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ABSTRACT

The present work aims ai understanding particle matrix interactions in SiC
reinforced aluminium metal matrix composites (MMCs) by means of computer
simulation. Firstly, to explore the basic role of hard particles, the stress field around a
spherical SiC particle, the stress and the energy gathering capebilities of partcle,
interfacial characteristics, and the particle size effect have been examined by applying
and extending Eshelby’s classic approach. Secondly, a new method has been developed
to calculate the inhomogeneity problem with an arbitrary shaped particle. This method
combines boundary integral equations with a sequence of cutting, straining, and welding
procedures to numerically acquire stress and strain distribution at an inhomogeneity.
Thirdly, an elastic-plastic FEA has been used to investigate the plastic behaviour of the
matrix (i.e. plastic relaxation and plastic accumulation) and its effect on the stress
transfer and the stress concentration. Fourth, the influence of the volume fraction, the
particle shape, the particle clustering, the particle size, and thermally induced residual
stresses on deformation characteristics of Al/(SiC), MMCs has been studied by using
FEA and applying the concept of the Flower-Watt unit cell. Fifth, the ductility of MMCs
has been discussed. It has been found that the major distinctions between MMCs and
unreinforced alloys are the mechanisms of the stress transfer to the particles, the
enhanced work hardening in the matrix, and the significant contribution of the triaxial
stress to the stored strain energy. These characteristics of the MMCs give them their high

strength, high stiffness and low ductility.



ACKNOWLEDGEMENTS

The author wishes to express her sincere gratitude to Dr. D.F. Watt for his
academically inspiring guidance, supervision. suggestions, as well as his
encouragement during her graduate study at University of Windsor.

She would like to express her thanks to Dr. N. Zamani for his invaluable
help and instruction on finite element analysis.

Special thanks are due to Dr. D.J. Lloyd for his constructive suggestions
and discussion as well as for kindly supplying expenimental results.

Thanks are also due to Dr. W. W. Sun and Mr. M. Esteghamatian for their

assistance on modelling techniques and mathematical approaches, and their helpful
discussions.

She is also grateful to Dr. D.O. Northwood, Dr. A. Alpas, Dr. G.
Morforton and Dr. J. Goldak for reviewing this dissertation.

She would also like to thank Mrs. Barbara Denomey for arranging her
graduate study.

Particular appreciation is expressed to the Metal Matrix Composite
Consortium (OCMR-NSERC) for providing financial support for the research.

She is also extremely indebted to her grandmother and her parents for their
encouragement and confidence throughout her education.

il



ABSTRACT . ... . e e e e e e e i
ACKNOWLEDGEMENTS . .. ... . ... . . it eea il
NOMENCLATURE . .. ... .. ittt e e e e e e vil
Chapter 1. Introduction . .............. ... 0 iiiiiiiennnenn 1
1.1  Al/(SiC), Particulate Reinforced Metal Matrix Composites ... ... 1
1.2 Research FocusinPresent Work . ......... .. ... ... 4
Chapter 2. Literature Review
The Role of the Second Phase Particles .............. 9
2.1 The Role of the Second Phase Particles in Ductile Fracture . . . . .. 10
2.2 The Role of the Second Phase Particles in Material Strengthening . . 26
2.3  The Role of the Second Phase Particles on Stress Concentration . . . 35
Chapter 3. Stress Concentration and Interactions I. Basic Role of Hard
Particle in Metal Matrix Subjected to a Tensile Loading;
Application of Eshelby’s Approach . .................. 49
3.1 Imroduchion . . ...t e ettt e e 49
3.2 Visualization of the Stress Concentration .............00... 51
32,1 Materialsand Load . . ... ... i ittt i 51
322 BasicRelations . .........c0iiiiiiiinnnnnnnn. 51
3.23 PrOgrammiNg . ... oot v v v emeneennoneanennnan 54
3.24 FieldDistutbance . ... ... ... .00 ittt nnnnn 55
33 Interface Characterisics . ... ... . ovvienreneennnnnnn 59
3.3.1 Geometry Definition .. .......c0venneeiereansan 59
3.3.2 Calculation Procedures . ..........cov it neunnnn 60
3.3.3 Interface Characteristics .+ . . v v v v v v vt v v e e s meae e 61
3.3.4 Dependence of the Interface Stress Concentration
onElasticModuli . . ......... ... ... ui.... 66

VOLUME I

TABLE OF CONTENTS




3.4

3.5
3.6

Chapter 4.

4.1
4.2

43

4.4

4.5

4.6

4.7
4.8

Chapter 5.

3.1

53
5.4

Stress Carrying Capability of Particles

.................. o8
3.4.1 Defimition .. ... ... 69
342 Denvation ... ... e 69
3.4.3 Dependence on the Elastic Constants . ... ........... 70
Size Effect . ... . e 75
Summary L. e e e 79

Stress Concentration and Interactions II. A New Approach

Applicable to Arbitrary Particle Geometries .. ........... 81
Introduction . ... ... ... e 81
A BIE Formulation for Three-Dimensional Elastostatics . .. ... .. 83
4.2.1 Descripionof BIE .. ........................ 83
422 Formulatonof BIE. . . . ... ................... 84
An Approach to the Inhomogeneity Problem with Arbitrary Shape
of theInhomogeneity .. ... . ... ... ... ... 87
Numerical Formulation for the Interface Data ... ........... 91
4.4.1 Discretization of the Integral Equations . ............ 91
4.4.2 The Determination of the Coefficients ... ........... 97
4.4.3 Numerical Implement of the Approach . . ........... 100
The Behaviour of the Elastic Fields within and outside the
Inhomogeneity . ....... ... ... .. i 104
4.5.1 The Elastic Fields within the Inhomogeneity . ... ..... 104
4.5.2 The Elastic Fields outside the Inhomogeneity

(orinthe Matrix) . ... ... ... ittt ennnnnan 106
Examples ... .. ... e e 109
4.6.1 Materials and Element Arrangement . ............. 109
4.6.2 Numerical Simulation . ...................... 109
Applications and Extension . ............... ... ..., 113
Summary L e 115

Stress Concentration and Interactions ITI. Development of Plastic

Deformation around Particles . . . ............... 117
Introduction ... i ittt ittt e ettt e e 117
Methodology of the Finite Element Analysis (FEA) Modelling the
MMCS i e et e e et e e 119
5.2.1 FEM and Utilization of the FEA package (ABAQUS) . ... 119
5.22 Flower-Watt UnitCell . . ... ... . ... ... ..., 124
5.2.3 Verificationof the FECalculation . . . . ............ 125
Plastc Relaxation . .........c00ceeeivineencnnanss 128
Accumulation of Plastic Deformation .................. 131

iv



6.3

6.4

Chapter 7.

7.1
7.2
7.3
7.4

7.5
7.6

7.7
7.8

Discussion on the Ductility of Particulate Composites . . . ... .. 133
SUMMATY . . e e e 135

Stress Concentration and Interactions IV. Some Aspects for the

Materials Strengthening in AI/(SiC), MMCs .......... 137
Introduction .. ... ... ... e 137
Effects of Volume Fraction . ............... ..., 139
6.2.1 Configuraion ... .. ... ...ttt 139
6.2.2 Interaction vs Volume Fraction ................. 139
6.2.3 Overall Mechanical Response vs Volume Fraction . ... .. 142
6.2.4 The Local Stress and Strain Concentration . . . . .. ..... 144
6.2.5 SYNOPSIS . . ..ttt e e e 147
Effectof Particle Shape . . ... . ...ttt nnnnenan 148
6.3.1 Effect of Particle Shape at Low Volume Fracdon ...... 148
6.3.2 Effect of Particle Shape with Non-uniformly Dispersed

Particles ... .... ... ittt it 152
6.3.3 Effect of Particle Shape at High Volume Fraction ...... 154
Effect of the Particle Clustering . ... ................. 158
6.4.1 Configuration .......... ..t nnnnn. 158
6.4.2 Effect of the Tensile Clustering . ................ 159
6.4.3 EffectoftheSideClustering ... ........ ..., 160
6.4.4 Effect of the Tensile Clustering vs Volume Fraction . . . . . 161
Effectsof the Particle Size . ............. ... . ... .. 161
SUMMAIY & ittt it ittt e e ettt e a e 162

Effects of Thermally Induced Stresses on the Deformation

Characteristics within Al/(SIC), MMCs . ... ... ...... 164
Introduction . ... ... it i e e 164
ConfIguration . . .. .t i v it i it ittt et tan e 166
Thermally Induced Residual Stresses after Cooling . ......... 167
The Redistribution of the Stress Concentration during

Tensile Loading . .. ... ... .0t eeiinnennn. 171

A comparison with and without Thermally Induced Stresses . ... 174
Effect of the Thermally Induced Stresses on the Overall

Stress Strain CUIrvesS & . . . .t vt ittt et et et e 176
DISCUSSION & i it i i it ittt et e e 178
SUMMAIY . . i ittt ittt it a e 184



Chapter 8. General Summary and Conclusions . . . ... ... ...... 185

Chapter 9. Suggestions for Further Work .. ... ... ... .. ... .. 191

REFERENCES ... i i e, 194

LIST OF PUBLICATIONS/PRESENTATIONS . ... ... ....... 210

VITA AUCTORIS .. i it 211
VOLUME I

TABLE OF CONTENTS

LIST OF FIGURES
LIST OF TABLES
FIGURES
TABLES



NOMENCLATURE

MISES = Von Mises stress

PRESS = effective hydrostatic pressure

$22 = normal stress

E22 = normal strain

SENER = strain energy density

PENER = dissipated energy density (or effective plastic energy density)
S;, = stress components

E; = strain components

MMCs = metal matrix composttes.
(SiC), = silicon carbide particles.
FEA = finite element analysis.
FEM = finite element method.
BIE = boundary integral equation.

BEM = boundary element method.

U; = displacement components.
a = particle radius.
F = field variable.

F, = uniform field variable (or far field variable).



E = Young's modulus of particles.
E, = Young's modulus of matrix.
p;. €; = elastic stress and strain components, respectively.

r

p’;. &'y = deviatoric components of elastic stress and strain, respectively.
= uniform far field component.

= phase transformation component.

= constraint component.

k', k = the bulk moduli of the particle and the matrix, respectively.

g", n = the shear moduli of the particle and the matrix, respectively.

v = the Poisson ratio of the matrix.

¢ = the harmonic or Newtonian potential.

¥ = the biharmonic potential.

,i Or ,; = the derivative with respect to the ith or jth coordinate.

0; = stress components.

R® R® = the particle region and the matrix region, respectively.

$®, §® = the particle surface and the inner matrix region, respectively.
t, = the surface traction force.

uy; = the displacement components.

U; = the fundamental displacements.

T; = the fundamental tractions.

n; = the surface normals.

A® A® = elastic constants of the particle and the matrix, respectivefy.



A,. a,, B;, b; = the coefficients of the matrices.
i, &, P; = the field components.

&, &;, p; = the uniform field components.

i, &, P; = the perturbation field components.

CTE = coefficient of thermal expansion.
ABAQUS = a software package for FEA,

[-DEAS = a software package for mesh generation.



CHAPTER 1

INTRODUCTION

L1 AV(SiC), Particulate Reinforced Metal Matrix Composites

As a family of potentially new materials, Metal Matrix Composites (MMCs) are
defined by Feest' as "materials whose microstructures comprise 2 continuous metallic
phase (the matrix) into which a second phase, or phases, have been artificially
introduced”.

These materials have attracted worldwide attention and industrial interest in the
past three decades. The enthusiasm for research on MMCs was stimulated mainly
because of:

(1)  the potential for achieving materials with much higher stiffness and
strength, compared to conventional alloys, in spite of cost'>>*;

(2) the potential for achieving materials with dimensional, thermal,
envircnmental, and radiaive stability and good dynamic performance (e.g. high
transverse properties, low coefficient of thermal expansion, good properties at high
temperature, great fatigue resistance, etc.), compared to fibre reinforced plastics'~;

(3)  the potential for achieving a comprehensive understanding of the physics
and the physical metallurgy of structure-property relationships after a fair amount of
experiments and exploratory studies have been completed;

(4)  the potential for spurring the development of new processing techniques;
(e.g. recently, there have been some outstanding achievements, such as spray technique

in processing particulate-reinforced metal matrix composites*?, the technique of



plasma-activated sintering which densifies powder metals and ceramics in seconds').

Specific important applications of MMCs occur in industries such as aerospace,
automobiles or robotics, where the use of stiff and lightweight materials can help to meet
service criteria. Among those potential MMCs, silicon-carbide particulate reinforced
aluminium metal matrix composites Al/(SiC}, are becoming competitive. For example,
in Japan the research on Duralcan particle-reinforced aluminum brake rotors and
callipers, aluminum brake disks, and pads coated with a plasma-sprayed aluminum-matrix
composite for use in Toyota’s AXV-IV experimental ultralight weight commuter vehicle
has demonstrated the potential of MMCs®.

The Al/(SiC), MMCs are made from two basic ingredients: aluminum alloys as
metal matrices and silicon carbide particles as ceramic reinforcement.

Aluminium production essentially involves two sequential processes'®!!2: The
Bayer process and the Heroult-Hall process. The Bayer process prepares pure alumina
from bauxite ores by digesting tne crushed and powdered bauxite with a strong caustic
soda solution (Na(OH)) at temperatures up to 240° C. After filtration, dilution and
cooling, crystals of the trihydrate Al(OH); are precipitated and deposited. Then, the
trihydrate is calcined at 1200° C to remove the water and to leave the alumina.
Aluminium is produced by electrolysis of alumina in a bath of fused cryolite. The
process was devised in 1886 by Herouit and Hall. The cryolite consists of aluminium
fluoride and sodium fluoride with alumina solubility of 4-20 wt% at a temperature just
below 1000° C. The process uses carbon as a cathode and also carbon as an anode

electrode to avoid the strong corrosion of e fluoride soluion. At the anode, pure



oxygen gas 1s liberated, which immediately reacts with the carbon anode material.
Aluminium is deposited as a liquid at the cathode. The detailed description can be found
in standard text books (e.g. '*"). Since the invention of the Heroult-Hall process, the
aluminum industry has rapidly grown from a world production of about 100 tons per year
in 1890" to a present production of over 4 million per year in the U.S. alone and to the
usage of an average of 87 kilograms per car in North American-produced automobiles
currently'. This historical increase in consumption is partially because aluminum exhibits
a superior low density of 2.8 g/cm?®, (which is only about one third of that of carbon
steel'® at 7.9 g/cm’), and the abundance of the aluminum element in the earth’s crust®,
which is important in industries such as aerospace and construction, where its corrosion
resistance is also a factor. To improve its properties, such as strength, durability, good
strength/weight ratio, or castability, etc, conventionally aluminum is alloyed with a small
amount of other elements, (e.g. copper, silicon, magnesium, zinc, etc.). For example,
6061 aluminum alloy, the metal matrix this thesis is concerned with, belongs to the
aluminum-magnesium-silicon-zinc alloy system (1.0 Mg, 0.6 Si, 0.2 Zn)'®. Generally,
magnesium reduces the alloy density and increases corrosion resistance. Zinc hardens the
alloy by a result of the precipitation of an intermediate semicoherent phase based on
MgZn,, and silicon with magnesium forms a coherent pre-precipitate based on Mg,Si.
The actual mechanisms of hardening are internal strain hardening due to the coherent
strains, chemical hardening due to solute-solvent bonds, or hardening due to a dispersion
of non-deforming precipitates, after appropriate heat treatment.

The silicon carbide particle, the reinforcement which usually has a-SiC structure,



also offers a low density of 3.2 g/cm’, in addition to its relatively high modulus, 450
GPa, compared with 70 GPa for aluminum alloy. These factors favour the use of SiC to
improve alloyed composites as a dispersion hardener.

To make discontinuously reinforced Al/(SiC), MMCs from aluminum alloy and
silicon carbide particles, four fabrication routes may be used; powder metallurgy,
squeezing casting, molten metal mixing, and the spray deposition method, all of which
have been clearly described in Lloyd's review paper on MMCs®. The greatest advantages
of these type of materials are their cost-competitive character and near isotropic
properties’? when compared to the continuously reinforced MMCs. They can be further
easily manufactured by conventional forming processes, (e.g. forging, rolling, extrusion,
drawing, machining)

Since heat treatment also benefits the mechanical performance of MMCs, the
Al/(SiC), may be treated through different thermal paths. The material on which the
present modelling is based is 6061-T4 Al/(SiC), MMCs, which typically is subjected to
the solution and quench procedures. (They are typically solutionized at 540 °C for 4
hours and quenched to and aged at room temperature for at least 16 hours, i.e. T4

temper aging.)"’

1.2 Reséarch Focus in Present Work
AJ/(SiC), MMCs, like other MMC systems, exhibit low density, nigh strength and
high stiffness. However, their primary disadvantage is;j ti_fét/ﬂ'ley suffer from low

ductility'®**, especially when a high volume fraction of reinforcement is involved. Similar



effects have been observed in copper-based a'loys and MMCs™", and is closely related
to the fact that the discontinuously reinforced composites are not homogeneous and the
material properties are sensitive to the properties of each constituent, the interfaciat
properties, the geometric shape and distribution of the reinforcement, the thermal
treatment, etc. The static-tensile mechanical responses of MMCs are a consequence of
the details of their microstructures. Experimental work shows that the factors that
influence the mechanical properties are:

() the volume fraction of reinforcement;

(2)  the interparticle spacing (or particle distribution);

(3)  the shape of the reinforcing particle;

(4)  the size of the reinforcing particle.
Also, the effect of thermal treatment on overall properties needs to be considered. All
these and the properties of the particle can affect the effectiveness of the reinforcement.

In other words, inhomogeneity affects almost every aspect of the physical and
mechanical responses of MMCs, including stiffness, strength, thermal stability, stress
states and plastic flow during loading, extension and fracture, so that to optimize the
properties of the promising materials, a full understanding their role is essential.

In Chapter 2, the previous work done in this area is reviewed.

Chapter 3 is devoted to the study of general wiatrix-particle interactions and stress
concentration around an isolated spherical particle (or inclusion) by means of Eshelby’s
theory. It visualizes the stress fields numerically from the formulation of displacement

constraints, in which an aluminum matrix and SiC particle are involved. The interface
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characteristics are examined focusing on polar, circumferential and radial perturbations
of individual components (i.e. Von Mises stress, mean stress, normal stress, normal
strain and strain energy). The constraints by SiC, rigid inclusions and void inclusions on
the aluminum metal matrix are considered respectively to emphasis the nature of the
functions of particle stiffness nature on stress concentration. The partcle size effect is
stressed in terms of derivation of the stress and strain fields. Also, the stress gathenng
capability of an inclusion with a large range of mechanical properties is investigated.
General discussion on interactions and stress concentration is emphasized.

Chapter 4 presents a new approach to determine the stress distribution around an
arbitrary-shaped inhomogeneity by applying Betti’s reciprocal principle. The
computational formulation and numerical procedures are derived. Primary physical
concepts and major steps are elucidated. As a demonstration, the interaction traction
forces around a cubic SiC particle are calculated. Further, a comparison with FEM (finite
element method) results is carried out.

Chapter 5 deals with the study of interactions and stress concentrations in
Al/(SiC), MMCs by FEM with appropriate meshes in order to:

(1) explore the general usage of FEM in micromechanics;

(2)  describe the unit cell model of Flower and Watt;

(4)  verify the results of FEM with classical field theory at 2 low volume
fractions of (SiC), reinforcement.

Chapter § is also concerned with the elastic-plastic behaviour of the matrix. The

plastic relaxation due to the non-linear behaviour of material at the 0.2% strain yield



point of the composite is studied and it is found that a lower stress carrying capability
is calculated in MMCs than that predicted by classical elasticity at the same total strain
level. The analysis takes up the further accumulation of piastic deformation in MMCs,
and consequent changes in stress concentration at increasing strain levels, The rest of the
chapter discusses the general effect of stress concentration on ductility in MMCs,

Chapter 6 deals individually with the key parameters (particle shape, distribution,
size, volume fraction) mentioned above, and how these affect the overall mechanical
properties in 6061-T4 Al/(SiC), MMCs, including the stress-strain curve, material yield,
and fracture.

The effect of volume fraction on stress concentration is considered by changing
reinforcement densities from 5.0 vol. % to 25.0 vol.% in 5.0 vol.% steps. The stress
contour plots are illustrated in Von Mises stress, effective hydrostatic stress, normal
stress, normal strain, strain energy and effective plastic energy densities. The overall
stress-strain curves are predicted. The results for the low ductility found at high volume
fractions of reinforcement are discussed.

The effect of particle shape on stress concentration and static mechanical response
is also treated. The comparisons at 1.94 vol.%, 6.18 vol.% and 25.0 vol.% with
spherical and cubic reinforcement are illustrated. The change of overall mechanical
properties and ductility due to particle shape is stressed.

This is followed by the study of the particle distribution, where the particle
clustering is concerned with two aspects: tensile clustering (i.e. clustering along the

loading direction) and transverse clustering (i.e. clustering normal to the direction of the



tensile loading). The stress concentrations are illustrated. The significance of avoiding
particle clustering during metal manufacture is emphasised due to its consequences of
high triaxial stress leading to interfacial bonding failure. Also the determination of the
relationship between mechanical behaviour and particle clustering is made.

Chapter 7 takes into account the thermally induced stresses due to the severe
difference in coefficients of thermal expansion (CTE). The comparison of overail
mechanical properties between model materials with thermal stress and without thermal
stress is carried out in order to characterize the microstructural interactions on a more
realistic basis.

Chapter 8 gives the conclusions from the present work.

Chapter 9 provides comments on possible further work.



CHAPTER 2
LITERATURE REVIEW

The Role of the Second Phase Particle

The unity of opposites philosophically embodies the role of the second phase
particles in metal alloys and MMCs. On one hand., the existence of second phase particle
provides harder and stronger materials. As a result, the more reinforcement added into
the metal matrix, the stiffer the composite gets. On the other hand, second phase particles
initiate material damage. The ductility degrades. Each of them works against the other,
but in fact the two are coupled in an unsplinterable unity. The compromised integration
of the two determines the rules for their use.

To trace the development of practice and theory, the research on the role of the
second phase particles is roughly trifurcated into different but closely related branches.
They are:

(a) the role of the second phase particles in ductile fracture, in which first-hand
experimental observations play the most important role in understanding the mechanisms.
The means include the simple tensile test, transmission electronic microscopy, scanning
electronic microscopy, X-Ray diffraction, non-destructive testing, neutron diffraction,
acoustic emission and chemical analysis;

(b) the role of the second phase particle in material hardening, in which one tries
to explain the hardening mechanisms physically. The application of dislocation theory
characterizes this branch;

(c) the role of the second phase particle on local stress concentration, in which

one relates inclusion and inhomogeneity problems to conventional continuum mechanics.



Progress here correlates to advanced achievements in applying mathematics.

The following is an outline,

2.1  The Role of the Second Phase Particle in Ductile Fracture

It appears that Joseph Henry, of electro-magnetism fame, recognized as early as
1822 that metals fracture prematurely by a process of internal necking when extended by
stretching. Tipper® (1949), when she investigated the ductile fracture on mild steel,
identified fracture as the most interesting of the properties of solids. She found that the
internal holes almost certainly originate by the drawing away of the metal from a non-
metallic inclusion. The major role played by particles in cavity initiation was later
demonstrated by Puttick™ (1959) who tested polycrystalline copper containing small non-
metallic inclusions at the room temperature. By cycling the load level above and below
yielding, controlled cavity growth was obtained. His observations on sections, which are
cut parallel to the tensile axis, revealed that the extensive internal cavitation always
initiated at inclusions either by separation of the particle-matrix interface or by fracture
of the inclusions themselves. Once nucleated, the cavities elongate along the tensile axis
as shown in Fig. 2.1. The holes expand under the triaxial stresses in the neck and
coalescence in a macroscopic fissure.

In the 1960’s, the literature concerned with ductile rupture proliferated and
established that cavities nucleate at inhomogeneities in metals. There were mainly non-
metallic inclusions, precipitates or artificially induced strengthening dispersions. For

example, Fig.2.2 shows the typical dimple structure on the fracture surface of a steel
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containing very large carbides. It is clear that fracture occurred by the growth of internal
cavities and that cavity nucleation occurred around the carbide particles. In other words,
tensile fracture of metals involves three stages: (i) void formation: (ii) void growth; and
(i1i) void coalescence in the neck of a tensile specimen starting from inclusions.,

The influence of second phase particles on fracture has been emphasised in all this
literature. Among excellent works on the topic, Edelson & Baldwin™ (1962) reported
correctly the effect of volume fraction on ductile rupture by examining copper-based
composites. They concluded that all second-phase particles as well as voids were found
to embrittle the alloys in a manner which depended upon the volume fraction of second
phase only, and further was independent of particle size, shape, and composition.
However, much evidence has proven that the particle size'™!7** 23 ghape™-*t4,
composition?%? interfacial strength®2**"%* and distribution of the second phase®-*"-*
also strongly affect the material ductility. Despite underestimating the importance of these
secondary factors, Edelson and Baldwin were correct in that the particle volume fraction
is indeed the most significant factor causing ductile rupture, as shown in Fig. 2.3.
Gurland & Plateau® (1963) and Gurland & Parikh”(1969) confirmed that the elongation
to rupture depends primarily on the volume fraction of particles. They also stated that
only those second phase particles which developed a strong particle-matrix bond
strengthened the alloys.

Chin, Hosford & Backofen®® (1964) took up the influence of "temperature” on the
ductile fracture of aluminum. They found that inclusion-free aluminum was ruptured by

essentially 100% reduction of area down to temperatures as low as 77 °K, whereas, as
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shown in Fig. 2.4(2), in high purity aluminum not treated to be inclusion-{ree, the
reduction of area decreased as the temperature was lowered. These results illustrate the
degradation of ductility caused by the second phase, the brittle-ductility transition
phenomenon and the correlation of ductility with temperature. They also pointed out that
fracture of inclusion-populated materials is nucleated by the formaton of voids as the
local tensile stress exceeds the strength of the inclusion-matrix interface or of the
inclusion itself.

With respect to the thermally induced stress around particles, Liu & Gurland®
(1965) tested Al-Si alloys at room temperature by x-ray diffraction. They observed that
as silicon content increases, the condition in the silicon phase changes from a
predominantly compressive to 2 predominantly tensile state of stress, shown in Fig. 2.5.
They also found that the experimental results qualitatively agreed with some simple
elastic and elastic-plastic models. From this, two indications can at least be given: one
is that the existence of the second phase does cause residual stresses due to the difference
of the coefficients of thermal expansion; the other is that the conventional continuum
mechanics with thermal coupling can be used to give a reasonable explanation. Although
the thermally induced stresseé do not directly cause the ductile fracture, local stress
concentration caused by differences in CTE was evident.

Palmer, Smith & Warda® (1966) carefully investigated the void nucleation process
in copper sample containing dispersed silica particles by means of thin-film electron
microscopy. By changing the temperatures of oxidation, the particle size of (SiOy) can

be controlled (50 A - 5000 A). They found that voids can be nucleated on second-phase
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particles as small as 50 A, particularly at a low testing temperature. These voids formed
as small patches which spread over the surface of the particles before increasing in
length. Usually two voids appeared on each particle in line with the maximum tensile
stress applied to the specimen. Their observation also showed that near the fracture edge
many voids had extended considerably in length and grew wider than the particle so that
sideways coalescence was taking place. It was postulated that fracture was a consequence
of the stresses built up at the interface during plastic deformation, i.e. particles act as
barriers against which dislocations can pile up until the strength of the interface between
inclusion and matrix is exceeded, so that a crack forms and then grows by plastic
deformation. It is reasonable to emphasis the role of localized stress concentrations at the
particles.

With respect to the effect of a superimposed hydrostatic pressure on fracture
behaviour in general materials, the extensive classical experimental work by Bridgman®
(1964) has dominated the literature (e.g. Fig. 3.6). By increasing hydrostatic pressure,
an increasing fracture stress can be obtained and the reduction in area can improved. The
function of hydrostatic tension would be expected to have the opposite influence on
ductility. McClintock™ (1968) pointed out that in plastically deforming materials there
is a very strong inverse dependence of fracture strain on hydrostatic tension.

Other key work by Rogers® (1960), Beachem® (1963) and Ashby”-** (1966,1969)
also provided an insight into ductile rupture in two phase alloys or composites. The
*double-cup” and "cup-cone" failure mechanisms were related to "alternating slip” and

further void formation by Rogers, whereas the modes of void coalescence on “ductile
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rupture surfazes were illustrated and classified as "normal rupture” (where equiaxed
dimple are formed), "shear rupture” (where elongated dimples are recognized) and
“tearing” by Beachem. Ashby’s experiments and models were helpful in understanding
the function of the second phase in work-hardening and fracture, which will be reviewed
in the next section.

Much experimental evidence from the literature of this period has been
accurnulated and is summarized as follows:
(A) General variables affecting ductile fracture are

(a) the volume fraction of second phase particles®*%;

(b) particle size?! 717,

(c) composition of the two phase alloys or composites®2¢7;

(d) thermally induced stress™, (though it might be a second order factor);

(e) interfacial strength?242"-%,
(B) Environmental variables affecting ductile fracture are

(2) hydrostatic pressure® 4!

() temperature®-?;

(c) atmosphere (e.g. vacuum, nitrogen, or hydrogen atmosphere)®.
(C) The role of the localized stress concentration at the second phase has to be
emphasised. The release of local stress occurs in two ways™:

(a) formation and motion of dislocations;

(b) formation and growth of the microcrack.

Voids nucleate on each particle at the point in line with the maximum tensile stress
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applied to the specimen.
(D) The void coalescence is the most critical and least understood aspect of the
fracture process™.

To this point we have summarized the factors that affect ductility.

But, one fundamentally contradictory fact should be noted. As Chen et al.*™* and
Palmer et al.* reported, at low temperature the elongation was greater than that at higher
temperature, shown in Fig.4b, while the reduction in area had the opposite dependence.,
i.e. it was lower at low temperatures. Since commonly the reduction in area and the
elongation in a tension test are both used as the measure of the material ductility, i.e. the
capability of a material to undergo deformation, then the question arises: " What is a
proper measure of ductility?”

Starting from the later 1960's, various kinds of models began to emerge and then
converge to a physical picture of ductile rupture in two-phase materials as corresponding
to three stages; void nucleation, void growth and void linkage.

With respect to the void formation, there were three kinds of criteria established,
i.e. energy criterion®“>*%1% gtress criteria*-** and strain criteria®™*.

Typically, the energy criterion stated that cavitation by interface separation will
not occur unless the elastic energy released by removing the stress (or some fraction of
it) from the particle is at least equal to the surface energy created. Browns and Stobbs'
(1971) proposed a nucleation model based on this criterion in 2 combined continuum
micromechanical approach considering the incompatibility between the matrix and

particle deformation. Based on the energy calculation in and around the spherical
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inclusion following Eshelby’s theory, Tanaka®™ (1970) predicted that in 2 purely elastic
situation, the energy criterion is always satisfied for particles above a diameter of about
250 A.

This argument favours a stress criterion for large particles. Stress criteria state
that in order to nucleate cavities the interfacial strength must be reached. Ashby®’ (1966)
has discussed this and interesting variations in which  primary deformation
incompatibilities do not produce cavities directly, but initiate highly organized secondary
slip by punching out dislocation loops from the interface of the inclusion to reduce the
local shear stresses. These loops then form reverse pile-ups and can build up increasing
interfacial tensile stresses until they reach the interfacial strength when a cavity is
formed. The interfacial stress criterion was also used in Argon’s model®.

Based on the argument that a high strain concentration can be developed around
non-deforming particles in a non-strain hardening matrix, McClintock™ (1968) suggested
that cavity formation at interfaces may obey a critical local strain criterion, or alteratively
a criterion that may be a mixture of a critical interfacial shearing strain and an interfacial
normal stress.

Once 2 microvoid has been nucleated in a plastically deforming matrix, the
surface of the void is created. With continuing plastic flow of the matrix, the microvoid
will therefore undergo a volumetric growth and shape change which amplifies the
distortion imposed by the remote uniform strain-rate field. The most successful and
versatile model of this type was developed by Rice and Tracey” (1969). In their

approach, a variational principle is employed to characterize the flow field in an
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elastically rigid and incompressible plastic matenal containing an internal void shown in

Fig. 2.7. The void radii in the principal directions R1 and R3 can be related to their rates

of increase by

. Y. .. .30,
R, =R1[-—2— £;+0.56¢ 3smh(?)] 2.1

: e el 3
R,=R3[Ydé3+0.56é3sinh(%)] @.2)

where Y is the tensile flow stress of the material; o, is the mean stress; ¢, is the tensile
strain at a point remote from the void; 1, is a factor which describes the amplification
of the growth rate of the void relative to the strain rate of the matrix. The second term
relates to volume change of the void which is controlled by the mean stress. The fact that
the negative pressure controls the void growth is of physical importance, and helps to
explain why void growth is most visible in necked regions. A weakness of the one void
model is that it has ignored the influence of the continuing existence of the second phase
particle from which the void is nucleated, and the subsequent interactions between that
particle and the void.

To consider the essential features of the mechanics of microvoid coalescence,
Thomason® (1968) established a simple two-dimensional plane-strain model for a state
of incipient microvoid coalescence in a work-hardening plastic/rigid solid. The model
stated that the large transverse growth which brings about complete microvoid
coalescence begins only at incipient ductile fracture whicﬁ is caused by localised internal

necking of the intervoid matrix. Although the two dimensional model did not consider

17



the existence of the second phase, it was innovative in that it related the microfracture
process t0 a macrostress state.

Correlating the three stages and emphasising the central role of the plastic strain,
Brown & Embury*’ (1973) proposed that there exist local critical strains for the various
stages of the fracture process. The failure condition requires that the length of void,

2ry(1 +¢,), be equal to the spacing of neighbouring voids centred in the same plane,

AO 1 2 2
ef=lan=ln(l+e‘+e.)=ln( lﬁ_"f-\l;+e") 2.3)

where ¢, €, €, are the fracture, growth and nucleation strains respectively, V, the volume
fraction of the second phase, T, the void radius, A,, A, the original and fracture section
areas.

But none of these models accounted for either the particle size and shape
sensitivity of the local strain or stress states. Therefore these models cannot predict
fracture correctly under certain circumstances.

In the 1970’s, extensive experimental observations were continued. It was then
well recognized that once internal cavities are nucleated from second phase particles, they
can be plastically expanded under various combinations of shear stress and negative
pressure.

Experimenting on spheroidized 1045 steel, Cu-0.6 pet Cr alloy, and maraging
steel containing respectively Fe,C, Cu-Cr, and TiC particles of nearly equiaxed shape,
Argon et al.* (1975) determined the interfacial strength for these particles (1.67 GPa,

0.99 GPa, 1.82 GPa) by cutting sections parallel to the tensile axis and examining the
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local condition along the axis where the density of inclusions with interfacial separation
drops to zero. The interfacial stress was evaluated by a critical stress criterion, i.e.
0.=0r+Y(e"), where o7 is the local negative pressure caused by the triaxial stress at the
neck of the tensile specimen or other sources, and Y the plastic resistance in tension (i.e.
the flow stress) corresponding to the local average plastic strain, had the inclusion been
absent. Although the criterion was only suitable for spherical particles and was a semi-
quantitauve analysis, it was reasonable to recognize that a critical local elastic energy
condition is necessary but not sufficient for cavity formation. A stress criterion must also
be satisfied. Actually, Bridgman’s work had already proved this point because under high
hydrostatic pressure, the strain energy is much greater than that without pressure when
fracture happens. The observations by Argon et al.* (1975) also revealed that:

(1) When the volume fraction is small, the particles act in isolation and the
interfacial stress is independent of the particle size but depends only on the local flow
stress and local long range triaxial stress.

(2) If the particles are of uniform size and quasi-uniform spacing, the interfacial
stress becomes, in addition to the plastic strain, dependent also on the volume fraction
of the second phase, but still remains independent of particle size.

(3) The interfacial stress becomes particle size dependent orly if there are
significant local variations of volume fraction of second phase from point to point for a
given average second phase volume fraction.

These conclusions are important not only because the experiments gave the

correspondence of particle size, particle volume fraction and particle distribution with
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local stress concentration, but also because the results can be partially confirmed by other
works (e.g.'>*”™), including the finite element analysis presented in this dissertation,
though some conclusions, which are true for the conditions used by Argon, are not in
agrcement with some different experiments performed since that time. Besides, their
argument on using continuum mechanics was that when the inclusion size is the order of
a micron, the spacing of the surrounding dislocations in the high strain gradient zones
are very much smaller than the particle diameter, which can be seen in Stobbs and
Brown's work in Fig. 2.8. Therefore, at least for large particles a continuum analysis of
deformation is proper.

In 2 study of the fracture morphology with the high aspect ratio second phase
particles, Lindley et al.*® (1970) found that the fracture occurred as internal cracking in
ferrite/carbide system. They showed that the greatest incidence of cracking occurred in
carbides oriented along the tensile axis. The probability of fracture increases as the centre
of the carbide is approached and the carbide crack density increased with decreasing test
temperature. By examining the fracture surface and microstructures of aluminium alloys,
Broek™ conformed a general conclusion, i.e. slender particles have a tendency to fracture
in the centre of the particles as shown in Fig. 2.9. Comparing with the results of the
scanning electron micrograph of an iron sample by Tanaka® (1970) shown in Fig.2.10,
spherical particles lose coherence with the matrix, and tear at their interface with the
matrix. The shape effect on ductile fracture was clearly demonstrated.

Kasteele and Broek™ (1977) investigated the fracture of large second phase

particles (1-20 um in size) in advance of a crack tip of engineering aluminium alloys.
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While their focus was to study the relationships of fracture toughness with the particle
separation distance, the results of most interest to the present work are:

(1) In the case of plane strain, some void growth occurs at the cracked particles
in the immediate vicinity of the crack tip. Crack extension by ligament failure occurs
before these voids have grown very large.

(2) In the case of plane stress, the particles fail throughout the plastic zone. Some
of them develop very large voids and secondary cracks. Crack extension is a result of
merging of these microcracks with the main cracks.

A new interpretation by the present author makes use of a simple analysis in
terms of linear fracture mechanics. For plane problems, by means of Airy stress function
and Westergaard's complex variable stress formula®, the equilibrium equations can be

solved. At a crack tip, the tensile hydrostatic stresses are different. They are:

1 _1 _2 a
om=3(ox+oy+o=)-—3-(ox+o))-—3-c >

for plane stress; and

o, =%(ox+oy+a:) =%(0 £+0,+v(0,+a))=(1 +V)—§' o %

for plane strain, where "a’ is the crack length, r is distance from crack tip, ¢ the remote
tensile load. In plane strain, the tensile hydrostatic stress is (1+#) times as great as that
in plane stress. This suggests that ductile fracture of two phase materials is more or less

controlled by high negative pressure for plane strain, while for plane stress it is
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controlled by plastic strain resulting from the higher Mises effecuve stress. The 1+»
times factor in mean stress is high enough to change the fracture morphology from small
void fracture in plane strain to large void fracture in plane stress. Experimentally one
observes that in a mode I fracture K. test, the notched sample fractures in shear in the
plane stress condition, and in a brittle manner (normal orientation) in plane strain®. The
change of fracture type implies that the ductility of material is a state variable, which is
associated with not only local material expansion, but also local material shearing.
Suppose we take the plane stress shear failure as the baseline fracture condition. Then
in plane strain sample the effect of inhibiting this shear should be that a higher remote
applied stress level should be required to cause failure in the plane strain case compared
with plane stress. But in fact, a lower remote applied stress is required for plane strain.
The dominant factor is therefore not the occurrence of plastic strain in the plane stress
condition, but rather the absence of a large enough hydrostatic tension in plane stress.
The large hydrostatic stress in plane strain causes early failure, which is not seen in plane
stress.

Summarizing the literature during the 1970’s, the experimental evidence indicated
that:
(A) The stress concentration at interface of the two phases depends on the size,
volume fraction, and distribution***® of the second phase;
(B) Void growth to fracture is strongly controlled by long-range stress states®;
(C) Long range negative pressure accelerates the void nucleation*%;

(D) A continuum analysis of deformation may be proper for large particles™;
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(E) Particles with high aspect ratios generally undergo internal fracture, while
spherical particles undergo interface failure™-*®-'-*,

During the 1980's, literature™** focusing on the role of superimposed pressure
in the ductile fracture of two phase materials, contributed significantly to the further
understanding of fracture. It was recognized at that time that the nucleation and growth
of voids at particles is retarded by the superposition of pressure and the final fracture
strain increases linearly with compressive pressure®® (1983). Two phase materials may
fail in different modes: i.e. fully plastic failure, shear failure, ductile failure and brittle
failure, which compete with each other according to the stress states®** (1984,1988) to
which materials are imposed.

Since the later 1980°s, the rapid development of advanced metal matrix
composites has required investigating not only the general mechanical character of
multiphase materials, but also the individual variations in the role of the different types
of second phase on ductile fracture (e.g. for some specific MMC systems, such as
whisker or particulate reinforced aluminium metal matrix composites). These changes,
to some extent, reflect the fact that the mechanical properties and fracture behaviour of
the MMCs closely relates to many aspects of practical production of MMCs. These
include fabrication processing®®™™, secondary processing'®™%, heat treatment™-*%,
material composition™%, reinforcement selection and even their geomeui&s"-”.

To probe the essence of the process of the damage accumulation in SiC whisker
reinforced MMCs, Nutt & Dura® (1986) produced some excellent experimental results.

By means of transmission electron microscopy (TEM). they looked into microstructural
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aspects of the deformation at the whisker ends in SiC reinforced aluminum composites
with a whisker size 0.5 um in diameter and 5-10 um in length and with sharp comners.
The singularity causes intense plastic strain in the nearby matrix and leads to void
initiation at the corners, as shown in Fig. 2.12. Once voids nucleate at corner sites, thcy
tend to grow inward to the centre of the whisker. The whisker-matrix interface separates
as this growth proceeds. With increasing plastic strain, the voids eventually coalesce to
form a single equiaxed cavity approximately equal in size to the whisker diameter.
Ultimately, there are a sufficient number of neighbouring cavities to form a fracture
path®-¢, These results showed strikingly the physical picture of damage accumulation.
A similar TEM result was obtained by Lewandowski et al®® (1989) on studying Al/(SiC)p
MM(Cs, as shown in Fig. 2.13. The typical fracture paths of this type MMCs are shown
in Fig. 2.11 (i.e. failure through particles, particle-matrix interface or matrix, which
depends on particle size, volume fraction, particle shape, particle distribution, thermal
stress, composition, etc.).

With respect to the fracture behaviour of particulate reinforced aluminium metal
matrix and its correspondence with effects such as particle size, distribution, and volume
fraction, it has been experimentally showed that:

(1) Reinforcement particle cracking generally occurs first in particles which are
considerably larger than the mean particle size'>"'? (1990,1991,1991);

(2) The Young's modulus of plastically strained MMC was reduced with increase in
plastic strain, which allows a damage parameter to be identified*” (1991,1991);

(3) Fracture is usuaily initiated in particle clusters'**™ (1990,1989,1991,1991),
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because the matrix within the cluster is subjected to high levels of triaxial stress due to
elastic misfit and constraints exerted on the matrix by the surrounding particles;

(4) The composite is less sensitive to hydrostatic tension compared with the unreinforced
matrix'" (1991), i.e. the hydrostatic tension causes only a small decrease in fracture
strain, whereas it significantly reduces the fracture strain in unreinforced matenals:

(5) Microstructures of the composites affect the deformation and fracture behaviour™ ™4
(1989,1989,1991);

(6) Reaction between particles and the matrix during the processing may result in the
degradation of the mechanical and physical properties of MMCs™**™*"% (19881988,
1992,1992,1992).

The extensive and detailed investigation of discontinuously reinforced aluminium
metal matrix composites and its development of understanding of the mechanical
properties and fracture behaviour continues in the recent literature on the following
subjects:

(a) strengthening mechanisms™ 17178

(b) failure mechanisms®36¢5701971

(¢) damage initiation and accumulation®s$19.521.74.71.92.14
(d) roughness™™

(e) faﬁgueﬂ.u.m.lsa.asm.ms.m

(f) {hemlalb’ mduced Stress"n.”.143.152.175.177.173.11l.116

(g) plastic flow and creep™*'®

(h) aging r esponses>#-34-84.141.142



(i) recovery and recrystallization™
(j) composition™

(k) chemical reactions, spinel formation and their examination® 57779143

(1) the effect of hydrostaric tension or pressure'®®*37

(m) deformation™ ™1 717
(n) tensile properties™ '™
(X) other aspects 1T 1M1

However, to optimize the mechanical properties of MMCs a full understanding
of the following Guestions is still required.
(A) What is the manner of stress transfer in two phase materials or multiphase materials?
(B) What causes the embrittlement and the low ductility in MMCs?
(C) Does the high local stress concentration change the flow behaviour of matrix?

(D) What affects the effectiveness of the reinforcement?

2.2  The Role of the Second Phase in Material Strengthening

Strength is defined as the resistance of 2 substance to distortion or fracture!™
(1946). Considering the straining process prior to the fracture, to strengthen materials
implies an increase in the resistance to deformation or in the view of dislocation theory,
this resistance to dislocation movement. Conventionally, the metallurgical methods to
increase the resistance and to improve the service performance of the metals include solid
solution hardening, precipitate strengthening, dispersion strengthening, and work-

hardening. The strengthening mechanisms have been well documented by the dislocation
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theory. Among them, precipitates and dispersion strengthening are those with which we
will be concemed. Both of these hardening mechanisms involve the movement of
dislocation against the resistance provided by second phase particles. In the case of the
alloy used in this thesis, thess are either precipitates of Mg,Si and MgZn or SiC particles

in an aluminum matrix.

Fundamentally, the role of the second phase in material strengthening can be best
demonstrated by the following experiment.

While studying the stress strain behaviour in dispersion-hardened copper crystals,
which are soft crystals containing hard non-defoﬁning particles of a second phase (Si0,),
Ashby”(1966) identified a new type of work hardening not found in pure single crystals;
see Fig. 2.14. Ashby observed that the two phase matter hardens much faster than do
those consisting of a single phase, starting with the initial flow stress. The rate of this
work hardening increases with increasing volume fraction and decreasing size of
particles, shown in Fig. 2.15.

Ashby'"? (1971) proposed that this strengthening is because the two phases are not
equally easy to deform. One component plastically deforms more than the other, so that
gradients of deformation form. The gradients of deformation require that dislocations be
stored. These dislocations act as individual obstacles to slip and create a long-range back
stress to contribute to the work-hardening of the two phase materials.

Ashby developed the following new formalism to describe strain in two-phase

materials.

(A) The ’geometrically necessary’ dislocations during straining give extra work-
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hardening in two phase materials''?.

These 'geometrically-necessary’ dislocations must be generated to allow the two
phases to deform in a compatible way and to accommodate the gradients of deformation.
These are characteristic of the microstructure. Concurrently, another set of dislocations
called ’statistically stored’, supply the gross strain and are accumulated by random
mutual trapping during straining. These are characteristic of the material. The former
("geometrically-necessary® dislocations) accompany strengthening in non-homogeneous
materials, in addition to the intrinsic hardening supplied by the latter ("statistically stored’
dislocations) which occur in all deforming metallic materials.

(B)  The density of geometrically-necessary dislocation during deformation increases
with the increase of the shear strain and particle volume fraction, and with a decrease in
particle size®''?;

The stress strain curve of two phase materials shows a parabolic behaviour
because the rate of work-hardening is proportional to the square root of the density of
dislocations.

(C)  Plastic relaxation must occur locally around particles during deformation, if the
particles do not deform plastically, and if the interfaces between particle and matrix do
not fracture”.

The plastic relaxation supplying the geometrically necessary dislocations can occur
by secondary slip, which includes many mechanisms'®!”, such as cross-slip, lattice
rotation, dislocation punching, dislocation climb, even atomic diffusion at high

temperatures. The consequence is that these dislocations impede the movement of the
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primary glide dislocations. Eventually, if the local stress is highly concentrated, the
sequence leads to shear or fracture of the particle, or decohesion at the particle-matrix
interface.

Generally speaking, the process of matenial strengthening in two phase materials
is that of dislocation multiplication and their interaction with glide dislocations around
hard particles, which is followed by material failure. However, there are exceptions. For
instance, examining the fatigue behaviour in the copper-silica, Stobbs, Watt & Brown™
(1971) found that there was little or no fatigue-hardening in spite of the increase of
dislocation density during the process. It was revealed that a high density of dislocations
is a necessary condition for material strengthening, but not a sufficient condition. The
multiplication of 2 high density of immobile dislocations is of importance.

In Ashby’s model, the strengthening of two phase alloys or composites is
controlled by the generation of the ’geometrically-necessary’ dislocations during
deformation. The ’geometrically-necessary’ dislocations™-'%"-1%1%10 consist of the three
sources: primary, secondary, and multiple slip, which relate to the three processes: the
initiation of the internal stress, the relaxation of the back stress and the continuation of
the hardening, and the accumulation of the stress concentration leading to fracture. Each
corresponds to a different strain level. Consider each of these stages in more detail.

When the strair is low, the strengthening mechanism favours a shear mode or
Orowan by-passing model. The primary dislocations move by bowing between and by-
passing particles only on the primary slip plane. Each dislocation that passes a particle

by this process leaves one shear loop at the particle and a long range back stress.

29



The function of the back stress can be further explained in Fisher's model”
(1953). When a shear stress is applied, up to a certain shear stress, both the matrix and
particles deform elastically. At some critical value the matrix becomes plastic. Above it,
an increment in applied stress must be balanced by an opposing increment in the average
internal stress. The internal back stress increases with strain, giving work hardening.

Wwhen the strain increases, Fisher’s model breaks down at high back stresses.
Secondary slip dislocations are generated. For example, cross-slip favours the nucleation
of prismatic arrays. The process involves transfer of a segment of primary dislocation
onto the cross-slip plane. A dislocation approaching a particle on the primary slip plane
is stopped by the long and short range repulsive forces exerted on it by the particle. Long
range repulsion results from misfit or differing elastic constants between particle and
matrix; a short range repulsion is related to the different interatomic force-displacement
curves of the particle and matrix. The dislocation stops in a way that the net force in the
primary slip plane is zero, whereas the net force on this section in the cross-slip plane
is not zero, and the local stress does work. The prismatic loops exist as obstacles to
further dislocation glide.

Alternatively, in Ashby’s secondary slip model, the plastic stress may also be
relaxed by lattice rotation, as has been proved by experiment'® (1969) and/or by
punching out of dislocations from the particle-matrix interface. The secondary slip
dislocations stop or cut the glide primary ones to allow the cor'inuation of work-
hardening, until the nucleation stress for slip activates new slip systems. Ultimately,

when the strength of interface, particle or matrix is exceeded, interfacial decohesion,

30



particle fracture, or matrix failure occurs.

Using copper dispersion-hardened with silica particles as a prototype of two phase
alloys or composites, 2 sequence of significant literature emerged during the later 60's
and the 70’s on the investigation of the plastic relaxation, Bauschinger effect and fatigue
behaviour (e.g.’ 1901001210197 With respect to the effect of particle size and particle
distribution on dislocation microstructure, the salient observations and proposals were:

(2) Examining the effect of hydrostatic pressure on deformation behaviour of the
two-phase materials, Ashby et al.*® (1969) found that plastic zones develop around the
larger particles and that angular shape particles induce higher local stresses than spherical
ones. Hence, the application of theoretical models is limited because of the ignorance of
particle shape. Also, Stobbs, Watt & Brown®” (1971) observed that platelets of primary
edge dislocations are associated with the larger particles after fatigue.

(b) Brown & Stobbs'® (1971) revealed that clusters of particles can strongly
interact in their associated dislocation structures; see Fig. 2.16. This can be related to
modes of failure in MMCs observed in recent experimental results (e.g. *-46354.7)

(c) The slip lines around 2 particle are perturbed for a distance of up to three or
four particle radii away from the centre of the particle (Ebeling 1970). The slip line
spacing was about 400 A (40 nm) at a strain of 0.015. It was also pointed out by Brown
& Stobbs'® (1971) that a plastic zone extends about three or four particle radit into the
matrix. The slip-line spacing was about 300 A (30 nm) at a strain of 0.08.

This result is not unexpected, if we apply Eshelby’s theory®1% (1959, 1957). The

stress field will rapidly die away as 1/f at far field, which is independent of particle
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size.

In accord with the argument on the validity of using continuum mechanics in
micromechanics, the observation provided the positive evidence.

As we know, continuum mechanics can describe the deformation behaviour of a
continuous medium if the matrix deforms uniformly. Physically, we say, the continuous
medium consists of a boundlessly large number of mass points. Each point possesses a
certain characteristic. This characteristic is that the point is infinitesimal in size in the
macroscopic view, and infinite in the microscopic view, i.e. the mass point should
contain a substantial number of atoms. But how many atoms are necessary to be
described as a mass point? Is there a clear line in microstructural scale for distinguishing
the individual character using dislocation theory and the whole character using continuum
mechanics?

When the particle size is large, e.g. 10 microns is common in MMCs, the slip-
line spacing of 300 A (30 nm) may be regarded as a very small distance, being
approximately 3/1000 of the particle size. In particulate reinforced aluminium metal
matrix composites, it may be reasonable to believe that the slip-line spacing in aluminium
alloys has the same order of magnitude as in copper. This spacing ought to be the lower
bound of the smallest ’unit’ as an allowable measure of the macromechanical
deformation. If the particle size is of the order of the slip line spacing, then continuum
mechanics is not representative, and so dislocation theory is the only plausible approach.
But, if the particle size is comparable to hundreds of "units’ in size, the case is different.

The locally discontinuous jump of deformation at a slip line will be, to some extent,
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smoothed as a result of the effect of "zooming out’. Therefore, the application of
continuum mechanics in micromechanics may be proper in these situations.

Of course, the practical MMC system is very complicated, especially if other
aspects such as the chemical reaction, the deposition of spinel, and diffusion at the
interface®™ (1989) are considered. However, extracting key physical parameters is still
a proper approach to approximate the average mechanical properties. Generally, for this
purpose, dislocation theory, continuum mechanics, and statistics may all serve as the
tools.

(d) Brown & Clarke'® (1975) proposed an attractive explanation for materials
strengthening. They pointed out that two main contributions to the strength should be
taken note of, in addition to the many other strengthening effects. The first is a mean
stress in the matrix, which impedes flow by a back stress which is simply proportional
to the volume fraction of inclusions and to the applied plastic strain. The mean stress in
the matrix can be derived by differentiating the total elastic energy stored in the alloy
with respect to the plastic strain. The second contribution from the internal stresses
comes from the local fluctuating stresses about the mean value, and these act essentially
to make it more difficult for successive glide dislocations to bypass the inclusions. This
term is called "source-shortening”.

If these are important, then it is necessary to incorporate these in the constitutive
equations and flow potential used in continuum mechanics. Where the deformation
behaviour of two phase materials is concerned, the local stress concentration may

strongly affect the flow behaviour, while it is not considered in conventional continuum

33



plasticity theory in metals. For example, when a far field stress is imposed on a two
phase system with an isolated inclusion, the local stress concentration is high at the poles
along the loading direction. According to metal plasticity, the plastic flow would not be
affected by the local mean stress. This cannot be true when dislocations are highly
tangled near the interface with a high level of the mean stress concentration. The internal
stress resulting from the fluctuation may stow down or stop further plastic flow in this
region. So if possible, the fundamental study on flow potential and constitutive equations
of the metal matrix is necessary, especially when the gradient of deformation is involved.
Because as yet this new theory has not been developed, this dissertation uses conventional
metal plasticity continuum theory.

Practically, with respect to the strength of particulate reinforced MMCs, the
material hardening implies two major aspects: alloy hardening and particle hardening.

Alloy hardening involves the movement of dislocations against the resistance
provided by solid solution or precipitates in alloy matrix, where the precipitate size is
similar to the slip line spacing. In 6061 Al/(SiC), MMC, the matrix contains additions
of magnesium, silicon and a very small amount of zinc. Zinc hardens the alloy as a result
of the precipitation of an intermediate semicoherent phase based on MgZn,, and silicon
with magnesium forms a coherent pre-precipitate based on Mg,Si.

Particle hardeningr involves the movement of dislocations against the resistance
provided by the existence of the large particulates and the increased dislocation density
created during the MMC cooling process™™*_ For example, due to the difference in the

coefficient of thermal expansion (CTE) between the SiC and the Al matrix, the cooling
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process results in an enhanced dislocation density in the matrix, which is unlikely to be

recovered by subsequent aging. These dislocations act as the obstacles impeding the

dislocation slip so that the materials are strengthened.

2.3  The Role of the Second Phase Particles on Stress Concentr-tion

A review on stress concentrations by Stemberg''? (1958) pointed out that one type
of stress concentration is created by the material discontinuities, such as those due to
inclustons of, or reinforced by, materials with elastic properties which differ from the
elastic properties of the surrounding matter. When those materials are imposed into the
stress field, stress concentrations arise which determine the strain hardening and the
process of material failure. Particulate reinforced aluminum metal matrix composites
belong to this group. For instance the MMC 6061-T4 Al/(SiC), contains the hard silicon
carbide phase and the soft aluminum alloy. These two ingredients possess different elastic
properties and demonstrate different mechanical behaviours. The reinforcement can only
deform elastically, while the matrix deforms elastically or plastically depending on
microstructure and load. As a whole, the MMC is characterized by large differences of
strain and/or stress between the phases.

As an alternative to dislocation theory to model the role of the second phase
particles, continuum mechanics can be applied in a very straightforward way. This is
mainly because:

(A) Contintum mechanics is a well developed subject, which is based on a series of

physical laws defined in terms of strictly mathematical theories.
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(B)  Continuum mechanics, to some extent, compensates for some of the deficiencies
of the other two methods: experimental observations and dislocation microstructure
analysis. Experimental observations connect the study of fracture morphology and/or
overall mechanical response. Although it is best known as the touchstone for testing the
existing theories, the lack of an effective experimental means makes it difficult to directly
inspect the interactions between the two phases during straining. Dislocation
microstructural analysis provides a clear physical understanding of the material
strengthening. However, it is difficult to obtain a satisfactory description of the overall
mechanical behaviour and local stress concentration by accounting for different modes
of dislocation movement, especially when irregular particle shapes and non-uniform
particle distributions are of concern®™!'® (1969,1971).

But, as mentioned in the previous section, the application of continuum mechanics
is also limited. It is valid only if particle is large enough to consider the surrounding
matrix to be deforming contintously.

One hopes that one day there would exist a theory allowing the manipulation c;f
information between continuum mechanics and dislocation theory to predict the
macromechanical properties of MMCs. The theory should be able to provide some kind

of macro- patterns or order from the micro- chaos of dislocation movement, when the

feasibility of either theory is questioned.

Continuum Mechanics Applied to Inclusion/Inhomogeneity Problem

The study of the mechanical response of composites using continuum mechanics
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has developed from the physical interests on "inclusion” and "tnhomogeneity” problems.

Eshelby''® (1957) described these two problems as those in which the unitormity
of an elastic medium is disturbed by a region within it which has changed its form (called
the inclusion problem) or which has elastic constants differing trom those of the
remainder (called the inhomogeneity problem).

To determine the elastic state after a region (the inclusion) in an infinite
homogeneous isotropic elastic medium has undergone a change of shape and size,
Eshelby®1'%!!* presented an elegant theoretical treatment to solve for the constraints by
a series of cutting, straining and welding operations, based on the classical elastic theory
of Love'* (1927), using the point-force method (section 130 of Ref.'™). Although betore
Eshelby solutions of the equations of elasticity pertaining to the effect of change of
specific volume of inclusions have been considered by many authors, his work
represented a significant step forward in understanding these type of problem. Earlicr,
for example, Goodier'® (1937) had realized that when the temperature T(x,y.z) in an
elastic solid is not uniform, the natural thermal expansion of every volume element is
partially restrained by the surrounding material, and a state of stress exists. Robinson''?
(1951) determined the residual stress produced by 2 uniform heating {or cooling) of
inclusion and matrix due to the difference of coefficient of thermal expansion. Eshelby’s
theory for transformation problems offered the most succinct form with a sound physical
- basis and without using the complicated curvilinear coordinates. The theory is applicable
to inclusion problems with arbitrary shape but with the same elastic properties as the

surrounding material. Its greatest application has been for martensitic reactions.
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However, for the present study, the most profound breakthrough Eshelby®-#!*!*
made was that of inhomogeneity problems, in which an ellipsoidal region has elastic
constants differing from those of the surroundings. The mathematical approach was made
operable by means of the assumption of an equivalent inclusion, which possesses the
same elastic constants as the matrix. When a remote uniform stress is applied, the
inclusion works as if it undergoes an imaginary transformation strain (or stress-free
strain) while the inclusion region is mathematically cut out of the matrix. This strain is,
broadly speaking, proportional to the remote field if the uniform constraint strain in the
region is assumed. To accommodate the inclusion and the matrix, a series of squeezing
and welding operations have to be performed to reunite the matrix and inclusion. The
disturbance caused by the inclusion to the remote uniform field is then determined in
terms of the classical potential theory by releasing the reaction forces at the interface.
The theory is only applicable to inhomogeneity problems with ellipsoidal shape. The
detailed delineation of the method, calculations and results are given in Chapter 3.

Different from Eshelby's point-force method, Mura & Cheng'®® (1977) made use
of the Fourier integral to calculate the elastic field outside an ellipsoidal inclusion from
known stress-free strains®'!"® (or eigenstrains '2%1211), The advantage of this method
is that the solution may be applicable to arbitrarily distributed initial strains. Besides, the
integrands of the these integrals, unlike Eshelby’s, have no singularities so that numerical
calculations on a computer can be easily performed. Chiu'*® (1977) derived expressions
to obtain the stress field in an infinite isotropic elastic medium having a cuboidal domain

(of the same material) within which a set of prescribed uniform strains is given.
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Unfortunately, in inhomogeneity problems. the major concern is to find the “polarized
eigensrrains" from the remote uniform field, if these exist. None of these works has
given a clear relationship between them, except Eshelby™s™!'*!'* and its applications in
two dimensional problems (e.g.'™ (1961)). Actually in principle, when the medium is
inhomogeneous, it is not possible to determine the Green functions™ in a closed form
required for the soluton of an arbitrary shape region. The success of Eshelby’s
calculation is due to the special geometric shape of the inhomogeneity, in which the
"polarized” field in the inhomogeneity is coincidentally able to be written as an uniform
one. This situation is analogous to a static electric field. A dielectric with ellipsoidal
shape would be polarized uniformly in a external electric field. But when the dielectric
has arbitrary shape, the polarization distributes non-uniformly. The internal electric field
intensity only can be solved by a numerical method and/or conformal mapping methods
(e.g.(69)). Another common point of the two is that as long as a second medium is
involved, the "polarization " cannot be avoided; the amount of "polarization” determines
additionally stored energy and change of field depending on the nature of the individual
second medium, which corresponds to the change of strain energy and the stress transfer
in elasticity.

As a secondary topic in inclusion and inhomogeneity problems, the average elastic
moduli of composites materials have been investigated by many authors, and has been
reviewed by Mura'®-1! (1982,1988) and Walpole'*’ (1985). The methods commonly use-
to predict the average elastic moduli of particulate reinforced materials are (1) the Voight

approximation (1889) (the upper bounds); (2) the Reuss approximation (1929) (the lower
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bounds); (3) Eshelby’s method; (4) self-consistent method'™ (1965); (5) Hashin and
Shtrikman's upper and lower bounds. These have been explicitly described by Mura™®
(1982}, and the differences in the predicted results is shown in Fig. 2.17. These theories
may be useful when the rigorous bounds are either not known or are too far apart for
empirical interpolation.

Another topic to be considered in inclusion and inhomogeneity problems is that
of interfacial sliding and debonding. Recent works on the subject assume that the
inhomogeneity and the matrix are not perfectly bonded. Some models have been
presented. For instance, Mura, Jasiuk and Tsuchida'®® (1985) discussed the stress fields
of a ellipsoidal inhomogeneity under uniaxial tension at infinity by assuming no shear
traction at interface. Hashin'™ (1991) proposed an imperfect elastic spring-type interface.
The interface spring constants are expressed in terms of interphase elastic properties and
thickness outside a spherical inhomogeneity. Levy™' (1991) suggested that the inclusion
or inhomogeneity interacts with the matrix through a prescribed interface law which
depends on the displacement jump at the interface. However, although the interface
sliding does provide a mechanism of stress relaxation, the prescribed interface laws
should be verified by carefully prepared experiments before they can be used.

As mentioned, Eshelby’s theory for inhomogeneity problems is only applicable
for an isolated elliptical inhomogeneity. To extend the analysis to an arbitrary shape of
inhomogeneity. Fan, Keer and Mura' (1992) proposed a modulus perturbation approach,
which converts the inhomogeneity problem into a series of inclusion problems by using

the eigenstrain concept. Such an approach requires that the difference between the moduli
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of the matrix and inhomogeneity be small compared to the matrix modulus itself. In the
case with which we are concerned, particles are much stitfer than the matnx (the ratio
of Young's modulus is about 450:70). To examine the effect of particle shape on stress
distributien within, and around, a single particle subjected to an uniform remote stress
field, the above approach is tharefore excluded.

In Chapter 4, a new method developed by the author will be presented for an
arbitrary shape of inhomogeneity. The method allows the arbitrary difference of modulus
between particle and matrix, and is performed by a sequence of cutting, straining and
welding procedures, based on Betti's reciprocal theorem.

Some of the mathematical approaches used in classical elasticity as discussed
previously will be employed by the present author for the purpose of:

(1) checking the corresponding finite element method (FEM) results to confirm the
calculation accuracy and increasing the reliability of the prediction of deformation
characteristics of MMCs;

{2) understanding the function of stress transfer by an isolated particle and its relationship
to the type of reinforcement, i.e. the elastic constants of reinforcement;

(3) examining the stress concentration and discussing its influence on ductility in
materials with an inhomogeneity;

(4) calculating the stress distribution within and around a particle with arbitrary shape
in order to reveal the effect of particle shape on stress concentration and its effect on

failure considerations.

However, the understanding of the stress distribution and the deformation
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characteristics within particulate reinforced MMCs requires one to obtain not only the
fundamental insights on the interactions between particle and matrix, but also on the
interactions between particles. Dealing with a complex multiparticle system, classical
elasticity becomes inadequate. Also, the application of the conventional mathematical
analysis cannot easily be applied to the following cases:

(a) irregular geometries of reinforcement;

(b) an inhomogeneous medium;

(c) nonlinear behaviour of matrix;

(d) arbitrary loading;

(e) multiple particle arrays.

The advent of the computers and the availability of several approximate methods,
such as FEM and boundary element method (BEM), have accelerated the further
development of MMC micromechanics. Among such numerical methods, the finite
element method has been the most commonly used approach to overcome the difficulties

(a) to (e) above.

Finite Element Method (FEM) Applying to the Study of Metal Matrix Composites

Using FEM, the early investigations of the two-phase materials were largely done
using two-dimensional calculations. For example, Karisson & Sundstrom'® (1974) and
Ankem & Margolin®**'* (1982) analyzed plastic deformation in ferrite-martensitic and
ferritic-pearlitic steels, and in o8 titanium alloys, respectively. They both found that the

strain field is very inhomogeneous due to the misfit of the two phases, which agrees with
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dislocation observations (e.2.%°""). Argon, Im & Sofogu® (1975) and Thomson &
Hancock'> (1984) calculated the elastic-plastic stress field outside a rigid or clastic
inclusion. They found that the plastic zone started above the pole of the inclusion but at
a small distance from it, and that significant gradients of field components only
developed near the inclusion-matrix interface. They also noted that the development of
plastic strain displaces the position of the maximum radial stress around the intertace,
away from the pole'”’. These two dimensional calculations therefore provided some
insight into deformation behaviour when a second phase exists, but they are limited to
plane stress (a thin disc) or plane strain (an long rod) cases.

In practice, due to computation time-consumption, cost, and the computer
calculation capacity required for FEM, modelling of the actual microstructure in three
dimensions is extremely difficult. To extract key factors when studying the interactions
between particles, an unit cell model was proposed by Flower & Watt'**!*? (1988) to
simulate the tensile properties of two phase materials. The unit cell model allows the
strong interaction between particles to be considered using a reasonable number of finite
elements in a CRAY computer. This unit cell model has been adopted in the present
work.

The model was constructed to behave as it would if it were one unit in a repeated
pattern stretching out in all directions to represent an infinite medium, as shown in Fig.
2.18. A set of constrains are imposed on the surfaces of the unit. They are:

(1) the bottom surface nodes are fixed on imaginary rollers constrained in the vertical

direction but are free to move horizontally;
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(2) the top surface nodes are similarly constrained, but during deformation, they will be
displaced in the vertical direction as a single plane;

(3) the front, back and side faces of the mesh are allowed to move toward each other due
to Poisson contraction. However, each of them is constrained to remain a vertical plane
at the end of each deformation step, and the sum of all the horizontal forces applied to
each vertical plane is zero.

(4) All the shear traction vanishes at the boundary surfaces. This makes all the planes
mirror symmetry planes.

Hence, the model applies to a pattern reflected to infinity. Apart from the model,
Flower and Watt"**10145 showed that the stronger particles carry a higher stress than the
matrix, and constraints between two phases extend the high stress regions from the
particles into the matrix, along the direction of the maximum principal tensile ctress. This
produces a fibre-like stress distribution.

For AV/SiC ceramic whisker and particulate reinforced MMCs, non-linear FEM
analyses may be divided into two groups, namely elastic-plastic analysis!14.147-148.143.152
and elastic-viscoplastic analysis'¢"*%!468%.1%  Most of the literature focuses on an
investigation of the dependence of tensile properties on the matrix microstructure and on
the size, shape, and distribution of the reinforcement phase (so called "parametric”
studies). In addition, the effects of the thermally induced stresses'’**'%? and ductile
failure'*'** have also been simulated by FEM.

Using variations of the unit cell model, many FEM studies have been published.

Among them, Christman et al. "2 (1989) studied experimentally and numerically the



deformation characteristics of SiC whisker-reinforced 2124 aluminium alloys and SiC
particulate reinforced 1100-0 aluminium alloys. The FE models which they adopted are
axisymmetric or 2D plane strain unit cells, as shown in Fig. 2.19-20. The composite
material was idealized in terms of a periodic array of identical cells. For example,
Fig.2.19 assumed perfectly aligned end-to-end fibres. The boundary conditions for the
axisymmetric region, for y, and y, greater than zero in Fig. 2.19, are:

(1) shear traction rate is zero at boundaries;

(2) displacement rate along tensile direction bottom surface (y,=0) is zero;

(3) displacement rate along tensile direction at top surface (y.=b) is determined by
deformation rate;

(4) displacement rate along radial direction at the circular surface (y; =Ry) is determined
from the condition that the average lateral traction rate vanishes.

Compared with the elastic-plasic FEA model of Flower-Watt, the two
dimensional model has a similar unit cell concept and boundary conditions except that
the latter are described using variable rates. When considering the initial condition from
the static state, the two actually are equivalent. For axisymmetric models, less geometric
variation compared with the Flower-Watt model in particles and their arrangements is
possible because the particles must lie on rotation axis.

In Fig. 2.20, a plane strain unit cell is used to examine the clustering effect from
the particles or whiskers. Variations of these models have also been employed by some
others (e.g. "*1%4) (1991,1992,1992), but these models assume particles which are

infinitely long in the direction normal to the plane of the page (plane strain in 2D).
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Considering the fact that as the fibres become more aligned during extrusion and
injection moulding, and so neighbouring fibres are expected to be somewhat shifted
relative to one another, Tvergaard'™ (1990) presented an alternative uait cell model,
which is shown in Fig. 2.21. It is an axisymmetric model which uses elastic-plastic
analysis. The changes in boundary conditions were to make the edge displacements to be
compatible, i.e. u(£)=-u(n) at the outer circular cell surface, where u is the displacement
along tensile direction, £ and 5 are equivalent distances from the bottom and the top of
the cell, respectively. This FE study of SiC whisker reinforced 2124 aluminium alloys
with the same aspect ratio (5-6), volume fraction (13%), and identical heat treatment
conditions as in Christman’s papers predicted a lower stress-strain response than these
predicted by Christman. Christman’s model predicted values about 40% higher than those
values found experimentally. In additior, the results'* showed only a slightly higher
stress level predicted for rigid fibres than elastic SiC fibres. This is not easy to test by
experiment. Shi et al.’2 (1992) have used the model to deal with the effect of thermally
induced stresses on the tensile properties of MMCs.

Fig. 2.22 shows three dimensional models applied by Levy et al.'***" (1990,
1991), for aligned and staggered particle arrays. A problem with this work is that the
boundary conditions used are not clearly spelled out. Also the mesh is coarse at the fibre
ends. They claimed that FEA can be used for accurate prediction of the tensile stress-
strain behaviour of composite using the experimentally observed mechanical properties
of the matrix and the reinforcing phase as the starting point, if the two models are used

at the same time to serve as the upper and lower bounds, provided that the thermally
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induced stress is also considered.

Another three dimensional model was proposed by Hom™* (1992) for a further
FE study of SiC whisker reinforced 2124 aluminium alloys, shown in Fig. 2.23. In the
unit cell, only one-eighth of a circular whisker is modeled. which actually is a
modification of Christman’s'!"*? and Tvergaard's™ simulations. Hom's one-eighth of
a circular whisker has been applied in the case of the staggered and aligned
configuration of fibres.

Other papers have used two dimensional modelling of actual microstructures by
Wang et al.'*® (1993) and Brockenbrough et al.*** (1992) following the earlier method of
Karlsson & Sundstrom'®® (1974). However, one foresees that with continuing
development FEA will allow actual microstructure modelling in three dimensions so that
more accurate field information on deformation characteristics and material failure can
be acquired.

In general, the above FEA works on MMCs have quantitatively predicted the
correct trend of the deformation characteristics and failure behaviour in MMCs. In
accord with the application of continuum mechanics in FEM, their common
characteristics may be summarized as follows: (2) A continuum theory of definite
deformation, i.e. the Langrangian description of distortion is adopted; (b) The material
yield is measured by Von Mises yield potential;(c) The plastic deformation is governed
by the Prandtl-Reuss flow law, i.e. the direction of flow is the same as the direction of
the outward normal to the yield surface; (d) a combination of iteration scheme and

incremental method of numerical techniques is employed to monitor force balance or
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equilibrium is monitored at any stress state. (¢) The MMCs are assumed to have perfect
bonding between the SiC particles and aluminium alloys.

With respect to the material concerns, (f) the whisker or particulate reinforcement
is usually presumed to have a cylindrical shape in either two- or three- dimension
models; (g) only the influence of the stress and strain concentration in the matrix on
material failure is considered; stresses in the particle have been considered.

The objective of the present FE work has been described in Chapter 1. The
differences from the above literature will be that:

(1) the stress concentration within particles will also be considered in additon to the
deformation characteristics in matrix, based on the experimental fact of frequent particle
cracking;

(2) a modified Flower-Watt 3D model will be adopted to predict the dependence of
tensile properties on particle shape, volume fraction, distribution and residual stresses in
MMC of 6061-T4 aluminium alloys reinforced with cubic or spherical SiC particles.
(3) further work will be focused on:

.the function of stress transfer between particle and matrix;

.the ductility and damage relationships to the hydrostatic tension and the plastic

distortion at local states;

.the plastic relaxation and the accumulation;

.changes in stress-strain behaviour due to the thermally induced residual stresses

and their affect on strengthening mechanisms.
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CHAPTER 3
STRESS CONCENTRATION AND INTERACTIONS

I. Basic Role of Hard Particle in Metal Matrix Subjected to a Tensile Loading

3.1 Introduction

One type of stress concentration may be generated due to the matenal
discontinuities’’’, when materials, such as SiC reinforced aluminium metal matrix
composites, are subjected to a stress field. This stress concentration reflects the
interactions among the different phases in alloys or composites.

To reveal the basic functions of each phase, the simplest prototype that can begin
to represent a complicated alloy or composite system may be the one in which an isolated
ellipsoidal inhomogeneity is embedded in an infinite domain. Within the ellipsoidal
region, the elastic constants differ from those of the remainder (called the inhomogeneity
problem).

Dealing with this inhomogeneity problem, it is well known that the most
successful theory is due to Eshelby and is now called the classic approach (also see
Chapter 2 (2.3)).

This approach®!%!!* relies on the validation of uniform constraint strains within
an ellipsoidal inhomogeneity when a uniform remote stress field is applied. In tumn, the
calculation of the constraint displacement field was achieved by Eshelby in an elegant
closed form.

Motivated by 2 need to clarify the basic functions of hard-particle reinforcement

in composite materials and, in addition, to provide an absolute calibration on concurrent



finite element analysis, the described work in this chapter attempts to get some revelation
and insight for matrix-particle interactions by examining in detail the results calculated
using the classical approach.

The study is mainly devoted to answering the following questions:

(1) Howcan the stress and strain distribution around an isolated spherical particle be
visualized instead of leaving the classic fundamental approach as an analytical form?

The stress and strain concentrations will be visualized by means of the numerical
integration and the ABAQUS and ABAQUS post- processing software. The individual
field variables (such as Von Mises stress, mean stress, normal stress, normal strain and
strain energy) are examined in order to reveal the general interactions between the two-
phases as predicted by Eshelby’s equations.

(2)  What are the features of the matrix-particle interface characteristics ?

The study reveals the interfacial character of polar, circumferential and angular
stress concentrations near the inhomogeneity in the aluminum metal matrix.
(3)  How does the misfit of the elastic constants affect stress transfer ?

The stress carrying capability of the inhomogeneity will be measured using the
ratio of the tensile stress carried by the inhomogeneity and the remote uniform tensile
stress.

(4)  Does the size of the inhomogeneity change the stress concentration?
In terms of the derivation of the elastic field, the size effect on the stress

concentration is to be determined.
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3.2  Visualization of the Stress Concentrations

3.2.1 Materials and Load
The present model consists of a SiC spherical inhomogeneity and an infinite
aluminium matrix medium, whose elastic constants are shown in Table 3.1. The uniform

far field has been assumed to be a tensiie stress 70.0 MPa (or 0.1% tensile strain).

3.2.2 Basic Relations

When a uniform far field stress is imposed onto a material in which an ellipsoidal
inhomogeneity is embedded, stress concentrations arises near the inhomogeneity due to
the misfit of elastic constants. In accord with Eshelby’s analysis, the perturbation (or
constraint) field may be calculated by introducing the concept of an equivalent inclusion.

This concept of the equivalent inclusion denoted that the inhomogeneity problem
may be converted into a phase transformation problem as long as the inhomogeneous
region is ellipsoidal. In Eshelby's method, the stress concentration generated by the
existence of the inhomogeneity can be expressed in an equivalent way to that generated
by an imaginary inclusion which has undergone a phase transformation but with the same
elastic constants as the matrix. These equivalent 'phase transformation’ strains, or
eigenstrains, are directly related to and decided by the uniform far field.

In turn, it is well known that Eshelby has developed a sophisticated approach for
solving the phase transformation problem. This approach involves a series of the cutting,

squeezing and force releasing procedures. The cutting process allows the inclusion to
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undergo the stress-free transformation without considering the constraint from the
surrounding matrix. The squeezing process recovers the perfect bonding between the
inclusion and the matrix. The force releasing indicates that a body layer force is exerted
(or is released) on the interface and it generates the perturbation field, which can be
calculated by Love's point force theory'®.

In the simulation, the following basic relations will be used.
(1) The relationship between ’phase transformation’ strains and the far field;

These "phase transformation’ strains relate to the far field in the form of:

& r=AeA; A:L; g:lM (3.1)
k-k")a-k 3(1-v)
and
e/ T=Be' B=—B B . -2 4-5v 3.2)
(r-p"B-p 15 1-v

where e is the volume change per volume (=¢,, +ex+¢5,) in the uniform far field; e'4;
the deviatoric strains in the uniform far field; k* and k the bulk moduli of the
inhomogeneity and the matrix, respectively; x° and u the shear moduli of the
inhomogeneity and the matrix; v the Poisson ratio of the matrix.

) The constraint displacement field, i.e.:

r 1 T
= Py W iyp=———Py ¢
T 16mp(l-v) £ T gt T
wp(l-v) B 3.3)
1
Y= |r_r’|d" ’ ¢—
fv vlr_rfl

where ¢ is the harmonic, or Newtonian, potential;  the biharmonic potential; p;* the
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surface tractions (p," =Aepa'0;+2ue,". N is Lamé constant of the matrix); r the vector
of the field point, and r” the vector of the force point.
3) The relationship for the entire elastic field in the matrix:

The entire elastic field in the matrix consists of the constraint field and the
uniform far field. To write the displacement, strain and stress fields individually, they
are;

(a) Displacement field;

Byouy =€ X4, () B9

(b) Strain field;
€00~ it G-

(c) Stress field.
Pitoy=k (Eoy ~€*) B8+ 2u(e e’y 3.6

(4)  The relationship for the stress field inside the inhomogeneity.
Similarly, in the inhomogeneity, the elastic field may be written as:
(a) Displacement field;
By =€ X € i,
(3.7)
eiy=ae’ ; e';(m=|3e";'

(b) Strain field;

_,A [ (3.8
€.y ~Ci +Ciftin) )

(c) Stress field.
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P,;,-g,,,,‘fk.(G(f,.)*eA)BU*Zp'(e’;(m)—c’g) (3.9)

or

Pyny=k(€m- T+ 8 +2p(e’c - Teel) (3.10)
It should be noted that the stress and the strain field inside the ellipsoidal inhomogeneity

is uniform.

3.2.3 Programming

The overall programming has been classified into three parts shown in Figure
3.14, namely preprocessing, field calculation and postprocessing.

Block 1 i3 the preprocessing part. A proper three dimensional mesh has been
formed by IDEAS software shown in Figure 3.1a, in which the particle is geometrically
defined as a unit radius sphere, with the origin at its centre. The number of the nodes
is 2952 in the mesh. Each node in the model is a field point by which the displacement
field is calculated (though it is not the only means to get a field point). Because the
inclusion is symmetric, only the first quadrant of the field has been considered.

In the second part, the subroutines of MATTRANS, READIN, INTEGRAL, DIS
AND PRINT determine the numerical procedures. MATTRANS operates the input
information such as material properties, particle geometry and far field components. It
also calculates the equivalent transformation strains and stresses, and the constraint
uniform strains in the inhomogeneity. READIN locates the field points by transferring

the coordinates in a one-to-one manner, connecting with the original mesh. The kernel

54



parts of the field calculation are INTEGRAL and 12 FUNCTIONS which collaborate
with each other to obtain the derivatives of Newtonian potentials and the biharmonic
potentials. The displacement field is calculated from the subroutines DIS1, DIS2, and
DIS3. The results from PRINT are sent to calculate the elastic fields of strain, stress,
effective stress (Von Mises stress), and strain energy. In order to use the facility of
ABAQUS software, i.e. calculating the elastic field variables, the present simulation
inputs the displacements as the three potentials attaching with the original mesh. An
ABAQUS input file has been generated to obtain the complete information of the elastic
field.

The third part, i.e. the postprocessing (Box 2), is to visualize the elastic field due
to the misfit of the inhomogeneity and the matrix. The visualization has made use of the

ABAQUS postprocessing software.

3.2.4 Field Disturbance

Significant perturbation has only been developed near the matrix-inhomogeneity
interface due to the misfit of the two phases. This disturbance may be demonstrated by
the contours of the field variables of Von Mises stress {or the effective stress), the
hydrostatic pressure, the normal stress, the normal strzin, and the transverse stress.
(2) Von Mises stress (or the effective stress)

In metal elasticity and plasticity, the effective stress is a measure of distortion in
material, in which the effective stress is defined as: g, =[(0,-02*+(05-05)*+(a5-6,)]*I2,

where ¢,, 0,, 03 are the principal stresses. Its contour plot is illustrated in Fig. 3.1(2)&(b)
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(in the units of Pa, i.e. N/M?). The results mainly show the following:
(1) The SiC particle carries higher effective stresses than the aluminium matrix;
(2) The highest value in the matrix is located along the pole a small distance away
from the interface a small distance;
(3) A butterfly type of low stress region has been developed at an angle of about
50-60° degrees from the pole.
These results reflect the stress carrying capability of the inhomogeneity and imply that
the aluminium matrix will yield first along the pole and a small distance away from the
interface. In addition, SiC hard particle reinforcements will be distinguished from soft
particle constituent composites in their stress concentration patterns, which ultimately
determines the different failure mechanisms in the materials.
(b) The hydrostatic pressure
In continuum mechanics, the hydrostatic pressure is a measure of a mean stress
state, which is defined as: -Va(g, + 05+ 03). It directly relates to the specific volume change
whereas the effective stress responds to the distortion at the local state. The hydrostatic
pressure is usually not considered to play a significant role in metal yielding. Its contour
plot is illustrated in Fig. 3.2 (in the units of Pa), which shows:
(1) In the spherical SiC particle, the tensile hydrostatic pressure (or mean stress)
is higher than the value of the far field;
(2) The greatest tensile hydrostatic stress occurs in the matrix along the pole

at the interface.

The stress transfer to the inhomogeneity is again demonstrated. However, what
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is distinguishable from the other contour components is that the largest mean stress
concentration occurs at the interface, which may play a very important role on the

interface detachment in two-phase materials.
{¢) The normal stress (S22)

The normal stress here means the stress along the tensile direction (S22), whose
contour is shown in Fig. 3.3. In fracture mechanics, S22 is a key factor that determines
whether materials fail or not, depending on the stress intensity at a small interfacial
crack. The contour plot of this field vanable indicates that:

(1) The SiC particle carries a higher tensile stress than the aluminium matrix;

(2) The highest value in the matrix is located along the pole a small distance away

from the interface;

(3) Lobe regions of low normal stress exist at the side of particle.

The stress transfer to the SiC particle is evident. However, on the other hand, the

inhomogeneity does function as 2 stress raiser within the matrix, which makes it more

susceptible to fracture.
(d) The normal strain (E22)
The contour of the normal strain (E22) acting in the tensile loading direction is
illustrated in Fig. 3.4 (in the units of m/m). This shows that:
(1) The SiC particie deforms less than the aluminium matrix;
(2)  The highest magnitude of normal strain is located in the matrix along the pole at

a small distance from the interface;

(3) A butterfly type of low strain region is formed at an angle of about 50-60°
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degrees from the pole.

These results have shown a natural consequence that the constituent with higher
elastic constants has the higher resistance against deformation, while in matrix the local
disturbance would be the source of the considerable change of the dislocation
microstructure along the pole.

(e) The transverse stress (S11)

The contour of the transverse stress, which is the stress normal to the tensile
direction, is illustrated in Fig. 3.5 (in the units of Pa). This shows that:

(1) The SiC particle bears a compressive stress in the direction normal to the

tensile loading;

(2) The contour in the aluminium matrix exhibits the highest transverse tensile
stress along the pole at the interface and the greatest compressive stress at the
mid-line circumference (the equator) normal to the loading direction;

(3) The magnitude of this perturbation is minor compared with that of the normal

stress.

Having the compressive stress in the SiC particle reflects the constraint reaction
from the surrounding matrix. This is because, when subjected to the tensile loading, the
aluminium matrix (with high Poisson ratio) deforms more laterally, so that to
accommodate the common interface the particle resists the deformation and so exhibits
the compressive behaviour. In addition, the high triaxjality at the polar interface is
escalated by the tensile stresses in all three principal directions.

In general, within the spherical SiC particle, the constraint and entire stress and
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strain fields are uniform whereas the field disturbance is generated in the matrix and dies
away rapidly from the interface, according to Eshelby’s analysis, which has been
demonstrated by the contours of the individual field vanable.

To quantitatively elucidate the interface characteristics and the stress transfer to
an inhomogeneity, the next two sections will highlight the variations with orientation and
position of the interfacial stresses, and make an estimate of the stress carrying capability

of the spherical inhomogeneity as a function of its elastic constants.

3.3 Interface Characteristics

3.3.1 Geometry Definition

Low stress gradients far away from, and large gradients near, an inhomogeneity
have been demonstrated in the previous section by applying Eshelby’s analysis. In order
to measure such stress concentrations around a spherical inhomogeneity, we define the
following three variations in analogy with a globe representing the earth:

1) Polar characteristics, which represent the distribution of the relative elastic
field along the axis parallel to the far field loading direction;

2 Circumferential (latitudinal) characteristics, which represent the
distribution of the relative elastic field in the plane of the equator;

(3)  Angular characteristics, which represent the distribution of the specific
elastic field at the interface along a longitudinal line changing in angle from @ to 90°

degrees from the pole.
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Here, the relative elastic field means the ratio of (F-Fg)/Fy where (F-Fp is the
difference between the local and the far field values (called the "perturbation”), and F,
the far field value. The specific elastic field means simply the ratio of the local and the
far values, i.e. F/F,. The elastic field variables include the effective stress, the mean
stress (or the tensile hydrostatic pressure), the normal stress, the normal strain, anc the

elastic energy.

3.3.2 Calculation Procedures

As mentioned in Section 3.2.3, obtaining the elastic field is mainly a process of
finding the displacements using Eshelby’s analysis, and then making use of the ABAQUS
software to acquire from the displacement field the local elastic values, such as the
effective stress, the hydrostatic stress, the normal stress, and the normal strain.

These values, which are given from the ABAQUS output, are attached with the
corresponding coordinates. The calculation for the relative elastic field follows the
definition in Section 3.3.1. However, the calculation of the angular characteristics will
apply Eshelby’s analysis again nght at the interface to avoid the inaccuracy of the
ABAQUS calculation at the interface. The formula from reference"® for calculating the
constraint strains at the interface in terms of the dilatational and deviatoric parts of e,

are!



ef et _l l+v 1 1-2\",1-”
w0 @ 3T oy
1 i T T
€' eous =€ ‘wim ™ 1o e'npan-e nn-einn, (3.11

+31(;—f:)e‘;:nfztbu-%%e T(ngx,-%bu)
where n; is the outward normal of the inhomogeneity, » the Poisson ratto of the matrix,
T represents the phase transformation terms, ’ the deviatoric terms, and © the constraint
terms. Afterwards, the elastic field may be acquired by means of Equation (3.5).
Equation (3.6) and the corresponding definitions of the field variables.
Several drafting programs have been developed to illustrate the stress

concentration in different orientations.

3.3.3 Interface Characteristics

Fig. 3.6 shows the polar perturbation of the elastic field, where r represents the
field point distance from the origin and a is the radius of the spherical particle. The field
disturbance demonstrates the strong fluctuation of the elastic field near the interface.

One striking result from Fig. 3.6 is that all the relative elastic field variables,
except the elastic energy, die away from the interface in the almost same relative stress
Or strain concenmaton when the field point is located at a distance greater than one
radivs of the particle away from the interface. This is in spite of the severe difference
in the stress or strain concentration pattern near the interface.

Specifically, Fig. 3.6 shows that:



(1) A dramatic perturbation of the tensile hydrostatic stress occurs at the interface, which
is about 2.11 times larger than the far field level. This perturbation dies away from the
interface very rapidly compared with any other components.

(2) The other perturbations at the interface in sequence are strain energy (0.89 times),
normal stress(0.67 times), normal strain(0.2 tmes), respectively, which are not the
maximum perturbations of these individual components.

(3) Except for the tensile hydrostatic pressure, the relative maximum perturbations of the
elastic field have the ranked sequence of strain energy(1.52 times at 0.2a), normal
stress(0.8 times at 0.11a), normal strain (0.57 times at 0.2a) and Von Mises stress (0.49
times at 0.3a) from particle interface, respectively.

(4) Eventually, the stress and the strain perturbation field vanishes at the rate of 1/ to
Zero.

What does the illustration present us in a practical sense ?

Of course, a straightforward inference is that yielding would first occur at about
0.3a from particle. However, consideration of the stress concentration makes it confusing
to decide which component can be used as the most suitable measure for the damage
initiation. Should it be the normal stress or the tensile hydrostatic pressure or the
effective stress or a combination of these ? This doubt is present because the stress
concentration of the tensile hydrostatic pressure is much higher than that of the other
components, In fracture mechanics, it is commonly believed that the fracture may be
determined by the stress intensity factor (or the normal stress intensity factor) for the

case of an existing crack. But, in the hard particle reinforcement composite, the stress
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around a particle does not always approach infinity as the trend of 1A/t would indicate.
Can we still use the stress intensity factor to measure the damage initiation {or void
initiation) from the stress concentration? Even if we are able to decide the stress intensity
factor by some method, for example, by the 1A/t curve fitting, the physical meaning is
very vague due to the different patterns of the stress concentration of the individual field
variables. Fig. 3.6 supports the proposition that the tensile hydrostatic pressure plays an
important role in the damage initiation (or void initiation) in two-phase materials.

Actually, the damage initiation is complex and is unlikely to be determined by
only one field component. For instance, the stress state is uniquely defined by the three
invariants and the three principal stress directions. If the damage initiation is determined
by the stress state, it would depend on multiple factors. The different criteria for void
initiation have been reviewed in Chapter 2. Among those, the stress and strain criteria
are experimentally based. The consideration of the energy concentration is of interest in
this present analysis.

Consider the elastic energy concentration. According to the derivation by
Dieter'®, the total strain energy can be split into a term depending on change of volume
and a term depending on distortion. In the present work, it will be expressed by the mean

stress and the effective stress as follows.

1 1 2
Ufﬁozmq-s—pod (3.12)

where U, represents the elastic energy. The first term is related to the change of volume,

the second term is related to the distortion; o, is the mean stress (or the tensile
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hydrostatic pressure), oy the Mises effective stress. In accord with the formula, we
consider two situations, the far field and the local field at the interface, to compare the
energy variation between the two energy terms in 2 system comprised of an aluminium
matrix and a spherical SiC particle.

By substituting the elastic constants of the aluminium matrix into the formula
(k=68.6 GPa, =26 GPa). The first term becomes 7.3%10"%0% ., and the second term
becomes 6.4 X 10207,

(a) The far field

For the far field, SINCE Oy =0yyo/3 and o.q=0,y, respectively, where o,y is the
tensile stress to which the system is subjected. The ratio of the two far field terms is
0.126 (about one eighth), i.e. the energy generated by the volume change is much
smaller than that generated by the distortion.

(b) The elastic energy at the interface

At the interface, the first term increases to 7.85X10™%(0,y0)* ("' Onecen | toca™
3.110p0 | - =1.0370,,0), while the second term is 5.42 X 107%(0,,0)* (- Outr} 1ocas =0-9201t | or
=20.920,,0). The ratio increases to 1.446. The energy generated by the volume change
increases rapidly as the interface is approached. At the interface, it exceeds the distortion
energy.

The above analysis suggests that in the homogeneous matrix subjected to uniaxial
tension, the energy generated by the distortion dominates, whereas in the two-phase
system the energy generated by the volume change would also play a very important

role, especially when th;particle is much stiffer than the matrix. Practically, this implies

64



that the determination of the ductility of the two phase materials should not ignore
considering the local concentration of the tensile hydrostatic pressure because of the
energy generated by the volume change.

Fig. 3.7 presents the calculated circumferential perturbations in the relative elastic
field of the effective stress, the normal stress, the tensile hydrostatic pressure, the normal
strain, and the strain energy. it shows that:

(1) All the perturbations die away from the interface monotonically. The size of the
disturbance is about the radius of the spherical SiC particle.

(2) Negative perturbations characterize the circumferential elastic field concentrations of
the hard particle reinforcement.

(3) The rank of the relative perturbations is in the sequence of the hydrostatic pressure,
strain energy, the normal stress, the normal strain, and the effective stress.

Fig. 3.8 illustrates the angular variation, on a longitudinal line along the interface,
of the relative perturbations in the specific elastic fields of the effective stress, the normal
stress, the tensile hydrostatic pressure, the normal strain, and the strain energy. It is
noted that at angles from 0° to about 40° the elastic field concentrations of the different
variables are scattered rather than varying together in the same direction as a group, i.e.
the concentration factor for different components changes from 0.9 to 3.1 in this system

of an aluminium matrix and a spherical SiC particle. Beyond 40° through to 90°, they

decrease together as a group.
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3.3.4 Dependence of the Interfacial Stress Concentration on Elastic Moduli

To emphasize that the pattern of the elastic field concentrations depends on the
elastic constants of the inhomogeneity, two extreme cases have also been considered: a
rigid sphere and a spherical cavity.

For the case of the rigid sphere, the longitudinal (or angular) character is
illustrated in Fig. 3.9. The elastic field variables examined include the effective stress,
the tensile hydrostatic pressure, the normal stress, the normal strain and the elastic
energy. This angular character is similar to that for the case of the SiC sphere, i.e. this
pattern is scattered up to 40° degrees.

What is different is that the perturbations are stronger, for example, the
perturbation of the tensile hydrostatic pressure rises up to about 2.8 times as large as that
of the far field at the interface, while for the case of the SiC sphere the perturbation is
2.11 times. Note that the stress concentration does not approach infinity as one might
think due to the extreme rigidity of the sphere (or the severe discontinuity of the
materials at the interface).

For the case of the spherical cavity, the longitudinal character is shown in Fig.
3.10. It is completely different from that of the rigid sphere and the SiC sphere. What
is distinctive is that:

(1) The highest positive stress concentration occurs near the equator instead of along the
pole.
(2) The perturbations of all the field variables near the equator, except for the strain

energy, approximately match each other, i.e. they are not scattered. The highest elastic
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field concentration is that of the strain energy at the equator.

The former feature, in (1), implies that the difference in the stress concentration
pattern would produce a different failure mechanism in the two-phase materials
depending on the type of the inhomogeneity, if we regard a cavity as the extreme of a
soft inhomogeneity. It is noted that whether or not the plastic behaviour of the matrix is
considered does not affect these results because the plastic deformation always starts from
the pre-deformed elastic field, and failure initiation occurs when whatever critical state
of the stress and deformation is exceeded. For the case of the spherical cavity, the failure
initiates at the equator.

The latter, in (2), infers that for the case of the sphcrical cavity any stress
component may be used to measure the stress concentration without large difference by
choosing the effective stress component, the normal stress component, or the tensile
hydrostatic pressure component, whereas for the case of the hard sphere the selection of
the given stress component leads to a different measure of the stress concentration. The
reason for the highest strain energy occurring at the equator is that both the tensile
hydrostatic pressure and the effective stress are a maximum at the equator at the
interface.

These results have practical significance for the nucleation and growth of voids
near hard particles in MMCs:

(1) at the interface with perfect bonding, the local stress state would cause void initiation
at the poles of the particles along the line of loading.

(2) for the growth of these voids once they are created, the local stress redistribution
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after void initiation and during the void growth will tend toward that shown in Figure
3.10, and the potential for void linking will be due to the high dilatation energy (or the
high triaxiality ) and the high distortion {or the high effective stress) near the equators
of the growing voids.

These explain why in Al/(SiC), MMCs the void is commonly nucleated along the
pole at the interface, while void linking usually occurs at a large angle from the pole (i.e.
from the tensile loading direction).

To >ptimize the ductility of the hard particle reinforced composites, it is suggested
that one should minimize the overlap of the tensile pressure field from neighbouring
particles to avoid the strong triaxial stress at the pole (i.e. avoid particle clustering along

the line of loading).

3.4  Stress Carrying Capability of Particle

In hard particle reinforced metal matrix composites, the stress transfer from the
matrix to the particles is mainly determined by the misfit of the elastic constants between
the two phases. In designing alloys and particulate composites, the questions of how
effective the particles are at transferring load to themselves, and thereby providing
reinforcement, is of interest.

The following attempts to get some insight on the dependence of the stress

transfer on the elastic misfit based on Eshelby’s analysis.
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3.4.1 Definition

To measure the stress transfer to the particle in the inhomogeneity problem
subjected to a tensile loading g,,,. the stress carrying capability of particle is defined as
the ratio of the normal stress in the particle to that at the remote field, i.e. the

ratio=(0,, | waere) Oyyo-

3.4.2 Derivation

The expression for the stress carrying capability of a particle has been derived by

the present author into the following form:

o,
—-—(1 +¢A)+ (1+l3 B)

o 3
(3.13)
_1(d+) p= 2 4-5v A= k*-k B= B-p
3(0-v) 77 151 T (k-kDe-k (w-p)B-p

where all the symbols have been defined previously.
To obtain these equations, consider the uniform elastic field within a sphere by

means of Eshelby's analysis. These stresses may be written in the form of Hooke's law:

=k (e B +2u"(e; (3.14)

e
™ )
where the constraint strains are associated with the far strains and the equivalent *phase

transformaton’ strains, which are:
| T

€ —geT - e = v o T_ A o LIT_pt4 .
em=ae’ ; ey,=Pel ; e’=Ae” ; e =Be; 3.15)

Substitute Equation (3.15) into Equation (3.14), and the relationship of the
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stresses and the far field strains is obtained straightforwardly:

cmm=k'(l-—aA)e“'6q+2p'(14.[33)8”'0_ (3.16)

and the tensile stress within the sphere becomes:

=k*(1+ A, {1+ 1A 3.1
o, =k"(1 aA)e®+2p°(1+pB)e’ (3.17)
Further, the relationship between the far field strain and the far field tensile stress

can be determined by making use of the following:

0”0=ke“+2pe’;;
O=ke*+2pe’s (3.18)

O=ke4+2pe’s

Note that e’,,*+e’ A +e’ A =0. Hence, we have

ed=p0 . A Oy (3.19)
3k Y 3
Therefore, Equation (3.13) is obtained simply by substituting Equations (3.19)

into Equation (3.17).

3.4.3 Dependence on the Elastic Constants
To evaluate the dependence of the stress transfer on the elastic constants of the
two phases, we investigate the formula of the stress carrying capability, Equation (3.13).
In order to emphasise the effect of the stiffness, assume that the Poisson ratios of
the two phases are the same. Later, it will be shown that the effect of Poisson ratio of

the particle is minor at the high ratio of the stiffness (E'/E). Note that k=E/3(1-2») and
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pw=E/2(1+). Equation (3.13) is simplified to:

_°w_=_h:[1+a E-E ],25' 1+B_i] (3.20)
E 3E (E*-E)B-E

If the Poisson ratio is chosen as 1/3 { as that of the aluminium matrix). the further

degeneration of the form (3.13) gives:

., 2 [Z]E]
" (1]

or if it is assumed that x=E'/E, one gets:

fix)=—p - 9x(2+3x) (3.22)
o, (1+20)(8+7%)

where f(x) represents the stress carrying capability as a function of the ratio of the
stiffnesses.

Consider some specific cases, which are x=0, 1, and oo. The particles
correspond to those of the extremely soft, the identical, and the rigid compared with the
elastic constants of the matrix. The values of the stress carrying capability are
respectively zero, one and 27/14. Physically, these results indicate that
(1) the extremely soft particle is too soft to carry stress;

(2) the constraint by the surrounding matrix to the identical stiffness particle disappears;
(3) the stress transfer does not reach infinity when the particle is rigid.

Generally, the stress carrying capability increases with an increase of the stiffness
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of the particle.

However, how is the stress carrying capability affected by the rate of increase of
the stiffness of the particle ?

Consider the change in terms of the derivative of Equation (3.22), which may be
derived as:

@)= 9[16+48x+41x2] (3.23)
(1+2x)*(8+7x)°

where f'(x) represents the increase rate of the stress carrying capability of the particle
via the elastic misfit of the two phases.

Again, consider three cases at x=0, 1, and <, in which the rates are 2.25, 0.46,
and 0. The results denote that at a large ratio of the misfit, the stress transfer can only
be increased marginally by continuously increasing the stiffness of the particle, while at
a low ratio of the misfit, the increase of the capability at stress transferring to the particle
increases considerably with an increase in the Young’s modulus of the particle.

In order to also consider the influence of the Poisson ratio on the stress transfer,
Equation (3.13) is used to express the stress carrying capability of the inhomogeneity and
graphics algorithms have been developed to illustrate the influence. Note that the elastic
constants of the matrix are assumed to be those of aluminium.

Figure 3.11, which plots the relationship between the stress carrying capability
and the ratio of the Young’s moduli, represents the stress carrying capability of a hard
particle, where E and E, are the Young’s moduli of the spherical particle and the matrix,

respectively. The ratio between the Young's moduli alters from one to ten.



It shows that the stress carrying capability of 2 hard particle does monotonically
increase with the increase of the Young's modulus ratio, i.e. E"/E. This increase appears
10 be a roughly parabolic curve. At a high ratio of Young's moduli. the stress carrying
capability of z hard particle does not gain much by further increasing the stiffness of hard
particles, whereas at the low ratio (e.g. 1-2). the stress transfer depends strongly on the
misfit, i.e. the capability of the stress carrying capability increases dramatically. Beyond
a ratio of atout 6, the gain in stress transfer is relatively minor. Practically, this means
that in order to find a ’optimum’ reinforcement, a very high stiffness of hard particles
is not always necessary, but rather a reinforcement with both stiffness and lightness is
required.

Another feature of the stress transfer to the hard sphere is that the stress carrying
capability changes only slightly with Poisson ratio as shown in Fig. 3.11, especially at
the high ratio of Young’s modulus.

Fig. 3.12 represents the stress carrying capability of soft particles, where the ratio
of the Young’s moduli, E/E, varies from zero to one.

Similar to Fig. 3.11, Fig. 3.12 shows there is an increase of the stress transfer
with an increasc of the ratio of Young’s moduli. However, what is different is the
sensitivity of the increase to the Poisson ratio of the particle. At the low ratio of Young’s
moduli, the stress carrying capability of the particle strongly depends on the Poisson ratio
of the particle. The higher the Poisson ratio, the higher is the transfer of stress to the
particle. An interesting inference from the results is that even if the stiffness of the

reinforcement is slightly lower than the matrix, the stress transferred from the matrix
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may still be greater than that within the far field matrix when the Poisson ratio of the
reinforcement is higher than that of the matrix. For example, if for whatever reason the
uniformity of the elastic constants within a material is changed, and if the Poisson ratio
of the disturbed region is higher than the remainder (the stiffness may remain the same
or be slighiy changed), strengthening of the material may be achieved.

Furthermore, there is another interesting measure of the gathering capability of
an inhomogeneity. Similar to the definition of the stress gathering capability, the
gathering capability for strain energy density may be defined as the ratio of the strain
energy density within the inhomogeneity to that at the far-field. It can be proven from
Eshelby’s theory that the strain energy density gathering capability may be written as the
following formula:

SENER , _ x(1-x) _2(1-x)?(32+112x+105x)
SENER,  (1+2x)(8+7x) (1+2x)*(8+7x)°

if it is assumed that both the matrix and the inhomogeneity have the same Poisson ratio
(equal to 1/3) and that the variable x represents the ratio of the Young’s modulus of the
inhomogeneity and that of the matrix, E/E (i.e. the ratio of Young’s moduli). This factor
varies with the misfit of moduli as shown in Fig.3.13. The transfer of the strain energy
is zero in the cases of the rigid particle and the equivalent cavity, whereas the strain
energy will be equivalently transferred to the particle which has matrix properties. In all
other cases, the strain energy density will be lower in the particle than that in the far
field. This obviously implies that whenever there exists a misfit of material moduli, there

is a step in the stored energy at the interface. It must be remembered that the stored
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energy is the product of the stress and strain. If particle fracture is to be a failure

mechanism, then it appears that a substantial part of the energy loss driving the failure

must come from the surrounding matrix.

3.5  Size effect

In the following, it will shown that the constraint stress concentration is scaled
by the size of the spherical inhomogeneity, i.e. that the local constraint stress and strain
is the same at a field point r, and at a field point r, if r,/a, =r,/a, where:

(1) The field point r, is 2 point in the matrix in which a spherical inhomogeneity with
the radius a, is embedded.
(2) The field point r; is a point in the matrix in which a spherical inhomogeneity with
the radius a, is embedded.

Consider a sysi=m in which a matrix containing a spherical inhomogeneity is
subjected to a far field. Assume the radius of the sphere is a and that the inhomogeneity
has different elastic constants from the matrix. According to Eshelby’'s analysis, the
calculation of the constraint field can be converted into an equivalent phase
transformation problem (or the i-clusion problem). The equivalent “phase
aansformation™ strains (or stress-free strains) may be obtained from the far field, and the

constrairt strain terms may be written as:
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= 16np(l-v) Pix w‘"” 4-:: anplt d)

(3.23)

=[ lr-r'ldv; 6= [—

ir=r'|
where ¢ and y are the Ne*vtonian potentials and biharmonic potentials, r is a field point,
r’ is a point within the volume v.

Let us examine the scaled feature starting from the derivatives of the potentals.
Note that the coefficients are the same for any system if the only difference is the size
of the inhomogeneity.

In the system, at the field point r, the strains may be expressed using the

derivatives of:

KAt e [f lr-r’lde A

where v is a volume of a sphere in which the radius is a and the boundary equation of
the sphere is x,2+x;2+x;,2=2a%

Consider the biharmonic potentials first. Assume t=r/a and t'=r'/a, i.e.
t=t(x,/a,x,/a,x,/a) and t’'=t'(x,'/a,x,'/a,x;'/a), so that the boundary equation of the
sphere becomes t,°+t,>+t,°=1. The forms are converted into:

¥ = [ f lat-at’ |a3dvc] =[a‘ f je-¢/ ldvo] (3.25)
Akl ikl

Yo Yo

where v, is a spherical volume with 2 unit radius.

If we define a normalized function ¥,(t), i.e.
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Wo0)=[ |e-¢la, (3.26)

Yo

we obtain

o, af3y afdn 33 0
e _af % 3f3 afon 5[ By 3.2
¥ g [a ‘”0(0].11&1 ¢ [ar,. &i(a"j a‘f[axt a‘tt & X ]]]] |

Since dt/dx;=dt/dx;=0t,/0x, =0t /dx,= 1/a, the above strain terms eventually may
be written in the ratio of the distance of a field point and the particle radius, that is to

say,

‘l’yu=

o)
a:,.azja:,a:,] L .28

a

Equation (3.28) verifies that the fourth-order derivatives of the biharmonic
potential¢ are scaled by the radius of the sphere; namely, for any value of the radius, the
derivatives are decided only by the ratios of the field coordinates to the sphere radius.

Similarly, for the Newtonian potential terms

03 ar 1

¢ =| ———-——dv =|a dv (3-29)

N Ty [ . et ]
° H o r
where v, and a have been defined previously.
A normalized function ¢4(t) is defined as follows;
. _
0= o (3.30)
vy I1*7 .

By substituting this definition into the second-order derivatives. We get:
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54 90® ]] (3.31)

o, 3
(2 2 T
du a0, a{ &, ar,(az, a,

Again, because dt,/dx, =dt/dx,=1/a, the derivatives of the Newtonian potentials

may be written as:

a%°m] (3.32)

bu™ [ dr,r,

r
- —

Equation (3.32) verifies that the second-order denvatives are also scaled.

Recall Equation (3.23), i.e.

e, Y r, __1 7
Ty Vi g P P 523
1
w:fvlr-r'|dv; ¢=fv Ir r'|dv

in which the constraint strain field is expressed by the derivatives of the two potentiais.
Hence, the constraint strain field is normalized by the size of the irhomogeneity.
The practical meaning of this is that the stress and strain perturbation around the particle
is determined by the ratio of the field-point distance and the particle size and the misfit
of the elastic constants.
(Note that with respect to the constraint displacement field, the size of the
inhomogeneity does not scale the value. Actually, the displacement field is amplified by

by a factor of the radius a for the same distance-to-radius ratio.)
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3.6  Suramary

The elastic field around a SiC sphere within the aluminium matrix has been
visualized by means of computer simulation applying Eshelby's model. The general
interaction between the two phases can be summarized as:
(1) SiC particles carry higher tensile stresses than the aluminium matrix.
(2) All the stress and strain perturbations in the aluminium matrix are developed near the
interface, and eventually they approach the far field at a rate which is proportional to
/7.
(3) The triaxial stress exhibits the strongest perturbation and compared with any other
components it has the highest relative concentration along the pole at the interface.
(4) Matrix yielding would first occur along the pole a small distance away from the

interface.

By examination of the matrix-inhomogeneity interfacial stress characteristics, it
is found that:

For a hard particle, all the highest relative stress concentrations in the aluminium
matrix are along the pole, though the degree of the concentration is different for different
field variables. For the soft particle, the highest concentrations are near the equator. This
indicates that there would exist different failure mechanisms with different types of
particle reinforcement.

With respect to the causes of interfacial detachment, the analysis shows that the
elastic energy consist of two terms: (2) that generated due to the specific volume change;

(b) that generated due to :he distortion. The consideration of the detailed results suggests
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that in the homogeneous matrix subjected to uniaxial tension, the failure may be
determined by the distortion energy (or the effective stress), while in the two-phase
composites the tensile hydrostatic pressure also plays an important role on the material
failure, especially when the volume fraction of the reinforcement is high.

With respect to the dependence of the stress transfer on the misfit of the elastic
constants between the two phases, the results show that:
(1) The stress carrying capability increases monotonically with the increase of the ratio
of the Young’s moduli;
(2) The increase rate of the stress carrying capability is low at the high modulus ratio,
but high at the low modulus ratio. These infer that it is not always necessary to obtain
the effective stress transfer by choosing the very stiff reinforcement.

Finally, it has been shown that all the stress and strain perturbation fields are
scaled by the particle size.

However, the work in this chapter is only that from the simplest prototype for the
MMCs, in which the interaction between the particles, the plastic behaviour of the matrix

and other aspects, have not been considered.
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CHAPTER 4
STRESS CONCENTRATION AND INTERACTIONS

II. A New Approach Applicable to Arbitrary Particle Geometries

4.1 Introduction

Inhomogeneity problems™!'*™ have been well defined as those in which the
uniformity of an elastic medium is disturbed by a region within it which has elastic
constants differing from its own. The determination of the stress concentration at an
inhomogeneity, when the system is subjected to a far-field stress, is directly applicable
to the role of the second phase particles in strengthening and in fracture initiation in two-
phase materials and particle reinforced metal matrix composites (e.g. SiC reinforced
metal matrix composites in the present work).

In the past few decades, advances on this subject have been manifested by many
significant theoretical and experimental works. For instance, Eshelby® "™ presented
an elegant theoretical treatment to reveal the elastic constraint resulting from an
ellipsoidal inhomogeneity, based on Love’s point-force theory'.

However, Eshelby’s inhomogeneity theory®®-1"1™* is limited in application because
it is not able to deal with these problems in which the inhomogeneity has a shape other
than ellipsoidal. His method requires the assumption of uniform stress-free strains, which
would not be found in non-ellipsoidal particies, and finding closed forms of Green
functions'® which is difficult for non-ellipsoids. It should be noted that the models
produced from the disiocation theory provide a clear physical picture, but they are based

on experimental observation and analysis for systems with spherical particles only.



For the case of SiC particulate reinforced aluminium metal matrix composites, the
particles are angular in character. The particle shape directly affects the matenal
strengthening, failure and stress distributions. Neglecting shape seriously weakens the
modelling of the behaviour of this material. Fan, Keer and Mura'® (1992) proposed a
modulus perturbation approach, which converted the inhomogeneity problem into a series
of inclusion problems by using the eigenstrain concept. But, it requires that the difference
between the moduli of the matrix and inhomogeneity be small compared to the matrix
modulus itself. In the case with which we are concerned, the particles are much stiffer
than the matrix; the rato of Young's moduli is about 6:1. To examine the eftect of
particle shape on the stress distribution within and around a single particle subjected to
an uniform remote stress field, the method of Fan et al. is therefore excluded.

The motivation of the present work is two-fold:

a) At 2 fundamental level, to study the interactions between the matrix and an arbitrary
shape of particle.

b) At an application level, to provide an alternative method to solve the inhomogeneity
problem without using the finite element method (FEM) in which a large number of
elements are required to simulate the infinite matrix condition, especially when a high
level of singularity in both the particle shape and material discontinuity is involved. A
further application of the method is that it can be used as a verification method for other
numerical results.

The approach in this chapter for arbitrary-shaped inhomogeneity problems

combines boundary integral equations with a sequence of cutting, straining, and welding
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procedures to numerically acquire stress and strain distributions at the inhomogeneity.
Physically, the strain misfit is considered as the driving force to cause the stress
concentration when the system is subjected to a far-field stress. The approach allows an
large difference of modulus between particle and matrix. Also the effect of the

inhomogeneity shape on fracture initiation will be discussed in general.

4.2 A BIE Formulaticn For Three-Dimensional Elastostatics
4.2.1 Description of the BIE

Generally, the boundary integral equation method consists of the transformation
of the partial differential equations, descriti~g the behaviour of the unknown inside and
on the boundary of the domain, to an integral equation over the boundary.

In the case of the elastostatics, these partial differential equations are the
equilibrium equations, which manifest the force balance at any local state. The BIE states
that once the complete description of the boundary conditions, i.e. both the traction and
the displacement on the boundary, is given, the displacement and the stress fields inside
the boundary at any point are then uniquely determined.

However, what is the most important is that the BIE is a direct means for
computing unknown boundary data from known boundary data. For instance, as shown
in Fig. 4.1, a region R® is enclosed by two surface areas, S, and S,®. If on the S,®
surface the displacements are given while on the Sz““J surface the traction forces are
given, the BIE may be used to decide the traction on the S;,* and the displacement on

the S,%, and the behaviour of the unknown inside fields may be solved afterwards with
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the complete boundary data.

The advantages of the boundary integral equations have been summarized by
Lachat'! as followrs:
(1) The sysiem of equations resulting from discretization of the boundary integral
equation is smaller than that obtained by. for cxample, the finite element method;
(2) The field equations are satisfied exactly everywhere inside the domain.

In addition, it is worth reiterating that the numerical solution of these equations

is performed on the boundary alone and if values at interior points are required, they are

calculated afterwards from the surface data.

4.2.2 Formulation of the BIE

In this part, Lachat’s notation'® is adopted. The body is divided into two rcgions,
R™ and RO, i.e. the inhomogeneity region and the matrix region, cach of which has
different elastic constants, shown in Fig. 4.2.

Some corresponding mathematical descriptions on three dimensional clastostatics
can be defined as follows:

The displacement field u;® of R™ is taken to be any function satisfying the
equilibrium equations (if body forces are zero);

oo, &
o,lu ’]=0

&

4.1)

for x € R®, in which x represents any field point with the coordinates of x,,x,,x;, where

o;[u™] is the stress field corresponding to u® (or u,™,u,®, u,®) .
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At a point x on the surface of R,

12 =0 fu ™)) @2
n®(x) is the outward normal to R® at x; and 1¥(x) is the waction on the tangent plane.
At a point on the interface between subregions R® and R®, the displacements
should be continuous and the reaction forces of the traction should be the same in
magnitude but with the opposite sign, if perfect bonding is assumed;

u®)= «P)

@.3)
B = -1(x)

According to the theory of the boundary integral equation, which can be derived
from the divergence theorem, the behaviour of the unknown inside and on the boundary,

is:
e @U@+ [ TPy 0)ds,= [ U @0y 0)ds, @.9)
s® 5®

In the formula, U;¥(x,y) are the elementary solutions of the displacement at the
field point x for the point load applied at a source point y on the boundary. Physically,
it represents the displacement in the ith direction produced by 2 unit point body force in

the jth direction, which is;

3} - (1 +V(h) f (k (x[—y‘)(xj_y})
Uy snz‘*’(l-v"")r‘e-h (o @9

where E* and »® are the elastic constants of R™, ris the distance between x and y, and

&; is the usual Kronecker delta.
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The displacements can be differentiated according to strain-displacement
relationship to obtain strains; these in tumn are transformed through Hooke's law into
stress. The traction along an arbitrary surface S*' within R* are piven by equation (2).

such that the fundamental traction T,®(x,y) for three dimension is given.

l.ll
et o w,, (Y _aW® (x;=y) v &~y X5,y ) dr (4.6)
e auu-v‘“)r’%l : m{"‘ 0.)_1.;2 K "’_r_H“ N m"a——ﬁl_ﬁlam}

When the field point x is a boundary point, the Cauchy principal value of the

integral on the left side of Equation (4.4) is taken, and the coefficient of ¢,*' gives the

form of;

g @=lm [TPGds, @.7
=t 5

L}

The well-known result for flat surfaces is that ¢;¥(x)=5;. When the surface is not flat,

the value of ¢;¥(x) may be found by
¢ @=- [ TPy)as, @.8)
<S>

where the principal value integral on S is denoted as <S>, i.e. S-S, when the size

parameter ¢ is taken in the limit to zero.

When the field point x is an interior point, ¢;*(x)=4;, an expression for the

dispiacement is written as:
uf"’(x)= - f Tff)(x,)’)u;k)(y)ds,* f UL"(x-y)ff"’(y)dSy 4.9)
s® s®

Similarly, in the region R®, the matrix medium, the behaviour of the unknown
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inside R™, (outside the inhomogeneity) and on the boundary can be expressed as:
e @+ [ TPy 0)S,= [ U 0)ds, (4.10)
50 5@

The components of U 2(x.y), T;"x,¥), ¢;°x), o;{u®], u® are the fundamental
displacement, the fundamental traction, the Cauchy principal value, stress field in the
tensor form, and displacement field in the vector form, respectively. The elastic constants
are those of the matrix. However, what is substantially different is that the region R® is
an infinite domain. Practically, the boundary operation of the above equation is difficult,
since the remote fields exist and no known data is available for the inhomogeneity-matrix

interface. The following approach offers a concise method for solution.

4.3 The Approach to the Inhomogeneity Problem wita Arbitrary Shape of the

Inhomogeneous Region

Consider an infinite solid, shown in Fig. 4.2, which has elastic constants \®, u®
inside a region bounded by a closed surface S® (the ’inhomogeneity’) and elastic
constants A®, x® in the region outside S® (the 'matrix’). S® and S® are attached and
perfect bonding is assumed. In order to provide the convenience in the analysis, the two
are regarded as being separable.

The aim is to find the elastic field everywhere when the stress is required to
reduce to the constant value p;* far from S®, which encloses the arbitrary form of the
inhomogeneity.

The problem may reduced to the determination of the elastic field produced by
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the strain misfit of the two phases at their interface by the following series of steps:
(Fig.4.3 provides a simple illustration of the process.)
Step One (cutting):
The solid is cut mathematically into two parts, the inhomogeneity and the matrix,
shown in Fig. 4.3(a). The solid is now in the unstressed states.
Step Two (straining):
Suppose that the remote uniform stress p,* is imposed throughout the medium,
i.e. within both the inhomogeneity and the matrix. The strains in the matrix are related
to the stresses by Hooke's law,
P =A®e*5,+2p"et
while the strain inside the surface of the inhomogeneity may be expressed as:
Pt =A\Me®5,+2uMe,”
where e* and e;* are the remote uniform strains, i.e. the trace of the strain tensor
(volume change rate ef=e,*+e,*+e,*) and the strain components, whereas e*
(=e,,°+ex°+25,") and e;® are the uniform strains created by the remote stresses p;*
within the inhomogeneity.
The process can be shown in Fig. 4.3(b) and (c). Under the same stress field, the
strain response from the two phases is different. The matrix strains more than the
inhomogeneity does if the inhomogeneity is stiffer. The corresponding strains in the

inhomogeneity can be expressed by the remote uniform stresses:
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Consequently the difference of the strains between the matrix and the
inhomogeneity makes the interfaces of the matrix S® and the inhomogeneity S™ separate.
Fig. 4.3(b) illustrates the straining process in both the matrix and the inhomogeneity
relative to the unstrained states. Fig. 4.3(c) shows the uniform strain states after
straining. It is the misfit of the strains that produces the stress perturbation around the
inhomogeneity. These constraint fields are decided by the individual elastic constants of
each phase and the form of the inhomogeneity. This part of the analysis procedure is
called “straining”.

Step Three (welding):

Now, assume that the matrix and the inhomogeneity has perfect bonding so that
the constraint displacement of the inhomogeneity (excluding the displacement under the
uniform strains) at any point on the boundary accommodates that of the matrix at the
corresponding point (i.e. the originally attached point) to reach a static equilibrium state.
The total magnitude of the constraint displacements of the two phases at the same point
may be expressed by the difference of the strains of the two phases, i.e. G(y)=|5®(y)|

+]00G)| =1 (e;™¢;®)y;| =|4e;y;|, where §®(y) and T®(y) are the constraint
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displacements of the inhomogeneity and the matrix on the boundary. The difference of

the strains can be uniquely decided by the remote stress fields, that is,

Aoy} [(10a2p2 2@ W 0 0 oY [awaue e a o o o) Pi
Aey PO T IO R T I S I A® e g g o Pa
Segi Jl 2@ a® @@ 0 0 o] | a® @ a®a® o o o | ||
Aey 0 o 0 222 0 0 0 0 o 2™ 0 0 pa
Aey, [y} 0 0 20 o 0 0 v} 0 2u® o P
des) {1 0 0 o 0 2qu L 0 0 0 0 2u% ol
\
4.12)

Fig. 4.3(d) and (¢) illustrate the welding process. S® and S are forced to join
together producing the perturbation of the stress.

Step Four (calculation of the fields):

The process from Step One to Step Three implies that to find the perturbation
fields, one should fully make use of the given constraint conditions, i.e. the strain misfit
of the two phase at interfaces (or the given conditions of the accommodation
displacements {.(y)). The calculation of the constraint fields may be performed by the
BIE, operating on the boundary alone, which will be elucidated in the next section.

Step Five (verification):

In order to verify the approach, the criteria used are that:
(1) The displacement is continuous, which can easily be proved by the welding
process;
(2)  The reaction tractions are equal in amplitude;

During the analysis, the elastic fields are treated as the sum of the constraint

fields and the uniform remote fields. The former is calculated by the BIE so that the
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condition (2) is satisfied automatically. The latter is produced by the assumption that the
uniform stress fields both in the inhomogeneity and the matrix are equal so that the
condition is a natuial consequence. Since the elasticity accepts the superposition law, the
above condition (2) is met.
(3)  The equilibrium equations are satisfied everywhere, within both the inhomogeneity
and the matrix.

It can also be proved by the nature of the BIE and the uniformity of the uniform
elastic fields, that these automatically satisfied's'®2, Therefore, if the elastic fields
calculated satisfy the equilibrium equations, the constitutive equations, and the boundary

conditions, then this approach gives the correct results and the solution is unique.

4.4 Numerical Formulation for the Interface Data
4.4.1 Discretization of the Integral Equations

As mentioned in Section 4.1 and 4.2, the boundary integral equations are applied

on the boundary alone, which can be expressed as
e @u@+ [ TPy 0)ds,= [ UP ey 0)ds, @4.13)
s® s®

To obtain the complete boundary data, assume that the interface of the matrix and
the inhomogeneity is discretized into N (or M) small pieces of area (or planelets). Each
piece itself may be regarded as being so small that the outward normal on the piece is
approximately constant, i.e. does not change by the variation in position on that planelet.

Also the displacement and the traction can be considered as approximately uniform
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vectors. Now let us consider the displacements at the field poini x(n) on the nih planelet.
From the above formula, the displacements u(x(n)} will be determined by the whole

coniribution of the singularities on the boundary {or the other boundary data), which is
(3
cg @ )+ [ TP o), = [ UPE i 0)ds, (4.14)
s® s®

The two integrals will represent the principal integral values on the boundary, i.c.
without considering the value at the singularity point. Similarly, since the boundary has
been discretized into small enough pieces, the integrals can be written in the form of a
summation, that is,

M M
cg)(x n)uj(k)(x ) *E uj(k)(y ) f Tg"(x. ,y)dS,_=El tj(l)(y D f Ut(f)(xn'y)dsr. (4.15)
5™ me 5%

m=l

where it is assumed that the fundamental displacement and the fundamental traction
varies rapidly because of the nature of these kernel functions, which are sensitive to the
distance between the field point and the source point. It is necessary to consider the local
integration of both the fundamental functions separately using the other sub-integrals.
The two sub-integrals consist of the fundamental functions, which are the given
functions. Hence, the values of the subintegrals on each planelet may be known as the
coefficients of the unkncwn displacement and the unknown traction on the corresponding

planelet, that is, we may write:
o (mm= [ TP S, 3 b (mm)= [ UPex,)dS, (4.16)
s s

Therefore, the expression becomes:
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M M
¢ () + 3 @, wmyu) 5,0 =3 by () °,) @17

mel m=l

where n represents the nth field point, m represents the mth source planelet. The
integration of the coefficients will be treated in the next section.

Since the boundary has been divided into N (or M) planelets, each element will
set up three equations because of the need to represent a vector in three dimensions. The
above formula will generate 3N (or 3M) linear equations, which in detail are

M M
¢ (" W+Y a WLmu0,)=Y b Lm0,

mul mal

4.18)

M M
WP+ Y e Wmu0,)=Y b Wm0,

m=] m=l

where 1=1,2,3 and n varies from n=1 to N.
Further, if we simplify the expression into a more general form, i.e. to set u;(Y)
as the unknowns, we obtain:

M M M
3 0 M G0 3 6 mmi 0,0= 3 by om0, (1)

mal mn] mal

or in the other equivalent formula:

M M
¥ [cPm3 o raPrmPo,)=Y b my®,) (4.20)

mel mul

where J,, is Kronecker delta, i.e. when n=m, §_=1, while n#m, §_,=0.

To express the above formula into the concise linear equations, we assume
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q=n+(i-1) X N, p=m+(-1) X M, (N=M=the total number of n~des = the number
of planelets). The labels, q. p will vary from 1 t0 3N (or 3M) and represent the number
of a specific equations and the number of specific unknowns. These can be converted to

the form:

[u,)) (e, (DN
ul(z) flc)
j=1] [j=2] [i=3]] [[%D] j=1j {i=2] [j=3]{ {2
4 i-zl ia2] [a:z] @] B in2] :‘-2] 'i-zl L2 (4.21a)
j:l jz?,- i=3 H f=1 =2 j: H
£-3] i3] t-]‘ [4a(M) t-a’ [:‘-31 '5-3L (M),
=11 U=2] =3 [[ay1)] j=1] U=2) U= 51
uy(2) 52)
(430 (D))

or, the relationship between the unknown displacement and the unknown traction may

be written as simply in the form:

iy _
Avup -Bﬁ?:’

g ={n+(i-1)xN} ; p={m+(-1)xM}

{4.21b)

Later, the vector of the displacement unknowns will be written as {G} and the
vector of the traction unknowns as {t}.

In addition, the coefficients (A,®, B,™) of the linear equations may described
in detail.

(1) When i=1 and j=1, then, q=1,2,3,~,N, p=1,2,3,~,M. The coefficients of the
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unknowns of the displacement A_, and that of the traction B, are

AD=AR = (m)s, +aly (n,m)
4.22)

B(k) Bct) b(k)(n,rn)
(2) When i=1 and j=2, then, q=1,2,3,,N, p=(M+1),(M+2),~-,2M. The coefficients

of those become:

k)
AD=A%, =cBms, +alnm)

4.23)

Bm ,‘u‘,.)- u(n,m}

(3) When i=1 and j=3, then, q=1,2,3,-N, p=(2M+1),2M+2),~,3M. The

coefficients of those become:

(4] (4
A=A gutomy=C13 (M)B 1 21 () 4.24)
B (k) = gﬂ - n) (n,m}

(4) When i=2 and j=1, then, q=0N+1),(N+2),~,2N, p=1,2,3,~,M. The coefficients
of those become:
A®- Am... - ck)(m)a . (k)(m)
@ A N-nm =21 @.25)
Bm“ (Non)m_bﬂ(?(n’”')
(5) When i=2 and j=2, then, g=(N+1),N+2),--,2N, p=(M+1),(M+2),~,2M. The

coefficients of those become:

AB=AR, e om=CH M), +a ()
&) (
B B(N-n)(‘fﬂ-m) 'bz?(”»m)

(6) When i= "and]—3 then, g=(N+1),(N+2),~,2N, p=(2ZM+1),(2M +2),--,3M. The

(4.26)

-
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coefficients of those become:

A“)- A((?.mu._) “’(m)a )(n )
(3.27)
(k) ) (k)
B SONmOMem) = (’Uﬂ)

(7) Wheni=3and j=1, then, q=(2N+1),(2N+2),.3N, p=1,2,3,-- M. The coefficients

of those become:

Aq‘;) -Ag},._,,)“-cs?(mw +a;, )(n,m)

(4.28)
B g (2N~n)n" )(n,m)
(8) When i=3 and j=2, then, q=(2N+1),2N+2),~,3N, p=(M+1),(M+2),,2M. The
coefficients of those become:

Aw-Am M m(m)ﬁ “’(n,rn)
CNnYMom) ™ (4.29)

¥
B (k) %ﬁu)w..) b;z)(n'm)
(9) When i=3 and j=3, then, q=(2N+1),(2N+2) - 3N, p=(2M+1),(2M+2),»-.,3M.
The coefficients of those become:
AP —Am.u)a_u...) =C33 )(m)a +Qa (n»m)

4.30)

®_np®
B@- Mon)ﬂ”oﬂ) (n’m)

At this point in the calculation, the relationship between the unknowns of the
displacement and those of the traction at the boundary S® of the inhomogeneity has been
determined.

However, it is not enough to solve the whole inhomogeneity problem because the

constraint fields will also depend on the existence of the surrounding matrix. To obtain
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this relationship at the boundary S® of the matrix, we may use similar procedures. The
formula in the region of the matrix domain for the unknown displacements and the

unknown tractions can be written as:

ASuP-B%®  g=ln+@-1xN} ; p=im+(-DxM} 4.31)

In terms of the discretization, the continuous integration has been converted into
a set of linear equations.
4.4.2 The Determination of the Coefficients

As mentioned in the previous section, the determination of the coefficients of the
unlmowngis due to the integration of the kemel functions (Ty(x,y) and U;(x,y)), where
the point x represents the field point and the point y represents the source point. Consider
the interface which has been discretized into many planelets. The integrations will be
performed on each planelet. Since the field point may be or may not be a point on the
planelet involved, we examine the cases: x, & S, and x, € S,,, separately.

Starting from the definition of the coefficients as the previous section, that is:

am)= [ T, 9)dS,_

s® (4.32)
by (rm)= [ U (x, )8,

s

For x, & S,, shown in Fig. 4.4, since there is not a singularity existing in the
formula, the regular numerical integral is performed, i.e. to discretize the planelet S,
into F sub-planelets and to find the integration in the form of the sum of the integrand

multiplied by the area of each subplanelet. We have
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F
a®(n,m) }3_“1, TP & YAS,

. Foo (4.33)
b nm)=Y UDx YMAS, ()
I-1

f= 192'93:-"7F

where y(f) means a point on the fth sub-planelet, F may be different than the number for
N or M depending on the accuracy required. The term AS,,(f) is the scale value of the
fth area. Similarly, the calculation for the matrix domain will accept the above formula,
except that the superscript ® in the formula is changed to ®.

For x, € S, i.e. the singularity exists at x, on the planelet Sy,,, as shown in
Fig.4.5. Though we are allowed to remove the singularity point from the calculation
because of the need to only calculate the principle integral value, the distance between
the field point and the source point might be very short, in which case the numerical
value may be very unstable. Thus, the evaluation of the integral will strongly depend on
the numerical treatment around the singularity. Now we consider the integration of:

F
al(mm=Y TP YMAS,

=1
x *¥{f)

) P 4.34)
b mm)=Y UP(x, yDAS, )

=)
2,07

f=123,..F

where the symbols have the same meanings as the previous expression (4.33).
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With respect to the integration of the coefficients for b;, the singular integration
is generated by closing to the field point with the order of 1/¢, where ¢ is a infinitesimal
quantity of the distance between the field point and the source point. Fortunately, the
area component in the integration will approach the infinitesimal quantity with the order
of €. Thus, generally, the calculation of by will not involve the singular values, if the
procedures do not violate common rules for the numerical analysis, (for example, no
definite value divided by zero, etc.). The accuracy of a computer operation is acceptable
in these cases.

However, with respect to the integration of the coefficients for a;, the singular
integration will be generated by closing to the field point with the order of 1/, the same
order that area component might approach. The numerical treatment should be performed
carefully due to the fact that the individual value of (T;®(x(n),y(£)) ASym(f) | xeryen) MY
be close to same quantity as total summation integration itself.

In the integrand, T;®(x,y) is:

T8 = 1 {(1_2 ¢ &; yJ) n® -)’,)]
e v ) —=E - 0)—

203 43 -9y ar }
[(l 2% r’ Jdn“‘)

4.35)

Aiming to acquire an appropriate numerical treatment for the coefficients a;, let
us choose a symmetric region on the planelet S,, shown in Fig. 4.5, say, a square in
which the field point x(n) is located at its centre. Notice that the outward normal to the

planelet is n and any source point y(f) on the planelet makes a unit vector n” of the
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distance from the field point x(n). The two unit vectors are perpendicular to each other,
i.e. m L n”. One may prove the principal integral value on that square area is zero,

because:

Firstly, (dr/dn®) equals zero since x(n) is on the planelet so that the above

expression becomes:

__(1-2v) [ %Y FiYi|l_ (1-2v) ’_
v 8n(1-v)rzln‘ r g r gﬂ(l_v)rz[n‘ni njn:]

4.36)

I 1/

n(r,rm) 1 m'(nyn;

Secondly, suppose there are two points ( e.g. point 1 and point 4) in Fig. 4.5.

Since n,"=-n,", if the same value in area is chosen for each area element, the
summation of T,;®(x(n),y(1)AS(1)+T;®(x(n),y(4))AS,(4) equals zero, where the
above expression has been used. It is the same for the summation from the point 2 and
the point 3. Therefore, the integration on the square is zero. In the numerical analysis,
one may remove a symmetric small area from the simulation to reach the appropriate

numerical results.

4.4.3 Numerical Implementation of the Approach

From Section 4.4.1 and 4.4.2, the relationship of the unknown displacement and
the unknown traction, and the coefficients of the linear equation have been achieved by
the numerical analysis. Now, one may start to build up a general relation connecting the
boundary unknowns of the inhomogeneity and those of the matrix. Comparing the

apparent formula, we have for $* and S®:
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B _ nETh
qu u, -B@’?P
(and) (4.37a)

@0 _plird
.4@up -B@tp
that is,

[A®) &S} =[B®1 ™}
(and) 4.37b)
(A} =[B )
where again the superscript ® associates with the calculation corresponding to the
inhomogeneity, and the superscript ® associates with the calculation corresponding to the
matrix. [A] and [B] are the tensors of the coefficients.

The constraint elastic fields may be uniquely determined by the misfit of the
strains through the use of the sequence of the procedures given in Section 4.3, namely
cutting, straining, and welding. The approach denotes that the available information will
be provided by the relationship of 0;=24Ae; X;|,; pounaary» Where y; is the total displacement
in the ith direction at the boundary point x, i.e. the sum of the displacement from S® and
that from S®; the amount required to weld the two surfaces together, Ae; is the misfit
of the strains, which has been described in detail in the previous section. Thus, there is

a need to convert the linear equations into the explicit forms of the displacement:
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&®) =[4 11 [BY®)
@O =[A D) (B

4.38)

Then the traction unknowns are related to the displacement knowns in the form of:

= - =[A ®) [BRHE®)-[4 M) B 4.39)
By making use of the boundary conditions, the traction forces should be equal in amount

but with the opposite sign, i.e. {t®}=-{t®}, which manifests the physical reaction

between the bodies. Further, the formula is derived as:

@ =GP GO =A®)[BO] (A B F) (4.40)

Therefore, the traction unknowns on the boundary S® of the inhomogeneity are solved:

)= qa®Yy B®] AL B @ 4.41)
The traction unknowns on the boundary S® of the matrix may inversely be ovtained by
obeying the rule of the reaction forces, i.e. equal in magnitude and opposite in sign.
Furthermore, the displacements on the two surfaces are determined from Equation (4.38).

At this stage, the complete boundary data for both media, ( the inhomogeneity and
the matrix), has been ascertained through the numerical discretization and its
corresponding physical connection with the inhomogeneity problem.

The behaviour of the unknown inside each medium will be described next. Before
that, it is worth briefly reiterating the solutions of the complete boundary data for the

tractions and the displacements from the present approach. They are:
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{0 = (LA D] B +[A O (B Hu) @
{0} = - {9}
iy _ -1 )
{&®)} = [A %] [B¥®] () ®
&0} = (A9 BP0}

where
"},
{},
{n},

[a™),

[A®),
(8%,
{87,
o™},
{u®,
138

the constraint tractions at the boundary of the inhomogeneity;

the constraint traction at the boundary of the matrix;

the accommodation displacements at the interface or the displacements induced
by the strain misfit, in which G;(x(n))=Ae; X;™)|s sty =1,2,..,N), i.e.
{0} ={0,(1),0,2), 8, N, 8x(1),0,(2),., 0,(N), 8:(1),052),... &N}, Aey s
expressed by equation (4.12); ( T strands for t"¢ transpose of the displacement
vector.)

the coefficient tensor of the unknown displacement corresponding to the
inhomogeneity;

the coefficient tensor of the unknown displacement corresponding to the matrix;
the coefficient tensor of the unknown traction corresponding to the inhomogeneity;
the coefficient tensor of the unknown traction corresponding to the inhomogeneity;
the constraint displacements at the boundary of the inhomogeneity;

the constraint displacements at the boundary of the matrix;

the inverse of the second-order tensor ([A] or [B]).

The complete boundary data will uniquely be determined by the accommodation

103



displacements produced by the misfit of the constraint strain. The coefficients are

constants when the geometry of the inhomogeneity and the elastic constants are certain.

4.5 The Bebaviour of the Elastic Fields within and outside the Inhomogeneity
In the previous section, the complete boundary data have been determined by the

a sequence of the discretization procedures. To obtain the behaviour of the elastic fields

within and outside the inhomogeneity, further numerical operations have to be performed.

Consider the elastic fields within and outside the inhomogeneity separately.

4.5.1 The Elastic Fields within the Inhomogeneity

Step One:

Express the constraint displacement fields inside the inhomogeneity. Suppose x
€ R and x € S, where R® is the domain of the inhomogeneity. The constraint

displacements at the point x may be written generally in the form of:

u @)=~ [ TPy 0)dS, + [ UL s, @.42)
s®

s®
Step Two:
Calculate the constraint displacement fields. The complete boundary data of the
inhomogeneity have been determined in Section 4.4. The displacements u(y,) and the
tractions t(y,) are obtained by solving the linear equations (A) and (B) on the previous

page. Thus, the constraint displacement values at the point x are
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M
(k)(x)___z mo’..)fT((j»(x‘y)‘dsy_*'E rf")(y.)fof)(x,y)dS’. (4.43)
sw mul s

where the point y,, is 2 point on the mth planelet Sy,. The sub-integrals may also be

expressed in the form of the summations in cases that the point x is close to the interface:

F
[TPs,_ =,): T, EYDIAS, ()
s™ =1

F 4.49)
[UP@yds, =Y. UPEymAS, ()
5% s -
f=123,..,F
where T;(x,y(f))
7?”(%?0‘))-—1-% -ZVQ{n.(m)m(y(m 1 ym)m ndm m)® () &, }',(f))]
8x(1-v®)r? 4.45)
v ., %y, ‘J’;‘ﬂ)] dr
{(l 208y r Jdn{m)‘”}

and Uy(x,y(f))

U-u) _ (1 +Vw) [3_4 5.+ (xg')';(f))(xj‘}’j(ﬂ) (4.46)
(R ey | Y ry?

Note that all the symbols have been described in Section 4.4.

Step Three:

Calculate the entire displacement fields. These fields, i,*, equal the sum of the
constraint displacement fields, §,%(x)=u"(x) obtained from Step Two, and a uniform

displacement fields 0, associated with the far fields, i.e.
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P =08 +5® (.47
where 3,=¢,® x;, ¢, are the uniform strains which are found using (4.11).

Step Four:

Calculate the entire strain field. Suppose &;* represents the entire strain field, &,®
the uniform strains, and &, the constraint strains inside the inhomogeneity. The relation
from the superposition law of the elasticity shows:

EN=8 0 4g 0 (4.48)
where 80 =¢,®, &®=14(1;+7;).

Step Five:

Calculate the entire strain fields. Similarly, suppose $;*® represents the entire
stress fields, p;® the uniform stress, and ;™ the constraint stress inside the
inhomogeneity. The relation will be:

B =P +p;" (4.49)
where p;® =p*, p;® =\"&5,+2u"E;

By the above five steps, stress and strain distributions in the inhomogeneity can

be determined.

4.5.2 The Elastic Fields outside the Inhomogeneity (or in the Matrix)
Step One:
Express the constraint displacement fields in the matrix, domain R®. Suppose x

€ R and x € S®. The constraint displacements at the point x may be written generally

in the form of:
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1= - [T xy)u0)dS, + [ ULy 0)ds, (4.50)
5@

5@
Step Two:
Calculate the constraint displacement fields by the complete boundary data of the

inhomogeneity.

m=l

M M
1'0=-3 00,) [ TS, +3 170 [Ul@nds, @D
5™ - s

where the point y,, is a point on the mth planelet Sy,, , and the subintegrals may be

written in the form of:

F
[T, =Y TPeymas, 0
5@ £

E (4.52)
[UPyas, =Y UPaymAS, ()
so =1
f=123,.,F
where T;(x,y(f))
TPy -—‘—,{a-zvm[n 0o iy & -rM)]
8x(1-v®)r? ; ~ sy
J(1-2v™M3. +3 =y iM-yM] dr
[(1 29?3 +3 = Jdn(m)m}
and Uy(x,y(®)
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(X‘ _yg(f))(xj _}'J(f))
r(f)‘.'.

@ - (1+v® [(3-dv M3
LD e s LY

Note that all the symbols have been described in Section 4.4,

} 4.59

Step Three:

Calculate the entire displacement field, which equals the sum of the constraint
displacement field, §,;"(x)=u,"(x) obtained from Step Two, and a uniform displacement
field 0., i.e.

§0=3"+5" (4.55)
where 3,°=e;* x;, e;* are the remote uniform strains.

Step Four:

Calculate the entire strain field. Suppose &;® represents the entire strain field, &,%
the uniform strains, and éij‘” the constraint strains in the matrix. The relation from the
superposition law of the clasticity shows:

&0=¢7+&," (4.56)
where &%=¢,®, &®=1(5, 0 +i").

Step Five:

Calculate the entire stress field. Similarly, suppose p,® represents the entire stress
field, p,® the uniform stress, and p,” the constraint stress in the matrix. The relation will
be:

5,"=p,"+5;" 4.57)
where p,® =p;*, p;” =\Pg5,+2u"E;

The procedures provide the stress and strain distributions outside the
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inhomogeneity in the matrix.

4.6 Examples

4.6.1 Materials and Element Arrangement

As examples, a system of an infinite aluminium medium and a cube-shaped
inhomogeneity, subjected to a far-field tensile stress of 70 MPa, has been considered.
The elastic constants of the cube are those of the SiC. In addition, an extreme case of
the rigid cubic particle is also simulated.

In order to degenerate the linear equations to solve, only a quadrant of the cube
has been taken into account. The element arrangement is shown in Fig.4.7, in which
there are nine elements and nodes each sides. In total, it consists of 243 elements (or

planelets) and the same number of nodes which are located at the centre of each planelet.

4.6.2 Numerical Simulation

Equation (A) and Equation (B) in Section 4.4.3 represent the formulation of
solving the numerical approximation values of the boundary data, i.e. the traction forces
and the displacements. The procedures for the nun 2l approach are summarized as
Figure 4.6.

First of all, the elastic constants of the matrix and the inhomogeneity are input
to the program. The geometric arrangement is also defined. Then to obtain the assembled

set of linear equations, one needs to determine the following:
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(1) the accommodation displacements induced by the strain misfit;
Since the strain misfit is represented in Equation 4.12(a), the accommodation
displacement may be simply determined by:
Bi(x)=4e; X ¢ vuntary
i.e. the accommodation displacement may be expressed as the function of the boundary

coordinates.

For the case of the SiC cube, these misfit strains are:
Ae, =Aey,,=~0.030% ; Ae,,=0.084% ; Ae,;=0 (i)

The accommodation displacements may be converted into the form of the given vector

of the linear equations in the same order as in Equation 4.21(a).

For the case of the rigid cubic particle, these misfit strains are simply determined

by the far-field strains, i.e.

Ae  =Ae;;=-0033% ; Ae,~0.1% ; Ae,=0 (iw))

since the particle resists any deformation due the rigidity.

(2) the coefficient tensors of the displacement and the traction in the inhomogeneity;
The components of the cuefficient tensors are expressed in Equation 4.21b. In

detail, they can be found in the Equations 4.22 to 4.30. Keep in mind that the Cauchy

principal value is ¢;='4§; for the flat suifaces. The components a;; and b, in Equations

4.22 to 4.30 are obtained by the procedures in given Section 4.4.2. The application of

Equation 4.33 or Equation 4.34 is determined by noting the distinction of the integral

interior and the integral exterior point.
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(3) the coefficient tensors of the displacement and the traction in the matrix.
Similar to (2), the components are determined through the same procedures. What
is different is only that the elastic constants are those of the aluminium matrix and the

direction of the normal outward changes.

4.6.3 Results

By solving 729 linear equations in terms of the Gauss-Jorden technique'®’, the
traction and the displacement at the interface are obtained. For instance, the tensile
traction forces at the interfaces of the aluminium-SiC and the aluminium-rigid are shown
in Fig. 4.8, in which the centre line and diagonal line have been defined as in Fig.4.7.
It is noticed that at the sharp corner there is a stronger perturbation of the traction forces
than that at the smooth interface, e.g. the top centre of the particle. Note that the type
of the stress concentration is obviously different from that of a system with a spherical
particle as was examined in Chapter 3. This difference would determine the difference
feature of the damage initiation, i.e. starting at the sharp comer for particulate particles
and at the top for spherical particles. Actually, the experimental evidence has proved
these prediction results (e.g. the former for the case of angular particles™*%* and the
latter for the case of spherical particles™?). In addition, it is noticeable that the rigid
particle causes the very strong constraint at the corners, e.g. a few times higher than the
far-field stress at the corner along the diagonal line shown in Fig.4.7 and in Fig.4.8. It
implies that if the strength and the stiffness of the particle are high and the interface has

strong bonding, the stress carrying capability of the particle would increase by the
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constraint in the sense of the average stress that the particles carry, while if the strength
of the particle is low, the situation would be different due to the possibility of the particle
cracking. To optimize the design of the MMCs, both the shape and the strength of the
reinforcement are of importance.

A comparison of the results from the BIE approach with that from the linear finite
element analysis (FEA) has also been made in order to distinguish the differences and
the advantages of each approach. The FEA is a powerful tool to investigate the general
interaction between particles and the surrounding matrix. In general, FEA can be used
to investigate the plastic behaviour of metals to study the interactions between particles,
whereas the present BIE approach cannot deal with more than one particle. Also the FEA
can cope with the linear elastic problem with little effort once the geometry is defined.
However, a difficulty of FEA is to simulate a system with an infinite domain. This
indicates that a large number of the 3D elements are needed to obtain fairly accurate
results, especially if there exist the sharp comers. The usual response is to refine the
mesh near the singularity, but the increase of the elements increases the computation cost
and actually can also increase the errors generated during the computation. For example,
a model has been created using FEA, in which the volume fraction of the particles is
about 2.0%. This model may be approximately assumed to satisfy the infinite matrix
condition. In the finite element model, there are about 3,000 nodes and the 9,000
unknowns, while in the BIE model the number of the surface nodes is far less than that
in the FE model. A comparison of the two results (for 9,000 unknowns and 729

unknowns respectively) is shown in Fig.4.9. The predictions are close to each other in
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value showing that the present approach, based on combining the BIE method with a
series of operating procedures, is essentially correct.

It is believed by the present author that, for certain types of calculation such as
for the cube-shaped particle, the BIE method is more accurate than finite element model.
A fundamental problem with use of the finite element method arises in the calculation of
stresses and displacements at interfaces, or other singularities. Ordinarily, the stresses
are reported for a set of Gaussian points located within the elements, and so values at the
surface of the elements must be extrapolated through these points to the element faces.
Alternatively, one can increase the accuracy by using a hybrid type of element, but this
doubles the number of unknowns. Because of the solution methods used, as the number
of equations increases, the absolute error in the calculation of a given unknown also
increases. The solution process causes some error. By refining the mesh, the
extrapolation errors are reduced, but the number of equations that must be solved
simultaneously increases. It is therefore clear that for certain types of calculations, the
present approach is a new and useful tool.

4.7  Applications and Extension

The above approach, Sections 4.1 to 4.6, has been based on the assumption that
the inhomogeneity and the matrix are perfectly bonded.

However, recently, there has been increasing interest in imperfect interface
conditions, which involves the investigation of the interfacial sliding and debonding.
Some models for r_herical'(1991), ellipsoidal'?®(1985), and circular inhomogeneity'*

(1991) have been presented. For instance, Mura, Jasiuk and Tsuchida'” presented 2 "no
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shear traction at interface” model. Mura and Furuhashi'® claimed that they found that
when an ellipsoidal inclusion undergoes a shear and the inclusion is free to slip along the
interface, the stress field vanishes everywhere in the inhomogeneity and the matrix. As
may be appropriate in the case of thin coatings on a hard second phase particle, a model
of an imperfect elastic string-type interface was proposed by Hashin'®. The interface
spring constants are expressed in terms of interphase elastic properties and thickness
outside a spherical inhomogeneity. Levy™ (1991) suggested that inhomogeneity interacts
with the matrix through a prescribed interface law which depends on the displacement
jump at the interface.

To extend the approach to the imperfect bonding problem, the author believes
that the strain misfit is physically related to the interface law because it is the driving
force producing the stress perturbation around the inhomogeneity. This indicates that
whatever interface law we choose, (shear free'®, spring type'”, traction-displacement
jump™ or other types), the traction force and the displacement (or displacement jump)
would be expressed as functions of the strain misfit or the commodation displacement.

If the interface law is given, the numerical simulation may be performed starting
from the Equations ((4.38) or (B)), which reflect the elastostatic equilibrium condition
in each phase. By introducing the interface law, the boundary date of each phase may
uniquely be obtained. (This part of work will be pursued after the author finishes her
graduate study.)

In general, there is potential to extend the approach to problems of contact

(including sliding, interface friction), the thin coating, and debonding.
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4.8 Summary

In the present chapter, a new numerical approach to the inhomogeneity problem
with arbitrary shape has been proposed. Physically, the approach has been completed
using a sequence of cutting, straining, and welding procedures. The advantages of the
method may be summarized as follows:
(1) Compared with FEA for the inhomogereity problem, the approach requires fewer
nodes to reach the same accuracy of calculation, because it converts a three dimensional
computation problem into a two-dimensional one (a surface integral). It takes far less
computer time and computer power (CPU) to obtain reasonably accurate results.
(2) The approach reduces the inhomogeneity problems to the determination of the elastic
perturbation field induced by the strain misfit. It distinguishes the perturbation field from
the uniform stress field and emphasises that the strain misfit is the driving force to cause
stress concentration at inhomogeneity.
(3) The approach is sensitive to the variation of the stress fields near interface, meets the
equilibrium equations everywhere, and reflects the nature of the force action and reaction
at the boundary of the two different mediums;
(4) it may be used as an absolute verification method for other computation methods for
inhomogeneity problems.
(5) It is a useful method to examine the effect of inhomogeneity shape on the stress
concentration.

However, it should be noted that, although one may get a basic view of the

interaction between the matrix and the particle from the analysis in Chapters 3 and 4,
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these approaches are only based on elasticity theory and the treatment is only for the
single particle problem without considering the interaction between particles and the

plastic behaviour of the matrix. These topics will be studied in the next two chapters.
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CHAPTER 5
STRESS CONCENTRATION AND INTERACTIONS

I0. Development of Plastic Deformation around Particles

5.1 Introduction

The elastic solution for the inhomogeneity problems aliows, to some extent, a
basic understanding of the interaction between a particle and a matrix, as has been
described in Chapters 3 and 4. However, the limitation of ignoring the plastic behaviour
of the metal matrix and the interaction between particles is still a challenge.

Fortunately, the availability of several approximation methods, such as the finite
element method, overcomes the limitation to simulate the nonlinear behaviour of
materials and interaction. Using FEM, the early investigation of the two-phase materials
was largely done using two-dimensional calculations of real microstructures'****1* and
of one spherical particle*'¥’, But the former'3*!31%¢ suffered significantly from the lack
of the fine meshes.

In practice, due to CPU requirement, cost, and the storage capacity required for
FEM, modelling of the actual microstructure in three dimensions is extremely difficult.
To extract key factors in studying the interactions between particles, a unit cell model
was proposed by Flower & Watt'¥'% to simulate the tensile properties of two phase
materials. The unit cell model allows the strong interaction between particles to be
considered with a reasonable number of finite elements. This concept has been adopted

in the present work.

The other recent works on modelling micromechanics of the MMCS using FEM



has been reviewed in Chapter 2.

This chapter will be concermed with using FEA for modelling the three
dimensional micromechanical interactions in 6061-T4 Al/(SiC), metal matrix composites
subjected to a tensile loading. The work in the chapter will be classified into two main
parts:

(A) Utilization of the FEM in modelling the micromechanics of the MMCs

It will describe:

(1) the utilization of a FEM software package, ABAQUS, as well as a mesh generation
package, I-DEAS, to model three dimensional micromechanics in the MMCs;

(2) the concept of unit cell presented by Flower-Watt to model the interaction between
particles;

(3) the FE calculation to ensure that the correct mechanical response in the MMCs was
obtained by means of an appropriate mesh because of the singularity at the interface of
particle and matrix. The results are verified by comparison with Eshelby’s model.

(B) Stress concentration and ductility in the MMCs

This will focus on the following questions:

(1) How does the plastic behaviour of the aluminium matrix affect the stress gathering
capability of the particles?

(2) Does the relative stress concentration in Al/(SiC), MMCs increase with the increase
in plastic strain?

" (3) What factors are responsible for the low ductility of Al/(SiC), MMCs?

118



5.2 Methodclogy of the FEA Modelling the MMCs
5.2.1 FEM and Utilization of the FEA package (ABAQUS)

Based on discretization, the finite element method is an approximate method to
solve the differential equations, which reflects a piecewise application of a variational
method. In micromechanics, this method is used to solve the equilibrium equations,
whose solution satisfies the corresponding loading and restraint conditions at a boundary.

The equilibrium statement is written as the Virtual Work Principle:
[o:8Ddv=[tT5vdS+ [fT-8vaV (5.1)
v M v

where ¢ is the stress, 6D the virtual deformation, t the traction at boundary, f the specific
body force, 5v the virtual displacement. Physically, the left-hand side of this equation is
the internal virtual work, which equals the external virtual work. In general, a detailed
description of the method can be found references's*1%5:1%6.157,

In the present work, ABAQUS, a FEM software package'® with the feature of
solving non-linear problems, has been employed to calculate the stress concentration and
interaction within the MMCs. The package allows modelling of finite deformation due
to the application of Lagrangian updated system, incrementa) plasticity theory and an
iteration process by the quasi-Newton method. Specifically, to interpret correctly the
outputS, the basic usage in ABAQUS for measurements of deformation, strain, stress and
other aspects is shown as follows:

(a) Deformation and Strain

ABAQUS employs the fact that any motion can be represented as a pure rigid
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body rotation, followed by a pure stretch of three orthogonal directions. The
decomposition theorem allows one to distinguish the straining part of the motion from
the rigid body rotation, i.e. if two neighbouring material particles initially are located at
some position X and X+dX, and after deformation new position x and x+dx, the
deformation gradient matrix, F(=dx/dX), completely defines the relative motions of
materials by the relationship of F=V R, where the stretch matrix, V, completely defines
the deformation of materials particles at X, and the rotation matrix, R, defines the rigid
body rotation of the principal directions of strain.

Total strains in ABAQUS are reported in terms of nominal values e=V-I, where
1 is a unit matrix. Thus, a simple way of interpreting the total strain output from
ABAQUES is to look at the principal values of the strain and the corresponding principal
directions. Then recognizing that the principal strain values are the change in length per
unit of original length, of material lines along the principal strain directions in the current
configuration.
(b) Stress

ABAQUS always reports the stress as the Cauchy ("true") stress, i.e. the traction
being carried per unit area by any internal surface in the body under study.
() Selection of the type of Solid Elements

The present work in ABAQUS uses first order isoparametric elements with
reduced integration, i.e. eight-node bricks. These elements are chosen, because:
(1) at the Gauss points corresponding to reduced integration the strains are most

accurately predicted as long as the elements are well shaped;
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(2) when the constitutive model is nonlinear, then the strains passed into the constitutive
routines are a better representation of the actual strains;

(3) in plasticity calculations there is an assumption of no volume change, which can cause
elements to "lock” (i.e. be too stiff) when full integration is used.

(4) Reduced integration lowers the cost of forming a element.

Additionally, experience suggests that when discontinuities are expected in the
solution, first order elements are usually recommended'®. Therefore, considering the
discontinuities between SiC particles and aluminium matrix and other aspects, in the
present work first order isoparametric elements with reduced integration have been
chosen.

(d) Selection of calculation model

In the present work, the elastic-plastic model in ABAQUS has been employed to
consider the elastic and plastic response of the aluminium matrix. In the elastic-plastic
model provided in ABAQUS, the elastic and plastic responses are distinguished by
separating the deformation into recoverable (elastic ) and non-recoverable (plastic) parts,
i.e. this separation is e=¢"+¢", where ¢ is the total strain, € is the elastic strain, and
¢® is plastic strain. It is true as long as the elastic strains remain small. For a metal like
aluminium, this condition is usually satisfied.

(e) Stress Potentials

The metal plasticity models in ABAQUS use the Mises stress potential for

isotropic metal behaviour. These potentials depend only on the deviatoric stress, so that

the plastic part of the response is incompressible.
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(f) Convergence

The finite element models generated in ABAQUS may involve several thousand
degrees of freedom. In terms of these variables, the equilibrium equations obtained by
discretizing the virtual work equation may be written symbolically as: F(u)=0, where
FN is the force component to the N*® variable in the problem, and w™ is the value of the
M™ variable. The basic problem is to solve the equation for the vanables throughout the
deformation by means of a series of "small"” increments. At each increment, convergence
is measured by ensuring that all entries in FN are sufficiently small. The equations are
checked against the prescribed force PTOL, which has values chosen in the analysis to
be 0.1% of actual loads.
() The Process of FE modelling

Another software, I-DEAS Engineering Analysis, has been used to mesh
geometries of the MMCs and generate an ABAQUS input file. The process contains
geometry creation definition, generating elements through nodes, imposing the loads and
restraints, uniiying the case set, and transferring the case into the ABAQUS input file to
perform the further FEA.

Then the corresponding model was analyzed by running the ABAQUS program
on a SiliconGraphics, IRIS-4D Series workstation (IRIX operating system).

To display the FE results, the ABAQUS post-processing program was used. A

Seiko Instruments Inc, CH 5504 colour printer was connected to the computer to plot the

contours for the model.

(h) Materials used in the Elastic-Plastic Model
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To investigate the stress concentration within SiC particle reinforced 6061-T4
aluminium metal matrix composites and the interaction between SiC particle and
aluminium, as mentioned, the elastic-plastic model is used, in which the material elastic
properties are shown in Table 3.1. Note that it is assumed that the SiC particle within
the MMCs only experiences the elastic deformation, and the aluminium matrix may
undergo elastic deformation and/or plastic deformation depending on the amount of
loading. This elastic-plastic behaviour of 6061-T4 aluminium will be modelled using
Alcan supplied experimental data.

When dealing with two different materials in ABAQUS, the elastic plastic data
for each material has to be supplied separately. The plastic behaviour is supplied as a
table of the effective stress vs. the effective plastic strain for aluminium. Since it is
assumed that there is a perfect bonding between the matrix and the particle during
simulation, to avoid the local stress state and the local strain magnitude beyond the
experimental data, the stress strain curve fitting has been performed for extrapolation
purposes.

To obtain a well-fit extrapolation data, an empirical equation for describing stress-
strain curve proposed in the theses of by Jain'® and Abduluwayed'® has been used,

which is:

g=cy Bl ' (5.2)

where g, € are true stresses (MP2) and true strains and ¢, A and B are constants.
The values of constants ¢, A and B can be obtained from the curve fitting

procedures'* and the corresponding accuracy analysis, since the empirical equation can
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written as:

Ino =A(Ine)*+B(ne) +C (5.3)

or

y=Ax*+Bx+C 59

if set y=In(¢/100) and x=In(100¢), where C=In(cy).
Using nonlinear curve fitting techniques'®, the constants are found to be
A=0.015, B=0.221, and C=0.3054. The Alcan experimental data for 6061-T4

aluminium and its extrapolated curve are shown in Figure 5.1. The fitting accuracy is set

to have a calculation error of less than 0.00856 for y.

5.2.2 Flower-Watt Unit Cell

As mentioned, the purpose of the unit cell is to model interaction within the
MMCs with a reasonable number of elements created. The concept of the unit cell will
be used in the present FEA work, which can be described as follows.

The model of a "unit cell® type was presented by Flower and Watt™'*, It
comprises of one or more particles set in a brick shaped "unit cell”, as in Figure 5.2,
Deformation of the cell is achieved by constraining the six surfaces of the cell to the flat
planes during the tensile loading, allowing the free contraction on each surface, and
satisfying the conditions of:

u(0,y,2)=0; u,(x,0,2)=0; u,(x,y,0)=0

ux(xo-ny’z) =Ug; Uy(X,Yo,Z) =U-yo; uz(x’y’zﬂ) =ug
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where u,q, U, Uy are the displacements at the corresponding planes depending on tensile
loading and material properties of each phase. Since the loading of a tensile specimen is
modelled, a further requirement is that there be no net force in the direction normal to
side planes, i.e. | t(x,y,2)dydz=0; { t,(x,y,z9dydx=0, to match the external loads.
Finally, on all six planes, shear stress normal to that plane must be zero everywhere on
that face.

Physically, the model of 5.2(a) and 5.2(b) reflects out infinitely into space,
simulating a tensile test on whatever distribution of particle size and shape is chosen in
the given model (as in Figure 5.2(c)). The net force acting on the upper and lower faces
represents the local tensile force required to stretch the cell. Note that the model is not
truly a unit cell analogue, because it is extended infinitely into space through reflection
rather than translation. From this one can fairly easily obtain the stress-strain curve for

the model involved upon calculating the average stress response.

5.2.3 Verification of the FE Calculation

There may exist the calculation singularities caused by the high level of material
discontinuities within the MMCs. To ensure that the results from the FEA are relatively
reasonable, a verification of the linear FEA, including the fineness of the mesh, and the
use of unit cell has been performed in this section. The verification compares the results
from the FEA for a low volume fraction of particles with those from Eshelby’s theory.
The analysis will calculate the stress concentration and interactions between SiC particles

and matrix. The composite is subjected to a 0.2% engineering strain.
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(a) Configuration

The simulation has applied a "unit cell” concept. The model adopts the six-sided,
eight-node, three dimensional brick element with the total of 2195 elements and 2744
nodes. The volume fraction of spherical SiC particles is 1.94% so that the particles are
considered relatively isolated. Because of the symmetry, only an octant of the particle
is to be modelled. The matrix possesses the mechanical properties of 6061-T4 condition
aluminum shown in Table 3.1. Both the matrix and the particles deform elastically.
(b) Stress Concentration within SiC/Al

The field concentrations at SiC particles have been shown in Fig.5.3(a)-(e).
The results from FEA confirm those of Eshelby (see Chapter 3), namely that:
(1) Significart perturbation is only developed near the matrix-particle interface due to the
discontinuities and the high level of the misfit of the moduli.
(2) As expected, the SiC particle carries a higher effective stress than aluminium matrix
(Fig.5.3(2)). The stress transfer to the particles is evident (also see Fig.5.3(c))
(3) The maﬁmum variations of Von Mises stress (or effective stress) (Fig.5.3(a)), the
normal stress (Fig.5.3(c)), the normal strain (Fig.5.3(d)) occur along the pole and a
small distance away from the interface.
(4) The greatest stress concentration of the tensile hydrostatic pressure happens in the
matrix along the pole and at the interface (Fig.5.3(b)).

In addition, the strain energy density contour in the particle apparently shows a
lower level than the far field. Actually, it implies that whenever there exists a misfit of ~==- E

material moduli, a loss of energy at the interface is expected. This has been indicated
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from Eshelby’s theory (see Chapter 3).
(¢) Verification

For any numerical calculation, the accuracy obtained, the type of elements chosen
and the physical model used are of importance. Basic verification of the calculation 1s
necessary.

A comparison of the tensile hydrostatic pressure contours and the tensile stress
contours are shown in Fig.5.4 and Fig.5.5, respectively. It confirms that with the present
mesh arrangement, the calculation results of FEA fit with those of Eshelby’s theory.
Specifically, their polar characteristics are shown in Fig.5.6. The slight differences of
the two at a distance away from the interface are because the FEM approach is not an
ideal single particle model. The boundaries are mirror symmetry planes. Therefore the
constraint interaction between distant particles has been taken into account so that the
stress concentration is slightly higher than the analytic single particle calculation.

The results infer that:

(1) the present mesh is reasonably fine enough to obtain accurate stress concentration and
interactions within the MMCs, although the misfit of the mechanical properties of the
two phases are severe.

(2) the first order isoparametric elements with reduced integration may be used to model
three dimensional unit cell without the "locking” phenomenon and that they produce
reasonable results.

(3) the unit cell is able to reflect correctly the interaction between the particles.

(4) good accuracy can be expected by controlling PTOL values for the further elastic-
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plastic FEA. In the further work presented. the values are 0.1 % of actual loads.

5.3 Plastic Relaxation

This section focuses on the start of the plastic behaviour of the MMCs. The

motivation is to know:

(1) how the stress concentration changes when the aluminium matrix starts to deform
plastically.

(2) if the stress transfer capability varies due to the plastic behaviour of the matrix.

In the present work, a comparison between elastic analysis and elastic-plastic
deformation has been examined at the overall engineering stress 94.2 MPa, which is the
tensile stress at 0.2% strain offset for the MMCs. For the elastic case, an aluminium
matrix with a very high yield strength has been assumed to emphasize the effects of
plastic flow. Actually, the analysis simulates an early loading process within a composite
when both the matrix and the particle deform elastically. The linearity of the elastic
analysis makes the stress and strain perturbation field scaled and the stress concentration
pattern remains the same till the plastic deformation of the matrix starts to take place.

The contrast between the effective stress contours for the elastic and elastic-plastic
cases is shown in Fig.5.7. As the loading is first applied, both the SiC particle and the
aluminium matrix deform elastically. The stress concentration is expected to have the
pattern as Fig. 5.7(a). However, when the local effective stress in the matrix reaches the
yield point, the matrix starts to deform plastically. Then the consequence is that the stress

concentration is released or relaxed towards that shown in Fig.5.7(b) at the yield strain
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of the composite. The perturbation range becomes smaller and more localized, but the
maximum of the concentration is still along the pole and a small distance away from the
interface. The results imply that the concentration of the local distortion energy decreases
when the plastic deformation starts.

The release and localization of the stress concentration has aiso been found in the
contours of the tensile hydrostatic pressure in Fig.5.8. The concentration pattern varies
from Fig.5.8(a) to Fig.5.8(b) while the loading starts to be exerted on the MMCs from
the beginning to the yield strain. Similar to the elastic analysis, the highest concentration
of pressure occurs at the interface, but the peak value compared with the far field value
decreases and the relaxation is also high at values more than one radius above and below
the particles. As a result, the concentration of the energy density related to the local
volume change decreases.

However, the stress gathering capability of particles decreases at the same time
because of the plastic relaxation of the matrix (see Fig.5.9). The contour (Fig.5.9(b) of
the normal stress from the elastic plastic analysis again shows localization of the volume
of stress concentration and the release (or relaxation) of the peak value of the stress
concentration. The plastic behaviour of the metal matrix reduces the severity of the
constraint at an early loading stage, so that the stress cannot be effectively transferred
to the particle.

Figure 5.10 clearly summarizes the results of plastic relaxation above. Comparing
elastic with elastic plastic the polar perturbations of stress components, i.e. mean stress,

normal stress and Von Mises stress, die away from interface, while the concentrations
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of components reduce before the MMC reaches yielding. These perturbations of stresses
at vielding drop dramatically such that the stress concentrations beyond a radius away
from the interface may be neglected. Furthermore, it is noted that there is a strong
perturbation of the stress triaxiality at the interface duning the ioading before yield. As
discussed in Chapter 3, it plays an important role of initiating the voids around the
particles because of its raising the local strain energy density.

Figure 5.11 shows the normal strain contours. It is natural that, in the elastic-
plastic case, the local strain level along the pole is very high because of the development
of the effective stress fields. The plastic behaviour of the matrix weakens the stress
gathering capability of the particle at early loading because the matrix can supply the
required strain at much lower stresses than the particle. The high local plastic
deformation and the strong fluctuation of the strain distribution within the matrix
apparently imply that the movement of a large amount of dislocations would be involved
during the loading process. It is interesting to think that the further work hardening is
achieved by two parts: an average back stress, and a stress related to the fluctuation of
the dislocation microstructure!®.

The contours of the strain energy density and the effective plastic energy density
are shown in Fig.5.12 and Fig.5.13, respectively. The densities of the maximum strain
energy stored and the maximum plastic energy dissipated have the same order when the
MMC is at the yield strain.

So, in general, the plastic behaviour of the matrix decreases the stress

concentration around the particle by plastic relaxation at an early loading stage. In turn,
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the stress gathering capability of particle is lowered. The particles act as if they are
becoming softer in that their stress levels do not increase proportionally, but the tensile
stress carried by particle is still higher than the overall stress.

It implies that the stress carried by a composite at its yield strain will be smaller

than that predicted through elastic analysis.

5.4 Accumulation of Plastic Deformation

This section focuses on the accumulation of the plastic deformation. An elastic
plastic FEM analysis has been perforined by imposing overall engineering strains of
0.2%, 2%, and 5%. The motivation of the work is to know:

(1) how the stress gathering capability of the particle changes with the increase of the
loading;

(2) how the stress con.centration within the MMC varies with the accumulation of plastic
deformation.

The contours of Von Mises stress, the hydrostatic pressure, and the tensile stress
during the accumulation of the plastic deformation are shown in Fig.5.14, Fig.5.15, and
Fig.5.16, respectively. As expected, the levels of stress distributions increase
monotonically with the increase of the overall strains imposed. It is noted that the mean
stress constraint (hydrostatic pressure) from the misfit and plastic behaviour of matrix
still causes the highest perturbation.

However, the most striking results about these stress distributions are that the

stress concentrations of all these components increase with the increase of the overall

131



strain, which are shown in Fig.5.17 in terms of the pole characteristics. These stress
concentrations may even exceed those calculated by elastic analysis, but they are
expected to reach upper-limits for each stress variable (see Section 3.3.4 in Chapter 3).
The change of the stress concentration is worth mentioning. At the very beginning of the
loading, when both the matrix and the particles Jeform elastically, the relative stress
concentration (F-Fy/F;) depends on the elastic moduli of the two phases, but it is
independent of the change in the overall {elastic) strain level. It is at a relatively high
level in Al-SiC,. When the matrix starts to deform plastically, the relative stress
concentration is lowered because of the plastic relaxation. But with further deformation
the relative stress concentration increases. In practice, the consequence of the change of
the relative stress concentration leads to a lower yield stress of the MMC due to plastic
relaxation and a potential for early failure of the composite due to the high stress
concentration with continuing plastic strain. At the same time, the stress gathering
capability of the particles becomes higher with continuing strain as manifested by value
the tensile stress S,, at the interface. Recall that equilibrium requires that Sy, be balanced
across the interface, and that the stress remains relatively constant in an ellipsoidal

particle. This reflects the interaction between the particles and the matrix at the interface.

Further evidence on the effects of plastic accumulation is shown in Fig.5.18 (the
effective plastic strain), in Fig.5.19 (the strain energy density), and in Fig.5.20 (the
plastic energy density). As the overall strain increases, all the components increase

rapidly along the pole and at 2 small distance from the interface. A striking result is that
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the local values of the plastic energy density may be 1-2 orders of magnitude greater than
those of the elastic strain energy at 5.0% overal! strain. This means that even at these
low levels of particulate, most of the external work is dissipated as plastic deformation,

and relatively little goes to the increase in stored elastic energy.

5.5 Discussion on the Ductility of Particulate Composites

The ductility of a material is defined as the capability of a material to undergo a
deformation. In practice, the reduction in area and the elongation of a material sample
are commonly used as the measure of ductility. The factors that affect the ductility of the
two phase materials have been reviewed in Chapter 2.

However, one contradictory fact to the practical measure of ductility should be
noted. As Chen et al.”® and Palmer et al.?® reported, at low temperature the elongation
wzs greater than that at higher temperature, while the reduction in area had the opposite
dependence, i.e. lower at low temperature. It implies that factors of the reduction in area
and the elongation are physically vague to measure the ductility of the two phase
materials.

Consider a material under loading. Certainly, strain energy would be stored
within the material to resist the external loading and plastic energy would be dissipated
~ if the external loading exceeds the yield stress of the material to produce the permanent
plastic deformation. It is reasor.able to think that the capabilities of a material storing the
strain energy and dissipating nonrecoverable energy are the measure for material failure.

It is believed by the present author that there exists a competition mechanism of the
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failure modes. For any type of matenial, two energy tolerance values (strain energy limit
and plastic energy limit} are important to determine the ductility of the matenal whether
the matenal fails in brittle type of fracture or in material exhaustion, if the self-healing

40,41

mechanism®®*, which may exist for compressive hydrostatic stresses, can be neglected.

Applying this to the MMC, due to the high level of the non-uniformity of the stress
distribution, the concept may be introduced as the "local™ ductility criterion.
As discussed in Chapter 3, the total strain energy comprises a term depending on

change of volume and a term depending on distortion. It may be expressed by the mean

stress and the effective stress, i.e.

=—0%,  _ +——0 (5.5)

According to the elastic plastic FEA above, the high stress concentrations (Fig.5.17) of
the effective stress (Fig.5.14) and the tensile hydrostatic pressure (Fig.5.15) occur near
interface. Especially, the dramatic change of the mean stress at and near the interface
contributes a great deal to the increase of the strain energy density. This situation 1s
completely different to that within the uniform materials, in which the contribution from
the mean stress may be neglected. It is this difference that gives MMCs low ductility.
The high and localized stress concentrations are responsible for the early void initiation
and growth.

On the other hand, the process of the work hardening within materials cannot be
endless. Therefore, the local and high accumulation of the plastic deformation would lead

10 the matrix exhaustion if this limit is reached.
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Finally, as far as the particle cracking is concerned, although it helps stress
relaxation at an early stage of strain, the later accumulation of plastic deformation
actually raises stress concentration. The consequence is to increase the stress gathering
capability of the particles, but at the same time the possibility for the particle cracking
also increases, if the particles do not possess high breaking resistance.

In general, the stress concentration and the accumulation of the plastic
deformation within the MMC elevates the stress transfer to the particles, but degrades

the ductility of the MMCs.

5.6 Summary

The utilization of the FEA to model the micromechanical interactions around
spherical particles in 6061-T4 Al/(SiC), metal matrix composites subjected to a tensile
loading has described the following:

(1) the use of ABAQUS and I-DEAS software packages;
(2) making use of the Flower-Watt unit cell to model the interaction between particles;
(3) the verification of the FEA by classical analysis.

An elastic plastic FEA has been performed at low particle volume fraction
(1.94%). By examining the plastic relaxation and the plastic accumulation in the MMC,
the following conclusions are reached:

(1) Plastic deformation helps stress relaxation at early strain stage. The relative stress
concentration is relaxed and the stress gathering capability of the particles is reduced.

(2) During further plastic accumulation due to the increasing tensile loading, strain
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hardening overcomes the plastic relaxation effects and the relative stress concentration
then increases. This concentration may even exceed that caused by the misfit of the
elastic moduli. Concurrent with this, the stress gathering capability of the particle also
increases.

The ductility of a MMC depends not only on the elastic stored energy, but also
on the plastic deformation accumulated. It is therefore proposed that the following should
be considered in explaining the low ductility of Al/(SiC), MMCs.

(1) The elastic stored energy has two terms; a distortion term and a hydrostatically driven
volume change term. Near the interface, the hydrostatic pressure increases the strain
energy dramatically, and will be partially responsible along with the effective stress for
the early void initiation by interfacial detachment and later void growth within the MMC;
(2) the localized high accumulation of the plastic deformation near particles may lead to
the matrix exhaustion;

(3) the high stress gathering capability of the particles will be partially responsible for
the particle cracking, if the particles do not possess high breaking resistance. Note that
the non-uniformity of the stress distribution within non-ellipsoidal particles is another

reason for the particle cracking, as will be described in the next chapter.
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CHAPTER 6
EFFECTS OF PARTICLE MORPHOLOGY ON THE DEFORMATION

CHARACTERISTICS WITHIN Al/(SiC), MMCs

6.1 Introduction

In the previous chapters, we have focused on:

(1) visualizing the stress-strain distribution around a spherical SiC particle using
Eshelby's theory, and examining stress transfer as a result of the misfit of moduli
between the matrix and the particle, interfacial characteristics, and the effect of particle
size.

(2) developing a method to find the stress-strain distribution at an arbitrary shaped
particle and examining the non-uniformity of the distribution and the interfacial
characteristics.

(3) examining the effects of plastic relaxation and plastic accumulation on the stress
transfer and the stress concentration using the elastic plastic FEA, and discussion of their
effects on the ductility of the MMCs.

The above investigations dealt with inhomogeneity problems (i.e. the case of a
system of a single particle and an infinite domain) or problems of isolated particles
embedded in the matrix (i.e. cases of low volume fraction of reinforcement). These
results help us to understand the way in which an isolated particle carries stress.

However, multiphase discontinuous composites, such as Al/(SiC), MMC, achieve
high yield stress and high stiffness by incorporating a large amount of particles (or

reinforcements) into the metal matrix. The investigation complexity increases not only



because of the strong interactions between particles, but also because of real parucie
morphologies and thermally induced stresses. Optimizing composite development ought
to include considerations of all the fundamental aspects of particles including their shape,
size, volume fraction, spacing and thermally induced stresses to predict the mechanical
response of composttes.

The use of FEA to study micromechanics for Al/(SiC) has shown considerable
promise. This can be shown by many recent works™*IS=I8ITOIIT ywhich have been
reviewed in Chapter 2. Most of these studies focused on the prediction of the
deformation characteristics of the Al/(SiC), MMCs.

However, using three dimensional FEA to model Al/(SiC), MMCs within which
either spherical particles or angular particles are embedded, is a new area of practical
importance (see Chapter 1 and Chapter 2). The objective is to provide a reasonable guide
to improve actual material performance.

The present chapter will examine the effects of volume fraction, particle shape,
and spacing on the deformation characteristics, and predict the mechanical response of
Al/(SiC), MMCs using FEA. The FEA will also adopt an elastic-plastic model and a
three dimensional Flower-Watt unit cell model. In detail, the study atiempts to increase
an understanding of:

(1) how the increase of the volume fraction affects the interactions between particles and
the intervening matrix in terms of the mechanical response, including the overall stress
strain curve, the yield strength, the work-hardening rate, local stress concentrations and

the ductility within the MMCs;
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(2) how strongly the particle shape is related to the stress concentration and the failure
process within the MMCs;

(3) if and how the clustering of the particles is responsible for local failure within the
MMCs.

Note that the effects of thermally induced stresses will be studied in Chapter 7.

6.2 Effects of Volume Fraction
6.2.1 Configuration
The three-dimensional elastic-plastic FE models adopted assume that the SiC
particles only deform elastically, while the matrix deforms elastically or elastic-plastically
depending on the external load. The non-linear behaviour of 6061 aluminum alioy in the
T4 condition was obtained from Alcan experimental data (see Table 3.1 and Fig.5.1).
In this section, the calculations were carried out with models changing in volurne
fraction from 5% to 25% (in 5% steps). The particles with spherical shape were
uniformly dispersed, and were centred in each unit cell. The mesh arrangement is shown
in Table 5.1 (a table for the element number at each volume fraction) and the subsequent
geometry is given in the individual figures. The computation procedures and

considerations of FEA details have already been introduced in Chapter 5.

6.2.2 Interactions vs Volume fraction
The interactions between particles and the matrix and between particles themselves

strongly depend on the volume fraction of the reinforcement, as has been shown in some
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experiments and/or FE analyses™>-1#1.1.180.17 I oonaral, the higher volume fraction,
the stronger the perturbations of the local stress and strain state within the MMCs and
the greater the interactions. Practically, using three dimensional FEA, these interactions
are modeiled by means of the unit cell concept. A typical non-uniform stress distribution
within a unit cell is shown in Figure 6.4, which is the effective stress contour at 25%
volume fraction at 5% overall engineering strain. The present FE calculations provide
a means to quantitatively represent these perturbations. The results, with volume fractions
from 5% t0 25%, and at 5.0% overall engineering tensile strain are exhibited as follows.

Three components, namely Von Mises stress, the hydrostatic pressure, and the
effective plastic energy density, were chosen to display the local perturbations within the
MMCs. Their contours reflect respectively the physical quantities of the local distortion,
the local mean stress state (although there is a change in sign between hydrostatic
pressure and the mean stress), and the local dissipated energy density (work of plastic
deformation). The Von Mises stress contours are shown in Figure 6.1. Comparing the
contours, what is common is that in both volume fractions the particles carry high
stresses as expected, the stress distributions within the particles are relatively uniform
within the spherical particle reinforcement, and the highest values occur along the loading
direction and a small distance away from the interface. What is different is that the local
perturbations increase with the increase of the volume fraction. The region between
particles at 25% volume fraction shows the highest level of constraint. Since physically
Von Mises stress measures the distortion energy'®, one anticipates that the strain energy

stored within the MMCs at higher volume fraction is higher, unless the perturbations of
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the hydrostatic pressure contour show the opposiic.

Actually, the perturbations of the hydrostatic pressure also increase with the
increase of the volume fraction, shown in Figure 6.2, The distinguishing difference
between the two components is that at the interface the hydrostatic pressure concentration
is very high. Although the mean stress component does not affect the plastic deformation
according to the assumptions of plasticity theory, this concentraton contributes
significantly to that of the local total strain energy density along with Von Mises stress
concentration (see Chapter 3). Due to the high triaxiality at the interface, the hydrostatic
pressure has been proved to be a non-negligible factor in the local stored energy density
in Chapter 3 and Chapter 5. The behaviour of the high triaxiality in the composites
would play an important part in the process of the plastic flow and the void nucieation,
as will be discussed later. Another mechanical feature in addition to the stored strain
energy in composites is the effective plastic energy density which represents the energy
dissipated in the matrix, shown in Figure 6.3. Again, its local concentration increases
with increasing volume fraction. It indicates that if the local material exhaustion is one
of the failure modes of the composites, the ductility of the composites would strongly
depend on the volume fraction. The higher the volume fraction is, the lower the expected
ductility is, as has been proved by experiments (e.g.Ref.’?). On the other hand, the
higher the level of the local clustering, the higher the possibility of early local failure
becomes due to the high local volume fraction, which leads to both high local strain and
plastic energy density.

In general, the constraint between the matrix and particles within composites
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increases with increasing the volume fraction. The consequence of the interactions is that:
(1) the external stresses exerted on composites may be largely transferred to the particles
so that the strength and the stiffness of composites apparently can be supenor to those
of unreinforced aluminium alloys, especially at high volume fractions;

(2) the misfit of the mechanical properties between the phases leads to high local stress
and energy density concentration. As a result, an enhancement of the work hardening rate
within the matrix is expected, while at the same time the increasing strength and stiffness

of the composites would be obtained at the cost of decreasing the ductility.

6.2.3 Overall Mechanical Response vs Volume Fraction

Figure 6.5 shows the predicted stress-strain curves for volume fractions from 5%
t0 25% (5% steps) of SiC particles for 6061-T4 condition Al/(SiC), composites, in which
an overall strain range from 0.0 to 0.05 and a lower overall strain range from 0.0 to
0.005 are plotted separately in (a) and (b). Also the experimental measured stress-strain
curve of the unreinforced aluminium alloy is given (i.e. 0% volume fraction of
reinforcement). In these calculations, the same matrix microstructure is assumed at all
volume fractions. The results show that an increase in the particle content promotes an
increase in the stiffness and the flow strength of the composites (see Figure 6.5(b)), as
has been ascertained by experiments for particulate reinforced aluminium composites.
According to some previous FEA works'!, it was proposed that a major contribution to
this increase in flow strength with increased reinforcement arises from the increase of

hydrostatic tension in the matrix due to constrained plastic flow. The increased
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hydrostatic tension also leads to an apparent increase in work hardening rate. However,
the present author believes that the major contributions to the elevation in the stiffness
and the flow strength with increased particle content comes from the stress transfer to
the particles as well as an increase of the work hardening within the matrix (see Section
6.3.5 for further discussion). In Figure 6.5, another interesting phenomenon should be
noted. The increase in load carrying ability at a given strain level for a 5% change from
5% to 10% particles is less than that on going from 20% to 25% particle volume
fraction. Intuitively one might have thought that in doubling the particle content, the
former change might produce a bigger effect than the latter. In fact, it is the opposite.
Again, this is closely related to the process of the work hardening and the stress transfer
within composites. With increasing volume fraction, the increase of the work hardening
and the stress transfer vary with the volume fraction at a given strain level and appear
as a high level at high volume fraction. The strong interactions between particles elevates
the work hardening in the matrix such that at a given strain, the matrix at higher volume
fraction carries a higher average stress. The similar effect of volume fraction would
happen to the particles. The stress transferred to the particles would increase with
increasing volume fraction due to this work hardening effect (the effect of the work
hardening on the stress transfer has been studied in Chapter 5). Also, the work hardening
rates show similar results, especially at low strain levels (Figure 6.6). In order to
estimate the increase of the strength within the composites, Figure 6.7 has been plotted
to illustrate the relationship of the strength to the volume fraction. In this figure, the

strength at three different oyera.ll engineering strain levels, i.e. 0.2% (flow strength),
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2%, and 5%, has been examined. The predicted strength shows an increase of ~25 MPa
at 0.2% strain level on increasing the volume fraction to 25%, an increase of ~61 MPa
at 2.0% strain level, and an increase of ~85 MPa at 5.0% strain level. This figure
clearly exhibits the nonlinear rate of increase for strength vs volume fraction.

By examining the predicted stress-strain curves, the following conclusions can be
reached:
(1) the stiffness and the strength of the composites increases with increasing volume
fraction as expected;
(2) the work hardening rate of composites increases with increasing volume fraction and
the effect is strongest at low strain levels;
(3) at a given strain level, the rate of increase in the strength vs. volume fraction is
higher at higher volume fraction levels.

To further understand the effect of volume fraction on the strengthening and void
nucleation mechanisms within the composites, the next section will focus on the effect

of volume fraction on the local stress concentration.

6.2.4 The Local Stress and Strain Concentration vs Volume Fraction

The peak level of stress variables in composites is one of the factors which are
related to the strengthening and failure mechanisms. Figure 6.8 shows the relationship
of the maximum stress value to the applied strain at several volume fractions (i.e. 5%,

15%, 20%, 25% vol pct) in 6061-T4 aluminium. For the stress state in the matrix, these

figures reveal that:
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(1) The components of the effective stress, the mean stress, and the normal stress vary
with a parabolic type of the increase with increasing overall strain for a given volume
fraction.
(2) As anticipated, the peak level of the work hardening in the matrix, which is expressed
by the effective stress, is increased with an increase of the external strain. Also, an
increase of this level with increasing volume fraction is evident. This rate of increase vs.
volume fraction is high at high volume fraction. It indicates that the interaction between
particles becomes an important contribution to the peak work hardening at high volume
fraction.
(3) Comparing the composites with the unreinforced alloys under tension, the
distinguishing difference is the existence of a high maximum hydrostatic tension in
composites, which has the order of the effective stress or higher than the effective stress
at high volume fraction, while in unreinforced alloys the value is about one third of that
of the effective stress. Its significance has been analyzed in Chapter 3 and Chapter 5.
Again, the rate of increase vs. volume fraction is high at high volume fraction, which
shows the contribution of the interaction between particles.
(4) The peak normal stress is the highest local value among the three. Actually, it implies
a high stress gathering capability of the particles. To reach static force balance, the fibre-
like pattern of the normal stress is developed.

With respect to the relationship of the local stresses to the applied strain in the

particles, Figure 6.9 shows that:

(1) A parabolic increase in local stresses with increasing applied strain at a given volume
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fraction is similar to that found in the matrix,

(2) The level of the peak effective stress is the highest, compared to the other two stress
components. This is reasonable if one considers a stress state of tension in the loading
direction and compression in the direction normal to the loading due to the force imposed
on the particles within composites (also see Chapter 3).

(3) Because of the stress state described in (2), the hydrostatic tension within the particles
becomes insignificant.

Figure 6.10 converts the above results into the relationship between the peak local
stresses and volume fraction at strain levels of 2.0% and 5.0%, both for the matrix and
for the particles. The effect of volume fraction on the peak local stresses clearly indicates
that in the matrix, the peak hydrostatic tension has the same order or is even higher than
the effective value at the relatively high volume fraction, which would play an important
role in the void formation, an initiation stage of failure process. In the particles, the high
deviatoric stress and high normal stress denote the stress transfer to the particles due to
the stiffer elasic modulus, which could lead to the particle failure.

The peak local strain (E22) is plotted vs. strains both in the matrix and the
particles in Figure 6.11. It is noted that:

(1) In the matrix, the peak local strain increases almost linearly with the increase of the
overall strain for a given volume fraction.

(2) In the matrix, an interesting phenomenon is that the peak local strain increases at an
increasing rate with the increase of the volume fraction for a given strain level. The

higher the strain level is, the higher is the rate of increase with the volume fraction.
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Actually, it indicates that at a low strain level, the interaction between particies is
insignificant so that the peak strain value apparently increases nearly linearly, while at
a high strain level, this interaction becomes extremely dominant and leads to an extra
contribution to the local plastic flow.

(3) Particles deform very little due to their high elastic modulus. The increase of the peak
local strain with increasing strain level appears as a declining parabolic curve, because
of plastic relaxation in the matrix.

(4) Also, in the particles, the peak local strain increases at an increasing rate with the
increase of the volume fraction at a given strain level because of the inciease of the

interaction hetween particles at high volume fraction.

6.2.5 Synopsis

Generally, the characteristics in composites subjected to tensile loading that
distinguishes them from unreinforced alloys are:

(1) the stress transfer to the particles due to the misfit of the two phases;
(2) the increase of the work hardening around particles;
(3) a dramatic increase of the tensile hydrostatic stress around particles.

These characteristics provide an increase in the strength and the stiffness of
composites. At the same time, this leads to a degradation in the ductility due to the high
concentration of stress.

Furthermore, the strength and the ductility of composites vary with volume

fraction. With increasing volume fraction:
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(1) the overall strength of composites increase nonlinearly as shown in Figure 6.7 due
t0 an increase of both stress transfer and work hardening in composites.

(2) the peak value of the tensile hydrostatic stress increases nonlinearly, compared with
a nearly linear increase of the peak effective stress (see Figure 6.10), which leads to a
rapid decrease of the ductlity in composites because of the major contribution of the

tensile hydrostatic stress to the strain energy density, especially that at high volume

fraction.

6.3 Effects of Particle Shape
6.3.1 Effect of Particle Shape at Low Volume Fraction

In order to investigate the effect of the particle shape on deformation
characteristics within composites, the present section will focus on:

(1) comparing the difference of the deformation characteristics in both the matrix and the
particles for two extreme cases; spherical particle reinforced MMC and cubic particle
reinforced MMC at 1.94% volume fraction. Unlike previous FEA studies from literature,
the stress state within the particles will be examined.

(2) presenting the effect of the aspect ratio of particles on stress concentration.

The former mentioned in (1) comprises two three-dimensional models. One model
was meshed by incorporating a spherical particle in an aluminium matrix using a unit cell
with 2195 nodes and 2744 elements. The other was generated by assuming uniformly
dispersed cubic particles in composites with 3375 nodes and 2744 elements. Since the

analysis is aimed at understanding the general effect of the particle shape, this part of the
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work uses the linear FE analysis, in which the overall engineering strain is set to be
0.1%. Figure 6.12 (a)-(e) shews the compenent distributions within the composite. These
components are the effective stress, the hydrostatic pressure, the normal stress, the
normal strain, and the strain energy density. These indicate that:

(1) The distributions are relatively uniform within spherical particles as proposed by
Eshelby, while they are strongly non-uniform within cube-shaped particles.

(2) For cubic particles, the striking results are that the highest normal stress occurs at the
side wall of cubic particles and the highest hydrostatic tension occurs at the midpoint of
the side wall of cubic particles, which denotes the highest possibility of the particle
cracking starting at the midlength of the particles, which is in accordance with the
experimental results*®*. In fact, if perfect bonding holds, the stretch of the side interface
along tensile direction is required to be equal in both particle and matrix at the side
interface. This constraint forces the matrix at the interface to stretch less than the rest of
the matrix medium, but it also exerts an extra tensile reaction force on the side wall of
the particle so that the side wall of the particle stretches the same as the matrix next to
the side wall. As a result, a strong tensile stress in the particle at the side wall is found.
The high tensile hydrostatic pressure at midpoint of the particle is also due to the perfect
bonding constraint. All this suggests that the particle cracking is governed by stress
control.

(3) Figure 6.12(a) and 6.12(d) show that the compocsites with spherical particle
reinforcements have much higher local plastic deformation in the matrix compared with

those with cubic particle reinforcement for a given strain level. The highly concentrated
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locations are at the pole a small distance away from interface of the spherical particles
and are at the corners for cubic particles. The stress concentrations shown in Figure
6.12(a),(b), and (c) also display a similar pole and corner effect for the different particie
shapes. Compare this with experimental results shown in Figure 2.12 and Fig. 2.14,
where the void nucleates at the comers of angular particles or whiskers. Which
component in Figure 6.12 is the critical one to determine the initiation of the void
formation in the matrix? Is it Von Mises stress, hydrostatic pressure, normal stress,
normal strain, strain energy density or some other component or combination of
components? Since in each plot, a strong corner effect is developed, it becomes difficult
to decide which component is suitable to set the criterion for void nucleation. Consider
the elastic-plastic feature of the matrix. It seems that it is reasonable to choose the tensile
hydrostatic pressure from the comparison of the analyses of plane strain and plane stress
state in Chapter 2 or the strain energy density from the change of the stress state within
composites in Chapter 3 and Chapter S. If any process for the void growth is involved,
it is believed that the work hardening will continue until either material exhaustion or the
material strength is reached.

Figure 6.13 shows the effect of the particle aspect ratio on stress concentration.
The models are generated to have a bar shaped particle within the unit cell. The aspect
ratio here are defined as 1 (the length of particle along the tensile direction): w ( the
width of particle normal to the tensile direction):t (the thickness of particle normal to the
tensile direction and the plane of the page). For the long particle model, the particle

aspect ratio is 1:0.61:0.61 with a volume fraction of 1.84%; the model comprises of
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2942 nodes and 2366 elements. For the short particle model, the mesh arrangement is
the same except that the particle is rotated 90° degrees, which makes the aspect ratio
become 0.61:1:0.61. The cubic model is arranged exactly as that in Figure 6.12, Since
volume fractions of particles involved in these models are small, the interaction between
particles is negligible. Then, the shape effect can be calculated by the FEA. The
comparison of the hydrostatic precsure contours in Figure 6.13 shows that the high aspect
ratio induces a high tensile hydrostatic pressure at midpoint of the particle during tensile
loading, which implies that the longer the particle is, the higher the possibility of particle
cracking. A similar indication is also found in the matrix, 1.e. the tensile hydrostatic
pressure is elevated at top interface and at corners simply by increasing the aspect ratio.
The above results reveal that:

(1) At a low volume fraction and a given strain, if no particle cracking is involved, the
ductility of composites with spherical particles would be expected to be inferior, because
all comporents, including the effective stress, the hydrostatic pressure, the normal stress,
the normal strain and the strain energy density, in the matrix are higher (Figure 6.12).
However, angular particles experience a strong non-uniform stress concentration, which
increases the possibility of particle cracking. Such particle cracking will likely degrade
the ductility of composites with angular particles.

(2) Tke possibility of particle cracking wou®* increase with increasing the aspect ratio.
(3) Early void nucleation at the particle corners will more likely occur at particles with

a high aspect ratio.
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6.3.2 Effect of Particle Shape with Non-uniformly Dispersed Particles

Again, the behaviour of two extreme shapes, cubic particles and spherical
particles has been modelled, as shown in Figure 6.14. In both cases, the particle volume
fraction is 6.18 vol. %, the centre-to-centre distance for the particles in the upper right
of the unit cell is 1.33 times the spherical particle diameter, and the overall engineering
strain is 0.05 for the contour plots. The particles in the lower left represent isolated
particles.

Figure 6.14(b) compares the distribution and magnitude of ¢,, in and around these
two particle shapes. Firstly, the stresses in the matrix are highest directly above and
below the particles, as would be expected from Eshelby's analysis. In isolated spherical
particles, we have found the stress to be uriform, as predicted by Eshelby. For isolated
cubic particles the stress within these non-ellipsoidal particles is not uniform. Both
isolated and clustered cubic particles carry a much higher stress thaﬁ their spherical
equivalents. The o,, stress is especially high along the side walls of the particle, not just
down the corners of the particle. It is common to observe SiC particles which have
fractured on the plane normal to the load axis; a result consistent with the stress levels
seen in these cubic particles. In the matrices, the stress levels are highest along the line
of loading between closely spaced particles, but the g,, stress levels observed in the
matrix between the cubic faces is much higher (629.2 MPa) than that developed between
the spherical particles (530.5 MPa), even though the distance of closest approach between
the spherical particles is a bit smaller than that of the cubes.

Figure 6.14(a) shows the hydrostatic stress developed in and around these same
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particles. This stress is much higher at the top of the cubic particles (647.2 MPA) than
the highest hydrostatic stress developed at the spherical particles (361.6 MPa). This
dramatic increase due to the clustering (or the high local volume fraction) could largely
change the evaluation of the effect of shape on the composite ductility because this stress
is important in that it plays an important role in interfacial failure between the particles
and matrix, resulting in void nucleation at the interface, as discussed in Chapter 3 and
Chapter 5.

The comparison of the stress-strain curves for the two extreme shape models
(shown in Figure 6.14) is plotted in Figure 6.15. As expected, the composites with cubic
particles display higher work hardening at any given tensile strain because of the higher
stress carried. The non-uniformity of the particle dispersion may affect a great deal of
the deformation characteristics in composites during tensile loading. It is anticipated that
the non-uniformity of the angular particles would effect a more sensitive control on the
ductility of composites and the stress state in and around particles. In general, composites
which have spherical particles should give better ductility than those with angular
particles, if highly clustered particles are involved, regardless of the failure mechanism.
The composite material with the cubic SiC particles did have a higher strain hardening
rate in non-uniform case compared with non-uniform spherical particles, and so
supported a somewhat higher load for 2 given strain level. But the 15 MPa gain in load
carrying capacity at the engineering strain of 0.05 is achieved at a cost of about double
increase in the tensile hydrostatic stress developed at the interface in the matrix and a

482.3% increase v.ithin the cubic particles, as well as a 767.3% increase in the o,, stress
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tending to fracture the cubic particle. Keep in mind that this is equivalent to about a four
times increase of volume change strain energy density in the matrix at the highest
hydrostatic stress position and about twenty four times increase for that in the cubic
particles (see Chapter 3). The contribution could be a significant increase in the strain
energy density. Although the above calculation still needs to have its accuracy improved
due to the relatively coarse mesh, it does not stop one concluding that the increase in
load carrying capacity given by non-uniformly dispersed angular particles may not be

worth the probable decrease in ductility.

6.3.3 Effect of Particle Shape at High Volume Fraction

The sensiivity of the mechanical response to particle shape with increasing
volume fraction is of interest. This is because it is helpful in a practical sense to
determine whether there is a preference to optimize the composite ductility and strength
by choosing a certain particle shape for a given volume fraction. In the previous section,
it has been shown that due to the non-uniformity of the particle dispersion, the stress
state in the composite would be strongly affected at locations where the local volume
fraction is high. To further examine the effect at higher volume fraction with a uniform
dispersion of particles, the present section will deal with the particle shape effect at 25%
volume fraction and compare these results with those at low volume fraction. Two
models have been used for this purpose, as shown in Figure 6.16, in which there are
2197 nodes and 2728 elements meshed in the cubic particle model, and 1126 nodes and

875 elements in the spherical particle model.
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Figures 6.16(a)-(e) show the component contour plots at 0.05 engineering strain.
The most noticeable result is that at high volume fractions in aluminum matrices, the
tensile hydrostatic stress (Figure 6.16(2)}), the normal stress (Figure 6.16(b)), and the
strain energy density (Figure 6.16(d)) at 25 vol% shift to the much higher level in the
cubic particle compared with those in the spherical particle model. This is not seen at
low volume fractions. The normal strain (Figure 6.16(c)) and the plastic energy density
(Figure 6.16(2)) remain at a higher level in the spherical particle model, similar to what
is observed at 1§w volume fraction. As a result, at high volume fraction, if the failure
process in the composites is controlled by the stress state or the strain energy density
state, the composites with spherical particles should provide higher ductlity. If the failure
process is controlled by the matrix plastic deformation or the effective plastic energy
density, then the composites with cubic particles should provide better ductlity. It is
worth noting that the experimentally observed appearance of void initiation in Figure
2.12 and Figure 2.13 is displayed in cubic model, i.e. 2 maximum tensile hydrostatic
stress or maximum strain energy density is found at the ccmers of the cubic particle. The
strong constraint between closely spaced cubic particles elevates the tensile hydrostatic
stress. Therefore it is suggested that at high volume fraction, void nucleation in Al/(SiC)
is controlled the tensile hydrostatic pressure or by the strain energy density if one
considers the significant contribution of the tensile hydrostatic pressure to the strain
energy density, especially when the composite is subjected to a large amount of overall
tensile strain. In the cubic particles, the strong triaxiality at the midpoint of particle side

also suggests that particle cracking in angular particles is controlled by the value of the
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tensile hydrostatic pressure. This consequence remains the same as that found at low
volume fraction.

To further examine the shape effect on the process of the void nucleation, we
compare the maximum local stress relationships in the two models. It is found that in the
matrices, the maximum stress states (see the tensile hydrostatic stress and the normal
stress components) shown in Figure 6.17(a) are much higher in the composite with cubic
particles than those in the composites with spherical particles shown in Figure 6.8. In the
particles, this elevation of stress state due to the difference of the particle shape is even
more striking, comparing Figure 6.17(b) to Figure 6.9. For example, at 0.02 overall
engineering strain, the maximum normal stress in cubic particles may exceed 2.0 GPa,
while the same component in spherical particles it is less than 0.5 GPa. If it is assumed
that the particle tensile strength is 2.0 GPa, then particie cracking would occur at this
given strain level. But for spherical particles this particle cracking would only occur at
a larger applied strain levels. Figures 6.17(c) and (d) show the comparison of the
maximum normal strain relationships in the two extreme cases of the shape. In the
matrices, the maximum strain in the composite with spherical particles is slightly larger
than that in the composite with cubic particles, as shown in Figure 6.17(c). However,
in the particles, it is quite the opposite, i.e. the maximum strain is much higher in the
cubic particles of the composites. Actually, it is the consequence that the stress and strain
states are relatively uniform in the elliptical particles as proposed by Eshelby, whereas
it is non-uniform for the non-ellipticai particles. The high level of the gradient in the

angular particles may be another reason to cause the particle cracking.
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Summarizing ihe effects of the particle shape on the mechanical response in the
composites, the conclusions are:
(1) At very low volume fractions, angular particle reinforced composites may give the
better ductility compared with the spherical particle reinforced composites, because of
the lower stress and strain state in the matrix.
(2) For one interfacial failure, it is expected that the void would be initiated at the pole
of the spherical particle, while being initiated at the corners of the angular particle.
(3) The local stress state in angular particle reinforced composites would be much more
strongly affected by the non-uniform dispersion of the particles, compared with the
spherical particle reinforced composites. This indicates that in the material processing for
the angular particle reinforced composites, the uniformity of the particle dispersion is an
important requirement to avoid degrading the ductility and the strength expected in the
final product.
(4) The aspect ratio of the particles affects the maximum stress state in the composites.
The higher the aspect ratio, the higher is the stress concentration, which would lead to
low ductility in the composites caused by early particle cracking and/or void nucleation
at the comers of the particles.
(5) At high volume fractions, it is suggested that spherical particle reinforced composites
should give a better compromise between ductility and strength because the rapid
elevation of the local stress states within the angular particle reinforced composites with
increasing the volume fraction would lead to early failure processes in the composite,

such as particle cracking and/or the void nucleation. The concomitant increase in the
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global stress-strain curve attained by angular particles is not as significant.

6.4 Effects of the Particle Clustering

The effects of volume fraction and particle clustering on the mechanical response
of composites are, in fact, closely related subjects. Clearly, when the level of the particle
clustering is high, it means that the local volume fraction in the clusters must be higher
than the average volume fraction in the composites. Section 6.2 and Section 6.3.2 have
introduced and examined these subjects. The present section will specifically and
separately characterize the effects of the tensile clustering (i.e. where the particles are
clustered in the tensile loading direction) and the effects of the side clustering (i.e. where
the particles are clustered in the direction normal to te tensile loading) on the

mechanical resronse. Also, comparison of the effects of tensile clustering at different

volume fractions will be made.

6.4.1 Configuration
To clarify the difference between tensile clustering and side clustering, several
models with 10% volume fraction of particles have been adopted. Figure 6.18 and Figure
6.19 show two models, in which there are 2606 nades and 2137 elements for the
clustering models, and 1910 nodes and 1479 elements for the uniformly dispersed model.
Figure 6.20 shows the tensile clustering models at different volume fraction, in

which thie mesh arrangement at 10 vol% is the same as that in the Figure 6.18, and there

are 1910 nodes and 1479 elements at 20 vol %.
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Elastic-plastic FEA has been used to obtain the component contours at 0.05
overall engineering strain shown in Figure 6.18-6.19 in 18 incremental steps for both the
models and to predict the stress strain curves for the effect of the clustering at different

volume fractions.

6.4.2 The Effect of the Tensile Clustering

In the present study, the effect of the tensile clustering is demonstrated in Figures
6.18. Figure 6.18(a) compares the hydrostatic stress distribution in a uniform distribution
of particles with that of a distribution with closer spacing along the line of loading. In
the left figure of Figure 6.18(a), where the particle spacing is 0.736 times of the particle
diameter, the stress is approximately consisteni with that predicted by Eshelby, and
visualized in Chapter 3, in that the highest values for the hydrostatic stress would occur
directly abcve and below the particle along the line of loading and the stress within the
particle is uniform. When the particle spacing is reduced to 0.279 times of the diameter,
then the hydrostatic stress is significantly increased along the line of loading between
particies closely spaced along the line of loading, and is significantly higher near the
particle interface (463.3 MPa compared with 284.6 MPa for the left figure of Fig
6.138(a).

This effect is even more strikingly demonstrated in Figures 6.18(b) for the same
particle spacings. It shows the strong concentration of g, between the particles closely
spaced along the line of loading. The Von Mises effective stress reaches a maximum

along the line of loading, but at a small distance from the particle-matrix interface. This
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displacement of the maximum from the interface is a result of the high tensile o, and o,
stresses at the interface. Plastic deformation would therefore be most intense midway
between the particles, when the particles are closely spaced. If failure were to occur by
material exhaustion in the matrix, then this would be the expected site, as has sometimes
been observed.

In general, the results are in accordance with those by Flower and Watg!¥®-140.14}
that the effect of putting a distribution of particles in the material is to cause zones of
high stress between the particles linking them together in a fibrous-like stress

distribution, oriented along the line of loading.

6.4.3 The Effect of the Side Clustering

For particle spacing changes in the direction perpendicular to the line of loading,
the effects on the stress distribution are much less sensitive. In detail, the maximum
values of the effective stress (Figure 6.19(a)), the tensile hydrostatic stress (Figure
6.19(b), the normal stress (Figurc 6.19(c)) and the transverse stress (Figure 6.19(d)) in
the uniform and side clustering cases are not changed much as shown for the tensile
clustering. The uniformity of the stress state is slightly affected by side clustering (see
Figure 6.19(c) an’d (d)), but it is not as dramatic as shown for tensile clustering.
_ Generally, the particle spacing in this direction (i.e. in the fracture plane) will no doubt
play an important role in void linking. However, it would appear to be not significant

in void nucleation, based on the present results and similar results from other models

examined as part of the present study.
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6.4.4 The Effect of Tensile Clustering vs Yolume Fraction

Figure 6.20 displays the effective stress and the normal stress contours for the
tensile clustering at 5.0% engineering strain with 10% and 20% volume fractions, in
which the close spacings between particles are the same. It is shown that increasing the
volume fraction also elevates the stress level between the closely spaced particles as
expected. This would further degrade the ductility of the composites at a higher volume
fraction due to the tensile clustering. Another interesting result is found in that the effect
of the clustering on the overall stress strain curve of the composites varies with the
average volume fraction. The lower the volume fraction is, the higher the effect of the
tensile clustering as shown in Figure 6.21.

In summary, for materials with large hard particles, one should aim to distribute
these particles as evenly as possible to avoid the very high stresses developed along the
line of loading between closely spaced particles. Specifically, the clustering at low
volume fraction would significantly change the mechanical properties, such as the
ductility and the strength. Compared with side clustering, the tensile clustering would
be Vsigniﬁcant in void nucleation. Therefore, generally well control on fabrication
processes would be of practical importance, because of a tendency for particle clustering

in the fabrication processes for real materials.

6.5  Effects of Particle Size
The results for varying particle size are in agreement with those of other

continuum treatments,’ including Eshelby’s analysis; namely that the stresses scale with
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the particle diameter. Therefore for a given particle shape and spacing (relative to the
diameter), the maximum stresses of whatever type are independent of the particle size
according to these continuum models, including the FEA. As well the overall stress-strain
curve is independent of the relative particle size. But what does change is the elastic
stored energy around individual particles, and this may be the controlling factor in local
fracture initiation. It is an experimental observation that composites with larger particles
have poorer ductility'”**'™, This can be reconciled with the present calculations if energy
release is the governing factor leading to fracture.

This particle size scaling effect holds for spherical and cubic inclusions, and for

all spatial distributions of the particles, according to our FE calculations.

6.8 Summary

The work in this chapter has examined the influence of the aspects of particle
shape, size, volume fraction, and distribution on deformation characteristics of (SiC),/Al
MMC by using FE models and applying the concept of the Flower-Watt unit cell. It has
focused on the understanding of interactions between the two phases in terms of the close
examination of stress states within and around particles.

Summarizing the results above, the following conclusions can be drawn:
(1) The external stresses exerted on composites may be largely transferred to the particles
such that the stiffness and the strength of the composites increases with increasing
volume fraction. The work hardening rate also increases. The increasingly high constraint

between particles at high volume fraction leads to the effect that for a given strain level,
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the rate of increase in the strength vs. volume fraction is higher at higher volume fraction
levels.

(2) At high volume fraction, discontinuous composites reinforced with spherical particles
should give better ductility than those with angular particles. The increase in load
carrying capacity given by cubic particles is not worth the probable decrease in duculity.
(3) For materials with large hard particles, one should aim to distribute these particles
as evenly as possible to avoid the very high stresses developed along the line of loading
between closely spaced particles.

(4) The particle size scaling effect holds for spherical and cubic inclusions, and for all
spatial distributions of the particles, according to our continuum calculations.

(5) The mechanical response of two phase materials may be predicted and understood,
if the interface strength and mechanical behaviours of two individual phases can be

described accurately.
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CHAPTER 7
EFFECTS OF THERMALLY INDUCED STRESSES

ON THE DEFORMATION CHARACTERISTICS WITHIN Al/(SiC), MMCs

7.1 Introduction

There exists another type of stress concentration which is generated due to the
discontinuity of the coefficient of the thermal expansion (CTE) in a material. For
instance, residual stresses are inherent in Al/(SiC), composites after any cooling process
because of the great difference of the CTE between aluminum and silicon carbide. These
stresses cannot completely be eliminated by plastic relaxation, interface sliding, or other
micromechanisms during the thermal processing of materials. Thus the effect of the
thermally induced residual stresses on the mechanical properties and ductility of Al/(SiC),
should be taken into account.

Academic interest in the subject has been reflected by many recent
works?-7*80.89.143.152.174.135.196.171.17 Tt has commonly been recognized that the incorporation
of SiC platelets in aluminium matrices results in increased values of the elastic modulus
and yield strength not only because of the back stress, but also because of an increase
in the dislocation density in the Al matrix due to the differences in the CTEs (which
corresponds to the thermally induced stresses).

The results from this dissertation have produced a new viewpoint with respect to
the role of particles in the strengthening process. Fundamentally, the strengthening

mechanisms by particles have traditionally been related to the consequence of the creation

and movement of the "geometrically necessary” dislocations. However, this work-



hardening effect within the metal matrix alone is unlikely to represent the entire
strengthening role of the second phase particles within the Al/(SiCL. MMCs, because the
role of the particle gathering the stress to itself also makes an important contribution.
This strengthening mechanism macroscopically offers the superior gain of the strength
in the Al/(SiC), MMCs 1o that in the aluminium alloys. In the alloys, the precipitates
developed from phase transformations are responsible for the strengthening. The second
phases are considered as small particles, i.e. as point hardening agents, which interfere
with the dislccation movement to affect the work hardening process. Their own
mechanical properties are neglected or are assumed to be close to that of the matrix. In
most commercial precipitation strengthened Al alloys, the precipitate volume fraction is
small. In this situation, it is r~asonable to estimate the strength of the alloys only by the
dislocation interference within the alloys. In contrast, in the MMCs, the SiC particles are
large and strong particles (the size is >1 um and the Young's modulus is as about 6.4
times as great as that of the aluminium matrix), and a large volume fraction of particles
are incorporated within the matrix. The mechanical response of the particles is no longer
an ignorable part during deformation of the MMCs. The stress transfer to particles
becomes an important issue.

In the rest of this chapter, the way in which the stress transfer is affected by the
thermally induced stresses will be examined.

As a useful tool, FEA allows us to investigate the effect of the thermally induced
stresses by continuum mechanics. The previous works on Al/(SiC), MMCs® 152170177

have shown the applications of FEA for whisker reinforcements. In the present chapter,
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the thermo-elastic-plastic FEA will be used to simulate the thermally induced residual
stresses (TIRS) and the effect of the TIRS on deformation characteristics in the Al/(SiC),
particle MMCs. It will focus on:

a) displaying and investigating the TIRS after cooling processing;

b) analyzing the process of the stress redistribution during uniaxial loading and
emphasising the influence of the TIRS on the stress transfer to particles.

¢) examining the effects of the TIRS on mechanical responses compared with those when

the matenal is imtially free of residual stresses.

7.2 Configuration

In the present chapter, thermo-elastic-plastic FE models in ABAQUS have been
adopted. During cooling, the three dimensional unit cell, namely the Flower-Watt cell,
allows all the side walls to be free to move due to the thermal contraction, but the
individual walls are kept planar. The computation assumes that the material is taken to
be stress-free at a uniform temperature of 350°C. According to some works*'", at or
above this temperature, the flow strengths of aluminium alloys are so low that a
negligible dependence of computed residual stresses is expected for temperature changes
above 350°C. Some other works®™ also showed that the stresses became effective at
300°C on the basis of the marked decrease of strength of aluminium and its alloys near
this temperature. In the present simulation the thermally induced residual stresses were
computed using a temperature drop from 350°C to 20°C (room temperature) in 10

increments. The CTE of the aluminium used was 2.0 10 m/(m-°C) and that of the SiC
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particles was 4.0 10 m/(m-°C). The mechanical properties of both the matrix and the
particle are shown in Table 3.1. The plastic behaviour of the matrix is represented in
Figure 5.1.

The present work further attempts to examine the effect of thermally induced
residual stresses on the deformation characteristics in the MMCs at different volume
fractions during the tensile loading. The volume fractions chosen were 5% and 25% of
SiC spherical particles. The former model contained 1750 eight-node elements with 2241
nodes. The latter model contained 875 eight-node elements with 1126 nodes. To monitor
the stress redistribution during the tensile loading, the computation involved 20
increments in the engineering strain range of 0.0%-0.5% and 12 increments in the
engineering strain range of 0.2-5.0%. These were chosen so as to consider the rapid

change in stress concentrations which occur at low strain levels.

7.3 Thermally Induced Residual Stresses after Cooling

The misfit of the CTEs in the Al/(SiC), generates the stress concentration after
the cooling process. The higher the misfit, the stronger are the thermally induced residual
stresses. Many experimental works™**1” have revealed the local high concentration of
the dislocation density near the SiC particles in Al/(SiC) composites, which corresponds
to the inherent local residual stresses.

At the relatively low volume fraction 5%, the effective stress, i.e. the Von Mises
stress, appears as strong interactions between the particle and the matrix near interface

in the matrix, shown in Figure 7.1(2). A plastic zone was developed around the particles
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within the matrix, extending to about half particle radius. However, the distortion within
the particle occurs at a very low level, which is opposite to the case after tensile loading.
The reason for this is that during the thermal contraction the matrix exerts a nearly
isotropic and relatively uniform compressive pressure onto the particles because the
particles are harder and contract less, and also because plastic relaxation outside of the
particles partially releases the stress concentration within the particles. These processes
make the bulk volume decrease dominant within the particles, so that the distortion with
respect to the deviatoric stress component becomes insignificant within the particles.
Additionally, in the matrix, the mean stress becomes tensile at regions far away from the
particle and compressive near the particles, as shown in Figurc 7.1(b). Furthermore, as
expected, due to the constraint between particles, a strong stress fluctuation of the normal
stress (S22) occurred at the equatonal plane (Figure 7.1(c)). In the particles the
compressive stress is created by squeezing from the matrix and also at the top of the
particle by the reaction of the particles resisting the squeezing. In contrast, the constraint
from the particles did not allow the matrix to be free to contract along the tensile
direction near the equatorial plane so that the tension appears there. With respect to the
normal strain (E22) contour, the largest compressive strains were obtained at the tops of
the interface, shown in Figure 7.1(d). Since there is no external stress, then by symmetry
the S11 and E11 contours would appear identical with Figures 7.1(¢)-(d) except for a 90°
rotation of the figures. In these contours, these initial corzpressive zones are particularly
interesting, as will be discussed in further sections. Furthermore and similarly, the strain

energy density stored (Figure 7.1(e)) and the plastic energy density dissipated (Figure
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7.1{f)) in the MMCs displayed the strong layers at the interface in the matrix. Especially,
noteworthy is that the plastic zone was formed only at the region near the interface in the
matrix.

In general, at low volume fractions, the thermally induced residual stresses are
localized around the particles. The existence of an initial plastic zone and the initial
compressive stress region is of Interest.

At a relatively high volume fraction, 25%, the effective stress experiences a much
stronger constraint from the particies and the matrix, shown in Figure 7.2(a). The matrix
yields almost everywhere, compared with the partial yielded region at lower volume
fractions. The Mises distortion within the particle still occurs at a lowest level, but the
uniformity within the particles no longer holds due to the constraints from the
neighbouring particles. Strikingly, the mean stress almost exclusively exhibits tensile
values in the matrix and compressive values in the particles, as shown in Figure 7.2(b).
Again the strong plastic constraint between the neighbouring particles exists. Figure
7.2(c) illustrates the tensile stress component of the thermal induced residual stresses, in
which the initial compressive zone remains as in the case at low volume fraction and a
fibre-like pattern linking the particles in the y direction is formed. Concurrently, the
strong S22 tension at the equator of the particles is due to the constraint of the thermal
contraction in the matrix causing the hydrostatic pressure to exhibit tensile character.
Thus at high volume fractions the mean stress in the matrix is positive and in the
particles it is opposite, as has been shown in some neutron diffraction results®. Another

feature of the thermal residual stresses at high volume fraction that should be noted is
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that the maximum initial compressive strain moves to the midpoint between the particles
due to the plastic flow constraint, shown in Figure 7.2(d). as compared with the zone
which is at the interface at low volume fraction as seen in Figure 7.1(d).

If one bears in mind two facts: (a) there is no externally applied stress; (b) these
results are not dependent on the absolute size of the particle. Then it becomes clear that
the residual stresses shown in Figure 7.1 and 7.2 represent the stress field that would be
created between any two particles of equal size with the equivalent ratio of separation
distance to radius. In viewing these figures, the reader can then transpose these stress
fields to a random particle array, and expect to find something like the stress fields from
Figure 7.2 between closely spaced particles, whereas Figure 7.1 represents what would
be found between particles with a greater separation distance. The trends as particles get
farther apart are made clear from these two sets of figures.

In summary, comparing the thermal residual stresses at different volume fractions,

it was noted that the higher the volum: fraction of particles, the strenger is the plastic
flow due to CTE constraints. Examining the individual components, the results show
that:
(1) In the matrix the initial plastic zone is larger and the constraint is stronger at higher
volume fractions, the peak value shifts from the interface at low volume fraction to the
midpoint for closely spaced particles. In the particle, the distortion remains at a low
level. (See Figure 7.1(a) and Figure 7.2(2)) -

(2) In the matrix, due to the strong constraint, the initial compressive mean stress zone

reduces in size with increasing the volume fraction so that at high volume fraction the
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matrix displays a tensile mean stress on average. In the particle, the compressive mean
stress also decreases with increasing the volume fraction, but it remains at a relatively
high level compared with that in the matrix. (See Figure 7.1(b) and Figure 7.2(b))
(3) Surprisingly the compressive tensile stress in the particle decreases rapidly with the
increase of the volume fraction. It is believed that this is a consiquence of the strong
constraint between the particle and the matrix. In the matrix the fibre-like pattern of the
initial compressive stress forms at high volume fraction, whereas at low volume fraction
the pattern is more localized. (See Figure 7.1(c) and Figure 7.2(c))
(4) Due to the plastic flow constraint, as increasing volume fraction the largest zone of
the initial compressive strain moves from the interface of the particles (with isolated
particles) to the centre of the line between the particles.

The above details may be related fairly directly to interpret the possible
strengthening mechanisms resulting from the thermally induced residual stresses in the

Al/(SiC), MMCs subjected to subsequent tensile loading.

7.4 The Redistribution of the Stress Concentration during Tensile Loading

The way in which the stresses within MMCs with thermally induced residual
stresses are redistributed dunng the uniaxial loading is of interest. To explore how the
thermally induced residual stresses affect the stress transfer to particles, the present
section analyzes the evolution of the mechanical response for materials with 5% velume

fraction of SiC.

The changes in the effective stress with increasing overall tensile strains from

17



0.0% 10 0.5% (0.1% increase step) is shown in Figure 7.3. In the particles, as the strain
increases, their stress gathering capability mcreases starting from carrying less than 10.6
MPa at the initial state to carrying greater than 208 MPa at 0.5% overall strain. The
particles gradually become the major stress bearer compared with the matrix, which
carries a stress less than 157 MPa. The process of stress redistribution in the matrix
indicates that local unloading takes place along the loading direction to release the initial
compressive zone until the local stress overcomes the thermal residual stress. Then as the
loading continuously increases, a stable stress concentration pattem starts to build up.
Comparing this with an identical model without thermal stresses, the consequence is that
the local yielding is delayed by the presence of the thermal stresses. Hence, at low
loading the matrix along the loading line deforms elastically so that this elastic stress
field is superimposed on the thermal residual stress. According to the analysis in Chapter
5, this change may rapidly increase the effective stress gathering capabit.y of the
particles through the delay of the plastic relaxation.

As shown in Section 7.3, the hydrostatic pressure component of the thermally
residual stresses is amazingly large within the particles (with the compressive pressure
greater than 167 MPa). This amount of pressure is of interest because it is equivalent to
that when a 500 MPa uniaxial compressive stress is exerted on the particles. This
pressure may conuibute an increase of the strength within the MMCs. Subsequently, with
the increase of tensile strain, the pressure in the particles is released to a small tensile
value at the overall engineering strain 0.5%, shown in Figure 7.4. The release of the

pressure may play a role in avoiding particle cracking. On the other hand, in the matrix,
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the evolution of the stress redistribution reveals a stress concentration built-up towards
the interface. Generally the hydrostatic pressure becomes less concentrated at the poles
of the particles with thermal stresses. If one considers the fact that the stress
concentration in both the effective stress and the hydrostatic pressure drops due to the
existence of the thermal stresses, it leads one to conclude that the process of the void
formation at the poles of the particles may be delayed because the strain energy density
required to generate voids near the interface is lower compared with that where there are
no thermal stresses.

The evolution of the tensile stress component has been shown in Figure 7.5(a)-(f).
The change of the stress within the particles spans from about 166 MPa compressive
stress at 0.0% strain to about the same value of the tensile stress at 0.5%. Combined
with the suppression of the effective stress, it is anticipated there would be a rapid
increase in the stress gathering capability of the particles due to the superposition of a
quasi-elastic stress field. In the matrix, with the increase of the externally applied strain,
the redistribution of the tensile stress shifts the highest stress concentration from the
equator to the poles of the particle to reach a relatively stable pattern.

Since the stored strain energy density is one of the factors controlling void
formation in the matrix and particle cracking, its change with external tensile loading is
also of interest, 25 shown in Figure 7.6(a)-(f) in which the overall engineering strain
varies from 0.0% to 0.5%. The strong fluctuation at low strain levels is expected due to
the gradual elimination of the compressive zone at the poles of the particles. At 0.5%

strain, the pattern tends to be stable, but the highest value is seen to be lower than that
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without the thermal stresses.

Figure 7.7(a)-(f) exhibits the evolution of the plastic energy density. It should be
noted that the initial and nearly isometric plastic zone first spreads near the equatorial
plane because the increase of the tensile stress near the equatonal plane keeps elevating
the effective stress. Then with increasing loading, the plastic zone 1s developed at the
poles along the loading direction.

Having examined the stress redistribution during the tensile loading from initial
residual stress state to 0.5% strain at low volume fraction, the most significant results.
are that the existence of the thermal residual stresses retards the accumulation of stress
concentration for both the effective stress and the hydrostatic pressure. This would lead

to the rapid increase of the stress gathering capability of the particles and the retardation

of void formation within the matrix.

7.5 A Comparison with and without Thermal Stresses

In the previous section, it was found that the existence of thermally induced
residual stresses affects the overall mechanical properties of the composites and also the
stress gathering capability of the particles. The following will compare the difference at
0.5% external strain with and without thermal stresses to further understand the effect
of the thermal stresses on the mechanical properties of the MMCs.

Figure 7.8 shows the effective stress contours with and without thermal stresses
at 0.5% engineering strain. It is noted that the plastic zone is more highly developed

around the equator of particles with thermal stresses, in contrast to the stress contour
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forming a fibre-like pattern along the direction of loading in the absence of thermal
stresses. A comparison of the hydrostatic pressure contours at 0.5% engineering strain
is shown in Figure 7.9. With thermal stresses, the tensile pressure is lower (about 20
MPa) in the particle and this concentration at the poles of particle is expectingly reduced.
Significantly, along with the tensile pressure, the tensile stress contours at 0.5%
engineering strain show obviously that the gradient of the stress concentration in the
matrix reduces due to thermal stresses as displayed in Figure 7.10. This is important
because the effect actually implies that due to the decrease of the gradient of the stress
concentration, an increase in the strength of the MMCs with thermal stresses is mainly
due to the increase of the matrix stress gathering capability. This increase in the strength
is directly related to the retardation of the effective stress. It needs a higher external
tensile strain to reach the same polar effective stress than the case without thenﬁal
stresses.

At the higher strain level of 5%, the differences in the stress concentration
become smaller. A comparison is made in Figures 7.11 to 7.13, which are the effective
stress, the hydrostatic pressure and the tensile stress contours with and without thermal
stresses. However, it still can be noted that the stress gathering capability of the particles
is slightly higher with thermal stresses than that without thermal stresses, but the effect
would disappear with continuing increase in the tensile strain through the further
movement of the plastic flow. Eventually at a high enough strain level, the response of
the MMCs would not be affected by the misfit of the CTEs, namely the difference in

CTE's.
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By comparing the difference with and without thermal stresses. it is readily
demonstrated that the misfit of the CTEs would strongly affect the initial stiffness,
the yield stress and the beginning tensile loading stage of the MMCs. It is expected that
at high volume fraction, the effect of the thermal residual stresses on the overall

mechanical response would be similar to that at low volume fractions.

7.6 Effect of the Thermally Induced Stresses on Overall Stress Strain Curves

Figure 7.13(a) and Figure 7.13(b) are the stress-strain curves of a 25% volume
fraction particle composite model with and without heat treatment. As expected it was
found that there is an increase in the 0.2% yield strength of composite because of
thermally induced residual stresses. The process leading to the increase in strength of the
MMCs may be classified into the following stages:

(1) The initial loading stage (strain < ~0.15%)

An interesting FEA result is that for both the tensile loading and compressive
loading, the apparent stiffness of the MMCs is reduced, if one considers the thermal
stresses compared with the case with no thermal stresses. By reviewing the redistribution
during the uniaxial loading, this result seems reasonable. At the beginning of tension, the
initial plastic zone near the equatorial plane decreases the rate of stress the increase in
the matrix and therefore its ability to caity the stress during tensile loading. On the other
hand, in the case of the compression, the initial compressive plastic zone at the poles of
the particles would decrease the efficiency of the rate of increase for the particle to carry

corpressive stress. In both cases, the initial plastic zone generated within the matrix
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makes the apparent overall stiffness lower. Note that, without considering the residual
stresses, the matrix and the particle deform elastically at the initial loading.
(2) The initial yielding stage (strain between 0.15%-0.3%)

Recall that when substantial plastic flow takes place in particulate reinforced
materials, this plastic flow occurs above and below the poles of the particle. The effect
of the thermal stresses is to leave a residual compressive stress along the polar direction
at these locations.

In the early stages of plastic flow in tension then, the effect of the residual stress
at the poles is to retard the development of the Mises effective stresses there. The net
effect is to cause a delay in general yielding. For compressive loading, the further
accumulation of the plastic deformation within the matrix would increase the stress
concentration in the MMCs and at the same time increase the stress gathering capability
of the particles. Note that the initial compressive stresses exist in the particle after
cooling process. Again, an increase in the strength of the MMCs is anticipated.

The results above suggest that the effect of the thermal residual stresses on the
yield strength should not be considered simply as the half difference of the tensile yield
strength and the compressive strength as some works did.

(3) The stable stage of the increase in the strength (strain between 0.3%-2.0%)

At the stage, the increase in strength predicted with thermal stresses in both cases

exhibits a stable value ~8 MPa. In real materials, this value is expected to be larger

because of the effects of the particle shapé and the tensile clustering.

. (4) The large strain stage -
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At this stage, the plastic deformation 1s sufficiently accumulated within the matnix
that any effects from the initial residual stress are negligible. The stress concentration
also increases as shown in Chapter 5. The influence of the thermal stresses on the stress
concentrations is expected to be decreased gradually as increasing tensile or compressive
loading. From the present results, this phenomenon has been shown for the case of the
tensile loading.

In general, the overall stress and strain behaviour is expected to be sensitive to
the effect of the thermal residual stresses at the initial strain levels. The yield strength
would be strongly dependent on the cooling process. The strength determining
mechanisms of MMCs are those of the stress transfer to particles and work hardening in
the matrix. The former mechanism distinguishes MMCs from ordinary alloys.

It is found that the prediction from the therm-elasto-plastic FEA confirms a
experimental result'”, that the tensile yield stress is slightly larger than the compressive
yield stress for composites containing spherical SiC particles. If one considers another
interesting result, in this case for whisker composites, a higher compression yield stress
than tensile yield stress is expected, which has also been found by experiments'” and
FEA'®2, It can be suggested that for the particulate composite, if the particle shape is

other than spherical, the effect of the thermal stresses on the yield stress may be minor,

7.7 Discussion

The prominent advantages in using FEA to investigate the mechanical properties

of microstructures are that:
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(1) it is able to reveal the evolution of the plastic deformation and stress redistribution
with and without thermal stresses within the MMCs subjected to a tensile loading;

(2) it is able to reveal the levels of the local work hardening within the matrix so that the
contribution of the work hardening in material strengthening is inciuded dunng the
analysis;

(3) it is also able to reveal the contribution of the stress transfer to the particles in
materials strengthening; this is information which cannot be provided by the observation
of dislocations.

The above processes can be modelled for Al/(SiC), MMCs, if the material
behaviour, such as the work hardening, the thermal response, znd the elastic response,
are described correctly, and if appropriate particle shape and distribution are used.

To explore the influence on work hardening with and without residual stresses,
of various contributions including the stress transfer to the particles, a general discussion
is given as follows.

A. Strengthening by work hardening within the matrix

It is well established that the plastic deformation is physically manifested by the
movement of the dislocations generated within the matrix, when the external forces
exceed the yield stress. As a result of the movement of the dislocations, work hardening
is achieved due to the interference of these dislocations. In general, for two phase
materials, the work hardening comprises two parts. One part is the work hardening
caused by the creation and the movement of the “statistically stored” dislocations, which

are created from the intrinsic matrix defects. The other part is the work hardening caused
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by the creation and the movement of the "geometrically necessary” dislocations, which
are created as a result of the existence of the hard second phase. The latter practically
involves two contributions, the movement of dislocations generated from the thermal
contraction due to the misfit of the CTEs and the movement of dislocations generated
from the tensile loading due to the misfit of the elastic or elastic-plastic properties of the
matrix and the particles. The common characteristic of these two contributions is that the
misfit causes a high stress concentration accumulation and plastic zone (1.e. intensified
dislocations) around the particles. The strengthening process is directly related to this
increase of dislocation density due to the misfits. However, it should be clarified that the
strengthening process actually is that of the multiplication of the unmovable dislocations,
which has been shown by Stobbs, Watt and Brown™. By examining the fatigue behaviour
in copper-silica, they found that there wes little or no fatigue-hardening in spite of the
increase of dislocation density during the process. It suggested that the increase of the
dislocation density is a necessary condition, but is not a sufficient condition. The
multiplication of a high density of unmovable dislocations is of essential importance.
Through the use of the FEA in continuum mechanics, work hardening has been
shown to be related to the local fluctuation of the stress concentration and the plastic
deformation within the aluminium matrix. It is assumed that the behaviour of the work
hardening in the matrix is isometric and it follows the Prandtle-Reuss flow law, i.e. the
direction of flow is the same as the direction of the outward normal to the yield surface.
As with any other existing composite model, the present model uses the mechanical

properties of each constituent, independently. However, one question proposed by Taya,
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Lulay and Llovd™ is worth consideration. that is, are the mechanical properties of the
matrix metal in a MMC the same as those of the unreintorced metal? To tncrease the
accuracy of the prediction from continuum mechanics. what kind of additional input Jata
is required and how can one get them? Actually, the prediction of FEA using the
behaviour of the work hardening of the unreinforced metal leads to a softer stress-strain
response for MMCs than is observed in real materials. For instance, Vogelsang et al.'™
found that the yield strength for 6061 Al/(SiC), MMCs at 20 vol pet is increased by
more than a factor of two compared with that of annealed powder compacted 6061 Al
alloy. Furthermore, FEA predicted an ultimate strength of only 186 MPa for 20 vol pct
SiC composite, whereas the measured value of ultimate strength for this materials is 448
MPa. Arsennault and Fisher'™ proposed that the increased strength could be accounted
for by a high dislocation density in the Al matrix after cooling process due to the misfit
of the CTEs of Al and SiC. But further FEA'®? with consideration of the residual stresses
predicted an increase in strength of less than 50 MPa with 480 degrees cooling. It is still
a2 much lower value than that of the experiments. These results suggested that this
increase in strength cannot be explained directly by continuum mechanics theories if the
work hardening of the matrix metal in the MMCs the same as those of the unreinforced
metal.

Therefore, to clarify the strengthening mechanisms in the MMCs, the details
about the cooling process and the tensile loading within the MMCs should be recxamined
closely. According to the observation on the dislocation density and the strengthening by

Stobbs et al.”, the multiplication of the unmovable dislocations results in the work
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hardening or strengthening within the matrix.

In the MMCs, the dislocations generated from the thermal contraction and the
tensile loading process cannot as freely move through the matrix medium as through the
unreinforced matrix medium. Especially, when the volume fraction is high, scme of
dislocations would be pinned or impeded by the particles so that the unmovable
dislocations would be increased compared with those within the unreinforced metal.
Therefore, the apparent work hardening of the matrix in the MMCs is expected to be
higher than that in the unreinforced uniform metal. It implies that the behaviour of the
work hardening of the matrix within the MMCs is different from that within the
unreinforced matrix. The consequence of the difference is that the matrix within the
MMCs is apparently stiffer.

B. Strengthening due to the stress concentration

Brown and Clarke'® have proposed that the local fluctuating stresses act
essentially as barmiers to make it more difficult for successive glide dislocations to bypass
the particles. The present author believes that the high stress concentration of hydrostatic
pressure within the MMCs is one of the major factors responsible for the impedance to
the plastic flow. This is because the significant difference of the mechanical response
between the unreinforced aluminium and the MMCs is the accumulation of a high stress
concentration of the hydrostatic pressure near the particles in the MMCs. The
contribution of the tensile hydrostatic pressure to the local strain energy becomes an
important part of the total strain energy, which has been discussed in Chapter 3, 5 and

6. The opposite gradient of the strain energy density physically represents a resistant
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force to the movement of the dislocations. The higher the strain cnergy density
concentration is, the larger the resistant force or the stronger is the impedance to the
plastic flow. It is reasonable to modify the flow potential within the matrix in the MMCs
by considering the effect of the hydrostatic pressure or even its gradient.

C. Sirengthening by the stress transfer to the particles

In the previous chapters (Chapters 3 to 6), the analytical and FE analyses vevealed
that the particles carries higher stresses than the matrix. The stress gathering capability
of the particles depends on the misfit of the material properties of Al and SiC. Since the
incorporation of the large SiC particles into the aluminium matrix usually involves a
finite volume fraction of the reinforcements, this part of contribution to the strengthening
of the MMC:s is not ignorable.

With consideration of the thermal residual stresses, in the present chapter, the
results shows that the effect of the misfit of the CTEs does provide an increase in the
strength of the MMCs at a low tensile loading level due to the increase of the stress
gathering capability of the particles because of the retardation of the local yielding point,
but this effect would decrease with increasing tensile loading.

However, using the thermo-elasto-plastic FEA, the prediction =f the strength of
the MMCs is less than the measured values. It suggested that a modification of the
constitutive equations and the description of the flow potentials of the matrix will be
required because of the above considerations about work hardening in the MMCs, namely
the stress concentration, and stress transfer to the particles. It is anticipated that if the

behaviour of the work hardening within the matrix in the MMCs can be correctly
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described, the FEA can be used to predict a reasonable increase in the strength in the
MMCs similar to the measured values. That is to say, the matrix in the MMCs is
expected to carry higher stresses due to the stiffer work hardening, and so also would the
particles corresponding to their stress gathering capability. This magnification of the
stress carried within both the matrix and the particles actually leads to doubts that these
are among the reasons responsible for the low ductility of the MMCs and the particle

cracking.

7.8 Summary

The effect of thermally induced residual stresses on the mechanical responses of
Al/SiC composites was investigated by applying thermo-elasto-plastic FEA. The results
have shown that:
(1) the residual stresses resulting from the thermal contraction during the heat treatment
do provide an increase in the strength of the MMCs.
(2) the effect of the thermal stresses on the mechanical properties decreases with
increasing the tensile plastic strain.
(3) the yield strength for the tensile loading is higuer than that for the compressive
loading in spherical SiC particle reinforced aluminium metal matrix composites.
(4) the accurate prediction from FEA requires additional input data on the work
hardening within the matrix of the MMCs and a modification of the description of the

constitutive equations and the flow potential.
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CHAPTER 8

GENERAL SUMMARY AND CONCLUSIONS

This chapter summarizes the new observations that have been found in this

modelling study.

Part I: Basic Role of a Hard Particle

(1) By visualizing the elastic field around a SiC sphere within the aluminium matrix
applying Eshelby’s model, the following characteristics of a hard particle embedded in
2 soft matrix subjected to tensile loading has been confirmed:

(a) SiC particles carry higher tensile stresses than the aluminium matrix, which
corresponds to stress transfer to the hard particle. The author has coined the
term "stress gathering capability™ to express the relative ratio of theses stresses
and to emphasize its importance in the strengthening of MMC’s.

(b) All the stress and strain perturbations in the aluminium matrix are developed
near the interface. Matrix yielding would first occur along the pole a small
distance away from the interface, which leads to a higher global leve! of work
hardening in the matrix, compared with the unreinforced matrix.

{c) The triaxial stress exhibits the strongest perturbation and compared with any
other components it has the highest relative concentration along the pole at the

interface.

(2) By analyzing the dependence of the s&ess transter on the relative misfit of the elastic
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constants, it is found that:
(a) The stress carrying capability increases monotonically with the increase of the
ratio of the Young’s moduli;
(b) The increase rate of the stress carrying capability is high at low modulus
ratios, but low at high modulus ratios. This infers that it is not always
necessary to obtain the effective stress transfer by choosing extremely stiff
reinforcement.
(3) By studying the stored strain energy density, it can be concluded that this energy
density consists of two terms:
(2) that generated due to the specific volume change, which may be expressed as
a function of the mean stress;
(b) that generated due to the distortion, which may be expressed through the
effective stress.
Hence, the failure process in two phase materials would be strongly affected by the local
value of the tensile hydrostatic pressure.

(4) All the stress and strain perturbation fields are scaled by the particle size.

Part II: A New Approach to Inhomogeneity Problems with Arbitrary Shape Particle

A new method for solving arbitrary-shaped inhomogeneity problems has been
developed.

(1) The approach combines boundary integral equations, based on Betti’s principle, with

a sequence of cutting, straining, and welding procedures to numerically acquire stress and
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strain distributions at an inhomogeneity with an arbitrary shape.

(2) The approach reduces the inhomogeneity problems to the determination of the elastic
perturbation field induced by the strain misfit. It distinguishes the perturbation field from
the uniform stress field and emphasises that the strain misfit is the driving force to cause
stress concentration at inhomogeneity when a system comprised of an infinite omain and
an inhomogeneity is subjected to a far-field stress.

(3) The approach converts a three dimensional computation problem for a singularity into
a two-dimensional one (a surface integral). It takes far less computer time than for FEA
to obtain reasonably accurate results.

(4) The approach is sensitive to the variation of stress fields near a singularity and meets
the equilibrium equations everywhere within both matrix region and the inhomogeneity
region.

(5) 1t may also be used as an absolute verification method for other computation methods
for inhomogeneity problems.

(6) The stress states both in the matrix and in the inhomogeneity are non-uniform.

Part III: Plastic Relaxation and Plastic Accumulation

An elastic plastic FEA has been performed at low particle volume fraction. By
examining the plastic relaxation and the plastic accumulation in the MMCs. It can be
concluded that:
(1) Plastic deformation helps stress relaxation at an early strain stage. The relative stress

concentration is relaxed and the stress gathering capability of the particles is reduced.
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(2) During further plastic accumulation due to the increasing tensile loading, strain
hardening overcomes the plastic relaxation effects and the relative stress concentration
in the matrix then increases. This concentration may even exceed that caused by the
misfit of the elastic moduli. Concurrently with this, the stress gathering capability of the
particle also increases,

The ductility of an MMC depends not anly on the elastic stored energy, but also
on the plastic deformation accumulated. It is therefore proposed that the following should
be considered in explaining the low ductility of Al/(SiC), MMCs.

(1) Along with the effective stress, the tensile hydrostatic pressure is responsible for the
early void initiation at the interface within the MMC;

(2) The localized high accumulation of the plastic deformation near particles may lead
to matrix exhaustion;

(3) the high stress gathering capability of the particles will be partially responsible for

the particle cracking.

Part I'V: Effects of Particle Morphology on Mechanical Response in AV/(S:C), MMCs
The influence of the aspects of particle shape, size, volume fraction, and

distribution on deformation characteristics of (SiC),/Al MMCs were examined using FE

models and applying the concept of the Flower-Watt unit cell. The conclusions are:

(1) The external stresses exerted on composites may be largely transferred to the particles

such that the stiffness, the strength and the work hardening rate of the composites

increases with increasing volume fraction as expected. The high constraint between
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particles at high volume fraction leads to the result that at a given strain level, the ratw
of increase in the strength vs. volume fraction is higher at higher volume fraction levels.
(2) Athigh volume fraction, discontinuous composites reinforced with spherical particles
should give better ductlity than those with angular particles. The increase in load
carrying capacity given by cubic particles compared with spherical particles is not worth
the probable decrease in ductility.

(3) For materials with large hard particles, one should aim to distribute these particles
as evenly as possible to avoid the very high stresses developed along the line of loading
between closely spaced particles.

(4) The particle size scaling effect holds for spherical and cubic inclusions, and for all
spatial distributions of the particles, according to our continuum calculations.

(5) The mechanical response of two phase materials may be predicted and understood,

if the interface strength and mechanical behaviours of two individual phases are described

accurately.

Part V: Effect of Residual Stresses on Mechanical Response in AV/(SiC), MMCs
The effect of thermally induced residual stresses on the mechanical responses of

AV/SiC composites has been investigated by applying thermo-¢lasto-plastic FEA. The

conclusions are:

(1) the residual stresses resulting from the thermal contraction during the heat treatment

does provide an increase in the strength of the MMCs.

(2) the effect of the thermal stresses cn the mechanical properties decreases with
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increasing the tensile plastic strain.

(3) the yield strength for the tensile loading is higher than that for the compressive
loading in spherical SiC particle reinforced aluminium metal matrix composites.

(4) accurate prediction from FEA requires additional input data on the work hardening
within the matrix of the MMCs and a modification of the description of the constitutive

equations and the flow potential.
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CHAPTER 9

SUGGESTIONS FOR FURTHER WORK

The new results presented in this dissertation suggest a number of ways in which
the research could be extended. The following are those which the author believes to be

promising.

9.1 Modification of Constitutive Equations and Plastic Flow Potentials in

Modelling Two-phase Composite Materials

In Chapter 7, it has been found that new appropriate constitutive equations and/or
flow potentials in modelling composite materials are needed, because the hardening
behaviour of the matrix material is strongly affected by the existence of the second phase
particies. The behaviour of the work hardening in the matrix of composites would be
distinguished from unreinforced alloys due to the increase of the immovable dislocations.
This change requires that the constitutive equations and plastic flow potentials be
modified before they can be used in real material modelling.

The present author believes that the modification will take the gradient of the
stress state and the high triaxial stress into account, because these characterize the
difference between unreinforced alloys and composites. A large amount of experimental
work is needed to construct an accurate description of the elastic-plastic behaviour of the

matrix of composites.
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9.2  Extension of the Method Developed in Chapter 4

The extension of the method developed in Chapter 4 will include the following:
(1) developing more sophisticated and versatile computer programs for solving the
inhomogeneity problems with an arbitrary shaped partcle.
(2) investigating the possibility whether the method can be extended to an elastic-plastic
analysis.
(3) examining the stress field at the particle when the interface does not have perfect
bonding and the real interface force law is given.

(4) extending the method to applications in two-dimensional cases.

9.3  Modelling Ductility of Composites

The prediction of the ductility of composites is another important subject apart
from the study on key parameters and residual stresses in Chapter 6 and Chapter 7. It
is believed that using FEA and applying the concept of unit cell, the ductility can be
calculated in an average sense, if the criteria for local material failure are accurately
described. In addition to this, statistical analysis is also a promising method to simulate

the failure process.

9.4 Modelling Other Two-phase Composites and/or Multiphase Composites
The present study can be easily extended to that of the deformation characteristics
in other two-phase composites and/or multiphase composites, such as Al/(Al,0;), MMCs

and aluminium composites reinforced by (Si), and (SiC), or (SiC),. The stress transfer
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to particies, the stress distribution in composites. the overall stress strain curves, and

other mechanical responses can be predicted,
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Figure 2.1  Necking of tensile specimen (after Puttick). (a) Section through neck; (b)
Cavities forming at inclusions; (c) Cavities coalescing in central region of
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Figure 2.2

Figure 2.3

the dimples (after Eiselstein).
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Ductility of several copper dispersion alloys vs volume fraction (after

Edelson & Baldwin).

tJ
1
ta

Ductile fracture surface of spheroidized steel with carbides present within



HO{-

Mockingan-Frocture, %N or Rudugtion-ol-drga, % RA (%)

o €

“op \ 4

i 1
Usiferm Elangotion, B, or Tolal Elangation €, %)
)
T T
.
/
1 i

Tof-
./ ] I !
60~ - 2@]— -
4 4
r . 1 1 . T [ . ' 3 L ] r
] 100 W0 300 ] 100 W00 . 300
Tamperature ("X) Temparature (*K)
@ ®)
Figure 2.4  (a) Variation with temperature of percent necking-at-fracture and percent

Figure 2.5

reduction-of-area; (b) Variation with temperature of uniform elongation
and of total elongation. Both (a) and (b) are for the same fine-grained
aluminium material (after Chin, Hosford & Backofen).

Y B
Pkt
110 'f, + —_— ) —

Residual stress in the Si phase of the Al-Si alloys (after Liu & Guriand).



Figure 2.6  The progressive change in the character of the fracture for increasing

hydrostatic pressures. (a) Broken at atmospheric pressure; (b) Broken
under 34,000 psi; (c) Broken under 145,000 psi; (d) Broken under 186,000
psi; (e) Broken under 268,000 psi; (f) Broken under 387,000 psi.
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Figure 2.7  Spherical void in a remote simple tensile strain rate field.



(o)

Slip involving non-primary dislocations at large S10, particle in a copper

crystal, after a shear strain of 4% (after Stobbs and Brown).

Figure 2.8

with a large aspect ratio in an

Multiple internal fracture of a particle
aluminium based alloy (after Broek).

-

Figure 2.9



Figure 2.10 The elorgated voids caused by a 50% strain to a iron samplc in the
directior: of the tensile axis at room temperature (after Tanaka).

Figure 2.11 Multiple fracture modes in the Al/(SiC), (after Lewandowski et al).



(b)

Figure 2.12  Void initiation and growth in tensile fracture specimen of 6061 Al-SiC
composite. (a) void initiation at whisker end: (b) Void growth (after Nutt
& Dura).



Figure 2.13

Figure 2.14

ll.)
Lo

Void nucleation observed at and near interfaces in overaged specimen
(after Lewandowski).

The shear stress/shear strain curves of a pure copper single crystal and a
second crystal, identical with the first except for the inclusion of 1 volume
% of Si0, particles whose mean diameter was 900A (after Ashby).
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Figure 2.15 The increment of flow stress due to work hardening (after Ashby).

Figure 2.16 The dislocation structure around a cluster of particles (after Brown and
Stobbs).
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(a) The effective shear modulus versus the volume fraction of spherical
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Figure 2.18 The unit cell model (after Flower & Watt). (a) Unit cell; (b) Reflected
cells; (¢) The array of spherical hard particles.
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Figure 2.19 (a) A perspective of a single unit cell; (b) A projection in the loading
direction; (c) A plane parallel to the loading axis (after Christman et al).
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Figure 2.20 2D unit cell models used for the clustering calculations (after Christman
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Periodic array of aligned whiskers. (a) Cross-section along fibres. (b)

Cross-section normal to fibres (after Tvergaard).

Figure 2.21
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Figure 2.23  Unit cell containing
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using Eshelby’s model. (a) Three dimensional view; (b) Front view.



Figure 3.2

Figure 3.3

Hydrostatic pressure (PRESS) contour (in units of  Pa).

Tensile stress (S22) contour (in units of Pa).
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Figure 3.4

Figure 3.5

Tensile strain (E22) contour (in units of % m/m).

The transverse stress (S11) contour (in units of Pa).
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Figure 3.13  Strain energy gathering capability of an inhomogeneity.
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Figure 4.2  Geometry definition in general.
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process of: (a) cutting; (b) to (¢) straining; (d) to (e) welding.
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Figure 5.3  The variable concentration contours calculated from linear FEM in a

Al/(SiC), MMC (Vol. Fract.=1.94%) subjected to a tensile strain of
0.2%.
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The influence of plastic behaviour of matrix on Von Mises stress
concentration in 6061-T4 Al/(SiC), subjected to a low tensile loading of
94.2 MPa (Vol. Fract.=1.94%). (a) elastic matrix (upper); (b) elastic
plastic matrix (fower figure).
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Figure 5.10 The influence of plastic behaviour of matrix on the normal strain
concentration. (a) elastic matrix (upper figure); (b) elastic-plastic matrix
(lower figure).
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Figure 5.13 A comparison of polar characteristics with and without considering plastic
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Figure 5.15 Development of the effective hydrostatic pressure concentration at
engineering strains of: (2) 0.2% (top figure); (b) 2.0% (middle figure); (c)

5.0% (bottom figure).
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Figure 5.16 Development of the normal stress concentration at engineering strains of:
(@) 0.2% (top figure); (b) 2.0% (middle figure); (c) 5.0% (bottom figure).
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Figure 5.18 Development of the strain energy density concentration at engineering
strains of: (a) 2.0% (upper figure); (b) 5.0% (lower figure).
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(d) The tensile strain contours.
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Figure 6.12 A comparison of the component contours in 6061-T4 Al/(SiC), MMCs
with 1.94% volume fraction of particles: (i) spherical particles (upper
figure); (ii) cubic particles (lower figure).
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(2) The hydrostatic pressure contours.
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(b) The tensile stress contours.

Figure 6.14 A comparison of the component contours in 6061-T4 Al/(SiC), with 6.18%
volume fraction of particles: (i) spherical particles (upper figure); (ii) cubic
particles (lower figure).
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Figure 6.15 The overall stress strain curves with different particle shape: (2) entire
stress range; (b) partial stress range.
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(b) The tensile stress contours.
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(c) The tensile strain contours.
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(d) The strain energy density contours.
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(e) The plastic energy density contours.

Figure 6.16 A comparison of the component contours in 6061-T4 Al/(SiC), with 25%

volume fraction of particles: (i) spherical particles (upper figure); (ii) cubic
particles (lower figure).
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(a) The hydrostatic pressure contours.
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(b) The tensile stress contours.

Figure 6.18 Effect of tensile clustering on the component contours in 6061-T4
Al/(SiC), MMCs with 10% volume fraction at 5.0% engineering strain.
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(b) The hydrostatic pressure contours.
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(c) The tensile stress contours.
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(d) The transverse stress contours.
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Figure 6.19 Effect of side clustering on the component contours in 6061-T4 Al/(SiC),
MMCs with 10% volume fraction at 5.0% engineering strain.
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(b) The tensile stress contours.

Figure 6.20 A comparison of the effect of tensile clustering on the component contours
in 6061-T4 Al/(SiC), MMCs at 5.0% engineering strain with 10% and
20% volume fractions.
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Figure 6.21 The overall stress strain curves with clustered and uniform particles
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{(b) The hydrostatic pressure contour.
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(d) The tensile strain contour.
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(e) The strain energy density contour.
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(f) The plastic energy density contour.

Figure 7.1  Effect of the thermal contraction on component contours in 6061-T4
Al/(SiC), with 5% volume fraction.
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(c) The tensile stress contour.

(d) The tensile strain contour.

Figure 7.2  Effect of the thermal contraction on component contours in 6061-T4
Al/(SiC), with 25% volume fraction.
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(e) at 0.4% engineering strain.

(f) at 0.5% engineering strain.

Figure 7.3  The Von Mises stress redistribution with increase of the tensile loading in
6061-T4 Al/(SiC), with 5% volume fraction.
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(b) at 0.1% engineering strain.
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() at 0.5% engineering strain,

Figure 7.4  The hydrostatic pressure redistribution with increase of the tensile loading
in 6061-T4 AV/(SiC), with 5% volume fraction.



wALUE
Y
108000

(b) at 0.1% engineering strain.

290



2-100

(d) at 0.3% engineering strain.
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(f) at 0.5% engineering strain.

Iigure 7.5  The tensile stress redistribution with increase of the tensile loading in
6061-T4 Al/(SiC), with 5% volume fraction.
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(d) at 0.3% engineering strain.
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(e) at 0.4% engineering strain.
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(f) at 0.5% engineering strain.

Figure 7.6  The strain energy density redistribution with increase of the tensile loading
in 6061-T4 Al/(SiC), with 5% volume fraction.



LI B

LI S

oroe e,
I -t rirees

(a) at 0.0% engineering strain.

FENER vaLuT

(AN L IXT N
LGIeAn
AT AT
« X IR
“u ALFea%
el BT AT
L Pl
T el LU,
+T QRS
+9, 87005

: *® ACE st

() at 0.1% engineering strain.

[ 3

*h



wir et

- NIEaen
oy b eat
L L AT
. ITSY IS
r e JAE 0K
of, 8L A%
PRI
18, LJES
CL AN TS
LRI A1 Y]
1. 1lC~d0
=l it en

(c) at 0.2% engineering strain.

L 3T I YR §

ey .2luees
PRAUL -3
- w3 0T enn
sy, wIF ey
8. luEriy
PRLET 1
L3 1Y 14
i, HRuarh
AT ILTT
f JIE0%
=1 IEGed
IR L]

(d) at 0.3% engineering strain.
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(f) at 0.5% engineering strain.

Figure 7.7 The plastic energy density redistribution with increase of the tensile ,
loading in 6061-T4 Al/(SiC), with 5% volume fraction. -
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Figure 7.8 A comparison of the Von Mises stress contours in 6061-T4 Al/(SiC),
MMCs with 5% volume fraction at 0.5% overall strain: (a) with thermal
stress; (b) without thermal stress.
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Figure 7.9 A comparison of the hydrostatic pressure contours at 0.5% overall strain:
() with thermal stress; (b) without thermal stress.
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Figure 7.10 A comparison of the tensile stress contours at 0.5% overall strain: (a) with
thermal stress; (b) without thermal stress.
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Figure 7.11 A comparison of the Von Mises stress contours in 6061-T4 Al/(SiC),
MMCs with 5% volume fraction at 5% overall strain: (a) with thermal
stress; (b) without thermal stress.



Figure 7.12 A comparison of the hydrostatic pressure contours at 5% overall strain:
(a) with thermal stress; (b) without thermal stress.
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Figure 7.13 A comparison of the tensile stress contours at 5% overall strain: (a) with
thermal stress; (b) without thermal stress.
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Table 3.1 Material Properties
Materials Young's M. Poisson R. Bulk M. Shear M.
SiC E =450 GPa »v=0.17 K'=227GPa | u =192 GPa
Aluminium E=70 GPa »=0.33 k=68.6 GPa r=26 GPa
M. =Modulus R. =Ratio
Table 5.1 Mesh Arrangement at Different Volume Fractions
Volume Fraction Node Number Element Number
5.0% 2241 1750
10.0% 1910 1479
15.0% 1639 1262
20.0% 1253 966
25.0% 1126 875
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