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. ABSTRACT ' )

COMPUTATION OF TRANSONIC FLOWS USING A

STREAM?UNCTION COORDINATE SYSTEM
" . .}-‘

by : - ™

(E; . Rana Khalid Naeem r
I )

This dissertation studies steady two-dimensional
transonic flows past symmetric airfoils.

The flow equations are first transformed into (¢,y)
curviliﬂear_coordinates, where ¢(x,y) is the streamfunction
and ¢(x,y) is arbitrary, and then to von Mises variables
(x,9). Flows over symmetric profile at zero and non-zero
angles of attack are formulated in terms of the independeng
variables (x,y), providing a rectangular computational
domain with Dirichlet boundary conditions.l The flow
equations in unknowns y(x,y) and p(x,¢) are discretized using .
a finite difference method, producing a system of algebraic
equations whicé ié solved by SLOR. The surface pressure
coefficient is compu}ed on airfoils at subcritical and
supercritical Maﬁﬁ'gumbers. The present results are in
good agreement with a@ailable results in the literature.

In the (x,y) system, the airfoil design problem is s
conveniently formulated as a Newmann boundary value prdglem'

and solved numerically to produce the required body shape.



for the computation of the flows described above. !

Syt e . PR . .. R S IIN
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The néé; to solve a sequence of direct problems is eliminated.

This dissertation provides simple and fast algorithms
: 3
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CHAPTER I _
. -

INTRODUCTION

The th;ee basic tools used by researchers to gain
an understandiﬁg of the various physical phenomena
associated with fiuid f;ow are mathematical analysis,
e;perimentation or-testing and numérical computation.’
Before the deyelopment of computers, researchers relied
heavily &n fairly-§imple mathematicgl models and analysis
to provide guidelines for experimentalists, who developed
varioug devices to make measurements of flow quantities
of particular interest to.them. As the design of modern
engineering hardware has becomé‘more and more sophisti-
cated there has been a greater demand for more detailed
and accurate flow field information. This need, together
with the advancements made in high-speed computipg, have
made computational methods an equal partner with experi-
mental methods in efforts to analyze complicated flow
situations.

Information about recent advances in experimental
techniques can be obtained in references [1-8]. %he
present dissertation is concerned with the numericals

computation of transonic flows. As background information

we summarize some of the important analytical and




computational work dealiné with transonic flows.

Analytic methods have been.developed for fhe
determination of transonic flow fields past bodies, but
these methods have serious limitétions. A thorough
'survey is pfovided by Cheng [7 ], but we only discuss
briefly the two best known methods. dne of the well-
known analytical methods is the hodograph method in
which the flow equations are studied in the plane of
the velocity components. A wide variety of solutions
can be constructed, but this method has some serious
drawbacks. 1In particular, thé shape of the airfoil
cannot be prescribed in advance and shock waves'cannot
be treated. ‘Furthermore, the shape of the airfoil
changes significantly if either the free ;trgam Mach
number Or thickness ratio is slightly altered. The
solutions obtained using this method, howéver, provide
important checkpoints for the validation of numerical
algorithms or experimental re'sults. The perturbation method
is also a well known method used to study fluid flows.
In this method the dependent variables are usually
expressed in a power series of some parameter. The
parameter may be a function o% thickness ratid or Mach
number or both. References to work done using this method
can be obtained from Van Dykeg9]. Hafez [10] has

reéently developed an analytic perturbation analysis
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for transonic flows with shock waves and has discussed how
the formatioﬁ and, disappéarance of shocks can be easily
handied. -

Much of the early wofk in compressible flow uses a
formulation .in terms of the velocity_pgtéhtial and mgst
books treat linearized subsonic and supersonic flows - in
thié way, see for examgle, [6 ]. The full—poteﬁtiél
eguation is obtained by assuming inviscid, igrotational
and isentropic conditions. These assﬁmptions greatly
simplify the equations, reducing the momentum equd 'q s

. to a single relation (Bernoulli's equation) betwe;ZEgiuid
density and velocity. The introduction of the vélocity
potential into the continuity eguation provides a single

second-order quasi-linear equation of mixed elliptic—\

hyperbolic type, depending upon the value of the lecal
Mach number.

In 1970, the search for more realistic solutions
for transonic flow fields led to the application of
numerical methods to the equationsﬁ%br steady compres-
sible potential flow. Murman and Cole [11] are the

first to have achieved a stable transonic solutiQn for
the two-dimensional transonic small-disturbance §
equation using central differencing in the subéonic
region and upwind differencing in the supersonic region.

Ballhaus and Bailey (12] have carried out the extension

to three-dimensional transonic small-disturbance flows.

T MediaT e




For the full-potential equation in two dimensions,
numerical procedures haVe:béen given by Steger and
Lomax [13], Garabedian and Korn [1l4] and others. The
‘extension to three dimensions has been-presented by
Jameson and Caughey [lS,iG]. Field methods can also
be used to study transonic flows and a full survey of
- these methods. is given in [16,183.

Besides the potenfial formulation, the stream
function formulation can algo be used to study transonic
flows. The streamfunction formulation is capable of
producingJaccurate'and inexpensive solutions to |
rotational transonic flow problems [19]. 1In the
past, streamfunction methods have been based on
Crocco's equation. Such an equation models the
rotational effects correctly and yields the correct
shock jump condition provided the correct density jump
is specified. However, the method requires knowledge
of the vorticity. When a shock is present, the vorticity
is introduced-at the shock in a discontinuous manner and
this can result in numerical inaccuracies. To overcome
these difficulties one requires a fqrmulation which does
net require knowledge or explicit evaluation of the
vorticity. Such a formulation is obtained by considering
density and streamfunction as dependent variables. For

adiabatic flows, in the above mentioned formulation, the
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governing egiiations are the momentum equations, which

do not explicitly depend on the vorticity. The other
advantage\ of th streamfunction.formulation is that some
boundary conditions are simpler to impLementt In
particular,'the tangency condition at the airfoil surface
is expressed by specifying the streamfunction v equal to
some ;onstant on the body.

The streamfunction formulatioé is also convenient for
implementation ¢f the Kutta condition for lifting flows.
For C-grids, common in numerical gfid generation, the
Kutta condition is implemented by setting § on the body
equal to ¢ at the first-poiﬁt off the trailing edge. The
main difficulty with the streamfunction formulation is
that the density is not uniquely determined in terms of
the mass flux. To overcome this difficulty, artificial
viscosity and artificial density methods have been
developed and these methods with appropriate references
are briefly discussed in Chapter III.

Techniques such as the methods of conjugate gradients
(CG) [20] and approximate factorization (AD],
AF2, SIP} [20] are aiso employed to study transonic flows.
A very popular method employed nowadays in the numerical
solution of partial differential equations is the numeri-
cal grid generation. In this method a curvilinear g}id

is geaerated in the flow domain, independent of the flow



field, and then the governing equations are solved on this
body—conforming grid. Exténsive work in transonic flow
has been aone employing grid generation. ihe method is
described in detail in an excellent article by Thompson,
Warsi, Mastin [21]. |

Also in the early 1970's Martin [22] introduced a
curvilinear coordinate system (¢,¢), where ¥~ is the
streamfunction, to study the geometry ®f certain incom-
pressible viscous two-dimensional flows. This formulation
has been used by Grossman and Barron [23] to numerically

investigate incompressible irrotational inviscid flow

. . j
over symmetric airfoils at zero angle of incidence. They

have chosen the coordinate system to be orthogonal, which
implies that the curves ¢ (x,y) = constant are potential
curves. In this case it is not possible to analytically
determine the images of the leading and trailing edges in
the (¢,y) system. Numerically obtained values.for the
locations of the leading and trailing edges are not very
accurate, resulting in inaccuracies in the solution near
these edgés. During a further study of inviscid
incompressible irrotational flows, Barron [24)] haé
introduced von Mises variables {x,¥). Using these
independent variables one knows exactly Ghere the leading
and traiiing edges are mapped in the {x,¢)-plane aﬂd

inaccuracies in the solution near these points can be
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eliminated. 'Furthermore, as in the work of Grossman and
Barron [235, this formulation automatically‘provides a
redtangular computational domain {x,¥) and the need to

" do numerica}:qrid generatiqn is aVoided. .

This éissértation proéoses a new method, based on
that of Barron [24], for studying subcritical and super-
.critical flows at zero and non-%ero angles of attack:
The method utilizes von Mises vari;bies {(x,¢) which
conveniently provides a Dirichlet formulation for the
direct problem ahd circumvents the need to do grid
generation. 1In the present study only irrotational,
isentropic inviscid flows are considered. Now we briefly
describe each of the chapters of the dissertation.

In Chapter II we derive the inviscid compressible
flow equations in the (¢,y) and (x,y) systems. Chapter
III gives the flow equations in non-stretched and stretched
coordinates with approbriate boundary conditions for flow
over an arbitrary airfoil at zero ‘incidence. The intro-

duction of artifical compressibility or modified density

into the flow eqguations is discussed and the numerical

L]

algorithm is presented. Difficulties associated with the
artificiai compressibility method are .discussed, particu-
larly the problem of achieving convergence on finer grids,
as is well-documented in the literature. This problem is

. \
resolved by expressing the flow equations in an alternate
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form and applying type-dependent differencing. The chapter
concludes with a discussion of the results for several

subcr1t1cal and supercritical cases. Chapter IV presents

the flow eqHExlons in un- stretchedand stretched coordi-
nates along ‘with approprlate boundary conditions for the

design or inverse problem and the computed results are
oo v
compared with exact results. Chapter V deals with lifting

~

alrfolls in 1ncompress;ble and compre551ble flows. The

flow equatlons together with boundary conditions are

presentéd and a numerical algorithm is given. The
calculated results are compared with values obtained

experimentally or by other numerical methods.
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CHAPTER II .
FLOW EQUATIONS

2.1 FLOW EQUATIONS

The steady two-dimensional flow of an invis?id
compressible fluid, in the absence of body forces, is

governéﬂ\iy the following equations:

(pu) + (56); =0 (continuity) (2.1.1)
p(uu; + vu;) + Pz = 0 ‘

(homentum equations) (2.1.2)
p{uv- + vv=) + p=- = 0
p(uvx vvy) py

These equations constitute a system of non-linear
partial differential equations in four unknown functions:

p the density, p the pressure, u and v the velocity

components, all functions of X, y. The bar (-) indicates
‘ that the quaﬁtity is dimensional. The state and energy
L /

equations along with (2.1.1,2.1.2) constitute a complete
system of equations.

Equation (2.1.2) can be rewritten as

-2 - L 5 5._
[%r +-€}IE—Vw + _zx = 0
P S (2.1.3)
_2 —_ L po -
[VT "["g“]_ + uw + _"EX =0
Py p

3

Y
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wherein, | N\ )
72 = 9% + 2 {speed)
w = ve - u; . Cvortlclty) : {2.1.4)

For convenience in the analysis, the flow equations
are non-dimensionalized by introducing non-dimensional

variables x,y,u,v;p>N,p through relations

- X = xL

- ’ 1

y = yL

.«

U= uu

V=uv

[++]

0 = p_p > °
. w = wum/L

- 2 . -

P = ppu e W\E o

where L, u_, p, are, respectively, the characteristic
length, the free stream speed and the density.

Employing the above relations in (2.1.1)},(2.1.3)

and (2.1.4), we obtain '—“\/7

(pu) + (DV)Y =0 {continuity) {2.1.5)
\ 2 pp
\ (¥ +-E]x - v + 2x = 0 '{x-linear momentum
: 2 o 0 | ’equ?tion) (2.1.6)
2 pe
[%f +'£L] + Uw + ~—5X = 0 (y-linear momentum
. . Py ol . equation) {2.1.7)

S
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. w=v_ - uy ‘ (vorthlty) | (2.1.8}
where
V2 ="u2 + v2 . ' . - (2.1.9)
The equation of continuity (2.1.5)—implies the
existence of the streamfunction y(x,y) such that
e pu = wy . PV = —wx . (2.1.,10)

f
Following M%ififig [22] approach, we introduce N
SurWlinear coordina%ﬁs ¢:¥, . An which the curves y = constant
are the streamlines a the curves ¢ = constant are left

arbitrary so that the physical coordinates x,y can be

replaced by ¢,¢. ) < .
Let
Y
X = x(d,9), y = y{o,¢) . . (2.1.11)

. N~
define a J%gtem of curvilinear coordinates in the (x,y)-plane.

The/first fundamental form of differential element is defined

2 2 f 2
( ds® = E(¢,y)de” + 2F(¢,v)dody + G(¢:$Lg$~ (2.1.12)

AN

in which E, F, G are given by

E(d)plb) = Xi + ¥$

' F(¢,w)‘f XeXy T YV, (2.1.13)
- Gl o, u = X2 2
or Y v + yw
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12
Equations’ (2.1.11) can be solved 'to determine ¢,y
as functions of x,y so that
= = -J _— = 2.1.14)
x@ _" Jq)yr Y¢ - \lfxr x‘p = ¢’er¢' - J@x ( oL 4)
provided J#0, where J, the Jacobian of the transformation
(2.1.11), is defined by
J ) ' {(2.1.15)
= x - X . 2.1,
oTy T Fp¥y ~ -
It is easy to show that equation {(2.1.15) can be
written as
J = W , W=VEG—-F2 . (2.1.16)
Let B(¢,¢) be the angle between the tangent vector
Lx¢,y¢) to fhe coordinate line ¢ = constant and the x-axis
{(see Fiqure 1), then I3
/ -
Xy = E:l/2 cos B P Yy = El’2 sinfB . (2.1.17)
Solving (2.1.13) and (2.1.17) for xw and yw » we find,
_ _F _ __J .
rxw =313 cosf 172 sinfp
E E
P 3 \ (2.1.18)
ykb = 173 sing + 1/3 COsf }\
E E
!
The integrability conditions for x and y are
“wo T Moy 1 Yoy T Yy
which, after some reductions with the help of (2.1.16),
vield _
j
\/ .
£
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- J n2 & )
B¢ - E r11 ,
I
Bw T E I‘1?_
where )
-F + 2EF, - EE
2 T o = BBy
1 "
EG, - FE
Fi‘ = _L_\L'_‘
2 2W2

we find, after some simple manipulation,

2 ) w2

- L W - - '
K = e [( = rll " = r12)¢1 =0 (2.1.19)

where K is called the Gaussian curvature and eﬁuation
{2.1.19) is called the Gauss equation. This eguation repre-
sents a necessary and sufficient condition that E,F,G are
coefficients of the first fundamental form (2.1.12).

Having recorded the above results"wgi?h can be found

in [22], we now consider equations (2.1.10iwand (2.1.6) to

(2.1.9) and transform them into the (¢,y) system.

Equation (2.1.10}, upon employing (2.1.14), provides

Xy = Jpu , Yo = Jpv , (271.20)
which gives

YE = + JpV (2.1.21)
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~hhiéh.is the equivalgnt form of the eqqgtibn of.coﬁtinuity
(2.1.5) aﬁq (+) or (-) sign indicates that the fluid flows -
towards higher or lower parametric values of ¢, respeétively,
along the streamline [47,48]. .
Equations (2.1.6), (2.1.7), upon employing the chaiﬁ

rule for differentiation and equation {(2.1.20), give

2 _ 2 wy
V- P V- L _ %
[2 + 5 ]w L [2 + 5 ]¢ ¢y ¥
2 -
+ p2[pwgbx + p¢¢x] =0 (2.1.22a)
and )
2 2 WX
v_ b v £ -}
[2+p]¢wy+[2+o]¢¢y+oJ
. £ =0 . 2.1.22b
+ p?-[pwwy + o¢¢>y] 0 (2.1 )

Multiplying equations (2.1.22a) and (2.1.22b) by

W, wx’ respectivély, and subtracting, we get,

y
v Po
[+ 21 + —§¢=0 - (2.1.23a)
e 0

Again, multiplying equations (2.1.22a) and (2.1.22b)

by ¢y’ ¢x' respectivelyzand subtracting, we get,

2 I
[T+ £ B+ B Py= o, (2.1.23b)
2 p w?‘ D D
The equations (2.1.23a), {2.1.23b) are the new equivalent

forms of the linear momentum equations (2.1.6), (2.1.7),

respectively.
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Follow1ng Martin's development and using equatlon
(2 1.21), the vorticity equation (2.1.8) in the (¢,¢) system
can be expressed as [47r481

1., F

W= -7

w oW )¢ (W)wl . | (2.1.24)

Summing up the fesults of this section, we have
Thecrem:
| If the streamlines Y(x,y) = constant of ﬁhe steady fiew
of an inviscid compressible fluid are considered as one set
of coordinate lines in a curvilinear coordinate system (4,y)
in the physical plane, then the equations (2.1.5)-(2.1.8)
transform to the following system of equations with ¢,y as

independent variables

VE = pVW (2.1.25a)
V2 PO \
[T + —p_] + _g = O (2.1.25b)
p 2
¢ ]
2 Pe
[Y§_+_P_] + Wy Y g (2.1.25¢)
p 2
p p
- A Ey _ E
w = W[(Dw) (pw) ] (2.1.25d)
¢ 7
D N _ (W - )
K = w[( Erllh ( Erl2g] = 0 . | {2.1.25e)

Since the present work is concerned with the study of
flow over airfoils, we need to know where the leading and
trailing edges are mapped in the (¢,y) system. . It is not

possible to get exact values of ¢ at the leading and trailing
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edges in (¢,¢) system analytically. However, in general,
these values can be obtained numerically by solving the

equation

(El/2 J

1/3 sing ] ,

X + X

00 i

F
cosB)¢ + [El/z cos R -

along with the flow equations, throughout the entire flow

field (with appropriate conditions) such that

= Jd .2 .
B¢ = E 11 ~
_J .2
By = 5T,

and tan 8 = y¢/x¢, are satisfied.

2.2 von MISES TRANSFORMATION

Grossman and Barron (23], during the study of inviscid,
incompressible flows, found that for an orthogonal system
{i.e., F=0) the values of ¢ at leading and trailing edges
cannot be obtained accurately and this causes inaccuracy in the
solution near the leading and trailing edges.

To overcome this broblem, Barron [24] has studied
incompressible potential flow using a von Mises transformation

defined by
X =4 , y = ylo,v) . (2.2.1)

This transformd&tion provides the exact locations of the

P
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léading and trailing edges since the value of x at LE and
TE aée known. s;nce the cobrdinates ¢,y satisfy the Gauss
equatién (2.1%25e) in order to form a curvilinear net, the
von Mises transformation also must §a£isfy it so as‘to form
a curvilinear net (x,¢). It is easily verified that the

transformation (2.2.1) identically satisfies (2.1.25e).

Applying the von Mises transformation to the system of
equations (2.1.25), we get the following system of-

-
equations in the (x,¢) system,

VE < oW | (2.2.2a)
[%; v Tx (2.2.2b)
X p
[Yi + _E_] + W o+ P o = 0 (2.2.2¢c)
2 o Ty p 02_ Y
w = —%-[(f%)x - (] (2.2.20) -~
where
E = l-fyﬁ
P = vy,

The above system of equations serves as the starting

point for the numerical work which follows.
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CHAPTER III
NON-LIFTING PROBLEMS

In this chapter the flow equations (2.2.2) with
appropriate boundary conditions are solved for steady,
'ipviscid, irrotational, compressible flow over symmetric
profiles at zero angle of attack. Solutions are obtained
on non-stretched as well as stretched grids. Numerical
algorithms are developed which are suitable for any high-
speed computer. These algorithms have been tested on an
IBM 4381-3 and results are presented which are in good
agreement with the results of other researchers. All these

algorithms involve inversion of large tridiagonal matrices.

As mentioned in the introduction, we are interested in

that class of transonic flows for which the flow is isentropic

‘and therefore the state equation in non-dimensional form is

where y is the adiabatic constant and M_ . a_ are the free
stream Mach number and speed of sound at infinity,

respectively. For air v has a value of 1.4.

18
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3.1 BOUNDARY CONDITIONS
In order to have a well-posed boundary value problem,

we have to add to equations (2.2.2) appropriate boundary

conditions. Assuming a symmetric profile, we let

v = £(x) o ' -(3.1.1)\>

be the equatibn of the profile and assume that the flow is

uniform in the far field, parallel to the chord of the air-

foil.

In the physical plane, the appropriate boundary

} conditions are

(5@ o =1

u =1 at infinity {3.1.2a)
v =0
(1i) tangency condition on the airfoil and symmetry:

' =
[£ {x) on y=f(x), XLESXSXTE

ci<
I

0 on y=0, x<xLE or x>xTE (3.1.2b)

where prime represents derivative with respect to "x".
These conditions are conveniently expressed in the (x,y)

system by referring to the airfoil surface as a segment of
- 5
the streamline ¢ = 0. We have

(1) p = 1
at anfinity (3.1.3a)
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(ii) £(x) on p=0, X p$X<Xnp
y = .
0] on ¢=0, —m<x<xLE o)
X__ x>

TE {3.1.3b)

o

Now, using the state equétion - -
p = -Q%L | L (3.1.4)
M. : '
in eqdations (2.2.2b,2.2.2c) and integrating and evaluating
the constant of integration by applying (3.l1.3a), we obtain
v e T (3.1.5)
(y=-1)M_ (y-1IM_
which is the Bernoulli's equation for steady, iqviscid,

irrotational, isentroptic, compressible fluid flow.

Employing (2.2.2a) 1in (3.1.5) we get

2 ¥y-1

l+y -
— 2p 2=1+-—-—2——3. (3.1.6)
oy (y-1imM% (y~1)m

The irrotionality condition is obtained from (2.2.2d)

with w=0. Expgnding this equation, we get the following

well posed boundary value problem

2 ) 2
VoPue T 2y T YV,
2
nywpx Yw(1+Yi}n
= 5 - . Y (irrotationality) (3.1.7a)
23—1 l+yi 2 \
-£ 3 + 75 = 1 + — (Bernoullis equation)
G-l oty © (v=1)mM2
(3.1.7b)

R
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satisfying the conditions
(i) p =1 -
at infinity
Yy =y (3.1.7¢)
.. r ,
+ f = B . oS
(ii) {x) | on 0, XLEstxTE .
y = 1.. _ ‘
0 on v =0, —m<x<xLE OR xTE<x<m .
(3.1.74)

It should be noted that in this new formulation the
mixed type boundary value problem in the physical plané'
becomes a Dirichlet boundary value problem in the compu-

taticonal plane.
The Bernoulli's equation (3.1.7b) can be rewritten as .

- [l _ (Y_l)Mi l+y
P = 2 (2

by

-0 (3.1.8)

€ hyx N

This equation indicates that there are two values of

LY
the density for a certain mass flux less than the maximum
value which can be attained. For pure subsonic cr super-
sonic flows one can easily decide which value to choose

depending upon whether o is larger or smaller than p*, the

value of density at a=a*, respectively. For mixed flow it

~,

. . . N
1s not obvious which value to choose. -

Murman and Cole [11; were the first to introduce the

idea of using central difference formulas in the .subsonic

3

zone and upwind ‘formulas in thHe supersonic zone éb‘account

for the ch;ngfﬁg characveristics of the flow equations.
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Jameson extended Murman's scheme [25]-for full potential
equations and developed highly soﬁhisticated schemes such
as the rotated differencé scheme [26], fully conservative’
scheme [27]. etc. Researchers have also developed
artificial viscosity and artificial compressibilify
methods [28—39] to overcome the problem menticned in éhe
previoug paragraph. Jaméson [29] modif;ed density in.ﬁhe
supersonic region by intfoducing an art%ﬁical viscosity
term which vanishes in subsonic regions, The way in ghich
he introduced the artificial viscosity term is briefly
described here.

For a two~aimensional flow, the velocity potential ¢
satisfies the equation’(using dimensional variables, but

omitting the bars)

2 2 2 2 _
{a®-u )¢xx 2uv ¢xy + {(a“-v ]@yy =0

where u,v and "a" are the components of the velocity and
the local speed of sound, respectively. If s and n denote
the local streamiwise and normal directions, then the above

equation can be written in the form

2 2 2 _
(a®-q Jogg * 2 ®an =0 _
X
where

_ 2 2 2

¢ss = (u ¢xx + 2uv Qxy + v ¢yy)/q
=yl - , 2 2

¢nn = (v ¢xx 2uv bxy + u @yy}/q

q2 - u2 N v2
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To introduce an artificial-viscosity term in the

supersonic region, Jameson used upwind difference formulas

for derivatives contributing t°'¢ss' The upwind difference

formulas can be' regarded as approximations to ¢xx_¢xxxax'
¢ -(&x - Ay, - ;
Xy (2 )¢xxy (= )¢xyy and ¢}y ¢§yyAy. Thus, at supersonic

points the artificial viscosity introduced is

e

_ 2,2 2 ’ 2
(l-a“/q”)[Ax(u Bt uvvxx) + Ay(uyuyy + v vyy)].

Jameson, in his formulation { 29], obtained an equivalent

form given by

_(Hlu]Axpx)x - (u]v]Aypy)

Y

where
U = max (O,l—az/qz)
and hence, the modified density 5 is defined by

o = p + u(D/az)(uuxAx + vvyAy}.

The artificial compressibility method is based on the

modified equation of continuity {30]

(Dl¢x)x + (Dl¢y)y = 0
‘,
where
py = [1- —g——le ¥ ¢y - eluf, + vgy)—l)l

The term e(ufx+vgy) is called the artiﬁicial viscosity

;

/
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2 N
term. The form and magnitude of the viscous term )is

" determined by numerical stability requirements.

In g-manner similar to one described previously the
density is ‘also modified in the streamfunction formulation
[30]. ' i

Y '\’, .
In our calculations, we employ gn expression for modified

density similar to that obtained by Hafez, Murman and Southﬂ

[30]. The expression for the modified density is taken as

p = d—(uprx) {3.1.9)

where p is the switching function which vanishes in subsonic

regions and is defined by

¢ = max (0, 1- JE)
M

where M is local Mach number.

3.2 NUMERICAL ALGORITHM

To solve the problem numerically, we must construct an
appropriate set of difference eguations. A grid is constructed
so that the solution of the flow equations at the nodes gives a
reasonable flow representation. 1In the present method the
grid system has streamlines as one set of curves and $=x as
the second set of curves. The grid points are considered as
ordered pairs (i,j), where i denotes the x-direction and j
denotes the y-direction. The step sizes for the x and ¢

directiens, respectively, are

o : &5
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X -X . -y .

"max ‘min _ wmax q’m:.n
AX = - -3 .t Aw - j _j'm‘

max " min ; max “min

where
. ¢
X = value of x at i
max \ max .
X . = value of x at i .
min min D
etc. r

Equation (3.1.7a).is discretized by using central
differencing for all derivatives everywhere. ‘Ehis leads to
a large sygiem of hon—linear algebraic équations in unknown
"y" at the grid points. The finite difference approximation

of equation (3.l.7a) at an (i,3) grid peoint is

" a1{¥i40Y " 2Y54 Yy
FAlYiiger T Yii19o1 T Vo141 T Yiengon!
taglyigey T 2yyg t Yigy)
~ -~ < ~ ~
' (P 1P _q34) (P s =P )
= a, 1+13 i—-1] + as 1]+} 11-1 . (3.2.1)
Pij P13
. where p is the modified density, The coefficients in (3.2.1)
-~ are
L - (Yij+1fyij—l)2
1 2 Ay
Fd
~20x2(y. . - ) ¢ -
» ‘ a. = Yij+l yij—l yi+lj yi—lj)
2 (4axay) (4AaxAY)

f

d
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Yit1i Yie1g 2,
2Ax

l/vy-1
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in the matrix form can be written as

2
Ax Yit1q - Yi-14 .2
a —=(1+ ( ——)")
3 sz 24A%
2 2
oo 2 i3 40078 50
4 (4axAp) 2
2
ARy, YL )
aS ig+1l “ij-~-1 (14 (
(2A4) (2A9)
pij oij - uij(prX)ij
(-1 %2 (y-1)m 2
Piy = (1 +— S g
(Yi+1j"“ yi—lj)Z )
[1 + 20% J(2ay)
a
6 Z ~ 2
Pi; Yije1 T Yig-1
and
1
uij max{(0, 1 - M2 )
i3
4
Equation (3.2.1)
NS = H

where N, S, H, are, respectively (i-2)*(j-2), (j-2)*1,

(i-2)*1 matrices.

(3.2.3)

The elements of S consist of the function

y for each point in the computation domain, and the vector

H contains specified boundary values.

(3.2.3}) are

The matrices in
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max-1
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T 2a¥12 T 33¥p) T 3(¥ymvy5tysgy) + Q(2,2)
- a;¥y3 - az(ylz—yl4),+ Q:2,3) .
|
|
- a.y a,(y -Y. + Q2,3 )
1 ljmax 2 2 ljmax—B ljmax—l) max-2
a,y a.y - a,ly +y Y- )
1 lJmax 1 3 ijax 2 3Jmax ljmax-z ljmax
* Q(z'Jmax—l)
az¥3y a2(Y21~y4l) + Q(3,2)
0(3,3)
Q(3,4)
f
|
]
Q(3’:"max 2)
a - - Y+ Q(3, )
y33max az(yqjmax y2Jmax ? Imax 1
|
|
]
|
-a,y. - a,y. - a,ly, 3 T Y. 1
1 lmaxz Tmax-1 2 *max 'lmax
Yy )+ Q(lmax—l 2)
max-2 !
continued

y
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- a.y. —a,(y. 4 Y. ) + Qi 1 3)
1 lmax3 2 Tmax ™ lmax2 max-1,
A
- a,y. . -ra,(y. .
1 j _ 2714 3 1 " Y. .
max-max-2 max-max-1 lmaxjmax—B
* Q(J'max--l, Imax-2) -
-a.y. . - a,y. .
174 J - 371 4] - a,ly. .
max-max-1 _max 1l-max 2 max Imax
- Y. . - Y. . . .
lmax—2jmax lmaxjmax-z * Q(lmax—l,jmax-—l)
- e -
where
. | a, (0 s = Py ..) Ao, o 1)
0(i,j) = 4 1+13 i~i3° . 5 lj+} ij-1
pij pij
Yx2
Yk3
I
> I “
Yoo Nk = -
k - | ’ k 2F3 r (lmax_l)
I
I
yI .
kK,]
» max-1
\_\ - _ (//,_\‘

RN
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‘trid (a3,al+a3, a3)

and A =
B = trid (-a2, ajr a2)
C = trid (a 2y —az).

' In the whole flow reglon density p and modified density D
are computed us;ng central differencing for derivatives Yy
and yw except along the line y=0, Along ¥=0, i.e., j=1,
ylp and }x are cgmputed from

(Yo=Y
Ay

r

1
Efix;) v xppsx, ($Xpp

i ' — . . <
1l 0 ’ <x1<XLE or xTE<xl e

For speed calculations, differencing for derivatives is
the same as used for p and 5 except in the supersonic region
where backward differencing is employed for Y.+ The p and D

are, respectively, relaxed through relations

_ 2 o 2
(1) w0 e DTS b 1A=
ij 17713 1 2 2 6
{3.2.4)
~(n+l) _ _ ~(n}) ~{(n)_ {n) (n)

{3.2.5)
where "n" is the iteration level and WyrW, are relaxation
parameters. The pressure coefficient is computed from

~Y_
c =2 1) (3.2.6)
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SLOR, with sweep from left to right, is used to solve

the system (3.2.3). A simple algorithm which solves

is

Step 1. Construct a computational domain with given grid size

and grid spacing i.e., specify x
; g pacing r SP Y Xnax min

.. to 1 for all i and j and

Initialize pij' ij

set

yij = Voin t (j-1)ayp for all j»>1l.

I

Yi1 = f(xi) for-

<o
or 1<1LE or 1>1TE. -

tLpttiipp

—

Central difference all derivatives except ylp along

j=1, where a two point forward differencing for Y,

is used. Solve (3.2.3) for y in the whole compu-
tational domain, calculating the coefficients ajr
a,, ay and Q(i,J) at the previous iteration level,

until the error tolerance for y is met. ’

~

Use values of p and y {(obtained from step 3) to

calculate p from (3.1.8) and use this to

calculate p from (3.1.9).

~

Check the convergence for p and p . Continue
iteration until tolerance levels for y, o, 0,
are achieved.

This algorithm provides results which are in

good agreement with the results of other researchers.,

r X . _4..., €%tc.,
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3.3 STRETCHING TRANSFORMATION

In the last section, we solved the flow equations with
appropriate boundary conditions in un-stretched coordinates,
In order to solve in the stretched coordinates, following

Jones [31], we introduce transformations defined by

A tang exp(*B&Z) (3.3.1)

~
N

<
]

D tann . ‘ (3.3.2)

These transformations transfer X=t=, yY=two to £=tn/2
and n =t7/2, respectively. Another benefit of these
transformations is that they provide us’‘with a dense mesh
in the vicihity of the airfoil. The former helps to make
mesh points more dense neér leading and trailing edges of
the‘airfoil and the latter to pack more points near the

X-axis with airfoil centered at x=0. The computational

boundaries used for our purpose are

- /2 e £ M/2 -

- /2 e <n< /2 -¢ (3.3.3)
and A,B,D, constants in the transformations, are kept
constant at 0.9, 0.6, 0.4, respectively. The ¢ is chosen

such that the above boundar:ies correspond to (x,y)-plane

boundaries

- 6.0<x6.0

0<y< 6.0 . (3.3.4)
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Jones [31] has discussed in detail how the constants

in transformations {3.3.1-3.3.2) are chosen.

3.4 TRANSFORMATION OF THE FULL POTENTIAL EQUATION

IN STRETCHED COORDINATES . o

For general transformations of the type {(3.3.1-3.3.2)

we write
K=X(E); lp:l,')(n) . (3.4-1)

L3

For convenience in handling the boundary conditions at

infinity, we introduce a new variable Y defined by

y =Y + ¢ . (3.4.2)

Using (3.4.2) in (3.1.7a), we obtain, -

2 2

(l+Y¢) Yxx - ZYX(ltxw)wa+ (1+YX)YW
Y (1+Y )25x (1+Y )(1+yi)6

- v - ¥ Vo, (3.4.3)

o P
Using transformation (3.4.1) in (3.4.3), we get,

ALY + ALY + A.Y + A,Y. + A_Y = wzsz (j 4.4)

17¢g¢ 27 nun 37 ng 4" ) ngo et

where
Ap = Ly Ynl2 v
A2 = [xg + YE]
A3 = _2Y£[Yn + )
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- (v 2 L 42 nn ) . | -
Ag = [x £ + Yg i wn
2~ - 2 2~
A lewn Yyl o {wn + Ynlei + Yg]"n
6 = .
D p

-

The boundary conditions in the (g,n)-system are

J-E(E) . for ELESESETE
Y = : _
1; 0 for £<£LE or £>£TE
y = 0 at = b#

where ELE and gTE are the values of x and x__,

LE TE
respectively, in the (e,n)-plane. Since the flow is sym-

metric about the £-axis, the computational domain is taken as

m
-t ecEc 3
0 <n< T _

-T2

“

The differencing and solution algorithm are the same as
that ployed in the (x,y)-system. The finite difference

representation of equation (3.4.4) at an {1,3J) grid point is

a LYieng T 25t ¥ )]

! (ag)? .

oo Wigey - 2500+ Y4
2 (An)2

. oa Yivige1 * Yio14-1 - ¥ic1gel T Yies o)
3 4Q£An
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Y. .. =Y. .. Y. .
R T N e N Y
2A¢E - 2An
2.2 '
¢ 28¢ n 24n
(Lirdy “Pio1g)
2AE
Y... . - Y.. YL =YL
= U (AR« (ALl
24n 2AE
CBiiaq — Bl
(2=l (3.3.5)

where xE, xgg’ wn, wnn are calculated from (3.3.1-3.3.2).

In the matrix form (3.3.5) can be written as

(3.3.6)

w
O
=
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B and
Y A.B A,AE A.B ‘
L = i 3_ . - 3
; . 2 Ag AEB 2 2 BghEB
. AsB8 A, g A48
C = trida (- By Al + 5 P T)
g = 25
An
_ " - — . —
1 K2
Y, ¢ Y
2 K3
= >
Y = r Y = r = P s a i
K r K 2,3 ! lmax—l
-
Yi YK.
max-1 Jmax—l
. — - -
_/
r A4A£ 2 ABAQB A3B
BRI Y el Y Bl
(YlerlB—YBl) + Hl(2,2)
A405 A3B
= | Ayt =Yg - (ﬁlz"qu’ * Hy(2,3)
i
|
A_AEB A_AEB
2 5 2 5
-{A,B" + Y Y,. I+ (A_B“- }Y . .
2 . 2 ijax 2 2 ljmax_z
A3B
- —=(y_. + Y. + Y. . ) + H (2,7 )
4 33max l:jrna:-c—2 ljmax 1 max-1
Continued
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- -3 -3
(A, 8 3 )Y31. b

Hl(3,3)

i .
max—ljmax

- —I(Y. . - Y. . - Yi . )
lnax max 1max—ZJmax max]max~2
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where : 2

L 2,..°2,. ... .2 . '
Hl(l;]) = Aﬁwnfj)%g(l)(ﬂg) . : , ﬁi”r

3.5 FINE GRID SOLUTIONS

During the study in the previous sectioh, it was
found that y fails to converge on finer grids. This was
possibly due to the freezing of the terms involving
density.derivatives and also, perhaps, the use of the
artificial compressibility method. To achieve convergence
on a fine grid it was necessary to have irrotafiohality
condition independent of Py and pw and avoid the use of
artificial density which introdudes a numerical error in the
solution, as indicated by [32]. To accomplish this, the
momentﬁm equations(2.2.2b, 2.2.2¢)were uced to eliminate Dx
and p¢ from equation(3.1.7a) yielding aguation,

2 -
5 M

- 2, _
¥y - Y Vi T WYy Yy = 0 s 1)

In {£,n)-system equation (3.5.1) becomes

' Alyﬁﬁ * AZynn * A2y€n * A4Y€ * A5yn = (3.5.2)
.
where Mzwz
Ay = (wnifn) - ;%;f
li
A2 = xﬁ S yz %
AB = —Zyg(£n+ynJ \

»
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This equation is of‘elliptic, parabolic or hyper-
bolic type, in accordance with the value of local Mach
number h@ing.less than, equal to, or greater than 1.
Equatioﬁ'(3.5.2) has been solved in a fine grig using type
dependent differencing and -solutions obtained are présented

in the next section.

3.6 RESULTS AND DISCUSSION

The algorithm described in section 3.2 has been uéed
‘to compute full-potential subcritical.and supercritical
flows over a NACA 0012 airfoil and a 6% circular arc
airfoil. Results have been obtained on both uniform and
stretched grids.'

Figure(2)gives the pressure distribution on a NA;A/OOIZ
airfoil at M =0.63. Comparison is made with the results of
Garabedian and Kornl[lal, Sinclair's field panel method
[33] and the panel method [33]. Our calculation on the
stretched grid agrees very well with previous results [14,
33]. Our results on the.un—stretched grid show some
difference near the trailing edge. However, these results
have been computed on a 70x36 grid, yielding only 8 grid

points on the airfoil surface. Our results are excellent

~~ -

\ .
ok (j//f>'
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considering that Sinclair has used 50 surface points té
achieve this solutiodn.

The pressure coefficient on the streamline p=0 for
the NACA 0012 airfoil at M_=0.7 is illustrated in Figure (3}
Comparison with the results of Hafez and Lovell [19] for
this subcritical flow sho&s that the present method |
pFedicté'Cp very accurately, particularly on tﬁe_stretched
grid. -

A supercritical flow at M_=0.8 on the NACA 001z airfoil
was computed and is compared with results of Garabedian and
Korn [14] and Sinclair [33] in Figuré(4L Here the stretched
grid results show excellent agreement with earlier work.

In the calculation of transonic superc;itical flows
using artificial colppressibility methods, the switching
parameter Y can be used to control the amount of artificial

compressibility added to the flow. The value of 1 at each

grid point is’ determined from Uij = max(O,l-'—%—) but can
’ M

ij
be adjusted by a multiplicative factor to improve the
convergencel Also, it is well known that difficulties
occur in the calculation gf p from (3.1.8) when the grid
is refined. Oqe way to control these difficulties is to
increase the a#ount of artificial compressibility as the
number of grid points increases. This idea is illustrated

in Figure(5)where Cp's for the NACA 0012 airfoil at M_=0.8

is compared on grid 49 x 16. To control the density

[



growth in the supersonic_regidn we have taken

uij=Cmax(0,1 - —%—) and allowed C to increase as the grid
JMij

spacing is decreased.

The pressure distribution on a 6% dircular arc airfoil

at M_=Q.817 is compared with experimental measurements due

“to Earl [35] in Figure 6. Agreement is good for this

‘'subcritical flow and improves much on the stretched

grid.
Several parameters have been fixed in the programmes.
After some numerical experimentation it was found that the

best choice for the relaxation parameters was w,=.7 and

1
2=.5, respectively. The constants A, B and D appearing

W
in the stretching functions (3.3.1) and (3.3.2) are kept
congtant at 0.9, 0.6 and 0.4 \respectively. These values
have been chosen to provide accurate solutions by control-
ling the degree of clustéring and to accelerate the
convergence of the itevrative process. Tables 1 and 2
summarize the computational information for the NACA 0012
and 6% circular arc airfoils, giving the number'of
iterations and CPU times for various Mach numbers and grid
sizes. The savings in CPU time by using the stretched
grid is clearly evident. It should also be pointed out
that the CPU times provided are based ¢n calculations

performed on an IBM 4381-3 under WATFIV JCL. These times

can ke reduced by a factor of about 1/3 by using FORTRAN

R
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JCL. Finaily, in all cases a tolerance level of 10—4 was

uséd for the convergence under the maximum norm. The

convergeﬁce history for the denéity is shown in Figure {§).
Results ére computed using equation 0.5.25 for

' subcritical'and-supercritical flows on the NACA 0012 and

6% circular arc airfoils on. finer grids at different Mach

numberé. To avoid-drastic change in the density between

iterations in the supersonic regioﬁ we adopted the following

strategy. /

After updating the density, we ensured that the new

density did not drop by more than 4x% of the minimum of the

. {n+l) {n) {n)
three densities pi—lj ’ pij . it13 or exceed
by more than ax$% of the maximum of the deqfities éﬁ;%)'

(n) (n)

pij ‘ %+lj A similar strategy has also been used
successfully by Wigton [34]. 1In fact, Wigton peints out

very clearly the difficulties in obtaining fine grid
solutious and is only able to achieve convergence through,
this strategy.

Figures(8 - ll)'show the plot of Cp ca%Fﬁlated
on the NACA 0012 and 6% circular arc airfoils for subcritical
and supercritical flows. As indicated on these figures and
in Table 3 convergence has been obtained i? very fine
grids,‘yielding as many as 70 surface points on a NACA 0012

at M_=0.7.

Figure (12) shows the convergence of y against



the number of iterations. Further information dﬁ‘éﬁid sizes,

- number of iterations and CPU times are given in Table 3.



CHAPTER 1V
INVERSE PROBLEMS

In ChaptervIII.we solved the direct problem, i.e.,
problems in which the geometry of the body was prescribed
and the flow field was computed subject to appropriate
boundary conditions. 1In this chapter we study inverse or
design problems. 1In the inverse problem the objective is
to determine the body geometry corresponding to a given
distribution of surface pfessure or velocity. The inverse
problem has received less attention in the literature as
compared to the direct problem. Recent development of
new airfoils suitable for future transport aircraft
cruising at high subsonic Mach numbers has attracted the
attention of researchers to the inverse problem. For an
aircraft designer the solution to inverse problems are much
more useful in designing optimum aerodynamic shapes, since
he can input a pressure or velocity distribution that is
known to have desirable features and then obtain the
corresponding body shape. In this way one can save
considerable time and effort as compared to the alternative

approach, which is to solve the direct problem for a number

44
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of shapes and then choose the one that produces the desired

features [37-39].
In this chapter, a method for solving the-invefse
problém is developed which is simpLs, fast, and provides

results in excellent agreement with the original shapes.

4.1 FLOW EQUATIONS AND BOUNDARY CONDITIONS

The equations governing an inviscid, irrotational,
isentropic compressible fluid flow, in the (x,y) - plane, are
viy. . - 2y,y. vl o+ (1+y2)y
o XX v xXT XY X gy

2 2
Yy Yuby Y1ty

(irrotationality)

P P (4.1.1)
2pY-l 1+y2 2 :
5+ 3 ; =1 «+ — - (Bernoullis equation)
(y-1)M Py, (y-1)M
® = (4.1.2)
The pressure coefficient Cp 1s given by~
]‘ _ \
c =2zl (4.1.3)
P Yuo

Without loss of generality, we choose the airfoil to
be a segment of the streamline Y=0. Since we prescribe
the pressure distribution for the inverse problenm, equation

(4.1.3) is rearranged in the form

yi42 '
o = (1 + _52 c Y on ¢= 0, xe[x

p LE’ ¥

(4.1.4)

The Bernoullis equation (4.1.2) gives
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l.k+yJ2'c
Yo T = .
v 2 2 2p¥71
P ( 1+ 2 - 2 )
(y~1)M_ (y=-1)M_
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{(4.1.5)

The well-posed boundary value problem for airfoil

design is to solve

2 2
Yy¥uu = 2¥yp¥u¥yy * (1FY )y,
2 2
Y, y.p y, (l+y. ) o
B __IJLX X - w X *-gJ for UJ>0
P P
with
_ 2 _
yw.— b /l + Yy on ¢y = 0,
2
YM™_
(1 + —=c /¥ on y = 0,
— p
p =
1 at =
y =10 on ¢ = 0, —m<x<xLE or
Y = ¢ at =
where
b = L
V/ 2 2 281-1
al(l+ 5 T 5 )
(y-LiM_ (y-1)m
2
YM
_ _ = 1/ v
a; = {1 + > Cp)

along with (4.1.2).

On introducing modified density p ,

{4.1.6a)

SXSXpp

(4.1.6b)

*LE

*LES* g

{4.1.6¢C)

< o
XTE X<

(4.1.64)

(4.1.6e)

the system (4.1.6)

is replaced by the following new system :
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vy 2y, v, ¥, + (L+y2)y
P xx P XXy Xy
2. ' 2-.
Y, Y, 2 Yo l1+y )p
= w~x X _ U X v - for >0 : (4.1.7a)
Y P .
. 2 - .
y¢~ bvl + Yy on p=0, nggxngE (4.1.7b)
YMi "l/Y .
(1 + _E_Cp) ony =0, X <X<Xen
5= . |
1 at = - - (4.1.7¢)
Yy = at «
y =0 on =03 -~w<x<x . or Kpp<X<e (4.1.7d)

along with equation (4.1.2) and where b is given by {(4.l.6e).

4.2 NUMERICAL ALGORITHM FOR UN-STRETCHED GRIDS

The equation (4.1.7a) is discretized by using central
differencing for all derivatives everywhere except ony = 0
for X pSX<X,p. Considering the grid poin*s as ordered pairs
(i,3), the finite difference approximafion of equation

(4.1.7a) at an (i,j) grid point can be written as

C10¥ja15 ~ 2¥54 * ¥ 5

TCl¥ 1941 * Yi-13-1 7 Yio19+1 T Yie14-1'
)

PO ey T2V Y Y4

R
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T 1CPsasg T Pi1g) P Caleggay = Ry ) I/E (4.2.1) "
where
V.. - Y.
¢, = ij+l ij 1)2
249
2 ' .
o o AWy T Yo Wiagy t v )
2 (aaxap)?
ax% v Yig1g T Y4 o '
Cy; = =31 + ( )7
Ay 28x
2 _ ffﬁ _ 2
o X Wie13 T Y3019 Wig00 = vi40)
4 20%(28¢9)°(24x)
(Y. 0 = ¥Vii ) Yiirs = Yi_qs .
¢, = -sz ij+l 1] } (1 + ¢ i+1l7 1~13)2) ~
(249) (289) 24x
Dlj = Psy ~ uij(prx)ij
2 2
(y-1)M (vy-1)M
- = ®a..1Ay-1)
Dij - [l+ 2 O]
. Yio1s = Yioqs
) (26p)2[1 + (Z2HL1_ Ti-13 )2,
- 2AX
%6 = -7, ) 2
P13 Y1941 7 Yi41
W = max {0, 1 - —L—J
ij ' 2 .

i]

On y¢=0, X pSX<{Xop the equation (4.1.7b) is discretized

as follows:

Along ¢=0, x ,<X<Xp-, on using (4.1.7b) and (4.1.2)




Bat

in (4.1.7a), we get,

* B* _ *

BYyx *Buyy =¢
whe;e
2

* _ l“Yx
A “__G

* N 2
B! = l+yx

2 3/2
e (1+y )} p

* 2 X ]

C. = —Yx(l+nyK(p)ox 3
* ok v _1
G = 02[a1+b o' 7]
* L * oyl 2

K{p) = (A +b YDY. )p/G
a* =l+—-—L2___

. (y+1)MZ
b = —2 ,

(Y-1)M°

Employing, along j=1, the approxirations

' s 2yymygy) 2,
y¢¢_ sz sy Ty 9=1

Wi T Y
x 2Ax

Y

(Yig) 17 207y g gy
Yxx = A2 !

the above equation gives
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L de sty 7 T ¥,

50
A" -2 + 1 + B 288y
SR W¥ier 1T Yy T Yo ) f B I28T(Y ,myy)

-288x(y,), ;1 = c'ax)? (4.2.2)

where

B = (ax/a¢) .

The matrix representation of (4.2.1) is the same as

(3.2.3).

Equation (4.2.2) provides tridiégbnal elements along

y=0, XLESXSXTE’ which are
A(l) =0
B(l) = 2dl—2d2
C(l) = 2d,
RHS(1) = —dl(yi+l l+yi_l l) + d3+d4
where )
1o ixl 17¥i1 1,
4. = 24Ax
1 dg
4 - (1e Fir1l 17V 1)21(g5j2
2 = 24% Ay’
a. <2 0f 0 Yie 1750 1,20
3 (Aw)d6 2ax%
\ “)“
Y. -y Y, -y
- 2, ,7i+1 1 fi-1 1 i+l 1 “i--1 1
d, (ax)"[-¢( 5 Ax ) (1+( AR )d,

i41 17Y5-3 1}2)1'5_
20X ‘ d3]

Y
- (1+4]

-




s

— 32
= d9[a11+b 9

1

; Y-l 2
d7 = dypfanitbyjvdy T)ég/d;

dg = d;y/dq /dg

YM2

= _= 1/y
d (1 + 3 (Cp)il)

1
10 = Zax'tdgli4y 17ldgh g )

= L~
dy; = zplei7{dg)yy)
2 2
aj; =1+ —2—— , b= -2/(y-1)42 .
1 (Y—l)Mi 11 ®

p and p are relaxed in the same way as in Chapter III.
SLOR is used to solve (4.2.1),(4.2.2). A simple algorithm

that solves the eguations is given below.

J

Step 1. Construct a computational domain and choose the

grid size.

Step 2. Set:

b to(3FDay, WL~

+ (j=1)ay, j=1, i=i or i

Yi5 “\¥min max min

1]
0 ’ =1 id<i o or i>ips

Pig = 1 T 4%
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i =1 ¥, ; except for j=l,‘
2 i 7 ippsia
. ( YM ) LE="="TE
i

T
|

=] 2 . . .
= 1+———-Cp for j=1, 1, pSici

2 TE

Step 3. Central difference all the derivatives in aquation

(4.1.7a) everywhere except along j=1, for i__<i<i

LE-"-"TE -

Along this segment, .
(1) use central differéncing for Yyx
(ii) use two point forward differencing for yw

(iii} use central differencing for Yy

. *.-
{iv) replace (yww), by
. vy, e iz e - 2y,
Py J=1 dwz Ay f j=1
- with
(y. ) = (bf 1+y?) .
( v 3=1 x' =1
: P
{v) For speed calculations; differencing for

L]

Yo derivative is the same as used in
section 3.2,

Solve (4.2.1) and (4.2.2) for y by calculating the

coefficients Cy s dm’ k=1,...5, m=1,...11 at previous

-~
iteration level until the tolerance level for Yy is
satisfied 3

Steé,4. Calculate p from (3.1.8),

Step 5. Calculate p from (3.l.9).

-~

Step 6. Check the convergence for p, p. Continue iteration

until convergence for 5, p and y is achieved,
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4.3 FLOW _EQUATIONS, NUMERICAL ALGORITHM FOR STRETCﬁED

GRIDS
Introducing the variable Y defined by (3.4.2) and

employing‘transformation (3.1.1, 3.1.2), the equations

-corresponding,tc (4.2.1 , 4.2.2) in the (g,n) system

‘ are

S 1
Cpl¥i4pq = 2% 45 + ¥, 4]
. b ]
+ C2[Yij+l ELTE Y5 5-]
PClYiiager Y Y500 T Yigger - Yi+19-1!
g .
Y g 7 Y y) -
* Colyygu™ ¥y50 = G o (4.3.1)
and
Bpl¥ipp 1 = 2¥5y vy ]
+ 2B 82[Y - Y. .
2B Yy = Yy
{ag) _ 1 =
+ By [Yi+l 17 Yoy o] By + Bg (4.3.2)
where
€ %A
2
. {AE) A2 .
2 Y /_EJ/
(AQJZA_
C _ 3
3 4AEAN
2
(AE)“A
A 4



(Asﬁ%
Cs = ICE

~ 2. ,2. 2
C6 = {Ag) Ag ¢€<E

= 02(1_m-
B, = ¢n(l BGJ/B7

'_B2‘=_x§[l+B6]

. .
B, = - —E&p
4 1
£
(a£)? 2
By = [2TE%T— - (88)%By 1B,
B
_ 2 2 2. /B
By, = (a¢f) xﬁwn[ ;;;(1+86)Blo
S Li1es 302
v (l+86) Bll]
n
B, - L fivn T Yo |
6 X 20E
£
_ 2 * * Y""l
By = Byylay + b By,7]
"
- _n  onn
Rg B, %
n
17 ¥ 1+B
B, = _n__ 6
JB7
_ « y-1 2
Blo = Byzflay + b ¥B},7)B,,/B]
0i0=(B..)
o 1207120,
Bll - — An )
B.. /B
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where Ai's i=l,...6, are g4ven in (3.4).. " The ednation~
(4.3.1) can easilybe written in the matrix form as before.

The numerical algorithm for (4.3.1-4.3.2) is the same

as given in section 4.2.

4.4 RESULTS AND DISCUSSION

Cﬁlculations for various subcriticél and supercritical
£low configﬁrations have been carried outAon both uniform
and §tretched grids using the algorithm described in
Section 4.2. Input pressure distributions used in the
calculations were taken to be those which were numerically
computed using the full potential formulatien of "the
direct problem as described in Chapter .III1. Results of

the computations are shown in figures (13-2C).

Figures (13-14) show comparison of the exact and

numerically obtained coordinates for the NACA 0012

airfoil at M_ = 0.63. The loss of accuraéy near the
leading edge in Fig.({13) is the result of the input
pressure distribution which was not very accurate near
the leading edge. However, these inaccuracies have been
eliminated by using more accurate input data computed on

a fine grid (Fig.l4).

~ »
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The exact and numerically obté%ned coordinates for
the NACA 0012 airfoil at M_ = 0.7 are illuéfrated in
Fig(lS).WThe numerical results are in good agreement with
the exgctkvalues._

Figures (16 and 15) compare computed coordinates for a 6%
circular arc airfoil at M_ = 0.817 with the exact airfoil
shape. Again the results for this subcritiéai flow are
excellent.

Figures (18 and 19) show the results €or a supercritical
flow at M_ = 0.8 on the NACA 0012 airfoil. Our results
show some inaccur@cies near the leading edge when com-
‘puted on a coarse grid. However, these inaccuracies have
beén greatly reduced by carrying out the cqlculation on a
finer grid (Fig. 20). We point out that in our calculé—
tions, numerically computed data was used. During the
investigation, we found that even a slight cbange'in the
input data affects the shape of the @dy. If the best
available input data is used, we expect that the
discrepanciés in the airfoii coordinates mentioned above

can be essentially eliminated.

In the programmes, the relaxation parameters Wy

Wy and constants A, B, D appearing in the stretching
functions (3.3.1 and 3.3.2) are taken to be the same as
in Chapter III. Conventional design methods require

_ J
the solution of a sequence of direct problems, with
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the airfoil converging to the required shape. Various
optimization routines have been developed to minimize
the number of direct problems to be solved. In our

formulation we only have to e one probleﬁ which has

- mixed Dirichlet and Neuma ary conditions. The

solution of this inverse problem provides the airfoil

shape, given by y(xi,O), i.e., Y1 for i__<i«<i

LE TE ~
‘'The computational information for the -numerical

design of the NACA 0012 and 6% tircular arec airfoils,

giving the number of iterations and CPU times for
. o -
various Mach numbers and grid sizes, 1is summarized .

in Tables 4 and 5.




CHAPTER V
LIFTING PROBLEMS

In Chapters III and IV we studied inviscid compres-
sible flow past symmetric airfoils at zero incidence. 1In-

the present chapter we will study flow past symmetric

airfeils at incidence. Incompressible flow around air-
foils is also considered because the present method has not
previously been used in this application. The analysis
‘and numerical procedure @s then extended to compressible
flows. The flow equations and numericﬁl results are

presented here.

5.1 FLOW EQUATIONS AND BOQUNDARY CONDITIONS . -

The non-dimensional eguations describing the irrota-
tional flow of an inviscid incompressible fluid in the (x,0)-

plane are [24]

r

\

yiyxx - 2yxywyxw+ (l+yi)yw = 0 (vorticity equation)

(5.1.1)

1+ yi (equivalent form of continuity
equation) (5.1.2)

-
€ o
<
n

1l + yi + 2py2=C

" Oyi (Bernoull;% equation) (5.1.3)

where

Ve = u” o+ v, C, = constant of integration,

58
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p is the pressure'and u,v are the components of the
velocity. -

Recall from Chapter III that the non-dimensional
equations governing the irrotational flow of an inviscid,

isentropic, compressible fluid in the (x,¢y)-plane are

"2 2
2 _ : 2,. _Y¥yrx y¢(1+yx)°w
Yy ¥ ex 2yxywyxw + (l+yx)yw = -

p )
(5.1.4)
K 2
y-1 l+y
20 s+ 2 =1+ ———3~—5 ) (5.1.5)
(y=1)M, . o Yy - y=1)M7

"
Ed

The appropriate boundary conditions for either
incompressible or compressible flow in the physical

plane are

v . =
7= fix) for X pSX<Xpp s ¥ = £ix)
(tangency condition) {(5.1.6)
vV =20 at TE (Kutta condition) {5.1.7)
X * 2 2
YCOSa -xs1na + [ Ln{x"+my~) -¢ = 0
(along outer boundaries) (5.1.8)

. .
where a is the angle of attack, I is a constant propor-

' . *
tional to the circulation I', T =r%F and where

1 ' for incompressible fluid

1 - M: ’ for compressible fluid,

and
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(£) indicate upper and lower surface respectively.

Condition (5.1.6) states that there is no flow through
‘ , < ‘ :
the airfoil. .The Kutta condition (5.1.7) asserts that the

g
i
i
Y

fiow should_ieavewsmoothly from the trailing edae.
Equatien f5.1.8) is the condition that the stream

function far awey from the body is due to a uniform

flow and a vortex [40]. The Kutta condition, employing

Bernoullis' equation, is equivalent to the requirement that

pressure and speed are continuocus at the trailing edge, i.e.,

_ 2
(Vi)gp = (VE),

pp (5.1.9)

E

In the (x, y}-plane, considering the airfoil as a segment of

the streamline- w=0,' esquation (5.1.6) is replaced by

y = £ (x) for x _<x<x

. LE v=0 . : (5.1.10)

TE'

Therefore, the well-posed boundary value problems for the

incompressible and compressible case , respectively, are

Incompressible

2 2 _
YpYux * Uty vy, - 2v,y,y,, = 0
subject to

y = £, (x) for x_ _<x<x

LE v=0

TE'

—
—

y? v, J
v TE v TE
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. . * 2 2
$ = ycosa - xsinc + T Rn{x“+y®) at = .

2. Compressible ~

2 2
Yu¥yPy  Yyllty do,

2 2
+ + - 2 = -
Yyp¥ux * (Y0 — 2V, 7Y, o) o
y-1 2
20 l+yx _ 2
R I B
(y-1IM_ »p yw (y-1)M
y = f +{x) for xLESxSxTE ‘ p=0
l+yi T l+yi
B a2 152
P Yw Yw
TE TE
h = yCosa - XSina + r* 2n(x2+ (l-Mi)yz) at o«

5.2 METHOD OF SOLUTION

For the compressible case the artificial density 0
is introduced in exactly the same way as in Chapter III.
In order to solve these boundary value problems, following
Jones [31], we divide the computational domain into four
regions as shown in Figure [21]. We then sweep each
region in succession by employing line relaxation. To
apply line relaxation, we employ old values of y and 5

at mesh points to represent first derivatives
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For derivatives Yogr Y,,r We employ respectively,
XX P

- ooyt
__ Yivij T “Yi4 v Yiog4
XX Ax? .
+ + +
y o Yiger 2¥i4 * Yi41
v By2

Here superscript (+) indicates a new value of the nnknowﬁ v.
In region I, when relaxation is applied at the point
(Il—l,o), we require the value of ; at (11,0) and this
is set to be equal to ; at {I1,-1,0). Likewise the value
of density ; » 1n region IV, at (12,0) is set equal to the
value of 5 at (szl,O). |
In regions II and III, on the airfoil, we employ the

following expressions for Yoo ¥y

Y:et = £ (x) ], _
Yy Ol 1 A$ = in region II

Yig™ ~ fo(x) [,

Xw = X . in region III
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¥

o = E(x) © (5.2.1)

where (%) indicates the value at the upper and lower

surfaces respectively and

. ‘ ‘ +

yis+ : value of y at i on the streamline S
which is above the streamline y=0

Yig~ : value of y at i on the streamline S

which is below the streamline {=0.

L
To calculate speed at grid point (i j), Yy is
. r

.

computed from

Yit13 = Yi-14

Yy, = IN" (in subsonic region)
Ve = Yo o .
= 1] i-25 . . , ]
Yy : Shx (in supersonic region)

except along ¢=0, XLESXSXTE’ where (5.2.1) is employed.
In each region the differenced equations can easlily

be written in the matrix form

MY = B ' (5.2.2)

exactly the same way as in Chapter III.

The circulation I' around the airfoil is determined
such that at the trailing edge, the speeds Vup at the
upper surface and Vio at the lower surface are equal.

Following [41], the iterative procedure

p(n+l) _ o(n)

+ BO(Vup_VQO) 95.2.3)
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. is employed. In equatioﬁ (5.2.3), B isrtheArélaxation

parameter and for our purpose we take

17<B<.31 . | | (5.2.4).

Tﬁe procedure employed.toﬁdetermine the raﬁge 80
is described in the flow diagram (1).

The iterative algorithm for the incompressible-
and ghe compressible case are represented by flow
diagrams (2 and 3), respectively.

The pressure coefficientrcp and lif£2coefficient

C; are computed from

(1+y2) u

c =1- — %X

2 y2

' v incompressible (5.2.5)
CL = 2T

2 "y

C. .= —=(p'-1)

P YMi

¢ compressible {(5.2.6)

)
Il
—
-~

L zg (cpg—cpuJax

5.3 RESULTS AND DISCUSSION

The algorithm described in diagrams (2 and 3) has been
used for the computation of incompressible and
compressibie flows over NACA 0012 and 6% circular

arc airfoils at different angles of incidence.
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Figu;es(22-24)shoﬁ.pregsure distributions for’
incompressible flow on a NACA 0012 airféil for angles
of attack 4°, 6° and 8°, respectively. Comparison is made
with the numerical results obtained by Carey and Kim [42].
. In the;case-of a-4° angle of attack, our result agrees
very well'witﬁ Carey's results; Fof angles of attack
6° and 8° therg appearlto pé-some discrepancies in the
pressure distribuﬁions although the accuracy of Carey's.
results is not known. Lift coefficient C

L
against angle ofe¢attack o« in Fig.(25)and shows excellent

is plotted

agreement with the results of [42] and Abbot and Von
Doenhoff [43]. A4

- For compressible flow,,théicomputed pressufe;
distributions on the NACA 0012 and 6% circular arc
airfoils are illustrated in Figures(26)to (30). Figures (26)
and (27) show comparison of pressure distributions for
the 6% circular arc airfoil at M, = 0.706 for a=.5 and 1°.
Comparison is made with the experimental results of Earl
[35], and our results are in excellent agreement.

The preggﬁre distribution on the streamline y=0

.for the NACA 0012 airfoil at M_ = 0§§ and a=10° is
illustrated in Fig.(28)in which comparison is made with
the 'results of Hafez et al. [41]. Our results show good
agreement with theirs.

Figure (29) shows the pressure distribution on a
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NAZA 0012 airfoil at M_ = 0.75 and «= 1.0°. This figure
indicates that there are some discrepances in our results.

These discrepgncies may be due to the type of differencing

.used, i.e.; we used a non-conservative form of the governing

equation while conservative differencing was used in refer—

ence [44]f Such discrepancies in the pressure distribution

are also reported in [45] (see- Fig. 29). Figure (30) shows the

pressure distribution for a NACA 0012 airfoil at M_ = 0.75

and a=2°. Comparison has been made with reference [45].
Cdnvergence history for the circulation, which is

updated at each global y iteration are presented in Figures

(31) and ().

"

Qur results indicate tﬂdt’the present formulation for
‘liftiné cases produces very good results over a wide range
of Mach numbers and angles of attack. Tt also'provides
Dirichlet'béundary conditions over the airfoil and in the
far field. The Kutta condition is easily satisfiéd and tﬁere

is no need to do grid gene;?::on since it is automatically

taken care of by the strea ction coordinate formulation.

Tables 6 and. 7 summarize the computational information for
the NACA 0012 and 6% circular arc airfoils, giving the

number of iterations, grid sizes, Mach numbers and angles

of attack. .

-

Tk
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CHAPTER VI.

CONCLUSION .

Famiy

In this diséertatioﬁ a new fofmulatiqn is proppsed =
for solving-~the steady 2-D inviscid transonic flow past _~
airfoils; consideriﬁg both the analysis and design modes.

Historically, researchers haqé reliéd ﬁeavily on the
irrotational character of such flows and this has lead to
numerous studies involvingxthe véiocity-potential
formulation. In the potential formulation, Fhe unknowns
¢ {potential) and p (density) are obtained as solutions
of the partial different%al equation for consérvation of
mass and an .algebraic eduation for the density, the well-
known Bernoulli‘s-equation. The first successful finite
difference solution of the small-disturbance potential
equation for‘supercritiﬁal transonic flow seems to be due
to Murman and Cole {1l], using a type-dependent
differencing scheme. The sma;l—disturbénce approximation
provides two main‘advantages. First, the density can be
expressed explicitly as a function of the derivative of
the velocity potential and hence a single nonlinear
equation for ¢ can be solved..eSecondly, the boundary
condition on the airfoil suxfacé.is transferred to the

airfoil chordline which, for symmetric airfoils at small

incidence, means that the physical domain is rectangular

67
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(no curved boundaries) and is convenient for finite
difference calculations. |

- Extensions to the full-potential equ;tion were made
possible witﬁ the advent of grid generation technology.
Grid generetion allowed CFD researchers to numerically
map the bhysical selution demain, which has at least paft
of its boundary as thé—:hrved airfoil surface, into a

rectangular computational domain. The flow equations can

then be transformed and solved by the finite difference
]

method’on this rectangular domain. Jameson [26,27,29]

develbped some of the early methods for handling the full-
potential equation for transonic subcritical ané super-
critical flows. In order to account for the correct
differencing in the subsonic and supersonic regions of a
supercritical flow, gameson introduced ‘the concepts of
rotated differences {26] and artificial viscosity [29].
These schemes, and various modifications and extensions,
are still in use today, indicating the importance of
Jameson's ihitial contributions. One modification of

the artificial viscbsity method which has gained some
confidence over recent years is the artificial density
method developed by Hafez aii/éihers [19,28,30]. This
method is based on the same fundamental ideas as Jameson's

artificial viscosity method, using -a switching parameter

to provide the necessary amount of upwinding for the
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finite difference approximation in the supersonic ‘region.
To date no researcher has provided a better method to
account for ‘the change in the mathematical character of

-~

the flow equétion as one moves from the subsonic (elliptic)
*to the supe;sonic (hypérbolic).region. 'Ih this work we
have used both the‘ar?ificial density method and the.
type-dependent differencing method. -

.One significant feature of thé potenéial formulation
is that it can be extehded rather easily to 3~D flows
[14]. However, the mostlserious limitation of the
potential formulation is its inability to account for"
entropy changes which occur due to the shock wave which
forms over the airfeoil. 1In reality, transonic flows are
rotational and hence a velocity potential does not exist.
In terms of the level of sophistication of the mathematical
‘model, one wants to move froé the equations for potential
flow to the Eule? equations which-account for rotational
effects and entropy changes. This motivated researchers
to wonsider a streamfunction formulation as an alternative
to the potegtial férmulation (19]. The streamfunction
formulation‘can easily be extended to allow for vorticity.
As with the potential fo;mulat}on, grid generation is an
important first step in the numerical solution of thé
equatibn for the streamfunction. In general, the boundary

conditions in the streamfunction formulation are simpler
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than in the potential formulation, being Dirichlet rather
than Neumann on the_airfoil surface. However, extensions
to 3-D arefcumbersome because of the ﬁeed to define a

pair of stfeémfuncticns and most researchers have,
therefore,‘abandoned this approach in favor of a primitive
variable formﬁlation of the Euler equations.

One chapter in this dissertation deals with the inverse
or design problem in‘which the sufface pressure éistribution
is prescribed.and the corresponding airfoil surface is an
unknown to be determined. This problem is of partizhlar
imporiance to the designer since his or her job is to
construct an airfoil with a given set of performance con-
ditions. The classical approach to airfoil design has been
to make an educated guess (based largely on experience) as
to the required airfoil shape: A direct calculation based

on this assumed shape is then carried out (analysis mode)

‘and the calculated pressure distribution is compared to the

desired one. If these do not agree then the airfoil shape
is adjusted according to some pre-determined set’of rules.
The pressure distribution is recalculated for this new
airfoil and compared to the prescribed one, etc. Thisv
iterative process is continued until the calculated and
prescribed pressures match. Considerable efforts have

been made to optimize this iterative procedure so that

a minimum number of airfoil shapes need to be analyzeg.

e EATY
RIRRH
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Virtually all finite difference calculations-for
‘realistic airfoil ggometries-rely heaviiy on some form of
numerical grid generation, whether it be via conformal
mapping, algebraic, elliptic or hypefboliq grid generation.
fhompson ef‘al [21] have provided an extensive survey of
this field up to and including 1982. The high level of w
current research activity in grid generation is clearly
ag indication of the importance of this tecﬂnﬁlogy to the
computational fluid dynamicist, and severai very sﬁccessful
grid generation codes are commercially available. Although
grid generation is an integral part of the curfent state-of -
the—ért in CFD it has its own limitations and drawbacks.
Certainly, 'iterative adjustment of the grid is necessary
to accurately predict the flow in regions of high gradients
and use of adaptive grids is becoming indispensible in
this regard. Furghermore considerable CPU time gs/rgquired'
to splve the grid éeneration equations and, for A@ne grid
calculations, large storage is néeded to save the grid
for the solution of the actual flow equations. Also, as
is common when one uses commercial packageg, user experi-
ence is an'zmportant factor in successfﬁlly acﬁieving the
correct physical solution.

In this dissertation we have attempted to address
some of the ;imitations and difficulties discussed above;

In short, a formulation is proposed which, (i) eliminates

the numerical grid generation process, (ii) can be extended
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to rotational flows and 3—D-flows, (iii) provides a
birichlet boundary value problem for the analysis mode and,
(iv) provides a mixed boundary value problem fbr the design
mode which can be solved numerically to detgrmine the
desired airfoil shape as part of the overall finite differ-
ence solution. All of these-featuresrare achieved as a
. *esult of ‘a formulation of the flow equations in von Mises
cogrdinates (x, ¥ in which the'§r and o are tréated as the
unknowns. Two approaches are employed to solve the governing
equations subject to appropriate boundary conditions.

In thé first approach artificial density is introduced
in the flow equations follo@ing Hafez and Lovell [19].. The
flow equation is discretized using centered differences for
all the derivatives everywhere in the computational domain.
In density calculations, type-dependent differencing is
used for Yy to account for upwinding in the supersonic
region. Numerical calculations are made using successive
line overrelaxation ﬁethod for NACA 0012 and 6% circular
arc airfoils at different Mach numbers and angles of attack.
Results obtained are in good agreement with experimental
and other numerical results. 1In this approach, we fail to
achieve convergence for y on a fine gria, for example, on,

a grid having more than 39 points over airfoil, for the °
;upercriticallcase. This is, perhaps, due to the freezing
of the terms containing density derivatives and the use of

artificial density in the flow equation which inherently

-

b
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introduces a numerical error in the & lution as iﬂdicatgd
by Essers [32]. Other reséérchers have also indicated the
difficﬁlties in achieving convergence on fine grids, for
example, see Wigton [34].
After some numerical experimentation, it_was found
that the choice of switchihg parémeter U in the artificial. 1
deﬁsity methoé strongly affects the cenvergence. A survey
of the literature indicates researchers have used different
forms of the swit:hing parameters to make their schemes
converge, for example, Hbl§§ [44,45] explicitly'mentions

that his scheme fails to'converge for a different choice of

"W. The proper choice of p comes mainly from experience or

numerical experimentation. .We believe that the convergence
on a fine grid may be achieved in the von Mises formulation
1f one can determine an appropriate form for u.

From the aboﬁe, we conclude that as the nqu;r of gnid
points are increased, it is very hard to achieve con?er~
gence. To accomplish it, researchers modify ﬁx or use some
strategy to damp out drastic change in the flow variables
[34]. To eliminate these aforementioned difficulties, we
use a second approach in which an alternate form of the
irrotationality condition is obtained independent of
density derivative terms. This is done by eliminating Py
and p

v from the irrotationality condition using the

momentum equations. The resulting equation is solved
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.

using type—dependent differencing and to avoid drastice
change in density in the supersonic region a strategy
similar to ngton [34] is employed. 1In this strategy,
after updatlng den51ty at the grid point (i,j), we ensure

that it neither drops by more than Ax% of min(di?),

p (n+1) (n) ) nor exceeds by more than Ax% of
i-15 " Pi+1, -
(n) (n+l) {n) - : : :
max (p i5 pi—lj ' pi+1j) In this way, we are able to

achieve convergence on fine grids.

The computed results are inlgood agreement with
experimental or numerical results obtained by other
researchers. !

The main advantages of this new formuiation have already
been discussed. An additional advantage is that the
variable y is continuously differentiable through the
entire flow region. To solve lifting problems in the
velocity potential formulation a jump condition on ¢
must be imposed along the rear stagnation streamline to
account for the circulatioe. No such condition is needed
for y . Finaliy, we point out that the coding for the
von Mises formulation is extremely simple.

The method is being extended to flow over non-symmetric
airfoils at incidence, axisymmetric flows, flow through

cascades, flow through porous media and three dimensional

incompressible flows over wing—bodies. The method can
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easiiy be extended to study subcritical and supercritical
rotational inviscid flow past bodies in two and three
dimensions. Lastly, we point out that one may encounter
in the von Mises formulation a non-uniqueness problem in

.

solving the inviscid EBuler equations since it is not clear

<

' to researchers how a purely inviscid solution is uniquely

determined in other formulations.
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Fig. 22. Surface pressure distribution
on NACA 0012 at a=4°,

—— Carey, Kim [42]
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Fig. 25. Comparison of computed lift coefficient C
with experimental results (incompressible%
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Fig. 27. Representative pressure distributions for
6% circular arc airfoil, M=0.706,a= 1°

{1} Earl [35)] experimental
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number of iterations on y

Fig. 32.“Convergence history for [4 NACA 0012, intompressible.
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Initialize all flow
variables

Calculate y everywhere using (5.1.8)
except along ¢=0, xﬂEstxTE"

e v

A

Compute ¥ in region I to IV
- ( using (5.1.1)

Calculate T usging (5.2.3)

Calculate y along
outer boundaries .
using (5.1.8)

B(n+1) = B(n)-+ initial guess
o o
for B
o
[ No 'y
L T _h <
1!
A Check Yes -Chgck convergence No
(v. )=(v_) — - for y >
up Lo
Y Yes
OUTPUT

Diagram 1. Determination of BO
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Initialize all flow"

variables

@

4

Calculate y everywhere using (5.1.8)

except .along Y=0, 3 2cEx

TE

y

Yes
—y,
e
—_— - Yes 3
N
v
!
Calculate T No
using(5.2.3)—¢

-

Compute ¥ in regions i toiv

using (5.1.1)

r

| If iteration 1

No

Check convergence for ¥y

b

Compute y along
cuter boundaries
using(5.1.8)

Diagram 2.
Case

1

Check
(vup) = (VLO)

l

3

——————; Yes

OUTPUT

No

Determination of Flow Field for Incompressible
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Initialize all flow

. ‘ ’)' ‘ variables . 120

Calculate y everywhere using (5.1.8)
except yY=0, xLE<§<§TE

$

Calculate y along - [::)

outer boundaries

using (5.1.8) Compute y in regions i to iv
3 ) using (5.1.4)
A& .
Calculate T 1
using (5.2.3) - - 1 No
. Yes If iteration = 1 r—-"—————-
- s~
Yes
4 Ne Check convergence for y
. ¥
} l
Calculate p and p
+
" No Check congergence for p, p . Yes
Check Yes
N = -
+ ° (vup) (VRJ
T —

¥

) OUTPUT ]

Diagram 3. Determination of Flow Field for Compressible
Case
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