University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1995

Computational investigation of heat transfer from an oscillating
cylinder.

Dinakara. Karanth
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Karanth, Dinakara., "Computational investigation of heat transfer from an oscillating cylinder." (1995).
Electronic Theses and Dissertations. 1514.

https://scholar.uwindsor.ca/etd/1514

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.


https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1514&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1514?utm_source=scholar.uwindsor.ca%2Fetd%2F1514&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

[ §4

National L ibrary
ol Canada

Acquisitions and
Bibliographic Services Branch

395 wellington Strect

Bibliothéque natonale
du Canada

Direchon des acquisiions ol
des services bibhograptiques

395, rue Wellington

Ottawa, Ontano

K 1A ON4 KIAONY

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for  microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

if pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments,

Canada

Ontawa {Onlang)

Yoww by Lawee b e

e At S gttt

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il marque des pages, veuillez
communiquer avec l'université
qui a conféreé le grade.

La qualité dimpression de
certaines pages peut laisser a
désirer, surtout st les pages
originales ont eté
dactylographiées a l'aide d'un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



COMPUTATIONAL INVESTIGATION OF HEAT TRANSFER
FROM AN
OSCILLATING CYLINDER

by

DINAKARA KARANTH

A Dissertation
Submitted to the Faculty of Graduate Studies and Research
through the Department of Mechanical and Materials Engineering in
Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy at the
University of Windsor

Windsor, Ontario, Canada

1995



National Lib
Lo et

Acquisitions and

Biblothéque nationale
du Canada

Direclion des acquisitions et

Bibliographic Services Branch  des services bibliographiques

395 Wellington Street
Ottawa. Ontano
K1A ONA K1A DN

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, e Wellinglon
Qttawn (Ontano)

Yane S hole s

Lo e Bt et g o

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese a la disposition des
personnes intéressées.

L’'auteur conserve la propriété du
droit d’auteur qui protége sa
ihése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-10941-0

Canada



Name |’€1:I“’ Al ji

) an i 4

Dissertation Absiracts internutional is arranged by broad, general subject cotegories. Please select the one subject which most
nearly describes the content of your dissertation. Enter the carresponding four-digit code in the spaces provided.

r\ ]{ Lf l'f j! IRy lf/ [i L

O e 4y

SUBJECT TERM

THE HUMANITIES AND SOCIAL SCIENCES

Subject Categories
COMMUNICATIONS AND THE ARTS
Archilcture 8;;3
A Hi
Cm-w:'(;mry 0900
Dance 0378
Fine Arh Q357
Information Scienc 0721
Journulivm . [0
Library Scrence 0399
21 Communicahons Q708
Mune 0413
h Communtcation 0459
Theater 0465
EDUCATION
Genernll 0585
Adminniraton Ustd
Adull and Continuing C5lé
Agnicutyral ‘ Q517
Bingual and Mitcuhal 0382
il a ullicuthurol
erirg:‘(: . 0488
Community College 0275
Curriculum and Instruchon 0727
Early Childhood 0518
Elemnntary 0524
Finance 0277
Guidunce and Counselig 0519
Heolth , 0480
Higher 0745
Hislory of 0520
Home Economics Q278
Industrial . 0521
tanguage ond Litoratuie Q279
Mathomatica 0280
Phissophy of 0998
ilosophy o
w:"‘i’ 4 0523

Paychology
Ro::dmg
Relygious
Sciences
Secondary
Sacial Scisncay
Sociology of
Special
Teocher Trarning

Technol
T::h un?PKha:ummnnh

Vocohonal .

LANGUAGE, LITERATURE AND
UNGUISTICS

L
"Laneral

Ancient
Linguishcs
in
Litetrature
Goeneral
Classeal
Comparative
1ereal
Modern
Abricon
American

Asan .
Canadian (Enghsh)
Canodian {French) .
English .
Germanig

Lanin Ametican

Middle Eastern

Romance .
Slavic ane East European

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES
Agriculture
Ganeral
lerr?:l?'gzhuru unc.}
Nutrition . ..

Animal Pathol
Food Science ﬁé

Tachngl .
Forast o?\?Wi[dlifo. .

Pium u#‘urln

ant Pothology
Plant Phywology
Range Management
Wood Technology

Bio|a'
neral

Anatomy
Bioshatishcs ..
Botany
Cell
Ecology .
Entomology
Genalics
hmngL .
Microbro
Molocularow
MNouroscionce
g)hcegnogruphy
t

3
Ru’cflmhon .
Veteninary Science
Bi Z’?o{ogy.. o
iophysics
Ganeral ..
ical ..

EARTH SCIENCES

Biogeochemittry .
Goochomiuryw

Grodesy
Geology
Geaphysics
Hydrology .
Myinemlogy
Paleobotony
Paleoecology .
Poleoniclegy
Paleozoology .

Palynalogy oo o
Physicu?gvogruphy. e

Physical Oceanography .

HEALTH AND ENVIRONMENTAL

SCIENCES
Environmenlgl Sciences
Health Sciences
Generol
Audial -
Chemotherapy

Denlistry ... oo oo

Education . . .

Hospiiel Marogement

Human Development ...

0525
0535
0527
0714
0513

muno dS TV
icing and Sur .
Menkol Health ger)'
Nursing ... .. .
(I\:;ttritio_n QO o o g gsg
sielrics an neco!
Oxcupational H%hh un?y
Thorapy ... .............0354
Ophlhuﬁnology.. . 028Y
Pathalogy ... ..o 0571
Pharmacology .. ....0419
Pharmacy ... ... 0572
Phgsi:cﬂ Theropy ...038
Public Health ... ........... 0573
Radiology ... ... e
Recreaton .

PHILOSOPHY, RELIGION AND
THEOLOGY
Philasophy

Reh%izn
neral

Biblicol Studhies

Clergy

History of

Philosophy of
Theology

SQCAL SCIENCES
Amrie]rlcunl Studies
Anthropel
Archngrogy
Cultwal
Yll:ul
Bustnesy Administrobion
Genera
Accounting
Boniing .
Management
Murlzeling i
Canodiun Studies
Economics
General
Agricullusal ,
Commerce-Bu-iness
Lirance
tslo
Ec}:bo:y
Theo
Felklore r:
Geograp
Gcronlnlo;y
Histary
General

Speech Pathology
Toxicology
Heme Econamics

PHYSICAL SCIENCES

Pure Sciences

Chenistry
General .
Agticullural .
Anclytical ... .. ... .
Biochemistry
Inorganic ... -
Nucleor ... ... ... .
Organic........
Pharmaceutical ..
Physical . ... ... ..
Po{ T o
Radigtion . .

Mathemalics ... I

Physics
General ... e
Acouslies ...
Astronomy and

0460
(383
0386

Astrophysics .................
Armospﬁeric Science.........
Atomic .0
Electronics and E]eclricigr ... 0607
Elementary Porticles an
High Energy ................... 0798
Fluid and Plasma . ...0759
Molecular ........ .. 0609
Nuclear .... 0810
lies ... 0752
Radiation ...... 0756
Solid State .....0611
SHMSNCS oo 0463
jed Sciences
Q;ﬂ!cd Mechanics ... ... .. 0344
Computer Science ................... .09B4

Ancient 0579
Medicval 0581
Modern 0582
Black 0328
Alricon . . 633
Aua, Austreha and Ogeanie 0332
Canadion 0334
European 0338
Lahn Americon 0336
Middle Eastern 0333
United States 0337
Hivtory of Science 0385
low = . . 0398
Palihcal Science
General oo 08615
International Low and
Relaviony . . ... Q66
Public Administration 0617
Recreation ... ............... .. 0814
Socin: Work 0452
Saciology
Guor?crd e De2s
Criminology and Penalegy . 0627

mogra| L .
E!hnicc’gang l{ocial Studies .. 0631
Individuol and Family

Studies . . ... 0428
Industriol and Lober
Relahiony e Q629
Public and Sociol Wellare . 0430
Social Structure and
Development . ... . 0700
Theory and Metheds . . ..0344
Transpontation .. ... ... .. Q709
Urban and Regional Planning .. 0999
Women's Studies ... .0453
Engineerin
General .. ... ... ..0537
Acrospace ... 0538
Agriculturel 0539
Automotive .. .....0540
Biomedical ... . . .0541
Chemical . . ... ..0542
Civil oo e 0543

Electronics and Electrical ... 0544

Heat and Thermodynarnics ... 0348
Hydraulic ........... " .0545
Industrig! . . _..05244
Marine ... 3547
Matericls Science . 0794
Machanical ... ... ... 0548
Metallurgy ... .0743
Mining ..., .. 0551
Nuclear ..... ..0552
Packoging . ..0549
Petroleum . ............ 0745

Sanitary and Municipa

System Science ..., 0790
Gcoiechnolglgy ....... 0428
Operolions Rasearch . 0794
Plostics Technology ... ....0795
Textile Technology ..................... 0994
PSYCHOLOGY
Genaral ..o Q421
Behavioral ....0384
Clinical .......... 10622
Developmental 0620
Experimental .. .0623
Industrial ..., ..0424
Personolity ... ..0625
Physiological . ... ...0989
Paychabialogy ..o 0349
Psychometrics ... ....0632
Social o, 0451



© Dinakara Karanth 1995



To
My Wife Chetana
and

My Parents



ABSTRACT

The problem of convective heat transfer from an oscillating cylinder is
investigated numerically. An isothermal cylinder was forced to oscillate in the in-
line and transverse directions at the mid-peint lock-in frequencies with different
position amplitudes of oscillation, The governing equations in a non-inertial frame
of reference are simplified to obtain the vorticity, stream function and energy
equations. After applying the log-polar coordinate transformation, the non-
dimensional vorticity and energy equations, with appropriate boundary conditions,
were solved using an alternating direction implicit method. The Poisson equation
for stream function was solved iteratively using the successive over relaxation

technique.

The time dependent average Nusselt number and the local Nusselt number
distribution on the cylinder surface were computed at a Reynolds number of 200
with the cylinder oscillating in the in-line direction, transverse direction and
combined in-line and transverse directions with position amplitudes ranging from
0.1 diameter to 0.8 dizmeter. The dominant frequency in the average Nusseglt
number variation was found to be twice the natural shedding frequency. The
location of the maximum jocal Nusselt number depends on the direction and the
velocity amplitude of oscillation. With both forced and mixed convection, the local

Nusseit number distribution approximately repeats after one cycle of oscillation. In



comparison with the heat transter from a stationary cylinder. an increased mean
Nusselt number and amplitude of the average Nusselt number variation were
predicted with the in-line, iransverse and combined oscillation. A maximum
increase of 18.46% in the mean Nusselt number was predicted when the position
ampiitude of cscillation was 0.2 diameter in the in-line direction and 0.8 diameter
in the transverse direction. Two cases ot oscillating hot-wire responses were also
computationally predicted in terms ot ave;gée Nusselt number. The time history

of the average Nusselt number agrees qualitatively with the oscillating hot-wire

output voltage response.
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Chapter |

INTRODUCTION

1.1 Motivation and Statement of the Problem

Fluid flow past a bluff body is of great importance in various engineering
applications. The main feature of the flow is its separation from the body surface
and formation of a large wake downstream. The existence of the wake alters the
flow and pressure distributions around the body and resuits in a deficit of pressure
on the downstream side. This causes a pressure induced drag.

Over a wide range of Reynolds number, a vortex street is formed in the
wake of a cylindrical bluff body. At low Reynolds numbers, a steady symmetrical
pair of vortices is formed on the downstream side of the cylinder. At a Reynolds
number above about 40, periodic shedding of the vortices from the cylinder surface
results in an alternating vortex street. Experimental observations and numerical
predictions have shown that the vortices in the wake interact with the cylinder and
induce oscillating lift and drag forces and torque on the cylinder. The oscillation
frequencies of the lift and drag forces and torque are directly related to the vortex
shedding frequency which may be expressed nondimensionally as a Strouhal
number. The drag force and torque oscillates at twice the vortex shedding
frequency and the lift force osciliates at a frequency equal to the vortex shedding

frequency. These oscillating forces are known to cause vibrations in a variety of



cylindrical structures. The incident flow can excite resonant oscillations if the
cylinder is flexible. The oscillating lift and drag forces may cause the flexible
cylinder in a cross flow to vibrate in the in-line and transverse directions. The
study of a cylinder oscillating in a cross flow is considered essential to understand
the dynamics of many offshore structures.

The convective heat transfer from a stationary cylinder is a fundamental
engineering problem with applications ranging from isolated heat exchanger tubes
to hot-wire anemometers. The unsteady behaviour of the flow close to the surface
strongly affects the heat transfer from the cylinder. In many industrial applications,
it is necessary to avoid over-design of heat transfer elements subjected to flow
induced vibration. In order to obtain an adequate design of the heating elements,
it is necessary to investigate the effects of oscillation of the cylinder in the in-line
and transverse directions. Another application of the study of convective heat
transter from an oscillating cylinder is to oscillating hot-wire anemometers (F1, H3).
Oscillating hot-wires can solve the problem of directional ambiguity associated with
conventional anemometers. In order to explain the behaviour of the oscillating hot-
wire anemometers, it is essential to study the problem of convective heat transfer
from an oscillating cylinder in a cross flow.

In the case of flow past a stationary cylinder, vortices are shed at a constant
nondimensional natural shedding frequency (Strouhal number), for a flow at a
particular Reynolds number. Within a range of forced frequencies, vortex shedding

is controlled by the oscillation of the cylinder and a considerable increase in the



time mean lift and drag force is observed. This is referred to as the "tock-in" or
"wake capture” or “"synchronization” phenomenon (K3). During transverse
oscillation, lock-in occurs when the forced frequency approaches the natural
shedding frequency causing a considerable increase in the drag force with the
vortices being shed at the same frequency as that of the cylinder oscillation. The
lock-in phenomenon occurs with an in-line oscillation, when the frequency of the
cylinder oscillation approaches twice the natural shedding frequency . The vibration
of the cylinder, in the lock-in range of frequencies, causes vortex shedding to occur
at half the cylinder frequency and produces a significant increase in the lift force.
Both the in-line and transverse oscillations of the cylinder alter the phase,
sequence and pattern of vortices in the wake and increase the vortex strength
within the respective lock-in frequency range. In the case of flow induced
oscillation, the position amplitude of the cylinder oscillation in the in-line direction
is less than in the transverse direction (V2). Lock-in occurs both with forced
oscillation of the cylinder and flow induced oscillation of the cylinder. The influence
of the lock-in phenomenon on the heat transfer is not discussed in the literature.

In the past two decades, numerous experimental results have been reported
regarding the convective heat transfer from an oscillating cylinder in a still fluid. All
of the experimental studies regarding the heat transfer from an oscillating cylinder
reported in the literature (A2, A3, D1, D2, F1, K2, L2 and S3) are at frequencies
lower than the lock-in range of frequencies. In a cross flow, it has been

experimentally observed that the oszillation in the direction transverse to that of the



mean flow, increases the heat transfer rate from the cylinder. In the case of an
oscillation in the direction in-line to that of the mean flow, highly contradictory
experimental observations have been reported.

The problem of the present investigation is the flow past an isothermal
cylinder which is subjected to forced oscillations in directions in-line and transverse
to that of the mean flow. The intricate details of the heat transfer from the
oscillating cylinder are difficult to analyze experimentally or theoretically. In this
study, the approach adopted to solve the problem is purely computational. A
thoroughly validated numerical simulation code can be highly reliable, economical
and gives accurate results in less time than an experimental study. To the
candidate's knowledge, no numerical simulation of heat transfer convected from
a sinusoidally oscillating cylinder has been reported in the past. Many experimental
and numerical studies of cylinder oscillation without heat transfer can be found in
the literature. No numerical prediction or experimental results have been reported

for the case of combined oscillation.

1.2 Scope and Objectives

Flow past an oscillating cylinder is the subject of interest in designing ocean
pipelines (risers) and offshore platform supports. The study of forced and mixed
(forced and free} convective heat transfer from an oscillating cylinder in a cross
flow is of interest in the areas of oscillating hot-wire anemometers and flow

induced vibration of isolated heat exchanger tubes. The purpose of the present



investigation is to study the cross flow past an oscillating cylinder and to analyze
the heat transfer from it. The present numerical study may help to fill the
information gap and to explain some of the contradictory experimental results.

The main objective of this study is to investigate the effects of in-line and
transverse oscillations of the cylinder at the mid-point lock-in frequency on the time
history of the average Nusselt number over the cylinder surface. It is also
important to determine the influence of cylinder oscillation on the local Nusselt
number distribution on the surface of the cylinder. The effects of mixed convection
on the heat transfer rate are also discussed. The influence of the alternating voriex
street on the isotherm contours and the time history of the Nusseit number are
also examined.

The secondary objective is to qualitatively compare the experimental output
responses of an oscillating hot-wire anemometer with the computational
predictions. The behaviour of the oscillating hot-wire anemometer at two different
velocity amplitudes of oscillation is also discussed.

In this study, the non-dimensionalized vorticity transport and energy
equations in a non-inertial reference frame (attached to the cylinder) are solved on
a rectangular grid based on log-polar coordinates (£,n). Finite difference
calculations were made at different Reynolds numbers, Grashof numbers, as well
as nondimensional frequencies and amplitudes of oscillation. As the maximum
Reynolds number considered in this study is 1000, the laminar flow assumption is

considered to be valid. Air is taken to be the fluid medium.



The following format will be adopted for presenting the different stages of
the present computational investigation. In the beginning, a review of the past
research work on the subject of interest will be provided. Subsequently, the
formulation of the governing equations and a brief description of the numerical
procedure employed to solve them are presented. The numerical resuits obtained
are discussed afterwards. This wili be followed by conclusions and
recommendations which are based on an interpretation of the numerically obtained

results.



Chapter Il

LITERATURE REVIEW

The problem of flow past a stationary cylinder has been studied
experimentally and theoretically for the past hundred years. Extensive experimental
results for unsteady periodic flow around cylinders are available in the literature.
Cylinders shed alternating vortices with a constant Strouhal number of
approximately 0.21 in the range of Reynolds number from about 200 to 10°. The
Strouhal number is lower for a Reynolds number less than 200 and higher for a
Reynolds number more than 10°. One of the widely used references in this field
is the experimental study of Roshko (R2). The main emphasis of this review is on
the numerical investigation of the flow field around a cylindrical body and the heat
transfer from a cylinder in a cross flow. Some of the related experimental research
work is also discussed. This survey is divided into two categories: stationary
cylinder in a cross flow and oscillating cylinder in a cross flow. In both categories,

research work done with and without heat transfer from the cylinder is presented.

2.1. Stationary Cylinder in a Cross Flow

As there are numerous experimental and numerical studies concerning the
flow past a stationary cylinder, only a few important numerical and experimental

research papers are discussed in this survey.



2.1.1 Without Heat Transfer

One of the first numerical simulations of flow around a circular cylinder was
conducted by Thom (T8) at Reynolds numbers 10 and 20. Later, Takami and
Kelier (T3) solved the steady state vorticity transport equations for the problem of
flow past a circular cylinder at low Reynolds numbers. in their study, the flow was
assumed to be uniform at an infinite distance upstream and the range of Reynolds
number extended from 1 to 60. They also gave correlations for the drag coefficient
and base pressure in terms of Reynolds number. Hamielec and Raal (H2) obtained
numerical solutions using the two-dimensional vorticity transport equations. They
compared the drag coefficients, pressure distributions and vortex dimensions with
available experimental data. Excellent agreement with the experimental results
was obtained up to a Reynolds number of 50.

The problem of unsteady viscous flow past a circular cylinder was
numerically solved by Payne (P1) by integrating the vorticity transport equation. In
his studies, the general features of the flow such as the formation of the eddies
attached to the rear of the cylinder were obtained. The author also concluded that
the drag on the cylinder reduces with time to a value near that for the steady flow.
Jain and Rao (J3) performed computational studies of unsteady flow past a
cylinder using an explicit scheme. They showed the dependence of the flow
pattern, vorticity distribution, pressure distribution and drag on the Reynolds
number and the time. They were not able to show any vortex street formation for

a Reynolds number of 100. Similarly, Son and Hanratty (S5) used an alternating



direction implicit scheme to solve the unsteady vorticity transport equations and did
not show any vortex street formation up to a Reynolds number of 500. The reason
for this is that they did not use any form ot numerical triggering to initiate the
alternate vortex shedding. In this study, the forces on the cylinder due to viscous
drag and due to pressure drag were found to be smaller than the values obtained
in laboratory experiments in which the wake was unsteady.

A comprehensive numerical study of unsteady flow past a cylinder was
conducted by Jordan and Fromm (J5) in which a numerical triggering procedure
was used to initiate the Karman vortex street. The numerical triggering procedure
consisted of rotating the cylinder counterclockwise and then clockwise for a short
period of time. The timing and the amplitude of rotation were adjusted in order to
initiate the vortex street as quickly as possible without causing any long duration
effects. Jordan and Fromm’s study also reveals the oscillatory nature of the drag,
lift and torque that are experienced by the cylinder.

Swanson and Spaulding (S8) were the first to develop a fully three-
dimensional finite difference model simulating the steady and unsteady flow around
a cylinder at a Reynolds number of 100. The three-dimensional case was run with
a uniform vertical shear flow using a primitive variable formulation. In 1980, Loc
(L4) analyzed the growth of the primary and secondary vortices with time for
Reynolds numbers up to 1000. He used the fourth order compact scheme to solve
the Poisson equation of the stream function and the second order alternating

direction implicit scheme to resolve the vorticity transport equation. Later, Loc and



Bouard (L5) numerically studied the early stage of the unsteady viscous flow
around a cylinder at Re = 3000 and Re = 9500. Evolution of the flow structure with
time was studied in detail. A symmetricatl boundary condition was used and no
vortex shedding was generated. Borthwick (B6) compared the alternating direction
implicit (ADI) and directional difference explicit (DDE) numerical schemes for
computing the flow around a cylinder. He concluded that the DDE scheme
produces artificial viscosity, damps the wake and suppresses the vortex shedding.
The ADI scheme was found to be more reliable.

The dynamic characteristics of the pressure and velocity fields of the
unsteady incompressible laminar wake behind a cylinder were investigated by
Braza et al. (B7) using a two-dimensional primitive variable formulation. They used
a finite volume formulation and concluded that phase relations exist between the
pressure and velocity in the wake. Rumsey (R4) computationaily studied the
details of the flow field around a circular cylinder at Re = 1200 using the complete
form of the compressible Navier-Stokes equations. In comparison with the
experimental results, this numerical scheme predicted a more rapid onset of flow
reversal over the cylinder. A direct numerical simulation of unsteady flow past a
cylinder was carried out by Braza and Minh (B8) in the Reynolds number range
of 2000 to 10000 using the 2-D Navier-Stokes equations. In their study, the time
dependent evolution of drag and lift oscillations were computed and analyzed over
large time intervals using a CRAY supercomputer.

In order to understand the shedding patterns of the near-wake vortices

10



behind a cylinder, Sa and Chang (S1) used fourth order Hermitian relations tor the
convection terms and solved the vorticity transport equations. They also developed
a new integral series method for far-field stream function condition on a two-
dimensiona! computational domain.

Wang and Dalton (W1) gave the numerical solutions for impulsively started
and decelerated viscous flow past a cylinder. A two-step, predictor-corrector finite
difference scheme was used to solve the vorticity transport equation. A sharp
increase in the drag coefficient was predicted for the case of a suddenly stopped
flow past a cylinder. In 1993, Green and Gerrard (G1) measured the vorticity in the
near-wake of a cylinder at low Reynolds numbers using the particle streak method.
Their vorticity measurements agree well with the two-dimensional numerical
resuits. However, the lift coefficients were overpredicted by the numerical

simulation.

2.1.2 With Heat Transfer
Many experimental correlations exist relating the Reynolds number, Prandtl
number and the mean Nusselt number for the case of forced and mixed convective
heat transfer from a stationary cylinder. One of the first general correlations for the
forced convective heat transfer from a stationary cylinder in a cross flow given by
Kramers (K4} is
Nu,, = 0.42(Pr)*® + 0.57 (Pr)**® (Re)**. (2.1)

This correlation is valid up to a Reynolds number of 10°. Later, Cole and Roshko

11



(C4) conducted experiments to measure the mean Nusselt number in the low
Reynolds number range (Re < 1) and compared with their anaiytical solutions. This
work also deals with the effect of aspect ratio of the cylinder on the heat transfer
rate from the cylinder.

Hegge Zijnen (H4) assembled the experimental data from various origins
and presented modified correlation formulae for the heat transfer by natural and
by forced convection from horizontal cylinders. A generalized correlation for the
torced convective heat transfer from the cylinder for air and diatomic gases was
given as

Nu,, = 0.38P2 + (0.56Re®® + 0.001Re)Pr*®, (2.2)
This correlation is considered to be better than Kramers' correlation for Reynolds
numbers above 10°. Hegge Zijnen also suggested that a correlation for mixed
convection can be obtained by taking the vectorial sum (square root of the sum of
the squares) of the Nusselt numbers obtained separately from the free convection
and forced convection. Even though the correlation may agree with some of the
experimental results, it is not accepted by the scientific community because the
vectorial summing of the scalar quantities is invalid.

Heat transfer by combined free and forced convection from a heated
cylinder in a transverse air stream was studied experimentally over a wide range
of Grashof and Reynolds numbers by Sharma and Sukhatme (S4). The criteria for
transition from free convection to mixed convection and from mixed convection to

forced convection were also obtained by them. Oosthuizen and Madan (03, 04)
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conducted experiments to determine the effects of flow direction on the mixed
convective heat transfer from cylinders to air. They also gave difterent critesia for
purely forced convection to exist in terms of the ratio Gr/Re” for different flow
directions with respect to the direction of the free convection. In the case of a
cross flow situation, pure forced convection exists it Gr/Re” < 0.53.

Recently, Armaly et. al. (A4) summarized the analytical and experimental
results of several representative studies for the mixed convection in air flow across
horizontal cylinders. They presented simple correlation equations that can be
employed in heat transfer calculations. This work can be considered as a good
source of reference for calculating the heat transfer from cylinders in different flow
configurations such as assisted flow, opposed flow and cross flow. An assisted
flow situation exists when the direction of the flow and the free convection are the
same and the opposed flow situation exists when the direction of the flow is
opposite to the direction of free convection. In the cross flow situation, the direction
of the flow is perpendicular to the direction of free convection.

In the past two decades, several numerical investigations of the unsteady
heat transfer from a stationary circular cylinder have been made. Most of these
were carried out for Reynolds numbers less than 500. Jain and Goe! (J1) carried
out a numerical investigation of unsteady laminar forced convection from a cylinder
at Reynolds numbers of 100 and 200. Finite difference calculations were made to
obtain the temperature field and local Nusselt number around the cylinder at

different times. The computed results were found to be in good agreement with the
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experimental results. Later, Jain and Lohar (J2) conducted a numerical study of
unsteady mixed convective heat transfer from a horizontal cylinder in an assisted
flow situation. They discussed the effects of free convection on the vortex shedding
frequency and the separation points. The time dependent local Nusselt number
distribution was presented at different Reynolds numbers and Grashof numbers.

In a computational study of forced and mixed convection from a cylinder,
Ha Minh et al. {H1) discussed the effects of direction of the flow on the Strouhal
number, total drag and mean Nusselt number. Badr (B1, B2) numerically studied
the mixed convection from a cylinder in cross flow , assisted flow and opposing
flow situations at low Reynolds numbers (Re < 60) and Grashof numbers {Gr <
7200). The procedure that was employed to solve the asymmetrical flow field was
a series-truncation method and a Crank-Nicolson finite difference scheme for
advancing in time. In these studies, the influence of free convection on the vorticity
and pressure distributions on the cylinder was discussed. Moon et al. (M3)
calculated the pressure distributions for combined convection around a cylinder in
an assisted flow configuration. They employed a vorticity-stream function
formulation and for the recovery of pressure distribution, the Poisson equation for
pressure was solved.

Recently, Chun and Boehm (C2) carried out a finite volume calculation of
forced convective heat transfer at various Reynolds numbers as high as 3480
without initiating an alternating vortex street. In their work, a comparison of the

solution techniques using the central difference and power law forms was
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presented for the cases of uniform wall temperature and uniform heat flux
condition on the cylinder surface. The same authors {C3) investigated the effects
of nonuniform thermal boundary conditions on the surface on the torced convection
heat transfer from the cylinder. With the same mean surface temperature,
nonuniform surface temperature cases showed considerable differences in total

heat transfer between one another.

2.2 Oscillating Cylinder in a Cross Flow

In the case of an oscillating cylinder in a cross flow, all of the available

experimental and numerical studies are discussed in the following sections.

2.2.1 Without Heét Transter

There are several reports of experimental investigations of cylinders
oscillating in a direction in-line or transverse to that of the mean flow direction.
Koopmann (K3) was ane of the first to examine the effects of transverse oscillation
of the cylinder on the structure of the wake. This author also established conditions
for which the vortex wake frequency is controlled by the driving frequency of the
cylinder. Later, Tanaka and Takahara (T6) conducted experiments to measure the
time dependent lift force on a transversely oscillating cylinder in a cross flow. It
was concluded that the lift force increased with the amplitude of the cylinder
oscillation. Bublitz (B9) studied the problem of transversely oscillating cylinder in

the Reynolds number range of 10° to 6.7x10° and concluded that the oscillations
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of the cylinder cause a laminar to turbulent transition at lower Reynolds numbers
than that for the cylinder at rest. The stability of a cylinder oscillating in the in-line
and transve:<e directions to that of the mean flow has been studied by Tanida et
al. (T7) by measuring the lift and drag forces in the Reynolds number range of 40
to 10*. Their study concludes that the transverse oscillation of the cylinder may
become unstable when the cylinder motion and the vortex shedding are
synchronized.

Griffin and Ramberg (G3, G4, G5) carried out several experimental studies
to obtain the characteristics of the lock-in phenomenon with cylinder oscillation in
the in-line direction and transverse direction to the incident uniform flow. In the
case of in-line oscillation of the cylinder in the lock-in region, two distinct vortex
wake patterns were observed. The first is a symmetric voitex shedding near the
cylinder in which two vortices are shed during each cycle of the vibration and form
an alternating pattern of vortex pairs downstream. The second pattern is an
alternating street which results from the shedding of a single vortex during each
cycle of cylinder motion. The street geometry in the latter case shares many basic
characteristics with the wake of a transversely oscillating cylinder in a cross flow.

The frequencies of vortex shedding from cylinders forced to oscillate
transversely in low-turbulence uniform and shear flows were investigated by
Stansby (S7). These experiments reveal that the range of cylinder frequency for
locking-on was dependent on the amplitude of the oscillation and Reynoids

number. Vandiver (V1), as well as Vandiver and Jong (V2) conducted experiments
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to investigate the vibration response ot long flexible cylinders subjected to vortex
shedding in a steady, uniform current. In this study, displacement of the cylinder
in the in-line and transverse directions were recorded. It was clearly evident that
the displacement amplitude in the transverse direction was about twice the
displacement amplitude in the in-line direction. Under lock-in conditions, drag
coefficients in excess of 3.0 were measured with Reynolds numbers up to 2.2x10*.

An experimental investigation was perfoarmed by Takahashi et al.{T2) to
study the in-line forces on oscillating cylinders. They presented a correlation tor the
energy dissipation for an oscillating body in a fluid flow in terms of energy
dissipation for a stationary body in a fiuid flow and that for an oscillating body in
a fluid at rest. Extremely detailed experimental studies of the flow structure
resulting from an oscillating cylinder were conducted by Ongoren and Rockwell
(O1, O2). In their work, different modes of vortex shedding from an oscillating
cylinder and the competition between the modes of vortex shedding are discussed.
Moe and Wu (M2) carried out experimental studies of both forced and self excited
vibration of a cylinder in a cross flow. Under the same conditions of oscillation,
their study showed that both the forced and self excited vibration yield
approximately the same variation of lift force with time.

A selective review of vortex induced oscillation of cylinders was given by
Sarpkaya (S2). This review discusses various details of the vortex shedding
mechanism and different characteristics of the lock-in phenomenon. In another

comprehensive review, Bearman (B3) discusses various mathematical models
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developed to predict vortex induced oscillations of cylindricai bodies. Recently,
Griffin and Hall (G2) presented another review of both experimental and
coemputational work done in the area of vortex shedding from oscillating cylinders
in the in-line and transverse directions.

Several finite difference, finite volume and finite element simulations have
been carried out using the concept of a non-inertial frame of reference. Most of the
simulations were carried out using the primitive variables. Flow past an oscillating
cylinder either in the in-line or transverse direction has been experimentally and
numerically studied by several researchers for many years. Hurlbut et al. (H6) were
the first to numerically study the problem of flow past a cylinder with in-line
oscillation. They used the non-inertial coordinate transformation for the governing
equations. In their simulations, the "lock-in" phenomenon was successfully
predicted with the cylinder oscillating in the in-line direction to that of the mean
flow. The same researchers (H7) extended their work for transverse oscillations
of the cylinder in a uniform flow. Their model uses the Marker and Cell (MAC)
method to solve the incompressible continuity and Navier-Stokes equations in
terms of pressure and velocity. Later, Chilukuri {C1) studied the problem of a
transversely oscillating cylinder using the non-inertial coordinate transformation and
Simplified Marker and Cell (SMAC) method to solve the governing equations in
primitive variable form. At large vibration amplitudes, amplification of the mean
drag and reduction of mean lift were numerically predicted with transverse

oscillation.
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Tamura et al. (T4, T5) used a generalized coordinate transformation to
study the forced and vortex induced vibration of a cylinder in the Reynolds number
range of 3x10° to 6x10°. The MAC method was used to solve the governing
equations in the primitive variable form in conjunction with a third order upwinding
scheme for the convective terms. The drag in the critical regime (Re > 10°) was
predicted to be considerably smaller than in the subcritical regime (Re <= 10°).
Lecointe and Piquet (L1) carried out a numerical study of flow structure in the
wake of an oscillating cylinder in the in-line and transverse directions using a
stream function and vorticity formulation. A similar formulation and numerical
approach is used in the present investigation. In their study, both asymmetric and
symmetric vortex shedding was predicted in the case of in-line osciliation under
different values of oscillation frequency. A numerical solution for the vortex induced
vibration of a cylinder in a cross flow was given by Berger and Rokni (B5). The
coupled Navier-Stokes and rigid body motion equations were solved to obtain the
time evolution of the displacement of the cylinder in the in-line and transverse
directions, as well as the drag and lift forces. Triantafyllou and Karniadakis (T9)
calculated the fluid forces on a cylinder oscillating transversely to a uniform flow
during an amplitude-modulated {"beating"} motion and compared with the
numerical resuits obtained with the harmonic oscillation of the cylinder. The
simulation was carried out using the spectral element method. The numerical
results show that the beating motion of the cylinder results in a reduction of the

mean drag and an increase in the fluctuating drag, compared to the values
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obtained from the harmonically oscillating cylinders.

A finite element solution for 2-D flow over a transversely oscillating cylinder
was obtained by Anagnostopoulos (A1} using the vorticity-stream function
formulation. in this study, the mesh system was translated with the cylinder at
gach time step and the field was interpolated to the new nodal points. A similar
method of translating the mesh system was used by Mittal and Tezduyar (M1} in
order to solve the problems of both forced and vortex induced oscillation of the
cylinder in a cross flow. The computations were based on the stabilized space-time
finite element formulation. A direct finite element simulation was carried out by Li
et al. (L3) to study the response of an oscillating cylinder in uniform flow and in the
wake of an upstream cylinder. For a cylinder oscillating in the wake of an upstream
cylinder, the flow structure was strongly influenced by the distance between the
two cylinders.

Rao et al. (R1) performed a numerical simulation of flow around a
transversely and longitudinally osciliating cylinder in a cross flow at Reynolds
numbers of 4x10° and 4x10* . A moving grid system based on a time dependent
coordinate transformation was employed to solve the governing equations. Detailed

frequency analyses of the drag and lift forces were presented in their study.

2.2.2 With Heat Transfer
Many experimental investigations have shown that oscillation of the cylinder

in a still fluid medium results in an increased heat transfer rate.  In the case of
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an oscillating cylinder in a cross flow, tewer experimental studies have been
reported in the literature. Hegge Zijnen (H5) observed a decrease in the heat
transfer rate at a Reynolds number of 5 with the cylinder undergoing oscillation in
the direction in-line to that of the mean flow. Hegge Zijnen presented an equation
ot a general form relating the Nu,, free stream velocity and the velocity amplitudes
in the in-line and transverse directions. This relation is modified to fit Kramers'
correlation and is presented as follows

Nu, = 0.42 + 0.57 (1- 1/16A2 + 1/8A 2)Re'?. (2.3)
This equation was validated for the case of in-line oscillation of the cylinder for Re
<5and A, <0.5.

Anantanarayanan and Ramachandran (A2) investigated the influence of
vibration on heat transfer from electrically heated Nichrome wire to an air stream
flowing parallel to the wire. Both frequency and amplitude of vibration increased
the heat transfer coefficient by as much as 130 percent. Later, Sreenivasan and
Ramachandran (S6) experimentally studied the effects of the oscillation of a
cylinder in the direction transverse to that of the air stream. No appreciable change
in the heat transfer coefficient was observed with a maximum vibrational velocity
amplitude of 0.2 in the Reynolds number range of 2500 to 15000.

The effect of oscillation of a cylinder in the in-line direction on the
instantaneous local heat transfer coefficient was investigated by Mori and Tokuda
(M4) with the use of an optical method. At smaller velocity amplitudes of

oscillation, it was concluded that the distribution of the Nusselt number in the
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circumferential direction is almost similar to that in the upstream part of a
stationary cylinder in a cross flow. Other investigators such as Kezios and
Prasanna (K1) reported a 20% increase in the average heat transfer coefficient
with a transversely oscillating cylinder. At a Reynolds number of 3500, Saxena and
Laird (S3) observed that some local heat transfer coefficients were up to 60%
larger with a vertical cylinder undergoing forced oscillations in the direction
transverse to the mean water flow. Due to the larger flow disturbances that result
from the wake capture, the largest increases in local heat transfer coefficient
occurred on the downstream side of the cylinder. LLeung et al. (L2) observed an
enhanced heat transfer rate for Reynolds numbers iess than about 15000 with in-
line oscillation.

In order to overcome the directional ambiguity associated with the hot-wire
anemometers, Fernandez (F1) and Heckadon and Wong (H3) investigated the
response of oscillating hot-wire anemometers. In these studies, the wire was
oscillated in a frequency range of 50-90 Hz and at different velocity amplitudes of
oscillation. The instantaneous hot-wire voltage responses were recorded at very
low Reynolds numbers (Re < 1.0). These results are compared with the
computational results in the present investigation.

At Reynolds numbers 1400, 2100 and 3500, Takahashi and Endoh (T1)
experimentally investigated the effects of in-line oscillation of the cylinder on the
heat transfer rate at various vibrational Reynolds numbers. In this study, it was

concluded that the heat transfer rate increased during the in-line oscillation above
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certain velocity amplitude. In the literature, no conclusive experimental results have
been reported regarding the effects that an oscillating cylinder has on the forced
or mixed convective heat transter.

To the candidate's knowledge, no numerical simulation has been reported
to study the effects of oscillation of the cylinder on the forced or the mixed
convective heat transfer. It was also found that no numerical investigation has
been reported for the case of flow past a cylinder with combined oscillation, i.e.,

the cylinder oscillating in the in-line and transverse directions simultaneously.
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Chapter il

FORMULATION

The physical system consists of a long horizontal cylinder oscillating in a
cross flow of air. The unsteady flow past an oscillating cylinder can be treated as
a two-dimensional problem provided the length to diameter ratio of the cylinder
is very large. To formulate the problem it is assumed that: (a) the fluid motion and
temperature distribution are two-dimensional (2-D), (b) the fluid is Newtonian and
incompressible, (c) frictional heating is negligible, {d) fluid properties are constant
except for the density variation with temperature, (e) the laminar flow is uniform
at an infinite distance upstream, and (f) the surface temperature of the cylinder is

uniform and higher than the ambient temperature.

3.1 Non-inertial Coordinate Transformation

In general, the boundaries of the cylinder travelling through a finite
difference grid system do not coincide with the computational cell boundaries at
each time step. An alignment of the solid boundary and the computational cells is
necessary to allow for the proper specification of no-slip wall boundary conditions.
One method to circumvent this problem is to translate the grid system at each time
step and interpolate the dependent variables in the old grid locations to new

translated grid locations. This method is computationally very expensive. An easier
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way of accomplishing the same objective is to use a non-inertial coordinate

transformation.

In this method, the grid system is attached to the oscillating cylinder. The
effect of this attached grid system is'the addition of a relative acceleration term in
the Navier-Stokes equations. This can be demonstrated by considering a simple

form of the x-momentum equation as follows:

Du’
= =f (3.1)
P Dt X

where u’ is the absolute velocity of the fluid in the x-direction. The above equation
is a statement of Newton's second law and is valid only when Du’/Dt is the
absolute acceleration with respect to an inertial frame of reference. Therefore, in
a non-inertial coordinate system, the velocity term must include the velocity of the
coordinate system relative to an inertial reference frame. Equation (3.1) becomes

D(u+u)

=f, (3.2)
Dt

P

where u is the velocity of the fluid relative to the non-inertial reference frame and
U, is the absolute velocity of the non-inertial reference frame. If the velocity of the

reference frame is only time dependent, Equation (3.2) becomes

p9£+_d._u‘3=f (3.3)
Dt dt ¥

Thus the result of attaching the computational grid system to the oscillating
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cylinder is the addition of a simple acceleration term which is constant over the
field at each time step. Using the concept of the non-inertial transformation, the

governing equations for the present problem are presented in the following section.

3.2 Governing Equations

The isothermal cylinder is forced to oscillate sinusoidally with velocities, A’,
sin(2r{t- /) and A’, sinf2rft- t /4, - ¢) in the in-line and transverse directions
respectively, relative to the upstream uniform velocity, U,, as indicated in figure
3.1. A’, and A’, are the velocity amplitudes of the oscillating cylinder in x” and y’
directions respectively. The phase difference, ¢, between the in-line and transverse
oscillations is set equal to zero in this study. The time delay, t,, is the time allowed
for the development of a stable alternating vortex street in the wake of a stationary

cylinder.

The governing equations for a two-dimensional flow problem are the
continuity equation, two momentum component equations and the energy equation.
In order to incorporate buoyancy forces due to the temperature difference between
the cylinder surface and the fluid in the free stream, the Boussinesq approximation
is used in the momentum equatioris. With the Boussinesq approximation, the
density of the fiuid is taken as being temperatire dependent only in the buoyancy

force term. Thus, within the Boussinesg approximation, the four governing
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equations (one continuity, two momentum and one energy) in Cartesian
coordinates are given below.

Continuity Equation

Ju | dv_ 0 (3.4)
ox  dy
Momentum Equations
In the x - direction
Du | a,, = 9P ey (3.5)
Dt p dx
In the y - direction
Dv / 1adp
—_— * 8y = ——e + VW Ry o+ gi(T-T, 3.6
Dt * ¥ p ay * gl( ...) ( )
Energy Equation
DT aver (3.7)
Dt

where

D _3a,,d.,d

= o+ e V—

Dt ot ax Ay

Vz_az+az

It is convenient to transform the above governing equations into polar coordinates

(r,8,t) as given below.
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Continuity Equation

v Mo (3.8)
ar A0
Momentum Equations
In the r - direction
D 2
_v’ o + [aLcosB + acysme] ap
Dt r p or
(3.9)
v. 20V, .
+ |V - L -2+ gB(T-T.)sin®
[ "R P BBJ oR(T-1.)
In the 0 - direction
Dv, vy, 1dp
_ + [-aLsin® + a,cosd
Dt r -2 yosd) = pra
(3.10)
v, 2 dv,
iVay - 2+« 2 1 T-T )cosd
+ [ # ’2 ’2 e ] gB( )
Energy Equation
bT _aver (3.11)
Dt

where

o % T T
ve = _.a_f_+li+_1_az
ar ror foe?
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Aithough it is possible to obtain numerical solutions for the primitive variables, it
is advantageous to solve this problem using the vorticity-stream funclion
formulation. The use of the vorticity-stream function formulation eliminates the

pressure variable and hence reduces the number of equations to be sclved by

one.

3.3 Vorticity - Stream Function Formulation

The relative radial and tangential velocities are related to the stream

function as follows

= lﬂ ' V" = —ﬂ_ (312)
r r 08 ar
The vorticity is defined as
o = 12N av, (3.13)
ri. Jdr L

By introducing the stream function and vorticity into the continuity and
momentum equations, they can be simplified and reduced to two equations: the
vorticity transport eguation and a Poisson equation for the stream function. By
differentiating equation (3.9) with respect to 8 and equation (3.10) with respect to
r, subtracting one from another and subsequently using the continuity equation

(3.8), the vorticity transport equation is obtained as given below.
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Vorticity Transport Equation

2‘*('2 ™ -1 _r—) (l)a_w - —J— (I)ﬂ =y V 20)
ot rlan 0o A0l dr

(3.14)
- gB ﬂcose - l.‘zzsin&) .
ar rdg

where

V2=£+1a+la_2

IF  ror  Fop?

The definition of vorticity yields the Poisson equation for the stream function,
w = -Viy. (3.15)

With the use of a non-inertial frame of reference the vorticity transport equation
retains the same form for both the oscillating and stationary cylinder problem. It is
to be noticed that both the pressure term and the additional acceleration terms are
eliminated in the vorticity transport equation. The energy equation in the non-
inertial frame of reference attached to the cylinder is given as follows:

Energy Equation

AT, NI[y9W | _ d[1o¥ ) - o v 2T (3.16)
ot rladrl 98 ael  Jr

High vorticity and temperature gradients exist near the surface of the cylinder. In
order to achieve a more accurate numerical solution, it is essential to have a finer
grid near the cylinder. This can be accomplished by the use of the log-polar co-

ordinate transformation given by:
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R=e% and 0 =an (3.17)
where & and n are the transformed coordinates and "a" is the transformation
parameter which is set equal to rn for this study. This log-polar coordinate

transformation allows us to have a uniform grid in a transformed rectangular

domain. The nondimensional variables are defined as:

t=i&,\l'=l,sz=£,<b=T_T"‘,V=_v'_,vu=_i,
R RU. U. T.-T. " U u.
2RU T. - T)D?
Re = - ] Gr = gB( S "') 1 Pr = l 1
v v2 o
/ ‘al
A A
AX = —{ ' A = —}—, ) Fx = 2R 1 F, = 2R
U YU, tu, v LU,

After applying the log-polar coordinate transformation and nondimensionalizing, the

vorticity transport and energy equations are

g(g)a)_Q - i{ga_\'iJ - _Ej_[gﬂ] -2 v
dt

o5 ) am{ ) Re

(3.18)
+ (58 o Spcostan) - Fesint) |
% an
g(g)Q = -V 2\[} (3'19)
oD A V) dfp ). 2 2 3.20
9&)~- a—g["’ﬁ} an(baa] ey %20
where g) = a’e™
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and

yeo & &

G

It is to be noted that both the vorticity equation (3.18) and the energy equation
(3.20) are parabolic in time and the stream function equation (3.19) is elliptic in
space. The stream function equation is coupled with both the vorticity and energy
equations. The vorticity and the energy equations are coupled through the

buoyancy force. Furthermore, the vorticity and the energy equation are nonlinear

due to the convective terms.

The nondimensional relative velocity components are given by

U

Vie —— V= — . (3.21)
Vo(E) vo(&)
where
v L, Y
YtV E

The main goal of the present problem is to seek Q(&,n,7), ®Em,7) and ¥(En,7)
which satisfy the three partial differential equations (3.18), (3.19) and (3.20), as

well as the following initial and boundary conditions.
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3.4 Initial and Boundary Conditions

Initially (at t < 0), the vorticity, stream function and temperature fields are
zero everywhere in the computational domain. The use of a non-inertial frame of
reference adds unsteady components to the boundary velocities. To an observer
attached to the cylinder, the fluid velocity at the cylinder surface is zero from the
no-slip condition. The velocity component in the x-direction at the outer boundary
is the sum of the free stream velocity and the negative of the instantaneous
cylinder velocity in the x-direction. The velocity component in the y-direction at the
outer boundary is the negative of the cylinder velocity in the y-direction. The
upstream relative free stream velocities are as follows

u=U, - A, sin(2r(t-t)/) and v = -A" sin(2r(t-t )/t ). {3.22)
In polar coordinates, the radial and tangential far-field velocity boundary conditions
are obtained by modifying the potential flow solution of Janna (J4):

v [{U. - Asin@r(t-t )/t )Y + (A sin(2r(t-t)t,-6))°)" (1-R¥P)cos(® - )  (3.23)

Vo= -[{U.. - A’,sin(2r(t-t, )} + (A, sin(2r(t-t)t -0))]"™ (1+R¥P)sin(@ - &),

[ -Aysin(2n(t-t) /t, - ¢ ) .
U, - Asin(2n(t-t) /t )

where & = tan’

A constant temperature (T,) boundary condition is assumed on the cylinder
surface. These boundary conditions are interpreted in terms of non-dimensicnal

stream function, vorticity and temperature in the following sections.
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3.4.1 Boundary Condition on the Cylinder Surface

The boundary conditions for the nondimensional stream function on the

cylinder surface is given by

W oo %é_ -0 on E=0. (3.24)

{

These conditions correspond to the no-slip boundary condition on the cylinder
surface.
The vorticity boundary condition at the cylinder surface is given by applying

equation (3.19) locally as given below.

Q = - vay 3.25
= 5@, Ve (5.29)

The subscript "o" represents a point on the surface (§ = 0}. On the surface of the
cylinder

g(€), = @°

and

a_U =0, hence i =
arl 0 ana (4]

Now, the vorticity at the surface of the cylinder can be written as
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(@), = - [”] (3.26)

a®| og?
The isothermal boundary condition on the cylinder surface is represented as

d=1onf=0. (3.27)

3.4.2 Far-field Boundary Conditions
The time-dependent far-field boundary condition for the stream function is

obtained by modifying the potential flow solution of Janna (J4):

2
+

V= 2\/[1 -Asin(r(t-, )F,)] [A,,Sin(rt(‘c-td )Fy—tb)]2 sinh(at_)sin(an -t) (3.28)

where

. tan“[_A” sin(n(‘"c—td )F, - qy)J .
1 - A, sin(r(t-1, )F,)

The far-field vorticity boundary conditions (L5) are

0 a. v d (L ow 1 3
O, 90T 2t ) =0, 0 2.2 2  (3.29
{g(é) > ag( anj an[ ag ]L <M<z <N < (3.29)

and

| =
IA
=
IN

n| w
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Similarly, the far-field boundary conditions for the temperature are taken to be

NI AN 13
— e b - | =0, O<n<r, Z<n<2, (3.30
[g(g) o ag[ anJ an[ o H <M<z <@ (830

and

db =0, —S ) S=

The time-dependent downstream boundary conditions for the vorticity and the
temperature are called the "radiant-Sommerfeld like" conditions where the diffusion
of vorticity and temperature are neglected. Upstream of the cylinder, the irrotational

boundary condition is always valid.
In the present computational investigation, the governing equations (3.18),

(3.19) and (3.20) are to be solved with the boundary conditions given by equations

(3.24), (3.26), (3.27), (3.28), (3.29) and (3.30).
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Chapter IV

NUMERICAL PROCEDURE

The three governing equations to be solved in this study are the vorticity
transport equation, the stream function equation and the energy equation. Figure
4.1 shows the computational domain in the (&, n) coordinate system. The
governing equations can be discretized in space using a central differencing
scheme as follows:

Vorticity transport equation

9(&) 9 Ui = Ui | Vi By — Vi Ry
> 2AE 24n
. 2 (Qr’,jd - 2Qr'.i * Qr'.f-1 + Qf’"-f " 29"-1' M 'Q"“-l' (4-1)
Rel AE? An?
Gr ((bijvl-q)ijﬂ (bi'1f_(bi-1i i
+ , - eos(an) - Y ___"Usin(an,
a(s) 2Re?| 208 (an) o (an;)

Stream function equation

- 2‘{’”. + W,

=1

. Wy - 2%, + Yoy, (4.2}
Aga ATIZ

- Q(E-'j)gr‘.j = [‘Pi.m

Energy equation
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g(“;)aq)’-f = - U'-f'l(hw'i B U'-J l(bul ; V"‘.f(hf'l.! ' V- 'I.u(h- V.t
Tt 2A8 2.n

N 2 (l)u'l - 2“’:,, + (l)w1 X (l)“” - 2([)” + y
Re P AE? A’

(4.3)

The subscripts i,j represent the (i,j) mesh point in the (n,S) coordinates. In order
to solve these finite difference equations in time and space, an appropriate

numerical method must be selected.

4.1 Numerical Methods

The vorticity transport and the energy equations are solved numerically
using the alternating direction implicit (ADI) scheme. Borthwick (B6) showed that
the ADI scheme is more reliable and more accurate than the upwind directional
difference explicit scheme. The time derivative is approximated using a forward
difference scheme. The vorticity transport equation in an ADI two step finite

difference form is given as follows:

39



2 .
gi&) n-1/2.

AT L

(Vanh'z)

\
- (VIR J 2l

ne{/2
g 29,‘,,‘ * ‘Qi-t.j
2An

Re{ An?

_296) 0 [(u"n")u., - (unn"),,,-1] 2f@. - 20, n,..,--l)"}

AT b 2AE Ae| AE?
. Gr (((Dm)u-t (D) 1 - (") _((DM)""J'::' 4
g(ﬁr) 2Ftezk 2AE cos(an;} oAn in(an) | (4.4)

\
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AT b 2AF ReL AE? )
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The superscript “n" represents the nth time step. Similarly, the energy equation
can be written in the finite difference form by replacing the dependent variable with

® and the Reynolds number with the product of Reynolds number and Prandti

number. The ADI two step finite difference form of the energy equation is as

foliows:
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At every time step, the stream function equation is solved by the iteration
technique of successive line over-relaxation (SLOR). The appropriate finite

difference form of the stream function equation is given by

m m+1

* *
1 gt (1,1 ), i | P V| ne
A.qz h AT‘Z AE"Z ﬁT]z A§2 f 1)

b4

(4.8)

m+1 _gm * M
Yo it (‘*'i.i “’f.f}

where A is the relaxation parameter and the superscripts *, m and (m+1) represent
the iteration levels. An optimum relaxation parameter, given by Son and Hanratty

[S5], is used to enhance the convergence rate and given as follows:
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where | and J represent the number of grid points in the n and ¢ directions,

respectively.

The velocities in the convective terms are calculated using the fourth order

accurate Hermitian relations and are given by

3
U, +4U; + U, = A—n(\]jm,f - i) (4.10)
V. +4V + V. = Sw.  —w )
i1 if ife1 A_E_, i+ ij-1 (4_11)

The Hermitian relations have been used successfully by Loc and Bouard (L5) up
to a Reynolds number of 9500. In order to solve the governing equations in finite
difference form, appropriate boundary conditions must be imposed on the

computational domain.

4.2 Boundary Conditions

On the boundaries n = 0 and n = 2, a cyclic boundary condition is imposed on the
dependent variables. This implies that both the values and the spatial derivatives

in the ny direction for the vorticity, stream function and temperature are the same
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on these two boundaries. The vorticity boundary condition on the cylinder (% ~ 0)
can be approximated numerically in different ways. In this study, a second order

accurate cubic polynomial approximation is used and is given by

g =] [8‘1‘“ - "’,_-.‘W (4.12)

0 a’ 208"

The vorticity on the cylinder must be calculated at every time step. The stream
function on the cylinder (5 = 0) is taken to be zero. The nondimensional
temperature on the cylinder is taken as unity. At every time step, the far-field (§ =
E..) conditions for the vorticity, stream function and the temperature are calculated
using equations (3.28) , (3.29) and (3.30) respectively. The procecure for solving
the governing equations with these boundary conditions is explained in the

following section.

4.3 Solution Procedure

The solution procedure consisted of the following steps.
1. Att =0, the stream function values were calculated assuming zero vorticity
in the entire computational domain (i.e., obtained the solution of the

homogenous form of equation (3.19) using the SLOR scheme).

2. A zero time step value of the wall vorticity was calculated using equation
(4.12).
3. The velocities U and V were computed using the Hermitian relations given
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10.

in equations (4.10), (4.11).

At i = at/2, the temperature field was calculated using equation {4.6) and a
periodic tridiagonal solver.

At t = at, the temperature field was calculated using equation (4.7) and a
tridiagonat solver.

At t = al/2, the vorticity field was calculated using equation (4.4) and a
periodic tridiagonal solver.

At t = at, the vorticity field was calculated using equation (4.5) and a
tridiagonal solver.

At t = at, the new stream function values were obtained iteratively using
equation (4.8).

At t = at, the new values for wall vorticity were calculated using equation
(4.12).

Steps 3 to 9 were repeated for the desired time periods of oscillation of the

cylinder.

In the initia! stage of simulation, the cylinder was rotated counterclockwise and

then clockwise for a small duration of time with a consiant angular velocity. This

numerical triggering procedure was required to initiate the alternating vortex street

and is similar to the procedure used by Jordan and Fromm (J5). A non-

dimensional time of 50 (1) was allowed for the development of an alternating

vortex street. The numerical solution obtained is first order accurate in time and

second order accurate in space.
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Chapter V
RESULTS AND DISCUSSION

Numerica! results for the problem of heat transfer from an oscillating cylinder
in a cross flow are presented in the following sections. The first part of the
chapter is concerned with the influence of the grid size, location of the far-field
boundary and the magnitude of the numerical triggering on the numerical solution.
A subsequent section deals with the validation of the present formulation with other
available resuits. Following that section, the results obtained for the present
problem of heat transfer from both stationary and oscillating cylinder in a cross flow
are presented. In the last section, numerical results for the case of an oscillating

hot-wire anz=mometer are compared with the available experimental resulits.

The heat transfer between the cylinder and the surrounding stream of fluid
is calculated in the form of a nondimensional number, the Nusselt number. The

local Nusselt number is calculated using the following equation.

Nu(®) = ‘_:(%%’.1 (5.1)

The average Nusselt number represents the net heat transfer from the cylinder

surface to the fluid at any instant of time and is expressed as follows.
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_ 1 en
Nu,, = 5= h Nu(0)av (5.2)

In order to compare with the experimental results, it is essential to calculate the
mean Nusselt number over a period of time. In this study, mean Nusselt number

was calculated in any cycle of cylinder oscillation using the following expression.

Num = 'C1 J.r."h Nu;]vg(r)dr (5.3)

W0
cycle

5.1 Dependency Tests

In order to reduce the influence of the grid size, location of the far-field
boundary and the magnitude of numerical triggering on the time history of Nu,,,,
and the mean Nusselt number, several dependency tests were conducted. These
tests were carried out at a Reynolds number of 200 as most of the simulations in

this study were at that Reynolds number.

5.1.1 Grid Dependency

Numerical simulations were conducted with grid sizes 101x81, 121x101 and
141x121 while keeping the far-field boundary location at € = 1.0. Figure 5.1 shows
the time dependent Nu,,, with different grid sizes. The mean Nusselt numbers are
listed in Table 5.1 for different grid sizes. The 121x101 and the 141x121 grids
produce approximately the same time histories of Nu,,, and equal values of Nu,,.

Hence, the grid size 121x101 was selected.
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5.1.2 Location of the Far-field Boundary

The far-field boundary location was varied between £=08and§ = 1.2 .
The number of grids were proportionately increased in the & direction (af =
constant). The influence of the location of the far-field boundary on the average
Nusselt number is shown in figure 5.2, The mean Nusselt numbers are listed in
table 5.1 at different far-field boundary locations. 1t can be observed that the time
history of Nu,,, with § = 1 and 1.2 have approximately the same mean value (Nu,,)
and ampilitude of variation. The phasg difference between the Nu,, variations may
be attributed to the difference in the onset of vortex shedding with different far-field

boundary locations. The far-field boundary location was chosen to be 1.0.

5.1.3 Magnitude of Numerical Triggering

The circumferential velocity of the cylinder in the log-polar coordinates (V)
is taken to be the numerical triggering parameter. The numerical simulations were
carried out with V values of 3, 5 and 10 as the magnitude of the numerical
triggering. Figure 5.3 shows the influence of these parameters on the time
dependent Nu,,.. The Nu, values are listed in table 5.1 for different magnitudes
of V. It can be concluded that the magnitude of numerical triggering influences the
results only in the early stages of numerical simulation. After reaching the stage

of alternate vortex shedding (t = 50}, numerical triggering does not have any
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significant influence on the time history of Nu,, or on the Nu,,. The magnitude of

the numerical triggering was chosen to be 3.

5.2 Validation

In order to validate the numer.ical model, simulations were run at Reynolds
numbers of 5, 60, 100, 200, 500 and 1000. The Prandtl number was assumed to
be equal to 0.707. The predicted mean Nusselt numbers, Strouhal numbers and
drag coefficients are compared with the experimental values given by Kramers

(K4) , Roshko (R3) ar.d Tanida et al. (T7) in the following paragraphs.

Figure 5.4 shows the Nu,, variation with Reynolds number. The computed
values of Nu, agree well with the experimental results of Kramers (K4). At Re =
200, the error between the computed and experimental results is about -1.45%.
The variation of the Strouhal number with the Reynolds number is shown in figure
5.5. The Strouhal numbers are obtained by taking the FFT of the lift variation and
choosing the frequency with the iargest amplitude. The computed values of
Strouhal number are in good agreement with the experimental values (R3) up to
a Reynolds number of 200. At Reynolds numbers of 500 and 1000, the Strouhal
numbers are significantly overpredicted by the present computations. Figure 5.6
shows the variation of Cd with the Reynuids number. The predicted values of drag
coefficients are in good agreement with the experimental values of Tanida et al.

(T7) up to a Reynolds number of 500. At a Reynolds number of 1000, a large
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discrepancy exists between the computed Cd and the measured value of Cd.
Similar discrepancies were observed by other computational investigations both in
the drag coefficient and the Strouhal number at higher Reynolds numbers. These
discrepancies may be due to insufficient grid resolution and the three-dimensional
nature of vortex shedding with finite length cylinders at high Reynolds numbers.
Hence, the present numerical model can be considered valid up to a Reynolds

number of 200.

In the following sections, the results are given in the form of local Nusselt
number distribution on the cylinder, average Nusselt number, amplitude of the
Nu,,, » mean Nusselt number and power spectrum of the average Nusselt number
at various conditions of cylinder oscillation. The time histories of the Nu,,, are
shown for F, = 2F , i.e., the forcing frequency in the in-line direction which is equal
to twice the Strouhal frequency and F, = F,, i.e., the forcing frequency in the
transverse direction which is equal to the Strouhal frequency. In the case of
combined osciliation, the time histories of the Nu,, are shown for F, =2F and F,
= F,. The power spectrum of the Nu,,, is obtained by taking the FFT of the Nu,,,
variation minus the mean Nusselt number. Forced and mixed convective heat
transfer are represented by Gr/Re® = 0 and 1 respectively. Unless specified, all the
isothermal contour maps presented in the following sections are with a contour
interval of 0,05 and with the minimum and maximum levels of contour as 0.05 and

1.0 respectively.
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5.3 Stationary Cvlinder in a Cross Flow

The nondimensioral natural shedding frequency (F,) was determined from
the present investigation to be equal to 0.2 which agrees exactly with the
computed value by Lecointe and Piquet (L1). The corresponding nondimensional
natural vortex shedding period (t,) is 10. Figures 5.7 and 5.8 show the time
dependent average Nusselt number (Nu,,) and the power spectra of the Nu,,,
respectively for Gr/Re? = 0 and 1. With forced convection (Gr/Re” = 0), the Nu,,,
was found to oscillate at twice the natural shedding frequency (2F,) about a mean
value of 7.47. This may be explained by the shedding of two vortices (one from the
upper and the other from the lower half of the cylinder) in a complete vortex
shedding cycle. In the case of mixed convection (Gr/Re® = 1), the Nu,,, was found
to be oscillating at the natural shedding frequency (F,) about a mean value of 7.61.
This behaviour may be attributed to the strong presence of free convection near
the cylinder surface. The amplitude of oscillation of the Nu,,, with forced

convection was smaller than the case of mixed convection.

Figures 5.9 and 5.10 show the local Nusselt number distributions on the
cylinder at different T in a complete vortex shedding cycle at Gr/Re? = 0 and 1
respectively. It can be observed that the local Nusselt number distribution varies
only on the downstream side of the cylinder where the vortices are shed

aiternately. In both the cases of forced convection and mixed convection, the
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maximum heat transfer rate occurs at the upstream stagnation point. In the case
of forced convection, minimum heat transfer occurs between the separation points
and downstream stagnation point (8 ~ 51° and 309°). With mixed convection, the
location of minimum heat transfer al.ways lies on the top half of the cylinder (0 =

51°).

Figures 5.11 , 5.12 and 5.13 show the contour maps of streamline, vorticity
and isotherms respectively at the same instant of time (t = 130.0) for the case of
forced convection. The streamline contour map clearly depicts the alternating
vortex street in the wake and a vortex being shed from the top half of the cylinder.
The vorticity generated on the cylinder surface is being convected and then
diffused in the wake. As hoth vorticity and thermal energy is being transported by
the flow in the wake, the contour maps of vorticity and isotherms have some
similar features. A high concentration of vorticity and temperatuie contours exist
near the cylinder surface. Similarly, figures 5.14 , 5.15 and 5.16 show the contour
maps of streamline, vorticity and isotherms respectively at the same instant of time

(t = 130.0) for the case of mixed convection.

5.4 Oscillating Cylinder in a Cross Flow

In the following sections, the numerical results obtained at a Reynolds

number of 200 with the cylinder oscillating in the in-line direction (a, = 0.1D, 0.2D
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and 0.4D), transverse direction (a, = 0.2D, 0.4D and 0.8D) and combined in-line
and transverse directions (a, = 0.2D, a, = 0.2D, 0.4D and 0.8D) are discussed.
Figure 5.17 shows a schematic diagram of the sign conventions used with the

displacement of the cylinder in the in-line and transverse directions.
5.4.1 In-line Oscillation

The cylinder was forced to oscillate in the in-line direction with a frequency
parameter F, = 2F, and with position amplitudes (a,) of 0.1D, 0.2D and 0.4D. The
equivalent velocity amplitudes are 6.25, 0.5 and 1.0 respectively. The selected
frequency parameter corresponds to the mid-point lock-in frequency. The time
variation of the position of the cylinder (x. /D) and relative free stream velocity (U

= 1 - Asin{rF 1)} are shown in figure 5.18 for reference.

Figures 5.19 and 5.20 show the time histories of Nu,,, at Gr/Re* =0 and 1
respectively. The corresponding Nu,,, variations in a cycle of oscillation are shown
in figures 5.21 and 5.22. The average Nusselt number reaches a maximum and
a minimum value in a full cycle of forced oscillation. The maximum values of Nu,,,
in all oscillation cycles are attained when the cylinder is moving in the opposite
direction to that of the free stream flow (U.) and is slightly after the zero position
of the cylinder (1" = 0.8). The minimum value of Nu,,, occurs slightly after the point

of minimum relative velocity (1 = 0.25) for low values of amplitudes of oscillation
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and moves later in the cycle as the amplitude of oscillation increases. The reason
for the minimum value of Nu,_,, to occur later than the point of minimum relative
velocity is that the fluid surrounding the cylinder in the downstream location is
warmer than the upstream location. The power spectra of the Nu,,, at Gr/Re® =
0 and 1 are shown in figures 5.23 and 5.24 respectively. Both with forced and
mixed convection, the average Nussélt number oscillates at the forcing frequency
of oscillation. With a, = 0.4D, the higher harmonic of the forcing frequency also
exists. At Gr/Re® = 1, a "sub" harmonic exists for a, = 0.1D which is equal to half

of the forcing frequency of oscillation.

Figures 5.25 and 5.26 show variation of the amplitude of Nu,, and the
mean Nusselt number (Nu_) with the position amplitudes of oscillation. Both the

amplitude of Nu,, and the Nu, increase with the increasing a,. With forced

avg
convection and a, = 0.4D , an increase of 16.44% in Nu_ over the case of
stationary cylinder is predicted. in the case of mixed convection, an increase of

14.65% in Nu,, is computed with a, = 0.4D.

With Gr/Re? = 0, figures 5.27 , 5.28 and 5.29 show the local Nusselt number
distribution on the cylinder at different times in a fuil cycle of oscillation (0 < t <
1) at position amplitudes a, = 0.1D, 0.2D and 0.4D respectively. Similarly, figures
5.30, 5.31 and 5.32 show the local Nusselt number distributions with Gr/Re® = 1.0.

From these diagrams, the location and magnitudes of the maximum heat transfer
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rate at different instants of time during one complete cycle of oscillation are taken
and listed in tables 5.2 and 5.3 for the case of forced convection and mixed
convection respectively. On the upstream side of the cylinder (90° < © < 270", the
Nusselt number distributions at T = 0 and t = 1 are approximately the same. With
a, = 0.1D, the maximum heat transfer rate always occurs near the upstream
stagnation point (6 = 180°). However, with a, = 0.2D and 0.4D, the location of the
maximum local Nusselt number is near the downstream stagnation point when the
cylinder is moving in the same direction as that of the flow ( i.e., at T = 0.25). With
mixed convection, the local Nusselt number distribution is more asymmetric than

with forced convection alone.

Figures 5.33 to 5.37 show the contour maps of the isolherms for the case
of forced convection at different stages in a full cycle of oscillation (a, = 0.2D). The
isothermal contours do not repeat after one cycle as seen from figures 5.33 and
5.37. The reason is that the period of oscillation is half of the natural voriex
shedding period. Figures 5.38 to 5.42 show the isothermal contours with mixed
convection (a, = 0.2D). Approximately symmetric isothermal contours exist near
the cylinder. The cylinder motion in the in-line direction produces symmetrical
perturbations which, under certain conditions, dominate over the naturally occurring
antisymmetric mode of vortex shedding. This has also been reported by Ongoren
and Rockwell (O1, O2). A high cqncentration of isothermal contours can be

observed near the upstream and downstream stagnation points,
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5.4.2 Transverse Oscillation

The cylinder was forced to oscillate in the transverse direction with a
frequency parameter F, = F_ and with position amplitudes (a,) of 0.2D, 0.4D and
0.8D. The equivalent velocity amplitudes were 0.25, 0.5 and 1.0 respectively. The
selected frequency parameter correspands to the mid-point lock-in frequency. The
time dependent position of the cylinder in the transverse direction (y. /D),
magnitude and incident angle of the relative free stream velocity (U™ = {1 +
A,fsinz(nF,;c)} and ¢ } are shown in figure 5.43 for reference. The maximum value
of U occurs at the zero position of the cylinder (T = 0.25 and 0.75). The maximum
value of U’ is the magnitude of the vector sum of the free stream velocity and the

maximum velocity of the cylinder oscillation.

Figures 5.44 and 5.45 show the time histories of Nu,,, at Gr/Re’ =0 and 1
respectively. The corresponding Nu,,, variations in a cycle of oscillation are shown
in figures 5.46 and 5.47. In any cycle of oscillation, both maximum values of Nu,,,
occur slightly after the point of maximum U’ (t = 0.3 and 0.8) during the upward
and downward motion of the cylinder. The time difference between the maximum
Nu,,, and the maximum U’ may be due to the time at which the vortex shedding
occurs from the top and bottom surface of the cylinder which will influence the

temperature gradients near the cylinder surface. The minimum values of Nu,,, are

predicted near the minimum y_ /D and the maximum vy, /D. In the case of forced
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convection, approximately the same pattern of oscillation of Nu,, is repeated twice
in every cycle of oscillation. With mixed convection, the patiern of oscillation of
Nu,,, does not repeat and the extreme values of heat transfer rate that occurs in

one cycle significantly differ from one another. The power spectra of the Nu . at

avg
Gr/Re* =0 and 1 are shown in figu.res 5.48 and 5.49 respectively. Unlike in the
case of in-line oscillation, Nu,,, oscillates at twice the frequency of osciltation of the
cylinder. It is to be noticed that the magnitude of the relative free stream velocity
also oscillates at 2F, (see figure 5.43) which directly influences the time variation
of the average Nusselt number. However, in the case of mixed convection, other
frequency components such as F, also exist in the Nu,,, variation.

Figures 5.50 and 5.51 show variation of the amplitude of Nu,, and the

|

mean Nusselt number (Nu,) with the position amplitudes of oscillation in the

transverse direction. The amplitude of Nu_,, increases after a certain value of the

avg
position amplitude of oscillation. The mean Nusselt number Nu,_, increases with
the increasing a,. The amount of increase in Nu,, with a, is comparable with the
case of in-line oscillation. However, the amplitude of osciilation of Nu,,, is much
smaller than with the case of in-line oscillation. With forced convection and a, =
0.8D , an increase of 15.68% in Nu, over the case of stationary cylinder is

predicted. In the case of mixed convection, an increase of 10.23% in Nu,, is

computed with a, = 0.8D.
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Figures 5.52 , 5.53 and 5.54 show the local Nusselt number distribution on
the cylinder at different times in a full cycle of oscillation (0 < 7 < 1) at position
amplitude (a,) values of 0.2D, 0.4D and 0.8D respectively with Gr/Re® = 0.
Similarly, figures 5.55, 5.56 and 5.57 show the local Nusselt number distributions
with Gr/Re® = 1.0. The location and magnitude of maximum Nu(8) are given in
tables 5.4 and 5.5 at different times in a single cycle of oscillation of the cylinder
(0 < 1 < 1) for the case of forced and mixed convection respectively. It can be
observed that the location of the maximum heat transfer rate oscillates at the same
frequency as that of the cylinder (F,). The location of the maximum local Nusselt
number depends on the direction of the relative velocity of the flow with respect
to the cylinder. This implies that the incident angle of the relative free stream
velocity which is also oscillating at a nondimensional frequency F, (Figure 5.43),
directly influences the location the maximum local Nusselt number on the cylinder.
The maximum heat transfer occurs at a location on the upper surface or the lower
surface during the upward or downward motion of the cylinder at maximum velocity
respectively. Both with forced and mixed convection, the local Nusselt number

distribution approximately repeats after one cycle.

Figures 5.58 to 5.62 show the isothermal contour maps for the case of
forced convection at different stages in a single cycle of oscillation with a, = 0.4D.
Similarly, figures 5.63 to 5.67 show the isothermal contours with mixed convection.

In both the cases of forced and mixed convection, asymmetric isothermal contours
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exist at different stages of osciiation and approximately repeat after one cycle. A
high concentration of isothermal contours are found to exist near the location of
the maximum heat transfer rate which depends on the incident angle of the relative

free stream velocity (g).
5.4.3 Combined Oscillation

The cylinder was forced to oscillate simultaneously in the in-line and
transverse directions with frequency parameters F, = 2F, and F, = F respectively.
The position amplitude of oscillation in the in-line direction (a,) is held constant at
0.2D. In the transverse direction, the cylinder was forced to oscillate with position
amplitudes 0.2D, 0.4D and 0.8D. The time dependent position of the cylinder in the
in-line and transverse directions (x, /D and y_ /D), magnitude and the incident
angle of the relative free stream velocity (U™ = V{(1 - A sin(rF,1))* + A sin®(nF,1)}

and £ ) are shown in figure 5.68 for reference.

Figures 5.69 and 5.70 show tﬁe time histories of Nu,,, at G/Re” = 0 and 1
respectively. The corresponding Nu,,, variations in a cycle of oscillation are shown
in figures 5.71 and 5.72. In any cycle of oscillation, both maximum values of Nu, .
occur near the zero position of the cylinder in the in-line direction (x, /D = 0) with
the cylinder moving in the direction opposite to that of the free stream flow (U,).

Two minimum values of Nu,, occur between the zero x, location and the
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maximum x, location with the cylinder moving in the same direction as that of the
free stream flow. The reason for the minimum value of Nu,,, to occur between the
zero x_ location and the maximuri 'x, location is that the fluid surrounding the
cylinder in the downstream location is warmer than the upstream location. In the
case of forced convection, approximately the same maximum values of Nu,,, occur
at the same positions in every cycle of oscillation. With mixed convection, the

extreme values Nu,_ . significantly differ from one another in a cycle of oscillation.

avg

The power spectra of Nu,,, at Gr/Re® = 0 and 1 are shown in figures 5.73 and 5.74

vg
respectively. The dominant frequency in the Nu,,, variation is the forcing frequency
of oscillation in the in-line direction (2F ). With mixed convection and a, = 0.8D,

other frequencies such as F, and 3F, exists in the Nu,,, variation.

Figures 5.75 and 5.76 show variation of the amplitude of Nu,,, and the
mean Nusselt number (Nu,) with the position amplitudes of oscillation in the
transverse direction. With forced convection, the Nu,, increases with a, and the

amplitude of Nu,,, decreases after a certain position amplitude of oscillation (a,).

avg
In the case of mixed convection, both the amplitude of Nu, , and the Nu,, increase
after a certain position amplitude of oscillation (a ). The amount of increase in Nup,
with a, is comparable with the case of transverse oscillation. However, the
amplitude of oscillation of Nu,,, is much higher than with the case of transverse

oscillation. This can be attributed to the effect of in-line oscillation. With Gr/Re? =

0 and a, = 0.2D, a, = 0.8D an increase of 18.46% in Nu, over the case of
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stationary cylinder is predicted. At the same position amplitudes of oscillation, an

increase of 15.30% in Nu,, is computed with mixed convection (Gr/Re” = 1).

Figures 5.77 , 5.78 and 5.79 show the locn' Nusselt number distribution on
the cylinder at different times in a full cycle of oscillation (0 < t" < 1) at position
amplitudes a, = 0.2D, 0.4D and 0.8D respectively with Gr/Re’ = 0 and a, = 0.2D.
Similarly, figures 5.80, 5.81 and 5.82 show the local Nusselt number distributions
with Gr/Re? = 1.0. The location and magnitude of maximum Nu(0) are taken from
these plots and are given in tables 5;.6 and 5.7 at different times in a single cycle
of oscillation of the cylinder (0 € t < 1) for the case of forced and mixed
convection respectively. Similar to the case of transverse oscillation, the location
of the maximum heat transfer rate oscillates at the same frequency as that of the
cylinder in the transverse direction (F)). The location of the maximum local
Nusselt number depends on the direction of the relative velocity of the flow with
respect to the cylinder. As in the case of transverse oscillation, the incident angle
of the relative free stream velocity which is also oscillating at a nondimensional
frequency F, (Figure 5.70), directly influences the locatinn of the maximum local
Nusselt number on the cylinder. During the upward or downward motion of the
cylinder with maximum velocity ( t = 0.25 and 0.75), the maximum heat transfer

occurs at a location on the upper surface cr the lower surface respectively.

The isothermal contour maps at different stages in a single cycle of



osciflation are shown in figures 5.83 to 5.87 for a, = 0.2D, a, = 0.4D and Gr/Re?
= 0. Similarly, plots are shown for a, = 0.2D, a, = 0.4D and Gr/Re® = 1 in figures
5.88 to 5.92. With forced convection, isothermal contours approximately repeat
after one complete cycle of oscillation. However, with mixed convection, isothermal
contours do not repeat after one cyé:le. A significant amount of difference in the
pattern of the isothermal contours can be observed between forced convection and

mixed convection.

5.5 Oscillating Hot-Wire_ Anemometer Studies

In this section, a numerical simulation of the response of an oscillating hot-
wire anemometer is presented. The experimental investigation conducted by
Heckadon et al. [H3] is taken as the source of information for this numerical study.
The hot-wire was oscillated in the direction parallel to the free stream flow at
different velocity amplitudes and frequencies of oscillation. The free stream flow
was essentially a jet flow of air from a 19 mm diameter nozzle. The hot-wire was
kept in the potential core of the jet. The hot-wire was oscillated sinusoidally using
a magnetic shaker. The motion of the wire was normal to its length and in-line with
the direction of the jet flow. An accelerometer aitached to the shaker was used to
determine the velocity of oscillation. The hot-wire used was a 5 micron DISA probe
and DISA Constant Temperature Anemometer instrumentation was used to

measure the hot-wire response. The free stream velocity, amplitude and frequency
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of oscillation were varied in the ranges of 0.06-3.13 m/s, 1.2-1.6 mm and 50-90 Hz

respectively.

With a constant temperature anemometer, the hot-wire voltage response
(E) depends on the heat transfer from the wire to the surrounding fluid. The
average Nusselt number represents the heat transfer from a heated wire. Hence,
the Nu,,, can be used to compare qualitatively with the hot-wire voltage response.
In the numerical study, the Reynolds number (Re), Grashof number (Gr), velocity
amplitude (A,) and frequency (F,} of oscillation were taken to be the same as that
in the experimental study. Two cases of oscillating hot-wire responses were
computationally predicted. In the first case, the velocity amplitude of oscillation (A,)
was less than the free stream velocity and equal to 0.712. The Reynolds number,
Grashof number and frequency parameter were set equal to 0.25, 3.988x10° and
4.48x10° respectively. In the second case, the velocity amplitude of oscillation (A )
was higher than the free stream velocity and was equal to 2.986. The Reynolds
number, Grashof number and frequency parameter were set equal to 0.06,
3.988x10° and 1.87x10° respectively. In both the cases, digitized experimental
hot-wire response, predicted computational response in terms of Nu,,, and the
magnitude ¢f the relative free stream velocity (U = 1 - A sin(xF,t)) were plotted

and qualitatively compared with each other.

Figure 5.93 shows the comparison between the experimental and

63



computational hot-wire response with velocity amplitude of oscillation (A,) of
0.712. The Nu,,, is oscillating at the same frequency as that of the hot-wire. A
maximum value of hot-wire response occurs near the zero position with wire
moving in the opposite direction to that of the free stream flow. A minimum value
of Nu,, is predicted near the zero position with the cylinder moving in the same
direction as that of the free stream flow. The local Nusselt number distribution on
the wire at different times in a full cycle of oscillation are shown in figure 5.94. At
the point of maximum relative velocity (t = 0.75), local Nusselt number distribution
is approximately symmetric about the upstream stagnation point (180°). At other
times (1 = 0, 0.25, 0.5 and 1), it is clearly evident that the Nusseit number
distribution is asymmetric about 180°. This is due to the strong influence of free
convection at low Reynolds numbers. The local Nusselt number distribution is
approximately the same at times when the velocity of the hot-wire equals zero. The
isothermal contours at different times in a complete cycle of oscillation are shown
in figures 5.95 to 5.99. All the isothermal contour maps presented in this section
are with a contour interval of 0.025 and with the minimum and maximum levels of
contour as 0.4 and 1.0 respectively. With the hot-wire moving in the direction
opposite to that of the mean flow and at the zero position (t = 0.75 and U’ =
1.712), a higher concentration of isothermal contours exist near the wire than at
other positions in a cycle of oscillation. At this time and position, the influence of

free convection is negligible.
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Figure 5.100 shows the comparison between the experimental response and
the computational response with the velocity amplitude (A,) of oscillation of 2.986.
The magnitude of the relative free stream velocity (U') is also plotted for easy
reference. Qualitatively, the Nu, g va-riation is the rectified form of the relative free
stream velocity. It can be observed that the hot-wire responds to the absolute
value of U. At the times when the relative free stream velocity become zero,
minimum values of average Nusselt number and the hot-wire output voltage are
attained. Att = 0.25 and 0.5, the magnitudes of the relative free stream velocity
are -1.986 and 3.986 respectively. The highest value of average Nusselt number
and the hot-wire output occurs at the T = 0.75. This position corresponds to the
hot-wire moving with maximum velocity in the opposite direction to that of the free
stream flow. Figure 5.101 shows the local Nusselt number distribution on the hot-
wire at different instants of time in .a full cycle of oscillation. The local Nusselt
number distribution is approximately the same at times when the velocity of the
hot-wire equals zero (t = 0, 0.5 and 1). The local Nusselt number distribution is
asymmetric about 180° at all the times (1 = 0, 0.25, 0.5, 0.75 and 1). The
isothermal contours at different times in a complete cycle of oscillation are shown
in figures 5.102 to 5.106. Influence of free convection is clearly evident in all the

contour maps by the slight upward skew of the isothermai contours.
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Grid Size E. (r/R) v Computed Nu,,

Grid Dependency

101x81 1(23.14) 3 7.461
121x101 1(23.14) 3 7.467
141x121 1(23.14) 3 7.466

Location of the Far-field Boundary

121x81 0.8 (12.35) 3 7.438
121x101 1.0 (23.14) 3 7.467
121x121 1.2 (43.38) 3 7.465

Magnitude of Numerical Triggering

121x101 1.0 (23.14) 3 7.467
121x101 1.0 (23.14) 5 7.466
121x101 1.0 (23.14) 10 7.466

Table 5.1 Mean Nusselt number for different dependency tests (Re = 200)
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a, =0.1D a, =02D a, =040

T Max. | Angle | Max. | Angle | Max. Angle

Nu(@®) | (deg) | Nu® | (deg.) | Nu(®) | (deg.)

0.00 | 14.59 180 15.14 180 15.65 180

0.25 12.38 180 11.49 0 18.12 0

0.50 12.96 180 11.78 177 10.38 0

0.75 15.40 180 16.87 180 19.12 180

1.00 14.59 180 15.14 180 15.65 180

Table 5.2 Location and magnitude of maximum Nu{9) in a cycle of oscillation

(in-line oscillation, Gr/Re® = 0)
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a, =01D a, = 0.2D a, = 04D

T Max. | Angle | Max. | Angle | Max. Angle

Nu(6) (deg.) | Nu(6) (deg.) | Nu(09) (deg.)

0.00 | 14.61 180 15.00 180 15.66 180

0.26 12.41 180 13.18 0 17.70 0

0.50 12.98 180 .11.56 180 10.39 0

0.75 15.37 180 16.71 180 19.13 180

1.00 14.53 180 15.00 180 15.66 180

Table 5.3 Location and magnitude of maximum Nu(8) in a cycle of oscillation

(in-line oscillation, Gr/Re® = 1)



a, = 0.2D a, = 0.4D a, = 0.8D

T Max. | Angle | Max. | Angle | Max. Angle

Nu(0) (deg.) | Nu(b} {deg.} | Nu(t) (deg.)

0.00 | 13.84 183 13.88 186 14.00 192

0.25 14.06 165 14.72 153 16.87 132

0.50 13.84 177 13.88 174 13.94 168

0.75 14.07 195 14.72 207 16.80 228

1.00 13.84 183 13.88 186 14.00 192

Table 5.4 Location and magnitude of maximum Nu(8) in a cycle of oscillation

(transverse oscillation, Gr/Re® = 0)
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a,=0.2D a, = 0.4D a, = 0.8D

T Max. | Angle | Max. | Angle [ Max. Angle

Nu(0) (deg.) | Nu(6) (deg.) | Nu(e) (deg.)

0.00 | 13.9% 183 14.10 186 13.98 192

0.25 13.99 1€5 14.60 156 16.29 135

0.50 13.72 177 13.66 171 14.57 318

0.75 14.13 195 14.85 207 15.80 222

1.00 13.85 183 14.10 186 13.97 192

Table 5.5 Location and magnitude of maximum Nu(8) in a cycle of oscillation

(transverse oscillation, Gr/Re® = 1)
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a, = 0.2D a, = 0.4D a, = 0.8D

T Max. | Angle | Max. | Angle | Max. Angle

Nu(6} (deg.) | Nu(o) (deg.) | Nu(0) (deg.)

0.00 | 15.10 180 15.06 183 15.10 186

0.25 12.16 159 13.00 147 15.81 126

0.50 15.13 180 15.08 177 15.21 174

0.75 12.15 201 12.93 213 15.87 234

1.00 15.10 180 15.06 183 15.09 186

Table 5.6 Location and magnitude of maximum Nu(8} in a cycle of oscillation

(combined oscillation, a, = 0.2D, Gr/Re® = 0)
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2, =020 | a-04D | a =080
T Max. | Angle | Max. ;r;éle : Max | ;l\ngie
Nu(b) (deg.) | Nu(v) (deg.) | Nu(() {deg.)
0.00 15.11 183 15.12 186 15.07_ 189 |
0.25 13.35 6 12.57 0 1501 ) _'.I 29
0.50 14.94 177 14.88 177 14.91 —.-.'I-74
0.75 11.86 195 12.85 210 16.74 ﬁﬁ2731 A
1.00 15.01 183 15.10 183 15.07 1f89

Table 5.7 Location and magnitude of maximum Nu(6) in a cycle of oscillation

{(combined oscillation, a, = 0.2D, Gr/Re” = 1)
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Grid Size
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Figure 5.1 Time history of the average Nusselt number
(stationary cylinder, Re = 200, dependency test with grid size)
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Figure 5.2 Time history of the average Nusselt number
(stationary cylinder, Re = 200, dependency test with far-field boundary location)
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Figure 5.3 Time history of the average Nusselt number
(stationary cylinder, Re = 200, dependency test with the magnitude of numerical

triggering)
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Figure 5.4 Mean Nusselt number at different Reynolds numbers
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Figure 5.5 Strouhal number at different Reynolds numbers
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Figure 5.6 Mean drag coefficient at different Reynolds numbers
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Figure 5.7 Time history of the average Nusseit number
(stationary cylinder, Re = 200}
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Figure 5.8 Power spectra of the average Nusselt number
(stationary cylinder, Re = 200)
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Figure 5.9 Local Nusselt number distribution in a full vortex shedding cycle
(stationary cylinder, Re = 200, Gr/Re? = 0)
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Figure 5.10 Local Nusselt number distribution in a full vortex shedding cycle
(stationary cylinder, Re = 200, Gr/Re® = 1)

82



Figure 5.11 Streamline contour map for the case of forced convection
(Re = 200, minimum and maximum contour level: -2 and 2,
contour interval: 0.1)

9%

Figure 5.12 Vorticity contour map for the case of forced convection
(Re = 200, minimum and maximum contour level: -10.25 and 10.25,
contour interval: 0.5)
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Figure 5.13 Isothermal contours for the case of forced convection
(Re = 200, minimum and maximum contour level: 0.05 and 1,
contour interval: 0.05)
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Figure 5.14 Streamline contour map for the case of mixed convection
(Re = 200, minimum and maximum contour level: -2 and 2,
contour interval: 0.1)

i 'j"‘)‘—?)'

Figure 5.15 Vorticity contour map for the case of mixed convection
(Re = 200, minimum and maximum contour level: -10.25 and 10.25,
contour interval: 0.5)
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Figure 5.16 Isothermal contours for the case of mixed convection
(Re = 200, minimum and maximum contour level: 0.05 and 1,
contour interval: 0.05)
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Figure 5.17 Schematic diagram of cylinder oscillation
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Figure 5.18 Details of forced oscillation of the cylinder
(in-line oscillation , F, = 2F ) (a) position of the cylinder

(b) magnitude of the relative free stream velocity
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Figure 5.19 Time history of the average Nusselt number

(in-line oscillation, F, = 2F,, Gr/Re® = 0)
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Figure 5.20 Time history of the average Nusselt number
(in-line oscillation, F, = 2F,, Gr/Re® = 1)
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Figure 5.21 Average Nusselt number in a cycle of oscillation
(in-line oscillation, F, = 2F,, Gr/Re® = 0)
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Figure 5.22 Average Nusselt number in a cycle of oscillation

(in-line oscillation, F, = 2F,, Gr/Re? = 1)
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Figure 5.23 Power spectra of the average Nusselt number
(in-line oscillation, F, = 2F,, Gr/Re® = 0)
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Figure 5.25 Amplitude of Nu,,, at different position amplitudes of oscillation
(in-line oscillation, F, = 2F )
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Figure 5.26 Mean Nusselt number at different position amplitudes of oscillation
(in-line oscillation, F, = 2F_ )
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Figure 5.27 Local Nusselt number distribution in a full cycle of oscillation
(in-line oscillation, F, = 2F,, a, = 0.1D, Gr/Re? = 0)
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Figure 5.28 Local Nusselt number distribution in a full cycle of oscillation
(in-line oscillation, F, = 2F,, a, = 0.2D, Gr/Re® = 0)
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Figure 5.29 Local Nusselt number distribution in a fuii cycle of oscillation
(in-line oscillation, F, = 2F,, a, = 0.4D, Gr/Re® = 0)
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Figure 5.30 Local Nusselt number distribution in a full cycle of oscillation
(in-line oscillation, F, = 2F,, a_ = 0.1D, Gr/Re® = 1)
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Figure 5.31 Local Nusselt number distribution in a full cycle of oscillation
(in-line oscillation, F, = 2F,, a, = 0.2D, Gr/Re® = 1)
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Figure 5.32 Local Nusselt number distribution in a full cycle of oscillation

(in-line oscillation, F, = 2F,, a, = 0.4D, Gr/Re? = 1)
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Figure 5.33 Isothermal contours for the case of forced convection
(in-line oscillation, T = 0, a, = 0.2D, minimum and maximum contour
level: 0.05 and 1, contour interval: 0.05)

Figure 5.34 Isothermai contours for the case of forced convection
(in-line oscillation, T = 0.25, a, = 0.2D, minimum and maximum contour
level: 0.05 and 1, contour interval: 0.05)
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Figure 5.35 Isothermal contours for the case of forced convection
(in-line oscillation, T = 0.50, a, = 0.2D, minimum and maximum contour
level: 0.05 and 1, contour interval: 0.05)

Figure 5.36 Isothermal contours for the case of forced convection
(in-line oscillation, T = 0.75, a, = 0.2D, minimum and maximum contour
level: 0.05 and 1, contour interval: 0.05)
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Figure 5.37 Isothermal contours for the case of forced convection
(in-line oscillation, T = 1, a, = 0.2D, minimum and maximum contour
level: 0.05 and 1, contour interval: 0.05)
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Figure 5.38 Isothermal contours for the case of mixed convection
(in-line oscillation, © = 0, a, = 0.2D, minimum and maximum contour
level: 0.05 and 1, contour interval: 0.05)

Figure 5.39 lsotr!ermal contours for the case of mixed convection
(in-line oscillation, T = 0.25, a, = 0.2D, minimum and maximum contour
level: 0.05 and 1, contour interval: 0.05)
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Figure 5.40 Isothermal contours for the case of mixed convection
(in-line oscillation, T = 0.50, a, = 0.2D, minimum and maximum contour
level: 0.05 and 1, contour interval: 0.05)

Figure 5.41 isothermal contours for the case of mixed convection
(in-line oscillation, T = 0.75, a, = 0.2D, minimum and maximum contour
level: 0.05 and 1, contour interval; 0.05)
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Figure 5.42 Isothermal contours for the case of mixed convection
(in-line oscillation, T = 1, a, = 0.2D, minimum and maximum contour
level; 0.05 and 1, contour interval: 0.05}
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Figure 5.43 Details of forced oscillation of the cylinder
(transverse oscillation , F, = F, ) (a) position of the cylinder (b) incident angle of
the relative free stream velocity (c) magnitude of the relative free stream
velocity
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Figure 5.44 Time history of the average Nusselt number
(transverse oscillation, F, = F,, Gr/Re® = 0)
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Figure 5.45 Time history of the average Nusselt number
(transverse oscillation, ¥, = F, Gr/iRe? = 1)
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Figure 5.46 Average Nusselt number in a cycle of oscillation
(transverse oscillation, F, = F,, Gr/Re® = 0}
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Figure 5.47 Average Nusselt number in a cycle of oscillation
(transverse oscillation, F, = F,, Gr/Re® = 1)
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Figure 5.48 Power spectra of the average Nusselt number
(transverse oscillation, F, = F,, Gr/Re® = 0)
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Figure 5.48 Power spectra of the average Nusselt number

(transverse oscillation, F, = F, Gr/Re® = 1)
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Figure 5.50 Amplitude of Nu,,,
(transverse oscillation, F, = F, )
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Figure 5.51 Mean Nusselt number at different position amplitudes of oscillation
{transverse oscillation, F, = F,)
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Figure 5.52 Local Nusselt number distribution in a full cycle of oscillation
(transverse oscillation, F, = F_, a, = 0.2D, Gr/Re? = 0)
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Figure 5.53 Local Nusselt number distribution in a full cycle of oscillation
(transverse oscillation, F, = F,, a, = 0.4D, Gr/Re® = 0)
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Figure 5.54 Local Nusselt number distribution in a full cycle of oscillation
(transverse oscillation, F, = F,, a, = 0.8D, Gr/Re® = 0)
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Figure 5.55 Local Nusselt number distribution in a full cycle of oscillation
(transverse oscillation, F, = F, a, = 0.2D, Gr/Re? = 1)
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Figure 5.56 Local Nusselt number distribution in a full cycle of oscillation
{transverse oscillation, F,=F,a,= 0.4D, Gr/Re® = 1)
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Figure 5.57 Local Nusselt number distribution in a full cycle of oscillation
(transverse oscillation, F, = F,, a, = 0.8D, Gr/Re® = 1)
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Figure 5.58 Isothermal contours for the case of forced convection
(transverse oscillation, T = 0, a, = 0.4D, minimum and maximum contour
level: 0.05 and 1, contour interval: 0.05)

Figure 5.59 Isothermal contours for the case of forced convection
(transverse oscillation, 1 = 0.25, a, = 0.4D, minimum and maximum contour
level: 0.05 and 1, contour interval: 0.05)
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Figure 5.60 Isothermal contours for the case of forced convection
(transverse oscillation, 1 = 0.50, a, = 0.4D, minimum and maximum contour
level: 0.05 and 1, contour interval: 0.05)
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Figure 5.61 Isothermal contours for the case of forced convection
(transverse oscillation, T = 0.75, a, = 0.4D, minimum and maximum contour
level: 0.05 and 1, contour interval: 0.05)
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Figure 5.62 Isothermal contours for the case of forced convection
(transverse oscillation, T = 1, a, = 0.4D, minimum and maximum contour
level: 0.05 and 1, contour interval: 0.05)
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Figure 5.63 Isothermal contours for the case of mixed convection
(transverse oscillation, T = 0, a, = 0.4D, minimum and maximum contour
level: 0.05 and 1, contour interval: 0.05)

Figure 5.64 |sothermal contours for the case of mixed convection
(transverse oscillation, T = 0.25, a, = 0.4D, minimum and maximum contour
level: 0.05 and 1, contour interval: 0.05)
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Figure 5.65 Isothermal contours for the case of mixed convection
(transverse oscillation, T = 0.50, a, = 0.4D, minimum and maximum contour
level: 0.05 and 1, contour interval: 0.05)

Figure 5.66 Isothermal contours for the case of mixed convection
(transverse oscillation, T = 0.75, a, = 0.4D, minimum and maximum contour
level: 0.05 and 1, contour interval: 0.05)
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Figure 5.67 Isothermal contours for the case of mixed convection
(transverse oscillation, © = 1, a, = 0.4D, minimum and maximum contour
level: 0.05 and 1, contour interval: 0.05)
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Figure 5.68 Details of forced oscillation of the cylinder
(combined oscillation , F, = 2F,, F, = F, a, = 0.2D ) (a) position of the cylinder
(b} incident angle of the relative free stream velocity (c) magnitude of the
relative free stream velocity
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Figure 5.69 Time history of the average Nusselt number

(combined oscillation, F, = 2F,, F,
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=F,, a = 0.2D, Gr/Re® = 0)
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Figure 5.70 Time history of the average Nusselt number
(combined oscillation, F, = 2F,, F, = F,, a, = 0.2D, Gr/Re? = 1)
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Figure 5.71 Average Nusselt number in a cycle of oscillation
(combined oscillation, F, = 2F,, F, = F,, a, = 0.2D, Gr/Re® = 0)
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Figure 5.73 Power spectra of the average Nusselt number
(combined oscillation, F, = 2F,, F, = F,, a, = 0.2D, Gr/Re® = 0)
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Figure 5.74 Power spectra of the average Nusselt number

(combined oscillation, F, = 2F,, F, = F, a, = 0.2D, Gr/Re? = 1)
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Figure 5,75 Amplitude of Nu,,, at different position amplitudes of oscillation
(combined oscillation, F, = 2F , F, = F,, a, = 0.2D)
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Figure 5.76 Mean Nusselt number at different position amplitudes of oscillation
(combined oscillation, F, = 2F,, F, = F,, a, = 0.2D)
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Figure 5.77 Local Nusselt number distribution in a full cycle of oscillation
(combined oscillation, F, = 2F, F, = F,, a, = a, = 0.2D, Gr/Re? = 0)
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Figure 5.79 Local Nusselt number distribution in a full cycle of oscillation
(combined oscillation, F, = 2F,, F, = F,, a, = 0.2D, a, = 0.8D, Gr/Re® = 0)
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Figure 5.80 Local Nusselt number distribution in a full cycle of osciliation
(combined oscillation, F, = 2F,, F, = F, a, = a, = 0.2D, Gr/Re® = 1)
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Figure 5.81 Local Nusselt number distribution in a full cycle of oscillation
(combined oscillation, F, = 2F,, F, = F,, a, = 0.2D, a, = 0.4D, Gr/Re’ = 1)
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Figure 5.83 Isothermal contours for the case of forced convection
(combined oscillation, © = 0, a, = 0.2D, a, = 0.4D, minimum and maximum
contour level: 0.05 and 1, contour interval: 0.05)

&)

Figure 5.84 lsothgrmal contours for the case of forced convection
(combined oscillation, T = 0.25, a, = 0.2D, a, = 0.4D, minimum and maximum
contour level: 0.05 and 1, contour interval: 0.05)
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Figure 5.85 Isothermal contours for the case of forced convection
(combined oscillation, T = 0.50, a, = 0.2D, a, = 0.4D, minimum and maximum
contour level: 0.05 and 1, contour interval: 0.05)

Figure 5.86 Isothermal contours for the case of forced convection
(combined oscillation, T = 0.75, 3, = 0.2D, a, = 0.4D, minimum and maximum
contour level: 0.05 and 1, contour interval: 0.05)
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Figure 5.87 Isothermal contours for the case of forced convection
(combined oscillation, © = 1, a, = 0.2D, a, = 0.4D, minimum and maximum
contour level: 0.05 and 1, contour interval: 0.05)
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Figure 5.88 Isothermal contours for the case of mixed convection
(combined oscillation, © = 0, a, = 0.2D, a, = 0.4D, minimum and maximum
contour level: 0.05 and 1, contour interval: 0.05)

Figure 5.89 Isothermal contours for the case of mixed convection
(combined oscillation, T = 0.25, a, = 0.2D, a, = 0.4D, minimum and maximum
contour level: 0.05 and 1, contour interval; 0.05)
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Figure 5.80 Isothermal contours for the case of mixed convection
(combined oscillation, T = 0.50, a, = 0.2D, a, = 0.4D, minimum and maximum
contour level: 0.05 and 1, contour interval: 0.05)

Figure 5.91 Isothermal contours for the case of mixed convection
(combined oscillation, T = 0.7, a, = 0.2D, a, = 0.4D, minimum and maximum
contour level: 0.05 and 1, contour interval: 0.05)
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Figure 5.92 isothermal contours for the case of mixed convection
{combined oscillation, T = 1, a, = 0.2D, a, = 0.4D, minimum and maximum
contour level: 0.05 and 1, contour interval: 0.05)
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Figure 5.93 Oscillating hot-wire response (Re = 0.25, Gr = 3.988x10°¢ ,
A =0.712, F, = 4.48x10®) (a) magnitude of the relative free stream velocity
(b) experimental hot-wire response (H3) (c) computed Nu,,, in a cycle of
oscillation
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Figure 5.94 Local Nusselt number distribution in a full cycle of oscillation
(oscillating hot-wire, Re = 0.25, Gr = 3.988x10°%, A = 0.712, F, = 4.48x10%)
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_ Figure 5.95 Isothermal contours surrounding the oscillating hot-wire
(t =0, A, =0.712, minimum and maximum contour levels: 0.4 and 1, contour
interval: 0.025)
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Figure 5.96 Isothermal contours surrounding the oscillating hot-wire
(t = 0.25, A, = 0.712, minimum and maximum contour levels: 0.4 and 1,
contour interval: 0.025)
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Figure 5.97 Isothermal contours surrounding the oscillating hot-wire
(' = 0.50, A = 0.712, minimum and maximum contour levels: 0.4 and 1,
contour interval: 0.025)

Figure 5.98 isothermal contours surrounding the osciliating hot-wire
(t = 0.75, A, = 0.712, minimum and maximum contour levels: 0.4 and 1,
contour interval: 0.025)
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Figure 5.99 Isothermal contours surrounding the oscillating hot-wire
(t =1, A, =0.712, minimum and maximum contour levels: 0.4 and 1,
contour interval: 0.025)
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Figure 5.100 Oscillating hot-wire response (Re = 0.06, Gr = 3.988x10°,
A, =2.986, F, = 1.87x10?) (a) magnitude of the relative free stream velocity
(b) experimental hot-wire response (H3) (c) computed Nu,, in a cycle of
oscillation
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Figure 5.101 Local Nusselt number distribution in a full cycle of oscillation
(oscillating hot-wire, Re = 0.06, Gr = 3.988x10°, A, = 2.986, F, = 1.87x10%)
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_ Figure 5.102 Isothermal contours surrounding the oscillating hot-wire
(t =0, A, = 2.986, minimum and maximum contour levels: 0.4 and 1, contour
interval: 0.025)

Figure 5.103 Isothermal contours surrounding the oscillating hot-wire
(t = 0.25, A, = 2.986, minimum and maximum contour 'evels: 0.4 and 1,
contour interval: 0.025)
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Figure 5.104 Isothermal contours surrounding the oscillating hot-wire
(t = 0.50, A, = 2.986, minimum and maximum contour levels: 0.4 and 1,
contour interval: 0.025)

Figure 5.105 Isothermal contours surrounding the oscillating hot-wire
(1 = 0.75, A, = 2.986, minimum and maximum contour levels: 0.4 and 1,
contour interval: 0.025)
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Figure 5.106 Isothermal contours surrounding the oscillating hot-wire
(t =1, A, = 2.986, minimum and maximum contour levels: 0.4 and 1,
contour inturval: 0.025)
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Chapter VI

CONCLUSIONS AND RECOMMENDATIONS

A general formulation for convective heat transfer from an oscillating
cylinder in an incompressible fluid using vorticity and stream function as dependent
variables, is presented. The problem of convective heat transfer from an oscillating
cylinder has been analyzed numerically using a finite difference method. Based
on the computational investigation using the validated numerical model, some
conclusions are drawn for the oscillating cylinder and the oscillating hot-wire

anemometer. They are listed below.

6.1 Conclusions

1. In the case of the stationary cylinder with forced convection, the average
Nusselt number was found to vary with a small amplitude at twice the
natural shedding frequency. With mixed convection, Nu,,, varied with the
natural shedding frequency as the dominant frequency.

2. In comparison with the forced and mixed convective heat transfer from a
stationary cylinder, an increased mean Nusselt number and amplitude of the
Nu,,, was predicted with the in-line, transverse and combined oscillation.

The position amplitude of osciliation has a strong influence on both the Nu,,
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and the amplitude of Nu_,,.

In the range of the variables considered, this computational study
predicts maximum increases of 18.46% and 15.30% in the mean Nusselt
number with forced convection and mixed convection, respectively, with the
cylinder oscillating at the mid-point lock-in frequencies in the in-line and
transverse directions.

With in-line, transverse and combined oscillation, the dominant frequency
in the Nu,,, variation was 2F, . With mixed convection, however, other
harmonics of the forcing frequency of the cylinder do exist in the power
spectra of Nu,,. |
The location of maximum local Nusselt number on the cylinder surface
depends on the direction and velocity amplitude of the oscillation of the
cylinder. The oscillation frequency of the location of the maximum local
Nusselt number is the same as that of the incident angle of the relative free
stream velocity.

The output voltage response of an oscillating constant temperature hot-wire
qualitatively agrees with the computed average Nusselt numker variation.
At very low Reynolds numbers, the influence of free convection is clearly

evident in the local Nusselt number distribution on the hot-wire and in the

isothermal contour maps in a cycle of oscillation.
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6.2 Recommendations

The following suggestions are provided as possible ways of improving as well as

extending the scope of the present study:

—

in order to gain a better understanding of the heat transfer from an
oscillating cylinder, the influence of the frequency of oscillation should be
studied in detail.

With a combined oscillation, the effects of phase difference between the in-
line and transverse oscillation on the heat transfer should be investigated.
In addition to the in-line oscillation, the hot-wire anemometer with transverse
oscillation should be investigated for obtaining the direction of the flow.
Accurate and faster solvers should be employed to solve the Poisson
equation for the stream function. This will reduce the computer time
requirements for solving time dependent problems.

An enormous amount of computer memory and time is required for
simulating time dependent flow problems like the cylinder in a cross flow
at different conditions of oscillation. In order to obtain an optimum numbe
of simulation runs, it may be desirable to vary the influencing parameters

such as a,, a,, F, and F, using the design of experiments (DOE} technique.
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Appendix A

DRAG AND LIFT INFORMATION

The nondimensional pressure distribution on the cylinder was obtained by

integrating the following equation:

ap_ 2 (asz
ag
Gr

T 1{@ )‘:_n —a'-‘- {_AXF_\,COS(TE(T_TH )F\)Sin(a]])
+ AFcos(n(t-1, ) F,-p)cos (an)] + a*—2

{a.1)
cos (an) .

A

The vorticity gradient on the cylinder in the & direction was calculated using a
fourth order accurate finite difference form. The time dependent drag and lift

coefficients were calculated using the following expressions:

cd= -{ "Pcos8dd -ij"“nsinede, (A.2)
RelJo

O

c1= - "Psin6de +if““Qcosede. (A.3)
ReJo

0

Table A.1 shows the mean drag coefficient and amplitude of the drag coefficient
at various conditions of cylinder oscillation. Similarly, table A.2 shows the mean lift
coefficient and amplitude of the lift coefficient at different conditions of cylinder

oscillation.
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Conditions of Cd,, Cd,..
Oscillation
a, [a, |GV/Re"=0 |Gi/Re’=1 |GRe =0 |Gr/Re’ =1
Stationary
Cylinder 0 0 1.2559 1.2504 0.0399 0.0375
In-line 0.1 10 1.5128 1.3674 1.1298 1.1385
Oscillation |4 5 1o 11 7758 1.3403 22040  [2.1205
F, = oF, _ SR DR
04 [0 |1.5520 1.5835 3.9590 3.9717
Transverse [0 (0.2 |1.4069 1.3387 0.1565 0.1463
Oscillation 15 5 4 14 5667 1.5425 0.3005 0.3814
F,=F, - -
0 0.8 [1.90326 1.8955 0.7722 0.8126
Combined |0.2 0.2 |2.0296 1.4257 2.4260 2.2294
Oscillation
0.2 0.4 [2.1667 1.6924 2.4906 2.5406
F, = 2F,
F=F 0.2 |10.8 |2.5716 2.2536 2.8529 2.8100
y n

Table A.1 Mean drag coefficient and amplitude of the drag coefficient at various

conditions of cylinder oscillation
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Conditions of Cl, Climp
Oscillation

a, la, [GrRe’=0 |Gr/Re’=1 Gr/Re’ = 0 |Gr/Re” =1
Stationary
Cylinder o 0 0 -0.8505 0.6200 0.4901
In-line 0.1 [0 [0.0140 -0.7483 1.1030 1.0045
Oscillation

0.2 |0 |0.0746 -0.5718 1.5873 0.7517
F, = 2F,

04 0 |0 -0.3455 0.0418 1.4089
Transverse |0 |0.2 |0.0028 -0.8551 0.4863 0.1564
Oscillation |5 15 4 |5.0024 .0.8153  |0.1879 0.3983
F,=F,

0 0.8 [-0.0401 -0.3266 1.2209 1.6789
Combined 0.2 0.2 |-0.0524 -0.6621 1.3073 0.6823
Oscillation

0.2 0.4 |-0.0966 -0.57878 1.1846 0.6754
F, = oF,,
F =F 0.2 0.8 0.1296 -0.3979 2.9070 2.6021
y n

Table A.2 Mean lift coefficient and amplitude of the lift coefficient at various

conditions of cylinder oscillation
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