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ABSTRACT

In this thesis, we address the problem of computing laminar incompressible
viscous flows. For such flows, there are various possibilities for the formulation of the
problem. These include primitive variable (velocity and pressure), velocity-vorticity and
stream function- vorticity formulations. Zach has its own strengths and weaknesses.

In the stream function-vorticity formulation for two-dimensional flow, the
difficulty is primarily associated with determination of vorticity at a boundary. In this
thesis, we employ a variation of the stream function-vorticity formulation whereby
incompressible, viscous flow in an internal complex geometry is formulated in terms of
von Mises coordinates. That is, stream function is used as an independent rather than
dependent variable. This formulation provides a rectangular computational domain with
both Dirichlet and von Neumann boundary conditions for unknown functions, the vertical
cartesian coordinate and the vorticity, in terms of the horizontal cartesian coordinate and
the stream function. The governing second order nonlinear partial differential equations
are solved by SLOR on uniform and, if required, clustered grids. A number of
procedures for surmounting the problem of determining vorticity at a boundary are
available, A novel approach to this problem is applied in this thesis.

A difficult, but well-documented, test problem was chosen to study the
applicability of the von Mises formulation in viscous flows. It has been shown that
extreme care must be taken in applying von Mises coordinates to viscous flow situations.
In particular, viscosity is known to generate vorticity in the flow field and to cause,
under appropriate conditions, flow separation. Of these two phenomenon, rotational flow

and viscous separation, it is shown that rotational effects can be handled with no more

(iv)



difficulty than experienced by conventional methods. However, separation cannot be
handled directly by the von Mises formulation, and erroneous results may be obtained
if not used carefully. This presents a challenging problem which has been overcome by
developing an innovative way to predict the location of the streamline which divides the
main flow from the recirculating region. In this way, the von Mises formulation can be
used to study separated 2D viscous flows. This approach is used to predict the re-
attachment length for the flow over a backward facing step and the results, when

compared to other numerical data, confirm the appiicability and accuracy of the method.
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CHAPTER 1

INTRODUCTION

The basic tools used by engineering and mathematical researchers to gain an
understanding of the various physical phenomena associated with the dynamics of fluid
flow are mathematical analysis (exact or non-exact solution methods), experimental
(testing) and computational methods. Before the development of high-speed computers,
experimentalists developed various simple devices to make measurements of flow
quantities of particular interest to them. Analytical researchers then tried to duplicate
these experimental results using fairly simple mathematical models and analysis to
provide further guidelines to the experimentalists. Then the process was repeated,
sometimes with the analysis leading the experimentation.

As the design of modern high-speed computers has become more and more
sophisticated, there has been a greater demand for more detailed and accurate numerical
analysis of the flow fields under investigation instead of using costly experimental
methods, e.g., wind tunnel testing and prototype development. This need has made
computational methods more than an equal partner with experimental methods in efforts
to analyze complex fluid flow geometries.

Prior to about 1970, many papers appeared on the numerical solution of the
Navier-Stokes equations governing the flow of a viscous incompressible fluid in an
internal complex geometry. See, for example, a list of over 300 papers in the Ph.D.
dissertation by P.J. Roache [L.1]. In the past ten years or so, more authors have taken
an interest in this type of problem. For example, in order to stimulate a fruitful debate

among computational fluid dynamics (CFD) specialists and to assess the capabilities of



various numerical methods to deal with laminar flows in complex geometries, the
International Association of Hydraulic Research (IAHR) Working Group on Refined
Modelling of Flows decided to devote its Fifth Meeting to this subject in 1982. This
meeting will be discussed in detail in Chapter III of this thesis.

There are various possibilities for the formulation of the problem of viscous
incompressible flow. These inciude primitive variable (velocity and pressure), velocity-
vorticity and stream function-vorticity formulations. The general solution procedure
consists of discretizing the differential equations and boundary conditions over the fluid
flow region and solving the resulting system of algebraic equations. Finite difference
methods are employed in the discretization in this thesis. In general, when the full
Navier-Stokes equations in terms of velocity and pressure (primitive variables) are
solved, a specified velocity or velocity gradient (usually zero) must be given at the last
downstream station due to the elliptic effect of the streamwise diffusion term. The
upstream boundary conditions consist of specified velocity profiles at the upstream
location. Along a non-porous body surface, the no-slip boundary conditions u = v =
0 are applied. For a line of symmetry, the normal velocity component and the normal
derivative of the longitudinal velocity component must be zero. A downstream pressure
boundary condition is needed. This boundary condition can either be a specified value
of the pressure or a specified value of the pressure gradient in the direction of flow.
This specification of boundary conditions on pressure can lead to serious numerical
difficulties. However, the primitive variable approach offers the fewest complications
in extending the calculations to three dimensions.

The velocity-vorticity approach requires the voriicity equation, the continuity
equation, and the equations that define vorticity in terms of velocity gradients. A
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combination of the continuity equation and the definition of vorticity can be made after
differentiation of both equations. This yield elliptic equations for the velocity
components. An inconvenience of the velocity-vorticity formulation is that pressure is
not directly obtained and consequently additional calculations are required for its
determination.

For two-dimensional and for axi-symmetric flows, in order to overcome some of
the above difficulties, it is convenient to introduce stream function and vorticity as
dependent variables. The equation of continuity is automatically satisfied and the
resulting system consists of two coupled nonlinear equations which are solved
numerically by some iterative procedure. In the stream function-vorticity formulation,
the difficulty is primarily associated with determination of vorticity at a boundary. In
this thesis, we employ a variation of the stream function-vorticity formulation whereby
the flow is formulated in terms of von Mises coordinates.

Aside from the fact that these coupled equations are nonlinear, there are several
other difficulties associated with their solution. One of the majcr difficulties is that the
values of vorticity on no-slip boundaries are not known a priori, while these values are
needed in order to solve the discretized problem. In terms of von Mises coordinates
another major difficulty is specification of the vertical cartesian coordinate, once the
transformation has been made, on dividing streamlines between recirculating and non-
recirculating flow and on free surfaces. The flow domain of the problem can also
introduce other additional difficulties in the numerical method. Some authors prefer the
use of velocity-pressure formulation of the Navier-Stokes equations in order to avoid the
difficulties arising from the introduction of vorticity. However, as noted earlier, the
pressure equation is complicated aﬁd introduces its own additional difficulties.
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In order to test a numerical method, it is customary to choose a simple model
problem. Whatever choice is made mathematically, it is usually non-trivial because of
singularities that often arise at corners, Several numerical methods have been proposed
in the literature differing in the choice of discretization schemes, the boundary
approximations used to define vorticity on no-slip walls and the methods used to solve
the resulting system of algebraic equations. Whatever test problem is chosen to be
solved by whatever computational method, the numerical solutions are usually compared
in terms of the values of stream function or vorticity at some representative points and
also by comparing the values of certain parameters of the flow. Both techniques are
employed in this thesis.

A primary difficulty in most cases is to choose a coordinate frame that simplifies
both the correlation of measured data and the construction of predictive models. In
analyzing fluid motions theoretically, cartesian coordinates are commonly adopted.
However, Cartesian coordinates are not always the best choice. For example, the
rectangular cartesian coordinate system may not be the appropriate choice since the
physical interpretation of many quantities becomes elusive when flow direction and
coordinate direction do not coincide. To estimate changes in properties of the flow
between two points on a streamline requires integration along a curve, generally a
complicated operation. Also, there are practical difficulties in aligning instruments
accurately with some externiaily imposed rectangular frame.

The obvious choice has been to choose curvilinear coordinates. If cne coordinate
direction ¢an be chosen almost parallel to the mean flow direction, then extra terms
arising from deviation of the mean flow from the coordinates may be small enough to
be approximated in calculation schemes or ignored in interpretation of measurements,
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For instance, it is better to use cylindrical coordinates for flow around a circular cylinder
or the flow in a circular pipe and to use spherical coordinates for the flow around a
sphere. This is because proper coordinates can be chosen corresponding to the shape of
boundaries.

In the early 1970’s, Martin {1.2] introduced a natural curvilinear coordinate
system (¢,¥) in the physical plane (x,y) where W is the stream function, to study the
geometry of certain steady two-dimensional, incompressible, viscous flows. This
formulation has been used by Grossman and Barron [L.3] to numerically investigate
incompressible, irrotational, inviscid flow over symmetric airfoils at zero angle of
incidence. They have chosen the coordinate system to be orthogonal which, in their
case, implies that the curves ¢(x,y) = constant are potential curves. They found that it
was not possible to determine analytically where the leading and trailing edges are
mapped into the (¢,) system and that numerically obtained values for the leading and
trailing edges are not very accurate, resulting in inaccuracies in the solution near these
points. During a further study of incompressible, irrotational, inviscid flows, Barron
[1.4] introduced von Mises coordinates (x,¥). Using these independent variables, one
knows exactly where the leading and trailing edges are mapped in the (x,¥) plane and
inaccuracies in the solution near these points can be eliminated [1.5].

The purpose of this dissertation is to study the feasibility and advisability of
applying stream function coordinate methods to viscous flow problems. This dissertation
extends Barron’s approach from that rjf two-dimensional, steady, incompressible,
irrotetional, inviscid flows to the case of viscous flows. In Barron’s approach the
coordinate y is taken as the stream function for the flow being considered. This
approach automatically provides a rectangular computational domain (x,V), and the need
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to do grid generation is avoided except possibly in regions of recirculating flow. This
is very significant since it reduces the equations to be solved by two. The flow equations
are transformed into von Mises coordinates and solved subject to appropriate boundary
conditions, which can be formulated as Dirichlet and von Neumann conditions. Since
a boundary coincides with a streamline, as long as separation does not occur, the
theoretical treatment becomes easier when choosing streamlines as coordinate axes.
However, the basic equations become more complicated, which makes them more
difficult to solve. This means the method has merits for some types of flow.

Each of the chapters of the dissertation is now briefly described. In Chapter II,
the two-dimensional, steady, incompressible, viscous flow equations, first in (¢,¥)
system and then in the (x,y) system (unstretched), are derived. The flow equations are
also given in the (x,¥) system in stretched coordinates (¢(,m). A description of the
numerical discretization and basic solution algorithm are also provided in Chapter IL
Chapter III discusses a well defined test problem, the laminar flow through a non-trivial
configuration, namely flow through a smooth expansion channel. Difficulties with flow
in the weakly separated region (i.e., small region of recirculation) are discussed. This
problem is not fully resolved by the method of solution proposed in Chapter II. Chapter
IV presents a solution to a problem in the inviscid limit of zero viscosity. Since the
problem of recirculation is not fully resolved with the test problem in Chapter III, this
problem is chosen since the flow is still rotational, but no viscosity is allowed. Hence,
recirculating flow is eliminated. The problem is hyperbolic-cosine shear flow about a
‘circular cylinder. Chaptei' V presents the solution to the flow over a backward facing
step along with appropriate boundary conditions. The reattachment point of the primary
recirculating region is predicted and the calculated results compared to values obtained
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experimentally or by other numerical methods. Difficulties with flow near regions of

discontinuity resulting in singularities in the flow parameters are discussed.



CHAPTER II

GOVERNING EQUATIONS

2.1 DIFFERENTIAL GEOMETRY

We first refer to some results from differential geometry which are essential for
our purposes (cf. [1.2] and [I.4]).

Consider a coordinate transformation between cartesian coordinates (x,y) and
some arbitrary curvilinear coordinates (¢,¥) defined by

T-T6.9) @10

where T = (x,y),1.6., X = x{$,¥) y = y{ih,¥) (See Diagram 2.1.1). Assume that the

Jacobian J, defined by J = | T, x T, | = Xg¥y - XY, is non-zero in the region of

interest. The squared element of arc length along any curve can be represented by

ds? = dT- dT = E(¢,¥)d¢? + 2F(¢,¥)dddy + G(o,¥)dy’? 2.1.2)
where
E = -1";-}; - xi + yi
F - _r;_r; - XX, * VoY, (2.1.3)

- 2 2
G-r¢-r¢-x,,,+y,,,

are the metrics of the space under consideration (coefficients of the first fundamental

form).



22 FLOW_ _EQUATIONS FOR TWO-DIMENSIONAL, STEADY,

INCOMPRESSIBLE, VISCOUS FLOW

The Navier-Stokes and mass conservation flow equations for the two-dimensional,
steady (meaning stationary), incompressible (constant density), viscous flow in terms of

physical or rectangular coordinates (x,y) are, in dimensional form,

u; + v = 0 (continuity) (2.2.1a)

(momentum equations) (2.2.2a)

p(UV;+V¥;) + By = u(Vm * V)
where i, ¥ are velocity components in the x and y coordinate directions respectively, p
is pressure, p is the constant density and p is the viscosity. The bar over a variable

indicates its dimensional form. Defining a vorticity furction & = @&(X,¥) and energy

function b = h(x,y) by

& = V- Uy (vorticity) (2.2.32)

h = %@ + V) + P (energy) (2.2.4a)
equations (2.2.2a) can be written, eliminating pressure p, as
by - 2V = - u &

(momentum) (2.2.2b)
hy + 506 = pix
Equations (2.2.1a), (2.2.3a) and (2.2.2b) constitute a system of four non-linear partial

differential equations in four unknown functions: & and ¥ are the velocity components,



@ is the vorticity and h is the energy. The state equation (9 = constant) and energy

equation (2.2.4a) along with the preceding system of four equations constitute a complete

system of equations.

Nondimensionalizing with respect to a characteristic length L and speed U,

according to

X =1x
y=Ly
i=U,u
v=U,v

h = pUkh
@ = U, w/L
p=pUp

flow equations (2.2.1a), (2.2.3a), (2.2.4a) and (2.2.2b) become

i, + vy, =0
hy-vo=- —
L3
hy + uw = — o
[
W=V, - U,
where,

h=%w+v)+p

(continuity)

(momentum)

(vorticity)

(energy)

10

2.2.5)

(2.2.1b)

(2.2.2¢)

(2.2.3b)

(2.2.4b)
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and R =

is the Reynolds number.

The equation of continuity (2.2.1b) implies the existence of a stream function

¥(x,y) such that

u =y,
v =y (2.2.6)
Appendix A contains a presentation of equations (2.2.2¢) and (2.2.3b) using (2.2.6) in
an alternate form more familiar in the literature. We will use one of these forms later
on in this thesis (equation (A.1)).

Following Martin [1.2], we now proceed to write equations (2.2.1b), (2.2.2¢),
(2.2.3b) and (2.2.4b) in the (¢,¥) curvilinear coordinate system where ¢ = ¢(X,y), ¥
= Y(x,y). The essential feature is that rather than consider an arbitrary (¢,¥) net,
Martin chose Y = constant curves to correspond fo the streamlines and the function
¥(x,y) to be the stream function defined in equation (2.2.6). Since the flow moves along
the streamlines, this is a natural choice of coordinate system on which to do a numerical
calculation [I.4]. For the present, the curves ¢(x,y) = constant are left arbitrary, to be
chosen in a convenient manner later. We assume the Jacobian J # 0 anywhere in the
flow region and that the fluid flows along streamlines y = constant in the direction of
increasing ¢ so that J > 0. In this manner the curvilinear coordinate system is more
definite, being tied analytically to the actual flow problem. According to Barron [I.4],
a second important aspect of Martin’s method (to be seen shortly) is that the physical

variables (u,v) are replaced by the geometric variables E, F and G in the flow equations.

Hence, the metric coefficients E, F and G are determined as part of the solution of the
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flow equations.
Considering E, F, G, h and « as functions of ¢ and ¢, flow equations (2.2.1b),
(2.2.2c) and (2.2.3b) along with (2.2.4b) are transformed to the (¢,4¥) coordinate system.
Martin [I.2] has shown that the continuity equation (2.2.1b) is equivalent to

(nondimensionalizing)

q? = u? + v? - (continuity) (2.2.1¢)

| o

where ]2 = EG-F%

Hence the energy equation (2.2.4b) can be written as

h= — +p (energy) (2.2.4¢)

Martin has also shown that the momentum and vorticity equations (2.2.2¢) and

(2.2.3b) become (again nondimensionalizing)

1

Ghy - F(hy + o) = - =

]0.14,

(momentum) (2.2.2d)

_Fh, + Eh, + ©) = - ﬁl_ Jo,
Pl (E (vorticity) (2.2.3¢)
5).- 5],

12



Equations (2.2.2d) can be written as (Barron (1.4]) (see Appendix B'),

ha-tlE,_ LE,

? T R T (momentum) (2.2.2¢)
h--—m+_!_.9_w-—_1.£w

v R,J * R T*

Finally an equation referred to by Martin as the Gauss equation, states that the

Gaussian curvature K is zero. That is,

1 I 2 NER - {Gauss) (2.2.7)
g [[an). (33,

where T, and Iy, are Christoffel symbols, and

2 - _FE¢+ZEF¢_EE‘P
" 22

%2 - EG¢_FE¢’
252

For a plane provided with a curvilinear coordinate system (¢,¥), the Gaussian curvature
always equals zero.

Equations (2.2.2e), (2.2.3c) and (2.2.7) are four partial differential equations for
the five unknown functions E, F, G, h and w. This system is underdetermined becausg
of the arbitrariness of the curves ¢(x,y) = constant chosen to define the coordinate

system. In the next section a choice for ¢ = ¢(x,y) is proposed which provides

The reason for including what appear to be simple and obvious derivations in the
appendices is either for completeness or because this is the first time the equation appears
in the literature.
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boundary conditions in a simple form for numerical calculations and removes this
arbitrariness. It will be shown that Gauss’ equation is automatically satisfied for this
choice of ¢ since E, F and G will then be known in terms of a single unknown function.
This will be shown to reduce the four equations eventually to two equations in terms of
only two unknown functions, this new function and the vorticity w.

Of course, other choices are possible (and perhaps desirable in certain flow
configurations), such as requiring the grid system to be orthogonal. However, these lead
to additional equations to be solved and the boundary conditions are more complicated.

2.3 THE VON MISES TRANSFORMATION

As indicated in the previous section, in order to remove the arbitrariness in ¢ =

é(x,y), it is convenient to choose

d(x,y) = X (2.3.1)

so that the equations of motion (2.2.2¢) and (2.2.3c) and the Gauss’ equation (2.2.7) are
formulated with (x,y) as independent variables rather than (¢,y), i.e., von Mises
coordinates.

Using equation (2.3.1) in the expressions for the metric coefficients E, F and G,

equations (2.1.3) give the metrics in terms of a single unknown function y = y(x,¥):

E=1+y}?
F = y,y, (2.3.2)
G =y}
The Jacobian J becomes
J=y, (2.3.3)
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The continuity equation (2.2.1c) becomes, using (2.3.2) and (2.3.3),

1+y,f

g? = u? +v? = . (continuity) (2.3.4)
Yo
From (2.2.6),

u - _yl_ - ¥,
“’ 2.3.5)
Yz

Ve —= qu -_'lbx
v

Using (2.3.2) and (2.3.3), the energy equation (2.2.4c) becomes

2
1+y, .
2y%

h = P (energy) (2.3.6)

The momentum equations (2.2.2¢) become, using (2.3.2) and (2.3.3),

(momentum) (2.3.72)

1
h, = -0+ 'ﬁ;[y\;"’x‘)’x"’w]

The vorticity equation (2.2.3c) becomes, using (2.3.2) and (2.3.3)

1 [ 1+y2 ) (vorticity) (2.3.82)
Y~
v

Finally, Gauss’ equation (2.2.7) is automatically satisfied since it is equivalent to y,, =
v, for all (x,¥), ie., the transformation identically satisfies (2.2.7). Since the

coordinates (¢,¥) satisfy Gauss’ equation in order to form a curvilinear net, the von
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Mises transformation also must satisfy it so as to form a curvilinear net (x,¥) (cf.
Appendix C).

1t should be noted at this point that we have transformed the equations of motion
in terms of rectangular cartesian coordinates (x,y) to a curvilinear coordinate system
(¢,¥) using Martin’s method. Then, using the von Mises transformation, we further

transform the flow equations to another curvilinear coordinate system x,¥).

(x,y) - (¥ = (¥
physical plane curvilinear computational
plane plane

This is actually the starting point for this thesis. The streamlines i = constant, which
are curved in the physical plane, are mapped to horizontal straight lines in the
computational plane.

Equations (2.3.7a) and (2.3.8a) will now be written in a more convenient form
to serve as the starting point for the numerical work which will follow.

Expand equation (2.3.8a) to get

Y30 = Yo 20 e {1+ Y2 (2.3.8b)

Define the operator

2 8 92 2\ &
=y, —. -2 — | —
LU Y =Yoo Wivray + (1eyd) YR

Then, equation (2.3.8b) can be written as

Ly} - yjo = 0
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For use later, the above equation is written as

L{y} - yiwy‘, -0 (vorticity) (2.3.8¢)

where y = y(x,¥).

Eliminating h from equations (2.3.7a), using h,y = hy, yields

L{w} - R, y,0, - yiow, = 0 (2.3.7b)

where » = w(x,y) (cf. Appendix D for a derivation of this equation).

Equations (2.3.8c) and (2.3.7b) are two elliptic partiai differential equations which
must be solved for the two unknown functions y = y(x,¥) and o = w(X,¥). The
boundary conditions associated with these equations are problem specific and will be
discussed in later chapters.

To find the pressure, we use the equations (2.3.7a) to get an equation for energy
h = h(x,¥) and then use equation (2.3.6) to solve for the pressure p = p(x,¥) (cf.

Appendix E).

2.4 NUMERICAL ALGORITHM

2.4.1 Finite Difference Formulation

The equations will be solved by approximating derivatives by finite differences.
Hence, the equations to be solved, i.e., equations (2.3.8¢c) and (2.3.7b), in difference

operator notation, are respectively:

[Afi")% + BP,, + CP3,, + BB 4] yo&r - 0

gy Vx¢
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and

[AFVs, + BES,, + CF*0%,, + ReD{™, + EQ™5, ] o™ = 0

or rewriting these two equations in a more compact notation

[Ag"au + BPs,, + CP5,, + aReD’s, + E-S"a,,] i -0 (2.4.1.1)

where,

) if =0
¢ - {ZE’Q% if aml

are the unknowns and,

n if ¢=y

n+l if ¢=w  (except in EJ® where w, is at (n))
is the iteration number.
The operators d,,, 8,,, 844, 8, and &, represent 3-point central difference operators,

and are difference approximations to the partial derivatives in (2.3.8¢) and (2.3.7b).

The coefficients A®, B;®, C;®, D;¥ and E;® in (2.4.1.1) are:

AP - (5.,

BY - =2(3.y){3,¥)

o -1+ (oo (2.4.1.2)
D = {8),



The 8,y and &,y are approximated using 3-point central differences, namely,

yi+ '_Yi- j
(8), = =

Yiger " Yign
(a\Py)jj - W

Using 3-point central differences is acceptable for small R.. However, as in the
conventional stream function-vorticity formulation, the convective term in (2.4.1.1) may
have to be upwind or backward differenced for larger R, i.e., upwind the vorticity term

(8,w); in the expression R.D;(d,w);, namely

W..—0).
Gy = —izx—” (2-point)
3. 4w, W, 4
)y = j ZIA_;) 124 (3-point)

Numerical instabilities of explicit finite difference methods can be simply related
to the familiar concepts of static and dynamic instabilities. Although not a consideration
in this thesis, dynamic instabilities are caused by too large a time step. Static instabilities
result from the form of the finite difference equation. For non-oscillatory solutions,
limitations on the maximum Reynolds number, R,, based on the finite difference cell size
or the characteristic length Ax or Ay, called the cell Reynolds number or Peclet number,
are necessary. Oscillatory solutions may occur if the cell R, is too large. Whether they

actually do occur depends on the flow geometry and imposition of boundary conditions.
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However, a first-order accurate method, using upwind differences for the convective term
in (2.4.1.1), although feasible in principle, is not recommended, insofar as the effective
R, of the numerical solution is lowered by the numerical viscosity introduced by the first-

order accurate upwind differences. This point will be discussed more fully in Chapter

I11.
2.4.2 Solution Procedure

By using 3-point central difference approximations, equation (2.4.1.1) can be

expressed as

Al &} &)

L (¢,_14_2¢ ‘b"[d)(nq) + 4AX Aw(d’ulqd ¢1—1J-

(k)
1
'¢i+1.j-1'¢i-1,j+1)(m) +

5 '1(’2 by 20y )"

CIR D? ® E(k)
&

ij (d’n.]d_d). l.J)(nu.‘l) + 1) ((jb

2A¢ el -.i-x)(m) -0

By rearranging, we have

{n+l)
¢’|-1.,|+1

{k)
B AX gan | A0 aR Dy Ax o@D _B® Ax
1] 4A¢' I—I.Jl i ——"'_'2 i-1.4 u 4All/

Ax Ax (n+1) & [(3) sz a+l)
. [c,ﬁ"’m f'k)zaw]“b”" -2[Aij’ + C __] ‘

ag |
+ C(k).é_)_{i E(k) Ax? (b(ml) B Ax ¢n¢1) (2.4.2.1a)
"ag 2Ag ) Bi’ 7oy P

®
©  oRDyAX | @ B® AX @)
+ [Alj + "'—_23"—] ¢1<-]J 1_| 4A1‘b ¢|oi.]+l -
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which can be abbreviated as follows, where ¢ is at (n+1)

by diggn  + (a; - dy) diiy by by
+(c; - €)dija 2(a; + ¢y by + (C; + &) dijn
bidi1;a T (a; + d)diy; t+ by birij =
where
a; = AP
Ax
b, = B ==
v b 4Ay
w© Ax?
d; = RDY X

2
e, = E-(-k) ‘_A_x_
' v 24¢

(2.4.2.22)

(2.4.2.32)

For a rectangular domain meshed with an IX x JX grid, with known boundary

values ¢; on the four boundaries where i = 1 or IX, and j = 1 or JX, the finite

difference equations (2.4.2.2a) can be expressed in block tridiagonal matrix equation

form as

_ = ] (a+])
B, C, | ¢,
A4 B4 -&;4

A, B, C, '65_
Ay Bn_
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where,

T
—a+1) m+1) (n+1) (n+1)
d)i - [¢Q ’ 3 . ' ]| ]

is the solution vector along grid line i fori = 2,3 ..., I1. Herell = IX-1,12=1X-
2,J31=JX-1andJ2 =JX-2.
Matrices A;, B;, and C; are J2 x J2 tridiagonal matrices which can be expressed

as

3gj<ll 2sj=<]l 2sj<I2
A, - trid [for I=i=zll [ b, a;-d; -by ]]
3gjsil 25jsh 22j=12
B, - trid [for 2<i<Ii [cﬁ—eij -2(a;+cy) cﬁ+eij]]

[}

Igj=n  2£j=E)1 2=j=12
C, - trid [for 2=<i=I2 [—bij a;+d, by ]]

Abbreviating the above, we have

A, = trid (b, a;-d;, ~b;)
B, - trid (c;-e;, -2(a;+c;), C;vey)
C, = trid (-by, a;+d;, b,)

For example, if i = 3, we have
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y N
ay-dy, by
by ay-dy ~bs,
A, -
i by ;1 a3 5=y i
-2(ay+Cy,)  Cpten
Cpy—€y;  —2(53+C5)  Cytes
B, -
i Cs1~C '2(03J1+C3;1)_
aytdy, by,
—by,  Gyutd by
c, -

~by Gy +d3..u_

RI;"Si isaJ2 x 1 column vector which contains the boundary conditions and can

be expressed as follows:
Fori =2ori=1I1,andj = 3,4,..,J2

7bi2¢ir-y.1—(ai2+‘ydi2)¢'i+-r,2_7bi2¢i+7,3

_'Ybi2¢i—-{.1_(ci2_ei2)¢il
RH S, = 'Ybij¢i+-y.j-l_(aij+‘ydij)¢i+-f.i_‘ybi.i¢i+‘v-i+1

Tbi.!lqbiw.lz_(ai.ll+7di..ll)¢iw..!1 -0 0Py x|

+7bi,n¢i-y.1x'(ci.n +ei.s1}d’i,.rx_
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where

-1 if i=2
1 if i=Il

Or more explicitly, if i = 2, then, for j = 3,4,...,12

I

Ifi =11,

RHS, -

L

b, 1 (1 x—P1) ~(@ 0= G2)¢0

bn,z(‘ﬁrx,l'¢m.3)'(all,z+dll,2)¢’n<.2 T

bn.n(d’mgz"‘bm,m) -(@y 5+ )P

b22(¢13_¢11)'(322“d12)¢12 W
+hythy —(Cp—€p) Py

sz(d)l,ja-l_d)lj-l)_(a!j_d?j)¢lj

'b2.11¢3.m_(c2,11 +ez.n)¢2.1x_

=by; %1, ~(Cy o€, )%n,

by (P j1~Prxor) —( 4y Py

+by 1P {Cu +ell.ll)¢ll..’lx_
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For3 =i <12,

-byd;.1.1~CoC)Pa Dy
G
RHS, -
0
_bi.n‘ibiq,lx"(ci.u +&, )Py x “bi,]lé’id.lx_

The matrix equation is solved by an iterative method. The basic procedure is to
obtain the solution using the method of successive line over-relaxation (SLOR), sweeping
from left to right through the grid. The matrix equation (2.4.2.4) can be written

vertically line by line so that on line i, we have

BF - REs, - ABY -

[ R

In pointwise form, this can be written as

(B#:™); - RHS, + bﬁ(‘f’?j;.lfll - ¢?-';.?-l) - {8y - dy)ls)
b B8 - 60 - (g, + )00,
- RHS, + b6 - 5% + 6% - 60)
oy - )6t -l + dotl
for all interior points, i.e., i = 3,4,...,J2and j = 3,4,...,J2. Due io the boundary
conditions along j = 1,j = JX, i = land i = IX, we obtain the following.

Ifj = 2,
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(B3], = RHS, - (a;-d,)oi52 - (6,+4) e

(n+) ()
“‘b.-_:( i-13 ~ 45.-4.3)

Ifj = J1,

(B -‘(M)]n RHS:‘,JI ( i1 n,n)‘bs(ml',lJ)I - (a;..u‘“dm)ﬁbg?ul

'bu;( E'-'I,IJ)Z - ¢|(:)1.J'.’)
For i = 2, for all j we have
[B _Tn+l)]j - RHS z’i((‘bgﬂ}-l _ ¢§H}+l) - ( CF dzj)¢(ﬂ}

If however j = 2, this further reduces to

_'(’H'l) ()] @)
B¢, 1, - Sp = bypdn - (azz * dzz) 32

or, if j = J1,

"(m- ) {n)
[B,¢ l)].u - RHS,,, + bz..r:qsg:ﬂ - (az..u + dz,u)q"ul

For i = 11, we have, for all

"‘( +1) (n+1) (n+1) (n+})
[BI " ]j RHS"J + b"‘,(d’lgjd - ¢l;J-1 - (a;” - duJ)d’IZJ
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If j = 2, this reduces to

—iin+l) (n+1) (n+1)
[B,d,; ), = RHS,; + by.bn3 - (@ - dy2)én

and, ifj = J1

~n+l) {n+1) (n+l)
B,é; 1, = RHS,; - by sz - (an.n - duJ:)¢I!.JI

—=(n+1)
¢;

Having obtained , and calling these values T | a modified or

relaxed value _.(;"“ can be obtained by using a relaxation factor 3, and the following

expression:
—‘(m-l) (1 B )E,;(in) i B ""(ml)
wherel < 8, <2ifa=0(@e,d=y,8, =8)and0 < B, < lifa=1(@e,¢

= w, B, = B,). Thatis, y is over-relaxed and v is under-relaxed.

2.4.3 Tterative Procedure

1. Set o = 0 (therefore $ = y, k = n). Linearize by evaluating coefficients

at previous iteration level (n) as indicated in equation (2.4.2.1a). Solve for yi Y using
SLOR.

2. Evaluate near-boundary values of the speed from

(o+1) o+
@o - | L@ S 2.4.3.1)
4 (6 ‘by)'z AGD
i i
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for j = 2, 3, 4, ..., (near lower boundary) and for j = J1, J2, 13, ..., (near upper
boundary) as needed for evaluation of & at the boundaries (cf. Section 2.4.5).

3. Evaluate boundary values of the vorticities w;, and w5 from appropriate
formulas. Call these values &, and &,,x®*". Obtain under-relaxed boundary values
wyr®*? and o; ®*" by using a smoothing Of damping parameter & (see computational

preliminaries in next section for choice of d):

GO - (1-8)6® + da§ ", 0<8=1, j-1and JX.

4, Set @ = 1 (therefore ¢ = «, k = n-+1). Linearize by evaluating
coefficients at iteration level (n+1) for y;'s and previous iteration level (n) for wy's and
approximate the second order derivatives at level (n+1). Solve for «;®*" using SLOR.

5. Setn = n + 1 and repeat steps 1 to 4 until some specified convergence
criteria is mét, e.g., the iterations could be stopped when, for all (i,j), the maximum

norm

ol = max ™ - wf] < €

where & is user-specified, say £ = 0.2 X 10*. Using the above convergence criteria

guarantees [II.1] that for all 4,j),

Iyl - max i - 57 <

In some applications this convergence criteria may prove unsatisfactory. In that event,

the iterations could be stopped when, for all (i,j), the maximum norms
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.(n+1)

¥i

Iyl - maxly -y < e, and
ij

(n+1) (o)
CIJ;j - wij

< E

lol - max :
i
where &, and &, are user-specified, say &, = 0.2 x 10? and €, = 0.2 x 10%  The
iterations start with some initial approximation «;® of the vorticity with n = 0. If no
such approximation exists, set «w;® = 0.
Equations for y and « are solved at interior points only,ie,2<isIl =IX-
1,2 < j = J1 =JX - 1. Hence, the fact that the Jacobian becomes infinite along the

solid boundaries does not create a problem because we do not apply the partial

differential equations on these boundaries, i.e., u -1 . 0, v= Ix . 0, implying

Yo Ye
y,—~ o on the boundaries, would make the Jacobian infinite. Also, it is well established
by computational experience that the iterative convergence can be judged by examining
only the vorticity on the wall.
2.4.4 Computational Preliminaries
A non-zero value of the damping parameter § is essential for the convergence of
the numerical procedure [I.1). For an estimate of §, one must determine the growth

factor o for the y; iterations. The value of p is estimated by using & = 0 in step 3 of the

iterative procedure for a small number of iterations. Compute, for large n

O
e -5
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The norm used is the maximum norm | y[| = max |y, . Let
k)

p -1
p +1

#-

For convergence of the y; iterations, & should be chosen suchthat x < & < 1 and a near

optimal value of & is given by

2.4.5 Boundary Conditions for Vorticity

The values of vorticity on the solid boundaries are generally unknown and must
be obtained as part of the overall solution. As in the conventional (y,w) formulation,

these values of vorticity must be approximated along any solid boundaries.

By definition,

o(X,¥) = V- Uy (2.4.5.1)
Also, by definition of the stream function
U=y
(2.4.5.2)

v = "\bx
Sinceu = u(x,yj, v = v(x,Y), and under the von Mises transformation, y = y(x,¥), we

getu = u(x,y¥), v = v(x,y). Hence,

Ve = VX, + vl = V- VY
(2.4.5.3)

u, = Ux, + uy, = uy,
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using (2.4.5.2). Substituting (2.4.5.3) into (2.4.5.1), we get
w = uX,¥) = v, - Vv, - uyy (2.4.5.4)
In [II1.1] several solid boundary approximations are suggested for vorticity.
However, expanding any of these suggested schemes in a Taylor series about the point
G,1)i = 1,2,3... and using the no-slip condition on this boundary, namely u;, = v; =
0, equation (2.4.5.4) yields o, = 0 for all i. Obviously, this is no good for our
purposes. The problem seems to be that even though u = v = 0 on the boundary, uu,
and vv, do not tend to zero. In fact, from (2.4.5.3), uu, - 0 would imply u, - 0, which
is obviously incorrect for physical reasons. Hence, an alternate approach is required.

Now, q¢ = v + v?, and therefore (¢), = 2uu, + 2vv, or
14(g), = uuy + vvy (2.4.5.5)

Substituting (2.4.5.5) into (2.4.5.4) we get

@ = o(X,¥) = Ve - (@), (2.4.5.63)

Along a solid boundary the stream function y = v, = constant. In most of our
applications, solid boundaries occur wheni = 1 or IX for all j and/or j = 1 or JX for
all i. These usually correspond to curves where, for convenience, we take ¢ = Q or ¢
= Yaax-

The no-slip viscous boundary condition on solid boundaries, namely u = v = 0
must be imposed. In particular, this implies that v, = 0 on Y =y, = constant, Thus,

(2.4.5.6a) reduces to

aq?

oY) = -5 =r |, (2.4.5.6b)
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and clearly %—1 # 0 at the boundary ¢ = ¥,

Hence, the following formulas for vorticity can be obtained by Taylor series expansions
using the no-slip boundary condition on solid boundaries, namely q.’ = qx* = 0 for
a bottom or top boundary, to obtain w;, and w,x, respectively (i = 2,3,4,...).

For the bottom boundary ¢ = 0 (j = 1), one of the following approximate

relations can be used (cf. Appendix F):

0AY): @, = -ﬁqé (2.4.5.7a)
W = 2; 1!/(q,s -q}) (2.4.5.7b)
Wy = 22\ l'b(q.a ~q}) (2.4.5.7¢)
0QAV): @, = 4T1¢(q§,-4q32) (2.4.5.7d)
Wy = 12; 4,(4&15-9@33) (2.4.5.7¢)
Wy = a5 w(3Qa 8q..=.+5qlz) (2.4.5.7)
APy w, = 12; ¢(2q,4 ~9q%+18q2) 2.4.5.7g)
@ = o 4'(“% 423 +57q% - 264%) (2.4.5.7h)
0Av): oy = 72; ¢(q5+8q“ 48q% +104¢3) (2.4.5.70)

Similarly, for a top boundary ¥ = Yyax ( = JX), one of the following approximate

relations can be applied:
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0AY): e = mrn (2.4.5.82)

249
Wx = 2; w(‘lnz Clm) (2.4.5.8b)
1
Wix = ZAll/(q'” Cluz) (2.4.5.8¢)
0V wy = a0 -4d%) (2.4.5.8d)
By oy 4A¢ Qi clm
1
Wax = “122 yb( Clua 9q§sz) (2.4.5.8¢)
Wx = 4A¢’(3Q.:3 8‘1:12"'5(1.11) (2.4.5.8f)
0AY): Wy = 12; ¢(2q.ss 9q.n+18qm) (2.4.5.8g)
e = g 11604261+ STl ~2601) (2.4.5.80)
0AY): oy = 72; w(‘l;u‘*&l:n 48‘1112*'104(1:11) (2.4.5.81)

Note that the positive and negative signs in equations (2.4.5.7) and (2.4.5.8) are correct
as indicated.

At first glance, some of these approximations may appear wrong or inconsistent.
For example, equations (2.4.5.7b) and (2.4.5.7d) involve the same points (i,2) and (i,3),

but (2.4.5.7b) was obtained by writing
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W, = aQizs*'bQizz

while (2.4.5.7d) was obtained by writing

2 2 2
w, = agy+bq;+cq;

and, after finding the constants a, b, ¢, using the no-slip boundary condition to set Q;’
= 0. Derivation of equations (2.4.5.7b) and (2.4.5.7) is contained in Appendix F to
demonstrate more clearly the significance of this point. Obviously, (2.4.5.7d) is the
correct result to use since it employs the non-slip condition while (2.4.5.7b) does not.

The formulas (2.4.5.7b, c, f, h) are symmetric in the sense that we do not use the
term g2 in the derivation, whereas the formulas (2.4.5.7a, d, ¢, g, i) are non-symmetric
in the sense that we take q,? = 0 after calculating the constant coefficients. Further,
note that the value of the constants in the symmetric formulas sums to zero as they
should, but in the non-symmetric formulas they do not; however, the coefficient of g,
can be easily calculated. For example, in formula (2.4.5.7d), summing the constants
to zero implies that the constant coefficient for q;* must be +3, as noted in Appendix
F. Although not a consideration for the problems in this thesis, if the values of the g
G = 1,2,3,...) happen to be close to 1, the resulting value for e, could be in error when
using the symmetric formulas. More investigation of this situation is required in future
research.

Some preliminary testing of the boundary conditions for vorticity wy was
undertaken for a simple test problem to try to determine the most appropriate formula
to use. Knowing exact results for w, at x = 0 (i.e., i = 1) the various formulas were
tested one-by-one to determine the most accurate. Of all the formulas listed, equation
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(2.4.5.7g) (and its corresponding formula (2.4.5.8g) for w; 5} came closest to the exact
value. These equations will be used as applicable, for the lower and upper boundary
values of vorticity, respectively.

However, the choice of boundary condition also affects numerical stability and
the rate of convergence of the iterative process. Another possible subject for future
research will be the systematic comparison of the solutions obtained using the different
expressions for vorticity.

2.4.6 Clustered Grids

To achieve clustering of the grids in regions of high gradients, one-dimensional
stretching functions are employed.

The flow equations with appropriate boundary conditions have been presented in
unstretched coordinates. In order to formulate the equations in the stretched coordinates,

general transformations can be introduced, defined by

x = x(§)
¥ = ¥(n)

(2.4.6.1)

The benefit of these transformations is that they can provide us with a dense mesh in the
vicinity of any singularity and allow us to pack more points near an axis or any solid
boundary.

Equation (2.4.1.1) and coefficients (2.4.1.2) are transformed from unstretched
coordinates (x,y) to stretched coordinates (£,7) for later use. Initially, only the second
transformation of equation (2.4.6.1) will be used and the required equations derived, then
both transformations will be applied. Our reason for doing this is dictated by the nature

of the particular problems to be solved, for example, some may require only the v
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coordinate to be stretched, while some will require stretching both the x and ¢

coordinate. Details and the resulting equations can be found in Appendix G.

2.4.7 Large Reynolds Number

The central differencing scheme employed to obtain (2.4.2.1a) works well for low
R,. For larger R,, it becomes necessary to upwind or backward difference the convective
term (§,w); in (2.4.1.1). Inthiscase = 1, ¢ = w(x,¥) and equation (2.4.1.1) can be

expressed as

® ®

( B!
(] " {n+1) 1]
e (20054 @, )00 + AAxAY CRFRE L

ij-1

- - (n+1} ij o (uel)
SRR A, '3—5(“’" 2wy +6;5,)

& &)
ReDU n+l) EU
+ (w. ) o
Ax 8 28y

- - mely
@i, AR 0

By rearranging, we have

© AX @) ® ® @) _pk AX @
Bij Wwi-x,j-l + (Aij -R.Dj Ax)wi-l,j ‘Bij Wwi—l.jq-l

©AX? o AX? ) @ ) ® Ax? ® (a+1)
+ [qu| W‘Eij —-W wiJ_l -2 A'J + C‘] -E-z- + RnDij Ax wﬁn

Ax? Ax? A (2.4.2.1b)
X & X n+1) (3] X (D
+ [Cig'nﬂ—z*Eij m] el — Bi W‘-’-‘MJ-I

® (@) © AX @
+ Ay wiay + Bj 250 7 Wiel jel ™

which can be abbreviated as
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by Wy T (@;- dy) iy - by g

+(cj- &) wija - 2y F ot di) o + (¢ + ey wiyn

by g F 4G Wik + by wiiger =0
(2.4.2.2b)
where,

¢ - b AxX (2.4.2.3b)

Corresponding changes have to be made to the various tridiagonal matrices. Comparing

equations (2.4.2.2a) and (2.4.2.2b), it is seen that the upwind differencing of the

convective term only changes the coefficients of w;;;, w; and wisy;. The *in d; is

used so as not to cause confusion with the expression for dy stated previously in

(2.4.2.33).

37



CHAPTER 1II

PLANE DIVERGING VISCOUS LAMINAR CHANNEL FLOW OF COMPLEX
GEOMETRY

3.1 INTRODUCTION

In 1982, the International Association for Hydraulic Research (IAHR) Working
Group on Refined Modelling of Flows devoted the Fifth IAHR Meeting to a specific
subject - to assess the capabilities of various numerical simulation methods to deal with
laminar flows in "complex geometries". Here ';complex geometries" means flow
domains that do not coincide with coordinate axes in some simple coordinate system such
as Cartesian or polar.

Why study such flows? Steady-state viscous flow in two-dimensicnal channels
with arbitrary wall contours are representative of flush inlet geometries [III.1]. The
water inlets for ships powered by water pumps are often mounted flush to the hull below
the water line. The calculation of the flow in flush inlets is of interest for the prediction
of the total drag of the ship and the performance of the pump. Flow separation can
occur in the inlet, so that viscous effects cannot be ignored.

A single, well defined comparison test problem, namely the laminar flow in a
channel with a smooth expansion, suggested by the work of Roache [111.2] on the scaling
of Reynolds number in weakly separated (i.e., small recirculating region) channel flows,
was chosen for testing various numerical methods. The purpose of the test problem was
to evaluate the capabilities of various Navier-Stokes solvers and to highlight difficulties
in the modelling of complex geometries. This problem has been used to test the present
formulation. A comparison and discussion of the solutions obtained by the participants
was reported by Napolitano and Orlandi [IIL.3]. As reported in [111.3], some of the
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participants felt that the problem under investigation was 'too easy’ and therefore not
suitable to assess the capability of each code to compute flows in complex geometries.
As the author of this thesis and others discovered, and as the reader will verify after
analysis of the results obtained, such an opinion was premature.

3.2 TEST PROBLEM

3.2.1 Problem Specification

The geometry is a diverging channel with length depending on the Reynolds
number R, i.e., the length of the channel is scaled proportionally to R, so that the
channel becomes longer and straighter as R, increases, i.e., R. = Re is a geometrical
constant which determines the steepness of the curved wall of the expansion (see
Diagram 3.1.1). ForR, >> 1, quasi-self-similar flow conditions and solutions can be
obtained [II.2] by having the channel length x increase proportional to R, so solutions
become self-similar in the scaled longitudinal variable X, = Re/3 (X, = outlet of
channel). This scaling is necessary to keep the separated flow region within the
computational mesh. Weakly separated laminar two-dimensional incompressible channel
flows display a self-similar solution.

Two flows were computed corresponding to relatively small values of R, i.e., R,
= R_ = 10 and R, = R, = 100. R, = 10 was chosen because of its highly distorted
geometry. R, = 100 was chosen to assess the dependence of the convergence rate on
R,. A 21 x 21 finite difference mesh was prescribed. Computed results for the wall
were obtained for equally spaced x/x,, locations.

Because the numerical results from these two problems should not depend too
much on the treatment of advection terms, an optional third case was suggested, namely
R, = 100 inside the R, = 10 channel. Even though this case would be characterized
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by more significant advection, a case more strongly influenced by the modelling of non-
linear terms, it was not considered simply because this third problem was not physically
representative.  As noted in [IIL.4], flow in a symmetric channel at high Reynolds
number is not unique. In the case of laminar flow, the existence of asymmetric solutions
implies non-uniqueness of solutions of the Navier-Stokes equations. Also, the symmetric
solution madelled by the test problem is, in fact, unstable at high Reynolds number.
Thus, the third test problem, although it can be studied computationally, is not physically
realistic.
3.2.2 Boundary Corditions in the Physical Domain

The lower boundary (solid wall) coordinates of the channel are given analytically

as

R
y = y(x) = %l:tanhlz_?’lgx] _ tanh2:|, 0 <x=<x,"- _T“ (3.2.2.1)

and no-slip conditions u = v = 0 are applied along this boundary. (See Appendix H for

a discussion of this function).

The upper boundary (centreline or symmetry plane) is located at

y=yx =10, 0=<x=<x

out

Inlet boundary conditions are given in terms of the Cartesian velocity components

(u,v) as

3 y
4 [y__Z—] for x=0, 0=<y=<1
v=0
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i.e., equilibrium flow of the inlet with an imposed fully developed parabolic Poiseuille
flow velocity distribution. The origin of the physical coordinates (x,y) is on the lower
wall at the inflow boundary, where the channel half height has been normalized to y =
1. The maximum inflow velocity is u(0,1) = 3/2. The length of the channel is X = Xgy
= R./3.

Several investigators used a simple linear transformation or stretching to map
(x,y) into a rectangular computational domain. We also obtain a rectahgular region for
the computational domain (Diagram 3.1.2), but the transformation to achieve this has
een done on the original partial differential equations. Finally, it should be noted that
Poiseuille flow implies constant area flow, which in the case of diverging channel is
a contradiction. This results in a particularly annoying difficulty, to be discussed later.

In terms of the stream function, the inlet conditions are

2
Wy, -3 [y - %]
Ve-f =0
Therefore,

Vo= Yy - .;_(3y2 -y} forx=0,0<y=<1

where we have taken y = Oaty = 0.

The standard no-slip condition on solid walls (i.e., u = v = 0) is imposed at the
wall 0 < x < x,,and y = y,(x). Symmetry is enforced at0 < x < xandy = Yu(X)
=1,

The outlet section of the channel is located at
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so that, at the lower boundary

y =y, (k) - _lz-[tanh(-8)—tanh2] — -0.98202
The outlet boundary conditions are left somewhat arbitrary [[I1.2]. For parallel flow

R
u =v, =0, forx =~ x, and y,[%‘] =sy=s1

This implies y, = w, = 0. See Appendix I for a further discussion of this point.

3.2.3 Boundary Conditions in the Computational Domain
Boundary conditions for y:

o Atx =0,0<y¢y =1

1
v = 203 - )
which can be solved explicitly for y as a function of ¢ to give (see Appendix J)

y - 2cos[0 + fg_r] + 1 (3.2.3.1)

where

0= %-arccos(l - ¥)
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Atx =%,,0s ¢y =<1

Aty =0,0 X £ X

y = y,(x) = l[tanh [2 - 3}2"] - tanh 2]

Aty =1,0 € x < x4y

v

y =% =1

Boundary conditions for w:

been used for y, = o, = 0, i.e.,

Atx =0, 0 < ¢ < 1, by definition & = -V*} and ¥ = ¥(y) at the inlet, s0 that
w =, = -u, = -3(1-y) (3.2.3.2)
Atx =x,0=<¢y =1
w, =0

Aty =0,0 <x = Xy

1
6y = = oy 20k - 995 + 1843)

Aty =1,0<x < X
@ = 0 (symmetry condition)

Note: AtX = Xo, 0 < ¥ < 1, 3-point backward or upward differencing has

d’u.i’4¢u.j"'3¢’nc,j
2Ax

-0, ¢-{3’,

3.2.4 Vorticity Discontinuity at the Inlet

This section could have been placed under the heading of discussion. However,
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because of the significance of this izsue, it was felt that a discussion of this topic shouid
come earlier.

Unfortunately, the test problem had a defect (II1.4]. As noted earlier, the validity
of the inlet boundary conditions was questionable, Fully developed Poiseuville flow
conditions have been prescribed for the inlet velocity profile in spite of the non-zero
slope of the wall of the channel at x = 0. As a consequence of this inappropriate choice
of inlet profile, there is a singularity at this point, which shows up either as a disturbed
wall pressure distribution or as a discontinuity in vorticity on the channel wall at the inlet
or origin. In fact, the choice of the outlet as the reference pressure point in a primitive-
variable approach would also have caused difficulties because of the arbitrariness of the
boundary conditions at the outlet that the stream function-vorticity approach could
alleviate.

As noted in [IIL.4], the magnitude of the discontinuity in vorticity at the origin
because of the nature of the boundary conditions is a function of the angle the wall makes
with the horizontal at the inlet. The discontinuity only affects the local flow, which can
be made plausible by considering the velocity close to the wall. The effect, however,
is rather pronounced. At the inlet, the local flow is parallel to the x axis, but just inside
the inlet it must be parallel to the channel wall, which is not parallel to the x axis. By
constructing the local flow solution, Cliffe et al [IIL.4] proved that there is in fact a
discontinuity in vorticity and obtained a value for the jump. For the case R, =R, =
10, the value obtained was 0.9125 and for the case R, = R, = 100, the value obtained
was 0.0989. Both of these values are used in this thesis.

In addition to the results obtained for the jump in vorticity at the inlet, the inlet
boundary condition for vorticity must be modified. Atx =0, 0 < ¢ < 1, we obtained
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equation (3.2.3.2), namely, w = -3(1-y). This was obtained by noting that ¢ = «(y)
only at the inlet and therefore that « = Yy = Uy Equally, this could have been

obtained by using:

and the fact that,

at the inlet. Taking v, = O gives
® = -U,
Actually, this is incorrect since v, # O unless the channel is perfectly straight for
a couple of grid points to the right of the inlet (a method also tried without boundary
condition modification). Hence, the boundary condition for « at the inlet (equation
(3.2.3.2)) is modified as follows:
Atx =0,0 sy =1,

w = -3(1-y) + v, 3.24.1)
where v, is approximated by a one-sided or forward (downwind) difference formula,
either 2-point or 3-point. (See Appendix K for a summary of the difference formulas
used for v,). Note that at y = 0 (j=1), from the no-slip boundary condition along the
wall, v = O still. This implies v, = 0. Henceatx =0, y = 0 (=1, j=1) we still
have w;; = -3. However, fori = 1,j =2,3,...,J1, v, # 0.

3.2.5 Clustered Grid Functions

The mesh distribution employed in the calculations is very important to modelling

45



the separation region correctly. In particular, using a proper stretching in the direction
normal to the wall could be essential. In this way a finer resolution is obtained in the
region where a separation bubble is likely to develop.

Hence, it is desirable to concentrate grid lines close to the channel wall first, and
second, to redistribute lines away from the inlet to the body of the domain [III.5]. The

first objective can be achieved by choosing ¥ in equation (2.4.6.1) to be

¥ = nm[l-e“"("““"')] (3.2.5.1)
where . 18 the largest value of % in the new computational domain. In our present
case guax = 1.0. The larger the value chosen for the constant e, the more grid lines
will be concentrated towards the channel wall. The second objective can be achieved by
setting x in equation (2.4.6.1) to be
x = sinh [B(&-¢)] (3.2.5.2)
where £, is the grid line around which concentration of the grid lines is desired and B
is again a constant which determines the degree of concentration.

3.3 RESULTS AND DISCUSSIONS

3.3.1 Preliminaries

In the absence of an exact reference solution, the grid-independent results obtained
by Cliffe et al in [II1.4] have been taken as a benchmark, as recommended by Napolitano
and Orlandi [I11.3]. Cliffe et al used a finite element method in primitive variables, a
Newton-Raphson linearization scheme and the frontal solution method for the resulting

linear system, Such a solution has been used to compute the average percentage error £,

defined according to the relationship
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g, - EQ io: Wi~ Ducse (3.3.1.1)
‘ 19 = Wacie

where w;, is the computed wall vorticity at 21 equally spaced locations along the

out

wall and the subscript CJG refers to the benchmark solution of Cliffe et al noted above.

The values of the gridpoints x = 0 and x = X, have not been included in the definition

of g to reduce the influences of the singularity at the inlet and of the arbitrary outlet

boundary conditions. &, has been defined so as to account mostly for the region
around and inside the separation bubble as the results of this thesis will indicate. Since
this is a rational and appropriate choice, &, isa good quantity to judge the accuracy

of the solutions for the present flow case (more so than, say, pressure). If the method

under consideration ignores the separation phenomenon completely or if the length and
the position of the separation region are not computed very accurately, then &, will

be very large because very large relative errors for w are probable near the separation
and the reattachment points. One must appreciate the goal of trying to obtain accuracy
away from thin boundary layers without actually resolving these boundary layers in
detail.

3.3.2 Results

Results were obtained for the following probiems:
1. Reynolds number: () R, = R. = 10 and () R, = R, = 100 where

R
AX - _32120 . For example, for R, = 10, Ax = 0.167. For R, = 100, Ax

= 1.667. Ay = 0.05 in both cases.
2. Inlet corrections: (i) No inlet correction, (ii) the inlet correction used by Cliffe

et al [T11.4] and (iii) the modified boundary condition given by equation (3.2.4.1).
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For Reynolds number R, = R, = 10, Figures (3.3.2.1), (3.3.2.2) and (3.3.2.3)
contain plots of the streamlines y;, j=1 (the wall), j=2 (first streamline) to j = 10 for
i=12,..20.

Figure (3.3.2.4) is a plot of the wall vorticity wy, i = 1,2,...,20.

Figure (3.3.2.5) is a plot of the worst case wall vorticity values wy, 1 =
1,2,...,20 obtained by all the participants that reported in [IIL.3] against the results
obtained in Figure (3.3.2.4) (R, = R, = 10).

Table (3.3.2.1) contains a listing of the various parameters used to obtain the
results.

Tables (3.3.2.2), (3.3.2.3) and (3.3.2.4) contain the error for each point of the
wall vorticity and the total error. The number of iterations referred to in the tables is
for one equation. Hence, the number of iterations for the system of equations is half the
quoted value.

Table (3.3.2.5) contains a comparison of the separation and reattachment points
and the relative errors where the vorticity @ = 0 for various values of x.

All the results were obtained using an IBM PC-compatible/Intel 80286 (AT)
computer,

3.3.3 Discussion of Results

3.3.3.41 R,=R. =10

As given in Tables (3.3.2.2), (3.3.2.3) and (3.3.2.4) all attempts to obtain results
for the wall vorticity resulted in average percentage errors greater than 100%. The best
case was obtained by using the modified boundary condition given by equation (3.2.4.1).
However, the least number of iterations was obtained by using the modified inlet

correction of Cliffe et al [II1.4].
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There are several explanations for the large average percentage errors. The first
reason comes from the method of calculating the error. According to equation (3.3.1.1)
the average percentage error is obtained by dividing by the benchmark values obtained
by Cliffe et al [II1.4]. The largest errors occur in the separated flow region because the
value of the wall vorticity there is very small. Division by a small number leads to
large error, especially in the recirculating region.

The second reason for the larue average percentage error comes from the method
of solution. In Section (2.2) it was noted that the Jacobian J must be greater than zero.
In a region of recirculéting flow, J can be either greater than zero or less than zero.
Hence, the fluid cannot flow along streamlines ¥ = constant in the direction of
increasing ¢(x,y) = x, as noted in equation (2.3.1). At points in a recirculating region
the flow along streamlines ¥ = constant will be alternating between the direction of
decreasing ¢(x,y) = x and the direction of increasing o(x,y) = x.

Although the recirculating region is small, it is still significant enough to cause
destabilizing effects on the solution. As seen in Figure (3.3.2.4), the plot of the wall
vorticity, the best results are obtained after the recirculating region where errors were
as small as 0.1% to 3.0%. As well, as seen in Figure (3.3.2.5), the plot of the worst
case wall vorticity obtained by all the participants that reported in {IIL3], the values of
wall vorticity obtained in this study are quite comparable to results of other investigators.

Numerous attempts were made to improve the results. Clustering the grid
according to equations (3.2.5.1) and (3.2.5.2) pro;duced at best oscillating results which
would not converge within the given error tolerances. As well, no improvement in the
average percentage error was indicated. Attempts to minimize the effects of the
recircuiating region by shrinking its width, also met with no improvement. For example,
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choosing R, = 0.1 and R,, = 300 resulted in converging solutions, but no improvement
in the average percentage error - the error was simply spread out more evenly among all
the values of x. Also, the limit of Stokes flow (R, = 0; infinite viscosity) was attempted
for the case under consideration, namely R., = 10. In this limit, separation should not
occur. The solution did converge, leading to the conclusion that viscous flow with no
separation ought to be further investigated by the current method of solution.

Finally, predictions of the separation and reattachment points varied from a low
of 13.2% to a high of 25.2% error. The separation point was best predicted using the
inlet correction of Cliffe et al [II1.4] and the reattachment point was best predicted using
the boundary condition correction at the inlet.

3.3.3.2 R =R = 100

Converged results for this case could not be obtained. At first it was thought that
the problem had to be with the vorticity term in equation (2.4.1.1) because of the larger
Reynolds number R, = 100. Since the results were oscillating but not converging, it was
thought that upwind differencing of the vorticity term in (2.4.1.1) would prevent the
oscillations from occurring.

A source of differences among algorithms is in the treatment of the derivatives
of the convective terms. In the case where diffusion dominates convecticn, the use of
second order accurate centered differences for the convective derivatives constitutes the
best compromise between computational accuracy and economy. In cases where there
is convective dominance, the use of centered differences for the convective terms may
result in instability or non-physical/oscillatory behaviour. The most widely used way of
avoiding this instability is the use of a first order accurate upwind formulation, so that
a hybrid central/upwind differencing scheme is employed. Even though this approach
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results in unconditional stability, it can introduce artificial or numerical diffusion, an
error that may become so dominant as to obscure the effects of the physical diffusivity
on the flow. In any event, the oscillations for the case R, = R, = 100 could not be
prevented with this approach.

According to [IIL.6], there are limitations on the cell Reynolds number, or Peclet
number, R, .., for non-oscillatory convergent solutions. In [II1.6], R, .y must be less
than or equal to a typical value of 10.

R, is based on the characteristic length of the cell Ax or Ay. Hence, in our

Re cell Ax

R . . .
case, - constant and -°T°:b“-‘?—" = constant , so that taking their ratio, we

A

. R .
obtain, —cc¥&x o 2X _ constant . This constant can be looked at as a cell aspect

Rc cell Ay

ratio, AR, and should be less than 1. For the case R, = R.. = 10, AR = .(.:)_106?7

3.34, which is near the value 1 and the method converged. For the case R, = R, =

100, AR = -%5(% = 33.34 which is much greater than 1 and the method would not

converge. Even though we were restricted by the geometry of the test problem, going
to larger values of Ay led to solutions that would eventually converge, but the results

were not comparable to the benchmark values.

3.3.4 Conclusions
Contrary to what was reported by Napolitano and Orlandi in [III.3], this problem
was not too easy. In fact, the proposed method of solution in thié thesis could not handle

the problem, resulting in average percentage errors in excess of 100% for the solutions
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that would converge. From these results, it appears that viscous flow problems that
contain separated regions of flow cannot be treated, especially at the higher Reynolds
numbers, using the formulation in this thesis. However, as we will show in Chapter V,
this formulation can be modified in such a way as to allow flow separation. In the next
chapter we solve a flow problem which illustrates that the difficuities encountered in this
chapter are related to the viscous effects, rather than in handling flow fields with non-

zero vorticity.
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CHAPTER IV

CIRCULAR CYLINDER IN HYPERBOLIC-COSINE SHEAR FLOW

4.1 INTRODUCTION

Since the problem of recirculation is not fully resolved in Chapter 111, a problem
is solved where the flow is rotational, but no viscosity is allowed. Here, recirculating
flow is eliminated. The problem is hyperbolic-cosine shear flow about a circular cylinder
as discussed by Van Dyke [1V.1].

4.2 FLOW EQUATIONS

4.2.1 Differential Equations

If no viscosity is allowed, we are considering flow in the inviscid limit of R, —»

The equation (2.3.7b), namely,

L{w} - Ry, - yiww‘; -0

where © = w(x,V), reduces to y,w, = 0. Since y, = l/u # 0, w, = 0 which implies
w = w(y) only. This condition guarantees that at any x station (i.e., X = constant), the
vorticity profile is exactly the same as at the inlet (i.e., w = constant along each
streamline). Thus, once we know  at infinity, we know it throughout the flow field.
This is a dynamical condition for steady motion.

Hence, equation (2.3.8¢),

L{y} - yyay, = 0
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where y = y(x,¥) or,

yzyn - 29 t (1+y:)yw - yz"’)’g, -0

or in difference form,

(a5, + BPs,, + CP8,, + EB,)ys™ - 0 4.2.1.1)
where the coefficients and subscripts are as previously defined, becomes the only
equation to be solved for the unknown y = y(x,¥). (Note: We have taken ¢ = y(x,¥),
i.e., @ = 0, k = nin equation (4.2.1.1)). The vorticity w in the coefficient E; is known
at each (i,j). Again, we can start with some initial approximation of the vorticity « for
n=0,eg,w=0whenn = 0, just to get the iteration for y started, afterwards w =
w(y) is known along each streamline.

4.2.2 Circular Cylinder in Hyperbolic-Cosine Shear Flow

The solution of the circular cylinder in hyperbolic-cosine shear flow is developed
in Appendix L from the uniform flow problem at infinity to demonstrate the problem’s
increasing analytic complexity and which the numerical method utilized in this thesis
handles very nicely.

Note that we are not solving an irrotational inviscid problem, but a rotational,
inviscid problem because of the upstream boundary condition on vorticity at x = -oo,
This is not a truly physical situation, but is used to simulate an inviscid non-recirculating
flow in which vorticity is present.

For flow over a symmetric body, like a circular cylinder, with the flow at infinity
symmetric about y = 0, we only need to consider the upper half (x,y) plane. The
symmetric body is taken as a section of the streamline y = 0.
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4.2.3 Boundary Conditions in the Computational Domain

Given the symmetric body geometry, i.e., y = f(x), the boundary conditions

associated with equation (4.2.1.1) can be expressed as follows (see Diagram (4.2.3.1)).

The values of x at the leading and trailing edges arc denoted by Xz and Xqg,

respectively.

Boundary conditions for y: (nondimensionalized):

Hyperbolic-cosine shear flow at infinity (equation (L3) from Appendix L):

i
y - -1_1 sinh“(e’gb) at x = +oo and at Y = +>
7
€

where ¢ = vorticity number (perturbation parameter).
Flow symmetry and flow tangeucy:

0 for ~co<x<X Xp<x<oe

y(x,0) =
f(x) =y0.25-x% for X, SX SXpg

Boundary conditions for w: (non-dimensionalized).

At all x stations. @ = constant along a streamline (equation (L4) from Appendix

1 1
w = —€Zsinh(e’y)

for all x.

.1 discrete form, this is

1 1
T V)
Wy = Wy = =€ all‘lh(e yu.)
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for all j where i = 1 corresponds to x = -0,
The speed is given by

(4.2.3.1)

We calculate q = q,, the speed on the surface of the circular cylinder, using equation

4.2.3.1)
2 2 Lafx)?

qQ° =4q, 5
Yy

(4.2.3.2)

In discrete form the surface speed is qy; for all i, where j = 1 corresponds to the
surface of the circular cylinder.

4.3 RESULTS AND DISCUSSION

4.3.1 Results
Results were obtained for the following:

0.05.

1. Equal uniform grid spacing in the x and ¢ directions, Ax = Ay

2. The dimensionless vorticity number or perturbation parameter € = 0.1.

3. The radius of the circular cylinder wasr = a = 4.

All results were obtained using an IBM-PC-compatible/Intel 80286 (AT)
computer. The numerical results for the speed on the surface of the circular cylinder in
hyperboliq-cosine shear flow are presented in the following tables and figures and
compéred with the second order solution determined by Van Dyke [IV.1] (perturbation
or analytic (approximate) solution obtained using equation (L2) in Appendix L).

Table (4.3.1.1) contains a listing of the various parameters used to obtain the
results.

Tables (4.3.1.2) and (4.3.1.3) contain the numerical results compared to the
perturbation or analytic results obtained from Van Dyke. The error at each point was
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compared (the total error was not a consideration in this problem).

Figures (4.3.1.1) and (4.3.1.2) contain a plot of the results tabulated in Tables
(4.3.1.2) and (4.3.1.3).

4,3.2 Discussion_of Results

As seen either from Tables (4.3.1.2) and (4.3.1.3) or Figures (4.3.1.1) and
(4.3.1.2), agreement is best over the main body of the circular ¢ylinder with accuracy
decreasing towards the leading and trailing edges. The validity of all these solutions can
be questioned near the stagnation points at the leading and trailing edges. As noted in
[1.3], the inaccuracy at the leading and trailing edge could be overcome by an
extrapolation of the accurate values over the centre of the profile to the stagnation points
at the leading and trailing edges. Also, refining the grid near the leading and trailing
edges or using a staggered grid spacing would improve the accuracy at these two
locations. However, since the main reason for attempting this problem was to validate
the method of solution in regions of non-recirculating flow, no further refinements were
attempted.

4.3.3 Conclusions

The numerical results are found to be almost exactly the same as the perturbation
results except near the leading and trailing edges. The results obtained in [L.3] indicated
that the numerical results consistently underestimated the perturbation results. This was
not the case for the results obtained here. Making the grid finer or packing lines which
would improve the numerical solution in the sense of making it closer to the perturbation
results is suggested. However, the perturbation resuits are themselves only approximate
analytic solutions. The numerical results represent the flow accurately in regions not
near singularities, i.e., over the top of various profiles, while the perturbation results can
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be used to advantage when singularities arise. Hence, wle conclude that the numerical
results agree very well with the analytical results.

The results of this chapter confirm our assertation that the difficulties encountered
in Chapter III are due to the flow separation rather than the flow vorticity. In the next

chapter we propose a method which allows treatment of the re-circulating region.
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CHAPTER V

STEADY FLOW PAST A BACKWARD FACING STEP

5.1 INTRODUCTION

The flow over a backward facing step (BFS) in a channel or the flow through a
channel containing a sudden expansion or corner provides an excellent test case for the
accuracy of numerical methods because of the dependence of the reattachment length of
the dividing streamline on the Reynolds number R,. Excessive numerical smoothing in
favour of stability will result in failure to predict the correct reattachment length.

As noted in [V.1], experimental studies over a BFS yielded two-dimensional
laminar flows only at Reynolds numbers R, < 400 and R, > 6000. In the laminar
range, the velocity field was close to that of a fully developed channel flow with only a
slight deviation from that of parabolic flow.

In between these Reynolds numbers, the transition to turbulent flow was found
to be strongly three-dimensional where velocity fluctuations began to increase, while
maintaining symmetry to the centre plane of the test section. It was initially believed that
the BES flow, with its simple geometry, would yield a simple flow pattern showing a
single separation region attached to the step. Other regions of detached flow were not
expected.

Although numerical prediction procedures encounter false diffusion as discussed
in Chapter II of this thesis, good agreement between the predicted and measured flow
field for Reynolds numbers R, < 400 were obtained in [V.1], demonstrating that
truncation errors due to false diffusion can be kept very low. For Reynolds numbers R,

> 400, two-dimensional predictions were also obtained, but the results showed multiple
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regions of recirculating flow. Some of the differences were explained as being caused
by the three-dimensionality of the flow, where additional recirculating flow regions were
measured downstream of the primary region of separation caused by the sharp change
in the flow direction. For example, an additional recirculating flow region was measured
at the upper wall downstream of the expansion, developing late in the laminar range (R,
= 400) and remaining in existence throughout the transition region (400 < R, < 6000).
This was due to the adverse pressure change or gradient downstream of, and created by,
the sudden expansion. It was largely dependent on the expansion ratio of the BFS flow
geometry.

For the above reasons, it was decided to try to duplicate the results obtained in
[V.2] with a Reynolds number of R, = 50. See Diagrams (5.1.1) and (5.1.2) for the

physical and computational domains in terms of nondimensional coordinates x = }I':

st BT

and y - , i.e., the coordinates have been nondimensionalized in terms of the
channel length L and height H.
5.2 TEST PROBLEM

5.2.1 Problem Specification

Fully developed Poiseuille flow has been specified at the entrance and the exit of
the channel. This means, in theory, that equilibrium flow exists at the inlet and exit.
Hence, the boundary conditions are such that an imposed fully developed parabolic
velocity distribution is prescribed at a section x = 0 a short distance upstream of the step
and also again far downstream ai a section X = Xyax. In reality, the downstream

reversion to Poiseuille flow at low R, is achieved in an asymptotic manner (as also is the

change upstream). This sort of downstream boundary condition becomes invalidated at
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high Reynolds number R, when ultimately turbulence sets in.

As discussed in [V.i], the length measured from the step to the end of the
calculation domain should be selected to be equivalent to at least four times the
experimentally measured reattachment length of the primary recirculatory region. The
boundary condition at that far downstream cross-section can then be taken as vhat of fully

developed parabolic flow, i.e., -‘?E - ﬂ - 0 . This distance has been shown to be

gx  dx
sufficient to make the reattachment length independent of the length of the calculation
domain. For small Reynolds number, the section length downstream of the step, at the
ouilet to the channel can be made sufficiently long to permit the flow to redevelop into
a fully developed channel flow. For higher Reynolds numbers, no matter how
reasonably long the channel, small deviations could be present.

Similar to the discussion by Roache [I. 1], the adequacy of the boundary conditions
on y = y(x,¥) and w = w(x,¥) in this thesis will depend on the Reynolds number of the
problem, the differencing method used, and on the initial conditions. The limit of zero
upstream wall boundary layer thickness can be simulated by using a “slip" wall
condition. The slip wall condition is that used on the solid wall upper surface or lid.
The upstream wall, the base and the centreline will aiso be solid walls.

The upstream inflow boundary cannot have a unique solution since its
characteristics will change depending on the physical flow upstream of the inflow cross-
section, and upon the separated flow solution itself. The problem is unclear
mathematically. For example, it is not clear that one should completely specify the
input, lest the elliptic nawre of the equations be restricted. Yet, something must be
specified. The upstream iﬁﬂow boundary is partly determined by specifying a boundary-
layer inflow velocity profile shape, and partly develops as part of the solution. By
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velocity profile, we will mean values of the x-component of velocity suitably normalized,
i.e., on the maximum inlet velocity.

The inflow stream function is determined by integration of the second-order
Poiseuille flow boundary-layer solution for u. It should be noted that the boundary-layer
equations do not correctly represent the flow at low R, and we do not suggest that the
input velocity profile used represents an accurate solution of the flat plate flow ahead of
the base of the channel. It is merely a convenient one-parameter family of u velocity
profiles by which one can study the effects of upstream velocity profile shape on the
separated flow. It qualitatively represents a meaningful flow condition [I.1].

We could neglect the details of farther downstream flow continuation and still
obtain realistic answers upstream. However, catastrophic instabilities may be propagated
upstream from the outflow boundary and destroy the solution. The aim should be to
allow the most free flow adjustment at the downstream continuation surface which still
gives a solution, However, the safest method from the viewpoint of stability is to
completely specify the outflow conditions (which is the approach taken in this thesis).
For example, we will not assume that wy; = wy,, which is equivalent to stating that
vorticity is merely advected out of the mesh region, assuming no viscous production of
vorticity between (IX,j) and (I1,j). Hence, at the outlet of the channel, a fully developed
velocity profile will be specified.

We will force separation at the sharp corner. As indicated in stream function
plots contained in [V.3], the extrapolated separation point moves down from or below
the sharp corner off the base. The incompressible numerical results show a regular
movement of the separation point down the base as R, is decreased, in agreement with
the well known incompressible result at R, = O for Stokes flow over a sphere, in which
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no separation occurs. For all the different methods of treating the sharp corner vorticity,
separation was indicated below the sharp corner, including onc method intended to bias
the solution toward separation at the corner and two methods intended to force separation
at the sharp corner. At R, = 100, the numerical solution in [V.3] indicated separation
occurring at somewhere less than one cell height below the sharp corner. This viscous
effect was somewhat exaggerated because of the implicit artificial viscosity effect of the
upwind differencing used in [V.3]. The location of separation will thus depend on the
cell size, and can only be interpreted qualitatively at R, = 100. On the other hand, at
R, = 0.1, the artificial viscosity effect is negligible, so the use of R.= 50 in this thesis
seems a reasonable compromise.

Failure to preserve conservation can lead to numerical instabilities. To stabilize
the calculations while using methods that do not preserve these properties, artificial
viscosity is often introduced, either explicitly or implicitly, by using dissipative finite-
difference schemes, especially for high R, flows. For low R, flows it is possible that
a non-conservative scheme can produce a stable solution without artificial viscosity, since
the viscous terms are relatively large anyway and can quickly eliminate the error terms
introduced. However, it is interesting to note that even though there are not enough cells
between the sharp corner and true separation point to accurately resolve the distance,
separation is still indicated experimentally between 2 or 3 cells below the corner. Hence,
the phenomenon does not appear to be merely an abberation of the computational mesh
[V.3). Thus, it appears that the Stokes flow limit does give separation below the sharp
comner. Also, the backward facing step geometry in [V.3] did not necessarily imply a
flow configuration devoid of separation. This phenomenon is not investigated further in
this thesis and could be a topic for further study. Instead, we will assume indicted
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separation occurring less than a cell spacing below the corner can be ignored, and the
dividing streamline (DSL) can be faired into the assumed corner separation.

At the centre of the recirculatory region, or eye of the separation bubble, there
is a strong flow reversal. Because of the conclusions established in Chapter II, this
region of the flow field will not be investigated using the mathematical formulation in
this thesis.

Finally, at a separation (or reattachment) point in a continuum flow, the vorticity
is zero. That is, at the separation and reattachment point, there is a stress free velocity
profile. Although the method is not used in this thesis, the reattachment point may be
determined by locating the point at which «w=0 along a wall. The present formulation
provides a more convenient condition for locating the reattachment point, as will be
discussed later.

5.2.2 Boundary Conditions in the Physical Domain

Consider steady Poiseuille flow given by the equation

du _1dp _ ¢y (5.2.2.1)
dy? g dx
where C is a constant.
Integrating (5.2.2.1), we have
u = u(y)--—.g.y2 +ay+b, (5.2.2.2)

where a,, and b, (m = 1 or 2) are arbitrary constants of integration. Equation (5.2.2.2)
will be applied at both the inlet (m=1) and the outlet (m=2).

At the inlet x = 0 we have u = 0 at y = h. Hence, (5.2.2.2) gives,



;;:_' K2+ ah + by =0 (5.2.2.32)

where C, = C.

Also, u = 0 aty = 1+h, x = 0, which gives
i anp (5.2.2.3b)
— (1+h)? + a,(1+h) + b, = 0 s
Solving (5.2.2.3a) and (5.2.2.3b) for a, and b, we get
C -C
a, = —-(1+2h) and b, = ——(1+h)h
2 2
Substituting the above into equation (5.2.2.2) we have

u =, (y) - -_-;—:l [y - (1+2h)y + (1+h)h] (5.2.2.43)

At the outlet x = X,,,x We have u = 0 at y = 0, which gives using (5.2.2.2),

b, =0 (5.2.2.52)

and u = 0 at y = 1+h, which gives

.;(:.3(1+h)2 + a,(1+h) = 0 (5.2.2.5b)
. 2
with C = C,.

Solving (5.2.2.5b) for a, we get

2, = %mh)
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Substituting the above into equation (5.2.2.2) we have

U= U(Y) - :zc—’ [y? - (1+byy] (5-2.2.6)

One way to choose C, is to require unit mass flux at the inlet. For example, we take

y{y = 1+h) - Y(y=h) = 1 at the inlet (5.2.2.7)

Using (5.2.2.4a) and the definition u = y, we get

¥y
Yl = ‘[ U (Y) dy
(5.2.2.8a)

_Cl y3 1 h3 h2
- 1] - Z(1+2h)y? hhy - & - —
5 [3 2(+ )y? + (1+h)hy 3 3

With $.(y=h) = 0 and choosing C, such that y,(y=1+h) = 1 we can solve (5.2.2.7)

c
and (5.2.2.80) for % = 6

Then equations (5.2.2.4a) and (5.2.2.8a) become

U = Uply) = -6[y2 - (1+2h)y + (1+h)h] (5.2.2.4b)

and

¥ = YY) = -2y° + 3(1+2h)y? - 6(1+hdhy + (3+2h)h? (5.2.2.8b)

Similarly, by the conservation of mass, C, must e chosen to give unit mass flux at the

outlet. That is, we take

Y(y = 14+h) - ¥(y = 0) = 1 at the exit (5.2.2.9)

From 5 .2.2.6a), using definition u = ¥, we get
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Y

‘lbcutlct(y) = L uoullctdy

G [y y?
—_ [_ (l+h)_2-]

(5.2.2.10a)

2 3

With Yuua(y=0) = 0 and choosing C, such that Yoy = 1+h) = 1 we can solve

C
(5.2.2.9) and (5.2.2.108) for = - —_
2 (+hy

Then equations (5.2.2.6a) and (5.2.2.10a) become

-6
U=, y) - T [y2- (1+hyy] (5.2.2.6b)
and
- -l - 2 5.2.2.10b
¥ = YoualY) Ty [2y? -3(1+h)y?] ( )

By definition w = -V%). But ¥ = y(y) only at the inlet x = 0. Hence,

w = winlct(Y) - _¢yy - —‘Lly

- g2y - (1+2h)) (5.2.2.11)
from either equation (5.2.2.4b) or (5.2.2.8b).

Similarly, ¥ = y(y) only at the outlet X = Xyax.

Hence,
W= wouﬂu(y) - —¢w - —uy

6

Ty [2y-(1+h)] (5.2.2.12)

67



from either equation (5.2.2.6b) or (5.2.2.10b).
5.2.3 Boundary Conditions in the Computational Domain

Boundary_conditions for y:

o Inlet boundary where x = 0,0 < ¢ <y =1

From equation (5.2.2.8b) ¥ is a cubic function of y given by
¥ = -2y* + 3(1+2h)y? - 6h(1+h)y + (3+2h)h?
This can be solved explicitly for y as a function of ¢ as per the method in

Appendix T to give (for h = 0.4)

4 9
y cos(ﬂa-gvr) + o

where

£ - _31.arccos(1—2¢)

° Outlet boundary where X = Xpux. =6, 0 S ¢ < Yy =1

From equation (5.2.2.10b), ¥ is a cubic function of y given by

1

@+hy [2y- 3000y’

Y =

This can be solved explicitly for y as a function of ¢ as per the method in

Appendix J to give (for h = 0.4)

y - .‘SZcos(6+%7r) + _1?6
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where

0= %arccos(l-m,b)

Alternatively, the downstream continuation problem could be treated in a manner

following [V.3] where linear extrapolation for y is used which approximates

vV, - [_;_"] =0 ory, =0since y = (y) (ory = y(y)) at the outlet x =
¥)x

Xmax. This gives the difference equation

Y = 2Yu; - Yo,

Upper boundary lid where ¢ = Ypux.= 1. 0 < X £ Xyax = 6
y = 1+h =14

wer boundary wall wher =0(G=1

h=04for0<x =< Xg=2

Y= 1o for2+L =x, <X Xyy=6

For 2 = Xgp < X < X, = 2 + L, on the dividing streamline (DSL), see section
(5.2.4) for an evaluation of y = yj.

Boundary conditions for o

Inlet boundary where x = 0. 0 < ¥ < Yyux =1

From equation (5.2.2.11)

@ = 6[2y - (1+2h)]
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Qutlet boundary where x = ¥yux = 6.0 < ¥ < Yyax.= 1

From equation (5.2.2.12)

6
@ =y [2y-@+m)]

Alternatively, in a manner following [V.3] we could impose zero streamwise
gradient for w, namely w, = 0, which has finite difference approximation

Ui = O

Upper boundary lid where ¢ = ¢y =1 ( =IX), 05 x< xyax = 6

In [V.3] the boundary condition at the upper boundary was reported as
disappointing, resulting in destabilizing solutions. It was not possible to model
the backstep with no upper boundary or in the free flight case (inflow through the
mesh of the lid). The most nearly free condition in [V.3] was to use an
impermeable slip wall at the lid.

Since v = 0 on ¥ = Yyax, the following condition for  at the lid was used in

[V.3], namely «,x = 0, which implies %;1 - ()  since

W - —@ + v --aﬂ - 0 (since v = O for all x along the lid).
dy Ox dy

Because the wall in our case is assumed not to be impermeable, w;; = w;; isa
d%u

less restrictive condition, which approximately implies Fre - 0 atthe lid since
y

dw u v d*u - =
% - -a_yi + 0y - -W = 0 (since v = v(y) only).
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Lower boundary wall where ¢ = 0 (j = 1)

From equation (2.4.5.7g)

1

2 2 2
__IZAl,b (2%'9% + 18(1i2)

wy =

forO$x<xsm,=2and2+L,=xA<x5xmx=6

w = 0 for x = xgpp = 2 (modified to allow for the singularity) and x = X,
= 2+L,

For 2 = Xgp < X < X, = 2 + L, on the DSL we use equation (2.4.5.6a),

namely

12
W=y - —
x zq'&

which is approximated as follows:

©. = Virg™Vietn _ 1 q2-93
it 2Ax 2 Ay
where
v, = Ve Ve Ay for k=i-1 and i+l
2Ax Yo Yu

From equation (2.4.3.1), the speed is approximated using

r 2
1+ Yig ~ yi-l.ll
qizvl ~ r 2Ax _
Yo - Yn]
| &Y
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— 2
1+ Yiaz ~ Yiao
2Ax

” 7
Ys — Y
\ 2A¢

Alternatively, from equation (2.4.5.7g), with q;* # 0, the second term in w could be

approximated by

-27‘17(2q§~9q5+18q2"—11q§)

As discussed in [V.4], it is worth noting here that as R, decreases (= 100) the
reattachment point moves forward towards the base. Hence, the vorticity contour lines
have a distinct similarity to streamlines indicating less dominance of advective transport.
For example, the plots of various DSLs appear similar (they are virtually identical) to
the dividing vorticity contours plotted in [V.3] for similar Reynolds numbers. Hence,
for ease of computation we could take w = 0 on the DSL without creating any significant

error for the Reynolds number under consideration.

524 Expression for y = y;,_on the Lower Boundary

From the conservation of mass, considering the conduction of constant mass flux

applied to the stream tube adjacent to the lower boundary, we obtain
Yu

Ay - J u(x,y) dy | (5.2.4.1)
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where we take y, > yy.

Using the Trapezoidal Rule to approximate the integral in (5.2.4.1), we obtain

Ay = %y' (u; + ;)

Hence, approximately, we have

Ay =

Yo~ Ya 1 | +_l_ . (5.2.4.2)
2 y\b il y,;, i2

where we have used u = 1 from (2.3.5).

Yy
Approximating y |, usinga 2-point forward difference, (6¢y)u - yi;“ , and
. . . ¥~y . ep s
¥, | » using a 2-point central difference, (8,y), = -7’2'311_1,01-’ and simplifying, we
obtain from equation (5.2.4.2)
Ya = 2¥aYs (5.2.4.3)

It should be noted that equation (5.2.4.3) is the 3-point central difference formula for
(dy,y)2 = 0 and is valid on the lower boundary ¥ = 0 (G = 1) for all x, including the
interval 2 = Xggp < X < X, = 2 + L. Itis, therefore, an equation for the dividing or

separation streamline in the physical plane.

Having obtained y;, call these values y5 . A modified or relaxed value

(n+l)

y&*™?  can be obtained by using the relaxation factor 8, with the following expression:

e = (1-6) ¥ + B, " (5.2.4.4)
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The reattachment point, where x = x, = 2 + L,, is determined from the value of i at
which y™” = 0. The reattachment length is L, = X, - 2. Note that

yi*P = 0.4 at X = Xg, = 2 and the initial guess for ¥«® (n=0), in order to begin the

jteration procedure, was chosen to lie on an ellipse (see Appendix M).

5.2.5 Modification of Equation (5.2.4.3) for v = y, on the Lower

Boundary Dividing Streamline

Equation (5.2.4.3), namely,

Ya = 2¥o2 - ¥a
expresses the conservation of mass, approximately. Hence, it should hold for all i, in

particular, at the inlet.

Since, at the inlet ¥ = y(y) only, we have
AY = % Ay = udy (5.2.5.1a)

Tn the computational domain Ay = constant as j increases from 1 to J1, but Ay is not
constant. Define
ij = Yiu - Y (5.2.5.2a)

where we have dropped the i index for convenience.

Rearranging equation (5.2.5.1a) we have

Yo = Y; * AYp j=1,2,...,]1 (5.2.5.2b)
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For variable Ay;, we can rearrange equation (5.2.5.1a) as
Ay, = 2¥ (5.2.5.1b)

Now, as y; increases (i.e., as j increases), we know u increases in the lower half of the

channel. For example, from equation (5.2.2.11)
% - -6[2y-(1+2h)] = 6-12(y-h) > 0

for |y-h| < %, ie,h <y < h+'%.
Thus, as y; increases, u; increases and hence, Ay; decreases from equation

(5.2.5.1b). Therefore, up to the centre of the channel j = j,, we have

Ay, > Ay, > ... > By, (5.2.5.3)

Now consider equation (5.2.4.3) at the inlet (dropping the i index), namely,

= 2% - % 6254
From equation (5.2.5.2b) we have
y, = h
Y y; +4y,
= h+Ay, (5.2.5.5)
Ya = Y2 *+AY,

= h+4y, +Ay,
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Substituting (5.2.5.5) into (5.2.5.4) we have

h = 2(h+Ay)) - (h+Ay, +Ay,)

which leads to
Ay, = Ay,
in contradiction to inequalities (5.2.3.3).
The same kind of anaiysis can be applied at the separation point X = Xgzp = 2.
We would still expect that
Ay, > Ay, > .. Ay, at X = Xggp = 2
Then equation (5.2.5.4), namely
Yi = 2Y, - Vs
= 2(h+Ay,) - (h+Ay, +Ay,)

=h + Ay, -Ay,
> h since Ay, > Ay,

This means that equation (5.2.4.3), or as modified in (5.2.5.4), predicts that the dividing
or separation streamline rises rather than falls just after thr separation point X=Xgpp=2.
Obviously, this is not physicaliy realistic. The problem lies in the fact that constant AY’s
correspond to a widening of the streamtubes near the wails, where u is smaii, and a
narrowing near the mid-stream. This is precisely the opposite of what we want to occur.

To alleviate this problem, define a new variable 5 by

e (5.2.5.6)
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such that
b = Yuuln) = 2% + 31427 - 6(1+hhy + B+2)h>  ©.2.5.7)
Equation (5.2.5.7) is equation (5.2.2.8b) with y replaced by 7.

The new variable 5 will be used to replace , that is, we perform the following

change of independent variables:

(x,¥) |- (x,¥) |- (x,m)
physical intermediate final
domain computational computational

domain domain

The overall effect of this sequence of transformations is that we will have uniform
spacing Ax and uniform spacing Ay only at inlet in the physical domain, uniform spacing
Ax but variable spacing Ay in the intermediate computational domain, and uniform
spacing Ax and uniform spacing A, in the final computational domain. That is, the
effect of uniform or constant spacing Ay in the (x,s) plane is to give variable spacing Ay
in the (x,y) plane, whereas previously the spacing in the (x,¥) plane was uniform or
constant. Hence, we have effectively packed the grid near the walls.
On the lower boundary (j=1) in the (x,n) plane we now have, for all 1,
| m=nh
and,

T, =1+ An = h+An (5.25.83.)

where An = 1, - 1.
On the lower boundary (j=1) in the (x,) plane we have, for all i, J, = 0, and Ay =
Ebz - ¢1!
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so that ¢, = ¥, +Ay = Ay (5.2.5.8b)

Again, from the conservation of mass, considering the condition of constant mass flux

applied to the stream tube adjacent to the lower boundary, we obtain

Yo

Ay = J udy

L

- ¢,, from (5.2.5.8b)

- \b(nz)
- Y(h+Ay), from (5.2.5.8a)
- (3-24A7n) Ay?, using equation (5.2.5.7)

Using u = 1 we have

Yy

Hence, combining the above results,

Yo Yo Yu
Ay = J udy = J -)-,1— dy = J x.l/;n) dy = (3-2An)Ay’
w T¥ A

Using the trapezoidal rule to approximate the above integral, we obtain
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Yoo ¥; ’ s
[ I.22 1] ["V;j) |“ + .‘bij)ln] = (3_2A’7)A112 (5259)

From equation {5.2.5.7)
¥ = Y(n) = -6lg2-(1+2h)p+(1+h)h] (5.2.5.10)

sothat (o), = W(n) - W) - 0O .

Therefore, equation (5.2.5.9) reduces to

[Yiz;)’n] V@) | o -2amar (5.2.5.11)

ki

Now g, = W(np) = ¥(h+A)
= 6(1-An)Ay, from (5.2.5.10)

Approximating y| using a central difference (i.e., (3,y), = y;;r;, ) and using the
above expression for \V(“T)lm we obtain from (5.2.5.11)
_ 6(1-An)y, - (3-24n)y;, (5.2.5.12)

i 3 - 4Aq
Note that if Ay = 0, equation (5.2.5.12) reduces to equation (5.2.4.3). Numerically, it
is possible to find values of Ay such that equation (5.2.5.12) predicts a decrease in y =

yu fOr X = xgep = 2, ie., y = y; < hfor x = xge = 2. Hence, the dividing or
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separation streamline falls rather than rises just after the separation point.
5,3 RESULTS AND DISCUSSION

5.3.1 Preliminaries

For the geometry and data depicted in Diagram (5.1.1), a stream function-
vorticity method with equally spaced mesh sizes (=0.1) in both coordinate directions was
used in [V.2]. After 328 iterations, the length of the recirculatory region was determined
to be L, = 0.765. Other results range from a low of L, = 0.580 to a high of L, =
0.770.

As noted in [V.4], a Reynolds number based on the expansion ratio

E - L l_llﬁ , or step height h, as a single parameter that defines the reattachment

H
length in a laminar two-dimensional flow, is unlikely. The reattachment length in
laminar two-dimensional BFS flows is probably not a function of a single variable, but
more likely a function of several variables, including the expansion ratio and the inlet
section Reynolds number R, (based on the maximum inlet velocity wad twice the inlet
channel height or twice the hydraulic radius of the inlet or small channel 2(H-h)).

The relevant limits for the examination of the planar laminar BFS flow field are
E -»0and R, - 0, for which L, — 0. Experimental evidence indicates that the flow field
becomes three-dimensional and turbulent for sufficiently large values of E and R, [V .4].

The best parametric fit for the range of expansion ratios and Reynolds numbers covered

by data in [V.4] is given by a correlation of the form

i - CR{e%-1) (5.3.1)
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where C, = 0.004, C, = 0.75 and C; = 4.75. Again, for the geometry depicted in

. 04 and R, = 50 gives L, =

Diagram (5.1.1), equation (5.3.1) with E = % i

0.434.

The above should give some indication in the variability of the results cbtained
for the length of the primary recirculating region.

5.3.2 Results

Results were obtuined for equal-sized grid spacing in the x and y directions, i.e.,
Ax = Ay = 0.1. -All results were obtained using an IBM PC-compatible/Intel 80286
(AT) computer.

The numerical results for the solution of the flow vver a BFS in a channel or the
flow through a channel containing a sudden expansion or corner are presented in the
following table and figure.

Table (5.3.2.1) contains a listing of the various parameters used io obtain the
results.

Figure (5.3.2.1) contains a plot of the streamlines y;, for j = 1, the lower
boundary, (the upstream wall surface, dividing streamline and downstream wall surface)
and j = 2 (first streamline) to j = 10 (upper surface) fori = 1,2, ..., 60.

Figure (5.3.2.2) contains 2 plot of the vorticity distﬁbution w; along the lower
boundary (upstream and downstream walls and dividing streamline, i.e., j = 1), and the
upper wall (j = 10), fori = 1,2,...,60.

Using the original boundary conditions described in section 5.2.3 rather than the
alternative ones from (V.3), after the 11th iteration, the dividing or separation streamline
(DSL) crossed the x axis for the first time. After 363 iterations, the value of L, fell
between 0.75 to 0.80 (x = 2.75 to 2.80). Using the mid-value for L, (0.755), this gave
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an error of 1.3% when compared to the results obtained in [V.Z].I'i Similar (but not as
accurate) results were obtained using various combinations of the ;ﬂtemative boundary
conditions. '

5.3.3 Discussion of Results

Difficulties were encountered in achieving global convergené?. Although it did
not seem to matter which combination of boundary conditions were used, as described
in section (5.2.3), the vortex length or reattachment length L, simply oscillated back and
forth about the nominal value reported in the previous section, regardless of the number
of iterations. As noted in {V.5] and [V.6] the use of smooth boundaries enabled the
authors to remove the vorticity singularities at sharp corners at which the houndary slope
is discontinuous. At the corners the vorticity is infinite. This was done by using either
a boundary curve with a continuous slope or replacing the corner by a blunt stagnation
point. The model with smooth boundaries gave the authors in [V.5] and [V.6] a more
realistic representation of the physical flow being modelled. In our case, follbWihg this
lead, the singularity in vorticity at the step x=2 was removed using a boundary curve
with a continuous slope, and global convergence was achieved. Overall results for y;
changed very little, probably because the stream function is not singular anywhere so an
alternative method is only needed for deriving the vorticity at points where the difference
equations employ values of  at the singular points themselves as noted in [V.5].

As noted in [V.4), at a specified expansion ratio E, L, grows in a moderately
nonlinear manner as R, increases. That is, in the laminar flow regime, the length of the
flow development or reattachment downstream of the step increases with increasing
Reynolds number; however, the increase is not linear. At a givcn or constant R,, a

monotonic increase (nearly exponentially) in L, occurs with increasing E, because an
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increase in E causes an increase in the maximum velocity at the inflow or channel inlet.
Both of the above effects are observed in our case when the parameters E and R, are
varied.

As noted in [V.4], the DSL appeared concave upwards near reattachment. This
result is not observed in our case, where the results for y;, simply decrease steadily for
increasing x.

Reattachment occurs between one and two base heights downstream of the corner
for the input velocity problem (second order) [V.3). Although not attempted in this
thesis, if the order of the input profile increases, reattachment occurs further downstream
of the corner, i.e., for a fourth order profile, reattachment should occur between seven
and eight base heights downstream.

Finally, it should be noted that following Chapter IV, when the formulas for
were removed, global convergence also resulted, indicating that there is possibly some
instability created in the use of the formulas reported in equations (2.4.5.7a) through
(2.4.5.8i). This problem with the approximations used for boundary vorticity values has
been noted by several authors, for example, see [II.1].

5.3.4 Conclusions

Once the correct and accurate formulas are obtained for locating the position of
the dividing streamline which bounds the recirculation zone, and the problem of
singularity in vorticity at the corer of the BFS is removed, the numerical results are
found to be almost exactly the same as the results presented in [V.2]. Problems with
discontinuities in the flow geometry resulting in singularities in one of the flow
parameters are to be avoided unless special care is taken to handle the difficulties that
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CHAPTER VI

CONCLUSIONS

The work in this thesis was undertaken to investigate the feasibility, practicality
and advisability of applying stream function coordinate methods in viscous flow
problems. The natural curvilinear coordinate system (¢,¥) introduced by Martin [I.2]
and the use of von Mises coordinates (x,¥) introduced by Barron [I.4] has been extended
to the consideration of two-dimensional, steady, incompressible, laminar viscous flows.

In Chapter :II, difficulties associated with a weakly separated region in the flow
field are discussed. It has been shown, by considering the well-documented test problem
of flow in a smoothly expanding channel, that the stream function coordinate method in
its conventional form cannot accurately predict viscous flows if the flow has separated.
The question arises, however, as to whether the difficulties are associated with the
numerics or the physics, In particular, the failure to achieve an accurate converged
solution could be due to the sensitivity of the vorticity transport equation solution and/or
the choice of numerical approximation for the wall vorticity (numerics), or the presence
of viscosity which leads to no-slip conditions on the solid walls (physics). Nevertheless,
the conclusion can be drawn that flow separation leading to the development of a
recirculating region must be handled carefully, or completely avoided if possible. It was
further observed that the ratio of the grid spacing 2—2 should not be too large,
pfeferably as near as possible to one as the calculations will allow.

The study of an inviscid shear flow over an obstacle in Chapter IV indicates that
the primary difficulty in applying von Mises coordinates is related to the viscosity and

the recirculating flow region rather than the presence of vorticity in the flow.
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In Chapter V, problems in which the flow configuration results in singularities in
one of the flow parameters are discussed. The classical problem of flow over a
backward facing step is considered. The stream function coordinate method is modified
to account for flow separation and reattachment. A novel scheme is devised, based on
conservation of mass flux, to accurately predict the location of the dividing streamline
and its point of reattachment to the wall.

This thesis successfully demonstrates the application of the theory as developed
in Chapter II and represented by equations (2.3.8c) and (2.3.7b). Stream function
coordinate methods can be used for both attached and separated flows provided
appropriate attention is paid to modelling the separation and recirculating region. The
method cannot be used to study the recirculating flow itself. However, it does allow one
to accurately identify the region of recirculation which can then be solved by
conventional methods. The importance of the stream function coordinate method for
viscous flows is that it allows efficient grid usage since the main part of the flow field
can be predicted by this method. Numerical grid generation is only required in the
relatively small recirculating regions which can be tightly gridded and accurately resolved

using conventional formulations and methods.
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Figure (3.3.2.4) Wall Vorticity (R, = R, = 10)
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Figure (5.3.2.1)  Streamlines for BFS
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Figure (5.3.2.2)  Vorticity Distribution for BFS
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Table (3.3.2.1) Parameters for R, = R, = 10

[ Parameter Value
R, =R 10
p 0.00
Xpax 3.333
Y 0.00
Vrax 1.00 i
) 0.40
8, 1.80
8, 0.20
- 1 x 10°*
&, 1x10*
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Table (3.3.2.2) Vorticity with No Inlet Correction

®, =R, = 10)
X X/X o Vorticity Vorticity Relative
WiciG Wy Error x 100%
0.000 0.00 3.000 3.000 0.000
0.167 0.05 2,575 1.164 0.548
0.333 0.10 1.706 0.990 0.41¢
0.500 0.15 0.399 -0.150 1.376
0.667 0.20 -0.100 -0.718 6.175
0.883 0.25 -0.135 -0.570 3.222
1.000 0.30 -0.108 -0.330 2.055
1.167 0.35 -0.106 -0.175 0.654
1.333 0.40 -0.103 -0.076 0.265
1.500 0.45 -0.079 -0.001 0.991
1.667 0.50 -0.033 0.062 2.876
1.833 0.55 0.027 0.117 3.325
2.000 0.60 0.092 0.166 0.800
2.167 0.65 0.157 0.209 0.331
2.333 0.70 0.217 0.247 0.139
i 2.500 0.75 0.272 0.280 0.030
2.667 0.80 0.319 0.308 0.035
2.833 0.85 0.357 0.330 0.077
3.000 0.90 0.385 0.345 0.103
3.167 0.95 0.402 0.355 0.117
3.333 1.00 0.408 0.358 0.122
AVERAGE PERCENTAGE ERROR 124.5%
I NUMBER OF ITERATIONS 381
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Table (3.3.2.3) Vorticity with Inlet Correction

R, = R, = 10)
X X/ X oug Vorticity Vorticity Relative
Wicig Wy Error x 100%
0.000 0.00 3.000 3,000 0.000
0.167 0.05 2.575 2.055 0.202
0.333 0.10 1.706 1.661 0.027
0.500 0.15 0.399 0.200 0.498
0.667 0.20 -0.100 -0.520 4.195
0.833 0.25 -0.135 -0.420 2,107
1.000 0.30 -0.108 -0.217 1.011
1.167 0.35 -0.106 -0.086 0.190
1.333 0.40 -0.103 0.004 1.041
1.500 0.45 -0.079 0.077 1.973
1.667 0.50 -0.033 0.140 5234
1.833 0.55 0.027 0.195 6.213
2.000 0.60 0.092 0.243 1.637
2.167 0.65 0.157 0.284 0.807
2.333 0.70 0.217 0.319 0.469
2.500 0.75 0.272 0.348 0.278
2.667 0.80 0.319 0.371 0.164
2.833 0.85 0.357 0.390 0.091
3.000 0.90 0.385 0.420 0.045
3.167 0.95 0.402 0.410 0.020
3.333 1.00 0.408 0.413 0.120 |
AVERAGE PERCENTAGE ERROR 138.5% |
I NUMBER OF ITERATIONS 365
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Table (3.3.2.4) Vorticity with Boundary Condition Correction

R, =R, =10
X X/ X Vorticity Vorticity Relative
Wicia wyy Error x 100%

0.000 0.00 3.000 3.000 0.000
0.167 0.05 2.575 1.175 0.544
0.533 0.10 1.706 0.962 0.436
0.500 0.15 0.399 -0.176 1.442
0.667 0.20 -0.100 -0.741 6.405
0.833 0.25 -0.135 -0.550 3.370
1.000 0.30 -0.108 -0.345 2.194
1.167 0.35 -0.106 -0.187 0.763
1.333 0.40 -0.103 -0.086 0.169
1.500 0.45 -0.079 - -0.010 0.873
1.667 0.50 -0.033 0.053 2.600
1.833 0.55 0.027 0.108 2.991
2.000 0.60 0.092 0.157 0.703
2.167 0.65 0.157 0.200 0.276
2.333 0.70 0.217 0.239 0.101
2.500 0.75 0.272 0.272 0.001
2.667 0.80 - 0.319 0.300 0.059
2.833 0.85 0.357 0.322 - 0.097
3.000 0.50 0.385 0.338 0.121
3.167 0.95 0.402 0.348 0.134
3.333 1.00 0.408 0.352 0.138
AVERAGE PERCENTAGE ERROR 123.3%
NUMBER OF ITERATIONS 375
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Table (3.3.2.5) Separation and Reattachment

R, = R, = 10)
Method Separation Reattachment
X X
Error Ertor
(%) (%)
aG 0.634 1.759
H | Benchmark Benchmark
!] No Inlet Correction 0.478 1.503
24.6 14.6
Inlet Correction 0.546 1.327
13.8 24.6
0.474 1.527
Boundary Condition Correction
H 25.2 13.2
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Table (4.3.1.1} Parameters for R, = o=

Parameter Value
R, o
XM -5.0
XMAX 5.0
1/ 0.0
Yamax 2.5

5 -
B, 1.8
B, -
€ 1x 10*
€ -
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Table (4.3.1.2) Speed on Surface of Circular Cylinder: Analytic Solution
Using Equation (4.2.3.1) (Van Dyke’s Perturbation Solution)
vs. Numerical Soiution

X Analytic Numerical Relative
Results Results Error (%)
0.00 2.127 2.117 0.47
+0.05 2.116 2.107 0.43
+0.10 2.082 2.077 0.24
+0.15 2.025 2.027 0.01
+0.20 1.942 1.956 0.72
+0.25 1.831 1.861 1.64
+0.30 1.687 1.737 2.96
+0.35 1.501 1.579 5.20
10.40 1.257 1.393 10.8
+0.45 0.909 1.618 78.0
+0.50 0.000 0.526 o
Number of Iterations 351
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Table (4.3.1.3) Speed on Surface of Circular Cylinder:
Using Equation (4.2.3.2) (Van Dyke’s Perturbatio

vs. Numerical Solution

Analytic Solution
o Solution)

x Analytic Numerical Relative
Results Results Error (%)
0.00 2.127 2.117 0.47
+0.05 2.116 2.107 0.43
+0.10 2.082 2.077 0.24
+0.15 2.025 2.027 0.01
+0.20 1.842 1.954 0.62
+0.25 1.831 1.857 1.42
+0.30 1.687 1.730 2.55
+0.35 1.501 1.564 4.20
+0.40 1.257 1.356 7.87
10.45 0.909 1.174 29.2
10.50 0.000 0.082 o
I Number of Iterations 341
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Table (5.3.2.1) Parameters for R, = 50

Parameter Value
R, 50
Xpan 0.0
Xax 6.0
Yaan 0.00
Vaoax 1.00
8 0.40
8, 1.80
8, 0.20
& 1x10°
£, 1x 107
Ay 0.17-0.18
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Diagram (2.1.1) (¢,¢) Coordinate System
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Diagram (3.1.1) Physical Domain
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Diagram (3.1.2) Computational Domain
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Diagram (L1) Slight Shear Flow Past a Circular Cylinder

w
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Diagram (4.2.3.1) Computational Domain
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Diagram (5.1.1) Physical Domain
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T = Bgxp T=ZA
R = recirculating region Inlet: u = equation (5.2.2.4b)
Length of channel = 6 v={
Height of channel = H = 1+h = 1.4 Outlet: u = equation (5.2.2.6b)
Backward Facing Step (BFS) located at x = 2 v=0

Height of BFS h = 0.4
Length of R vortex length or reattachment length = L,
Reynolds number R, = 50

. . h h
Expansion ratic E " T
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Diagram (5.1.2) Computational Domain
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y = y(¥) = equation (5.2.2.8b)
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APPENDIX A

ntation of ions (2.2.2 2.2 in ion (2,2.6) in tern

form

From equations (2.2.2c)

h,, - (vo), = -

]
€
3

h, + (uw), = -1-%..@“

Subtracting, we get

Rl Vi = (uw), + (),

)

= (U +v o +uw, +ve,
using (2.2.1b)

- wa + V(dy

Hence, using (2.2.6), V2o + R({,0, - Y,u) = 0.
From equation (2.2.3b), using (2.2.6) again, we get

w=-V (Al)
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APPENDIX B

Derivatign of equations (2.2.2e) from (2.2.2d)

Equations (2.2.2d) are

o 1
Gb, - Fly+w) = ~o-To,

]

-Fh, + E,+0) ~ -2 Ja,

Dividing (B1) by G, (B2) by F, and adding gives

F E 117 117
b5 F| "R G™ T REY
But F_ E. -ZE Dividing (B3} by this quantity, and noting that
G F FG
Jl [-EG] - E
G b J
I [- B8] . =€
F ]2 ]
we get
1G 1 F
h‘ - -0 + —c-—-w‘ —:To"'
From (B1) and (B4)
2
h, - LIE,]
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Using

yields
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APPENDIX C

Demonstration_that GGauss® equation (2.2.7) is automatically satisfied

We have, from (2.2.7),

[%I‘f.] - [%rn] -0 (1)
¥ x
By definition,
p2 . ~FE,+2EF,-EE,
1l 27
Y2V et 2 YDV Y gt VoY) - (L +YD2Y, Y
2
2y,
- I=
Yo

if we assume that y,;, = y,,.

Hence,

Also, by definition,

_ (Y2, VoY 2V Yy
2y;

Yy
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Hence,

J 112 - Y& y&x - y|l.x
gln iy T T
Iy Yoo Ly,

Substituting into the left-hand side of equation (C1} gives

[%r?l] - [%sz] = yxx2 - y“z
¥ ; x 1+y: ¢ 1+Y: x
Yy = Ve = LY +2VaYuds
(A+y2?

-0

if we assume that y,;, = y,, and ¥,y = Yy for all (x,i).
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APPENDIX D

Derivation of equation (2.3.7b) from equations (2.3,7a)

From the first equation of (2.3.7a), differentiating with respect to v,

(1+y)) AN
Rehxif = yxwx‘!- + yxnﬁwx - y w - "'"'Z'j-l

W
Y Y,
(1+yD)
+ 7 Y
ye

From the second equation of (2.3.7a), differentiating with respect to x,

Rehk = -Rw, + Yo + ¥,0, - Y0, - Y0,

Equating (D1) and (D2) and reordering, we get

Y:“"u - 2ny¢waf + (1+yz)ww . Reyiwx

(1+yD)
+ 2nymu"’¢ -

Yoy = Ya¥ey = 0
Now, from (2.3.7b), writing the equation out in full

yz"“n - 2yx¥&wx§ + (1"')’:)“’3 - Reyivwx - y:wmi = 0

(D3) and (D4) will be the same equation if we can show that

(1+y?)

‘Yi"’"’.p - ZYxYxiwﬁ - Youy — Yu¥y9y

123

(D1)

(D2)

(D3)

(D4)



2y, Y Y, - (1+y§)yww+ - Yuy:“’d'
Yy

RHS =

ViV — WYY + ¥y e,

Yy
-L
- _iy_}fi from definition of operator L
v
—y3ww
A dt using (2.3.8¢c)
Yy
- LHS
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APPENDIX E

Derivation of the equation for energy h = h{x,\), and hence pressure p = p(x,y), from

equations_(2.3.7a)

From definition of the operator L,

L{h} = y2h, - 2y,y,h,, + (1+y2)h,,

2 2 2
W Yo Ay @ y‘[(1+y,)w,.,+2y,yuw¢] = (1+y)uy,,
R o JxxT x 2
c y¢
- Zny'; y @ +y @ - y (1+yz)ww+2yx)’w"’\p]"(l+Yf)°’¢yw
Re XXy Xy X y:

<

1
+(1+y3) |:“"¢+ §{Y¢“’x¢+yw"’x‘Yx“"w'“yw“’&}]

R "R ¥R

c ¢ c

2 2
2 L4y
- w, [yxxY¢ _ ny:& + ( +y )yw]

x¥ R _2yxyx¢

2 2 y
va | P layy B (1+Zx) AR
Re v Re Y e Yy

2y,y, (1+y2) 2 (14y)
- R y: Y.H'(l“'Yx)‘ R, Y
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2 2
Y 1 2%y 1,02 (1+y:)
+Y, [—ﬁ:g(l +yf)ww+ R *y_:(hyx)w“ + R Wy

w X
- f[yiyn-%.m,#(lﬂf)yw]

2
v, -(1+y3)+R—1 -2yxy¢yn+4yfy,¢-%5(l+yf)yw

+ %[}’:wn _2ny¢w1‘.-(l +Y§)wW]

Y (1+yD)

—w  + 2,0 +w
x¥ y"' Xy

3
WYy 2
- Odv ray [_(1+Y3)+ R:: {'ﬁyn*zyx}’wyw'(“ybyw}:l

At

+ %’x' [ygwn _2Y:Yﬁwxnb+ (1 +y3) w“-]
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"’;y Y;y Y,
R‘ [ (1+y)- e; :I R(Rcy;w +Y¢wm¢)

] [

2
Y@ 2, Y:Y&
L{h} = Y§ [YI+ R° ] l R° ]

3
Yo ny“"" ny“"
- o [ = +y,y,] [ ~(1+yD- = ]

Hence,

127




“c o Av(vZ/a+e/ez) Av(9/q+¢/ep) AV (F1+27) #+V (Q+ ©2) q+ e  {
% b} a
©r o Avapz/I #va9/1 AV 4vq q -
(-, (dv)ve/T c(#9)8/1 (V)5 (dv) 1 (1)1lq 7 'bq
"t Ayeg/z Avel(e/v) AVez dyez L =
(Nt L FARTHA c(hvZ)9/1 (h92) % (dvZ) 1 (1)1)e *'be
] A%-m; _;«.nvv :ﬂn_-_-m; 1 .nomuv :An_&

1T 3noge sartaag xoTAe] e ur puedxy

ﬁ:nowwrl - «.:UQ + Nn-Um ~ Vo 1

(PL°S F°2Z) pue {(qL°G°p°Z) suorjenbs A3TO0T31I0A 103 SUOTJTPUOD Aiepunoq JO UOFIRATI3(

d XIaN3Idavy

128



Setting the first two coefficient sums equal to zero gives
a+b=0
Ra+bay +% =90
Solving these equations,
b = LAY a = -1hAyY
and
wy = -(4AY)(q° - q)
Then, the truncation error Ey is given by
Er + (2a + Ab)AY? = 0
that is,
Er = 3/4AY
= 0(ay)
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* AV (vz/q+e/e2) AV (9/a+e/ep) AV (Gu+e7) s+hy (q+eg) 2+q+ @ z
% .:auovuu.n
) bo
T AVG(RZ/T) £v9(9/1) AV vq q
[*r (v 2/ (dv)o/t (V)% (AV) 1 (1)1lq 2bq
“rAve(e/2) Ave(g/p) Avez Ayez e
ORI L FART A c(4V2)9/T 2 (MV2) % {dv2) 1 (1}1)® *'be
- .:Ano-ﬂ.u 1% aN.nUv :au:Uw :Anbmvv i4) num-v

1T 3Inoge sataag a0TAel e ut puedxy

:AN»U:A.. = ;'bo + ,7'bq + f'he = Vo
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Set the first three coefficient sums equal to zero:
a+b+c=0

Qa + b)AY + 1 =0

2+ %b =0

Hence,

b = -1/A¢

a = 1/4Ay

¢ = 3/4Ay
and

wy = (VA4 - q5° + 3g,Y/4)
= (1/4A¢){qx’ - 4q,%) when g2 = 0

As before,

E; + (4a/3 + b/6)AyY* = 0 where E; is the truncation error.
Therefore, E; = -[(4/3)(1/4Ay) - (1/6)(1/A¢)IAY
= (-1/6)A¢?
= 0(ay?)
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APPENDIX G

Derivation of equations in stretched coordinates

From equation (2.4.6.1), for the transformation ¥ = fn{n) only,
Ay transforms to Ay and we have

3/9% = (de/dn)"1(a/am)

32/0y? = (dy/dn)~2(82/an2) - (dy/dn)~3(d2¢/dn2) (3/am)

-
ey

o (Gl)
32/0xdy = (dy/dn)~L(82/axan)
From equations (2.4.1.1) and (2.4.1.2) using (Gl) we get
Ay Kl + Bij(k)(dw/dq)"%ﬁxn
k - -
+ Cyy (Kt tdy/an) 28, - (dy/an) 3(a?y/an?) 58,)
k -
+ “ReDij( )bx + Elj (k) (d*/dﬂ) %bﬂ}¢lj (n+l) - 0
Therefore,
(Ag5Ro,, + By (X1 (ap/an) 1o, + ¢y *) (ay/an) ~28,
+ “ReDl] (k) Gx
+ (By5 ) (ap/an) 7] - oy (K) (ap/an) ~3 (a2y/an?) 518,00y 4 (D) < o
where ¢ = y({x,n) if a =0

w(x,n} if a = 1 are the unknowns,

Ay K = (d9/dn) 5 (3,1 2

By (K} = ~2(8,y) 55 (aw/dn) "1 8,y) ;5

ci3™) =1+

Dj (%) = - (aw/dn)=L (8,35

By K = - (aw/an) "3 (8,v) 50y, )
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Simplifying we obtain

(A ™8, + Byy™8,, + C,Mb,, + aRD,, M8, + E,™M8,) ¢, = 0

where

A, = (dy/dn) 2 (8,y)3

Byy'® = -2(d¥/dn) 2 (3,) 45 (84Y) 4y
Cy™ = (dy/dn) 3Ll + (3,13
D™ = - {dy/dn) 5 (8,y) 4

—

Ey'™ = —(d§/dn) 38y §juyy - [1 + (8,y)}4) (dy/dn) -} (a*y/dn?),
- (dy/dn) 38,y fuyy + (@Y/dn?) (1 + (3,7)%4])

Therefore, equations (2.4.2.3a) become

513 = Ku(k)
by, = By,™ (Ax/44n)
Cyy™ (Ax?/An?)

)

Eij
d,; = aR,D;,™ (4x/2)
E;,'™ (Ax?/24n)

€1y
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From equation (2.4.6.1) Ax transforms to Af and Ay transforms to
Adn and, in addition to the relations in (Gl) we have

9/0x = (dx/dE)'(d/aE)

02/9x* = (dx/d§}"(8%/9E%) - (dx/d§)"3(d*x/dE?) (8/0E) (G2)
Again, from equations (2.4.1.1) and (2.4.1.2) using (Gl) and (G2)
we get

{Ay™ [(dx/dE) 16y - (dx/dE) "} (d*x/dE?) 8]

+ Byy ™M (dx/d§) 7| (dy/dn) 18,

+ €y, ™ [(dy/dn) I8y, - (Ay/dn)"I (d*¥/dn?),5,]

+ aR,Dy " (dx/d§} {8y + Ey™ (d¢/dn) 18,1, ™Y = 0

Therefore,

{Ay™ (dx/dE) b + Byy™ (dx/dE)Hdy/dn) 33,

+ Cyy™ (dy/dn) 38, + [&R,Dy'™ (dx/dE) "}

= Ay'™™ (dx/dE) T (dx/dE?) (] &

+(E,™M (dy/dn) ] - €,y ™ (dy/dn) 3 (d2¥/dn?) 418, ) ¢y, = 0

where ¢ = | y(E,n), ifa =0

w(§,q), ifa =1 are the unknowns,
and
A, = (dy/dy) EfCRZES

By, ™ = -2(dx/dE) 18ey) .y (d¥/dn) "} (8,y)
Cy™ = 1 + (dx/dE)T(8,y)%

D, = ~{d¢/dn) }(B,y) 4

Ey™ = -(dy/dn) {8, ¥) %0,

"Simplifying we obtain

(Kuma“ + gumah + Euma“ + Bu“"% + Eumaq)d’u(nm =0
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A, = (dx/dE) 2 (dy/dn) 2 (8,y),

B, = -2(dx/dE) I (d¥/dn) 2 (8gy) 4, (8,y) 4,
Ty™ = (dy/dn)2(1 + (dx/d§) 1 (8;y)3,)
D,y® = -aR,(d§/dn)}(8,y) ; (dx/dE) "
- (dy/dn) "} (8,y) % (dx/dE) " (d?x/dE?),
= -(dx/d§) " [aR, (dy/dn) "} (3,y)
+(dx/d§) "% (d§/dn) ~} (d*x/dE?), (b,y) %]
Ey™ = - (ag/dn) 3 (8,y) e,

—[1 + (dx/dE) ] (8gy) 3] (Qy/dn) 3 (d*y/dn?)
= (dy/dn) "3 (8,y) [,y +(dMy/dn?) (1 + (dx/dE) T (By)E))

Therefore, equations {(2.4.2.3a) become

3,y = A,W™

by, = B (AE/44A7)
Ty = Cyy'™ (AE2/AR?)
d,; = Dy,'® (4E/2)
€,y = E,,™ (AE2/24q)
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APPENDIX H

Channel shape

The channel shape for this study was chosen by Roache [III.1]. It was desirable to have
separated flow with a nearly constant channel height at outflow, and a shape defined by
a single-valued smooth analytic function. The shape of the lower wall was defined by

a shifted hyperbolic tangent function, given by

. - 1i- X |, (H1)
Y = Y Ax) 2[1 tanhlsc T ]] 8

where L. = length of the channel;
Xz = location of the inflection point in the tanh profile;
sc = scale factor;

d = small adjustment set to give y,(0) = 0.

For the parametric cases considered, L, is scaled with Reynolds number R, = R as

R
L, - -C_"i . Again, this scaling is necessary to keep the separated flow region within
Ll

the computational mesh, and results in the self-similarity of the solutions at high R.. The

particular channel parameters used were:

R
sc-lO,%’-O.z 5o that X, = = and €, - 3 (H2)
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Substituting (H2) into (H1) and taking y,(0) = 0, we obtain

1 X=X
¥ (%) - 5 |1-tanh 10 R: + 8
i 3
-% tanh 2-3%‘. N 1] .5

| r—
=

( 1
- tanh |2 - tanh2:|
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APPENDIX I

ification 1 nditions at the channel outl

The slope of the lower wall at is given by

I_ 1 2 _30’3 _30
Ye = 5 sech {2 —R—][ ir]

R

-

Hence, at X = x_, = 3

= 7x1077 for R_ = 10

= 7x10° for R_ = 100

The channel shape has a height that is constant to five figures over the last 20% of the

channel. Hence, using the condition commonly used in straight-channel calculations,

i.e., parabolic velocity profile, would be acceptable. In any case, the lower wall is

virtually parallel to the x-axis at the outlet, and we can reasonably assume thatv = 0

at the outlet. To further support the above argument, consider the following:

U=y,

V='Jl;

Hence, u, = Oimpliesy), = 0,i.e., (Y9, = 0. Similarly, v, = 0 implies -y,

=0, i.e., (¥, = 0.

Therefore, we can conclude that y, = -v = constant. Since v = 0 at the walls, this
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constant is zero, and hence v = Q at x = x_, forally. Also, v = uy, =

R
implies y, = 0 for x = x,, and vy, [_32‘.] sy<l.

Finally, o = v, - u,, 50
@ gy = Uy~ -Y,

Hence,

@, | e =™ "V = (-‘t')m), -0

R
Therefore, w, = 0 for x = x,, and y,[-g- <sysl.
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APPENDIX J

Denvation of eguation (3.2.3.1)

1

We want to solve ¢ = (3y* - y°) explicitly for y = y(y). Rewrite this equation as

S]]

Y-3¥+2¢=0 43))
Letp = -3, y-x—-g--x-rl. Then

x+I1P-3x+1)=2y=0

or,

X-3x-2+24 =0 a2

Leta=-3,b=-2+ 2y, thenab = -3(-2 + 2¢) # 0 provided ¥ = 1.

The solution of (J2) is given by

X = mcosf
where
m=2 ] -2
J 3
and

cos30 ~ 2w 1-y
O9m

Hence, the solution of (1) is
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y = mcosf + 1 a3)

= 2cosf + 1
where
al
2r
R DR a4y
4
6, + —33'-
and 6, is defined as
6, = él-cos"(l-t,b) as)

Several possibilities occur for the value of 6. To determine the appropriate choice,
consider the following cases:
1. When ¥ = 0, we require that y = 0. From (J1), ¥ = 0 yields
Y3 = 0
This implies thaty = O or y = 3, so we can select y = 0. Using ¢ = 0 in (J5)
gives

6, - -31-cos“(1) -0
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Then, (J4) gives

O

We findthaty = Qfor 0 = %I and jit
2, Equation (J1) is also satisfied at the channel centreline, y = 1, at which ¢ = 1.
A
Hence, using (J5)

6, = Lcos(0) = z

3
Using (J4),
[ =
6
T T
S )
T, A
6 3
T 4

We find that y = 1 for 8 = r only.
Combining these results, we see that the only choice for fis 0 = §, + 5.31 .

Hence, we arrive at the solution

y - 2cos[o,+i‘§t +1

where 1
6, - .é.cos"(l-gp)
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APPENDIX K

Difference formulas used for v, in equation (3.2.4.1)

Wehave u - L and v -uy, - I,
Y+ yi

The derivative v, is approximated by forward differencing,

V. ..~V
vx)v ’(BxV)H - MAJx vu 2-point, O(AX)

or
+4
Vi~ Vg 3-point, 0(Ax)

- vi’
(©,); - 24Ax

We use a forward (downwind) difference for y,, but a central difference for Yy tO

compute values of v,

v. _y ] Yi; ™Yy 2AY 0(AX)0(AY)
’ 6 J AX  Yija Yig
or
V.~ ~Yiezg * i = 3Y; Ay , 0(Ax)0(AY?)
2Ax Yijor = 2yij +Yiin1

The above formulas are valid fori = 1 only, j = 2,3,...,J1.
Atj = 1, the solid wali no-slip condition gives (v,),; = 0.

Atj = JX, the centreline symmetry condition implies (v,), n=0
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APPENDIX L

Derivation of the solution for a circular cylinder in hyperbolic-cosine shear flow

Problem A; Flow about a circular cylinder of radius r = a

Consider steady plane (2-dimensional) motion of an incompressible, inviscid fluid past

a circular cylinder without circulation (irrotational).

DE:
(Differential
Equation)

BC's:

(Boundary
Conditions)

VY = -w(y) = 0, since the flow is irrotational.

y is the stream function with velocity components in cartesian
coordinates given by u = Yy ¥ = =y, and @ = w(y) is the
vorticity.

Upstream:  Uniform flow far upstream at infinity, implying that

the vorticity vanishes.

at infinity.

u = U_ = constant
Speed: V_O‘” . }

Stream function: Integrating ., = U, gives

Vo = Ugy = U,rsind in polar coordinates (r,6). Hence

v(r,8) = ¢, = U_rsinfasr—» .

Note: We have taken y = 0 as the streamline ¥ = 0 so the
arbitrary constant of integration will be zero. This will be the case
in the problems to follow.

Surface: Since the surface is a streamline, we can take ¢ =

0 onr =a,ie., ¢@,6) = 0.
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Circulation:

Solution:;

To rule out circulation and obtain a unique solution,
it is assumed that no flow will cross the x axis by
assuming symmetry about the line § = Q and 8 =
* (|r}] > a), i.e., no additional circulation is

induced by the body.

V@) = U, [r-“;] sind

i.e., uniform stream plus a dipole at the centre of

the circle.
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Problem B:  Circular cylinder in slight shear flow (same as problem A except as noted

DE:

BC’s:

below)

Vi = -w(y) # 0, since the flow is rotational. (LD

Upstream: Consider a slight or small linear perturbation to the
uniform flow boundary condition far upstream at
infinity. Let the oncoming stream be a parallel flow
with small constant vorticity.

Speed: u=-U, [ 1 *‘%] at infinity.

v=0

Stream function: Integrating ¢, = U, [ 1 +el] gives
a

2
Thatis, y(r,0;¢) = ¢_=U_ [rsin0+%e%(l -00328)]

asr—» co,
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DE:

Solution;

Note:

.. : €U
Vorticity: W ==V = - =constant.
a

U
Hence, w(y)=w_= e .
a

Equation (L1) becomes

vy - U=
a

If the dimensionless "vorticity number” ¢ is small (slight vorticity), it
seems likely that the flow will depart only slightly from the solution in
problem A for irrotational motion.

Hence, by perturbing the solution to problem A, we get

2 2 3
¥(r,0i6) = U, |r-2 | sing+ 1eu_ | Z(1-cos26)+2 cos20-a
r 4 a r?

The basic solution consists of a uniform stream (a dipole at infinity) plus
its image in the circle (a dipole at the origin) as before. The first order
perturbation solution consists of the rotational part of the stream, ité image
in the circle and a constant to adjust the stream function to zero on the
surface,

Since the vorticity is constant everywhere, this problem is not difficult to

solve,
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Problem C; Circular cylinder in parabolic and hyperbolic-cosine shear (same as

BC’'s:

problern A except as noted below)
Upstream:  Consider a circular cylinder of radius a symmetrically
placed in a parallel stream of incompressible, inviscid fluid

having the following velocity profiles far upstream.

a)  Parsbolic velocity profile

- 1.y
Speed: u-U, [1 * 56'{2] at infinity.
v=90

2
Stream Function: Integrating ¢, = U, [1+_;_Ey_2] and choosing
a

¢ = 0 along y = 0 gives

1 y?
¢en - Uw [y+'g€;2']

Jaind
Thatis, y(r,8€) >y, = U, [rsin0+%5r sx:n 9]
a
asr-—» oo,
Vorticity: w, = -V _ = 'i;UmY = constant.
a

In inviscid motion we have the physicai fact that
vorticity is constant along streamlines in the absence
of viscosity.

Hence, writing o(y) = 0 = w,

and Y(r,0;¢) = ¢ = ¢,
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i
¥ w
we have y = T and, therefore,
€

gy |-Ee 13
"l eU, 6y
L[, 1w
€ 6eUi

Reverting this series gives

¢ Y3 +0(e%)

-w-w@)-gwnl

6 Ula*
D.E.: Equation (L1) now becomes
W¢-§ ” %)
Solution: y(r,0¢) = [r-._] sinf+eU [ga_sm% .i.rfn Tsinf+x | +0(e?)

where x is a solution of the homogeneous equation (complementary
solution) that restores the boundary conditions. However, the term in the
particular integral or solution that contains a logarithm gives velocity
perturbations that are logarithmically infinite at infinity and no harmonic
function x will cancel them, i.e., no solution exists with disturbances
dying out to satisfy the upstream condition.

Hence, there is no analytic solution here to verify numerically.
Therefore, we consider a profile which is almost the same near the

cylinder.
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b) Hyperbolic-cosine profile

1
2
Speed: u = U_cosh [ ¢ y] at infinity.

ve(

a

1
1
Stream function: Integrating ¢, = U,cosh [%y] gives

Thus,

ta3
V0:e) > Y = U_ [ rsings L3S0,

asrtr— oo,

Vorticity: w, = -V = —.554/0, # constant.

Hence, writing o(y) = @ = w,, and

¥(r,0;¢) = ¢ = ¢, we have

-0 = -of) =¥
a

DE: Equation (L1} now becomes exactly
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2
Solution: y(r,8;¢) = U_ [r—aT] sinf+eU [%L sm’ﬂ—%rtni sinf+x | +0(e?) (L2)
a’ a

where a solution x can now be found that disturbs the distant flow
upstream as little as possible.

We find,

2
x(r,0) - —% -_.sml)+.;.!}‘I i:..sm36+c [r-ar ] sinf

where ¢ = %[fni—}yﬂ]; y = 0.577
€

e o {3

From equation (L2)

2 3
% -U, [r—aT] cosf+eU,, [%%sin’ﬂcosﬂ-%rfn%cos%% +0(e?)
% - %Er_cosm%a_cosww [r- ]cose

2
% - U, [1+%] sinf+eU [ ; ; sin*0- %ansxnﬁ -2~51n0+ c';x ] +0(e)

2
9 la;sme— 12*

% 32 Rt sm30+c [14-_] sind
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In order to obtain expressions in nondimensional variables, we can take U, = a = 1.

Then, u = cosh(ely)

1 1
Yo = iisinh e!y) or y-ilsinh" e’gbm) (L3)
€’ €’
1 1 )
w = —e = -eZsinhlely (L4)

The preceeding solution is obtained with considerable difficulty using the method of
matched asymptotic expansions. A perturbation solution is required, one valid far away
from the body, termed the outer solution and another valid near the body, termed the
inner solution. Both of these solutions contain arbitrary constants which have to be
matched using some form of matching principle to obtain a unique solution. A uniformly
valid composite approximation can be obtained by finding the common part of the inner
and outer solutions and subtracting it from the inner plus outer solution using additive

composition.
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APPENDIX M

Derivation of the initial : ion (5.2

Wehave2 = x < x<x,=2+1L,

(2,0.4)

(2,0) (34, 0)

For an ellipse we take a = L,, b mh = 0.4 to get the equation

R -2
%1—%-1

1
Solving for y gives y - h[l - (!-22)’]'

(1)
= Yi

in equation (5.2.4.4). This gives the initial guess for y, for some initial value of the

reattachment length L,.
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APPENDIX N

PROGRAM SLOR

IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
c EXTERNAL DELXY,DELPSY

PARAMETER (IMAX=61, JMAX=21, IMM1l = IMAX - 1, JMM1 =

# JMAX - 1, IMM2 = IMAX - 2, JMM2 = JMAX - 2)

DIMENSION A(JMM1}, B(JMM1l), C(JMMl), D(JMM1), R(JMM1),

# WOLD (IMAX, JMAX), WNEW({IMAX,JMAX),BENCH(JMAX,2),

# YOLD (IMAX, JMAX), YNEW (IMAX,JMAYX)
¢ , F(JMAX,2), G(JMAX,2)

COMMON /BND/DELX, DELPSI, XMIN, PSIMIN, REY

COMMON /WVALUE/WOLD, WNEW/YVALUE/YOLD,

YNEW/WCH/WCHECK/WA/HSTEP

LOGICAL CHECK, WCHECX

c
c DEFINITION OF STATEMENT FUNCTIONS
c
Al(I,J) = DELPSY(I,J) ** 2
A2(I,J) = -2.0 * DELXY(I,J) * DELPSY(I,J)
A3(I,J) = 1.0 + DELXY(I,J) ** 2
A4(I,J) = -DELPSY{(I,J)
AS(I,J) = -Al(I,J) * WOLD(I,J)
Q(I,J) = A3(I,J) / AL(I,J)
VK(I} = (YOLD(I+1l,1)-YOLD(I-1,1)) / (YOLD(I,2)-YOLD(I,1l)) *
# DELPSI * 0.5 / DELX
C
C FORMULA 1 OF W
W1(I) = (3.0 * Q(I, 4) - 8.0 * Q(I, 3)
# + 5.0 * Q(I, 2)) / (4.0 * DELPSI)
W2(I) = -(3.0 * Q(I, JMAX-3) - 8.0 * Q(I, JMM2)
# + 5.0 * Q(I, JMM1)) / (4.0 * DELPSI)
W3(I) = -(2.0 * Q(I, 4) - 9.0 * Q(x, 3)
# + 18.0 * Q(I, 2) - 11.0 * Q(I, 1) ) / (12.0 =
DELPSI)
c
C FORMULA 2 OF W
C W1(I) = -(2.0 * Q(I, 4) - 9.0 * Q(I, 3)
o) # + 18,0 * Q(I, 2)) / (12.0 * DELPSI)
C W2(I) = (2.0 * Q(I, JMAX-3) - 9.0 * Q(I, JMM2)
C # + 18.0 * Q(I, JgMM1)) / (12.0 * DELPSI}
o) W3(I) = 0.5% ((VK(I+l) - VK(I-1)) / DELX -
C # (Q(1,2) - Q(1,1)) / DELPST )
c
(o) FORMULA 3 OF W
C W(I) = -(11.0 * Q(X,5) - 42.0 * Q(I, 4) + 57.0 * Q(I, 3)
C # - 26.0 * Q(I, 2)) / (12.0 * DELPSI)
C
c READ THE MINIMUM AND MAXMUM X AND PSI VALUES. READ THE
C VALUE OF EPSILON TO BE USED
C

WRITE(*,*)’ Input Reynolds Number'’
READ(*, *)REY

WRITE(*,*)’ Input Beta for y’
READ(*, *)BETAY
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WRITE(*,*)’ Input Beta for w’

READ(*, *) BETAW

WRITE(*,*)* Input delta for w’

READ(*, *)DELTA

WRITE(*,*)’ Input epsilon for error tolerance’
READ(*, *)EPSILY,EPSILW

WRITE(*,*) ' Input maximum iteration Number’
READ (*, *} NMAX

WRITE(*,*)’ Input starting point for delta calculation’
READ(*, *)MMU
WRITE(*,*)’ Input index for reattachment’
READ(*, *) IRETACH, ISTEP

read(*, *)CF

C OPEN(UNIT = 1, FILE = 'TEST.DAT’, STATUS = ‘NEW’)
C .
C DATA INITIALIZATION
C
DO 10 I=1,IMAX
DO 10 J=1,JMAX
WOLD(I,J)=0.0
YOLD(I,J)=0.0
10 CONTINUE
c
C CALCULATE DELTA X AND DELTA PSI
cC
HSTEP = 0.4
C
c ASSUMING AN INDEX FOR REATTACHMENT,
Cc WHICH IS CLOSE TOC THE OUTLET
cC
XMIN = 0.0
XMAX = 6.0
PSIMIN = 0.0
PSIMAX = 1.0
DELX = (XMAX - XMIN) / IMM1l
DELPSI = (PSIMAX - PSIMIN) / JMM1
RAT = DELX / DELPSI
RAT2 = RAT * RAT
RATD = RAT * DELX * 0.5
RATF = RAT * 0.25
REY2 = 0.5 * REY * DELX
WRITE(I1,111)XMIN, XMAX, PSIMIN, PSIMAX, REY,
# DELTA, BETAY, BETAW, EPSILY, EPSILW
111 FORMAT(1X, ' S =S E T CCssSIsSRszssSzosooaooo=sSssmsss==ns=’ [/
# 4X, 'Xmin = ‘,F5.2,"' Xmax = ',F5.2/
# 4X, 'Pmin = ’,F5.2,’ Pmax = *,F5.2/
# 4X, 'Re = ', F5.2,' delta= *,FS5.2/
# 4X, ‘By = *,F5.2,' Bw = ', F5.2/
# 4X, 'By = ',E12.5," Ew = *,E12.5/
# 1X, '====smmcc===c==czccscz=omsco=zson=szms==o= ¢ )
C

C CALCULATE THE BOUNDARY CONDITIONS WHICH REMAIN UNCHANGED DURING
ITERATION
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THEY ARE I<>IMAX FOR Y AND I=1 AND J=JMAX FOR W

BOUNDARY CONDITIONS FOR Y ON THE LOWER AND UPPER BOUNDARIES

DO 20 I=1, IMAX
YOLD(I,1) = YBND(I,1)
YOLD(I,JMAX) = YBND(I,JMAX)
WOLD(I,1l) = WBND(I,1l)
WOLD(I,JMAX) = WBND(I,JMAX)
CONTINUE

BOUNDARY CONDITIONS OF THE INLET AND OUTLET

DO 30 J=1,JMAX
YOLD(1,J) = YBND(1,J)
YOLD(IMAX,J) = YBND(IMAX, J)
WOLD(1,J) = WBND(1,J)
WOLD (IMAX,J) = WBND(IMAX, J)
CONTINUE
DO 33 J = 2, JMMl
DO 33 I=2,IMM]
WOLD(I,J) = WOLD(1,J) + (WOLD(IMAX,J) - WOLD(1l,J)) *
# FLOAT(I-1) / 60.0
CONTINUE

ITERATIONS
DO 32 I=21,29
WRITE (1, *)K,I,YOLD(I,1)
DO 899 K = 1, NMAX, ISTEP
SET OR RESET THE FLAG IF THE VORTICITY IS COMPUTED
WCHECK = MOD(K,2) .EQ. 0

CALCULATE THE BOUNDARY CONDITIONS FOR W ON LOWER AND UPPER

OUNDARIES ;

(J=1 OR J=JMAX), WHICH CHANGES DURING THE ITERATIONS

IF (WCHECK) ' THEN
IF (K.EQ.2) THEN
DO 31 J=1,JMAX
WOLD(1,J) = WBND(1l,J)
WOLD (IMAX,J) = WBND(IMAX, J)
ENDIF '
DO 40 I = 2, IMML :
WRITE(*,*)YOLD(I,2),YOLD(I,3),YOLD(I,k4)
WRITE(*, *)YOLD(I,JMAX-3),YOLD(I,JMM2), YOLD (I, JMM1)
IF ( I .GT. 21 .AND. I .LT. IRETACH ) THEN
WOLD(I, 1) = (1.0 - DELTA) * WOLD(I,l) + DELTA *

ELSE
WOLD(I, 1) = (1.0 - DELTA) * WOLD(I,1l) + DELTA *
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c ENDIF

c WOLD(I, JMAX) = (1.0 - DELTA) *WOLD(I,JMAX)
DELTA*W2 (I)
C WRITE(*, ' (I3,3F10.4)')I,W1(I),W2(I),W3(I)

WOLD(I,l) = WBND(I,1)
WOLD(I,JMAX) = WBND{I,JMAX)
C WRITE(*,*)I,WOLD(I,1),WOLD{I, JMAX)
40 CONTINUE
C WRITE(*, ' (A) ‘)’ OK’ .
ELSE
DO 32 J=1,JMAX
32 YOLD(IMAX,J) = YBND(IMAX, J)
WRITE( 1, *)'K=’, K
ENDIF

DO 41 I = 1, IMAX
WRITE( *,’(4F10.4)’) YOLD(I,1l), YOLD(I, JMAX), WOLD(I,1l),
# WOLD(I, JMAX)
41 CONTINUE
WRITE(*, : (A) t) tkkk
DO 42 J=1,JMAX
WRITE(*, ' (4F10.4)') YOLD(1,J),YOLD(IMAX,J), WOLD(l,J),
# WOLD (IMAX, J)
42 CONTINUE
DO 300 I = 2, IMMl
IF { K .EQ. 1 .AND. I.GT.21 .AND. I.LT.IRETACH) THEN
YOLD(I,1l) = YOLD(I-1,1)
ENDIF
DO 100 J = 2, JMM1

CALCULATE THE VALUE NEEDED IN THE PRESENT ROW OF THE
COEFFICIENT MATRIX

aONn N0 agoooaoaaoaonnn

Cl Al(I,J)
c2 AZ2(I,J) * RATF
C3 A3 (I,J) * RAT2
~ IF (WCHECK) THEN
C4 = A4(1,J) * REY2
ELSE
C4 = 0.0
END IF
CS5 = A5(I,J) * RATD
WRITE(*, ’{(I5,5F10.5)’)I, €1,C2,C3,C4,C5

Cc
C
Cc CALCULATE THE COEFFICIENT MATRIX
C

IF(J .GT. 2) THEN
A(J) =C3 -C5
ENDIF
B(J) = =2.0 * (C1 + C3)
IF(J .LT. JMM1) THEN
C(J) =C3 + CS
ENDIF
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FIND THE SOLUTICN FOR THE PRESENT I-TH LINE

WRITE(*,' (IS, 4F10.3)'){(I, A(J),B(J),.C(J),D(J),J=2,dMM1)
CALL TRID(A,B,C,D,R,2,JMM1)
WRITE(I;*) (R(J) .IJ:lJJMA-X)

UPDATE NEW VALUES

IF (WCHECK) THEN
DO 200 J = 2, JMM1
WNEW(I,J) = (1.0 - BETAW) * WOLD(I,J) + BETAW * R(J)
WRITE(1, *)WNEW(I,J)
CONTINUE
WRITE (1, *)WNEW(I,2)
ELSE
DO 201 J = 2, JMML
YNEW(I,J) = (1.0 - BETAY) * YOLD(I,J) + BETAY * R(J)
WRITE(1l, *)YNEW(I,J)
CONTINUE
WRITE(1, *)YNEW(I,2)

MODIFY THE BOUNDARY CONDITIONS FOR Y ON LOWER BOUNDARY ( J=1

IF ( I .GT. 21 .aND. I .LE. IRETACH )} THEN
WRITE(*,*) I, YOLD(I,1l), YNEW(I,2}, YNEW(I,3)
AAA = 0.0
DO J = 3, JMMl
AAA = AAA + 2.0 * DELPSI / (YNEW(I,J+1) - YNEW(I,J-1))
ENDDO
BBB = DELPSI * ( 1.0 / YNEW(I,2) + 4.0 / YNEW(I,3) )

YOLD(I,1) = 0.4 * (1.0 - AAA) / DELPSI -
# 0.2 * ( YNEW(I,2) + YNEW(I,3) * 4.0 )
YOLD(I,1) = 2.0 * (1.0 - AARp) / BBB - 1.0
YOLD(I,1) = 2.0 * YNEW(I, 2} - ¥YNEW(I,b3) -
YOLD(I,1l) = (6.0*(1.0-CF)*YOLD(I,2)~-(3.0-2.0*CF)*YOLD(I,3))/

# (3.0-4.0%CF)
WRITE(1,*) I, YOLD(I,1), YOLD(I,2)
IF (I.EQ.IRETACH)THEN
IF (YOLD(IRETACH,1) .LT. 0.0 .AND.
# YOLD (XRETACH-1,1) .GT.0.0) THEN
' STOP '
ENDIF
ENDIF
IF ( YOLD(I,1) .LT. 0.0 ) THEN
IF (I.LT.IRETACH) THEN
YOLD(I,1) = 0.0
ENDIF
IRETACH = I
ENDIF
ENDIF
ENDIF
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ELSE IF(I .GT. 21 .AND. I .LE. IRETACH ) THEN
IF(J. EQ. 2) THEN
RB = 0.0
END IF
ENDIF
END IF

CALCULATE THE RIGHT HAND SIDE OF THE SYSTEM EQUATION
WHICH DEPENDS ON THE INITIAL CONDITIONS (INTERIOR VALUE)

RI = -(Cl - C4) * PNEW(I-1, J)
- (Cl + C4) * POLD(I+1i, J)
IF{(J .EQ. 2) THEN

RI = RI + C2 * (PNEW(I-1,3) - POLD(I+1,3))
ELSE IF(J .EQ. JMM1l) THEN
RI = RTI - C2 * (PNEW(I-1,JMM2) - POLD(I+1,JMM2))

ELSE
RI = RI + C2 * (PNEW(I-1, J+1) - PNEW(I-1, J-1)
+ POLD(I+l, J-1) - POLD(I+l, J+1))

ENDIF
IF(I .EQ. 2) THEN
RI = -(C1 + C4) * POLD(3, J)

IF(J .EQ. 2) THEN

RI = RI - C2 * POLD(3,3)
ELSE IF(J .EQ. JMM1) THEN

RI = RI + C2 * POLD(3,JMM2)

ELSE
RI = RI + C2 * (POLD(3, J-1) -~ POLD({3, J+1})
ENDIF
ELSE IF(I .EQ. IMM1l) THEN
RI = -(Cl - C4) * PNEW(IMMZ2, J)

IF(J .EQ. 2) THEN
RI = RI + C2 * PNEW(IMMZ, 3)
ELSE IF(J .EQ. JMM1l) THEN
RI = RI - C2 * PNEW(IMM2,JMM2)
ELSE
RI = RI + C2 * (PNEW(IMM2, J+1) - PNEW(IMM2, J-1})
ENDIF
ENDIF

THIS IS THE RECIRCULATING REGION AND THE REATTACHMENT POINT

IF ( .NOT. WCHECK ) THEN
IF( I .GT. 21 .AND. I .LT. IRETACH ) THEN
IF ( J .EQ. 2 ) THEN
RI = -(Cl + 2.0*%C2 ) * PNEW( I-1, J ) -
(Cl - 2.0*C2 ) * POLD( I+l, J ) +
2.0 * C2 * ( PNEW(I-1,3) - POLD(I+1,3) )
ENDIF
ENDIF
END IF
R(J) = RB + RI
CONTINUE
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THE RECTIRCULATING REGION HAS DIFFERENT MATRIX

IF ( .NOT. WCHECK ) THEN
IF( I .GT. 21 .AND. I .LT. IRETACH )THEN
IF ( J .EQ. 2 )} THEN

B(J) = -2.0 * ( Cl + C5 )
C(J) = 2.0 * CS
ENDIF
ENDIF
ENDIF

CALCULATE THE RIGHT HAND SIDE OF THE SYSTEM EQUATION
WHICH DEPENDS ON THE BOUNDARY CONDITIONS (RHSi)

IF(J .EQ. 2) THEN
RE = C2 * (PBND(I+1,1) - PBND(I-1,1))
# - (C3 - C5) * PBND(I,1)
ELSE IF(J. EQ. JMM1) THEN .
RB = C2 * (PEND(I-1,JMAX} - PBND{(I+1l,JMAX))
# - (C3 + C5) * PBND(I,JMAX)
ELSE
RB = 0.0
END IF

IF(I .EQ. 2) THEN
RB = C2 * (PBEND(1, J+1) - PBND(1l, J-1))

# - {(C1 - c4) * PBND(1l, J)
IF(J .EQ. 2) THEN
RB = RB + C2 * PBND(3,1) - (C3 - C5) * PBND(I,1)

ELSE IF(J. EQ. JMMl) THEN
RB = RB -~ C2 * PBEND(3,JMAX)
# - {(C3 + C5) * PBND(I,JMAX)
END IF o
ELSE IF(I .EQ. IMM1l) THEN - .
RB = C2 * (PBND(IMAX, J-1) - PBND(IMAX, J+1))
# - {Cl + C4) * PBND(IMAX, J)
IF(J .EQ. 2) THEN
RB = RE - C2 * PBND(IMM2,1)
# - (C3 - C5) * PBND(I,1)
ELSE IF(J. EQ. JMMl) THEN
RB = RB + C2 * PBND(IMM2, JMAX)
# - (C3 + C5) * PBND(I,JMAX)
END IF
ENDIF
IF ( .NOT. WCHECK ) THEN

THIS IS THE SEPARATION POINT
IF( I .EQ. 21 ) THEN
IF(J .EQ. 2) THEN
RB = -C2 * HSTEP
END IF

THIS IS THE RECIRCULATING REGION AND THE REATTACHMENT POINT
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300 CONTINUE
IF (WCHECK) THEN

CHECK THE CONVERGENCE ACCORDING TO THE OUTER CONVERGENCE
CRITERIA

IF {CHECK (WNEW, WOLD, IMAX, JMAX, EPSILW) ) THEN

SOLUTION HAS CONVERGED, RECORD NUMBER OF ITERATIONS AND
EXIT THE DO-LOOP

N =K
GOTO 995§
ENDIF
ELSE

CALCULATE THE DAMPING FACTOR FOR THE INNER CONVERGENCE
CRITERIA

IF (CHECK (YNEW, YOLD, IMAX, JMAX, EPSILY)) THEN

SOLUTION HAS CONVERGED, RECORD NUMBER OF ITERATIONS AND
EXIT THE DO-LOOP

0NN onNnon Qoo Onn

N = K
GOTO 999
ENDIF
IF(K .GT. MMU)THEN
YE=0.0
DC 102 I=2,IMM]
Do 101 J=2,JMM1
YE=AMAX1 (YE,ABS (YNEW(I,J) -YOLD(I,J)})
101 CONTINUE
102 CONTINUE
IF (YEOLD.EQ.0.0)YEOLD=1.0
RHO = YE /YEOLD
DELTA=RHO/ (RHO+2.0)
YEQLD=YE
WRITE(1, *)DELTA
ENDIF
ENDIF

TRANSFER THE NEW PHI’S TO THE OLD PHI'S
TRANSFER THE BOUNDARIES IF IT IS THE FIRST STEP
IF (WCHECK) THEN
TRANSFER THE BOUNDARIES
DO 810 I=1,IMAX

WOLD(I,1l)=WBND(I,1)

WOLD (I, JMAX) =WBND (I, JMAX)
810 CONTINUE

naonaaonNnn aooan
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DC 710 J=1,JMAX
WOLD(1,J)=WBND (1, J)
WOLD (IMAX,J} =WBND (IMAX,J)
710 CONTINUE

TRANSFER THE INTERICR VALUES

aonononn

DO 700 I = 2, IMM1
DO 800 J = 2, JMM1
WOLD(I,J) = WNEW(I,J)
CONTINUE
700 CONTINUE
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CALCULATE THE RELATIVE ERROR AGAINST THE BENCH VALUES

WRITE(1, *)K, (WOLD(I,1),I=1,IMAX),ERROR
ELSE

TRANSFER THE BOUNDARIES

DO 815 I=1,IMAX
YOLD(I,1)=YBND(I,1)
YOLD(I, JMAX)=YBEND (I, JMAX)
815 CONTINUE
DO 715 J=1,JMAX
YOLD(1,J) =YBND({(1,J)
YOLD (IMAX, J) =YBND (IMAX, J)

TRANSFER THE INTERIOR VALUES
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DO 701 I = 2, IMM1
DO 801 J = 2, JmMl
YOLD(I,J) = YNEW(I,J)
C WRITE(*,*)I,J,YOLD(IX,J)

801 CONTINUE
701 CONTINUE
ENDIF

C
c INCREMENT NUMBER CF ITERATIONS
C
899 CONTINUE

N = K
C
C SOLUTION FAILS TO CONVERGE
C

WRITE(1, ' (A)’)* SOLUTION APPARENTLY FAILS TO CONVERGE’
c GOTO 1100
999 CONTINUE

c
Cc W VALUES HAVE CONVERGED, PRINT SOLUTION
Cc
WEITE(1,199)}N
199 FORMAT (' NUMBER OF ITERATIONS = ',I4)
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WRITE(1,97)
97 FORMAT (10X, * SOLUTION'/3(9X, ‘I’,3X, 'X’,6X,'Y",2X))
DO 600 I = 1,20
WRITE(1,99)I,X(I), YOLD(I,1},I+20,%X(I+20),

# YOLD(I+20,1),I+40,X(I+40),YOLD(I+40,1)
600 CONTINUE .
99 FORMAT (3 (I10,F5.1,F8.5))
1100 CONTINUE
CLOSE (UNIT=1)
STOP
END
LOGICAL FUNCTION CHECK(A,B,IL,IU,E)
c
C THIS FUNCTION CHECKS TO SEE IF (A{I,J) - B(I,J)) < E
C FOR ALL I,J
C
IMPLICIT DOUBLE PRECISION (A-H, 0-2Z)
DIMENSION aA(IL,IU), B(IL,IU)
CHECK = .TRUE.
DO 200 ¥ = 2, IL-1
DO 100 J = 2, Iu-1
IF(ABS(A(I, J) - B(I, J)) .GE. E)THEN
CHECK = .FALSE,
RETURN
ENDIF
100 CONTINUE
200 CONTINUE
RETURN
END
SUBROUTINE TRID(A,B,C,D,F,NL,NU)
C
C SCALAR TRIDIAGONAL SOLVE (THOMAS ALGORITHM)
C NL AND NU ARE INDEX LIMITS, NL <= N <= NU
C A,B,C ARE TRIDIAGONAL ELEMENTS WITH B ARRAY ON THE
C MATIN DIAGONAIL
C D IS SCRATCH OR DUMMY ARRAY
C F IS FHS FORCING FUNCTION, THE SOLUTION IS OVERLOADED IN F
C
IMPLICIT DOUBLE PRECISION (A-H, 0-2Z)
DIMENSION A(1l),B(1), C(1l), D(1), F(1)
D(NL) = C(NL) / B(NL)
F(NL) = F(NL) / B(NL)
NLP = NL + 1
DO 10 N = NLF, NU
2 =1.0 / (B(N) -~ A(N) * D(N - 1))
D(N) = C(N) * 2
F(N) = (F(N) - A(N) * F{N - 1)) * 2
10 CONTINUE
C .
C BACK SWEEP
C

NUP = NU + NL
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DO 20 NN = NLP, NU
" N = NUP - NN
F(N) = F(N) ~ DI(N) * F(N + 1)
20 CONTINUE
RETURN
END

double precision FUNCTION PBND(I,J)

THIS FUNCTION RETURNS THE BOUNDARY VALUE OF AN ELEMENT OF

EOO
m

PHI ARRAY WHICH COULD BE EITHER Y BOUNDARY VALUE OR W
OUNDARY VALUE

COMMON /WCH/WCHECK
LOGICAL WCHECK
IF (WCHECK) THEN
PEND = WBND(I,J)
ELSE
PBND = YBND(I,J)
ENDIF
IMPLICIT DOUBLE PRECISION (A-H, 0O-Z)
PBND = POLD(I,J)

OO oON0EO

RETURN
END
double precision FUNCTION PNEW(I,J)
C
c THIS FUNCTION RETURNS THE FUNCTION VALUE AT A NEW ITERATION
LEVEL OF
C PHI ARRAY WHICH COULD BE EITHER ¥ OR W
C
IMPLICIT DOQUBLE PRECISION (A-H, 0-%Z)
PARAMETER (IMAX = 61, JMAX = 21)
DIMENSION WOLD (IMAX,JMAX), WNEW(IMAX,JMAX),
# YOLD (IMAX, JMAX), YNEW({IMAX,J MAX)
COMMON /WVALUE/WOLD, WNEW/YVALUE/YOLD, YNEW/WCE/WCHECK
LOGICAL WCHECK
IF {WCHECK) THEN
PNEW = WNEW(I,J)
ELSE
PNEW = YNEW(I,J)
ENDIF
RETURN
END
double precision FUNCTION POLD(I,J)
C
C THIS FUNCTION RETURNS THE FUNCTION VALUE AT A OLD ITERATION
LEVEL OF
C PHI ARRAY WHICH COQULD BE EITHER Y OR W
C

IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
PARAMETER (IMAY = 61, JMAX = 21)
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DIMENSION WOLD{IMAX,JMAX), WNEW (IMAX,JMAX},
# YOLD (IMAX, JMAX), YNEW({IMAX, JMAX)
COMMON /WVALUE/WOLD, WNEW/YVALUE/YOLD, YNEW/WCH/WCHECK
LOGICAL WCHECK
IF (WCHECK) THEN

POLD = WOLD(I,J)
ELSE

POLD = YOLD(I,J)
ENDIF
RETURN
END

double precision FUNCTION YBND(I,J)

THIS FUNCTION RETURNS THE BOUNDARY VALUE OF Y AT I,J.
I MUST EQUAL 1 OR IMAX, OR J MUST EQUAL 1 OR JMAX

IMPLICIT DOUBLE PRECISION (A-H, 0-2)
PARAMETER (IMAX=61, JMAX = 21)
DIMENSION YOLD (IMAX, JMAX), YNEW{IMAX,JMAX)
COMMON /YVALUE/YOLD, YNEW
COMMON /BND/DELX, DELPSI, XMIN, PSIMIN, REY
DATA PI/3.14159%27/
IF{I .EQ. 1) THEN
THETA = ACOS(1.0 - 2.0*PSI(J)) / 3.0
YBND = COS(THETA + 4.0 * PI / 3.0) + 0.9
ELSE IF (I.EQ.IMAX) THEN
THETA = ACOS(1.0 - 2.0*PSI(J)) / 3.0
YEND = 1.4 * COS(THETA + 4.0 * PI / 3.0) + 0.7
YBND = YOLD(I-1l,J)
ELSE IF (J .EQ. JMAX) THEN
YEND = 1.4
ELSE IF(J .EQ. 1) THEN
IF ( I .LE. 21 ) THEN

YEND = 0.4
ELSE IF ( I .GE. 29 ) THEN
YEND = 0.0
ELSE
YEBND = 0.4 * SQRT{ 1.0 - ( ( X(I) - 2.0 ) / 0.8 ) *x 2 )
ENDIF
ENDIF
RETURN
END

double precision FUNCTION WBND(I,J)

THIS FUNCTION RETURNS THE BOUNDARY VALUE OF W AT I,J.
I MUST EQUAL 1 OR IMAX, OR J MUST EQUAL 1 OR JMAX

IMPLICIT DOUBLE PRECISION (A-H, 0-2Z)

PARAMETER (IMAX=61, JMAX = 21)

DIMENSION WOLD (IMAX,JMAX), WNEW(IMAX,JMAX),
# YOLD (IMAX, JMAX), YNEW{IMAX, JMAX)

COMMON /WVALUE/WOLD, WNEW/YVALUE/YOLD, YNEW/WA/HSTEP
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IF (I .EQ. 1) THEN
WEND = 12.0 * YBND(I,J)} - 10.8
ELSE IF (I.EQ.IMAX) THEN
WBND = WOLD(I-1,J)
C4.373177843 * YBND(I,J) - 3.061224459
ELSE IF (J.EQ.1l) THEN
IF ( I .GT. 21 .AND. I .LT. 29 ) THEN

WBND = 0.0
ELSE
WBND = 3.0 * ( FLOAT(I-1) / 60.0 - 2.0 )

ENDIF
ELSE IF (J.EQ.JMAX) THEN
WBND = WOLD(I,J-1)

¢-3.0 * ( FLOAT(I-1) / 60.0 - 2.0 )
ENDIF
RETURN
END

double precision FUNCTION PSI(J)

IMPLICIT DOUBLE PRECISION (&-H, 0-Z)

COMMON /BND/DELX, DELPSI, XMIN, PSIMIN, REY
PSI = PSIMIN + (J - 1) * DELPSI

RETURN

END

double precision FUNCTION X(I)

IMPLICIT DOUBLE PRECISION (A-H, 0-%)

COMMON /BND/DELX, DELPSI, XMIN, PSIMIN, REY
X = $MIN + (I - 1) * DELX

RETURN

END

double precision FUNCTION DELXY(I,J)
IMPLICIT DOUBLE PRECISION (A-H, 0-2)
PARAMETER (IMAX=61, JMAX=21)
DIMENSION YOLD(IMAX,JMAX), YNEW(IMAX,JMAX)
COMMON /BND/DELX, DELPSI, XMIN, PSIMIN, REY
COMMON /YVALUE/YOLD, YNEW
IF(I .EQ. 1) THEN
DELXY = {(YOLD(I+l, J) - YOLD{(I, J)) / DELX
ELSE IF{(I .EQ. IMAX) THEN
DELXY = {(YOLD(I, J) - YOLD(I-1, J)) / DELX
ELSE
DELXY = (YOLD(I+1l, J) - YOLD(I-1, J)) / (2.0 =* DELX)
END IF
RETURN
END

double precision FUNCTION DELPSY(I,J)
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
PARAMETER (IMAX=61, JMAX=21)

DIMENSION YOLD (IMAX,JMAX), YNEW (IMAX,JMAX)
COMMON /BND/DELX, DELPSI, XMIN, PSIMIN, REY
COMMCN /YVALUE/YOLD, YNEW
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IF(J .EQ. 1} THEN
DELPSY (YOLD(I, J+1) - YOLD(I, J)) / DELPSI
ELSE IF(J .EQ. JMAX) THEN

DELPSY = (YOLD(I, J) - YOLD(I, J-1)) / DELPSI
ELSE
DELPSY = (YOLD(I, J+1) - YOLD(I, J-1)) / (2.0 * DELPSI)
END IF
RETURN
END
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