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Abstract

3D Quad mesh plays an important role in various engineering fields. Due to improved
design and model acquisition tools, as well as the need for higher accuracy, the number
and complexity of these models are growing more rapidly than network bandwidth.
Therefore, reducing the amount of transmission by compressing the 3D quad model is
imperative. A mesh may be represented by its vertex data and its connectivity. Vertex
data comprise coordinates of all the vertices and optionally the vertex colors and the
associated normal vectors and textures. Connectivity captures the incidence relation

between the quads of the mesh and their bounding vertices.

Traditionally, the quad mesh connectivity encoding process involves triangulation and
triangle mesh compression; this may introduce additional cost. Quad mesh can be
compressed and decompressed linearly without triangulation. We introduce it in terms of
a simple data structure, which we call the OF Table. It represents the connectivity of any
manifold quad mesh as two tables, V and OE. V[i] is an integer reference to a vertex.
OE[i] is an integer reference to an edge. Spirale Reversi decompression of quad mesh
will be described in detail. It is possible to combine vertex data compression techniques
with the connectivity compression. A lower upper bound 2.67 bits/quad for coding quad

mesh connectivity is presented.

Keyword: quadrilateral mesh, compression/decompression, connectivity

encoding
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CHAPTER 1 INTRODUCTION

Chapter 1

Introduction

This chapter presents the motivation for this thesis. First, the concepts of data compression
and geometry compression are introduced. Then, concepts of connectivity and vertex
compression are illustrated. Following this, the objectives of this thesis are introduced.

Finally, the layout for the rest of this thesis is described.

1.1  Concepts of Data Compression

Data compression is often referred to as coding, where coding is a general term
encompassing any special representation of data that satisfies a given need. Information
theory studies efficient coding and its consequences in the form of speed of transmission

and probability of error [31].

Numerous techniques exist for compressing the binary data used by digital computers and
communication devices. The binary system represents each alphanumeric character with a
string of eight binary digits (bits), each of which is either a 0 or 1, and which together
form a byte. A rudimentary data-compression system is based on key word encoding,
whereby frequently occurring words such as "the" are converted into a two-byte token.

More advanced techniques analyze, identify, and then replace commonly occurring text
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patterns with single characters and symbols. These techniques may also represent
characters and symbols with strings of fewer than eight bits, with the characters used most
often represented by the least number of bits. A requirement for successfully decoding
schemes in using strings of variable lengths is that the bits designating the ends of
characters must be unambiguously identifiable. Huffman encoding is a widely used form
of this technique. Run-length encoding is used for data containing repetitive characters; it
stores the repeated string once and indicates the number of occurrences [S0, 61, 94, 95,

97].

The principal benefits of data compression are: larger storage capacity; more efficient
transmission of information over the Internet; and encryption, or disguising the meaning of
information. A trade-off between time and speed characterizes most advanced methods of
data compression. Typically, the more time a compression program (instruction set) is
allowed to analyze data, the greater will be the compression, although the rule is subject to

diminishing marginal returns [99].

1.2 Geometry Compression

In the mesh compression literature, a distinction is often made between three things: mesh
geometry, which includes vertex coordinates; mesh properties such as normals, colors, and
texture coordinates that are attached to vertices and faces; and mesh connectivity, which
describes the incidences between vertices, edges, and faces. The mesh connectivity

information is also referred to as mesh topology. Geometry and property data can be
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efficiently compressed with schemes that predict a position or a feature from previously

decoded neighbors.

Computer graphics applications are using more and more complex geometric models,
containing millions or billions of triangles. It is imperative that good compression schemes
be found to compress the polygonal models in order to reduce the storage space since these

geometry data do not yield to traditional data compression techniques.

In addition, with the rapid development of the Internet, more and more graphics
applications are running across the Internet, such as distributed collaborated modeling and
multi-user games. It is essential for such distributed applications to be able to transmit

geometry efficiently, which in turn require good geometry compression schemes.

Furthermore, the speed gap between CPU and memory is becoming even larger.
Interactive animation of geometry models requires a large number of triangles to be
efficiently loaded into the on-chip cache across the bus. The current bottleneck is the
memory bandwidth, necessitating good geometry compression algorithms to reduce the

traffic to the slow memory [100].

Constraints on bandwidth, storage space, and rendering time often limit the use of 3D
models and the geometric data sets in e-commence, entertainment, CAD/CAM, medical,
and visualization applications. The goal of 3D graphics compression is to address this

problem by developing more compact representations and more effective quality-of-
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service algorithms for multidimensional datasets. Efforts to achieve this goal have used
both general purpose compression techniques (such as entropy coding and wavelet
compression) and graphics-specific methods based on solid modeling, differential

geometry, graph theory, and image-based rendering.

1.3 Connectivity Compression

A mesh may be represented by its vertex data and by its connectivity. Vertex data
comprises coordinates of the associated normal vectors and textures. In its simplest form,
connectivity captures the incidence relation between the triangles (or other polygons) of
the mesh and their bounding vertices. It can be represented by a polygon-vertex incidence
table, which associates with each polygon the references to its bounding vertices. Since
triangle meshes have been extensively studied and other polygon meshes can be ‘easily
triangulated, Chapter 2 focuses more on triangle mesh. For all meshes homeomorphic to a
sphere, and in fact for most meshes in practice, the number of triangles is roughly twice
the number of vertices [70]. Consequently, when pointers for integer indices are used as
vertex references and when floating pointer coordinates are used to encode vertex

locations, connectivity data consumes twice more storage than are needed to store vertex

coordinates.

Therefore, many computer scientists are working in this area to determine techniques for

hiding some or all of the connectivity cost in the vertex encoding, i.e. connectivity
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compression. They have defined three different objectives: efficient rendering, progressive

transmission, and maximum compression.

1.4 Vertex Compression

Vertex coordinates may be compressed through various forms of vector quantization.
Most approaches use predictors to encode corrections instead of absolute vertex data. Both
the encoder and the decoder use the same prediction formula. The encoder transmits the

difference between the predicted and the correct vertex data.

1.5 Objectives of the Thesis

The following paragraphs give the motives of this study:

Direct Compression

Geometry compression of triangle meshes has been extensively studied. Quadrilateral
meshes (in this thesis, the terms ‘“quadrilateral mesh” and “quad mesh” are used
synonymously) are usually triangulated first and then compressed using techniques of
triangle mesh compression. This may introduce additional cost. We explore an approach to

compressing quad meshes without prior triangulation.

Linear Time Compression
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Since triangle mesh connectivity compression can be realized in linear time using corner-
table data structure, we extend the corner table data structure to quad meshes, with which

we can compress quad meshes connectivity in linear time.

Spirale Reversi Decompression

Although Spirale Reversi Decompression of quad mesh connectivity has been mentioned
in Kronrod and Gotsman’s paper [48], no detailed description has been provided. We also
extend Isenburg and Snoeyink’s Spirale Reversi Decompression of triangle meshes [] to

quad meshes.

Upper Bound on Quad mesh Connectivity Compression

Kronrod and Gotsman’s [48] direct compression of quad meshes yields 3.5 bits per vertex
for connectivity data. However, this is not as good as the 2.67 bits per vertex result of
King et al [], which first triangulates a quad mesh. We propose a new coding scheme to

improve the upper bound of Kronrod and Gotsman's method.

1.6 Overview of the thesis

This thesis is organized into six chapters as follows.

Chapter 1 contains a brief introduction to data compression, geometry compression,

connectivity compression, and vertex compression, outlines the objectives of the thesis,

and provides an overview of the thesis.
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Chapter 2 contains a thorough literature review of geometry compression. Both
connectivity and vertex compression are discussed. Triangle mesh and quad mesh

connectivity compression are highlighted.

Chapter 3 first gives a detailed description of the Opposite-edge table structure with which
linear time compression algorithm of quad mesh connectivity information is presented.
Then a detailed description of the Spirale Reversi Decompression of quad meshes is
presented. Then examples are given to illustrate the compression and decompression

algorithm. Finally, the time complexity is analyzed.

Chapter 4 gives an encoding technique that provides an improved upper bound on quad

mesh connectivity compression.

Chapter 5 gives implementation details and experimental results.

Finally, Chapter 6 offers some concluding remarks and discusses future improvements for

the coding schemes and other work.

Acknowledgement and Reference are presented thereafter. The Appendix section contains

major source codes.
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Chapter 2

Literature Review

There are two major research trends in the area of geometry compression: one is focused
on mesh connectivity (connectivity compression) and the other is focused on vertex data
(vertex compression). This chapter focuses on connectivity compression and consists of
seven sections. Theoretical results on succinct representation of graphs are introduced
briefly in section 2.1. Based on triangle meshes, the three directions of connectivity
compression research (Efficient Rendering, Progressive transformation, and maximum
compression) are reviewed in sections 2.2, 2.3 and 2.4 respectively. Then quadrilateral
mesh connectivity compression is reviewed in section 2.5. Vertex compression for general

meshes is reviewed in section 2.6. Then the whole chapter is summarized in section 2.7.

2.1 Succinct representation of a graph

The theoretical problem of succinctly encoding planar graphs has been studied extensively
in the graph theoretic literature [10, 27, 39, 40, 59, 60, 91, 92, 93]. Most of these

theoretical results may be applied to any polygon mesh.

One of the nicest proofs of Euler's relation for planar graphs (V vertices, F faces and E

edges) partitions the edges into two spanning trees [79]. One tree, spanning the vertices,
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has V-1 edges and the other, spanning the faces (i.e. dual graph), has F-1 edges, so E=(V-
1)+(F-1). Turan [91] observed that this partition into two spanning trees could be used to
encode planar graphs. He gave an encoding that uses 12 bits per vertex (bpv) for unlabeled
planar graphs. Keleer & Westbrook's [40] worst-case bound of 3 bits/edge for any
polygon mesh is equivalent to 6 bits/vertex for a quad mesh and a value between 6 to 9
bits/vertex for any tri/quad mesh. For simple triangle mesh, Keleer's method guarantees
4.6 bpv. Chuang [10] achieves guaranteed encodings of less than 2.5+2log3 bits/vertex or
5.67 bits/vertex for quad and tri/quad meshes. He & Kao [27] achieves encoding of less

than log3(V+E) bits, or 4.75 bits/vertex for quad meshes.
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2.2 Efficient rendering

The standard representation for uncompressed polygon meshes uses a list of vertex
coordinates to store geometry and a list of vertex indices for each face to store mesh
connectivity. For triangle meshes of v vertices, this requires approximately 6vlog,v bits for
the mesh connectivity. Note that this representation does not directly store face adjacency,
which must be recovered by sorting around vertices if the mesh is to be checked for cracks

or turned into triangle strips.

Encodings for rendering use partial information about mesh connectivity to reduce the
work in the graphics pipeline. In the standard representation, each triangle of the mesh
must be rendered individually by sending its three vertices (for triangle or triangulated
meshes) to the graphics hardware. On average, every mesh vertex is processed six times.
Processing a vertex involves passing its coordinates from the memory to and through the
graphics pipeline. Typically, this also includes normal, color, and texture information. The
most common technique to reduce the number of times this data needs to be transmitted is

to send long runs of adjacent triangles. These are called triangle strips.

2.2.1 Triangle Strips

A triangle (t) can be specified by its three vertices (say, vk, Vi+1, Vi+2). This gives a cost of
3n for n triangles, which may have overlapping vertices and thus implies extra cost. A

cheaper way to transmit the triangles of a mesh is to order them so that the consecutive

10
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triangles are adjacent. That is, triangles t (v, Vi1, Vi2) and t' =( Visl, Vie2, Vie3) are
consecutive. A sequence of n+2 (n is the number of vertices in the mesh) vertices that

determine n triangles in this way is called a triangle strip.

Brad Gramtham [] has a simple program to construct triangle strips from a given triangle

mesh.Evans et al [18] proposed an algorithm to stripify any polygonal mesh model.

Triangle strips are widely supported by today's graphics hardware [18, 76, 96]. Two
vertices from the previous triangle are reused for all but the first triangle of every strip.
Two successive triangles in a triangle strip join at an edge. Therefore, from the second
triangle on, the vertices of the previous triangle can be combined with only one new vertex
to form the next triangle. As a triangle mesh has twice as many triangles as vertices, the
maximal gain is that each vertex has to be transmitted only about two times. Depending on

the quality of the strips, this can reduce the number of vertex repetitions by a factor of

three.

2.2.2 Generalized triangle mesh

For some models, it is possible to get longer strips allowing a swap operation over the last
two vertices in the sequence. A triangle strip with swap operations is known as a
generalized triangle strip. A generalized triangle strip with a buffer that allows look back

to the previous k vertices is called a generalized triangle mesh.

11
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Such a data structure was first proposed by M. Deering based on his previous work [15,
16]. This approach is a compromise between a standard triangle strip and a general
scheme for referencing any previously decoded vertex. He uses a 16-register cache to store
temporarily 16 of the previous decoded vertices for subsequent use. He suggests using one
bit per vertex to indicate whether a newly decoded vertex should be saved in the cache.
Two bits per vertex are used to indicate how to form a triangle. One bit per triangle
indicates whether the next vertex should be read from the input stream or retrieved from
the cache. Four bits of address allow random access to a vertex in the stack-buffer every

time an old vertex is used.

10

15

Generalized Triangle Strip: R6, O1, 07, 02, 03, M4, M8, 05, 09, 010, 015, M14, M8, 013, 07, 012,
Ol11, Mé

Generalized Triangle Mesh: Rép, O1, O7p, 02, 03, M4, M8p, 05, 09, 010, 015, M14, M-1, 013, 0-2,
012,011, M-3

Legend:

First Letter: R= Restart , O = Replace Oldest, M = Replace Middle;

Trailing "p" = push into mesh buffer, Number is vertex number, -number is mesh buffer reference where -1 is
most recent pushed vertex

Figure 2-1. Generalized Triangle Mesh

12
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Considering the geometry in Figure 2-1, while it can be represented by one triangle strip,
many of the interior vertices appear twice or more in the strip. The generalized triangle
mesh technique explicitly pushes old vertices into a queue and then referenced in the
future. Deering's approach underlies Sun's Java 3D Geometry Compression API

Specification [82].

Subsequently, Chow [] presented another algorithm to produce generalized triangle strips
that improves on Deering's work. He modified the traversal of a generalized triangle mesh

and removed the restriction of a 16-register cache [9].

Arkin et al. [2] examined the problem of testing whether a triangulation can be covered
with a single triangle strip. For generalized triangle meshes this problem has been proved
to be NP-complete, but for sequential strips there exists a simple linear time algorithm.

But no results or algorithm were given to cover a mesh with several strips.

Bar-Yehuda and Gotsman [8] made an analysis of appropriate size of the buffer. They
proved that a triangle mesh with n vertices can be optimally rendered, i.e. each vertex is
transmitted once, if a buffer for 12.72 n'? vertices is provided. They also show that this
upper bound is tight and no algorithm can work with less than 1.649 n'” buffered vertices.
In their analysis, they neglect the time consumed by the referencing of buffered vertices,
which make it hard to determine the suitability of the approach for connectivity

compression. Again, the algorithms to compute the rendering sequences are not fast

enough for on-line generation.

13
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2.3 Progressive transmission

Encodings for progressive transmission use incremental refinements of mesh connectivity
and geometry so that partial data already represents the entire mesh at a lower resolution.
Hoppe's [28] Progressive Mesh Scheme encodes a mesh by collapsing edges one by one.
Decoding starts with a small base mesh, and expands the collapsed edges in reverse order.
The scheme is for storing and transmitting arbitrary triangle meshes and it is a lossless,
continuous-resolution representation, and it addresses several practical problems in
graphics: smooth geomorphing of level-of-detail approximations, progressive transmission,
mesh compression, and selective refinement. Figure 2-2 is illustration of progressive mesh

representation through edge collapse transformation.

ecol

Vi V; Vi Vv,

vsplit

Figure 2-2: Hllustration of the edge collapse transformation and its inverse, the vertex split.

14
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While the first progressive schemes were not designed for compression and used a large
number of bits per vertex, recent schemes [7, 11, 12, 63, 88] group the refinement
operations into large batches and achieve bit-rates that come close to those of non-
progressive methods. Even though more bits are used for the connectivity information, the

progressive nature of the decoding allows more accurate geometry and property prediction.

Cohen-Or et al's scheme [11] is based on decimation of triangle meshes. For deletion of
each vertex, the resulting hole is filled with a new triangulation. Hierarchies of the model

are generated at various resolutions.

Khdakovsky et al [41] proposed a new progressive compression scheme for arbitrary
topology, highly detailed, and densely sampled meshes arising from geometry scanning.
They observe that meshes consist of three distinct components: geometry, parameter, and
connectivity information. The latter two do not contribute to the reduction of errors in a
compression setting. Using semi-regular meshes, parameter and connectivity information
can be virtually eliminated. Coupled with semi-regular wavelet transforms, zerotree
coding, and subdivision based reconstruction, they obtain error reduction by a factor four
(12dB) compared to other progressive coding schemes. This method using wavelet

compression can represent 3-D objects 12 times more efficiently than MPEG4

compression.

G. Taubin et al. [86] introduces a new adaptive refinement scheme for string and

transmitting manifold triangular meshes in progressive and highly compressed form. It

15
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achieves high compression rate-a forest split operation doubling the number n of triangles
of a mesh requires a maximum of approximately 3.5v bits to represent the connectivity
changes. The paper also shows how a surface simplification algorithm based on edge

collapses can be modified to convert single resolution triangular meshes to the PFS format.

In P. Alliez and M. Desbrun's algorithm [1] a fine-grained fully progressive encoding is

achieved for lossless transmission of 3d polygonal models.

For the special case of terrains based on Delaunay triangulations, Snoeyink and van
Kreveld [77, 78] used ideas from Kirkpartrick's point location scheme [46] to encode all
topology information in a permutation of the vertices, from which the mesh is
progressively reconstructed. Denny and Sohler's work [17] extended this scheme to
arbitrary planar triangulations. Although the cost of storing the topology is zero, the
unstructured order in which the vertices are received and the absence of adjacency
information during their decompression prohibits predictive geometry encoding. This
makes these schemes overall more expensive. Moreover, it is not clear that it is possible to

extend this idea to general surface meshes.

Hoppe[29], Rossignac and Borrel[71], Staadt et al.[81], Gumhold and Klei[22] studied
multi-resolution compression and reconstruction. Garland and Heckbert [19] studied
surface simplification through quadric error metric.  Hadwiger presented mesh

simplification and multi-resolution data structure in [26]. Hoppe et al. also presented their

16
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mesh optimization result in [30]. Lengynel [51] and Rockwood [65] have presented some

results on compression of time-dependent geometry.

17
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2.4 Maximum Compression

Most schemes for maximum mesh compression encode mesh connectivity through a
compact and often interwoven representation of two dual spanning trees. Neither the
triangle nor vertex tree is sufficient by itself to capture the connectivity information.
Typically, such compression schemes [23, 35, 54, 70, 88, 90] use a pair of spanning trees
obtained by traversing the vertices and the triangles of the mesh with a deterministic
strategy (e.g., breadth or depth first search). The geometry data and the property data of the
mesh are usually compressed using predictive encoding based on local neighborhood
information [88, 90]. As far as bit allocation is concerned, King et al. present optimal bit

allocation for compressed 3D models [43].

24.1 Topological surgery

The idea of this method is to cut the mesh in a peeling-orange-skin style. It looks for edges
of the model where to cut. The result of cutting through these edges is a triangulated
simply connected polygon (in the case of a 2-manifold mesh). The complete structure of
the mesh is stored in two spanning trees, a vertex tree and a triangle tree. This algorithm
can encode edge information in 4 bits per vertex on the average with run-length encoding

technique.

18
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This approach was first proposed by Taubin and Rossignac [88] based on research results
of [84, 85, 89]. Their scheme explicitly encodes both vertex spanning tree and face

spanning tree. The topological surgery approach is proposed to encode VRML files [87].

Gueziec et al, [24] extends the earlier efforts of Topological Surgery (TS) to non-manifold
models. This is done by developing an algorithm to decompose a non-manifold model into

multiple manifold surfaces, which are then compressed using TS algorithm.

2.4.2 FEdgebreaker

The Edgebreaker algorithm encodes each triangle at a time according to classification of
its adjacent vertices and edges. This classification leads to one of five possible operations
(C, L, E, R, S) codes, as illustrated in Figure 2-3. A sequence of labels (operation names)
suffices to reconstruct the graph is found. For any mesh of T triangles that is
homeomorphic to a sphere, the sequence may be trivially encoded using less than 2T bits.
The decoding algorithm recreating the triangles in the same order they have been visited

by the encoding algorithm has the worst case tome complexity of o) [70].

At each step, Edgebreaker identifies the unique triangle X, that is part of boundary (B) and
is incident upon gate g (see Figure 3). Let v be the only vertex of X that does not bound g.
Edgebreaker analyze the relation that v has with respect to boundary and g, distinguishing
5 cases labeled C, L E, R, and S. The selection of appropriate case may be performed by

the following sequence of tests:

19
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IF vgB THEN case C
ELSE IF v follows g
THEN IF v precedes g THEN case E
ELSE case R
ELSE IF v precedes g THEN case L

ELSE case S

Through the introduction of a novel decompression technique in Edgebreaker, which in
one pass automatically extracts the offsets of S operations from the compression history,
Rossignac has eliminated the need to encode these offsets explicitly and thus have
achieved a linear connectivity cost for meshes with a constant of handles and holes. This
result improves the approaches [23, 90], which exhibit an asymptotic O(vlogv)
connectivity cost, even for simple meshes without holes or handles. On a more theoretical
aspect, the author also improves on all previous work on coding planar triangulated graphs
[39, 40, 60, 91, 92] by providing a linear code with the lowest constant: a guaranteed 2 bits

per triangle or less.
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K> X S N
A N Vv

X

Figure 2-3 Edgebreaker process: Triangle X is formed by the gate edge g (represented by
arrow) and vertex v. The location of v with respect to the boundary B determines the
operation type: C (v is not on B), L (v immediately precede g), R (v immediately follows
g), E (v precedes and follows g), S (v is elsewhere on B).

The edgebreaker scheme gives the best guaranteed bit-rates for triangle meshes
connectivity. The S and E operations replaces the split operation used by the "cut border
machine" [23], thereby eliminating the need for explicitly encoding the associated offset
value. Improvements on the original paper give linear decoding time [74, 32, 33, 34, 36]
and tighten the guaranteed bit-rate to 3.67 bpv [42]. This is currently the lowest worst-case
bound and lies within13% of the theoretical lower limit by Tutte [92]. It may be easily

combined with a variety of vertex data compression schemes based on vertex estimates

that are derived from the incidence graph and from the location or previously decoded

vertices.

It has been extended to manifold meshes with handles and holes [70], to triangulated

boundaries of non-manifold solids [72], and to meshes that contain only quadrilaterals or a
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combination of simply-connected faces with an arbitrary number of sides.[44]. It was also

optimized for meshes with nearly regular connectivity [45].

Rossignac [73] introduce a new formulation, which leads to a simple implementation of
Edgebreaker for compressing 3D triangle meshes. They describe it in terms of a simple
data structure, the Corner Table, which represents the connectivity of any manifold
triangle mesh as two table of integer. It compresses vertex locations using a parallelogram

predictor.

Gumhold's approach is somewhat similar to Edgebreaker. His encoding algorithm has
seven building operations. These operations fix the order in which the triangle mesh has to

be traversed and how the mesh can be reconstructed [23].

Isenburg and Snoeyink presented a simple linear time algorithm for decoding triangle

meshes in a single traversal [36].

24.3 Breadth-first search based connectivity compression

The connectivity of an orientable manifold triangle mesh is encoded in a lossless manner
using three operation codes: add, split and merge. Assuming a fixed order to traverse the
adjacent edges of each vertex, this set of operation codes reconstruct the topology of the
encoded mesh. This algorithm can encode edge information in less than 1.5 bits per vertex

on the average [90].
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2.5 Quadrilateral-mesh compression

Although triangle meshes are most extensively studied and most frequently used,
sometimes we do need to use polygonal meshes. For example, modeling structures,
modeling cloth deformations and simulating torsion and crashes, we have to use
quadrilateral meshes. Muller [58] summarized the various quadrilateral meshes generation
methods in CAD. Bern and Espstein[3] present quadrilateral meshing method through
circle Packing. Other polygon meshes are used much less in industry and they are still of

important academic value.

Several authors have reported extensions to their schemes, which are used to compress
connectivity of purely triangle meshes, in order to handle polygonal input. A naive
approach arbitrarily triangulates the polygon mesh and then uses one bit per edge to
distinguish the original edges from those added during the triangulation process. Marking

every edge can be avoided by triangulating the polygons systematically.

For the Topological Surgery method the extension to polygonal meshes first cuts the mesh
along a vertex spanning tree and then triangulates the dual polygon spanning tree. Only the

edges interior to the resulting triangle spanning tree need to be marked [87].

Similarly, King et al. describe how to let the Edgebreaker method guide the triangulation
process. For simple polygon meshes without vertices of degree two they give an encoding

that guarantees 5 bpv. [44] In fact, King et al. are the first to prove that quadrangular
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meshes can be compressed more efficiently than their triangulated counterparts by
avoiding the triangulation step. They give compact codings for pure quadrangles and for

meshes containing mostly quadrangles and a few triangles.

The essence of King's approach is to split each quad into triangles according to a rule
ensuring that two triangles created from each quad are adjacent in Edgebreaker's traversal
sequence (a triangle spanning tree). As shown in Figure 4, each quad is split so that the
second half of the quad becomes the right neighbor of the first half. Since the second half
has not been previously visited, the first half can not be an R or E. This split rule is easy to
implement, and it allows the original quads to be recovered by simply joining adjacent
pairs of triangles during decompression. It leads to efficient encodings because it makes

some combinations of the Edgebreaker labels impossible.

Figure 2-4 Quad split pattern
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Li et al. [52, 53, 54] using dual graph approach traverse the edges of the dual and records a
stream of symbols and integer values, which is compressed with a carefully designed
context based entropy code. Decoding uses the recorded information to re-play this
traversal, thereby reconstructing the mesh connectivity. Their use of split offsets resembles

that of the "cut-border machine" [23].

Bajaj, Pascucci and Zhuang [5, 6, 7] propose an algorithm to split the mesh into triangle
layers through a breath-first traversal. Their topological layering structure is inspired by
the layering scheme that is used to construct vertex spanning trees for manifold meshes in
TS. The topological layering structure based on vertex neighborhood is used to encode the
connectivity information of arbitrary triangular meshes as well as to index and establish
local neighborhood and the second order of predict or corrector geometry encoding
scheme. The input meshes are partitioned into two basic layers: vertex layers and triangle
layers. The O vertex layer is a randomly chosen vertex (could be a chain of vertices) of
the mesh. The kth vertex layer(k>0) includes a vertex V if V is not included in any
previous vertex layer and there exists an edge E=(V,V*) where V* is included in the (k-
Dth vertex layer. The kth triangle layer(k>=0) includes a triangle T if T has one vertex in
kth vertex layer and T is not included in any previous triangle layer. Then the authors
extend the layering scheme to encompass polygonal faces while maintaining its locality
properties: the vertices of each polygon are included either in a single vertex layer or in
two consecutive vertex layers. But the author did not analyze the worst case bits per

vertex or show the experimental bits per vertex.
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Inspired by Edgebreak[70], Isenburg and Snoeyink propose an edge-based compression
scheme that encodes the connectivity of 2-manifold polygon meshes and extends to
capture structural information as well. When this approach is applied to quadrilateral mesh,
it guarantees 4v-8 bits encoding [38]. It encodes meshes directly in their polygonal
representation and extends to capture face groupings in a natural way. Avoiding the
triangulation step the author reduces the storage costs for topological polygon models that
have group structures and property data. The benefits of this approach compared with
methods that compress pre-triangulated polygon meshes are: (i) the original connectivity is
preserved; (ii) Properties associated with faces and corners need not to be replicated; (iii)

Subsequent stripification algorithms can generate better triangle strips.

In Issenburg and Snoeink's approach, [38] the connectivity of polygon mesh is encoded as
a sequence of labels Fy, R, L, S, E, Hp, and M. The total number of labels equal the
number of mesh edges. The sequence of labels represents an interwoven description of a
polygon spanning tree and its complementary vertex spanning tree. For every face of n
sides there is a label F, and for every hole of size n there is a label H,. Together they label
the edges of the polygon spanning tree that need to be "fixed" together to re-create the
handle. The remaining labels R, L, S, and E label the edges of the corresponding vertex
spanning tree and describe how to "fix' faces and holes together. Subsequently an entropy

coder compresses the label sequence into a bit-stream.

For polygon meshes with associated properties, Bossen [4], Issenburg and Snoeyink{37],

Kobbelt and Seidel[47] has presented some results.
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The Edgebreaker scheme assigns a code (C,L,R,E,S) to a triangle determined by its
interaction with the rest of the mesh. Kronrod and Gotsman's [48] scheme generalizes this
observation to meshes with polygonal elements. A polygonal element can interact with the
rest of the mesh in a finite number of ways and the coding scheme uses as many code

labels. In particular, for a quad mesh we need 13 different code labels.

The following two figures illustrate the interaction between a quad and boundary.

touching

touching vertex gap
edge

free edge

/ boundary
free
gate

Figure 2-5. Terminology of a quad interacting with a mesh boundary

Note: Gate is an oriented edge on the boundary. Gap is an edge between two boundary vertices which are not
adjacent on the boundary.
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Vs
Vo
Vi
Va
Vo
Vi
(10) Q10 (11) Q11
V2
Vi
V() VO
(12) Q12 (13) Q13

T~ \\ / =

\ N

boundary edge collapsed edge Current gate Gate in stack

Figure 2-6. All possible interactions between a quad and a boundary. The thick edge is the
gate. Case Q3, Q7, Q9, Q10, Q11 (having 2 gaps) generate a new boundary, and case
Q8(having 3 gaps) generate two new boundaries.
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2.6 Vertex Compression

Current 32-bits IEEE floating point number has excessive precision for most models. In
practice, it is sufficient to represent each coordinates using 16 or 8 bits with a negligible
loss of accuracy. In Deering's work [14], each coordinates of vertex is quantized to 16 bits.
Then the result is converted into a sequence of difference vectors (x,y,z), which a integer
differences between the previous traversed vertex and the next vertex. The difference
vectors were encoded using Huffman code. This algorithm achieves less than 16 bits to

encode each coordinate.

In the quantization process, first we need to select a quantization level such as n bits. Then
we need to scan the vertex data to find the minimum and maximum values of each
coordinate and save these values to a file (I call this file, bounding). Then, each coordinate
of a vertex will be represented by an integer number between 0 and 2" depending on how
this coordinate partition between the minimum and maximum value. If it is the minimum

value, it will be represented by 0 and if it is the maximum vale, it will be represented by 2",

Chow [9] improved Deering's algorithm above so that the quantization level is adaptively

chosen depending on the local minuteness of the geometry.

Taubin and Rossignac[15] proposed an algorithm to encode the vertex positions based on
the following linear predictor

P= ilivi

i=1
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where the v; are previously traversed k vertices .
The difference between the real value and predicted value (g, the correction vector) will be

encoded. It achieves a compression of 12 bits per vertex on average.

Touma and Gotsman[90] proposed the more precise vertex prediction below,

Vg +E

P= Vi ¥V Vi
The modified ¢ preserves the curvature characteristics of the model. This scheme achieves

a compression ratio of about 9 bits per vertex.

Lee and Ko's [101] compression algorithm also uses three previous traversed vertices to
construct a local coordinate system, and utilizes the clustering behavior of the transformed

result to achieve a compression of about 6.7 bits/vertex on average.

277  Summary

This chapter discusses the background required for this thesis. Theoretical results of
representing a graph are introduced. Then, three different research directions, namely
efficient rendering, progressive transformation, and maximum compression are discussed
with a focus on connectivity compression of triangle meshes. Then, research on

quadrilateral meshes is reviewed. Finally, vertex compression is discussed.
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Chapter 3
Linear time compression and decompression of

Quadrilateral mesh

Efficient rendering of a mesh is a very important subarea of research within the broad research
area of computational geometry. Although linear time compression and decompression
algorithms are available for triangular meshes, there is no linear time compression and
decompression algorithm available for quadrilateral meshes without prior triangulation. This
chapter introduces a new data structure through which efficient compression of quadrilateral
meshes is possible. Then, the compression algorithm based on OE data structure is discussed in
section 3.2. Next, the extension of the efficient decompression algorithm for triangle meshes to
quadrilateral meshes is discussed in section 3.3. Examples are given for meshes with boundary
and without boundary. Finally, the time complexity of the compression and decompression

process is analyzed, and this chapter is summarized.

3.1 Definition of Opposite Edge(OE) data structure

In this chapter we propose a simple data structure, called the opposite-edge table for representing
the connectivity of a quad mesh. The connectivity compression/decompression algorithm of this
paper can be easily combined with the vertex compression algorithms proposed in [14,15, 90,

101] to give a complete compression/decompression scheme for quad meshes.
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Each quad in a quad mesh is represented by four integer references for the four vertices and four
integer references for opposite-edges. The opposite-edge of an edge Al in quad B refers to the
edge that is next to next to A2 in quad C, where A2 is a common edge of quads B and C. If A2
is a boundary edge, we arbitrarily assign -1 in the opposite-edge field for Al. In other words,
given an edge of a quad P, its opposite-edge is an edge that belongs to an adjacent quad Q and is
the edge of Q that is opposite to the edge that it shares with P. Vertices, edges, and opposite

edges are identified using positive integers.

Figure 3-1 illustrates the opposite-edge data structure. When the shared edge of quads Q; and Q;
is represented by directed edges e; and e;, the opposite-edge of e;, according to the definition
above, is the edge opposite to ¢; in Q;; similarly, the opposite-edge of ¢; is the edge opposite to
¢ in Qi In terms of this nomenclature, in Figure 3-1 the opposite-edge of e; is es and the

opposite-edge of es is es.

V3 V2 VS

€ €

QO [
€ e es el

€3

Q

€o €4

Vo Vi A\

Figure 3-1. A mesh of two connected quad
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For boundary edges, we arbitrarily assign -1 in their opposite-edge fields. Each quad of the
opposite-edge table has the following structural representation:
v0 vl v2 v3 0e0 oel oe2 oe€3,

where the vi’s are vertex references and the oei’s are the opposite-edge references.
Therefore, the opposite-edge data structure of the mesh shown in Figure3-1 is as below:

VoViVaV;3-1-1-1e;s

ViV4VsV,-1e3-1-1
(Note: The vertices and edges of a quad are enumerated in anti-clockwise order)
The coordinates of the mesh vertices are stored in an array G, each of whose entry has the
following structure:

x1ylzl

which are respectively the coordinates of a 3D point, encoding the location of a vertex.

The boundary information will be saved in a file as a linked list of vertices in anti-clockwise

order around the boundary called the BList. The BList of a mesh without boundary is empty.

3.2 OE Compression algorithm

The encoding algorithm given below is based on Kronrod and Gotsman's scheme [48]. The input
for compression will be two files: a file for the vertex & opposite-edge tables, and a file
containing the references of boundary vertices listed in anti-clockwise order. If the mesh is closed,

then the file of boundary list is empty.
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The output of the compression algorithm will be three files: a file of interaction types (Q1-Q13),
a file called InnerVertex (which records the vertex references of the quad mesh during the
compression process that are not on the boundary), and a file called BList. Actually, the
InnerVertex file represents a permutation of all the inner vertices of the mesh that are important

for reconstructing the mesh.

For a mesh without boundary, we need to choose any quad in the mesh to cut open and the four
edges of the quad will act as a boundary. Since we cut the quad open, we are not going to assign
any operation code for this quad. Therefore, the nurber of interaction types will be one less than

the number of quad. The BList will contain these four vertices after compression.

Since our connectivity compression algorithm is independent of vertex data, we can apply any

vertex compression algorithm on the vertex data.

The following is the pseudo code for OE compression:

Read boundary file to initialize BList; Hstepl
Initialize all quads by reading Vertex & Opposite-Edge Table; //step 2
If BList is empty, we add four vertices of any quad in the mesh

into it and mark this quad as visited; //step 3
Initialize an empty stack of gates, GateStack, and push onto it some
edge of the BList; //step4
While(!GateStack.empty()) //step5

{

ActiveGate=GateStack.pop();
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Current processing Quad will be Quad[ActiveGate.OppositeEdge.eid/4];
Write the interaction type with BList onto output stream, Operation;

For every gap on Current processing Quad in clockwise order from
ActiveGate, push the edge of the gap furthest from ActiveGate on
GateStack;

Write the vertex location of every new vertex in each

operation into output file InnerVertex,

Mark Current processing Quad as visited and update BList;

Program 1 OF compression process

After the compression process, we get the ASKII code for the compression operation
corresponding to each quad. We need to encode each operation to convert the ASKII code to
binary code to finalize the compression process. The code optimization will be discussed in

details in Chapter 4.

Once we have the coding scheme and binary coding stream, we can easily extract ASKII

operations from the coding stream.
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3.3 Spirale Reversi Decompression

The inputs for decompression will be three files: a file of interaction types (Q1-Q13), a file of
InnerVertex (which records the inner vertex references of the quad mesh during the compression
process), and a file of vertex data. The output of the decompression will be a file of opposite

edge table, and a file of boundary vertex references.

Following the Spirale Reversi decoding scheme of Isenburg and Snoeyink[36], the boundary
edges are directed counterclockwise; the inside of the boundary is to the right of a gate. The
outside of the boundary is to the left of the gate. The compression process is viewed as growing
the inside until there was no unencoded quad is left outside. The decompression process is
viewed as growing the outside until there is no undecoded quad left inside. Figure 3-2 illustrates

the decompression scheme.
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Figure 3-2. Spirale Reversi decompression operations
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The detailed description of the Spirale Reversi decompression for each quad operation namely,

the creation of new vertices, the deletion of old vertices, and the updates of the boundary and the

gate are as follows:

[ ]

The QI operation creates four new vertices. If there is already a boundary list before the Q1
operation, it will be pushed onto a stack, BListStack; and the current active gate will be
pushed onto the gate stack. The four new vertices will comprise the new boundary list, BList.

Edge(Vy, Vi) will be the active gate.

The Q2 operation creates two new vertices. The two new vertices will be inserted between V)
and V; to form the updated boundary, where edge(Vy, Vi) is the current active gate.

Edge(V3,V)) will be the new active gate.

The Q3 operation creates one new vertex. The end vertex of the gate popped from gate stack
and the start vertex of current gate will be merged since they are the same vertex. The
boundary list popped from BListStack and the current boundary list will be merged through
the new vertex to form the updated boundary, i.e. V,; will connect Vo and V3. Edge(V4,Vs) will

be the new active gate.

The Q4 operation creates two new vertices. The two new vertices will be inserted between V

and Vi to form the updated boundary, where edge(V,V)) is the current active gute.

Edge(V,V3) will be the active gate.
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o The Q5 operation creates one new vertex. The new vertex, Vs, will be inserted between the
vertex previous to the start vertex of the active gate, V,, and the end vertex of the active gate,
V,. The start vertex of the active gate, Vi, will be pushed onto the inner vertex stack. Edge(V,

V) will be the updated active gate.

e The Q6 operation creates two new vertices. The two new vertices will be inserted between V)
and V; to form the updated boundary, where edge(Vy, V) is the current active gate.

Edge(V,,V5) will be the updated active gate.

e The Q7 operation creates no new vertex. The end vertex of the gate popped from gate stack
and the start vertex of current gate will form a new edge; the start vertex of the gate popped
Jrom gate stack and the end vertex of current gate will form another new edge. The boundary
list popped from the BListStack and the current boundary list will be connected through these
two new edges and the edges of the two gates are collapsed to form the updated boundary.

Edge(Vy, V3) will be the new active gate.

e The Q8 operation creates no new vertex. The end vertex (V3) of the gate popped from gate
stack and the start vertex (Vy) of current gate will be merged since they are the same vertex.
The end vertex(V 1) of the gate popped (again) from gate stack and the start vertex(V3) of
previously popped gate will be merged since they are the same vertex. The two boundary lists

popped from BListStack and the current boundary list will be merged through the new
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edge(Vy,Vs) and the two common vertices, and collapsing of the three gates to form the

updated boundary. Edge(V),Vs) will be the new active gate.

The Q9 operation creates one new vertex. The end vertex of the gate popped from gate stack
and the start vertex of current gate will be merged since they are the same vertex. The
boundary list popped from BListStack and the current boundary list will be merged through
the new vertex to form the updated boundary, i.e. V4 will connect Vo and V3. Edge(Vo, V) will

be the new active gate.

The Q10 operation creates no new vertex. The end vertex (V) of the gate popped from gate
stack and the previous vertex (V) of the start vertex of current gate in the current BList will
be merged since they are the same vertex. The boundary list popped from BListStack and the
current boundary list will be merged through V; and the edge(Vy,Vy) to form the updated
boundary. The Edge(Vy, V1), Edge(V,V3), and Edge(Vs,Vy) will be collapsed. The start vertex
of the active gate, V,, will be pushed onto inner vertex stack. Edge(Vy,Vy) will be the new

active gate.

The Q11 operation creates no new vertex. The end vertex (V) of the gate popped from gate
stack and the start vertex (V3) of current gate in the current BList will be merged since they
are the same vertex. The boundary list popped from BListStack and the current boundary list
will be merged through V, and the edge(Vy,Vy to form the updated boundary. The

Edge(Vo, V1), Edge(V1,V3), and Edge(Vs,Vy) will be collapsed. The start vertex of the gate
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popped from gate stack, Vi, will be pushed onto inner vertex stack. Edge(Vy,Vy) will be the

new active gate.

o The Q12 operation creates one new vertex. The new vertex, V3, will be inserted between the
previous vertex of the start vertex of the active gate, Vy, and the end vertex of the active gate,
V). The start vertex of the active gate, V;, will be pushed onto inner vertex stack. Edge(Vy, V3)

will be the updated active gate.

e The QI3 operation creates no new vertex. The previous vertex to previous vertex of the start
vertex of the active gate, Vy , will connect directly with the end vertex of the active gate, V3,
to form the updated boundary list. The Edge(V,,V)), Edge(V,Vs), and Edge(V>,V3) will be
collapsed. Vertices Vi and V, will be pushed onto the inner vertex stack in sequence. Edge(Vy,

V3) will be the updated active gate.

The decompression algorithm builds the opposite-edge table and also the table of vertex
locations. It is possible to decode the compressed information using schema of Wrap and Zip[74]
in linear time. For simplicity, we have used the Spirale Reversi scheme of Isenburg and Snoeyink.

The mesh of Quads will be reconstructed in an order opposite to which they were encoded. The

following is the pseudo code:

Push every interaction type in to a stack, operationStack; //stepl

Create a tempBList with no element; //step2
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While( loperationStack.empty()) //step3
{

currentOperation= operationStack.pop();

For this quad, assign new vertices temporary IDs (an integer number);
Assign Opposite-Edge of each edge as -1;

Update Opposite-Edge according to interaction type;

Push vertex which will be remove from tempBlist into InnerVertexStack;

Update tempBList;
/

Assign each vertex popped from InnerVertxStack the vertex location information;
//stepd
Assign each vertex in final tempBList the vertex location information.

//stepS

Program 2 Spirale Reversi decompression process

Since we use the Spirale Reversi algorithm to reconstruct the mesh, we have to order the edges of
each quad from the beginning. The last quad in the compression process will be the first quad in
decompression process. Therefore, the opposite edge references will be different from the
original opposite-edge table. But this will not affect the topology of the mesh since all vertex

references of each quad remains the same in the compression/decompression process.
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3.4 Example go-through

34.1 A mesh with boundary

Figure 3-3 shows the compression and decompression process of a quadrilateral mesh with

boundary.

For the compression process, Figure 3-3(a) is the input mesh., an arbitrary edge of the boundary
is selected as a gate, and the quad it incident on has interaction type Q13 with the boundary.

Thus, Q13 is written to the code output.

In Figure 3-3(a), there is only one gap available, the edge in current quad adjacent to the gate in
the anti-clockwise order will be selected as new gate as shown in Figure 3-3(b). The boundary
will be updated by deleting the old gate. The interaction type of the new quad, which the gate is

incident on, is Q6. This is written to the code output.

In Figure 3-3(b), there is only one gap available, the edge in the current quad that is previous to
the gate in clockwise order will be selected as new gate as shown in Figure 3-3(c). The
boundary will be updated by deleting the other three edges of the current quad. The interaction

type of the new quad, which the gate is incident on, is Q6. This is written to the code output.

In Figure 3-3(c), there is only one gap available, the edge in the current quad that is previous ne

to the gate in the clockwise order will be selected as new gate as shown in Figure 3-3(d). The
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boundary will be updated by deleting the other three edges of the current quad. The interaction

type of the new quad, which the gate is incident on, is Q5. This is written to the code output.

In Figure 3-3(d), there is only one gap available, the edge in current quad next to the gate in
anti-clockwise order will be selected as new gate as shown in Figure 3-3(e). The boundary will
be updated by deleting the other two edges (not on the gap) of the current quad. The interaction

type of the new quad, which the gate is incident on, is Q12. This is written to the code output.

In Figure 3-3(e), there is only one gap available, the edge in the current quad next to next to the
gate in the anti-clockwise order will be selected as new gate as shown in Figure 3-3(f). The
boundary will be updated by deleting the other two edges (not on the gap) of the current quad.
The interaction type of the new quad, which the gate is incident on, is Q12. This is written to the

code output.

In Figure 3-3(f), there is only one gap available, the edge in the current quad next to next to the
gate in anti-clockwise order will be selected as new gate as shown in Figure 3-3(g). The
boundary will be updated by deleting the other two edges (not on the gap) of the current quad.
The interaction type of the new quad, which the gate is incident on, is Q6. This is written to the

code output.

In Figure 3-3(g), there is only one gap available, the edge in the current quad previous to the

gate in anti-clockwise order will be selected as new gate as shown in Figure 3-3(h). The
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boundary will be updated by deleting the other three edges of the current quad. The interaction

type of the new quad, which the gate is incident on, is Q6. This is written to the code output.

In Figure 3-3(h), there is only one gap available, the edge in the current quad next previous to
the gate in anti-clockwise order will be selected as the new gate as shown in Figure 3-3(i). The
boundary will be updated by deleting the other three edges of the current quad. The interaction

type of the new quad, which the gate is incident on, is Q12. This is written to the code cutput.

In Figure 3-3(i), there is only one gap available, the edge in current quad next to next to the gate
in anti-clockwise order will be selected as the new gate as shown in Figure 3-3(j). The boundary
will be updated by deleting the other two edges (not on the gap) of the current quad. The
interaction type of the new quad, which the gate is incident on, is Q12. This is written to the

code output.

In Figure 3-3(j), there is only one gap available, the edge in the current quad next to next to the
gate in the anti-clockwise order will be selected as the new gate as shown in Figure 3-3(k). The
boundary will be updated by deleting the other two edges (not on the gap) of the current quad.

The interaction type of the new quad, which the gate is incident on, is Q9. This is written to the

code output.

In Figure 3-3(k), there two gaps available, the edge in the current quad next to next to the gate
in anti-clockwise order will be selected as the new gate as shown in Figure 3-3(1); the edge in

the current quad previous to the gate in anti-clockwise order will be pushed onto the stack for
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gates . The boundary will be updated by deleting the other two edges of the current quad, which
will result in a split into two boundaries. The boundary, which the new gate is incident on, will
be kept as current boundary while the other boundary will be pushed onto the stack for
boundary lists. The interaction type of the new quad, which the gate is incident on, is Q1. This

is written to the code output.

In Figure 3-3(1), after the Q1 operation there is no gap or boundary left. We need to pop
boundaries and gates from their respective stacks. The popped gate and boundary are shown in
Figure 3-3(m). In Figure 3-3(m), there is only one gap available, the edge in current quad
previous to the gate in anti-clockwise order will be selected as new gate as shown in Figure 3-
3(n). The boundary will be updated by deleting the other three edges of the current quad. The
interaction type of the new quad, which the gate is incident on, is Q1. This is written to the code

output.

In Figure 3-3(n), after the Q1 operation there is no gap or boundary left. We need to pop a
boundary and a gate from their respective stacks. But at this time both the gate stack and the
boundary stack are empty, implying that we have compressed all the quads in the mesh.The

compression process therefore terminates.
The final compression code is: Q13-Q6-Q6-Q5-Q12-Q12-Q6-Q6-Q12-Q12-Q9-Q1-Q6-Q1.

In the decompression process, we start to reconstruct the mesh in the reverse order of the

COMPression process.
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At the beginning, we do not have any boundary or gate. After reading Q1, we need to generate a
new boundary list for this new quad and assign any one of its edges as a gate, as shown in

Figure 3-3(n).

After reading Q6, we need to create two new vertices to form a new quad with the current gate;
then we update the boundary list and assign the edge adjacent to the shared edge(anti-clock-wise)

in the new quad as the new gate, as shown in Figure 3-3(m).

After reading Q1, we need to generate a new boundary list for this new quad and assign any one

of its edges as the new gate, as shown in Figure 3-3(k).

After reading Q9, we need to create a new quad to combine the previous two boundaries
together to form a new boundary. The old gate and the new gate have a common vertex. One
new vertex is generated to form a new quad with the two gates. The edge previous to previous

to the current gate in the boundary will be assigned as the new gate, as shown in Figure 3-3(j).
After reading Q12, we need to create a new vertex the form a new quad with the current gate

and the edge previous to the gate in the boundary. The edge previous to previous to the current

gate in the boundary will be assigned as the new gate, as shown in Figure 3-3(j).
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After reading Q12, we need to create a new vertex the form a new quad with the current gate
and the edge previous to the gate in the boundary. The edge previous to previous to the current

gate in the boundary will be assigned as the new gate, as shown in Figure 3-3(i).

After reading Q6, we need to create two new vertices to form a new quad with the current gate.
The edge in the new quad next to (anti-clockwise) the current gate will be assigned as the new

gate, as shown in Figure 3-3(h).

After reading Q6, we need to create two new vertices to form a new quad with the current gate.
The edge next to (anti-clockwise) the current gate in the new quad will be assigned as the new

gate, as shown in Figure 3-3(g).

After reading Q12, we need to create one new vertex to form a new quad with the current gate
and the edge previous to the gate in the boundary. The edge previous to previous to (anti-

clockwise) the current gate in the new quad will be assigned as the new gate, as shown in Figure

3-3(1).

After reading Q12, we need to create one new vertex to form a new quad with the current gate
and the edge previous to the gate in the boundary. The edge previous to previous to (anti-

clockwise) the current gate in the new quad will be assigned as the new gate, as shown in Figure

3-3(e).
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After reading Q5, we need to create one new vertex to form a new quad with the current gate
and the edge previous to the gate in the boundary. The edge next to (anti-clockwise) the current

gate in the new quad will be assigned as the new gate, as shown in Figure 3-3(d).

After reading Q6, we need to create two new vertices to form a new quad with the current gate.
The edge in the new quad next to (anti-clockwise) the current gate will be assigned as the new

gate, as shown in Figure 3-3(c).

After reading Q6, we need to create two new vertices to form a new quad with the current gate.
The edge in the new quad next to (anti-clockwise) the current gate will be assigned as the new

gate, as shown in Figure 3-3(b).

After reading Q13, we need to create no new vertex to form a new quad with the current gate.
But we need the edge previous to previous to the gate, the edge previous to the gate, and the
gate to form a new quad. The edge in the new quad previous to (anti-clockwise) the current gate
will be assigned as the new gate, as shown in Figure 3-3(a). Since all quads are recovered, the

compression process terminates,
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Figure 3-3. Compression/Decompress of a quad mesh with boundary

54



CHAPTER 3 Linear time compression and decompression of Quadrilateral mesh

34.2 A mesh without boundary

For a mesh without boundary, we can easily create a boundary by cutting any one quad open,

then the four edges of this quad will form the mesh boundary, as shown in Figure 3-4(b).

Then the compression and decompression process will be exactly the same as for a mesh with

boundary, as shown in Figure 3-4(b-f). After the decompression process terminates, we need to

glue back the quad we originally cut open, as shown in Figure3-4(a).
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Figure 3-4. Compression/Decompress of a quad mesh without boundary
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3.5 Time Complexity analysis

The compression process is shown in Program 1. Step 1 takes constant time cI. Step 2 takes O(n)
time. Step 3 takes constant time c2. Step 4 takes constant time c3. Since each quad is processed
exactly once, the processing time for each quad will be constant time, and accessing the next
quad is constant time, step 5 takes O(n) time. Therefore, the overall time complexity of

compression process will be ¢/ +0(n)+c2+C3+0(n) which is O(n).

The decompression process is shown in Program 2. Step 1 takes constant time dl. Step 2 takes
constant d2. In step 3, each quad is processed exactly once; the processing time may vary for
different operation but for each operation, the processing time will be constant; therefore, step 3
takes O(n) time. Step 4 taken O(n) time. Step 5 takes O(n) time. Therefore, the overall time

complexity of decompression process will be dI+d2+0(n)+O0(m) +O(n) which is O(n).

In sum, both the compression and decompression processes have linear time complexities in

terms of the mesh size.
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3.6 Summary

Efficient rendering of a quad mesh is an integral part of quad mesh compression/decompression.
The difficulty of traditional data structures in the compression process of quad mesh is that it is
time consuming to find which quad is adjacent to a given quad. This problem is solved using
opposite edge data structure in this thesis by storing four integer references for all the quads
adjacent to the quad. The Spirale Reversi decompression algorithm for triangle meshes is
successfully extended to quadrilateral meshes. Time complexity analysis shows that both the

compression and decompression algorithms are linear in the mesh size.
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Chapter 4

Coding schemes with lower upper bound

Using the compression algorithm discussed in Chapter 3, we can get one interaction type
for each quad in a quadrilateral mesh in ASKII format. This chapter will present new
coding schemes. Section 4.1 will prove that a coding scheme has 3.0 bpv upper bound.

Section 4.2 will present 2.67 coding schemes.

4.1 Coding scheme of 3.0 bpv upper bound

ASKII format is not a succinct format since each character in the file will consume at least
8 bits (1 byte). We need to assign codes to the thirteen interaction types to convert ASKII
file to binary file. For a manifold quad mesh, there are 13 possible interactions (see
summarized table 4-1) between a quad and mesh boundary. Normally, thirteen types need

[logy 13]= 4 bits to distinguish each other. This will guarantee 4.0 bpv upper bound.

Kronrod and Gotsman’s algorithm[48], briefly called KG algorithm, traverse the quad
mesh in clock-wise and achieves 3.5 bpv. If we modify the traverse order to
counterclockwise, the upper bound of 3.5 bits per vertex still holds.With our new coding

scheme, it is very easy to prove 3.0 bpv upper bound.
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Table 4-1 Property of interaction types

Interaction type Number of new Number of new
edges introduced vertices introduced
Q1 0 0
Q2 1 0
Q3 2 0
04 1 0
Qs 2 1
Q6 1 0
Q7 2 0
Q8 3 0
Q9 2 0
Q10 2 1
Q11 3 1
Q12 2 1
Q13 3 2

Based on careful observation of the interaction types during the compression process leads

us to make the following claim:

Claim: A quad of type Q5, Q10, Q12, or Q13 is never followed by a quad of type Q1, Q2,

Q3, Q4, Q5, if we traverse the mesh in anti-clockwise order.

Proof: When the quad-boundary interaction is of type Q1, Q2, Q3, Q4 and Q5, the quad
that is removed has the following property: the previous edge of the gate in clockwise
order belongs to the boundary. However, if we examine a quad-boundary interaction of
the type QS, Q10, Q12, or Q13 in counterclockwise order, the new gate is the right edge or
the opposite edge of the gate of the removed quad, and the removal also generates at least
one free vertex. (for interaction type Q13, two free vertices will be generated and the first
free-vertex in anti-clockwise order will be part of the new gate). This means the left edge

of the previous quad will be the previous edge of the new gate on the boundary and the
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first free-vertex of previous quad must be part of the new gate. It is impossible for the
second quad to share both the right edge and opposite edge of the removed quad.
Therefore, the previous edge of the new gate will not be an edge of the second quad.

Therefore, a quad-boundary interaction of type Q5, Q10, Q12, or Q13 is never followed by

one of type Q1, Q2, Q3, Q4, or Q5.

With these constraints, the code for each interaction-type can be selected in an elegant

manner such that the total cost to code the connectivity will not exceed 3 bits per vertex.

Table 4-2 Code table of Coding I:

Encoding | Current Quad Next Quad Code Num. of bits
Quad Q6 Ql1-5 1010 4
started Q6-13 1011 4
with Q7 Ql-5 111100 6
Q6-13 Q6-13 111101 6

Qs Ql1-5 111010 6

Q6-13 111011 6

Q9 Ql1-5 111110 6

Q6-13 111111 6

Q10 Q6-13 11100 5

Q11 Ql-5 1100 4

Q6-13 1101 4

Q12 Q6-13 100 3

Q13 Q6-13 0 1

Quad Q1 Q1-5 00 2
started Q6-13 01 2
with Q2 Ql-5 1100 4

Q1-5 Q6-13 1101 4

Q3 Ql1-5 1010 4

Q6-13 1011 4

Q4 Q1-5 1000 4

Q6-13 1001 4

Q5 Q6-13 111 3
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Here is the proof for 3.0 bits per vertex upper bound.

Let E be the number of edges, V the number of vertices and Q the number of quads in a
simple quad mesh (without boundary?). Since each edge is shared by exactly two quads,
E=2Q 6y
By Euler’s formula we have
V-E+Q=2 2)
Adding (1) and (2) and rearranging we get,
V=Q+2 3)
For large mesh, Q>>2, therefore ignoring the additive term in (3) above, we can claim that
2V=E, V=Q. (4)
From (4) above and Table 4-1, it follows that
2lQ13+Q51+Q10-12[=Q ®
as the left-hand side counts the number of vertices in the quad mesh, where |Qi| denotes
the number of quads of type Qi and |Qi-j|=|Qil+...+Qj|, j>i
Again as V=Q, the number of quads which have two free-vertices must be equal to the
number of quads which have no free vertices. Thus from Table 4-1 it follows that,
IQ13}= |Q1-4}+|Q6-9| (©)
Each branch in quad spanning tree ends in a Q1 (a leaf node), and each branch begins
either at the root gate or at a2 Q3 or Q7-11. For each of Q3, Q7, Q9, Q10, and Q11, one

more QI is associated. For one Q8, two more Q1’s are associated. Therefore

|Q31+Q7-111+Q8}=Q1}-1 @
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Following the amortization analysis technique used in [2], we obtain the following

groupings and amortized costs:

Step 1. Using the constraints of equation (6), viz. |Q13}= |Q1-4[+Q6-9] we can group each

of the interaction-types Q1-4 and Q6-9 with interaction-type Q13 as shown in the

following table:
Table 4-3 Code bits analysis for Q1 to Q9
Codel # bits of Codel Code2 # bits of Code2 | Average bits | <=377
Q1 2 Q13 1 1.5 Yes
Q2 4 Q13 1 2.5 Yes
Q3 4 Q13 1 2.5 Yes
Q4 4 Q13 1 2.5 Yes
Q6 4 Q13 1 2.5 Yes
Q7 6 Q13 1 3.5 No
Q8 6 Q13 1 3.5 No
Q9 6 Q13 1 3.5 No

Thus the grouping of Q1, Q2, Q3, Q4 and Q6 with Q13 yield an average bit count of less

than 3. However the grouping for the interaction-types Q7, Q8 and Q9 is still not

satisfactory.

Step 2. We need to use the constraint of equation (7), viz. |Q3[+Q7-111+Q8/=Q1}-1

This equation implies that [Q7-11}+|Q8|<|Q1}-1, which in turn implies that each of the

interaction-types from Q7-11 and Q8 can be associated with at most one QI.
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Since Q3 has been taken care of in step 1, we do not need to group it in step 2. Also
because Q1 is grouped with Q13 already and one Q1 is associated with each one of Q7,
Q9, Q10, Q11 and two Q1’s are associated with a Q8, we need to associate a single
interaction-type group (Q1, Q13) with each one of (Q7, Q13), (Q9, Q13), Q10, and Q11
and we need to associate two of (Q1, Q13) associated with one of (Q8, Q13). The

grouping details are shown in Table 4-4:

Table 4-4 Code bits analysis for Q7 to Q11

Codel # bits of Code2 # bits of | Average | <=37?
Codel Code2 bits
(Q7,Q13) 7 (Q1,Q13) 3 2.5 Yes
(Q8, Q13) 7 (Q1,Q13, Q1, 0O13) 6 2.17 Yes
(Q9, Q13) 7 (Q1,Q013) 3 2.5 Yes
Q10 5 (Q1,Q13) 3 2.67 Yes
Q11 4 (Q1,Q13) 3 2.33 Yes

Step 2 makes sure that Q7, Q8, Q9, Q10, Q11 can grouped to achieve no more than 3 bits

per vertex coding.

Interaction-types Q5 and Q12 are still left, but these are already assigned 3 bits each.

We conclude that quad mesh connectivity can be encoded in no more than 3V bits. The

code group is summarized in Table 4-5.
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Table 4-5 Amortization analysis table of Coding I

Grouping Total | #of | Amort| #bits #occurrences of
Cost | quads | ized | saved this group
in Cost
group
(Q2, Q13) or (Q3,Q13) or 5 2 2.5 1 IQ2HQ3 Q4+
(Q4,Q13) or (Q6,Q13) Q|
(Q7,Q13,Q1,Q13)or 10 4 2.5 2 IQ7H Q9

(Q9,Q1,Q13) or

(Q8, Q13,01, Q13, Q1, Q13) | 13 6 13 5 108
(Q10,01,Q13) 8 3 2.67 1 [010]

(Q11, Q1,013) 7 3 2.33 2 I011]
remaining(Q1,Q13) 3 2 1.5 3 [Q3}+1

Q5 3 1 3 0 03]

Q12 3 1 3 0 1012]

According to Table 4-5, the total cost of the encoding, T(), equals 3Q-

(Q2}+Q3H+Q4+Q6D- 2(1Q71+Q9D-51Q8HQ10}-21Q1 1}-3]Q3}-3.

From equations (6)-(7), we get

Q13| Q1-41+Q6-9-(IQ1FDH(Q3HQ7-11 Q8]

]

Q2| +21Q3] + Q4] + Q6] + 2/Q7] + 2/Q8| + 21Q9| + Q10| + Q11|  (8)

Substitute (8) into the above equation, we get

m = 3Q-Q13]-2|Q3]-3|Q8-Q11}-3 ®

Since V=0Q+2 for a quad mesh, the total cost is therefore guaranteed to be less than 3V bits.

In the next section, we show how to obtain a tighter upper bound.
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4.2 Improving the upper bound to 2.67 bpv

Firstl, we modify the coding scheme of Table 4-2 by switching the code for Q11 followed

by Q1-5 with the code for Q10. This gives us the coding scheme of Table 4-6 below.

Table 4-6 Code table of Coding II:

Encoding | Current Quad Next Quad Code Num. of bits
Quad Q6 Q6 Ql1-5 1010 4
started Q6 Q6-13 1011 4
with Q7 Q7 Ql1-5 111100 6
Q6-13 Q7 Q6-13 111101 6

Q8 Q8 QI-5 111010 6

Q8 Q6-13 111011 6

Q9 Q9 Ql1-5 111110 6

Q9 Q6-13 111111 6

Q10 Q10 Q6-13 1100 4

Qi1 Q11 Ql-5 11100 5

Q11 Q6-13 1101 4

Q12 Q12 Q6-13 100 3

Q13 | QI3 Q6-13 0 1

Quad Q1 Ql Q1-5 00 2
started Q1 Q6-13 01 2
with Q2 Q2 Q1-5 1100 4

Q1-5 Q2 Q6-13 1101 4

Q3 Q3 Q1-5 1010 4

Q3 Q6-13 1011 4

Q4 Q4 Q1-5 1000 4

Q4 Q6-13 1001 4

Q5 Q5 Q6-13 111 3
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Table 4-7 Amortization analysis table of Coding II

Grouping Total | #of | Amort| #bits #occurrences of
Cost | quads | ized | saved this group
in Cost
group
(Q2, Q13) or (Q3,Q13) or 5 2 2.5 1 |Q2[+Q3+Q4|+
(Q4,Q13) or (Q6,Q13) |Q6|
(Q7,Q13,Q1, Q13) or 10 4 2.5 2 IQ7HQ9
(Q9, Q13, Q1,Q13)
(Q8, 013,01, Q13, Q1, Q13) 13 6 2.17 5 Q8|
(Q10,Q1,013) 7 3 2.67 2 Q10|
(Q11 followed by Q1-5, 8 3 2.33 1 |Q11 followed by
0Q1,Q13) Q1-5]
(Q11, followed by 6-13, 7 3 2.33 2 |Q11 followed by
Q1,013) Q6-13]
remaining(Q1,Q13) 3 2 1.5 3 IQ3}+1
Q5 3 1 3 0 Q5|
Q12 3 1 3 0 |012]
Then, the total cost for coding II is:
™M = 3Q-|Q13}-2|Q3]-3|Q8]-|Q10}-Q11 followed by Q6-13|-3 (10)

Secondly, we can modify the coding much more by switch the code for Q11 followed by

Q1-5 with the code for Q10 (as shown in Table 4-6), we can get the following

amortization table:
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Table 4-8 Code table of Coding III:

Encoding | Current Quad Next Quad Code Num. of bits
Quad Q6 Q6 Q1-5 1010 4
started Q6 Q6-13 1011 4
with Q7 Q7 Q1-5 10010 5
Q6-13 Q7 Q6-13 10011 5
Q8 Q8 Q1-5 111110 6
Q8 Q6-13 111111 6
Q9 Q9 Q1-5 11100 5
Q9 Q6-13 11101 5
Q10 Q10 Q6-13 1000 4
Q11 Q11 Ql1-5 1100 4
Q11 Q6-13 1101 4
Q12 Q12 Q6-13 01 2
Q13 Q13 06-13 00 2
Quad Ql Q1 Ql-5 000 3
started Ql Q6-13 111 3
with Q2 Q2 Q1-5 1100 4
Q1-5 Q2 Q6-13 1101 4
Q3 Q3 Q1-5 001 3
Q3 Q6-13 101 3
Q4 Q4 Q1-5 1000 4
04 Q6-13 1001 4
Qs Qs Q6-13 01 2
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Table 4-9 Amortization analysis table of Coding I

Grouping Total | #of | Amort| #bits #occurrences of

Cost | quads | ized | saved this group

in Cost
group
(Q2, Q13) or (Q3,Q13) or 6 2 3 0 |Q2[+Q3+Q4l+
(Q4,Q13) or (Q6,Q13) 1Q8|
(Q7,Q13,01,Q13)or 12 4 3 0 |Q7HQ9)
(Q9, Q13, Q1, Q13)

(Q8, Q13,Q1, Q13, Q1,Q13) 18 6 3 0 Q8]
(Q10,01,013) 9 3 3 0 1Q10]
(Q11, Q1,Q13) 9 3 3 0 Q11|

remaining(Q1,Q13) 5 2 2.5 1 IQ3}+1
Qs 2 1 2 1 Q5]
Q12 2 1 2 1 |Q12]

Then, the total cost for coding III is:

T = 3Q-{Q3lHQsHQ12l-3 (1)

Adding up equations (8),(9) and (10), we get

TA+TAD+TAI) = 3Q-Q13-2/Q3|-3|Q8lHQ11}-3
+  3Q-Q13}-2/Q3}-3]Q8|-|Q10}Q11 followed by Q6-13}-3
+  3Q-Q3QsHQ12)-3

]

9Q-(21Q131+|Q5HQ10HQ1 11+Q12])-7|Q3]-6/Q8]-9

By virtue of equation (4), viz. 2|Q13H+|Q5H]Q10-12}=Q, we get

Il

TEO+TAD+T(I) 9Q-Q-7|Q3}-6/Q8}-|Q11 followed by Q6-13}-9

8Q-7/Q3-6/Q8|-|Q11 followed by Q6-13}-9 (12)

< 8Q

Therefore minimum cost of the coding schemes I, II, Il is no more than

1/3(T+T(AD+T(ID)<=8Q/3=2.67Q (13)
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i.e., one of coding schemes I, II, or IIl is guaranteed cost less than 2.67Q ( since Q=V-

2=V, the cost may represented as 2.67 V as well) bits in the worst case.

Equation (12) suggests that it may be possible to get a tighter bound than 2.67V bits.

4.3 Summary

First, this chapter gives an encoding scheme which has an upper bound of 3.0 bpv. Then
after amortization analysis of three different coding schemes, a tighter upper bound 2.67

bpv is found.
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Chapter 5

Implementation and experimental results

In this chapter, the implementation of compression/decompression of quad meshes is

introduced in section 5.1. Then, the experimental results are presented in section 5.2.

5.1 Implementation

The overall geometry compression and decompression is implemented in windows 98
platform. All programs, except those used to convert from ASKII code to binary and vice
versa, have been written in Java; since Java is platform-independent, these programs are
portable to other operating systems. All programs converting between ASKII code and
binary one are compiled using the Visual C++ compiler. The implementation aspect of this

thesis is composed of two parts: one addresses connectivity compression while the other

addresses vertex compression.

5.1.1 Connectivity compression/decompression

Figure 5.1 illustrates the connectivity compression/decompression process. In the
compression process, program OEcomp takes OFEtable and Boundary list as input and
generates operation in ASKII format as output. The vertex data is partitioned into two

parts, one is InnerV (inner vertices) and the other is BoundaryV (boundary vertices). The
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operation is converted into operation.bin as binary format depending on the coding
scheme selected with the help of program Bitsmap.

In the decompression process, program BitsToOp takes operation.bin and the coding
scheme used as input and converts it to its ASKII counterpart, operation. Program
OEdecomp takes operation, InnerV, and BoundaryV as input and generates a new OFEtable
and boundary list.

The inter-relationships of the various modules are shown schematically in Figure 5-1.

5.1.2 Vertex compression/decompression

Figure 5.2 illustrates the vertex compression/decompression process. In the compression
process, program vertexComp takes Vertex as input, quantizes each coordinate into 8 bits
and generates Delta (Delta difference of the coordinates), bounding, and Huffman table of
the delta differences as output. Then these three files are used by the program DeltaToBits

to convert Delta (ASKII format) to Delta.bin (binary format).
In the decompression process, the program BitsToCode takes Delta.bin, bounding, and
Huffman table to extract Delta (in ASKII format). Once delta is available, program

vertexDEcomp converts the delta differences to vertex coordinates.

The inter-relationships of the various modules are shown schematically in Figure 5-2.
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5.2 Experimental results

Sample pictures of meshes without boundary are shown as Figure 5-3 , 5-4, 5-5. Table 5-1

shows the experimental results of quad mesh compression and decompression:

Table 5-1. Compression/Decompression time and compression size

Size Of
Numof | Num Of | compression |decompression| Connectivity
Quad Vertices time (ms) time(ms) (bytes) bpv
60 62 280 270 28 3.61
240 242 610 610 88 2.91
960 962 1320 1100 344 2.86
3840 3842 3510 4340 1364 2.84
15360 15362 12090 13350 5440 2.83
17414 17412 13409 14340 6172 2.83
61440 61442 44270 47790 21752 2.83
Note: 1.time is runtime on a Pentium 560, with other programming running;

2. ms is short form of millisecond;
3. bpv is short form of bits per veriex;
4. in the above examples, the mesh of 17414 quad is cow; all the other meshes are spheres.

If we draw a graph of compression/decompression time over the number of quad in the

mesh (in logarithmic scale), shown as Figure 5-6, it clearly shows the linear relation.

Table 5-2 lists the performance of three coding schemes discussed in Chapter 4. From this
table, we know for a large mesh, the cost of each coding scheme is smaller than 3.0 bpv.
This agrees to the results of section 4.1. Also, cost of III is smaller than 2.67 bpv, which
agrees with result. of section 4.2. Coding INI always has good performance probably

because Q12 happens very frequently compared with other operations (See equation 10 in

Chapter 4).
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Table 5-2 Performance of difference coding schemes

Size Of Connectivity(bytes) bpv
Num of |{Num Of]
Quad _ |Vertices ! I m I lo|m
60 62 28 24 20 3.6113.10/2.58
240 242 88 84 72 2.91 {2.7812.38
960 962 344 340 284 2.8612.8312.36
3840 3842 1364 1360 1128 [2.8412.83|2.35
15360 15362 5440 5436 4493 |12.8312.83|2.34
17412 17414 6172 6088 5156 |2.8312.80]2.37
61440 61442 | 21752 | 21748 | 17944 |2.83 12.83{2.34
Table 5-3 Overall performance of geometry compression
File Num Num Huffman
Size Of Of comnectivity | vertex.bin table Overall overall
(bytes) Quad Vertices (bytes) (bytes) (bytes) bounding (bpv) compression ratio
3708 60 62 28 112 436 45 10.02 5.876
15,662 240 242 88 560 1136 27 7.48 8.613
66,888 960 962 344 2320 1706 27 4.57 15.196
288,538 3840 3842 1364 8420 1959 29 3.06 24.50
1,224 604 15360 15632 5440 28876 2035 31 2.33 33.66
5,197,754 61440 61442 21752 93840 2157 31 1.92 44.13
Note: 1. 8 bits quantization level is chosen for vertex compression;

2. Overall compression ratio is calculated using equation Cost(input files)/Cost(Output files, which

include operation.bin, vertex.bin, Huffman table, bounding). Huffman table and bounding are in text format.
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Figure 5-4 Sphere mesh with 960 quads and 962 vertices
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Figure 5-5 Cow mesh with 17412 quads and 17414 vertices
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Figure 5-6 Compression/Decompression time over size of input (logarithmic)
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Table 5-3 lists the overall performance of coding scheme 1. From this table, we see the
overall compression ratio increases with the increasing of input file size. This is because
Huffiman table is not increasing substantially with the increase of input size. But its size is
relatively big compared with the binary files (operation.bin and vertex.bin) when the input

file size is small.

3.3 Summary

This Chapter gives the implementation details of both quad mesh connectivity
compression/decompression  algorithms and vertex compression/decompression
algorithms. Spheres and cow meshes are used for experiments. The experimental results
illustrate the linear time compression/decompression processes and 2.67 bpv upper bound

of the encoding schemes.
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Chapter 6

Conclusions

This chapter gives a brief summary of the topics discussed in this thesis. Then, the major
contributions of the thesis are presented. Finally, future areas of improvement for this

thesis are discussed.

6.1 Summary

The field of geometry compression involves studies of how to succinctly represent a mesh.
A mesh may be represented by its vertex data and its connectivity. Vertex data comprises
coordinates of the associated normal vectors and textures. Connectivity captures the

incidence relation between polygons of the mesh and their bounding vertices.
Vertex data may be compressed through various forms of vector quantization. Most
approaches use predictors and encode corrections of predicted value. Both the encoder and

decoder use the same prediction formula.

There are three different approaches of connectivity compression: efficient rendering,

progressive transmission, and maximum compression.
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Although triangle meshes are used most frequently and studied extensively, quadrilateral
meshes are used a lot in scientific applications. Traditionally, the problem of connectivity
compression of quadrilateral meshes is solved by triangulating the mesh first and then
compressing it using triangle compression techniques. This strategy may introduce
additional cost. Some researchers have attempted to compress polygon meshes without

prior triangulation.

6.2 Major contributions

There are three major contributions achieved in this thesis, which have been illustrated in

chapters 3,4 and 5. The following is a summary of these contributions:

Improved data structure for linear time encoding

In chapter 3, an improved data structure (Opposite Edge table) is proposed for
compression and decompression of quad meshes in linear time. This data structure stores
four opposite edge labels for each quad, and this information proves to be extremely useful
to retrieve a quad which is adjacent to the current quad. This data structure is also easy to
implement. While using traditional data structures, we need O(n) time to find adjacent

quads of a quad, therefore we need O(n?) time to compress the quad mesh.

Extension of Spirale Reversi algorithm to quadrilateral mesh
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Although Spirale Reversi decompression for non-triangle meshes has been mentioned by
Kronrod and C. Gotsman [48], they never give a detailed explanation in their publication.
This study, to the author’s knowledge, presents the first detailed description of the Spirale

Revesi decompression process of quadrilateral mesh.

Improved upper-bound coding

The best known upper-bound is 3.5 bpv for direct connectivity compression of quad
meshes homeomorphic to a sphere. This has been proved by Kronrod and C. Gotsman
[48]. Chapter 4 first presents a 3.0 bpv coding scheme for quad meshes, and then gives a

new coding scheme which further improves the upper bound to 2.67 bits/quad.

Experimental results reported in Chapter 5 confirm these theoretical estimates very well.

6.3 Future work

The data structures and algorithms described in this thesis are capable of handling mesh

homeomorphic to a sphere. A modification of the algorithms and data structure is needed

to handle meshes with holes or handles.

Experimental results show that coding scheme III always has a very good performance for

large meshes. This may be proven theoretically.
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We conjecture that the upper bound on the coding scheme reported in Chapter 4 can be

further improved to a value less than 2.67 bpv.
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