings in_ [23,24,26,27,71].

Infinite Impulse Response (LIR) filters are implemented recursively
and enjoy many cost and speed advantagés over FIR filters. The use
of feedback allows an IIR realization that is of a lower order than a
FIR executing a comparable'funétion. In this sense ;n IIR is more
economical in terms of Spéed and required hardware. However, these
benefits are acquired at a cost of sensiﬁivity to roundoff error accumu-
‘lation because of the feedﬁack in the IIR realization. Many stable, re-

cdrsive'fil;ers have fractional fiter coefficients. Since fractions are



not allowed in the RNS, the fracticnal coefficients must be scaled up for
the computation, and then the output must be scaled down before being
fed back into tﬁe recursion [1]. This cperation is termed scaiing.
Hence the implementétion of RNS recursive digital filters.have
centered upon | efficient scaling algorithms. écaling is not an easy
operation 1in the RNS'and cannot be implemented exactly; hence the
scating operation introduces quantization érrorsin the recursive filters.
The implementetion of .IIR filters using RNS techniques has been
stugied using efficient scaling algorithms for low quantization noise
by Jullien [1] and Jenkins [13]. Soderstrand [33] has applied the RNS
techniques to the implementation of seébnd order recursive digital
filters baséd on lossless discrete integrators. Here the scaliné is
avoided by storing the complete multiplication by fractions in look-up
tables but adaptive filtering is not possible using this approach.
In addition to the implementation of digital filters, the RNS finds
some applications in error detection and correctionm, where both trans-
mission and computational errors are to be controlled. The modularity
and parallelism of the RNS a%}owsthe isolation of-hardware faults, givL
ing the system unique error-correcting properties. In the RNS, the
erro; de;eéting and correcting capability is usually achi%:ed by add-.
ing one or more redundant residue digits. The structure is well suited
to currént circuit layout ?echniques that benefit from regularity and
modularity. The possibilicy of the RNS error detection and correction
have been mentioﬁed early by Szabo and Tanaka [79], but Mandelbaum's

[37] results contain the earliest proofs of the RNS error properties.

In 1973, Barsi and Maestrini published a sipgnificant paper on this



subject [41]. It contains proofé and procedures for RNS error cor-
rection and serves as a foundation for the subsequent work in the field.
These results were applied by Jenkins and Etzel [38] to fault tolerant
.digital filtering. Their results included efficient error correction
algorithms and simulation of a gradually degrading RNS recursive

filter. 1In [21],; the authors have extended this work to the redundant
Quadratic Residue Number System (QRNS).

Using the RﬁS based filter scructure; requires a binary to residue
interface at the i&put and residue to binary conversien at ghe output.
For instance, during output conversion of signed numbers, the opération
of sign detection and residue to binary ébnvgrsion must be performed
simu;taﬁeously. Residue to binary conversion uses basically two methods:
Chinese Remainder Theorem (CRT) and the mixed radix copvefsion. Very
recently, an eéficient residue tq binary conversion scﬁeme has been
proposed by Soderstrand in [4] using the Chinese Remainder Theo:em, and
by Baraniecka and Jullien in [5] usfng mixed radix conversion techniqueé.
Numerdus:techniques on this sgbject have been discussed [3,11].

FroT the above mentioned works ‘and the works of various other
authors,:the conclusion that emefges‘is that‘the RNS is becoﬁing aﬁ
atgractive‘and useful tool for the implementaﬁién of the digital signal
processi%g algorithms. The recent bréakthrouébs in high density
memory %echﬁolsgy anq microprocessor hardwdfe have made the RNS

! y

B J '\ ) ‘\\ )
become increasiqgly important in the application‘of digital signal
- J \

process#ng.
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1.1 The Objective and Review of the Research Work

The principal objective of this research is to explore the applice-
tion of residue number techniques in the construction of digital
isigﬁal processing hardware to process complex déta sequences. As a
stgrting point, we explore the basic principles'involvedlin performing
complex arithmetic oﬁerations usi@g the Reéidue.Number'System. We hgve
also explored the basic hardware principlesninvolvéd in.pe}forming-éri—
thmetic operations in the RNS.

The motivation for this work is based upoﬁ tﬁe recently published
results showing the attractiveness of qéihg the Quadrétic‘Residué Number
System (QRNS) to obtain very high:speed'complex arithmeﬁic proiéssing
hardware. 1In the QRNS the complex numper will be dedompoéed inteo
element pairs (element and‘conﬁugatej. Usiné these element pairs, the
complex multiplication can be performed with two real multiplications
with restrictions of the form of the prime moduli for the RNS
processing. The mogivation Bbr this research stemmed from the fact that
the QRNS has been defined for a particular setlof moduli with prime
factors of the form 4K + 1.

The primary aim of this research concentrates on the medification
of thé QRNS, so that moduli of any form can be used for the RNS process-—
ing. The resulting number system has been termed the Modified Quadratic
Residue Number System (MORNS), In the MQRNS, moduli cf any f0;; can be
rused with an increase in multiplicatigns from 2 to 3. New theorems and
results based on concepts from abstract algebra and numﬁer.theory are

presented, that allow selection of the operators for the' MORNS. Using the



QRNS and MOQRNS we have developed algorithms for the impleméntation of
Finite Impulse Response (FIR) and Infinite Impulse Respoﬁse (IIR)

digital filters. The conventional complex digital filters and the

QRNS and MQRNS digital filters have been investigated by comparing the
hardware requirements and the computational speéd. For this work we
"have considered several filter architectu:es;' From the above invégtiga—
tion we have dis;overed that the QRNS and MQRNS based filter architectures
offer the most efficient results compared with aréhitecture based on the

conventional RNS arithmetic.

In the cadse of the residue to binary conversion, we have developed
a method for the direct decoding of the element paifs of the QRNS and
MORNS. An iﬁ-depth‘study‘of the computational aspects of Complex Number
Theoretic Trénsform and the haFdware implementation of the buéterfly
structures i?.the QRNS and MQRNS have been investigated. A generalized
vfrequency sampliﬂg filter struct&re (Legrange structures) has been
developed usingAthe concept of the Complex Number Theoretié—z—tréﬁsform'

which utilizes the MQRNS arithmetic for the implementation.

1.2 Organization of Thesis

Chapter II covers the pre-requisite material for the re;éarchﬂ
In particular a concise review of some of the fundamentaié on finite
Aring and field structures is-presented and the mathematic éonpeptgof
Residue Number System (RNS)} are introduced. .This chaptef p:o&ides ar-
background referencé for definitions and notations used ;hroqéhodt the .

thesis.
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Chapter III describes the modification of the Quadratic Residue Number
System, which we have termed the Modified Quadratic Residue Number Systemp
| Chapter IV covers the implementatiorn;oncepfs of the residue i
arithmetic in.the QRNS agq MQRNS intluding techniques for performing the
arithmetic along with methods'fdr'in;érfacing QRNS and MQRNS based systems
with binary based syste@s. It-éléo deals with the implementation of the
QRNS and?MQRNé using VLSf Circuit’féb;ication.

Chapter V deals with the imblémenté;ién of recursive and non-
recursive filtérs-u;ing}the QRNS.and ﬁQRNSf fhg implementation of
direct FIR filter érchiﬁéétﬁ;e aﬁd‘ﬁit—slice architectures are discussed.

Chaptér VI'preseﬁ#s tﬂé cémbutétion of the Complex Numbef Theofatig///////
Transform élong with the haranre:implémedtation of'thé butéerf}y struc-
tures. It also presents the dé;elopmeﬁt of.the.genefaliied'FIR filte;

structure (Lagrange structure) using the Complex Number Theoretic z-

transform. ’

K4 Chapter VII summarizes the results of this research.
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Chapter II

CONCEPTS OF NUMBER THEORY AND ABSTRACT ALGEBRA APPLICABLE
R TO DIGITAL SIGNAL PROCESSING

]

2.1 Introductiodn

o iIn this.reéearch, an extension of the Quadratic Residue Number
System (QRNS), the Modifiéd Quadratic Residue Number System}has been
developed by Fsing the concepts of quadratic residue rings fo? complex

digital filtering. As a Pre—requisite, this section introduces the.

. concepté‘gf residue algebra and presents a brief review of background

material cn the ring and field structure as a foundation for the works

in the succeeding chapters.

2.2 Finite Rings and Fields

Since we are going to define the Quadratic Residﬁe Number Systems

(QRNS) over quadratic residue rings, we will briefly present the struc-
! w

ture of'rings and fields, a branch of abstract algebra. As a'starting
peint, it would seem appropriaEE_59 formall& define the notation of a
‘ring and-field.
Definition -1: A non-éﬂpty set R is said to be a ring if the operatioﬁ$
of addition and multiplication satisfy the fo?lowing Restulates.
1. a+ b is in‘jihg R
’ 2. a+b-= B:+ ;'(Commutative‘law'oﬁ addition)
‘3.: (@ +b) +c=a+ (b+c) (Associative law of addition)
4. There is anF:Iemenf.O in R such that a + 0 = a for
every a in ‘ﬁnf(éxiseéﬁcé bf'ze:q)
5. There exist§ an eiemeﬁt -a ~in R such that a +'(-a) = 0
(Existence of additive'iqverse) ‘

.4. ' B "'-.‘__ T 9- i . .
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‘divisor of zero in R if there exists a non-zero element b of R

//#’ . o T 10

6. a .b is-in ring R
7. av (b .e)=1~(a.by . c (Associative law of mulciplication)

8. a. (b + )

a.b+a. c¢c and

(b +¢) .m a= q&. a+c¢ . a“(Distributive laws)

where a, b and ¢ are arbitrary elements in R.

-

1f, further, the fellqwing law holds a * b :\b < a for:every a, b € R,

then R is called a Eq?@ptative‘ring; A ring with identity is a ring in

which there exists an identity element for the operation of multiplica;idn

a-1l=1-+a=a forall aeR. 1 is the identity.
B \ , - Lo .
The ring of integers is an example for a commutative ring with

I

identity. 1In abstract algebra, elements cf a ring are not necessarily
the integers, even not necessarily numbers, it can be polynomials, for

example.

If a is in R and a # 0, then there exists an element in R called;.

: 7
the reciprocal of a and denoted by a L (multiplicative inverse), such that

a - a-l'= 1. The set of all invertible elements of a riﬁg'is a group

with respect to the operation of multiplication and is called a "multi- .

plicative g;oup.”

4

Definition ~ 2: An element a ¢f a ring R,\Q £0, is said to be-a

b #0 such that a - b = 0. ,ﬁ‘

Definition - 3: A commutative ring with identity is an integral domaiﬁ,‘i

if it has ‘no zero divisors.

Definition - 4: A commutative ring F — {. 0} with more than one element
and having a multiplicative identity is said to be a field ifrevery non-—

.

-~

U

I
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zero element of F has a multiplicative inverse in F.

It follows [77,76] that every field is an integral domain. The

. - L
rings (fields) with a finite number of elements are called finite rings

-
‘(Fields}.

A ring of integers wi&h~addipion and multiplication compu;ed moduls
m, denosed here as Z(m) ’is an eﬁampie of a‘fisite ring. |
Definition ¢« 5: For any prime m and any positive integeT r1, there
exists a f1n1te field with mnle}ementst This field is commonly denqtsq'by

the symbol GF(m") and is called a Galois field. Since any finite field

. n : . i : . . - e L v .
with m" elements is a Simple algebraic extension of field, a brief review of

the basic ‘conceépts about the extensions of a given. field will be presented.
N :

T L . A C S )
Let F be a field, Then any field K conqéizfng F is an extension of
‘F. Ifféris;ﬁﬁe algeb}aic over,F,-_i;e; if B is .,a root df~§pme

itrsduqible polynomial .

. ‘..‘_.4 2 . , ‘K_ . .,_-

f(x) =x + 1. ¢ F[x] such that £e) =

then the éx;ension»fiéld arising from a field F by the adjunction of a
. . ‘,'._'--7-'—., '. - . . ‘ T !

root 8 is-'called a simp1e algebraic extgnsiont.Qenqted_by‘F(B).- Each -

element'qf.Egs)'can_bs'uniquely répreseﬁtéd_as'a‘polynomiSI

o L n-1.- N
+ Cane e -
ag ta; B+ o tVuf'én‘l 8" ",d.e F ‘
This'sniqus-represen;ation closelyﬂrssembles}the representation of
"a-vector indtsrms of the Vectbfs of thefbasis-"l; QY L Ly The

vector space concepts are sometimes applled to- the exten51on flelds, and

\WTB) is considered as, a vector. space dlmen51on .n ‘over F,
‘o ) : ' ' . .
The field of complex numbers is an example of an extension of real
R et Sl , . A
numbers; it is generated by adjoining a root { = v -1 of a' itpeducible
L S, A o :
polynomial x '+ 1 = Q. o r )
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.The integer T is called the index of w rélative. to the base, dehoteq'ihdu w.

12

2

If f(x) is an irreducible polynomial of degree n over Z(m), m prime,
theﬁ the Galgis-Fiéld‘with mnrelements) GF(mn) is usually defined [76;90]
és a quofient field Z(m) [x]/f(x), i.e;,‘the field of residue classes of
polynomiélé of"Z(m) .[x] reduced module (f(x)). All fields con;aining
o elemeété are i50morpﬁ1c to ea;h other. Imn particular, Z(m){xj/(f(x))

is isomorphic to the simple algebraic extension Z(m) (B) where B is a

o root of £(x) = 0.

2.3 Cyelic Sub-Groups

Consider a finite field with m-elements. In this finite field, the

non—-zerc elements form-a multiplicatiye group. Tﬁis multiplicative |
groﬁp of or@er m-1 is cyelic. That is it containslaﬁ element WPOSE powers
generate all elements of the groupil Thié elementr is called a generator a,
and thé order 6f o is m-1. The order of any elemeﬁt”m-in tﬁe mﬁltiplica—
tivglgfoup is the least poéipivp'iﬁteger k! Suéh‘;hat w5;= 1, w® i,
1<s <k, the oraer, k, is é divisor éf m-1 and w is called ;Aﬁiimitivé
k-th root of unitf. : . | -
. The multiplicative group {Qqe F - {'0}, |-|m'} 1s isomorphic to an
additive'gfpup {Te F—{@flf, I4{Inrl } where | | implies that the.qperation
cbﬁputéd_modulo m. Tﬁe isomb;phic mapﬁinglbetwéen tﬁé group elemepts is

given“ \ . E _ -
| ' w o= o, T 0,1, ——m2) . (2.1)

L.

-

T
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2.4 The Ring of Residue Classes
For gibeﬁ'integers a and b, b # 0, there exists two unique

integers, q and r such that
a =bq+r 0 <r <b - (2.2)

It is clear that q is the integer value of quotient a/b. The quantity
r . is the least posiﬁive (integer) remainder of the division of a by
b and is designated as the residue of a modulo b, or |a IS' We will

say that b divides a (written'b|a) if there exist an integer k such

that a = b -+ k. ‘ ¥
Definition - 6: If a, b and m are integers m > 0, then we say that a

is congruent to b, modulo m written as
a2 b mod m if and only if m divides a - b."

Since m|0, ¢ = ¢ mod m '%y’defipition.. We can q;;ine the congruence
in another form as follows.

Two integers a andb are congruenf'ﬁadhlo m if and only if the?
leave the samé reﬁainder when divided by m. o | |

m

(i.e.) el = lal

Definition - 7: A set of integers containing exactly those integérs =~
.. which are congruent modulo m, to a fixed integer is called a residue

class module m. .

The residue class (mod m) forms a commutative ring with identity

with respect to module m éddi;ion and multiplication tfaditionally.knoyn

“as the ring of iﬁtegers modulo m or the residue riﬁg and denoted by Z(m).n_

This ring of residue classes (mod m) contains exactly m  distinct
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elements. The ring of residue classes (mod m) is a field if and only
if m is a prime number, and there exists multiplicative inverse,
denoted by a_] (mod m) for each non-zero ag€ Z(m). Thus the non-zero
classes of-Z(m} form a cyclic multiplicative of ordeg m-1, {i,....m-1}
with multiplication modulo m 15 isomorphlc to the additive group
0,1,...m2} with addition modulo m-1. |

If m is a composite, Z(m) 1s not a field. Multiplicative inverses
do not exist for non-zero elements a € Zém), for which ged(a,m) # 1.

At this stage let us introduce Eﬁlgg‘s fotient function, denoted by
¢ (m). It is defined as the number of posi;ive_integers-less than m
and relatively prime to m. It follows that the number of invertible

‘elements of zZ(m) is equal to ¢(m){80];

¢ = ml1-1/m J[1-1/m,]... [1-1/m; ] S (2.3)

where m has prime factorization

DEm oty e mpc
The Euler-Fermat theérem states ;hat if a .ié ah integer, m is a positive
Integer and ged(a,m) = 1,
th?h

0

A B T (2.4)

The useful prbperty‘of this theoremiis;Cat fhere is an upper limit on
the order of any element a & Z(m). Specifically, the order t is a

divisor of ¢ (m).
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2.5 Quadratic® Residues

The concept of quadratic residues is important to the theory
of Quadratic Residue Number Systems (QRNS) which form the basis for thig\\\ﬁﬁ_,_ﬁ,f‘—
work.
Given two integers, r and m, such that (r,m) = 1, r is called a
quadratic residue, modulp m, 1f the congruence xz = r .mod m has a2 solution.
If no solution exists r 1is called a quadratic non-residue mod m.
If m is a prime,m > 2, there are (m-1)/2 quadratic residues ‘and

(m~1)/2 quadratic non-residues modulo m [75].

R
Fite A

Example:

For m = 11 the quadratic residues are obtained as shown below

1 = 10" = 1 med 11

22 = 9% -4 mod 12

‘ 3% = 8% = 9 mod 11

. 2= 7% =5 nod 11
5?2 = 62 =3 mod 11

Thus the quadratic residues modulo 11 are 1, 3, 4, 5 and 9 and the

-

quadratic non-residues are 2, 6, 7, 8 and 10.

If a is a quadratic residue moduloc m, then ¢
* m—1
a? & I'mod m (2.5)

If a is a quadratic non-residue modulo m, then

m—1

2

a -1 mod m (2.6)
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" If we use Legendre symbol [80] in equation 2.6, it is evident that,

m-1 -
[ %-] = a? mod m _ (2.7)
or we can say that
m-1
[%] = (-1) 2' o (2.8)

As (m-1)/2 is even for m of the form 4K + 1 and odd for m of the form

4K + 3, it follows that

Theorem — 1: [81j The number ~1 is a gquadratic residue of all primes
of the form 4K + 1 and quadratic non-residue of all tHT

.primes of the form 4K + 3.

2.6 Residue Number Systems

In the Residue Number System (RNS), each integer can be reﬁresenteﬂ

by an L-tuple of residue digits:
X = (XO,Xl,..........XL—l) | | (2.9)

. |
i 1 oy

represents modulo o, operation. The binary operations of two residue

where x, = [X|m . is the ith residue and m, is the ith modulus,“

)

sequences (xo,xl,...xL_l) and yo,yl,...yL_l) is given by (rO’ri""rL—l

“with T, = |x:L @yi | o where {© represents the binary operation of
i
-addition, subtraction or multiplication within R(mf where R(mi) is the

ring of integers modulo m, . ‘
If all the m, are relatively prime, it can be shown that [79] there

- is a unique representation for each number in the range
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L-1
0 <X < T [m =n (2.10)
1=0

where L is the number of moduli.

For applications in signal p;ocessing, it is helpful to define a
dynamic range for the RNS with positive and negative iﬁtegers. Hence,
the dynamié range is defined as [~(M-1)/2,M-1)/2) for M oﬂd, and as
[—M/ézM/Z—l] for M even. Any integer X within the dynamic range
can be represented by L-distinct residue digits as in (2.9). It provides
the relationship between the ring of integers modulo M and the direct

«

‘product of the 1 subrings R(mi), ie {,2....L}. This fact can be

established using the Chinese Remainder Theorem (CRT) [79].

L-z-l - l — |
X = m:| x m m
=0 i i LM (2.11)
where
- L-1
M= T—T mi
i=0

m, = M/mi, and (mi,mj) =1 for all i # j.

The requirement that the moduli be :elatively'pfime ensures the
existence of a—l mod m, .

i i ,

In afgebraic terms the RNS is a on—to-one correspondence (an
isomorphism) between the ring of integers modulo M and the direct
product of L smaller rings modulo m, .
The additive inverse in.modulo complement form is:given as X = M-X

and for each residue X, =mg - X% S0 that |x + XIH = 0.



The interesting feature of the RNS is that the-intermediate over-
flows of an arithmetic computaticn can be ignored and we obtain the
correct answer if the final result is within the range of the number

- system.

2.7 Summary

This chapter haé presgnted a concise review of the fundaméntal

L .

number theofetic;and abstractlalgebra concepts related to the digital
signal prcééssing algofithmé developed in this thesis. The ch;pter can
be u;ed‘aé a backérpund refgregce ﬁPr definitions, nomenclature and
nétations used throughout chié'thgéis.

The ﬁotétions used in finite.ring and field - algebra have been
introduced. .The céqcept-of qgadfatic residues which has beén preéepted

is the preéreduisite knowledge for the development of Quadratic Residﬁe,

18

Number Systems (QRNS) over quadratic residue rings and Modified Quadratic

Residﬁe Number System (MQRNS) over modified q&adratic residue rings.
The concept of the primitive root, which is introducéa in this‘chapter;
will provide the knowledge required fof the deﬁelopmeqt of algori;hms.'
for the computation of C;mplek Nﬁm#er Theoretic Transform (CNTT)_inffhe
'QRNS and MQRNS. ;' - . '

The notion of a ﬁultiplicafive inverse—and.conditions fqr its
existence has been discussed. Euler's totient fﬁndtion has been preF
sented as a function‘of.the mathematical concept of the residue'number
system. The basic properties‘éf fesidue_numbef systems have been des-
cribed, and cthe independence pf binafy operations between the residue -

digits has been discussed.



‘Chapter III

THE QUADRATIC RESIDUE NUMBER SYSTEM (QRNS) AND
MODIFIED QUADRATIC RESIDUE. NUMBER SYSTEM (MQRNS)

331 Introduction
‘ Many signal processing applications require the representation
oé complex data and filter coefficients. A familiar example is.the
qdﬁdrature modulated communication system. _In fact, complex signal process- -
in% has many apﬁlications in base band processing for narrow band r.f sig-
nais;.homomq;phic speecﬁ processing; spectral analysis; matched filters
foé coheteng.Radars [87]; a range gated pulse dopler Radar System$[61].
Pr&cessing complex data involves multiplication intensive (four real multi-
plications to realize the complex multiplic?tiom operations. If the binary
num?er system is employed_iﬁ implementing the hardware for processing
com&lex data, a coﬁparatively lErge amount of time will be spent in
the ﬁultiplication‘operations, and large register lengths will be required.
Since’ the operation of multiplication does not require the generation of -
partial products in thé RNS, the ﬁultiplication‘operations are performed -
at high speed. For situations where complex data has to_ be proce;sed, the
uéual brbcedure in the RNS is to replace the conventional complex multi—
plicagion by medular operations. Thé QuadratiC'Résidue Number.Sisteﬁ
(QRNS) profidés an alternative for processing complex Hata.' '
;Coﬁplex RNS arithmetic has been stqdied, brimarily as'é heans to
& inéfeaée éfficiency in signal érocessing applications ch;ﬁ ére domipated
»bx cpmélgx muléiplications. Tq perform the complex mﬁltiplicat;on; a
‘ﬁephod’based-on réa; index calculﬁs has been propbééd'in [59];_ In this s

19
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method, every complex multiplicgtion has to undergo three stages of
operations;: index loock-up, 2's complement adder, and correction/decod-
ing. In this methoed, for a prime modulus P, the index addition has to
be performed modulo (p2 - 1). The practical value of p is limited with
in 61 because the number of address bits or the total size of the ROM re-
quired for the implementation is a major criterianx
A conventional modular approach in the RNS t; pe?forming the complex
multiplication rEqEE?e that separate real and imaginary channels are to
be formed; the'multiplication of these complex quantities requires special
considerations for hand;ing the cross product terms. Recently it was
shown that certain types of special number systems based on modular
arithmetic admit representation of complex data as a set of element paifs
(element‘plus conjugate). This representation leads to complete decoupling
of the real and imagina;y chanﬁels. This type of number system was first
proposed by-ﬁhssb;umef for_Fermat primes which are of the form 4K + 1 [19],
but thg full eéxploitation of its potential was pot eéxplored. Recently in
- f201] the“utilization of the ab;ve number system has been investigated
for any prime moduli of the form 4K + 1, and the number system has been
Eermedhthe Quadratic Residue 'Number éysfem (QRNSj;: Aiéhbugh the QRNS is
uﬁdoubtedly well known in certain areas of méthématiéal literaturé, it
has been applied to the area of digital filtering tolﬁrocéss éompleg ‘
digital signals in [20,21] vér& recently. Using the:QRNS we can peffofm'-
complex multiplicétion with only two real RNS multiplications}  For the -

price of encoding and decoding complex integers, the QRNS allows complex

operations to be performed by two real operations.
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This chapter concentrates on the development of the MQRNS by
defining the quadratic residue ring. In order to show the algebraic
structure of -the complex numbers, the complex extension field will be

discussed in the following section.

3.2 Compléx Extension Fields

Let us consider a finite set of positive integers p = (0,....p-1),
together with mod p addition and multiplication forms a finite integer
ring R(p) for any positive integer p. R(p) is a real ring beéauée all
éleménts of p are real integers. 1If p is a prime, the structure becomes
a more sophisticated algebraic structure than a-fingp To form a coﬁplex
extension field, the results of theorem -~ 1 .from Chapter II is used to
determine the solution té the quadratic monic equation.

First consider the case in which the’ modulus is a prime of the form

p = 4K + 3. Then the monic quadratic is non-solvable and the solution

72z 1 mod p (3.1)

cannot be found in GF(p). A complex modular structure, represented
by the second degree extension field GF(pz), can be formed by taking
‘ordered pairs \

"N ~ :
(a, b) = a'+ ib, a, b € GF(p)

Now the binary operations of addition and multipliéation‘in GF(pZ) can

be deﬁﬁged as follows:

(a,b) + (c,d)

CZR‘_ZI)

‘ - ' S (3.2)

(a,b) -+ (e,d) = (Yp,¥) .



- where “
ZR =|a + c|? ‘ ' U L
2, = |b +.d[p |
Y = lac ‘—-t‘;q[_p. _
YI = lad + bcIp

The arithmetic operation defined in (3.2) is similar to conventional

complex arithmetic, except that the real and imaginary components are

computed with mod p arithmetic. The stéucture is a finite field containing
p2 elements'aﬁd as such possesses all the algebraic properties of the com-
'plex modular fields. Such a complex field has interesting properties
that may be useful in complex digitial signal processing. In this case,
the complex .multiplication requires four modular multiplications and two .
modular additions.

If p is of the form 4K + 1, then the monic quadratic equation is
solvable in GF(p). This will generate the QuadraticAResidue Numbér
System (QRNS). Let us first discuss the conditions for generaping the
QRNS. |

3.3 Quadratic Residue Number System

If j denotes the solution of the monic quadratic, then’

.

322 -1 mod P o G

where j € GF(P). There exists a multiplicative invérsé‘of j'modulo'P
‘and is equal to -j. N
Although we cannot %pild'an extension field on‘the'solution of (3.3),

we can:generatg an extension fing [1s1, which we will call the quadratic
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residue ring, in the following way:
L

Let M =T | P, where P

= 4K, +1
i=1 1

i

and let j be a solution to the monic polynomial x2 + 1 =0 over the
ring R(M). This solution will exist because of the assumed form of M.

- ok
Define an extension element, A(Q) = (A,A ) . (3.4)

* ) ' *
where A = |a—jb]M and A = ]a—jblﬁ, a,b € R(M) and A, A’ € R(M). We

now define the quadratic residue ring as
wany = W@ 4.} (3.5)

where the binary operations are computed modulo M as follows:

Addition .
- I P A | (3.6)
Multiplication _
2@ 3@ g, 4t s (3.7)

If the requirédlbinafy‘bpgrations-are performed as shown in (3.6, 3.7)

the resulting number system is called a Quadratic Residue Number System
(QRNS).
Now lét us show that the binary operations over QR(M) (3.6,.3.7)

are isomorphic to the'algébr;ic operations: of the compléx residue ring

can (21].

(a,b) € RAD , (A, & )€ RQD (3.8)

where
A= ]a + jb|M

*
A = |a - by



and - ’ . ~
Foo.

b= |2

-1 *
27 @+ D],

N T
o _ i A |y

~

Let C1 = o + i8 and C2 = y.+ i§ be the two complex numbers

" - Lo
where i = /=1
Then the addition j.s‘
Cl + (2 = |a+y|M_+§|8+ G[M' - (3:9)
o &
Thg element pairs Cl and C2 can be computed as:
A= |o%+ jB] A" = |l - i8],
IRy : > T IRy
= Iy + 36 8" = Iy - 38
B Y + 300y Y = Joly
- L]
Then i
| = |A + Bf *—IA*+B*|
/ ¢= i . Q‘ - M
* " . * Il R
Q, Q can also be comp@ted directly from (3.9)7 -
(i.e.). ca=lleryy il @+ ol - g
*— - s
=@+ -5l 6ol

Similarly the multiplication of Cl and C2 can bé computed as

- C2 = |0W-85|M +1 s + By|M' ) ;;5\\107’
' A S

follows:

.as.-

* ' }
The Wnd Q can, be computed from (7) diréctly as follows:
> : - .

Q =,I | (v - B&) | + j_|‘ (aé + BT”M'M :
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wvhere R(mi) is, the residue_ring.mod;mi, and j; is the solution to ij = -1

_ 25
_ N o o ,
Q= [ [ ey = B [-il @8 + B |yl
refor we can show that
Con, +, D@, +, ) * T (3

-'DuQ-Folthis:isomorphiém, compu&ations can be performed in either
dd ?esﬁl;s can be trénsl;ted between the two. Ittis‘often more
con entiéné to do-ﬁomplex computations iﬁ'EHe>QRNS:Qhére'a.coﬁplex
ﬁultiplication can be_performed’b& éwo reéi multiplications.

As an illustration of‘multiplica;ion over QR{m), let us consider

o +‘. ... ‘+- :"
two complex numbers a; Ji bi’ €i 3 d,: a,, bi, cyo di £ Rgmi)

1 1

mdmfjiafﬂm),;alilg,vil N .
" We can pow-compute'thé élement'pairs as ‘follows: ' '
_ N T R b |
’ R |a;- Iy i, . PP P P ) (3.12)
. —‘-/ c o, . . 1 . . . i
' B, = e, + 5. dl 0 B =lle - | (3.13)
S i i i'm, : i i i i, :
, . - s 1
trvetee Q- lacnl el sl o
thwe ler Q= 08yt Byl Qg = 0Ay B (3.14)
: - ‘ i
then the real and im;ginary‘parts of the product can be formed as
, -1 R ] .
IR - (3.15)
' S S § o
ty =12 i @l
\ i T

.

' Since the operations defined by (3.14) can be cgécaded'before'thé con- . " .

a

version defined by (3.15);‘thé hompiek'multiﬁlicat;on can beieffectiﬁely

perférmed witﬁ'twareal:multiﬁlicafions.,
- For combutatibnfdvep,QR(Mj, we use the.iéomd:phism; . \
T VR o o ‘ o o o
o R(M) = QR(ml) B QR(w2) @ ..........8 QR(al) S (318)

B B . ' C e
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to provide L parallel computation elements where M = [ mi where
ST _ C i=1

" the prime factors of M should be of the form 4K + 1.
- In [22],‘the”QRNS has beenventended for conposite numbers with
\>prime factors of" the form 4K + 1 and the diminished -1 binary code [60]
has been suggested for efficient binary arithmetic

: In brder to remcove the restriction of the modu11 in the QRNS a
modification to the QRNS has been termed the Modlfied Quadratic Residue i
.Number Systen_(dQRNS) [15]. The MQRNS is discussed in .the following

secticn.

C 3.4 Modified Quadratic Residue'Number System .

The primary disadvantage of the QRNS is the restriction of the

form of moduli for RNS processing. For example, the only modull which
.; .are;acceptable for the QRNS and can be represented by 5 bits-or less are
>2,3,10,13,17124,55,26 and 29. Since the RNS is defined for mutually
prime moduli, the only acceptable 4 bits moduli are 10 and 13. These are the
only moduli of 4 bits or less‘that can be used.if dynamic range is to be '
‘:naximiaed because 2 and 5 cannot be used with 10, hence:(2,13), (5,13} and
’(10 13) are the only possibilities with (10 13) maximizing the dynamic range
:'to 7 01 bits. For 5 bits, we may use l7,25,26, 29 and this moduli set will’
givera dynamic range of 18.29 Bits. ;Although this moduli set is acceptable
:torltheiQRNS, tne real and imaginary parts of the complex numbers cannot Be.
x'-recoVered-by'uSing'anyreven moduli. This coﬁstggiét.reduces the dynamic
frange-offthe.noduli;set'using‘ﬂ and 5 bits to l7.é9 bits, and the moduli set
is'ljﬁll,éS and_29;_ Since;és is'not a prime, this may introduce some dif—“

".ficulties ifwnultiblidative inuerse,of 5 is needed in the calculation.
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‘ S N . ‘
More recently Soderstrand and -‘Poe herexextended the QRNS to moduli

of any form but with considerable dynamic range reduction. ThisfnumberA

system has been termed the QuadraticrLike ‘Residue Number System (QLRNS) -[18]

QLRNS is discussed later in this chapter } Here when mapping the complex

numbers into the QLRNS, representation, the imaginary term is scaled by-an’ -
v .
appropriate factor and truncated to,an_integer. Thus the resolution of the

imaginary term is reduced. This i1s a serious handicap. In QLRNS, the real
'and imaginary parts'will have different‘resolution. In this thesis, the

QRNS has been extended for moduli of any form with no resolution reduction
' i .
. but with an increase in RNS multiplications from 2 to 3 this ‘number

system has been termed the Modifie _Quadratichesidue Number System

(MQRNS) [15,16].

Usinﬁ-a modulus,. m,. of any form except of the form 4K + l the
monic. quadratic equation x2 + l 0 is 1rreducible in R(m) Clearly ‘this
will not admit a ORNS since we require —l to be a quadratic residue.’ We

“will generalize the monic quadratic 8o that a solutien (other than —l)

Y

exists over R(m).:" Let the extension element be

(MQ)=(A S R - (3‘..1'7)‘
where A = la + 55{ 'and A = a = j51',1é, b eTR(my‘ and A, A" € R(m)

with j as’the solution to the monic qu. dratic xz'F 0 mGd m

‘We can now.define the modified quadratic:residué ring as
M@ = QL Sy U (3l
“where the binary operations are computed modulo m as follows:
- .Additiom:

PR P S I S (3.19) .



~Multiplication
» N % .* :
A LG gy s, 8 sy (3.20)
-where § ¥|];2+ llm * b - d|m, b, d are the imaginary parts of the complex

samples.

In the MQRNS, |32|m# -1 and so this particular constrain will alter

o .
the real component of the complex multiplication. In order to correct

this we have to compute the term S, so as-to 6Etain the correct value of
the real component; this results in one additional multiplication over
lthaf required for the QRNS. It can be showp that the MQR{(m) is isqmorphic
,tévthé complex residue ring C(m).

Thé'complex multiplication can be\perfotmed'using the_MQRNS as

- T
follows: o \\:b
o o - | L0 S

ConsldeF_two complex numbers a; s bi’ a; + Y di) a;; bi’ g di £
R(mi) and anfinteger 35V n mod m %_eR(mi)J e {1,2,....1}.

~

SN | 5 913,
let . - p; = |Gy + 1)|mi | ) (;.21) ‘
Calculate the element pairs as before:
A= lay + 3 Celacigels o Gan
T A; T la—dg eyl L (B.22)
~ 1 * -~ 1 -t .
Byo= ey + 3y 44l By = ey i 40, (3.23)
- : * * : _ oo o
let =~ Q, = |a, ¢ B. | Q. =la, +B|]. ands, = |D.ob,-d] .
T i i Tilm, i i i'm - i o1 im,
. ) ) l ) ) ’ - i B st ‘l 1-. ' .
b (3.28) 7
The real and imaginary pafts of the product can be formed aé
. Y =" | ]2‘...1 . (Q "l: O:E)'l _ SI
R, 1 "i"lm, i'm,
i . i i
| =1 -1 *
Yoo= 20 ey e - Q| (3.25)
Ii S o1 ,mi AN

\ v



Instead of subtracting the Eerm Si as in (3.25), we can subtract it from
Qi and Q: directly in (3.24). 1In this case, the real and imaginary'parts
of the product can be computed using (3.153). It is observed from (3.24)
that the MORNS complex mu}tiplication can be performed with three real
multiplications.

The MORNS uses the isomorphism

ROD ¥ MOR(m) B MOR(m) B .ovonr.... MOR (m, ) (3.26)

to provide L parallel computatibn elements where M = I mi.
= - | . i=1 \

3.5 Quadrafic,Like Residue Number System (QLRNS)'
, ; . R )

-

The concéptﬂbehind the QLRNS is to identify within the valid
RNS system'a number which when squared yields a small negative number.
_ " “Then the comp%ex numbers in ;he-QLRNS'can be defined as follows [181}:

ﬁet:

x + jy be a complex number ¥
then . X+ jy=m+njv a :
. » ' r___
; )
where m= X -

n = y//z;
The integerfu'yill bé cbtained after roundiﬁg or truncation. The resélution
"or the dYnémic range will thus bé reduced by the 1epgth of the j wvector.
Once ﬁhe.comélex numbers are decoded into the QLRNS, then ﬁhe extension
ring elegénts.can Be defined over the quadratic ring as in the QRNS.
~The binary opérétions of the extension ring can be computed by using (3.6,3.7)
' Although‘the Qtéﬁs gaineﬁ efficigncy by Qsing the QRNS complex.érithmetie,

the dynamic range was considerably reduced, For example,‘a 4 bit moduli
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set {11,13,15,16 }, offers a resolution of 15 bits. If we use OLRNS,

the résolution reduces from 15 to 12 bits [18].

In order to recover the real and imaginary parts, the even moduli
are not allowed, because the multiplicative inverse of 2 and (2j va )
do not exist within the RNS. For exampie, if wé consider the moduli sep
211,13,15,16}, 16 is an even moduli. For such a system of moduli, the
QLRNS is classified as the QLRNS2 {18). 1In the QLRNS2, the conversion
from the élement pairs to real and imaginary part, must-be performed by
the scalingltechniques which will require additional hardware.

One of the interesting features about the QRNS (and also the MORNS,

. QLRNS) is that once the input has been transformed into a QRNS (MQRNS,

Y
Ve

QLRNSj representation, this form can be maintained throughout all computa-
tions, witﬁ conversion back te a conventional representation being per-
formed at thi éﬁd. This means that the addi?ions associated with_QRN?
complex multiblications are, in effect, transparent, and onl{ one or two
actual additions are rquiéed for the multiplication depending on whethér
(3.25) o? (3.24)‘;5 used for. the mapping.from the QORNS to RNS. The only
extra overhead is the coding into and out of the QRNS (MORNS, QLRNS)
representations, atlthe beginning ang end of a chain of caic?lations. ,

In the RNS, table look-up operations afe‘often‘used for goth addi-
" tion and mulciplication: iﬁ this case the total number of operations will

. . .

be the most importaﬁt consideration: Iab}e-aa gives‘the"number of multiplies

'_-and adds required in complex binary, QRNS, QLth‘and MQRNS{

Although both the QRNS and QLRNS quﬁire the-same nuﬁber of 6perations,'



Table 3a

4

NUMBER OF MULTIPLIES AND ADDS REQUIRED IN COMPLEX

BINARY, QRNS, QLRNS AND MORNS

Number Systems Number of Number
Multiplies Of Adds
Conventional 4 2
Conventional Using
3 Multiplies 3 5
QRNS and QLRNS 2 -
MQRNS 3 1

31
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the QLRNS notation requires extra hardware to compensate fér the dynamic
range reduction and for converting the imaginary paft into a-scaled intager
value [18]. From our work with the QLRNS the dynamic range reduction is
typically at least equivalent to one modulus. There is also the problem
of locating an extra modulus which maintains the property of minimizing
the dynamic range reduction,

In order to demonstrate the‘complex multiplication in the QRNS and

MORNS, let us consider two examples in the following section.

3.6 Examples : .
3.6.1 Example - 1

Let us consider two compiex numbers 2 + j3 and 1 + j4 and the modulus
5 where the operagor 3 = 2. The binary operations of‘pddi;idh and multi-
plication on the complex numbers cén be performed in the QRNS as follows:
The element pairs can be computed as ) N

A= [2+2- 3]

: x -
3 A [2-2-3]5=1

. *
B=[l+2-4|g=24. B j1-2-.4]g=3

The multiplication can be performed as - . -

4l =2 * e -3
Q= [3-4fg=2 Q =]1-3],=
The real and imaginary.part of the complex multiplication is

-1

Yo = |27 - (2 4+3) | 5=0

=2t 2t en) -
The addition can be perférmed as

Q= [3'+ 4 [5 -2 Q=]1+3 |5 =4

w
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real and imaginary part of the complex addition is

Y
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I't can be verified that the direct computation of the complex multi-

plication and addition modulo S'yield the same results.

3.6

the

can

Let

The

The

The

.2 Example -2
Consider two complgx numbers 2 +.36 and 3 + 32 and a modulus 7 ghere
operator § = 1.  The Binary operations of multiplication and addition
. ‘ -
be performed in the MORNS as follows: ’
element pairs can be compﬁted as

D= |1+1|=2

A=|2+6|7=1 A= ]2 -6],=3
‘ " _
B=|3+2|7=5 . , B=|3-21,=1
- complex multiplication can be done as .
Q="|1-5|7=5 q*=|3-117=3 .s=12-e-2|7=3

real and imaginary parts of the complex multiplication are

. -1
= 9 Te - L=
Yo =12 (5 + 3)|7 3[7 1 )
—‘\_1 - -l. - —. = o‘ '
vo=j2 1 (5 3)|7 3[7 1
multiplication’ can be done in another way as follows:
B - . _7 * _0 ]
Q=[lr 5], -3[,=2 Qa=[f3-1f,-3], =
real and imaginary parts are

-1

7

Yo = 277 - 2+ 0)|7 =1
= —1 - _l - — =
N Y= |2 1 (2 0)\7 1
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The complex addition can be performed as

1
-~

*
= |1 4+ 5 =6 = |3 +1
Q | B ¢ =341l
The real and imaginary part of.the complex addition is

-1

<
It

|2

-1 A

S 6+ 4], =5
Yo= 27«17 - (6 - l,=1

It can be verified that the direct computation of the complex multi-

plication and addition yield the same results.

3.7 Summary
The Quadratic Residue Number System has been defined over the

Quadratic residue rings. The Modified Quadratic Residue Number System

(MQRNS) has been defined over the modified residue ring. A brief review

of the Quadrafic’Liké Residue Number System (QLRNS) has been presented. .
R F o

The isomorphism between the conventional complex ring and the quadratic . -

and modified quadratic residue rings has been established.

The MQRNé has been defined for any moduli. ‘Fhe complex muitiplicaf
tion ;n‘the QRNS requires an additional multiplication compared to -the
QRNS or QLRNS. Although the QLRNS requires thersame nG;Ler of operations
as the QRNS, the QLRNS requires extra hardwére to c&mpenséte-for the
dynamic range reduction and for convefting the'imagiﬁary part inﬁpaér
scaled integer value. 1In wdrkiﬁg with the QRNS, the dynamit:faﬁge‘fedﬁctionv
is typically at least equivalent.to one modulus. If the-QLRNSZL[IBJ'is
used, the‘conversién from element.pairs to real and.imaginéry parts re-. A
quires scaling operation which will reducé the speéd.of the .system,

In viewing all the above characteristics of-thé_QLRNg, in ﬁrder.ﬁo“

offer a complete choice of moduli, the MQRNS has been offered as an

alternative to the QRNS.



Chapter IV

HARDWARE IMPLEMENTATION OF THE QUADRATIC RESIDUE
NUMBER SYSTEMS AND BINARY TO RESIDUE AND RESIDUE °
TO BINARY CONVERSION TECHNIQUES

4.1 Iatroduction

In general, signal processing algorithms consist of repeated multi-
plications and additions. 1In the early years, the hardware implementation
of most of the digital signal processing algoritbms was developed using
the binary number system (fixed point and floating point). Binary multi—
plication [43,44,83] requires more time and more hardware than binary
addition, and so dominates the speed and cost. In the Residue Number
System {RNS), the binary ope}ations of addition or subtraction havé,no
inter—digit'carries.or bdrrows,'and multiplication does not generéte
paritial products. 1In Eact,'in.some hardware realizations multiplication
and additién.have idéntical-speed and cost, and, in certain cases,'
multiplication by constants céﬁ be a 'free' operation. Henée arithmetic -
operations can be_pe;formed at high speed using the RNS¥[10,35;36,40,50J.
The ﬁr;mary advantage of tﬁe Residue Number System .(RNS) is that the

binéry opérations'of‘addiéion; subtraction and multiplication can be

performed on the'respective residue digits in L independent parallel sec—
: : > ' -
tions. Then the Residue digits can be mapped into the binary number system

using thé Chinese Remainder Theorem (CRT). '
. Although arithmetic.operaFibns_can be:performed at a very hiéﬁ
speed, there are difficulties in implémenting some operations. Division,
scaling, sigﬁ detection and magnitude‘cdﬁﬁqriﬁon are such operatidns.
General division in the RNS is a compliggtéd pfoceéé.-.Scaliﬁg is egsier

T
-

5
A
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than general division, but in'scaling the divisor is limited te¢’ a pre—
determined-tonstant. For an efficient impleﬁenﬁation'of scaling, the
constant scale factor must be a product of some of the moduli [1,79], or
powers of 2 [42]. A restricted form of division.of this type is uSual;y
required in digital filters to prevent overflow and tofoptimiie’tﬁe
signal~to-noise ratio in various parts of the filter.

In the following section some hardwarefimplémehtatidns of RNSVO§gragi6ns'”

are presented. . . S o

-

472 Hardﬁare Implement;tion of RNS Operat;oﬁs

_fof the.imﬁlementation of arithmetic operationsiin-ﬁardwaré,lseveral
ba§ic épproaches.are‘available. They are classified asrfollows:'
| ;l..iLogicéllimpiementapibnﬁéﬁ-the Boolean function directly speci-l
lfiéd by thé:bpérat;oh.
' Z‘L\A Cdmbinétibn of binary elements and look-up tabies for pre-
computed fuﬁcfions.

__3;' Sﬁéring software ﬁlgorithms in .a general purpose computer.

The second method is more suitable. than.the ‘other two in the case
- * . . N - /' " .

_ of the RNs;_and-maﬁy schemes are availabié to perform the addition, sub-

tractioﬁ'and_mulciplicétibn; For example, a scheme consisting of a binary

adder.or subtraétbr %olldwed by a lopk—up_bablé_po pérfofm the.operation

of addition or éubtraction‘or muitipiidatioﬂ, has_béeh'breséﬁced in [73]

(see Fig. 4.4). In this approach, the memory space is used ﬁore efficigntly'

than the direct storgge of the look—up table for thé arithmétic cperations.
In another example, the well known quarter square multiplier is con-

sidere&. The quarter square muléiplier can be expressed as:

a-b=[(a+b)?~ (-2

4

l
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This ppgratisq éaﬁ be implemented using the binary addition and sub-
f;acéion with the square function stored in ROMs. The final correction
and‘ﬁivide.by A are stored In an output ROM. A complete design of a

large moduii-mﬁltiplier is presented in [31] showing the.pipéline structure
of a 28 MHz throughput filter for the modulirof the form 2N+1, 2N, ZN—1
using the quarter square multiplier.

The recent breakthroughs in the area of high density Read-Only

Memory (ROM} technology and the continuous reduction in the memory

. cost have made the above approach more attractive . In the direct

look-up table approach, a memory size of (2ZB XB) bits is required to

store the look=-up table for a2 modulus of B bits; that is each modulus m

1
requires mi entries in the table.
| The data width B is given by
~~ B = rlog2 mi] (4.1}

. whefe"r;j'reﬁresents the ceilling function for integer truncatiom.

. The combination of binary elements and look—ﬁp table.approach
‘ 1

.requires'a'memory size of (2B+ XB) bits. In the case of the direct look-

‘Qp table approach, for large modulus this requirement tends to be very

high but if the modulus 1s limited to six bits, currently available

; sihgle chip memory packages can be used to store a look-up table. For

exampie, biﬁﬁ;;\gperations for moéﬁli m < 64, can be imﬁlemented Y
using (4K X 8), (1K X 8 ) and (256 X 4) bit commercially available PROM
packaggs, respectively. The lc;:k—up table appro‘ach i1s not feasible in
the case of binary number system because of the enormous storage require-

ments.
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For example, the ROM structure of Fig. 4.1 illustrates a modulo

addition Mhd subtraction for the moduluiﬁil, foilowed by a residue

multiplier to. implement the function |]a + b|6i_-_|c-*a|6l|61; Since eoohl

residue can be represented by a maximum of 6 bits, the total of two inputs

to each look-up table is 12 bits, and the output is taken ftom-ﬁ'of the 8

. -

output bits. Another advantage of the look-up table approach is that it
allows easy pipélinging‘il&]. For euery latch pulse,.the output of-each
ROM is stored and becomes part of the address'for the uext ROMu.-THe'Only
control signal required to clock the pipeline'is 5 latch pulsef For-every
latch pulse, new input is accepted, and new output is generated: ;The t
throughput rate of the array is equal to the inverse of the ROM access tlme.
plus latch-settling time. Using ECL, bipolar or HMOS devices, and modull
sizes from 5 to 12 b1ts in width, data rates of 3 to 100 MOPS (Mllllon
Operations Per Second) can be achieved [93].

The direct use of ROM for stored t@?le look-up residue arlthuetlt'.

leads to memory intensive structures [70]. Memories whlch ave;ﬂggffectured

using TTL technology, tend to use a large amount of powefi' ﬁﬁdsaor CMOS
memories reduce th4 amount of power dissipatidn. The tradeoff in‘using
the TTL and NMOS or CMOS chips is throughput and power dissipation.lrlu"ti"
TTL the throughput is hlgh and the power- diSSLPation is. also hlgh but L ;
in NMOS or CMOS the throughput is low and the power dissipatlon is also oo
Jdow.

The look—up table appreoach can provide great savings in hardware‘if -

some of the operands in a chain of binary operations are known constants.

.

.. For example, the function

1) 0 (6 k)10 ksl



39

_>cL»4‘oc~c:«ma_a‘

3

I'h 6T

o
WOdd

g

————— /- 199 -

x yndul -

—

g9
< e

ER
80y

o
.



[ 4

where C)represents the binary operations of addition (subtraction) or

multlpllca[lon and x Xy and y are variables and k-, k, and k., are

l’ l’ 2 3

'jconstants is shown in Ylg. 4.2. The functlon.can be computed with just

-one look—up table in one look =up cycle w1thout any addltlonal hardware

[1]. This has great 51gn1f1cance ;n many of the dlgltal signal proeess—;

'ing operations. In order to use the qurrehtly'évailable hardware,_

restrictions have to be placed on the size of the maximum.modulus ‘in. a

:system.. If we restrict the modulus to a maximum size of 32, then the.

following table gives the moduli in descending‘orderﬂ (Table Ae)i.The

modull are relatively prime, and the range associates WLLh the product of
o

: each modulus and ,all the precegang moduli [l]

. Table 4a A Set of Moduli and the Product of the Moduli

i mg |
0 32 1.00 x 2°
1 31 1.94 x 2% |
2 29 1.76 x 2%
3 27 1.48 x 2%
& | as 1.16 x 22
5. 23 . X228 N
6 19 . i?::ﬁ;)232 S
7 17 | tos x 27
"8 13 1.71 % 2%01
9 11 1.17 x 2%
10 A R TR

The above explained look-up rabie épproach—can’be used’for the o
implementation of the QRNS and MQRNS.

In complex digital signal processing hardware, based on the QRNS or
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‘ MQRNS, the binary or analog input signals must first be converted to
the QRNS or MQRNS representation Then the filtering operation is performed
1n the QRNS or MQRNS representation. Afterwards the QRNS or MQRNS repre—

senation is converted to the RNS representation and then the RNS represen—

-

~ -

tation is converted back to the binary representation. -Clearly’we require
to look at- the coding and de—coding hardware andein the following section

the concepts of Binary to Residue interface techniques are discussed

o

4.3 Conversion From Binary to Residue Digits-

-~

Binary to re51due conversion can be ea51ly implemented for L moduli
in L 1independent channels using the L ROMs. The ith'residue of a number

X is derived by

[

x-IE azk] o G2y 7
k=l - . - '
where (al, a,, ....aB) are the B bits of the binary reoresentation'of X.

Assuming that we have available ROHS with i addressable'locations,
then the binary to residue conversion can take place in one 1ook-up
cycle. For example, if we wish to convert a 10 bit number into the
residue form, then for m < 256 L 8K ROMs(organized as lK x 8 bits)
can ‘be used where L is the number of parallel channels in the- hNS  An

-alternate procedure for coding large values of B is to split the binary

representationsg cqueEESh\Eij; and recombine by summing in the residue.

representation.

A

For example,

| T '3—1'. A
X, = - ‘
i a 20| | - (4.3)
k=0 h_/}y . k B/2 _k.  mi e
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In this case the coding operation requires 3L ROMs and 2 look-up
cycles. If we assume a two's complement binary representation, the sign

numbers can be coded by treating the part containing 8.1 as signed

numbers and the remaining part as unsigned positive numbers.

4.4 Conversion From the RNS to the QRNS or HQRNS Representation

~__lorder to convert the RNS representation to’ the QRNS or MQRNS
representation, the elements of the quadratic residue ring QR(M) or the
modified quadratic residue’ring MQR(M), A, f(3.l]) have to be computed.
We require 2 ROMS to compute A andnA*L(;ln the hardwere'inplementation
of the MQRNS, an interesting feature is present which will help to re—
duce the.memory requirements to a reasonable size [15] The calculation
of the integers A and- A can be implemented'by using a single multi- -
plexed ROM. There is, however, a restriction on the form of the modulus.,
If the modulus can be represented exactly by 2 -1 (where B number of
bits), a negative integer (-xy £R(m) can-be expressed simply by- taking

the 1's cowplement of_x. ‘Hence the table look-up for A = |a + jb|

N

- . * . - .
be used to obtain A~ = |a - jb[m' as shown below.
For example let us consider a complex sample as
a4 b =54 36
Let,the“prime modulus m-and the onerator 3 be 7 and 6 respectively.

.

-

Then' A= la+ db|_ = |5+ 6c76], =6
A*=la - fb| = |5 -6 6], .
1 ' . . - ' . . . " ‘J-)
= |5+1+6], "



Table &b

L ) - *
The Table.Look-Up to Obtain A and A in the MQRNS

ar
{0 1 2 3 4 5 6 7 CM=COMPLEMENT/MULTIPLEX
£0) ] (6)1 (3) | (&) [{(B](2)] (1) (0)_
olofefs|a|[3]2]1]o0
1]l1floyels|a]3] 2]
22110 es|s] 3] 2 :
31 3] 2f1]ofs6|5] 43
sl al 321 ]o]el| 5] & .
515|@|32]1|0|®] s
6| 6] 5|43 f2]1f0] 6 s
Table &c.
- The Table Look-Up to Obtain A and A in the QRNS
CSM - .
ol1]l2]3)a}s] ceM=cOMPLEMENT/SUBTRACT
@@l - /MULTIPLEX
ojol2l4p 11310 ‘
1l 3ol 2ba]n ’
2 |@|1] 310] 2
3 sfofj2ls4]1]3
4 a1 i3fo]2 s
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B " ‘
The implementation of this computation is explained in Table 4b .~

This approach can be extended to the other types of prime moduli as

follows: Let us consider the prime moduli of the form 4K + 1; for

example m = 5. A negative integer -x = |5 - xls =|(7 - %) - 2] 5- There-

. fore the operation consists of, first taking the ones complement (7 - x)

. . . *
and then subtracting 2.° In the case cof the QRNS, in obtaining A and A

_— ,
there is additional hardware required in implementing the Complement/
4

»
subtract/ multiplex operation, over that required for the restricted
MQRNS implementation.

-

For example, let us consider a complex sample as
4
a+ jb =2+ j&

Let the modulus m and the operator j be 5 and 2 respectively.

Then ' A=|a+jb]m=|2+2-a|5_=o

[2-2-4]]5 .

2 -2[@ -6 -2 |

* .
A = |a - 3]

J

.\=£‘

' *
Table 4c gives the computation of A and A in the case of the QRNS.

——

After performiéghthe filteying operation on the QRNS or, MQRNS repre-

senatation, the RNS representation of the real and imaginary parts have

" to be computed using (3.15, 3.25). For the hardware implementation of

this operation, the look-up table approach cang%e used. After this the

real and imaginary sampleé have to be converted back to binary represen—

tation. The conversion from residue to binary is more difficult than



A0

<

the conversion from binary Fo residue. 1In pafticglar, in the_QﬁNS, ip
has been presented in [20,21]-chat éfter cﬁmﬁuting the reallana imaginafﬁ
parts from thé element'ﬁairs.in-;he individual channels of thé RNS, |
the CRT is used to convert_';'thg-(‘:g_qlplex. residue digit to cp}npléx _'binary -

F
digits. 1In the QRNS and MQRNS

_reprgsép;énions; we Qillrpresenﬁ techhiques '
for the direct decoding'of‘gleﬁeﬁt-péirs inﬁo a biﬁary representation usf.
ing the Chinese Remainder Theorem.(CRT) énd mixed-radix conversion algo-,
rithﬁs. Such decoding techniques will help to save memory space in the

look-up table implementation.

4.5 Use of‘EHE:;se Remainder Theorem (CRT) on Residue Codes

Implementing the CRT on residue code and conjugate pairs is illustrated
as follows for three cases. Case — 1, MQRNS; case - 2, QRNS; case - 3,
a combination of the QRNS and MQRNS.

As is well known, the CRT [79] can be used to convert RNS coded numbers

. to binary coded numbers as follows:

-~ "-—-l
B ".—'m - |r -m |
my i i i my ,
) BN
X = B (4.4)
=1 oy M
where L
H=| mi
. i=1 .
miﬂM/mi
X = binary representation
L = number of moduli
my = ith modulus .
r, = the ith RNS digit.



4.5.1 Case -1~

" Let mi be moduli of any form,

L]
a + Eb,'; + gd are two complex elements in R(mi)L

ie {1, 2,.... L}
To obtain the wvalue' of the operator j, the following theorem can

be used.

. L
Theorem: -2 Let M = I ™ where m; are ordered modulil
with_mi ‘:mi + 1, If j is a solution to a

. [t
1

quadratic monic polynomial modulo m, then
the. same value of ] will be a solution to a

quadratic monic polynomial modulo

mz, m3,.... or mL or M.
Tﬁe proof: The quadratic residue is found from
x2 = mod with e Z m, [80] ' (4.5)
g 5y mod m, X, N i . .

Clearly, for each x, the following holds

' 2 2
ra = (- = -
x; =2 ( xi)__ n:.L mod m,
and
2 ) .
x] = {m - xif Z 04 mod m {4.6)

for which there are exactly (m — 1)/2 non-zero
solutions [xi e {1,2,..... .tmi - 1)/2} ] [80]. Hence
there are exactly (mi -1)/2 o;dered quadratic residues
and [(:;1i -1) - (mi - 1)/2] = (mi - 1)/2 quadratic

non~residues.
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Since the {mi} are all ordered, the solfition to the

guadratic monic polynomial

2 ,
X" = ny mod my ‘ 4.7)
will also be a solution to the quadratic monic
polynomiél

2-

x" = n; mod o, m € {i =2, 3....L} (4.8)

The same solution ;ill also map tq the vélue in
the ring, modulo M, isomorphic to |
mBzm & ..........0%0 .
Hence it will bé a.soiution to the quadratic
' monicipolYnomial mdduléiﬁ.
Eveﬁ'thdugh this<t$éorem is valid'féf moduli.of thelédrﬁ AKi + 1, we
do not ‘have the advantage of choosing the operator j according,ﬁo this

theorem. We will.therefore consider case -1 to be for ﬁoduli of anyfoim
T — .

except 4K + 1.  Having established the value of the operator, j, from

theorem 2,

let
~2
by = |37+ 1], (4.9)
i
The element pairs are

~ x ~
= le v ol G = le- ol

”~ * ~
B, = lc +.Jd|m; | B, = | —‘jd|mi (4.10)
Sinlnicboclm

i
The binary operations over the element pairs in the MOQRNS can be

defined as

”
i
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Tk A'*'@ Lk
where @) represents the binary operations of addition, subtr‘a_ction'or
multiplication.
Then the addition is
Q = la, + Bilmi
L ] * * ’
Qi = Ai + Bi o (4.12)
and the multiplicatiod is
' Q = la; - Byl L Silmi
o = |a¥ - BY] - | " (4.13)
i i i i'm )
i i
Using (4.4) on the residue codes in (4.13) we obtain
P C
L
~ I\—l r
e=11 mle =] |
Cogmp VR TmgM 5
® y ’ (4.18)
* ’ * A=l . -
Q=11 mlo; = |
i=1 i i i m, M
Hence the decoded wvalue of the real and imaginary parts are
- *
CReal = [270 @+ QD]
. (4.15)
: -1 ~1 *
Imaginary = [27° + § = (Q - Q )|M
4.5.2  Case —2: , I

Let mi=lol{i+l )

a+ jib and ¢ + jid are.the two complex elements in R(r_ni-) o

where ji? -1 mod m\fji € R(ml) and i‘E'{l;2,....L}

. ‘ * * ' '
Let Ai, Bi’ 51, Bi be. the elemgnt pairs of the‘two complex -
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numbers which are computed as:

b
1

la + jb|m. A
1 1
e + Jdlmi B e - jd| n, (4.16)

i la - 3b]

' B,
i

N
i

The binary operations over the element pairs can be defined as in (4.10).

_ Hence
Qi = |(Ai : Bl)lm
i
* * * :
Q, = (4 Bi)lmi : (4.17)

- (4.18)

Hence the decoded value of the real and imaginary parts are.

Real = |2_l (Q +Q*)|M , _ 3 /4

. : (4.19)
-1 A .

-

Imaginary |2

—1 &
i @@=l
" Where the operator j can be precomputed using CRT.

4.6 'Use .of Mixed Radix Conversion on Residue Codes
) ]

Ih-iﬁplementing*thﬂ'CRT technique, we need a modulo M-adder-shifter

[2]. Modulo M adders (M #,ZB) are not availablé commercially ahd'imple-

mentation by using commercial packages is expensive (circuits te detect

e

wrapa;bupd'ahdncofrect)} Since M 1is generally very large, the problem

~

associated ‘with the mgdilo M adder =an be handled if we employ the mixed
" . ' ) ’ ’ .
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radix conversion techniques proposed in [5].
The method of translating the residue samples into the mixed-radix
form with the RNS moduli and obtaining the natural integer, X can be

explained using the following expression:

N-2 N-1

X = ay_q I_l m it +.a2 my M + ay w, + ag = -Z a; Pi (4.20)
k=0 i=0
i-1 . S ~
where PO =1 Pi =-k=élmk

:and {ai}are mixed radix digits with the ranée_O :Zai < m, . The pulti-
‘plidation in (4.20) can be eliminated by‘applying the bit-slice technique

"of Peled. and Liu as shown in [5]. The mixed radix digits can be computed

‘using the recursive algorithm in [1].

‘—;*Tﬁe:elgment pairs of the QRNS or MQRNS are converted to the mixed

radix form associated with the RNS moduli using the expression (4.20) as

‘allows: .
T N-2 -~ N-1
Q= an-1 |_| M Foeeeeiaeeas ta, my Wy + a; mg + ag = E ay Pi
k=0 i=0
N—2 N-l (4.21)
X . = . '
Q aN-l |=é mk + . .....:. + é2 g ml + al m0 + ao iZO al Pi

4.7 An Improved Algorithm for Residue to Binary Conversion

Even though the problems associated with using modulo M adders in
:i; the residue to binary conversion is solved using the mixed radix conver-

‘sion technique, we still have to compute the binary version of the real
and imaginary parts (4.15, 4.19). This will require another two modulo
M adders. Therefore, for high speed imp}ementation, the mixed radix con-

version cannot solve the problem fully. An alternate viable approach éo

%
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implementing the medulo M adder operation 1s to use a_convérsion'téchnique

based on the CRT, proposed in [4]. This ffactiqnal method is fast with -

a slight reduction in the dynamic rangé and requires the least Hardware

of all methods so far considered. The fractional qfthbd is explained... " ° A
R . hd ¢ . c.

as follows: -

ﬁivide both sides of (4.4) by M, the product of the ﬁoduli.,

We obtain ‘“ A - -
¥ $
X/M = FRAC [izl B /M) )
L .
o =FRAC[] b,] o C(4.22)
1=1 . . S
" where e )
bm ;'Bm:/M ; m /ﬁl; éhll
T 4 PR B ’

i i .
FRAE 15’ the fractionmal part of the quantity enclosed,in_b;ackeﬁs{

T?ﬁs we have converted the mod M operation into a siﬁﬁlerERAC.operaﬁiqn.”':
The key point fiom the h dere point of view is that (Q.ZZJVéefiﬁég
) . =
mapping between the RNS &flgit ;- and the‘intefmed%ife'diéi;s Bﬁi;f We ar?:“
effectively mapping R(mij %4, 2[1932 mil). Nétgé@h s ﬁapb?ng-is not

isomorphic in that we db noé have a bne-to-qﬁe "eSppndehdé i both

-

i i

directions. Conversion from r, to b , can he impleménted by a single - )
level of ROM table look-up. »ihe]RGM élsd'performs part of';he;addipibn;

Fig. 4.3 shows the hajdware implementation of a 4 moduli RNS to

binary conversion based G f;:ac;#ggjj algorithm, .

The operation of
follows: T - _. Y

. ) .\":'

pie in tite Fig. 4.3 can be expigiﬁé&:[ﬁj és
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1)

2,

3)

ROMs 1 and 2 calculate bm

o - i .
obtain the correct integer result, and this can
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and me from rmi §nd rm2

ively, and then present the n-bit sum bml + bm2 to input number

1 respect-
"1 of the n-bit binary adder. The overflow in the n-bit adder
is ignored, because the overflow bit corresponds to integer M,

‘the product of the moduii,‘aﬁd the content of the adder is in

- fractional form.

ROMs 3 and 4 calculatg bm3 and bm2~from LS and rma respect-

-~ively, and then presént the n-bit sum bm3 to b, to inmput

rnﬁmbef‘é,of‘the n-bit binary gddér.- The overflowlin the n-bit

édder is ignored, beéaQéé the ovérflow-bit corresponds to in-
tegér M, tﬁe prﬁduct of<the moduli,_and thg content of the .
addér is in E;actional form. ’

The output of the n-bit ac'i\der must be multiplied by M to

ccom—

plished in. the final conversion,

The fractional method can be explained using .a simple

numerical example, . -

- Example:

Consider a moduli set {2; 3, 5, 7} and the residue

-representation as (1, 1, 2, 4)

Using the CRT, Ege binary representation of the'abpve
. residue set is 67. The binary conversion according.to the

proposed algorithm is as follows:

L

M = 210

I

xﬁl/n 0.5 u?z/M = 0.3333333

-
n

53/11 0.2 ‘ . m,/M = 0.1428571
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The fqllowiné Table 4d gives the binary representation of the‘
residue set by considering the number of bits to represent the fractional
value.

it can be observed from the table that 4d 1f we use 8 bits and
above to represent the fractional value, the binary value of the residue
set 1s almost the same as the value obtained.using-éir3ct implementation
of the CRT. The modulo M addition is entirely lifted in this improved

method by means of fragtional (binary) addition, and, hence memo

« 1s not a problem. : V4

e o e e e i STl AT b T e g R 4L S 10 80 e e e T
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Table. 4d

Binary Represeﬁta‘tion.qf the Residue Digit

No. of Bits

2‘—1’1

_ Binary Répx.:ese:itat‘:‘.-on , n=l ... 16
R 105 0.5~ |
2 157.5 . To.gs -
3 - 26.25° 0.125
4 52.5 0.0625
5 52.5 | 0.03125
6 62.36475 0.015625  + |
7 63.984375 0.0078125 - |
8 65.625 0.00390625
9 66.4453125 0.001953125
10 665611390625 0.0009765625
11 667529296875 0.000488281.25
12 66.9580078125 ‘| 0.000244140625
13 66.9580078125 | 0.0001220703125
14 66.9714551953125 | 0~00006103515625
15 6699064442856 0.000030517578125
16 66.9970853414415 0.0000152587890625

A,

56
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same amount of hardware for implementation and give almost the same
- - . ) . I} Iy d
data rate. This aspect will be discussed in more detail in Chapter V.
The following section will briefly discuss the implementation of

the QRNS and MQRNS operations uETQé\Yery Large Scale Integration (VLSI)

technology. ’

4.8 TImplementation of the QRNS and MQRNS Using VLSI

With the . rapid advances in Large Scale Integratiﬁn (LSI) and Very
Large Scale Integration (VLSI), a growing number of complex digital sig-
nal processing applications are becoming economically feasible. The
desirable properties of the LSI and VLSI systems are: small size, low
power, low cost, noise immunity and reliability. In general, the currently
available integrated microprocessors do not have the sﬁecial hardware
capability forfcompléx arithmetic, but tather they depend on a softeware
implementation of complex arithmetic. }

Due t§ advances- in semiconductor fabrication technology, it has
become posSibie to fabricate lgrge scale integrated semiconductor arrays
containing tens of thousands of gates. This integrated technology has
moved from Large Scale Integr?tion (LSI),to Very Large Scale Inteération

2

(VLSI)., VLSI is characterized by the number of gate count per chip
ranges 105 - 106 or it can be characterized by the physical dimension of
a transister channel. With VLSI technology it will soon be possible to
implement entire computing systems with 32 bits and associated memeries

on one monolithic silicon chip. This high density semiconductor technology

has some constraints including power dissipatien, Input/Output (I/0) pin

counts, relatively long communication delays, and difficulty in design and

%
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layout.' All these important problems_in VLSI, are much. less cr?tical ia .
other technologies. Aaﬁaompensation for these problems, however, VLSI
offers very fast and inexpensive computational elements with some unique .
and‘exciting properties. The advent of VLSI circuit technaiogy offers new
opportunities and poses new design problems in;implemeating digital signmal
procesaing-architectures. A tremendous amount of potential is:available

" in VLSI to bring a‘aingle chip to perform the complex multiplication based 2//

‘ on-tha.Quadratic Residue Number Systems techniques.

7fhe well known advantage of the RNS for digital signal proaessing

applicationa is that high speed integer addition, sgptraction,and‘multi—'
/,/6fication can Eé performea carry free. ‘These binary operations can ba
performed ia'ﬁarallel wita independent processing within each modulus.
Another advantage of the RNS is the adaptability to look-up table imple-
mentation. Hence, the above binary operations can be berfbrmed in a
parallel architecture usingrhigh density ROM arrays. Tﬁese attributes

are quite suitable for VLSI implementations because:
1) VLSI supports highly parallel computational architectures
. '+ 2) Memories have the largest transistor packing densiﬁy of all

logical functicns

Tﬁe circuit used to store information, the memory cell;.is a .prime
element %n determining'semiconduator memory cost. Desirable character-
istics of ahe memory cell are;

i) small area

i1) high bit storage density .i : .

111) light loading to the drive and sense circuitry
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iv) the ability to write and read with small- delay

v) the ability to retain information with low power dissipation.

Metal-Oxide Semiconductor Field Effect (MOSFET) oevices are A
attractive for memory compared to bipolar devices. The MOSFET devices
have .a number of advantagee for memory users. Of these the most important
is the simpler processiné, allowing high yields and a greater degree of
lntégration resultingAin lower cost. The layout efficiencies, and small
size of MOSFET devices, also contribute to achieving lower cost. Memory
ls particularly sensitive to cost since it must be cheaper than logic,
or else it would be replaced by loglc

| In order to use the drive and sense c1rcu1try efflolently, it is
. de51rable to- put'as maoy cells on a glveo llne .as possible. The loading
of the MOSFET device is malnly capacitive. To avoid qeterioretion of the
array performance orer tﬂat of an indivioual cell ox lntroducing long time

constants, the erray may be driven-and sensed by low‘lmpedaoce bipolar
transisfor circuits [92]. lﬁus.the erray;'n;merically tﬁe. predOminaot-;
portion of the memory system, is made in high yleld MOS technology,rwhlle
ouly the relatlvely small number of peripheral circults is made in- blpolar
technology [92] Thus the. advantages of both technologles may be achleved-:
simultaneously. For many applicatlons, the oprlmum system is obtained:

by interfacing MOSFET array chips with bipolar supﬁort chips [92‘93‘94].
' The traditional way to achieve hlgh den51ty memory chlps is to
shrink design rule geometries and channel length of the memory cell The'

important system parameters for a cell are:

' 5) -channel length (1)
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b) transit time (T)
¢) switching power (Esw)

d) system clock period (T).

Table 4e summarizes values of the above system parameters of a cell
for technology in 1978 and for future technology according to Mead and

Conway [82].

Table 4e

VLSI System Parameters

1978 | 19XX
Minimum Feature Size 6 um 0.3 um,-
l T 0.3 to 1 msec 0.02 nsec
Esw 1072 50ule 2% 10718 oule
System Clock "1 30 to 59 nsecs. 2 to 4 nsecs.

Some of the phenomena that are apparently likély to limi; Fhe
functioning of minlaturized highly integrated MOSFET devices are:
"1) Electron migration |
2) HoF g;ectrons ;nd breakdown
1) Wiring coﬁplexity
4) Ohmic resistance

5) Inter connections

6) Power dissipation

It is obvious that VLSI has‘YQE\zztential for high déQE?{L ROM

memory circuits. The extensive use of icroprogrémming teéhniques in the

digital-control, data processing and RNS digital filtéring creates a need
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.
for versatile Read-Only Memories (ROMs) with the following features.

~4ﬂ——*‘—‘%\hj 1) long term non-volatility
' 2) on-chip address decoding

3) electrical reprogrammability

4) high gield and high speed of operation.
b & :

After this brief introduction, let us concentrate some on the

computational modules developed using the look-up tables.

4.9 Computational Modules ' 1

« To start.with, a Standard Computational Ele#ent (SCE) for the
VLSI reéligation of digital processors has been proposed in [73] to
perform the binary operations of addition, sugtraccion and multiplication.
This SCE has been developed based on the following facts. The look-up
table approach, has a symmetry property in ;he storage. In the direct
storage of the look-up table, the memory space is used inefficiently.
It is, therefore, desiraslé to consider an alternate circuit structure
for implementing the rgsidue operations which will lead to high speed and
more efficient use of memory space. To achieve this we can use a gtruc—
ture which consists of a binary 2's complement adder with two b bit in—‘
puts and a b + 1 bit outpﬁt and a ROM with a b + 1 bit aédress space
and b Dbit memory locations as shown in Fig. 4.4. This structure is
called the SCE. N .

.In addition to the binary opératigns; schemes to implement the

firét order recursive structure, and e mixed radix conversion have

also been proposed using the SCE. A specific design approach for the
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memory look-up tables has, however, not been presented in [73].
- In [89], a set of computational modules has been presented as shqyp
in Fig. 4.5; they are the J-module (Joint-module), F-module (Fork-module
and JF-module (Joint, Fork-module) all developed by adapting the hierarchi-

cal memory structure proposed by Mead and Martin in [91]. An algorithm

. has been presented in [89], to compute the physical dimensions of the

look-up.tables and the channel flength of the comp&ii:igggl_ﬁbdules. These
- look-up table modules cah be used to implement most™~6¥f the signal process-—
ing algorithms in RNS based digital filters. The development of the QRNS

and MQRNS structures using these modules is discussed in the following

sections.

4.10 Implementation of Complex Multiplication Using VLSI Modules in
the QRNS and MQRNS

In this secticn, we deﬁelop circuit structures to perform complex
multiplication in the QRNS and MQRNS adapting the J-modules, F-modules
and JF-modules.

I. QRNS _

To implement éomplex multiplication in the QRNS let us consider two

complex samples a + ib and ¢ + id where T = /=T,

In the QRNS, the operator j2 Z -1 mod m, where m is of the form
4 + 1.
s=laeml, A=
= la + ] o . A = ja-j o ‘
| | . (4.23)
.B = e + 3a] . B = |c - jdlmr_
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The multiplicat%gn of the element pairs can be computed as:

= lp -3l Q" = 4" - 8] TR

Then the real and imaginary parts of the complex multiplication can be
: S

computed as:

o ,
Y= 27 @+

o (4.25)
y = |27%

=1 *
I * ] (Q-Q)|m

-+

In implementing the comgiex multiplication in the QRNS, we require
one J-module and one JF-module. The computation of the element pairs
: * * S .
;;_ZA » Band B (4.23) can be implemented using the flrst two loock-up
o T ‘ ~ |
~tables from the J-module and.JF-module, respect!vely, as shown in.
:_Fié{;4;6l. Following. this, the multiplicatipn of element pairs can be’
' -:impieﬁénted;uéiﬁé'oneiiqdk-hp tabié ffom_phe same J and JF-modules respect-
' B IR o ‘ - “
- ivel¥T The computatidh'of-real:nuzg;;;inary parts can be implemented

: dsiﬁg‘thé_réméiningIZ,lookfup tables from the JF-module as shown 'in

‘Fig. 4.6. - E _ - :"; -
II. MORNS
'Ih thé-MQRNS, thé o@é?ator j2'E n mod m where rh‘is'of any
fform_excepf of the fo:miik +1. . R -
Let D =.|j"2 + 1[6 and = S=|D+b-ds o - (4.26)
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-
r

: The element péi%s of thé two complex samples in the MQRNS can be

computed as: E ' -

"
1]

fa + 30| A [a - 3b]

. L 2
|Ef J‘ﬂ|m

-]
u

+ i : )
le + 34| B
The multiplication of the element pairs can be computed as:

' o T s x R
Q=fa-B-s] .. ‘0 =|a ‘_-B—sim (4.28)

' Then the real and imaginary pérté of the complex multipiicécion can be

~computed as:

ol o
tp= 2 @)

(4.29)
-1 +-1
]

Y. = |2

*
I @-anl

In.implementing the complex multiplication in the MQRNS, ;e require
two'J-modﬁles and an F—moduie[ In addition to this, we require one
moaule;éonéisting of 2 lookfﬁp tables as shown in Fig. 4.7 The compu-
tation of the eleﬁent pairéiA, A*; B and B* caA be impleméhted using the
first two look~up tab}qs,frqm thé 2 J-modu;eg,respectively. +The term S
in (4.26) ca;.be computed using the first loqk-u; table in tﬁe F—médule.

" . Tk -_
The computation of Q and Q@ can be implemented using the remaining look-

up tables from-&he_g J-modules and m F-module respectively as explained
. (LY R \ . i . r® -

" in equation €4.28). 1In order tc compute the real and imaginary parts

\of the compleﬁ multiplicatioﬁ, we require two more lock-up tables as

.
shown in Fig. 4.7.
>
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Thus the complex multiplication is implemented using the VLSI
modules in the QRNS and MQRNS. These modules can also be used to
implement the Fast Number Theoretic Transform (FNTT) butterfly structures

and many other structures using the QRNS and MORNS.

5.11 Summary .

This chapter has covered the implementation asﬁect of the Quadratic
Residue Number Systems, Hardwaie implementatipns are described using
Read-only Menory (ROM) arrays. Techniques for binary te residue, residue
to the QRNS or MQRNS and residue to binar§ conversion have been diséussed.
A scheme for direct coding of element pairs into_a binaéy representation
using CRT and mixed-radix conversién has been presented. A scheme for
the computation of element paifs us;ng a single multiplexed ROM in the
MQRNS and QRNS has been pregentea. It has been observed that the scheme
in the MQRNé is faster than the scheme for the QRNS in obtaining the
elémgn£ pairs using a single multiplexed ROM. Finally, the implementation

of the QRNS and MQRNS has been presented using VLSI modules proposed for RNS

implementation of digital signgl processing operations.

-



Chapter V -

IMPLEMENTATION OF NON-RECURSIVE AND RECURSIVE
COMPLEX DIGITAL FILTERS USING THE QRNS AND MQRNS

5.1 Introduction

Digital filters have become an increasingly attractive replacement
for analog filters due to recent advances in semi-conductor technology.
A linear time invariant dis;rete-time system is commonlf called a digital
filters, There are two types of digital filters commonly encountered in
digiral signal processing:

.
1. Finite Impulse Response (FIR)

2. Infinite Impulse Response (IIR) or Recursive Digital filters.

The FIR digital filter produces an output based on a weighted sum
of present and past inputs. This type of filter is inherently stable, QFE
with linear phase as an easy requilrement. Howeﬁer, the large number of ﬂg}
additions and multiplications required for the direct implementation of
FIR filters limits the speed and efficiéncy. The FIR filter can be
described by the input-output relationship:
N-1

y(n) = ¥ hk)/Fxn - k) 5.1).
k=0 x& B

. !
where {x(nuk)} are the input samples {y(j)} the output samples and

]

h(k) are the filter coefficients and N-is the order of the filter.

A recursive digital filter is characterized by a difference equation

of the form: = /N

- ) ° ' - -~

70
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- N-1 : N-1
y@ = ] " a®ex (a-k) - § b(k)y(n - k) (5.2)
k=0 k=1

1]

where {x(n—k}} is the input seguence, {y(n)} the output sequence and

Tl

Té(g)}, {b(k)} are ﬁhe filter coefficients; N is the order of the filter\
Since recursive filters incorporate feedback to modify the output with
weighted 5ample§ of péevious outputs, they can generate an infinite im-
pulsé'fesponse with the requirement of only a finite number of computations
per output sample. Therefore, recursive filters are usually more economical
than non-recursive filters in terms of computational time and memory in
pgoducing similar magni;ude-frequency response characters. However, these
benefits are acquired-at a cost of sensitivity to roundoff error accumula-

tion due to feedback [68,69].°

.
rmm——

The digital filters in (5.1,5.2) form one of the most “important classes
of digital signal processing systems and have found many applications in

N ;'.\ .
a number of diverse fields of science and engineering. In many of the
. - i {

N

signal processing applications, the fhpﬁt sequences and the'filter'co-
" x

~ v

efficients will be represented in complex form, and those filters can be
called complex digital filters. In the following sections, we will con-
centrate on the implementation of complex FIR and_recursive‘dfhital filters

L 4 .
using the Quadratic and Modified Quadratic Residue Number System‘KQRNS{'

MQRNS). ' -

5.2 Implementation of Non-Recursive Filters,Using the QRNS and MQRNS
P S ,

In protessing complex data w}th the QRNS and MQRNS, we are dealing
with intégers. When working with digital signals, we can assume without
any loss of generality that the data from-the A/D converters are treated ,

,
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as integers. In implementing non-recursive digital filters using the
QRNS and MQRNS, we have considered the following digital filter struc-—
tures:

1. Direct FIR filter architectures

2. Bit-slice arcﬁitectures.

“

5,2.1 Direct FIR Filter Architectures

A non-recursive digital filter is characterized by an input output

relationship a

shown in (5.1); when N is very large, transform techniques

such as the Fast Fou Transform (FFT) [51] or the Fast Number Theoretic
Transform (FNIT) [23]1usuaily provide the most efficient implementation

of FIR filters. Among the variog§.tradebffs in the implementation of

A N1 , ‘
the FFT processors or the FNTT processors, Jenkins and Leon have proposed
a method of direct implementafion of the FIR filte;\;hen N is small

(N < 100) using RNS techniques. .
In their implementation, they deal with real integer sequences. In
[20], Ehe implementation of the direct FIR filter architecture has- been

\
proposed using the JQRNS for complex sequences. This direct FIR filter

architecture utilizes the Chinese Remainder Theorem (QRI) for residue to

{

binary,interfagipé aften convérting the element pairs into real and im

- !

-aginafy parts dn the respective channels of the RNS structure. But in

this work, we have presented methods to decode directly the element pairs
into binary representations using.the CRT and mixed radix conversion

{Chapter IV). Using this new decoding scheme, the implementation of
. ¢

the direct FIR filter architectures in the QRNS and MQRNS are discussed

> Ca R

in the following sections. S ‘ o .

\ . S - o T '-'-. -
: . . T e )

NN
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The FIR filter in (5.1) can be represented in the z-domain, with

z representing a unit delay as shown bglow.

2

k

y(z) = hik)* x(z) z (5.3)

I~

k=1

This non—re?ursive digital filter can be represented via the structure

shown in Fig. 5.1. :

~

The direct implementation of a FIR filter can be considered for

. < .
J=-cases: case 1, MQRNS; w©tase 2, QRNS; and case 3, a combination of

the QRNS and MQRNS in the following sections. i

Let h(k) = a(k) + ib(k) be the 15 lse response and
x(n - k) = ¢c(n - k) + ad(n - k) be Ehe complex sequence of
the FIR filter in (5.1), where i = v-1

Case-1
—~ \

For the MQRNS the operatdi 5 can be compu;ed using
2z 4 mod m, je Rm) G
jpE o, oo m 3¢ m .

— \ H =,
where R(mt) is a finite integer ring, and m, is of any form except of

the form 4K + 1.
5
In order to find a general solution of .{(5.4), the result-of the.

" theorem -2 (Chabtér IV} can be used. Having established ‘the 'value of

- . ’.\ ‘e \ - 0 .
the operator j,
_ . “a o .
let D= |i°+ 1 (5.5)
» . ‘
and the element pairs of the input samples and the filter coefficients ~—

X
- N L

“.can be computed as follows;
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x(z) F' (
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— .
- Y(z)
Fig. 5.1 FIR filter structure.
-
- T ™
-



Chk), = Jak), + § bek)]_ h (k) .= lak) - § bk)| (5.6)
t t m t i o,

x(a=k)_ = |c(n-k)_ +  d(n-k) x (a-K)p= |ctnk) - 3 d(a-k)
t t m t m
. t ' t

(5.7)

where a(k)t, b(k)t’ c(n—k)t, d(n-k)t € R(mt).

The FIR filter ocutput in (5.1) can be written in terms of the residue

pairs as
N-1 L
Q(m), = kzo | nk), + x(a - k)| n, sck)tlmt (5.8)
_ N-1 * x ‘
Q*(n), = lk-X-O | hk) + x (n - k)tl“‘t - s(k)tlmt _ (5.9)

where s(k) = |‘D * bk} * dn - k)‘Jmc
The real and imaginary parts of the output can hﬁ given as

1 .
Yo = [27 @)+ @)

75

t
(5.10)
=l 2ml ok
Y ), = 27 3 (Q(m), Q(n)tlmt
l e ’
‘Case~2
' P
The operator j for the QRNS can be computed using ‘
ji = -1 mod m, and~t ¢ {1,2, ...L} (5.11)

and m is of the form 4K + 1. 5
. . : R <«
The element pairs of the input samples and the filter coefficients
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can be computed as follows:
*
h(k), = |a('k)t+ 3 b(k)LJmt R (k) = [a(k)t— j b(k)Jm_t (5.12)
. . .k )
x(n—k)t = |e(n-k} + j d(n—k)lmt X (n—k)t= lc(n—k)g- 3 d(n—k):lmt
(5.13)
* - _ 3 : -
where a k)t’ b(k)t, ci{n k}t, d(n k)F £ R(mt)f' o
The equation {5.1) can be .deccmpesed into
Nil ’ '
), = | ] h),  x(@-k) ]
J, ‘ t k=0 . t mt
N-1 -
* * *
Qm_ =[] b &,_*x@-k) |
B k=0 t tim (5.14)
* ) .
where Q(n)t and Q (n)t are the residue codes and the conjugate pairs of
the output of the FIR filter.
Let YR(n) and YI(n) be the ;eal 5ﬂg/2magihary parts of the filter
output. Hence ' . A
—\|:2 ' +q" |
Yo, = (Q(n)t. Q (n)) m,
- ‘ (5.15)
-1

v = 27T e, - dm ]

C

Example'
In order to demonstrate the direct imélemencation of the FIR filter, let
us consider the second ord filter equatioﬁ .
y(n) = h(0) x (n) + h(l) x (n-1) + h(2)'x (n-2) (5.16)
-where h(0) = 15 + j8, h(1) = 6 + 320 h(2) = 5 + j27 and

x(n). = 9 + j12; x(n-1) = 15 + j2, x(n-2) = 8 + j& - -

Y
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For this example, we will choose the prime moduli in the case of the
' p

* MORNS to be 7, 11, 19, 31 and in the case of the QRNS 5, 13, 17, 29. The

moduli set {7, 11, 19, 31} provides a dynamic range of about 15.4 bits
and the moduli set {5, 13, 17, 29 }‘ﬁrovides a dynamic range of about
14.9 bits which are reasonably adequate for a large number of applications.
We can also combine>the two types of prime moduli, and for example,
a modull set of 5, 7, 11, 13 can be_selected which will give a2 dynamic
range of 12.2 bits. Although we have lost Some dynamic raqgé, we have
gained iﬁe ability to implement the procedure witﬂ fast 4 bit wiée ROMs
of size 64 x 4 and 256 x 4. We will refer to this procedure as casé-3
Qhere Eomputationg in.case~1 and case=2 are repeaEed here and ;he
opera&or ? (the imaginary part for the ring isomorphiéAto‘the direct
sums) can be precomputed using the CRT. B i
In implementing .the FIR filter eguation, we'require three complex
m;ltiplicationsf We illustrate the multiplication uéing the above four
moduli in the three cases as follows (Table 52, 5b, 5c). ‘

. Table 5a and 5b shows the residuve code and éonjugate pairs for the
sequence and the filter coefficients in ghe MORNS and QRNS respect;yely.
TaBle 5S¢ suﬁmar}zés the results after implemeptiné tﬂg CRT techniqués.
proposed in Chapter IV. The direct implémentapion oé the FIR filter
equation using confentionar.coﬁplex muleiﬁlicaticn gives the same real
aﬁd imaginary part of the filter output as obtained in Ehehabove'three
cases. : l_ e

In implementing the CRT technique, we need a modulo M—adder—shift?z

[2]. Modulo M adders M # ZB)'gre not avaiiable commercially and the



Table 5a

‘Residue Codes.for the FIR
™ Filter in MQRNS.

Table 5b

Residue Codes fof the FIR
Filter in QRNS

M1=7 |M2=11 | M3=19 | M4=31 M1=5 | M2=13 |M3=17 | M4=29
=1 | j=1 =1 3=1 j=2 | j=5 j=6 | =12
Q 5 6 12 Q 12 10 18°
Q¥ 7 15 4 ¥ o 1 0 2
0 5 10 1 21 Q 4 11 6 24
* | 4 2 4 17 o*l 1 11 9 18
. )
Q 0 3 16 13 Q 4 9 -
o | s G 0 Q*| o 0 8 0
Q 2 | 7 4 15 o | 1 4 .8 22
Q* | s 2 0 27 Q* | 1 12 0 20
. o - - Ires
Table 5c¢,

The Results After Implementing CRT for the Residue Codes
in Table 5a and 5b

M. Q Q* _j/f/?" jrl/E_l/fFl Real imqginary
Case-1 |45353 821 {44574 1 1 21 800
Case-2 32045 |22091 | 9996 | 17412 14633 21 800
Case-3 | 5005 4271 376 463 3697 21 800
X y . )
. ‘} 4{
.
»
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implementation by other means can be expensive The problem associated
with the modulo M adder can be handled if we employ the mixed radix
conversion technique proposed ln (Chapter IV). o !
| Even though the problem-associated with using modulo M adders in
the residue to binary conversion is solved using the mixed radix conversiont
technique, we still have tocompute'theplnary yersion of the_real End
-imaginary parts (5.10,5.15), wnich will require another modulo M adder.
‘Therefore for nigh speed implementation the mixed rsdix conversion.cannot
solve the problem fully. An alternative approach‘is by using a conversion
technique based-on the CRT, as proposed in [4]. This fractional method ~ .
' is fast and requires the least hardware of all methods so far considered

In the case of the MQRNS this fractional method is perfectly suitable,.
if we selec{\the operator j . Now_the reSulting Q iand Q*, computed
using the new method, are in fractional form end the computation of the
real and imaginarp parts can be imﬁlemented using a binary sdder/suptrac—
tor. The resulting output‘is right shifted to perform the multiplication
by ﬁdhs shown in (5.10). As mentioned in [4], to obtain the correct
integer result, the multiplication by M is accomplished in the final
conversion. z .

In the case of the QRNS this fractiomal method is not suit- kv
able because, while computing the‘imaginary pert, the.operationlshown -
in (5.15) drastically alters the imaginary part. Hence; in the.case of

the QRNS, the only viable approach is first to map the residue_ codes into .

"~

e

complex integers and then to ‘use the conversion technique proposed in [4].

4
For mapping the residue codes into complex integers, using the QRNS we
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¢
gggniée 2 ROMs for each modulus. However, in theiqasé‘of the MQRNS, these
2 ROMs will be utilized in performing the operations described in (5.9).
Héhne both the QRNS and MQRNS require almost the same amount of hardware
for the implenentation and give almost the samé data rate. This can be
observed'fromlTable 5d which gives the number of hardware elements re-
) quired and the datn rate per stage (for.each modnlus) in the direct im-
piementation of a FIR fiitér:using the QRNS and HQRNS. Here the datn .
rate is limiEed by rhe time required starting frpm the computation of Q
‘u_aAd Q* to the decoded output of rhe réal andnihaginary parts YR(n), YI(n).
Fig. 5.2 and Fig,.5.3 present tne FIR filrér nr;hitecture for the QRNS
' and.MQRNS systems rnspectively. rFig.ﬁS.# presents the direqt FIR filter.
implementacion uning the compinatiOn of both the QﬁNS and ﬂQRNS.

\The dlrect FIR fllter structure is 51mulated u51ng softgare in the
QRNS_and MQRNS. The program is presenten in: Appendix B,

. Tabl; S5e gives the number of Operatlons required in convertlng
'ifrom RNS to binary in the QRNS QLRNSjgnd MQRNS
The decodlng method proposed 1n Chapter Iv will brlng a considerable

reductlon in the numberlof memory chips needed. But the problem assoclated
with the modulo M adder, in computing the real and imaglnary parts, w111
be-expen51ve.. ' ‘ ‘
. Even though the’NTi'pro#ides the mosr effinient.impleméntatinn of
 the FIR filter, the direct implementation of FIR lf‘ilter' has some liinpolrtant' -l
 app1iratidn5. The.computationﬁqf.very high speed compienpariéhmetic is -
import;n;_in spectral anaiysis-and';n the prncessing'Of nbmpiex pasgband

waveforms that.result from quadrature,denodulation in Radar.and‘communication-



Hardware Requirement For a FIR Filter Implementation

.

- 4

Table 5d

}

T=Memory access time
t=Binary addition time -
N=Sequence length

Per Stage in QRNS and MORNS

No. of No. of No. of Binary Data Rate
‘ROMs Accumulater | Addef/Subtractor in Hz
QRNS 16 2 2 1/ (4NT+t)
MORNS 17 2 4 1/ (4NT+2t)
«
Table Se

Number.of Operation Requirés for the Conversion %romr
RNS to Binary in the QRNS, QLRNS and MQRNS.

Number System

Number of Look—up
-Table Operations

lNumber of Binary
Addition Operation

QRNS & QLRNS

2

1

MQRNS

1

2
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.Fig. 5.3 Complex FIR ‘_filter'archit.:ecture in

the MORNS. -
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svstems. For example, modern synthetic aperture Radars operating in the

fpotlight mode required a polar-rectangular format interpolation filter
that can operate in real time when aircraft flies by the scene.” These

interpolation .filters are, ideally, spacially varving complex FIR filters

ﬁ

of relatively low order (5 <N < 15) [59]. So for this type of shoert
sequence FIR filter, the direct implementation is more suitable than
using the transform approach.

7

In {12, Peled'and Liu have proposed a modular approach for the hard-
ware implementation of the multiplication operation for fixed multipliers

in digital filters. This approach is called the bit-slice technique, and

is presented in the following section.

5.2.2 Bit-slic&)Technique

& . N

In géneral, most signal processing algorithms perform répeated ?B}ti—

o

plications of the form

Y(n) =
. | k=1

- (5.17)

It~
o
= .
>

N

where {ak} are the predetermined filter coefficients and {xk} are the
input samples. . .

If {xk } are encoded in the hardware as binafy integers then-

. B-1 . )
S
X, = 'Z 2 xk ' (5.18)
. 2=0 s

b o

where B is the number of binary bits and

xk =0 or 1’
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Equation (5.17) can be written as

3

N B-1 )
v = ] s ] 2 x, o (5.19)
k=1 =0
- and’ this can be re-arranged as
= B-1
vy = 7 2P et oF LY (5.20)
17 72 N .
2=0 .
' N
2 2 Z L
whergﬁF(xl, Xg» ....xN) = kzl xk .3y

Equation {(5.20) is the stored function of & . This function can be

pre-computed and stored in a PROM. The function F(xi, xg, ...xé) is the
[ i
precomputed‘partiai éum of the product. y(n) can be computed by address- -

ing the stored function F(xi, x?, ....x&), followed by shifting and add-

ing operations. Digitél filter architectures which are built using this
bit—slicg techhiéue are called b%{—s;ice architecture; or, sometimes com—
binatorial digital filter archi;eééufes (13].

In the folLowing‘sectibn,,the bit-slice technique is uséd to imple-

ment complex FIR filter structures using the QRNS and MQRNS,

5.2.3 Implementation of FIR Filters Using Bit-slice Techniques

The element pairs of the output of the FIR filter is expressed in
equation (5.14) for the QRNS.

. The residue codes of the input sequence can be represented by B

binary bits as follows:

B-1 .
x(““5ii = Z 2i x(n-k)(l)

i=0 .
B—1
* . *
x (n-k) = 2t ¥ (k) (D (5.21)
¢ =0 -
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whére }:(n—k)(i) =0 or 1
and
x*(n—k)(i) =0orl
So equation (5.14) can be written as
N-1 | B-1 i (i)
am), = |1 nGy, 127 xtm-k) "M
k=0 i=0 . t
N-1 B-1 .
* * { % i
@, =] ] rTa, I 2t xTwn R . (5.22)
. cm
k=0 i=0

o

(5.22) can be written with the order of summation interchanged

. ]

T T x0® g
Q{n)_ = 2 x(n-k) « h{k) '
¢ 1=0 k=0 . tmt
B-1 N-1* . .
@, =] 2] e e | (5.23)

i:O k=0 t

Let YRYn)tand YI(n)tbe the real and imaginary parts of the filter

output. Hence-

L3

-1 %
Yem, =27 @@ +Q (n)ﬁ)lmt
v, = 1275 e, - Q*(n>glmt (5.24)

_Equations (5.24}) can be implegented using the bit-slice technique
(12] as shown in Fig. 5.5 for a sequence length of 64. From this figure
we can observe ‘that we require only two channels of hardware for the
implementation of the direct FIR filter structu?e. But to implement the

same filter using conventional methods, we need four channels to compute
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e

the complex multiplication (four real multiplications). That is; there
is a 50% hardware reduction if we use the QRNS for the direct FIR filter
implementation.

In the case of the MQRNS, we need one more channel to perfo;m the
third multiplication. Thus it is observgd that for implementing FIR
filter using bit—slice architecture in the MQRNS requires ab&ut,752 of

the hardware required by the conventional RNS structure.

5.3 Recursive Digital Filters

L _As shown in (5.2), a recursive digital filter is characterized by

an input output relationship of the form:

- N-1 N-1
y() = } a(k)ex(n-k) = ] b(k)-y(n-k)
\ ‘ ' k=0 k=0
.o where {x(k}} is the input sequénce, {y(n)} the output sequence and

. a(k) , b(k) are the filter coefficients. For the hardware realization,
it i1s convenient to represent the above equation using ‘delay elements,

written as

N-1 " N-1 i
H(z) = ] a, z /(1+ ¥ b,z ) - (5.25)
k=0 k=1 L
where z = is the delay operator. Among the numerous configurations of

realizing (5.25), the most advantageous is to factor the transfer function

"into second order sections and combine these in either a cascade or parallel

form.

r

The cascade form corresponds to a factorization of numerator and

denominator polynomials of (5.25) which can be represented as:



-2 -1
Y 0,0 2 H A, et l

H(z) =a_ T ] L h! -
j=1 lg.. .z +8. 727" +1

2 13 . (5.26)

where M > N/2

The parallel form results from the partial fraction expansion of (5.253),

which can be represented as

? A
(Ylj Z "+ Yoj)

-1

I 12

H(z) = Yo +

where M > N/2

Fig. 5.6 gives-tﬁe cascade form and Fig. 5.7 gives the parallel

form realizations.

S0

1 [, 2% +8 Z T+ 1) (5.27)

Any '‘one-dimensional recursive filter can be realized using a second .

order cannonic section either in a cascade or parallel form. Let us
focus on the implementation of the second order cannonic section as the

building block. In the Z-transform \

a(o) + al

1+ bl Z7 + b2 Z v {5.28)

H(z) =

The input output relationship in the data domain can be written

Ay

Y(n) =a(0)x(n) +a(l)x{n-1) +a(2)x(n-2) -b(1)y(n-1) -b(2)Y(n~-2) ©(5.29)
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Fig. 5.7 Parallel form.
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Equation (5.29) is usually realized using one of the following
forps: - . o
| i) Direct form1l, shown 4n Fig. 5.$, implementing the difference
equation ?n (5.29). ' . | *
ii)  Direct form-2, also called canonic form, (using les; nunber
of delays) shown in Fig. 5.9 implementing the pair of )
differénqe equations : e -
) Y(n) = a(0) Wn) + a(l) W{n-1) + a{2) W(n-2) 3
. ’ (5.30)
W{n) = x(n) =.b(1l) x(n-L) - b(2) x(n-2) .

where W(n) is an internal node in the filter.

The direct implement;tionoof a second order section in Qirebt'and

+

canonii;zjrm requires four adders and five multipliers. The number of

delay uifits in the -candonic form is less than the direct form as shown

in Fig. 5.9.

v

If the digital filters in Fig. 5.8, 5.9 are implemented using
binary arithmetic with finite wordlength represen;ation, the outﬁut‘of
the digital }ilté? deviates from the desired characteri;tics. A great -
deal of study [48,49,58,68,] has been devoted to the effects of guanti-

zation error in recursive digital filters and error accumulation for dif-

"-i

‘ferent filter topologies using conventional binary arithfetic (fixed or

floating point). | o
. ]
Recently, RNS techniques have been extended to the jmplementation

of recursive digital filters. Many stable recursive filters have fractional

filter coefficients. Since fractions are not allowed in the RNS, scaling,
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Fig.'j,s-Q&%;k diagram representation of direct
' fo 1 second order section of a digital
filter ) -
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Fig, 3.9 Block diagram representatlon oE canpnical
) form second order section
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the multip}f&ation by a fixed éonstaﬁ; to' represent the filterlcoéfficients
to integéfs.is required. Investigationsnof RNS recursive digital filters
have been centered upon research into efficient scaling algorithms.
Juilieﬁ [1] has presented tﬁe implementation of recuréiye filters, with
efficient scaling algorithms for the sécond order,canonié,section, which
is one of the basic building blocks’for an? recursive filter. Jenkins
[13] has proposed scaling Eechnidues for :he impiementation of residue
* coded reéursiye digital filters and has presented a hardware architecture
combining residue number concepts and bit-slice techﬁiques. Sodersﬁrand
.[§3j has épplied RNS techniques to the implementation of second order
digital:filte s based on a Lossless Discrete fntegration {LDI) ladder
strﬁcture ori 'n;lly inﬁrdduced by Bruton t74]. Here the scaling is
avoided by storing compiete look—up tables for multiplication by fractions.
- This type of LDI filter, ﬁsing the RNS, has been shown to offer substantial
reduction in the cost, and improvement in thé épeed over the structure
i
deveibped by binary arithmetic. For the adaptive filtering scheme, the
RNS baééd LDI filters can not be used. RNS-LDI architecture is not at-
tractive for standard. RNS intéger,multipiicétion because twice as many .
scaling arrays are reﬁuired. ‘
The RNS provides.th; potential fpr high speed efficient implemenﬁa—
“tion if the structures used as a bagis for RNS implementation have a large
number of addition and multiplication opératipns'énd few scaling operations.
~ Moreover, in the residue number system, addition, subtraction and multi-
. i R s .

plication are performed with extended precision, and errors occur only

during the scaling process; such a structure will also exhibit low

-~
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sensitiviﬁy to quantization noise. Tﬁg analysis of the quéntization N
noise and the effects of limit cycles in implémenting recursive digitél
filters using RNSVtEChniques have been presented in [39],

In th;s work, we Pave concentrated on implementing %echrsive filters .
using the QRNS and MORNS in the bit-slice'architecgufes._ Even'thougﬁ :he “
bit-slice architecture is not suitable fo; the adaptive filtering orl
multiplexing schemes, where the filter coefficieﬁts are to be changed
dynamically, this architgcture is one of the most efficientfrealizatiéns
of a second order filtér stfuctqre. This architec;upe provi&es the cabF
ability for obtginiﬁg‘high'speed‘and high precision éiﬁultaﬁeously.. In
the case of adaptive fiitering? the aréhitecturé hith.geﬁeral RNS'ﬁulpi—
plication using ROM arrays is proposed in [13].

In the following-sectioﬁ we are interested ia the impiémentétiqn of
recursive digital filters using the‘QRNS and MQRNS.with the'biFésiice‘

architecture propgsed by Peled énd Liu [12].

5.4 Implementation of Recyrsive Digital Filters Using the ORNS and MQRNS -
A recursive digiﬁalhfilteruié‘characterized by the input—output‘

relationshiﬁ of Eqn. 5.2.

'Since we are dealing with an integer system we need to choose an
appropriate scaling factor to multiply the fractional filter coefficients
in order to cdnvert them to integers. = Numerous methods for scaling are

available [1] [13]. Let S be'a‘scaling‘factor then the recursive

‘filter in (5.2) can be modlfied aS:“"'

T £ S = S
y(@)' =1/S¢ ] s *A(K) * x(ak) -] § * B(k) * y(n-k)')
' B ' _ L k=l e _ ;

(5.31)
1 k=0 -



\

. The exﬁression within the brackets { = } can

N-1

: N-1
y(n) = ] - a(k) * x(n-k) - ] b
‘ k=0 . k=1
. where a(k) = 8 « a(k) and b(k) = S « B(k)
. Let x(n-k) = c(n-k) + id(n—ki :
cand  a(k) = a(k) +}£ B(k),
b(k) = y(k) + 1 @\

The recursive filter (5.32) can be implemente

as follows:

[

N-1 * N-1
Qm), = | I a®k) * x(ak) - ] b

k=0 k=l
N-1 | N-1

@, =] &% - x"e) - ]
k=0 k=1

where
x(n-k) = ]c(n-k) + jt d(n-kiim ‘ x(nhk?
t
ak) = |a(k) + 3. BOO|_ | a(kf
t
b = [yt + 3, 60| ERIG)

t
with er -1 wod mand t € {1,2,...L}

Consider the implemehtation of a second

specified as follows:”

‘bé'expressed_as follows:

k) + y(n-k) . (5.32)

d using the residue codes

%)+ Qa-i) ]
t

* *
b (k) Q (n-k)]| (5.33)
. oo, Wy ,

le(n-k) - i, d(n—k)lmt-

It

[OEN B(k)lmt

lyae) - 3, s(k)lmt

96

order section, which can be
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| Q(n)téia(o)-x(n)+a(1>-x(n—1)+a(25-x,(n—z)—b(l)-Q(n—l)—b(z)-qcn—z) [
: t

Q") =la” (0 %" (") x" ()™ () ox -2 (1) (1) b M2 10 ety |
t

(5.34)

bl

Let us assume that the residue codes of the input sequence can be-

- LY
;epreseqted by B binary bits. So (5.34) 'can be written as
’ 3
- B-1 . N-1
_ . B-1 (k) NS
k - -
A, = |ac@) '] 2 w(my () +a() kZO 2 x(@-1)® + 2(2) kzo 2K x(n 2)
- el B-1 | '
- b(1) Z * g1 ® _ 5e2) I 2% qeo-2) |
k=0 | e
4 . L ) ’
A . (5.35)
* * (k) BIl x (k)
Q (m). = fa (0) X * K ® 45 728 x * (a-1)
_ k=0
B-1 : B-1.
a2 ) 2 x (n- )(k) b(1) 7 2% Q(o- 1)(k)
L"p _ k=0 \ k=0
- b(2) Z 2* Q-2) @ | - O (5.38)

t
where x(hhk)(k) and x(n—k)(k) = 0 or 1_‘f
and Q*(n—k)(k) and Q*(n-k)(t) = 0orl

' %
Now the resulting Q(n)t and Q (n) liave to be divided by 5 and quantized
to integers for the next recursive computation. The above expressions
.{5.35,5.36) can be implemented using the bit-slice technique as shown L

in Fig. 5.10.

».,
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The fecursive filter architectures in Fig. 5.10 can be modified
for the MQRNS by.in;orporating one a@digioﬁél qhannel to perform the.
third multiplication in (3.255 (Chapter'III); It can be obéerved that
boﬁh FIR and recursive filters require eithe; 50% or 75% of the hardware

required by conventional RNS filters Ffor the QRNS and MQRNS respectively.

5.5 Summary

The implementation of the non-recursive digital filter has been

L}

treated in two diffgrent ways using the QRNS and MQRNS:
1: The direct FIR fil;ef imﬁlementationA' " @,

2. Theldirect FIR filter ;mplementation using the bit;slicé

.‘archipectures. |

We haye.also discussed'the implemgntation of the rgcutsive digital filters
- using the QRNS and MORNS in the bit-slice arﬁhitectures. In the imple-
menfaﬁion of direct FIR filters, the difect decoding of elementrpaifs
into a binary representation hasﬁbeén used. .In.this implementatioh:WE
have shown that the improved Chinese Remainder Thgorem techniques (frac-
tional method) for the residue to binary conversion is.perfep:ly s;itable
for the‘MQRNS. Therefore, both QRNS and MQRNS require almost,thg same -
amount of hardware and give the same aatg rate'inAimﬁlementing_the”direct
FIR filrer architectures. Tﬁe“implementation of bitfsliéé architectures
”usigé the QRNS.fequireé 50% of the hardWare‘using,conventional RNS ﬁethods,
wheregs the‘impleméntatibn of the bit—slice architegturé us#ﬁ@-the MQRNS

requires 75% of the hardware. The ESZ increase in hardware is due to
: _ & . .

. the third multiplication required in the MQRNS.



Chapter VI

IMPLEMENTATION OF COMPLEX NUMBER THEORETIC
TRANSFORM USING THE QRNS AND MQRNS

RS
6.1 Introduction

Linear convolution can be described using equation (5.1)'in

Ch;pter V. Ofﬁen the impulse response sequence wiil be a short finite
sequence, and the data seqﬁencé w}ll be a long sequence (speech, Radar
etc.). The direct computations of y(n5 using (5.1) ¥equire N2
complex multiplications and N-1 complex additions for each output sample
y{n). As N becomes larger, the direct implementation of (5.1) requires
an excessive amount of computation. It is obvious that the large number
of additions and multiplications required for the direct ;mplementétioﬂ

of FIR filters limits the speed and efficiency. It has become an established

fact in signal processing that transforms, with a cyélic.convolution
A

property, can be used indirectly to compute linear, aperiodic convolution.

Indirect filtering, using the Discrete Fourier Transform (DFT) with a

Fast Fouriger .Transform (FFT) type of algorithm [51], provides, in many

cases, improvement in computational efficiency, but introduces quantiza-

tion errors becauvse of the reqirement for irratiomal coefficients (Sines
and Cosines). The coefficients are generated from a primitive root of
unity of the complex field, which can only be approximately represented.

The general form of a DFT can be defined over a finite ring or field in

- which case the primitve root is exactly represented; such transforms are

. ' ”~ ' .
termed Number Theoretic Transforms (NTT). The main advantages of the NIT

100
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are fhat indirect computation of convolution is error free, and compu-
tation over finite fields can Be maée very efficiently. The NTT has

an identical structure to the DFT with the exception that it is éomputed
over a finite ring or field rather than ovef the field oE complex numbers.

The NTT can be dgfined as:

N-1 kn
X() = } x(n) o (6.1)
n=0 - .

Like the DFT, the generator o is an Nth root of unity. In the case of

.

an NTT, the generator belongs to either the finite field or ring.

Vo
“~ :
6.2 Review of the State—of—thedhgt of NTT -

O;er the last fifteen years, various authors have proposed the use
‘'of NIT over a variety of finite'fie1d§ or rings, for error free, fast,
efficient computation of convolution [23,24,25,26,27,28,34,54,63,64,66,67].
The NTT has been defined using algebraic ﬁroperties of data over any
integral domain by Nicholson in [52), and over any fdnite field By Pollard
in [53] and over any finité ring by Dubois_and VenetsanOpéulos{in [54]. In
particular, Radar [26] pgopbsed the Mersenne Number Transform,(hNT) com~
P

puted over a ring (or .field) of integers module Mersemne number, M = 2° -1,

p prime and showed that 2.is a p-th root-of unity, aqd -2 is a|2p~th root

of unity. The disadvantage of this multiplication free MNT is that FFT
type algorithms cannot be used for the computation since the .order of the
transform is not a power of 2 and not even highly composite. TFollowing '

Radar, Aggarwal and Burrus [27] proposed NTTs over rings or fields whose

moduli are Fermat numbers F = 2b +1, b = 2?, referred to’ as the Fermat

Ndmber Transforms (FNT) and @ = 2 allows trénsform_length N = £n+l and -
i

T
'
]
f
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- - . 2
=22n 2 (22n 1 -1) allows N = 2n+'. Hence the FNT can be computed

o
. using the FFT algorithm. The hardware implementation of an FNT is

described in [55] for a sequence length of 64. In [56,57] Nussbaumer

introduced the pseudo-Fermat and pseudo—Mersepne number theoretic trans-

form.

The general form of the MNT and FNT is:

AL fr
X(f) = J x(t£) o~ for'f =0, 1,...81 : (6.2)
: t=0

1

where a is a primitive Nth root of unity over thglfinite,ring.

" The inverse transform is:

N-1

x{t) = N—l Z

x(6) ot forc =0, 1,...8-1 6.3)
£=0

“

with the réstriction that N belongs to the ring. However, the main
disadvantage of Fhe MNT and FNT is the rigid relationship between the
dynamic range ahd attainable trénsform length.

In order to extend the gransofrm length, we can define an NIT over
the extension field GF(mz) héi}t froﬁ the Galois field GF(m) using the
solution of the irreducfgigjﬁzlynOmial *2 +n=20 [24]. ‘For primes of
£he form 4K + 3,'n = 1 is suitable. The resulting extension field opera-
tions obey the rules of tﬁe complex ari;hmeiic. Such transforms are
termed Complex Number Theoretic Transforms (CNTTs). Tﬁe structural
properties of complex residue ringé have been preoposed in [65] and [54].
The implementation of CNTTs over thg complex residue rings has been proposed

by Baraniecka and Jullien for primes of the form 4K + 1 and 4K + 3 [23,47].
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To extend the dynamic range of complex number convelution, tfansfdrmé
over a ring isomorphic to the direct sum of Galois Fields have been
developed [25]. The computation of a CNIT requires comblex'field multi—.
plication; the usual procedure is to directly implement the fules bf'
complex multiplication via real multiplications over the base field.

Recently, it has been sﬁogn that complex multiplication over
Quadratic Rings [20,21] can be reduced to 2 base field_multigiications
with the proviso that the field modulus 'is of’the‘form 4K + 1. This
work was d&rected towards the sthy of ﬁNS architectures in which

L} .

parallel independent operations on several small quadratic rings were
used to produce a result ofer a .ring isomorphic to the diréct sum of
"the smaller rings. The resulting number system is termed the Quadraéic
Residue Number System (QRNS) [203él].' The résults, however, also apply
to operations computed over a single rlng These results have been ex-
tended to the Modified Quadratic Residue Number System (MQRNS) (15, 16]
and ring operdtjions for moduli of the form 4K + 3.

In order to compute the Complex Number Theoretic Transform (CNTT),
we can either use the extension field, modulo 4K + 3, with coﬁplex arith-
metic implicit in the extension field operations, or we can explicifly |
form'a complex residue ring, by ‘computing complex arithmetic operations
on elements of the base field. In the>lattér case, we can use primes of
the form 4K +1 and efficiently implement .the computétion ;;ing the
QRNS; A restriction, in using the ORNS, is the form of the prime moduli

(4K + 1). This restricts the choice of prime moduli which will allow

appropriate transform length and dynamic range (see Table6d). If we want



R
to clear this restriction by forming a complex extension field with

prime moduli of the form 4K + 3, then we use the MORNS, which is

not as efficient as the QRNS but offers efficiencies over fhe'direqt

computation [15]. |
It is obvious that the primary disadvantage of the QRNS is the

restriction of the form of the moduli for RNS processing. It is not

possible to choose small moduli or prime moduli to suit the required

dynamic range for a CNTT processor in the QRNS because the -CNTT haé

. certain constraints over the moduli, transform length and primitive

N-th root of unity./

A

. 2
For primes of the form, m, = 4K + 1, we wish to have N = 2 +1

_because # 1 is in R(mi) This means we have to choose N such a way
thatN]mi -1. For m, = 4K + 3, transform length can be chosen as
P+1

2 or any divisor of 2P+1. Tahle 62 and 6b lists all the prime
moduli of the form 4K + 1 and 4K + 3 with radix-2 transform length,

taking into consideration up to 8 bits for the implementation using

look-up tables. Table 6c shows the moduli set for the QRNS and MQRNS

and the combination of both for sequence lengths of 32 and 64. The

maximum dyramic range offered. by this set of moduli is alsc given.

It is observed from Table 6a that, if the transform length is

104

above 64, there is no prime modulus available to implement the tranform,

and for-a sequencé length of 64, there is only one prime modulus’ { 193}

length of 64 {31,127, 191,223} which offgré a dynamic range of 28.1

bits and is adequate for most of the practical probléms.
. In order to show the computation of the CNTT using the QRNS and

MQRNS, let us define the CNTT in the foilowing section.

" available. In-the MORNS, we have sufficient prime moduli for a sequence -



Table 6a
Table of Primes m'= 4K + 1
less _than 257
Represen-
R £arion | Maximum Radix-2
t 27 +1 Transform Length
1 5 22
3 13 3.2241 4
4 | 17 2%n 16
7 | 29 | 7.2%a 4
9 37 | .9.2%a 4
10 41 5.2%41 8
13 | 53 |13-2%4 4
15 | 61 |15-2%41 4
18 73 .| 9-2%41 8
22 89 | 11-2%41. 8
26 | 97 | 3.2°n1 32
25" | 100 | 25.2%01 4
27 | 109 | 9-2%1 4
28 | 113 7-2%1 16
3 | 137 | 17-2%4 8
37 [ 149 | 37-2%a 4
39 | 157 | 39-2%41 4
43 | 173 | 43.2%n 4
45 | 181 | 45-2%a 4
48 {193 . | 3.2%n 64
49 | 197 | 49-2Zn 4
57 | 220 |57-2%01
58 | 233 |20-2%. 8
60 .| 261 |15-2%1 16

105
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-
Table 6b
" Table -0f Primes m = 4K + 3
less than 257
K m, Represen- Factorization. Maximum Radix-2
ta;ion of. mi -1 Transform Length
q.2" -1
o | 3 22 -1 2? 8
1| 7 23 -1 3 .24 16
2 | 1 3.22 1 |, 5-3 -2° 8
4 | 19 5.22 1 5-3%.23
Joos ] 23 | 323 11-3 2% 16
17| m 2 1 5.3 +2° 64
10 | 43 |12-2%2 1 1. 7-3 «2° 8
11 | a7 3.2% 1 $23-3 +2° 32
4 | 59 {1522 -1 | 29- 503 .27
16 | 67 1722 1 17:11.3 +23
7 1 n 9-2° -1 7- 5.3%.2% 16
19 | 79 | se2® | 13- 5.3.2° 32
20 | 83 |21-2% a1 41+ 7-3 23 8
25 |103 |13-2% 1 17-13-3 «2° 16
J 26 |07 |27-2% T 53.3%.23 8
31 | 127 27 1 " 7.3%98 256
32 {131 | 3322 -1 | 13-11- 5.3 <23 8
3% |139 | 35-2° -1 | 23- 7. 50327 8
37 f1s1 [19:22 -1 | 19- 5% 2% 16
40 |163 42?1 | 413t 8
41 |167” 2123 -1 | - 87 ge3 -2° 16
a6 {179 | 4522 1 89- 5-3%.23. 8
47 {1010 3-2° 21 19: 5.3 -2 128
49 299 |2s-23 -1 | 11- 5Fat2t 16
52 211, {53022 -1 |53 7+ 503 +23 8
55 | 223 7025 -1 | 370 703 +28 64"
6 | 227 |s572% -1 113-19-3 -23 8
| 59 |239 {1s+2% -1 |17+ 70 503 +2° 320
162 251 [e32? ) g g3ty 3 e
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A\ _ :
A | Table Bc
Prime Moduli Required in tﬁe QRNS and MQRNS for the R
. Sequence Length of 32 and 64. ; S
' Moduli Set. and Dynamic Range o R
N QRNS " Dynamic | . MQRNS Dynamic : QRNS & MQRNS“ .Dynamjc.
. Range ' oo Range - Range
_- e e, P .,/514 7,79, f‘ o
32 {97,193 14.4 127,191, | 472 [ e7i127,161 61.5
_ bits . . | 223,239 - bits : ‘193 223 239 - bits
64 193 7.5 | 31,127, -28.1 | I731,197,191 35,1
bits 191',2231 - bits . % 193 223 bits:
‘. "-'l . " . '.'
B ,
1 ~ :
e .
R T~




108
6.3 Cdﬁplex Number Theoretic Transform
"The CNIT can be defined as
- e . i . ; . N N"l kc
=l A(k) = } a(t) o for k =0, 1,...5-1
- . (6.4)
. N-1 - ,
‘ae) = N1 T . A aFY for tim 0,1,...8-1
k=0 S ’ :
- where A(k), o € GF(m™) 2> |
a(k) = a(k) + ibk) .
‘and Ta=y+ i
'-aﬁd i is a solution to the irreducible polynomial x? + 1 = 0 defined
* T ver Crla? i ey 2 - Ny o
over cg;m ) and'a(k),. b(k) € GF(m)), ‘N|&—/1and | [M= 1, ja |M 1,
‘,-“"j“ R <<N.. _As‘m.and:N-are mutually prime, ﬁhere exists @ multiplicative
ﬁ_inye%sg_of.N modulo m.’
- :7-_ The residue-arithmetic can be efficiently implemented for the com—'
:ﬁutationfdf the transform, if we use relatively small Integers for each
-, - N . . .
o - prime modulus, and generate the required dynamic range by combining a
\\§;~;'/; .. ~sufficient nomber of pfime moduli [79]. Thus computing the transform
fih é‘finife:ring which_ié-a direct sum of several Galois fields of
. L A:‘ﬁ 2 . ) R . . ’.
- second degree,~GF(mi), i e (3,2,...,L)y S
\ B R N T |
T '.R-_-_GF(lml_) @ GF(mz) B ... @_.GF(mL)‘ | i (6".5.)
incréase the dynamic:range to 1 m, .
o o - L-1
C - .
- To suﬁpoft tﬁerimplemeﬁtatioﬁ—bf a.fast algorithm for the cdmﬁucation.
"of the trénsform? the transform length should be highly composite and



ideally N =

.

of N—elements deflned as

p= {1, a, ....q

.H,l}

ZB- a is a root of unity of order N which is the generator

(6.6)

There are a number of constraints imposed on the transform length N,

modulus m and primitive root «o.

For 8 bit orime-moduli, the following

Table 6d gives the transform length, suitable prime moduli, and the primi#

tive root of unity for sequence lengths. of 32 to 256

In the following sections

using the QRNS and MQRNS [17]

Table 6d -

Transform lengths and primitive, root of unlty

we present the computation of_the7CNTT

‘for prime moduli 4K + 1 and 4K +3

WK+ 1 4K #3
'Sequence Prime Primitive . |. Prime_ - PrimitiveiRoot
Length |Modull Root Moduli '
32 97,193 | 41+%,  [31,47,79, . |11+f2,18+d2, , 33444,
48+114 {127,101, 304251524177,
223,239 564187754150
64 193, 7+1 31,127,  |14+§4,1204129,
: : 191,223 118+128,94+123
128 "None 127,191~ |39+%2,66+56
256 None . 127 54+12

5.4"cdmpu:ation of CNIT Using

.he ORNS ‘and MQRNS - |

‘,Let us consider a complex sequence

-,

a(t) = x(t) + Iy(e) for t =0 1,..;.N;l" (6.7)

and 1et the primitive Nth rOot of unity be

| a;=.Y + 55 7 (6.8)
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The CNTT defined in (6.4) can be computed using the QRNS as follows:

N-1. .
AG) = | ] a(t) -+ B(ek)]
t=0 m
(6.9)
. N-1
e = T atw - Yo
t=0 ' n
and its inverse is
‘N-1
() = | L NN
a(t) = | N kzo AG) Bl '
‘ (6.10)
- N-1
a (t) = |N"1 ) NS B*Ezﬂ)lm
k=0
where a(t), aft), B(tk) and B?tk) can be computed in the QRNS as
follows .
a(e) = |x(e) + 3y(0)|_ "= |x(e) - v,
B(tk) = [y(tk) + 38(tk) [ B (tk) = |y(tk) - js(ck)\m (6.11)

‘ _where.j ZyY-1 mod m and m is of the form 4K + 1. The CNTT defined

in. (6.4) can be computed using the MQRNS as follows:

N-1
Alk) = IItE0 a(t) + B(tk) | - stk
1 (6.12)
N-1 :
ORI YOI WCS G
=0

and its inverse is

N-1
a) = [N T a00 s s, - sl
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% _, N-l
a (o) =[xy

* *E—& '
A (k) * B (t )|m - S(tk)|m (6.13)
k=0 o '

* *
where W(t), a (t), B(tk), B (tk) and S(tk) can be computed in the MORNS

as follows: A //j7

t

. | C(6.14)

a(t) = [x(0) + 3y(0)|_ a' () = |x(t) - Ey(t)lm
B(ek) = |y(ek) + Se(en)] B (t) = |y(tk - § §(ck) |
sek) = 113° 4 1] - y(o) - st ‘

and 5 =¢¥-1 mod m and m is of any form except 4K + 1. ¥{tk) and &{tk)
are the real and imaginary part of the elements in (6.6).
The computation of the finite cyclic convolurion using (6.9,6.10)

can be exglained‘in the following section in the QRNS and MQRNS.

6.5 Computation of Cyclic Convolution in the QRNS and MORNS

' Digital convolution -can be implemeﬁted either directly in the time
doméin,.(seé.sectionlﬁ.z) or in the transform domain. In this section the
digital ;onvblution‘is implemented in the transform domain, of a CNIT.
We_wgll symbollicallyfdefiﬁe digital convolution aé:

y@ = hm) @xwmy . (6.15)
"Ihe cyelic convolution property states that
~ ONTT:[h(n) @ x(n)] = CNTT [h(n) ® CNTT [x(n)] (6.16)
and the convolution output /;b

y(n). = ICNTT-{;ﬁTT [h(n)] + CNIT [x(n))] } (6.17)
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wheTe ICNTT iéktﬁe inverse CNTT. This implies that the N-point convolution
can be obtained by an inverse transform of the pairwise ﬁroduct of two o |
vectors in the transform domain. | \\\‘ﬁ_____/rw——,

The-convolution implemented using (6.17) is called girqular_or-
cyclic or periodic convolution. The results of the finite-aqd circular
convolution are equal if zeros are appended to h(n) .and x(n) to prevent
folding or aliasing [83], so that transfcrm.length is at least equal to
N+ L - 1 where N and L are the duration of h{n) and x(n) respectively.

Long input sequenceg,'filtered by a FIR filter whose kefne; is
Vrelatively short, can Bé‘ﬁivided into blqcks and the coﬁventionél over-
_ lap-add or over-lap-save techniques [83,86] can be used to compute the
output signal from the results of the.circular convoluﬁions.

The techniqﬁe of convolving two finite:sequences, usipg transform
techniques has been called fésﬁ conyolution. The térm 'fast' is used,
because the transform can be compﬁted rapidly and efficiently by the

Fast Fourier Transform (FFT) algorithm [51]. \

6.5.1 Computation of the Cyclic Convolution in thle QRNS

Let h(n) = a(n) + ib(n); - and x(n) = c(n) f/id(n) 66;18)
be the two complex sequences to be convolved for n =0, 1,... N-1.
. - . : P d

let o =y +%§ be the ptiﬁ}tive element of order N. The element

pairs of the two complex seqﬁénces can be calculated as follows:

- h(n)

i
H

Ia(n)-+ jb(n)|ﬁ h*(n) ]a(n) - jb(n)]m

(6.19)
x(n).

il
il

|em) + jac)|_ X (n) = fe(a) - 4|
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where a(n), b(n), e¢(n), d(n) & R(m) énd m is of the form 4K + 1 and
=v-1 mod m, j € R(m). The CNTT [h(n)] and CNIT [x(n)] are compited

using the element pairs in the QRNS as follows.

N 1
Tk) = | ] h(n) - B(kn)[
n=0
. N-1 , {(6.20)
ST () =] ] h(m) B (kn)|
a=0
) Nwl '
UG) = | ] x(n) - Blkn)|_
n=0
\ (6.21)
* -1 * -
U k) = | Z x(n) * B (kn)[m, where i

- % : : 5
B(kn) and B (kn) are the element pairs of the twiddle factors.

- : .
Let V(n) and V (n) be the multiplied values of the element pairs

of (6.20, 6.21), which are computed as

S N-1 -

« V@ =[] T - U]
L o

(6.22).

N-1 .

* , N N . - I
V' (a) = l{ Nk)'U&)I for n =-0. 1., .N-1""
K.O o . .

Let Qn and O*n be the element pairs of the. inverse CNTT of Vn and V n

which can:be compﬂted‘using (6.10) a%:

' (-
Q(n) = f V(t) . B(tk)|
=0
. (6.23)
1 .
Q) = N} v (ty - B (: | for k =0, 1, ....N-1
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The real and imaginary part of the convolution cutput is

-1

*
Yp(m) = [277 (@) + Q)] N

(6.24)
Y, (n) eilz"l 37 @) - Q*(n))Jm

-,

6.5.2 Computation of the Cyclic Convolution in the MQRNS

Let us consider the same two sequenc;as as in (6.19) anﬂclr,‘_r‘-.'i:c‘= n+ iz

be the primitive Nth rcot of unity.

Let D = [§% + 1

The element pairs of the two complex sequences can be calculated as

follows: - ‘ :
h(n) = [a(n) + Jo(n)|_ b () = Jata) - YOI
(6.25)
x(n) = |e(n) + Ja]_ x'(m) = [<@) - Jam)]_
ahd
S(n). = |D « b(n) +Zfn)|
1 m (6.26)

$(n), D d(m) 'C(n)lﬁ .

where a(n), b(n), c(n), d(n)nz €R(m) and m is of any form except 4K + 1

3 = vYn mod m,j € R(m).

The CNTT [h(n)] a;nd CNTT [x(n)] are computed vin the MQRNS as

N

follows: -



N-1 . : _
T(k) = IIHEO LIS (‘-““”m_' s,
(6.27)
: MN-1
T = ] ] wfm B (ai) | - s(m), |
n=0
N-1
U(k) = j|n£0Ax(n) B(nk)|m - S(n)z\m
CL L, | (6.28)
Ut =] ] x () B (mk)| - s(n),|
- n=0
Leg o . >
_ e o
W) = 27 T () - TR |
za) = [278 57w - U*(k))jm N

S() = D - WK) - Z() |

* . ' S
Let V(n) and V {n) be the multiplied values of the element pairs in

(6.27,6.28), then

< oL Lo '

. Vin) = 1k£0 TR U)o - s
: (6.29).
N-1 '

* * * ’ .
VvV (n) = |k£0 T (k) u_(k) . Sk | for n = 0,1,....N-1

Let 1

- =1 x
E(n) = [277 - §° (V(a) - v )}
and . . r(n) =-|D + E(n) - c(n)lm

where {(n) is the imaginary. part of the twiddle factor.

TN\ ¥ * . :
Let Q(n)_an{lQ (n) be the inverse CNIT of V{n) and V {(n) which can

115
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response can be computed as follows:

11é

be computed as shown below:

e . N-1 _
o) = N T vao - slab) | g = VG
k=0 ‘
(6.30)
‘ _, -1 -
Q= N T v - sfnﬂ)lm - v |
Y k=0
The real and imaginary part of the convolution output is
ve@m) = [277 - @m) + Q)
' (6.31)

@ = 27 57 @m - Q]

6.6 Convolution Over the Direct Sum of the Finite Ring

The computation of the convolution over the ring isomorphic to a

direct sum of L quadrafic rq;idue rings, will increase the allowable

L
dynamic range for the convolution sum to M = r'T m, .
i fe1
That is, .
" . o
R(M) = QR(ml) 0] QR(mz) 7 I o) QR(?L) . {(6.32)

The CNTT can be éomputed.modulo distinct primes {ini} and the result
can be reconstructed according to the Chinese Remaipder Theorem (CﬁT) or
mi#ed radix‘conversion techaiques. | -

AS the sequences to be convolved are complex,. the absélute upper -

bound for the real aﬁd imaginary parts of ‘the sequenge'and the impulse
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Let h(n) = a(n) + ib(n) be the impulse response and
) . (6.33)
x(n) = c(n) + id(n) be the complex sequence
then
Max{c(n)|-Max| a(n) |+Max d(d)| -Max|b(n) | < M-1/2N
Max[c(n) 'Mai[ b(n) [+%MX d(nﬂ-Max[a(n)[ < M-1/2N (6.34)
We will assume that
Maxia(n)l=Max[b(n)| =Max|c(n) |=Max|d(n)] = W (6.35)
where W is the dynamic range of a(n}, b{(n), c(n) and d(n).
Then equation {(6.34) can be written as
, ) W=/ = 1)/ B (6.36)

’

This bound con the dynamic range is pessimistic for, many practical

: appiications [23]. To implement the CNTT over a direct sum of the

quadratic residue ring, we find a moduli set {Hli} that can provide
the same order pf transform length N = ZB. To provide sufficient

dynamic range (M = FL] mi), we can combine small prime moduli of the
. i=1 .

-form 4K + 1 and 4K + 3 and the procedufe_in sections (6.5.1,6.5.2) can be

used with the optpdt being decoded using the techniques proposed in
Chapter IV.

6.7 Exaﬁgle .

P

In order to verify the procedure given, cyclic convolution in the

“QRNS and MQRNS has been simulated with a software FNTT. The topological

“structure of the (FNTT) is identical to the FFT algorithm, provided the
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|
final convolution result does not overflow the ring modulus, then we

have a direct correspondence between the result over the ring and the
qugntizéd sub—cover of the complex fieid over which the FFT has been
computéd. The FFT butterfly subroutine is modified to handle the binary
operations of the quadratic residue ring; the input samples and the
twiddle factors are fed into this butterfly as element pairs.

In implementing a convolution example, we have chosen an
impulse response of a linear phase band pass filter and a random input
sequence. )

Various approaches for designing FIR digital filters using the
theory of weighted Chebyshev approximation, are discussed in {45]. A
general purpose computer program which is capable of designing a large
class of optimum FIR linear phase digital filters has been.writteh in
Fortran [62]. This program gives the desired impulse response of the
optimum FIR filter specified as low pass, high pass, band pass, etc.

Let us consider a linear phase band pass filter for a sequence
length of 32. Table 6e shows the full precision impulse response de-
signed using the program in .[62] and Fig. é.l gives the log magnitude
response. . )

The impulse response in fable Gé is multip;ieq by 104and the
samples rounded off to the closest integer'falpe.' The resulting integer
valued impulse response is showy.iﬁ Table 6f and the log magnitude
reébonse is shown in Fig. 6.2. From the figgres 6.1 and 6.2, we can

cbserve that the degradaticn due to the integer truncation is small.

This integer valued impulse response can be taken as one sequence



Table be

a

v

Finite Impulse Response (FIR) Linear Phase
Digital Filter Design, Remez Exchange
Algorithm, Bandpass Filter

Filter Length 32

Impulse Response
H( 1) = -0.53534121E-02 = H{32)
H( 2) = 0.99027198E-03 = H(31)
H( 3) = 0.757335458-02 = H{30)
H( 4) = ~0.65141192E-02 = H{29)
H( 53) = 0.139560525E-01 = H{28)
H( 6) = 0.22951469E-02 = ®{27)
H( 7) = -0.19994067E-01 = H{26)
H(C 8) = 0.713589560E-02 = H(25)
H( 9) = —0.39657363E—91 = H{24)
H(10) = 0.11260114E-01 = H{(23)
H(11) = 0.66233643E-01 = H(22)
H(12) = -0.10497223E-Q1 = H{21)
H(13) = 0.85136133E-01 = H{20)
H(14) = -0.12024993E G0 = H(19)
H(15) = -0.29678577E 00 = H(18)
H(16) = 0.30410917E 00 = H{17)

Table 6fF

Integer Valued Impulse Response of the
Linear Phase Bandpass Filter For the
Length of 32

h( 1) = -58 = h(32) #
h{ 2) = 10 = h(31)
h( 3) = 76 = h(30)
H( 4) = -65 = h(29)
h( 5) = 140 = h{28)
“h{ 6) = 23 = h(27)
h{ 7) = =200 = h(26)}
h( 8) = 71 = h(25)
h( 9) = =397 = h(24)
h{(10) = 113 = h{(23)
hH(il) = 662 = h(22)
A h(12) = -105 = h(21)
" h¢13) = 851 = h(20)
h{l4) = -1202 = n(19)
h(15) = -2968 = h(18)
h{(16) = 3041 = h(1l7)
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Table 6g

Element Pairs of the
- Integer~Valued Impulse

Response
*
h(n) h (n)
2147483589 2147483589
1 10 10
76" o 76
2147483582 | 2147483582
- 140 140
23 23
2147483447 | 2147483447
71 71
2147483250 2147483250 .
. 113 113 |
, 662 662
| 2147483447 2147483447 |
o - 851 . 851 .
2147482445 2147482445
2147480679 | 2147480679
3061 3041
3041 , . 3041
2147480679 2147480679
2147482445 21467482445
. 851 : 851
2147483542 2147483542
. 662 662
N - .113 S 113
2147483250 2147483250
B S 7
2147483447 | 2147483447
.23 | = 23
; 140-| - 140-
2147483582 2147483582
76 - 76 -
1ot o 10
2147483589 | 2147483589
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Table 6h .
Element Pairs of the
Twiddle Factors |
Tk

Bkn B kn -

1 1 :
1241207368 | 1179735656
. 387824019 | 578122920
1380488182 | 1449692322

65536 0
1380488182 697791325
o 387824019 1569360727 .
73459377 | 2086011935
—‘/\“”“F- ~ 1 | 2147483646
61471712 | 1874024270
578122920 { 1759659628
1449692322 766995465,
.- 0 | 2147418111
697791325 766995465,
1569360727 | 1759659628 |
2086011935 | 1874024270
2147482646 | 2147483646
1874024270 | 2086011935
1759659628 | 1569360727
766995465 697791325
214741811 | .0
766995465 | 1449692322
1759659628 578122920
1874024270 61471712
2147483646 1
2086011935 273459377
1569360727 387824019
697791325 | 1380488182

- 0 ' 65536
1449692322 | 1380488182
-578122920 387824019

61471712 273459377
o {
P



~ Table 61 .

The Randém Sequeﬂce-

Table 6]

The Element Pairs of
Random Sequence

c{n) . d(n)
53 74
63 38
35 30
63 43
93 - 25

2. 63
64 55
85 7
58 54

C 34 85

3 92
62 95
g 45

7 8

1. . 85

S 72 - 84

. 88 _ 78
45 17
96 76
43 - 31
50 . XA
22 66
96 24
31 73§
78 60
84 37
36 . .67

7 28
10 15
55 19

53 81
51 86
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*
x(n) x (n}
127 2147483626 -
101 25
. 65 -5
106 20
123 : 73
65 12147483586
119 9
92 78
112 . 4
119 2147483596
95 2147483558
157 2147483614
53, ' 2147483610
| 15 2147483646
. 86 2147483563
156 2147483635
166 - 10
62 28
172 20
74 12
94 - 6
88" 2147483603
120 : 72|
104 . 2147483605
138 18
121~ ‘ 47
103 2147483616
35 - ‘2147483626 |
25 . 12147483642
74 - 36
134 2147483619 .
2147483612

ra
I~
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Table 6k

Convolution Output in the MQRNS

~

. YR(Q)

YI(n).

182347
2147389934
2147281277

1746645

12147475949

2147299602
© 237407

. 179888
‘2147262853
2147275767
29217
224272

.. 20827
2147367977
‘ 93911
2147329437
2147382211
382875
2147409181
2147099096
. 190127
249448

74738
274831
2147448919

5403
248544

2147428117 .
2147406873

2147334268
2147278270

2147158940

2147236403

2147460211
36699

2147422440

137630

2147423692
2147358721

130491

2147409547

16574
248772

2147330052
. 2147207177

33614
193095
191499

2147384436

2147268979

. 10%86.
2147439141

105278
320134
2147293829

2147135520

68494
148171

220400 |

81079
2147065152
2147259955

396330

194144

125
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by assuming the imaginary term of the sequence to be zero. Let us

.coneider a;prime modulus M= 231 ~1-(2147483647), which is a Mersenne-

prime, and choose the Operator 5 = 1. Then the dvnamic’r;née of the

input sequence for thg finite ConVOlutlon is bounded by appronimately 12

bits. The primitive N-th root of un1ty is 1241207368 + 11179735656 which
s computed using the algorithm in [24] and the element pairs of the ;

'twtddle factors is computed as shown in Table 6g.

The.Table 6h shows the element pairs of the integer valued impulse
respense. We Qill'select an input renodm‘sequence with statistical char-
.acteristicsiés given in [85]. The'length of the rendom sequence to be

_ 32 wlth each sample bounded Wlthln 2 . The sequence is. shown‘in the
;Table 6i. The element pelrs of thls random sequence are shown in Table é;

" The CVCllC ConVOlutlon is computed using the algorlthm developed in

-eectlon 6.5.2 and the flnlte convolution output is shown in the Table ok.

B 6 8 Eutterfly Implementatlon in the QRNS and MQRNS

The ba91c computational unit (BCU) to 1mplement the . CNTT,'uSLng the

‘ FNTT algorlthm, is a radlr—Z butterfly The flow chart of the basic but—

Ry

:~terfly operation is as shoWn in rlg. 6.3. The 1mportant properties of
'the QRNS and MORNS are that the separate binary rlng operatlons of multi-
:plicatlon and addltlon on the elements and thelr con]ugates yleld results

‘ isomorphiq te multiplicatlon and addltlon respectlvely ‘over the complex
re31dUe,rlng C(M)[ZI]uL This means that once the lnput has been trans formed
into a QRNS (MQRNS) representation, thls form can be maintained throughout

, for all the computatlons with conver51on back to a convgntlonal representa—

tion being performed'at the‘output stege. This'particular'property is

e
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useful for the computation of the butterfly structure in the implemen-
tation of the CNTT using the FNTT algorithm, Let a + zb, ¢ +1d be the
two complex imput samples and x + iy the twiddle factor. The radix—2

butterfly repeatedly performs the following computations

<

™~
]

||(p +.£d)'(x + Zy)[m + {a + ib)|m

(6.37)

o]
]

H&+2ﬂ%x+ﬁ”m—@fzwu

-~

The equation (6.37) can be 1mp1emented using the QRNS or MQRNS

In the QRNS
- ||A ) Blm +.C|m ‘ _ ? = |LA f_BIﬁ.‘ C|m o
* * * . * L‘* Lo % (6-38)
SR O O [P T
A mo.o'm : . o _ m

m .

S k. * o '
whereuA,'A , 3; B, C ‘and C .are the element pairs of the two input,
samples and the twiddle factor respectively, and " Z, Z . ¢ and Y are

the element pairs of the butterfly output 77 ’ .-:‘.

i
Kt

In the MQRNS. -

z=1lla 8| -s|. +c|_ Y= A - Bl -8l -l o
o ‘ o _ , T C ¢ (6.39)
R L L

where S = ||‘;2.+ 1] -d -yl
m m

—
/

The implementation of the above operations (6.38,‘6.39) can be
'accomplishedvby the look-up table apprbachQ For high speed realization,

the look-up table apprecach usiﬁgiROM arrays offers-the better solution [1].
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Table 61

Number of PROMs Required for a CNTT

. "Butterfly in the Conventional RNS
ORNS, MORNS
Number of Conventional QRNS MQRNS
Sequences - RNS : :
16 40 .24 27
32 50 30 34
64 60 36 41
‘ L28: 70 - 42 48
256 30 48 ‘ 55
TN

131
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One of the advantages of structures usin% ROM arrafs is the possibility
of easy pipelining for high speéd throuéﬁpuf [14]. Since we are inter-
ested in high speed implementation of the transform using the FNTT algo-
rithm with PROM (Programmable ROM) arrays the range Sf the prime moduli
and commercially available PROM packages are the major criteria.

According to the present.state—of—the—art, the number of PROMs
required per stage for cherimplementation of a butterfly opera;ion
.in the conventional RNS for the complex sequence is 10 [78, pp.76].
Fig. 6.4 shows the implementation of a radix-2 bﬁtterfly (BCU) és in
(6.38) usiné PéOMé for a pipeline FNTT, in the QRNS. It‘requires only
6 PROMs per stage.

Fig. §;S‘Shows the implementation of the same butterfly using the
MORNS. Here-élso, wé need 6nly 6 PROMs per stage, but the subsequent
st;ées reqﬁire ? PRdMg-becéuse we have to compute the imaginary part
of therreéidﬁe~éod¢srthat are to be used in fhe next stége.._These
butierfliés can bg cés;adedldepending on the number of stage5'required

according to theISEQuenge length. Cdmpared o the conventionél RNS
iﬁﬁlémentation ofrthe CNfT, the QRNS and MQRNS offer bétter hardware sav-
ing;.'_Table 62‘5h;ws the‘number of PROMs required to imﬁlemeﬁ; ;hé 7
bgtterfly‘operacisn.in the conventional RNSa'dRNS-and MQRNS.‘

“ lUéing the CNTT,'inlthe following seétidns, a‘genéralized FIR

" filter structure is developéd,_‘ﬂ

6.9 Recursive FIR Filter Structures
A digitalzfilter<qomputed over‘tHe’Edmplex field can be represénted
using.a set of linear difference equations with cqnstant.coefﬁicignts.'

-
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It has been established that the z-transform is the most suitable tech-
nique in the design and analysis of these difference equations.
Let

' N-1

H(z) = ] H(@) z " ' (6.40)
n=0

be the transform of the sequence h{n), over the comglex field [B8], where
N is the sequence length or window size. It can be showﬁ that the z- °
transform of a sequence N can be represented in terms of N samﬁles at
equal spacing around the unit circle.' For a FIR filter, the system

function can be expressed as

. ’ N'—l ~
H(z) = (L= 2 OUYN [ H@/1 -y 2 (6.41)
k0 .
where ‘ w;k\x N iavT
- : .
) = 1) [z = wF = [ new) Wy (6.42)

_.n=0

The {.ﬁ(k)} are called frequency samples. 'Fig;‘6.6 shows the filter
structure. .

Equation (6.41) Suggest;.thaf the FIR filter cdn be realized as &
cascade of a simple FIR filter with aﬁ Infinite Impulse Reééonsg ({IIR)
filter [87]. The systen E;nct}bn 1s 1-2 and the IIR portion of the

network consists of a parallel combination of N-complex first ordgr systems

with poles at 2 = Exp[j2mm/N]. Since the first order systems have poles
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exactly on the unit circle,. a,question of stability arises for'sueﬁ

typé% of filters in the complex @ld The CNTT ‘can be il‘sed/to deﬂg{{
. . |( P

_a filter specified by a set of first—order difference equatlons over
finite rings. The FIR" filters developed in [29], over a finite ring,
“do not have accumulation of errors in the‘recur51ve computations. The
question of stability duefto particulaf‘design configuratione does not'Kb///,f\\ e
arisef3 The results will be correct’ provided the output seQuence satmsf1es?
the appropriate dynamic range constraint..-l‘_‘ _ .:;1 : :l:‘ B -

To generalize the filter design a Complex.Number iheoretic z- transform-
(CNT z-transform) has been introduced [30 ] as an addltion to the results
in [29]. It has been shown that the CNT z- transform representation enables
one to design a FIR filter oper a finite ring by u51ng either recursive
or non-recursive structures in a manner analogous to the z- transform lt- o ;!E;:
method of filter de51gn over the c0mpler field. The CNT z-transform can

be computed by an FFT type algoritn;? Filter design,cver’a finite'compleX‘

ring requires JAinput séﬁuences to the filter to be complex 1nﬁeger values
. /

and the dynamlcjrange constralnt has to be satisfied according to (6 36)
. e

Such complex integer valued sequences can be achieved by proper scaling

and quantization of the input sequences: The quantization and-. dynamic:

‘range constraint are lnherent requirements.ln representlng numbers 1n_'

a digital computer since only finite length registers €an ge as51gned to

represent numbers. T f._,;" : v,‘:;'l." i-ifi,(" - - ) } —
In [30] the Complex Number Theoretic z—transform has been defined

" and using the .CNT zhtransform, a recursive realization of FIR filter )

.Structure has been proposed.for uniformly spaced'frequency samples around
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_the unit‘circle.‘-In this work, we present an‘extensidn of the above
- technique for the realization of recursive’ FIR filter for non—unlformly
spaced frequency samples around the unit circle, which we will refer here

as the generalized FIR filter structure We will. also show that the

." LI

MQRNS is the most suitable candidate” for therlmplementatlon of such fllters

In order to develop the gengfalized FIR filter structure, let us

bring out‘the definition of the CNT thransform in the fqllowing section;
: : : ' ' :? '

.6.10 Complex Number Theoretic Z-Transform

) L - L y
. Let' q be a product of'primes r_] q , and let i denote a solu—
_ . i i=1 ‘ﬂ
‘ tion of the equeticn~x2 + 1-= -1 mod q. Let Rq be the ring of re51dues
of integers mod q, where - . L~

L] "y

e ///.~. 1 R®= {s+ it[s, t e'Rq} o k. '(6.43)

FYPE
'\O‘J -

hes q2 elements and the blnary operatlon of" addltion, subtract{in and -

"--fimultlpllcation between the elements of qufollow the rules of complex

x:'arithmetic. .J:t ‘ ‘-""'7 | ' ‘ ',;".7‘ S
 Let a'beee'primitive N-th root of unity in Rq

L}

.”ana'r . . - L
e {1, ¢, ....aV 1} (6.44)
':VETJ!LThen-tne.ﬁ—pqint_CNT z-transform over qu
- SR .H(z) Z h(n) z" o (6.45)
T nZ0 . i .
'7-“.§qd its:inverse
. o ' l AR R
" f h(n) Z #92) z “ E L (6.486)

' ZES‘ . R
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- [V -
Since N and q are relacively prime, N ¢ Rc' The structure of the CNT

- .

z-transform and the complex field z-transform (6.40) are identical. The
. circular convolution property, Parseval's theorem and the other general

properties of the CNT z—transform are brought out clearly in [30].

- It has been proved in [30] that every CNT_z-transform,has a unique

representation of the form

S CN-1 m IR
H(z) = A ~2) [ a/l-o' 2z . ” (6.47)
. n=0 - ) o
-‘ . . ~ N-1 - )
- where _ ol : ~mn
" a = N—l H{z)l'_ em = N z h(n) o
m B

n=0 ..
°

. The‘st:gcturé'éf :his,équation'is identical to ghe structure of equation
‘(6.41;6.42). The resulting filcef‘structqre is 'shown in Fig. 6.7 aﬁd has
~uniformly:ép§ced frequehcy‘sémpiés:afpund the unit circle with first order
diffefencé §qu;tions.‘-This filter structure can bé implemented using the
- QRNS and MQRNS ‘in the following section.

a : : . )
6.11 TImplementation of Recursive FIR Filter Structure Using the QRNS

and MORNS . ~
6.11.17 In the Quadratic Residue Number System

‘h(n}.= x(n) + iy(n) n e {0, 1,;..Nr1}_ ‘ (6.48)
ﬁe.the,imﬁulse response
. h ' b f‘ hd
and
' ™ oef1, a... 1

.. " (6.49)
where a is a_primiﬁive N-th root of unity.

Then the element pairs can be cbmputéd as follows:

hin) = | x(n) + iy | h (n) =|x(n) - Jy| (6.50)
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B (mn) =‘lY(mn).+ j8(maYy|  B(mn)= |y(mn) - jéCmed[ - (6.51)

where ‘j'2 :.—*"-l mod m. -m is of the form 4K + 1 and vy (mn) and &(mn) are the
real ‘and- imaginary parts of the elements in (6.49).
. ]

" The element pairs of (6.47), can be'compgted using the-procedure

in [L6] as Eo}low_s:

R N-1 - . : :

a(e) = [N ! h(n) - B(nt)| for e =0,1,....N-1 . (6.52)
4 -& -1 N-1 * L . ' : '
La(e)= [N ] h'(a) - B (a)| for t =0,1,...N-1 (6.53)

. n=0
‘ Fbr_the' ébmputatibn' of (6.52,6.53), the Fast Number Theoretic Transform
: - - s o : .
' (FNIT) can be used. - _ o - ' /)"“
If b(t) and b (t) are the outputs of the parallel sections of the
¢  ;filte-r -then tb’e’rellem‘ent pailrs of the filter outpu‘tf can be written as
N-1

I ae) +b(e) o (6.54)

n=0 "

-‘,;Q(t)
N-1

I a“-be) - (6.55)
n=0 C S ,

0

L,
Qe

. Let_YR'(t')‘-ém'i Yo (L) be_'thel real and imaginary part. of the filter output..

-

-1 S x : . ' c
Tp(e) = 270 @) v e (e | (6.56)

v = 2 T e - Qfen ] - (6:57)

o
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This filter can also be'implemented using the MQRNS as follows:

6.11.2 In the Modified Quadratic Residue Number System

Let us consider the same impulse response as shown in (6.48)

then

e {1, a,.... a} ‘ (6.58)

b

Where a 1s a prlmitlve N th root of: unity and the powers of o. are com—

puted using modulo N .operation.

h(a) = |x(a) @l @ = s - @l 6.5
~ B(mn) =_|n(mn) + Eg(mn)|m ‘B*kmn) = In(ﬁnj ;'gg(mn)|m -.C6160)
s@u) = }[3% + 1] ':y(n)‘- cm)| o (6.61)

where 52 Z n mod my, m is of any form ewcept of the form 4K + 1 and n(mn),

g(mm) are the real and lmaglnary parts of the elements in (6 58)

a(o) -||N ! Z ‘h(n) "B(nt)l - S(nt)l for t = 0,1,...N-1
n—O Y]
a () = HN Z h(n) B (nt)l - S.(.n't)lm for t = 0,1,...N-1
n=0 - : -
(6.:62)
theﬁ ' . o |
-l oAl : E ' ‘
Ulm) = |27 3. {a(t) - a (t)l . , (6.63) -

The element pairs in (6.62) can be computed using the FNTT
Let the element pairs b(t) and b (t) ‘be the output of the paral—

lel section of the filter. The element pairs of the filter
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output can be computed as

' N-1 E
Qte) = [[ ] ate) b(e)f - s
£=0 : o
‘ ‘ _ (6.64)
, e : o .
Qo) = || ] ate) be)[ - - s
. =0 _
wherg' b
sy = |15 + 1] - ue) s o] h
- and | | | - (6.69)

SUTRTN R S ' -

c(e) = |27« 57T () ~ b ()]

" Let YR(t) and YI(t)_be the real and imaginary pa;t‘bfhﬁhe filtér outbup. .

Then _ L
YR(e) = 270 -l + Q)] | |
' ' S (6.66) -

-1 -1 Y oF SR

Yre) = 277 3 (@) - Qe ]

i . 0 . - m

In this section, we have restricted the recursive FIR filter structure -

to the case of the uniformly spaced frequency samples around the unit

B circle; In the foildwing %g;tion, we will diécuss ah extensidg of the 5

above technique to non4uniformly spaced frequéngy Samples éround the

unit circle. | ' ' ' .o _ S Ty,

6.2 Generalized Number Theorétic FIR Filter Stfuctufe.

Let h(n), n = 0, 1,...8-1 be,fhe'integer_impulse'respénse'of.a non-—
‘recursive filtér-with CNT z-transform H(z). It can be shown that N-inde-—

pendent values of H(z) can be specified for this filter by writing H(z)

s

¥



e

'rwheré : 'ak'= Hk/Bk

~_can be manipulated as shown in (6.69) [32].

/ 142
i
Y
in the following form - /
N-1
- 1
o [Ta-t
H(z) = = — - (6.67)
k=0 "k (1 -2 bi)
where‘ -
N-1 bi B
= | a - E—O
k
. . : i=0, ik

and’ {bk} are the z-plane position at which.H(bk) = H . H(z) can be

k

shown to be an (N-1)th ordey polynomial in z_l. Thus the design of a

non-recursive filter can bé thought of in terms of deriving suitable

“

values for {b k} and H . .f v

Here

b, = o (6.68)
where the indices k vary non-uniformly. !

A

/‘) In this case of non-uniformly spaced samples, the CNT z-transfz:m

SE zbizi _ ° £
H(z) = ‘ . (6.69)
(l_zl 3 . "

" The intérnal,summation in-(6 69) comes from expanding the product

»

_ in-the numerator of (6.67). " The resulting filgé? structure is shown in

Fig. 6.8. .The internal summation is realized as a non-recursive fllter,

, (j‘ 7
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whose output 1s fed into N~parallel channels. The output of the parallel
channels is multiplied by the terms 'ai' and summed to give the filter
output. The non-recursive and recursive structures can be implemented
using the QRNS and MORNS. In impleménting the entire filter structure,
the computation of 'ak" involves division. ‘We cannot employ either the
QRNS or MQRNS forlthe implementation of this filter structure difectly.
The reason for this 1s that some of the ring elements we need to use may
not_have multiplicative‘inverse;. A viable approach ir implementing the

filter structure is as follows: X

1. The non-recursive and recursive portions of the filter structure

can be implemented using either the QRNS or MQRNS.

can

2. The element pairs of the numerator and denominator of a

be converted into complex representat}on.
3. Compuﬁe the multiplicative inverse of complex numbers .
(denomigator of ak).
. For primes of the form 4K + 1, some of the coﬁplex numbers do not
have multiplicative inverses because the structure is defined in the
residue ring. For primes qf the form 4K + 3, all thé complex numbers
will have multiplicative inverses because the complex numbers are defined .

over a second degree extension field. However, we show in Appendix A

that the structure of the complex numbers for the primes of the form

4K + 1 is a ring. .
The generalized FIR filter structure shown in Fig. 6.8 is termed
the polynomial interpolation structure or Lagrange structure [83]. This -

type of frequency sampling structure in general requires more multiplications

]
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aﬁd delays than either direct or cascade forms. If we emplov the usual
complex binary arithmetic in implementing this filter structgre, the
throughput .of the filter Qill be low, and the filter is sensitive to
quantization effeéts. If we employ the QRNS arithmetic,‘we can achieve
a high throughput rate without aﬁy quantization effeéts. It résults in

the mbst efficient realization compared to the conventional RNS or the

P
usual complex binary arithmetic implementation.

¢
6.13 Summary

In this chapter, the computation of tﬁé‘CNTTﬂdéing the Quadratic and
Modified Quadratic Residue Number Systems;ﬁgg been diseﬁséed: The com-
putation of the Cyclic Conv;lution using tHe QRNS and MQRNS has Been
preéented. As an examplé, we haQe Qsed'ghe MQRNS arithmetic to convolve
a-randdm inpuﬁ'sequehce with a linear phase bandpass filter. We haﬁe
showg that the implemengation of CNTT bﬁtterfly structures using either
the QRNS and FTIORNS requifes almost the same hardware, and both geﬂ;rate
'a savings of about 33% over the hardware required by the conveﬁtionaL
RNS.structure, The generalized FIR filter structure. has been derived for
non-uniformly spaced frequenéy samples. It has been shown that for im—

plementing such structures, the MORNS is the only rechnique that can be

employed.

it



Chapter VII

CONCLUSION -

)

The pfimary aim and objective of this dissertation is the develop-
ment of algorithms for processing complex data using the Quadratic

Residue Number Systems. - Algorithms have been developed for both the

@

direct and indirect implementation of Finite Impulse Response (FIR)

4 '

filters ‘and the implementation of Infinite Impulse Response (IIR) filters.
'Tﬁe major results, contributions and conclusions may be summarized as

follows:

\_,//’(

i .
{ ' .
7.1 Modified Quadratic Residue Number System

The Quadraﬁic Residue Number Syjtem (QRNS) has been extended to
allow moduli of any form. The resulting number system has been térméd"
the Modified nggratic Residue Number System (MQRNS). Complex multiplica~

tion in the MQRNS requires an additional multiplication compared to the
QRNS. In order to offer a complete choice‘of moduli, the:MQRNS has been .
offered.aé an alternative to thé QRNS. The computation of element pairs
using a'singié‘ﬁultiblexed (complement/multiplex) ROM is faster using the
MQORNS than using the QRNS, bec;use‘aﬁ additional operation of éubtraction
has to be petformgd.iﬁ the case_oflthe QRNS.  17 -
Residue to Binafy interfééing techniques have beén devéloped,fpf
implementing ﬁhg QRNS and MQRNS in a parallel processor. In Ehese tech-
niques, a‘;ecently dgvelqped fréétional methpd.BaSEd on the Chinese

Remainder Theorem (CRT), has been used because it offers ﬁigh speed -and

low hardware cost.

146
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7;2. Nos—Recursive and Recursive Digital Filrers

| The QRNS and its modification, the MQRNS, have been used to im-~
plement multiplication intensive complex recursive and non-recursive
digital filfers with considerable savings in hardware. The Peled and
Liu bit—sliqe architecture has been adapted for both non-recursive and
recursivs digital filters, and suitable hardware structures for both
QRNS and MQRNS implementstions haye been presented. In the case of the
récsysivé filte;,_a second order section has been considered using a bit-

slice architecture. .In the case of non~recursive digital filters, a

structure which can handle a sequence'length of 64 has been presenteﬁ

The indirect. 1mplementatlon of FIR filters u51ng Number Theoretlc
Transform techniques prcv1des 1mprovement in comoucatlonal speed for
large 1mpulse sequence lengths. ‘The computation of Complex Number

Theoretic Transforms (CNITs) and their adaption to‘perfsrming éyclic

" convolution in the QRNS and MQRNS have been disc'ussed. -%x example,

we have used MORNS arithmetic te convolve a .random. input “seq ence with

]
a linear phase bandpass dlgltal fllter.

-The Basic Computational Unit (BCU} to'implement the "CNTT, using the

' FNTT élgorithm, is a radix¥2 butterfly. The implementation of a radix-2

Butterfly using PROMs for a'pipeline FNTT in the QRNS and MQRNS has been

:discussed. A ' ' ' ) L

The implementation of recursive FIR filter structures for uniformly

‘spaéed frequehcy samples has been considered, using -the QRNS and MQRNS.

The imblementatibn of the generalized recursive FIR digital filter structure

‘ ~ - ‘
using the MQRNS{%as also been discussed. It has been shown that the

‘QRNS can not be used in such a filter structure. The implementation of the
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QRNS and MQRNS has been presented using VLSI modules presented for RNS
implementatioﬁ of digital signel‘processing operaeions.

ﬁe ﬁa&e observed the followi;g‘facts_in<impleqenﬁing'the recuteive
and non-recursive digital filters using the QRNS and MORNS.

1. Both the QRNS and MQRNS require almost the same amount of

hardware in impleﬁenting a direct FIR filter structure and
. N\ B

give almost the same data rate.

» .
~or 753% of the hardware required by the conventlonal RNS filters'

—

for the QRNS and MQRNS respectively
3. It has been shown that the 1mplementat10n of the CNTT
butterfly structure u51ng the QRNS and MQRNS require almost

A ‘
the same amount of hardware-and generate a sav1ngs of about

-

33% over thie hardware :eﬁeifed-bﬁ{eﬁe}eoeventionai RNS
' structure;y_‘ ‘ ﬂ: efiik.‘_'-  L  ‘ 7e : B
4. it has.beenﬁshegh thethinriﬁbiementing_:he generalizeg
| eecdfeieefFIR.filter structure (Lagraege structure) the
-MQRNS is the only Suitable candidate.
The direct FIR filter architectures in the QRNS and-dQRNS have been '~
simulated in softwaref The computatlon of the Cyclic Convolution in

the QRNS and HQRNS have also béen 51mulated . The proeram llstlngs for 

the simulation software are detailed in Appendix'B._
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7.3 The Advantages of the MORNS -
* Although the QRNS s, in genérél; the most éffitieht reéliZaEion
of all ﬁuadratic type syétemé only requirlng 2 blnary operatlons for

a complex multlpllcation, the MQRNS total soluf!bn can, in certain

[

‘cases, be almost as eff1c1ent as the QRNS total solution._:Thiswis'dpe

“to two facts: . ‘ - ‘
1. The glement‘pairé can be computed by using onefmhltip1é§
ROM. . L o . gr.f_j:g

. . - . . L. ' DTS

2.__The effic1ent method proposed 1n [4] for the decoding 1s only

applicable to the MQRNS structure. T -“:fﬂﬂe'. S N

'

- "—
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Appendix A

-

COMPUTATION OF MULTIPLICATIVE INVERSE FOR
COMPLEX NUMBERS DEFINED OVER QUADRATIC RINGS

We will show that the structure of the complex numbers for the primes

of the form 4K - + 1 is a ring as follows: *

,

Let a + ib be a complex number generétea from the" Gaussian integers..

where 'i =y -1

"The multiplicative inve:se,can‘be computed as follows:

(a+ 'ib)'l = 1/(a + ib)

7 Multiply both hﬁmefator'and denominator by the'compiex conjugate of

a+ ib (781,
" then .
(a+ )7 = (a - dby/(la?] |+ [pY T (4.2)
' . . .’ m . m . - V‘
- kG —B)| where k< L
= |k(a iP)lm where K = > >
, = la®]_ + [6°]
Therefore o ' . ‘ i m
@+ i) = |k -a] - ilken] “n
m- : m ‘ , :

Let us consider the denominator term in (A.2)

ige- |a?]_+ [b7]
m m
which can be represented as Xz +1o0orl+ X2 for some particular sub-

set of elements a + fb. ) ‘
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’ complex numbers will have mult:\.plicative inverse‘_, .

162

If the’monic quadratic X2 +1 = 0 hes solution’ in the ring, then a
multipiicative i;werse does not exist, -and if the monic qua‘dratic has no
solu-tion in the ring, then a multipli.cative inverse exists. Th-is fact can
be established by using [19, theorem 80]. For pri:mes of the form 4K + 1,
-1 is\: quadratic residue and for primes of the form 4K + 3 -lis a
quadratic non—residue. For some values cf a and b  the denominator term in’
(A.2) will become Zero and $0 we cannot have the multlpllcative inverse
of such complex numbers gene;ated using the Gauss:r.an im:egers modulo m
where m is of the form 4K + 1. For primes of the form AK +°3, all the |

As anl example, Tab] e 6 13 and 6.14 show the multlplicative inverses
of- all ‘the p0531b1e complex numbers generated u51ng the Gauss:Lan :.ntegers '

medulo 7 and medulo 5 respectively.
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Table Al

Multiplicative ILnverse of Complex-
Numbers in Modulo 7

X xt X L X x~t X xt
0+1 |o+%6|2+%0 [4+T0|s+70 [2470 0 | 6 + 10
0+i2|0+93[2+1 |6+ |{4+1 |6+1D2 i + 13
N D " - " R —
o+¥3 | o+i2[2+32 [2+8s | 4+d2 |342d iz £
o+34 fo+35 [2+13 |s+f3(4+13 |1+1 3] 2+ 16
0+15 |0+14 | 2+14 [ 5+14 | 4+16 |1+716 T la2+1
o+i6 [0+1 |2+15 |2+12|4+15 |3+1s i5 | 4+ 6
2+16 | 6+13| 4+ 16 |6+ 15 16 | &+ 14"

11 {1+ |3+%0 |5+%0]5+10]3+350

1+1 |4+33 [ 3+1 |1452]5+1 [1+714

1+ 82 [3+1 Pa+D2fa+in 5+82 54 13

1+ i3ts+d6 {3 +D3 )6+ 5+13) 2+13

1+46 | 5+1 |3+34)6+T6|s5+1a 2415

1+%5 [3+6 |3+ a+T5| 5+15] 5+ 12

fr+d6 [4+ 04| 3+16 1+ 85| 5+16] 1+13

-
. R
- . hJ
, \
t - . 'l
" .
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Appendix B

SOFTWARE DETAILS

The complex digital filtering algorithms developed in thig thesis
have @een simulated in éEL and ﬁOVA mini—compu;ers. The program;.list— |
ings are given in the following pages.

| The first program is a subroutine to compute the residues.
The second and third programs simﬁlate the difect implementation of FIR
filters using the QRNS and MQRNS respectivély. The fourth program com-
putes the generator of order N, required for the;CNTT, for Mersenne
Primes. The generator for other types of the primes, can be computed
. qsing the ﬁrogram in [78].
' _Fifth and sixth programs simulate indirect filtering of éomplex

data using complex NTT in the QRNS -and MORNS respectively.
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OO0

20

21
200

201

202
100

2z

S00

205
C 90

90
c 91

0.0 04 02 R RN KKK 000003 0K 20 2003 00K 3 KK
FILE NAME:-RESIDUE
20300 20020 002 20000200 0000 20 300300 000 20 20300 300 20600 3 20600 30 500 2 200 0020 200 00300 20500200 28 2036 0 26 20 200 20 2 546 76 200 0 20 5K o K

SUBROUTINE RESIDUE(MEENU.,MD,1D)

- IMPLICIT REAL»B (A-2Z)

INTEGER=S8 MD,MEENU, ID,KX,KY,KZ,1ISD.,1
ISD=1ID=MD

KX =MEENU-MD

IF(KX.LE.O) KX==KX

ST:=KX

PY=1ID

FX=ST/PY

IF(FX.LE.1) GO TO 100G
KY=KX-1ID

K2=(KX—-(IDxKY})
IF(MEENU.LT.0) GO TO 200
DO 20 I=1.,KY
MEENU=MEENU-ISD

CONTINUE

DO 231 I=1,KZ SR
MEENU=MEENU-MD
IFAMEENU.LT.MD) GO TO 90
CONTINUE

DO 201 I=1,KY
MEENU=MEENU+ISD o
CONTINUE

DO 202 1=1.,KZ

. MEENU=MEENU+MD

IF{MEENU.GT.-MD) GO TO SD
CONTINUE

IF (MEENU.LT.0) GO TO 500
DO 22 I=1,KX"° '

MEENU=MEENU-MD . : \ ¢
IF(MEENU.LT.MD) GO TO 90
CONTINUE ; )

DO 205 I=1,KX

MEENU=MEENU+MD
IF(MEENU.GT.-MD) GO TO 90
CONTINUE :
WRITE(6,91) MEENU
MEENU=MEENU '
FORMaT(sx.'MEENU-'.Ias)
RETURN

L
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‘$J0B ARUL KRIS,RAJI

SOPTION 1 2 3 4 5 17 ) : e
SEXECUTE FORTRAN

c FILE NAME:~ DIRECT FIR FILTER IMPLEMENTATION

IMPLICIT REAL=*8 (A~-2)

INTEGER=2 I.,J

INTEGER=8 HD;N;ID:IR:IR}QITEMP;JTEMP:IPirLD:NDa

INTEGER=%8 IX1(32),IY1(32),IX2(32),IY2(32),I2R(32),121(32)
INTEGER®8 IX(32),1Y(32),JIX(32),JIY(32),ISUM1(32), ISUM2(32)
INTEGER*B8 IYR(32),1IY1(32),ISR(32),151(32),1IFIRR(32),IFIRI(32)
DATA IX1-/16%x0,16%1/, IY1-16%0,16%x1/

DATA IXZ2/16%x0,16x1/, IY2/16%0,16%x0/

TYPE =, "ENTER MODULUS., MBLH'ID""’

ACGEPT =, MD,N,ID

IR=0

1 IR=IR+1
IR1:IR%%x2
IR1=IR1+1}

CALL RESIDUE(IR1i,MD,ID)
IF(IR1.NE.G) GQsTO 1

TYPE =, IR

5 CONTINUE

DO 10 I=z1.,2=N

ISUML (Q) =0 :
I1SUM2¢0)=0 . |
DO 11 J=1,2=%N
IF((I+1-J).LE.Q) GO TO 20

IXCI+3=J)=IX1CI+1-T)+IR*(IYL(I+1=T)) ae
IXCI#L-F)=IX1(I+1-T)~ IR*(IY1<I+1 -J)
IV(I)=IX2¢I)+IR®IY2(T) ﬁi
IJY(T)=IX2(TI-IRXIY2(T) - ' ~

IZR(II=IXCI+1-TI%IY(Z) '
IZICI)=IXC(I+1~-T)I%IY(T)
ISUML(I>=ISUML(T-1)+IZR(T)
ISUM2(T)=ISUM2(I-4)+IZI(T)
CALL RESIDUE(ISUMi(J),MD,ID)
CALL RESIDUE(ISUME(J),MD.ID)
ITEMP=ISUM1(J)

‘ JTEMP=zISUM2¢JT)
11 CONTINUE ya
20 - ISR(I)=ITEMP ‘\
. ISIC(I)>=JTEMP : Y

10" - CONTINUE ~

IP1=MD-2

Lb=2 ﬂ/

DO 15 I=1,IP1-1 T

MD2:IR1%xIR '

CALL RESIDUE(MD2,MD,1ID) Lo
15 CONT INUE ‘

D I=1,2%N

R(IDz=ISRCID+ISI(I)

IYICI)=ISR(I)-FSI(I) :
IYRCI) =IYRLII*LD : - < :
IYICII=IYICY)sLDxIR - — o

TYPE =, IYR(EI,IYICI)
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CALL RESIDUECIYR(I),MD,ID)
CALL RESIDUEC(IYIC(I),MD,ID)
IF(IYRCIY.LT.O) IYR(ID=IYRCI)+MD Q
IFCIYICID,LT.O) IYICIX=IYICI)+MD

IFCIYRC(I).EQ.Q.OR.IYI(I).EQ.O) GO TO 22
IFIRR(II=IYR(I)

IFIRICI)=IYICI) | _
~  WRITE(6,23) I,IFIRR(I),I,IFIRICI)

23 FORHRT(SX"IFIRR(':IB;’)..’:I'ZaIX:’IFIRI(’;IS;')..’:Iia)
22 CONTINUE

STOP

END

INCLUDE RESIDUE
SEXECUTE CATALOG

A4 6=UT
BUJLD FIR.SW NOM v
$SEQT
-
TN
/ 1}

, i

» . N
AN
\\)
' -

A

A
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L]

$J0B ARUL KRIS,RAJI SLOF =DUMMY

SOPTION 2 345 17

SEXECUTE FORTRAN _

FILE NAME:-ALPHA FOR MERSENNE PRIMES o g

bttt AL EELE LR B R e e P L e eI L .
TO CALCULATE THE UNITY ROOT OF ALPHA FOR MERSENNE PRIMES //
THIS PROGRAM CAN BE USED TO CALCULATE THE UNITY ROOT FOR THE
MERSENNE PRIMES: (2x%%P)-1 FO P=3,5.7,13,17,19,31 L
uuuunannnannunaannanuuuaaunuunuuauuuuuuunannunnuuuuunaunnnau
IMPLICIT REAL=8 (A-2)

INTEGER®8 I.,IX,JIX,JY,JZ,KX,KY,K2,1IY,IZ,IYA»IYE,MD, ID, IXD,JIT,K

" INTEGERx8 IDUMMY.JDUMMY, I1SD, JSGR, JMSQ1., IMSQ, IRREAL, IIMAGE, MY
COMPLEX*16 CDUMMY, DCMPLX

TYPE *ENTER MODULUS, MD.....’
ACCEPT », MD

TYPE x,’E
ACCEPT 'x, IX o
TYPE =%, ’ENTER LEUEL OF OPERHTION; KewoWo? vy
ACCEPT =, K B ® '
TYPE =, ’ENTER THE VALUE or In,....' '
ACCEPT =, ID
*l*****!t***t****t*x*t*#***l*#t*t**l*******tl****!*#******
TO FIND AN ELEMENT OF ORDER 2x%xP+1
Az ((2)%x2)%xxP~2
***t!*t***tt#*!t*tx**t*************m#***#*****#*t##t#*ﬂ*
IYA=2 :
DO 1 I=21,IX - )
. IYAzIYA®%2
IFC(IYA.LT.MD) GO TO &00

¢ - CALL RESIDUEC(IYA,MD,1D) C
600 WRITE(6,10) IYA '
10 FORMAT(SX,”*IYAz=’,125)
1 CONTINUE

***#ﬂ****!****t****t********t*#*********t******t**********

TO FIND AN ELEMENT OF ORDER 2#%xP+1 *

' Bz((=3)%x2)%%xP+1 : -

at*t**n*t*x*#mxx:*t*txx*t:**x**xt#**x***:‘u*x*t**:x**x****tm*

1YB==3 S -

DO 12 I=1,IX

IYB=IYB*%x2

WRITE(6,6) IYB
& FORMAT(SX, *IYB=’, 125)

: IFC(IYB.LT.MD) GO TO S
I%=IYB/MD

T PX=JX | v '
. ’ PD=z1ID oy N ' ) 9
' XY zPX/PY ‘ S _ | - .

IF(XY.LT.1) GO TO 8 . .

NGO O0O0O0

VALUE OF IX.....’ //’

0OnNoOn

s NeNeN g

* IXD=1D%xMD . o -
IY=I%/1D . . ‘ . §
DO 7 1=1,JY - . &
( IYBzIYB-IXD -~ - R @iﬁ | _
7  CONTINUE - e ‘ 3 : S .
N IZ=(IX-CID%IY)) ' -

! Do 9 1=1,32  °

Q'ﬁ'- [
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IYBzIYB-MD
IF(IYB.LT.MD) GO TO &
CONTINUE o

DO 2 I=1,JX
IYB=IYB~MD
IF(IYB.LT.MD) GO T0 5
CONTINUE ’
WRITE(G6.,4) IYB
FORMAT(SX, 'IYBz’, I25)

2 CONTINUE ' : .
,lllﬂlﬁt'***‘Ill*l*!l;‘l*!i‘*ttll*!*tttttt#t!!#$l$!**tt‘ll!‘,
COMPUTING THE ORDER OF ALPHA FOR NTT
*******i‘*****#t*‘lt***tl****lr*‘***********************‘l***
DO 11 J=1,K
JSGR=IYARRZ _

JMSQ1=1YBxx2 -

IMSQ=-JMSQ1 .
IDUMMY=JSQR+JIMSQ .
JDUMMY = IYAXIYB+IYBxIY :

c WRITE(6,15) IDUMMY, JDUMMY

1S FORMAT (5%, * IDUMMY=", 125, 1X; * JDUMMY =", 125)

: CALL RESIDUE¢IDUMMY,MD,ID)
1RREAL = IDUMMY ‘

CALL RESIDUE(JDUMMY.,MD,ID)
I1IMAGE = JDUMMY =
WRITE(E,91) ° IRREAL.IIMAG )

91 FORMAT(S5X, *IRREAL=’, 125, 1X, *IIMAGE=", I125)
IYA=IRREAL ' '
I1YBzIIMAGE

11 CONTINUE :
SIOP )

oo | N\ |
IRCLUDE RESIDUE : ‘ - "
SEXECUTE LATALOG - .- .
A4 6:zUT
BUILD ALP.SU,NOM
SE0J

o w

o000



$JOB ARUL KRIS,RAJI SLOF =DUMMY
SOPTION &£ 2 3 4 5 17
SEXECUTE FORTRAN
C FILE NAME:-QRNS CONUOLUTION
" IMPLICIT REAL%8 (A-2)
INTEGER»2 I
INTEGER*8 MD,N,M,ID,NA,NB,LD, IR, IR1, IRS, IBETA, IGAMA, JSX, ISY
INTEGER%x8 LK.,LG,IR1,IFR,INU,INU1,IA,IB
INTEGER*8 IX1(32),IY1(32),IX2(¢(32),IY2(32)
INTEGER*2 IQRNS(32),JQARNS(32),KQRNS(32),LGRNS(32)
INTEGER=*8 ITR(32),ITI(32),ITWI1(32),ITWIZ(32)
DATA IX1-/16%x0,16%x1/, IY1-16%0,16%1~
DATA IX2/16%0,16%1/, 1Y2/16%0,16%0/
TYPE =, ’ENTER MODULUS., MD.N.M,ID..°*
" ACCEPT =%, MD,N.,M,ID
TYPE x, "ENTER VALUE OF IBETA,IGAMA....* : .
ACCEPT =, IBETA.IGAMA
LD=(MD+1)>,2

IR=0 , '
1 IR=IR+ ' !
' IR1=IRx% -

IR1= IR1+1 ' ' . ’
CALL RESIDUE(IR1.MD,ID)

IF(IR1.NE.O) GO TO 1 . )

TYPE =, IR

WRITE(S,2)

FORMAT(//, 10X, *TWIDLEFACTORS FOR THE, NTT’)
NA=IBETA" .

NBzIGAMA
JISX=NA+IR=NB . .
JSY=NA-IR*NB v .
CALL RESIDUE(JSX,MD, ID) ' '
CALL RESIDUE(JSY,MD, ID)
ITWI1C(1)=1

ITWIZ2(¢1)=1

ITWI1(2)3TSX
ITWI2(2)=3SY

LK=NA

LG=NB -

IR1=-1

PO 3 I=3,N
IA=NAXLK+IR1*xNB%LG . .- ek
I1B=NAXLG+NB*LK '
CALL RESIDUE(IA,MD,ID) o

CALL RESIDUE(IB.MD,ID)

ITWI1(I)=IA+IRXIB

ITWIZ2(I)=IA-IR*1B

CALL RESIDUECITWI1(I),MD,ID)

CALL RESIDUE(ITWIZ(I),MD,ID)

-
- g

LK=IA

LG=1IB

WRITE(E,4) IoITNIl(I)oI ITUIZ2(I)
4 FORMQT(SX;:ITNIi(’;IS.')";IIS:lX:'ITNIZ('-IB:')%’-IIG)
3 CONTINUE :

# DO S I=1,N
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IQRNS(IX=IXI(ID+IR*IY1(I)
JARNS(IJ=IX1(I)-IR®I%I(I)
CALL RESIDUE(IQRNS(I),MD,ID)
CALL RESIDUE(JQRNS(I),MD,ID)
KARNS(I)=IX2(I)+IRxIY2¢(I}
LARNS(I)=IX2¢(I)~IRXIY2(I)
CALL RESIDUE(KQRNS(I),MD,1ID)

CALL RESIDUE(LQRNS(I),MD,ID)
=3 CONTINUE

IFR=0 ® :
CALL NTT(IQRNS,JGRNS,MD,N,M, ITWHI1,ITWIZ2,IFR.,ID)
CALL NTT(KQRNS. LQRNS:HD:N:M:ITNIirITHIE IFR, ID)
DO & I=1i,N

IQRNS(I)Y=IQRNS(I)®KQRNS(I)
JARNS(ID=JARNS(I)*LQRNS(I)

CALL RESIDUEC(IQRNS{(I),MD.,ID)

CALL RESIDUE(JQRNS(I);MD:ID)

6. CONTINUE
’ INV=0O
7 INV=INU+1 '

INU1zINUXN _
CALL RESIDUEC(INV1,MD,ID)
IFCINVI.NE.1) GO TO 7
DO 8 I=1.,N -
IQRNS(I)=INUXIQRNS(I)
JQRNS(I)=INUXJQRNS(I)
' . CALL RESIDUE(IQRNS(I),MD,ID)
CALL RESIDUE(JQRNS(I), nn,10>, _
8 CONTINUE - _ ‘
IFR=1 ' '
CALL NTT(IQRHS,JQRNS.MD N.M,ITHII,ITNIZ,IFR,ID)
DO 101 I=1.,N

101 CONTINUE
'NRITE(G ) : .
9 FORMQT(//.ioxo’CONUOLUTION OUTPUT IN QRNS’

IRS=(-IR+MD)

DO 10 I=zi,N :
_ITRCI)zLD*(IQRNS(I)+JQRNS(I))
ITICI)=LD*IRS*(IQRNS(I)~JQRNS(I))
CALL RESIDUECITR(I),MD,1D)

CALL RESIDUE(ITI(I),MD,ID)
IF(ITR(I).LT.QJ‘&TR(I):ITRQ;9+MD
IFCITICI)LLT.O) ITICID=ITICI)+MD
WRITE(6,11) I,ITR(I),I,ITICI)

L T FORMQT(SX:’ITR(’;ISﬂ')";IiG:iX"ITI(’:I3: 1=’,116)
10 CONTINUE )

STOP ) *

END :

"INCLUDE NTT3 ' - ! -

INCLUDE RESIDUE
SALLOCATE 30000 '

-SEXECUTE. CATALOG
*Ad 6:z=UT

BUILD QRNS. su,Non ~— S .
$EOJ _ . N
f
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" $JO0B ARUL KRIS,RAJI SLOF=DUMMY

SOPTION

2 3-4 5 17

$SEXECUTE FORTRAN

C

201

200

LD=(MD+1)-2

FILE NAME:-MQRNS CONUOLUTION
IMPLICIT REAL=%*8 (A-2)
INTEGER=*2 I
INTEGER%8 HD,N,H.ID.NR;NB:LD:IR.IR1:IRS.IBETR.IGANR JSX., ISY
INTEGER*8 LK.,LG,IR1, IFR,INU, INU1
INTEGER=8 IX1(32),IY1(32),IX2¢(32),I¥2(32)
INTEGER*8 IQRNS(32),JQRNS(32),KQRNS(32),LARNS(32)
INTEGER*8 IA(32),I1B(32),ITR(32),ITI(32)
INTEGER*8 ITWIL1(323,ITWIZ(32) v
TYPE x, “ENTER MODULUS, MD,N,M,ID.. :
ACCEPT =x, MD,N, M, 1D ) )
TYPE x, ’ENTER VALUE OF IBETA, IGAMA.
ACCEPT %, IBETA,IGAMA . .
DATA IXi/16x0,16%1/, IY1-16%0, 16%x1~
DATA 1IX2-/16x%0,16%1/, IYZ2/16%0,16%0/
DO 20t Izi.MN
TYPE x, ’ENTER THE UALUE OF IX1CIY,IY1(I).
CCEPT %, IX1¢I),IY1CI)
JQONTINUE .
DO 200 I=1.,N . .
TYPE =, ’ENTER THE VALUE OF IX2¢I),IY2(I)...°*
ACCEPT =x, IX2(I),IY2(I)
CONT INUE :
WRITE(G,2)
Fonnnrtxx.zox.'THIDLEFecrons FOR THE NTT’)

- NA=IBETA

NB:zIGAMA a :
ISX=NA+NB . * '
JSY=NA-NB ////
CALL RESIDUE(Jsx,nn»nS

CALL RESIDUEXJSY.,MD,ID)
ITWILC(1) =1 ) .
ITWIZ2(1)=1

ITHI1(2)=TSX
ITHIZ2(2)=zJSY
IACL)=1
IBC(1)=0

. TAC2)Y=NA

IB(2)=NB

LLK=NA ‘ :

LG=NB ) -
IR1=-1

© DO 3 I=3,N '
- IACI) =NAXLK+ZR1%NBEXLG L
IB(I)=NAXLG+NBxLK

CALL RESIDUE(IACI),MD,ID) ‘

CALL RESIDUECIB(I),MD,ID) v
ITHILCIY=IACII+IB(I) . . . , . N
ITHI2CI)=IACI)I-IB(I) . }

CALL RESIDUE(ITWI1C(I),MD,»ID)

CALL RESIDUECITWI2(I),MD,ID)
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SUBROUTINE NTT(IQRNS:JQRNS.HD,N;M:ITNIi;ITHIZ:IFR;ID)
FILE:- NTT FOR GRNS

IMPLICIT DOUBLE PRECISION (A-2)
INTEGER*8 IQRNS(256), JARNS(256), ITWI1(256), ITHIZ(256)
INTEGER*8 MD,N,M, IFR,NU2,NM1,1,J,IT,K,L,LE,LEL1,NLE,MI, IP
INTEGER=*8 IT1,IT2,IF1,IF2,1D
NVZ2z=Ns2 : ¥
NM1=N-1
J=1
BIT REVERSAL OF THE INPUT RESIDUE CODES
DO 7 I=1,NM1
IFCI.GT.J) GO TO S
IT=IQRNS(J)
IQRNSC(JI=IQRNS(I)
IQRNS(I)=IT
IT=JQRNS(JT)
JGRNS(J)=JQRNS(I)
"JARNS(II=IT

S  Kz=Nu2

6 IF(K.GE.I) GO TO 7
J=J-K
K=K~-2
GO TO 6

7 I=J+K

A XMD=MD
DO 20 L=1,M
LE=2%xL

“LE1=zLE~/2
NLE=N/LE -
MI=1 "

" DO 20 J=zi,LE1L
IF1=ITWIL1(MD)
IF2=ITHI2(MI)
IFCIFR.NE.1) GO TO 18 - )
IF(MI.EQ.1) THEN ¢
IF1=ITWI1(1) : "

- IF2=ITHIZ2(1) -

" ENDIF = 4
IF(MI.NE.1) THEN
IFL=ITWI1(N+2-MI)
IF2: ITWI2(N+2-MI)’
ENDIF -

18 DO 10 I=J.N,LE
IP=I+LE1 ' ;
IT1=IGRNSC(IP)%IF1 ' )
IT2=JQRNSCIP)xIF2 ' s
CALL RESIDUE(IT1,MD,ID)
CALL RESIDUE(IT2:MD,ID) _ .
IGRNS(IP)=IGRNS¢I)-IT1 ‘ “
JAQRNS{IP)zJQRNS(I)-1IT2 ' . | *
CALL RESIDUE(IGRNS(IP),MD,ID) 2
CALL RESIDUE(JQRNS(IP), nn.xn)
IQRNS(I)=IQRNS(I)+IT1
JQRNS(I)=JQRNS(I)+IT2 .
CALL "RESIDUE(JQRNS(I),MD, ID)

‘s



s

i CALL RESIDUEC(IQRNS(I)>,MD.ID)
10" CONTINUE
~MI=MI+NLE
20 CONTINUE
RETURN
END

"y



IFiITNiiEIS LT.0) ITWIICI)=ITWILC(II+MD
3AIF(ITNIZ(IJ LT.Q) ITWIZ2(I)= ITNIZ(I)+MD
-WRITE(G6,4) I,ITWILCE),I,ITWI2C(I)

4 FORHAT(SX;'ITNIi(’;IS-')-* 125,1%X,71ITWI2C",I3,%)=",125)
LK=IACI) :
LG=IBCI) S Co-
3 CONTINUE . - S ' Co
. DO S I=1,N " ’ -

IQGRNSC(IIzIXL1C¢I)+IVYLCI)
JGRNS(ID=IX1(Id~IY1¢I)
CALL RESIDUEC(IQRNSCI),MD,ID)
" CALL RESIDUE(JQRNS(I),MD,ID)
IFC(IQRNS(I).LT.0) IQRNS(I)= =IQRNS(I)+MD *

IF(JQRNS(ID.LT.0) JQRNS(I)= JQRNS(I)+MD “
KAQRNS(I) = IXZ(I)+IY2(I) )

" LGRNS(ID=IX2(I)-1Y2CI)
CALL RESIDUE(KQRNS(I),MD,ID)
CALL RESIDUE(LQRNS{(I),MD.,ID)
IF(KQRNS(I).LT.0) KQRNS(I)= KQRNS(I)+HD

IFCLQRNS(I).LT. o) LARNS(I) = =LQRNS (1) +MD -
5. CONT INUE -

. WRITE(6,115) _
.FORMAT(//, 10X, "ELEMENT PQIRS or THE DATA’)
DO 111 I=t.N
WRITE(G,110) I;IQRNS(I).I JQRNS(I) ' C
110 FORMQT(SX:’IQRNS(':IB:’)-'.IZS;iX:’JQRNS('.Ian 3=2,125)
111 , CONTINUE Lo ) _
' DO 112 I=1.N . T ' _
CONTINUE _ - //z
. WRITE(6.,101) I, KQRNS(I):I;LQRNS(I) ..
101 : FORMRT(SX;’KQRNS(’;IS.’):’:IES,ix.’LQRNS(’.IB, y=4,125)
112 CONTINUE
IFR=0
CALL NTT(IGRNS,JQRNS,MD,N,M,ITWI1, ITNIE:IFR,ID,IYi 1B)
CALL NTT(KQRNS,LQRNS,MD. N.M-ITHIi;ITNIE;IFR.ID;IYZ-IB)
DO 103 I:=i.N
IFCIQRNSC(I).LT.0O) IQRNS(I) IQRNSC¢I)+MD
IFCJQRNS(I).LT.0) JGRNS(I)=JQRNS(I)+MD
IFCKQRNS(I).LT.0) KQRNS(I)=KQRNS(I)+MD .
IF(LGRNS(I).LT.0) LAGRNS(T)=LARNS(I)+MD . g
103 "~ CONTINUE j ’ _ '
WRITE(6,127) ST
127 ~  FORMAT(//, 10X, 'CNTT OF THE nnTa ) ..
DO 125 I=1,N :
WRITE(6,122) I,IQRNS(I),I,JQRNS<I)
122 FORMAT (5%, " 1QRNS(’, 13, ") ",125,1x,'JoRN5('.13, =+, 125)
125 CONTINUE : '
DO 126 I:=1.N N -4,
MRITE(6,102) I,KQRNS(I),I,LGRNS(I)% .
102 FORHAT(SX;'KQRNS('.IB:’):’;IZS;LX.’LQRNS(';IB. *3=7,125)
126 CONTINUE
DO 6 I=1,N
IGRNS(I)=IQRNS(I)*KQRNS(I)
JARNS(I)=JQRNS(IY®LQRNS(I) - ‘ -
IYLCIY=2%IY1C(I)RnIY2(I)

115
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. CALL RESIDUECIY1¢I),MD, ID)
IGRNS(IV=IQRNS(I)-IY1(I)
JORNS(I)=JQRNS(I)-IY1(I)
CALL RESIDUE¢IQGRNS(I),MD,ID)"
CALL RESIDUE(JQRNS(I),MD, ID)
CONTINUE -

INU=0

INUZINU+1

INU1=INUXN

CALL RESIDUE(INV1,MD,ID) .
IF(INUL .NE.1) GO TO 7
INVU=(MD+1) /N

" TYPE =, INW
DO 8 I=z1.,N’
IGRNS(IJ=INUXIQRNS(I)
JQRNS(I)=INU*JQRNS(I)
IY1C(I3zLDx(IQRNS(II-JQRNSC(I)) .

CALL RESIDUE(IQRNS(I),MD,1ID)
CALL RESIDUE(JQRNS(I),MD,ID)
CALL RESIDUEC(IY1(I),MD,ID)

'8 © CONTINUE '

IFR=1 v ’ : :

CALL NTT(IQRNS,JQRNS,MD, N.M;ITNIi:ITNIZ:IFR ID,IYt, IB)

WRITE(G,9)

9 . -rognnTc//,1ox.'CONUOLUTION OUTPUT IN MQRNS’)

. PO 10 I=1.N , '

ITRCID=LD*{IQGRNS{I)+JQRNS(I)) . . , !
* ITICI)=LD*(IQRNS(I)-JQRNS(I)) .

CALL RESIDUECITR(I),MD,ID)

CALL RESIDUECITI(I),MD,ID)

JIFCITRCIILLT.O) ITRCID=ITRCI)+MD

IFCITICID.LT.O) ITICII=ITICI)+MD

WRITE(6,11) IAITR(ID,I,ITIC(I) :
11 FORMRT(SX:'ITR(':IB:’):’;IZS;lX;’ITI(';IB, 1=7,1I25)
10 . CONTINUE

STOP

END ,

INCLUDE NTT4

INCLUDE RESIDUE

,saLLochE 30000
$EXECUTE CATALOG
A4 6:=UT

_BUILD MQRNS.SV, Non
SEOT

OOO0O00

.

ke
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SUBROUTINE NTT(IQRNS, JQRNS,MD,N,M, ITWIL1,ITWI2,IFR,ID,IY.IB).
FILE:- NTT FOR MQRNS

IMPLICIT DOUBLE PRECISION (A-g)

INTEGER*8 IQRNS(256), JQRNS(ZSS),ITNIi(ESS):ITNIZ(ESS)
INTEGER®8 IY(256),IB(256)

"INTEGER%89 HD:N:M:IFR:NUZ:NMI;I;J:IT;K L-LE:LEI:NLE MI, IP

INTEGER%B IT1,IT72,1F1,IF2,ID,IF3,1IT3

"Nu2:=N-2
. NM1=N-1

J=1

BIT REVERSAL OF THE INPUT RESIDUE CODES
DO 7 I=1.,NM1
IF(I.GT.J) GO TO0 S
IT=IQRNS(JT)
IQRNS(JI)=IGRNS(I)
IGRNS(I)=IT -
IT=JQRNS(JT)
JQRNS(J)=JQRNS(I) -
JARNS(I>=1IT

IT=IY(T>

IYCJI)=1IYc(I)

IY(I)=IT

K=NUV2

IF(K.GE.J) GO TO 7
J=J-K

K=K~2

GO TO 6

J;3+K

- XMD=MD
.DO 20 L=1,M
. LE=2%xL
LE1=LE/2

NLE=N/LE .
MIz1

DO 20 J=1,LE1 S ' $

IF1=ITUI1(MI>

IF2=ITWIZ2(MI)

IF3=IB(MI)
IFC(IFR.NE.1) GO TO 18
IF(MI.EQ.1) THEN
IFL=ITHIL(1)

CIF2zITHI2(1)

IF3=IBC1) .,

ENDIF -

IF(MI.NE.1) THEN

IF1=ITHIL(N+2-MI)

IF2=ITHI2(N+2-MI)

IF3=IB(N+2—- n:) : .
ENDIF , , -
PO 10 I=J,N.,LE

IP=I+LE1 -

IT1=IQRNS(IP)xIF1

IT2=JQRNSC(IPI®IF2 .
IT3=2%xIY(IP)I*IF3 :

CALL RESIDUE(IT1,MD,ID) .
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20

C1T2=IT2-1T3 . °©

caLL stznuztxfz,nn,xny
CALL stxnyeslTa,nu,xo)
IT1=IT1-IT3 N
IFCITL.LT.0) IT1=IT1+MD -
IFCIT2,LT.0) IT2=IT2+MD

" IGRNS(IP)=IQRNS(I)-IT1
“JARNS(IP)=JQARNS(I)-IT2 -
CALL RESIDUE(IGRNS(IP),MD,ID> ' -

r

CALL RESIDUE(JQRNS(IP),MD,IDJ.A
LD=(MD+1)-2 .
IY(IP)=LD*(IQRNS(IP)- JQRNS(IPl)

"CALL RESIDUECIY(IP),MD,1D)

IGRNS(I)=IQRNS(I)+IT1
JARNS(I)=JQRNS(I)+1IT2

CALL RESIDUE(JQRNS(I),MD,ID)
CALL RESIDUE(IGRNS(I)>,MD,ID)
IY(I)=LD*(IQRNS(I)-JQARNSC(I))
CALL RESIDUE(IY(I).MD.,ID)
CONTINUE

MI=MI+NLE

~CONTINUE

RETURN
END

~1
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