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Abstract

Distributed systems are complex and expensive to develop. One of the most difficult
issues comes from the fact that the processes in a distributed system may be working on
different platforms and in different programming languages. Middleware technologies
have been developed to handle the heterogeneity in the complex distributed
communications and provide us with high-level primitives for inter-process
communication, while hiding the details of its network management and services. By
using a proper middleware, the software components can be made accessible across
applications and machine boundaries. By nature, middlewares have some limitations such
as event-reordering, limited capacity for message-withhold, etc. Such limitations make
the distributed applications error-prone. Here we present a formal verification technique
for the correctness of the design models of the component-based distributed applications
where the inter-process communications are realized via general middleware layers.

We give a suitable extension of UML statechart diagrams. With this extension, the
components and the communications among them in a middleware-based distributed
application can be clearly expressed, and the software developers can actually view the
middleware as a black box. We assume that the abstract behavior of the distributed
application is given in such notations using any UML tool capable of saving the design in
the standard XMI format. Two specially formatted deployment files are used to set up a
concrete system from the design specification. The verification of its correctness is
achieved by converting the design model, together with the deployment details, into a
formal verification model in specification language PROMELA. The derived formal
description is composed of the translation of the specification of the application itself and
of the in-depth modeling of the behavior of the adopted middlewares, including their
undesirable side effect. With the formal description, the related model checking tool
SPIN can then be applied to verify the system and/or to simulate the system behavior as a
way of debugging. In doing so, we are able to single out in the distributed applications,
any design errors, especially for those related to or caused by the middleware layer, via
the formal verification techniques.

Keywords:

Distributed Systems, Middlewares, Formal Specification and Verification, Model
Checking, SPIN, UML, CORBA, RMI, JMS, MOM.
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Chapter 1. Introduction

In this chapter, we address the problems that have motivated our research work and
outline our solution for such problems. In section 1.1, we explain the rationales for
specifying the distributed systems at two different abstract levels. In section 1.2, we
introduce middlewares and point out the pitfalls when modeling them. In section 1.3 we
outline our research and introduce the structure of this thesis.

1.1 Distributed Systems and Middlewares

A distributed system is an application whose functionality is distributed among multiple
processes possibly residing on physically separated machines across the network. Such
applications exploit the networked multi-processing power and/or offer advantage like
resource sharing, fault tolerance, etc.

Processes in a distributed application need to coordinate with each other through the
Inter-Process Communication (IPC). IPC is often built up on top of the networks, and this
raises many issues such as security, reliability, efficiency, and heterogeneity. To
minimize the security vulnerabilities, guardian services such as identification,
authentication and authorization must be provided so that the system can be well
protected from abusive users, hackers, virus, etc. To boost reliability, proper error
detection and error recovery routines should be in place in case a message is distorted,
lost or duplicated due to network noise. To name, describe and manage the information
about the distributed resources, directory services act as an important component in a
distributed architecture in terms of efficiency.

Network services such as these are not application-specific. They can be provided by a
layer of third-party software between the network and the applications. This software
layer is called middleware.

In addition, middleware handles the heterogeneity in the complex distributed
environment and provide the programmers with high-level, intuitive IPC primitives,
hiding the details of its services beneath the Abstract Programming Interfaces (APIs).
Distributed events, remote procedure calls, transparent message channels are all examples
of such primitives. A great variety of middlewares exists in our market today. They differ
a lot in cost, size and range of services they provide. If chosen properly and used
correctly, middlewares can greatly reduce the development cost and enhance the
reliability, scalability, maintainability and interoperability of the applications.

Most middlewares developed for general distributed applications belong to two
middleware families: message oriented middleware (MOM) and distributed object-based
middleware (DOS).

The basic form of IPC is the point-to-point (PTP) message passing. MOMs simplify yet
do not mask the IPC message passing. With MOMs, the sender and the receiver of a
message may refer to each other through some universal identifiers instead of the



physical locations. In addition to the PTP style message passing, more sophisticated
MOMSs may provide a publisher/subscriber system (also called distributed event system)
built on top of the PTP message passing to enable message multicasting. In such systems,
the senders and the receivers are de-coupled. The IPCs in MOM are typically
asynchronous.

Most MOMs are used for workflow, process-control applications, and wide-area network
applications with slower, less reliable connections. Message queuing system is a typical
kind of persistent PTP communication system. Java Messaging Service (JMS) is a
general MOM that describes both the PTP and the publisher/subscriber message passing
mechanisms [19].

A major problem with MOM is that the messages or the distributed events are usually not
expressive enough. The content of a message, if examined alone, does not show much
about the meaning of the message: One cannot be sure whether it is a service request, or a
database query, or a plain text string as data. The sender and receiver must first agree
upon the format and even the ordering of the messages so that the receiver can interpret
the message correctly. Therefore, the logic of the application can be clouded by the
interpretation of the JPC messages.

DOS middlewares, on the other hand, provide a “distributed object-based system” on top
of the PTP message passing. An object in a distributed object system is an encapsulated
entity that can be uniquely identified. It provides one or more services (operations) that
can be requested (called) by a client residing in a different process. A client is an entity
capable of requesting the service. A client is often by itself a distributed object. Instead of
using the plain messages, the IPC takes the form of service requests. The information
associated with a request consists of an operation, a target object, zero or more (actual)
parameters, and an optional request context. A request is also called a remote procedure
call (RPC) or remote method invocation (RMI). The client and the server object do not
have to know the physical locations of each other: The DOS middleware is responsible
for interpreting the requests, finding the server object for the request, preparing the server
object to receive the request, passing the request data to the server, and for passing the
result back to the client. The DOS middleware services are transparent to the
applications: the syntax and semantics of a request is similar to the local procedure calls.

As we can see, middlewares greatly simplified the IPC. Consequently, however, they also
tend to mask the problems associated with the network communication. For example,
although middlewares usually have guards against the message duplication, message
alternation, message lost, and message reordering cannot be filtered entirely out by
middlewares. Such phenomena may affect the correctness of the business logic of the
applications. In addition, a middleware is of limited capacity, and the IPC service it
provides deteriorates when the limit is reached. When the buffer of a communication
channel is full, for example, new messages coming to the channel will be either dropped
“or blocked. When a server object in a distributed object system runs out of thread
resources, the new requests to the object will be blocked, and this may raise the deadlock
and livelock problems.



Such faults and errors are hard to identify, hard to catch, and are very often overlooked.
This is because (i) The middleware APIs distances the programmers from the reality of
the network communications; and (ii) The faults and errors only appear occasionally.

1.2 Model Checking and UML Specification

The present work is dedicated to the investigation and development of a model checking-
based verification technique for the correctness of the design models of the distributed
applications where the IPCs are realized via the underlying middlewares. Model checking
has been recognized as a suitable and effective technique developed for the systematic
examination of the design specifications [4, 7, 8, 9, 14]. In a distributed system, processes
are normally executed concurrently, thus existing formal verification techniques on
concurrent systems can be adopted into this setting. However, with the inherent
complexity of the network communication, distributed systems have imposed new
challenges to the study and the investigation of formal verification techniques. With the
present work, we are able to diagnose the distributed applications at the design stage and
check whether a given design specification satisfies the desired properties. In particular,
whether it is free from phenomena such as resource and communication deadlock, live-
lock, starvation, race conditions, etc.

Formal verification techniques rely on formal specifications of the design documents. As
we consider the verification of the correctness of the design models rather than their
underlying middlewares, this implies that the design models need to be formally
specified. The fact is that, no matter which formal specification language we use, it turns
out to be hard to grasp by an ordinary software developer who may not have the required
expertise in it. One of the possible solutions here is to define an automated translation
from some easy-to-use informal design models into the formal models.

UML is an industrial standard for designing object-oriented applications. The semi-
formal UML notations, consisting of both graphical representations and natural language
descriptions, can be easily understood and effectively communicated with by software
developers. Here we assume that the design specifications are given in UML style. Since
the UML notations stretch over almost all aspects of software artifacts, translating the
entire domain of UML notations is not feasible. Similar to other UML translation
attempts [12 13 18], we choose to translate an essential subset of formalized UML class
diagrams and statechart diagrams, as they typically provide enough information about the
dynamic behavior of the model. As there is no default notation in UML for expressing
distributed communications, we define an XML-based deployment file to specify the
underlying middleware. Correspondingly, we enrich the UML class diagrams and UML
statechart diagrams with a set of IPC interfaces that can be plugged into any UML
specifications to express the IPCs via MOM or DOS middlewares. In order to perform
the verification, we also define a set of special notations for expressing the correctness
properties of the model.

An automated translation is provided to transform such a given design specification into
an equivalent one in formal specification language PROMELA [8]. One of the most



important features of our translator is that there is no need to directly describe the
communication services provided by the MOM layer in the UML design model. The
design model only shows the MOM APIs, and the translator will incorporate the
communication services automatically to generate a verification model with the MOM
services integrated. In fact, we providle PROMELA models of the message passing in
both PTP and Publisher/Subscriber systems, with the main features including priority,
persistency, resource limitation, message ordering and re-ordering. These models are
integrated into the translated PROMELA models for the MOM-based applications.

The integrated formal specification forms the basis for the formal reasoning of the
correctness of the applications. The generated PROMELA code includes the correctness
requirements such as assertion statements and the SPIN [8,9] tool can be used on it to
verify the satisfiability of those requirements. In doing so, we can catch design errors
which include those related to or caused by the MOM layer.

In the following, we first give a brief introduction of the abstract the behavior of MOM
and DOS middlewares. Secondly, we present the extension of UML for modeling a
distributed system with such middlewares. Thirdly, we explain how to translate into
PROMELA the part of the distributed system that is not related to IPC. Then we
introduce the translation of middleware-related part of the UML model into PROMELA.
At the end of the thesis we compare our work with others and indicate the future work
that need to be done.



Chapter 2 Background: MOM and DOS Middlewares

As we explained in Chapter 1, the essential role of middlewares is to manage the
complexity and the heterogeneity of distributed infrastructures and thereby provides a
simpler programming environment for distributed-application developers. A middleware
encapsulates the heterogeneity of the distributed computing environment by its universal
API. Middleware API also provide higher-level building block for interprocess
communication. A proper middleware can greatly reduce the development cost.

For general distributed systems, most middlewares belong to one of the two middleware
families: message oriented middlewares or distributed object system middlewares. In this
chapter, we give a brief introduction of the communication services provided by MOM
and DOS middlewares, laying the ground for the modeling of their IPC interfaces in
Chapter 3 and the modeling of their behaviors in Chapter 5 and Chapter 6.

21 MOM

Since distributed event systems are built on top of PTP message passing, PTP and
distributed event systems share some common features. Here we explain the typical
architecture of MOMs.

MOMs are usually configured as a set of channels, which can hold any type of messages,
as system resource. MOM messages are often assigned with priorities. Messages with
higher priority may arrive ahead of a lower priority message, even if the latter is sent
earlier. The delivery of a message can be specified either as persistent (guaranteed
delivery) or as transient (the middleware tries its best effort to deliver but does not
guarantee the arrival of the message). In some MOMs, a transient message may arrive
ahead of a persistent message, even if they are of the same priority and the latter was sent
earlier. That is because a persistent message will go through additional buffering stage.

Another important concept in MOMs is session. A session is associated with a channel. It
represents the partial message ordering service provided by MOMs: Messages sent
through the same session are guaranteed to be retrieved in the same order as they were
sent, except for the message re-ordering caused by message priority or persistency.

Senders and publishers are created based on sessions. A message sent from a sender
session can only be retrieved once, but it can be browsed, that is, read without being
removed. A message sent from a publisher session is multicasted to a number of
subscribers, each subscriber gets its own copy of the message. Subscribers should be able
to consume events at their own pace: a slow subscriber should not block a faster one.

When the resource limit is reached (e.g. the channel buffer is full), MOMs usually drop
or block the new messages.

From the user’s viewpoint, the channels provided by MOM can be considered as local
buffers. In reality, however, such channels are built on top of the network



communications, and thus phenomena such as message re-ordering, message-lost, etc.
should not be overlooked.

In our modeling of the MOMs, we are not interested in services irrelevant to verifying the
correctness of the applications built on top of them. Thus, for simplicity, we omit the
services such as the encryption and the decryption of a message, identification and
authentication, etc. during the modeling of MOM.

We model sessions, message priorities, transient and persistent messages, message
browsing/receiving, message multicasting, and resource limit. Limited by the expression
power of PROMELA, the channels are typed, and the message reordering among
transient and persistent messages is not modeled. To simplify the model, we do not
consider exceptions. We only consider the ordinary distributed event in our model, that
is, a message without time or sequence related structure. Complex distributed events,
which are based on particular message sequence, for example, event A = received an
Event B followed by an Event C without Event D in between, are discussed mainly in
theory and few middlewares actually support it.

2.2 DOS Middlewares

By using a DOS middleware, from the user’s viewpoint, objects are made available by
the middleware beyond process boundaries. A process can plug an object residing in
another process, and probably on another machine, into itself as if the object belongs to it
locally.

The DOS middlewares are standardized by OMG. The standard is called CORBA (The
Common Request Broker Architecture) [16]. Most of the distributed object middlewares
are CORBA-compatible. Those not compatible with CORBA, such as Java RMI or
Microsoft DCOM, are similar to CORBA on the architecture level. In the present thesis,
we only address CORBA-compatible middlewares in distribute object middleware
category.

A CORBA distributed object system consists of one or more object request brokers
(ORBs), a set of object implementations (objects that are available across the machine
boundary) managed by some portable object adapters (POAs) and the clients.

An object implementation — or implementation for short — is a definition that provides
the information needed to create an object and to allow the object to participate in
providing an appropriate set of services to the clients. The ORB is responsible for all of
the mechanisms required to:

- Find the object implementation for the request

- Prepare the object implementation to receive the request

- To manage the control transfer and data transfer to the object implementation and
back to the client.



An ORB may be a single-threaded or multi-threaded. A single thread ORB will not be
able to process another request before current request is transferred to the corresponding
object adapter and, if the request is a synchronous call, the return value has been
transferred back to the client. A single-threaded ORB is easier to implement but will
likely create performance bottleneck and deadlock. Multiple threaded ORB is much more
flexible.

An object adapter offers the primary way that an object implementation accesses the
services provided by the ORB. The wide range of object granularities, lifetimes, policies,
implementation styles, and other properties make it difficult for the ORB Core to provide
a single interface that is convenient and efficient for all objects. Through object adapters,
it is possible for the ORB to target the particular groups of object implementations that
have similar requirements with the interfaces tailored to them.

Services provided by the ORB through an object adapter often include:

- generation and interpretation of object references.

- method invocation.

- security of interactions.

- object and implementation activation and deactivation
- mapping object references to implementations

- registration of implementations.

CORBA provides the specification for Portable Object Adapters (POAs), which
standardized the interfaces exposed to the object implementations by the object adapters
and other object adapter services. Since CORBA no longer supports Basic Object
Adapters, in the rest of the thesis, we only consider portable object adapters.

We are interested in those services essential to verifying the correctness of the
applications built on top of them. We simplify the generation and interpretation of object
references in our model, and we will not discuss the security, registration, activation and
deactivation of object implementations. What we are interested includes:

- binding: finding an object implementation for a request.
- method invocation:

o Thread Resource
e Synchronization

Binding means establishing the connection between proper object implementation and the
client. It is the job of the ORB. The common criteria for binding includes:

- object id: The client may request the service of a particular object by its registered id,
or by a name which can be translated by the naming service to the unique id.



- object type: The client may request the service of an object of particular type. Any
object of that type will be acceptable to the client, while we can specify some
additional restrictions such as the object adapter or the server process the object
should be in.

Object adapters manage the object implementations. The most important job of object
adapters is to perform method invocation. Each object adapter is assigned with some
threads. Each method invocation is actually handled by a service thread, which takes
input parameters, executes the remote procedure, and returns the result to the caller. If no
thread resource is available at the time of invocation, the method invocation will be
blocked until thread resource is available again.

The threads are assigned to an object adapter according to its thread policy. The most
commonly used thread policies include:

1. main_thread. All object adapters with main_thread thread policy within an ORB will
share the same thread, which is provided by the ORB.

2. single_thread (also called thread_per_POA in portable object adapters). The object
adapter uses one thread to handle all method invocations to the objects it manages.

3. thread_pool. The object adapter uses a set of threads to handle method invocations. A
thread returns to the thread pool after it served a method invocation.

4. thread_per_object. Each remote object in the object adapter will be assigned its own

thread to handle the method invocations to the object.

thread_per_client: Each client of a remote object is assigned a thread.

6. thread_per_request: Each method invocation request is assigned with a thread. While
this thread policy guarantees no blocking will occur within thread resource limit, it
also leaves the server vulnerable to abusive users, since the server will crash when
there is no more thread resource available in the system.

s

The client may invoke a method by different synchronization style. Typically, the
communication in distributed object systems is synchronous: the client will wait until the
remote method call is finished before continuing its execution. If the method invocation
does not include return values, the method may be called asynchronously: the client will
continue its execution as soon as the request is received on the other end without waiting
for its completion. If the method invocation involves lengthy computation, deferred
synchronous call is useful. In this invocation mode, the client continues execution after
issuing the request, and pulls the result of the remote method call sometime later.

Our research models the object binding, the single thread and the multiple thread ORB,
the invocation of the methods, the remote method service performed by threads under
different thread models and different method invocation synchronization modes. To
simplify the model, we only consider single thread ORB and multiple thread ORB with
unlimited thread resource (never block). We assume that the communication between
ORBs is instant, blocking-free and error-free.



Chapter 3 A Verifiable UML Design Model for Distributed Systems
3.1 Motivation

The goal of this chapter is to define a concrete and unambiguous UML model for
distributed systems with middlewares. Such models will be translated into formal
language PROMELA with a translator, which will be introduced in the following
chapters.

As we pointed out in Chapter 1, UML is an industrial standard for designing object-
oriented applications. The semi-formal UML notations, consisting of both graphical
representations and natural language descriptions, can be easily understood and
effectively communicated with by software developers. On the other hand, a UML
specification is often neither executable nor verifiable due to the incompleteness and the
ambiguity of such notations. This leaves the correctness of the specification in question,
and has driven many researchers to turn to formal description techniques. A formal
specification is by nature precise and unambiguous, and thus provides us with the basis to
perform the verification against its correctness. However, formal specification languages
turn out to be hard to grasp for an ordinary software developer who may not have the
required expertise in mathematical and logical concepts.

One of the possible solutions here is to define a sound automated translation from the
semi-formal UML models to formal models [12 13 15 18 21]. With such an approach, a
formal specification model could be created directly from semi-formal graphical UML
notations. If the translation process is automated, the consistency between the formal
model and the UML model can be guaranteed, and the expertise needed to develop the
system shifts from the formal specification techniques to UML. In particular, such an
approach is desirable for distributed systems because:

@) An object-oriented architecture is suitable for the distributed system design.
(i)  The specifications for distributed systems might be too complex to be examined
by means other than formal verification.

A pre-condition for the aforementioned approach is that the designers must develop
concrete and unambiguous UML diagrams. As the UML notations stretch over almost all
aspects of software artifacts, the translation of the entire domain of UML notations may
not be feasible. Thus, we consider translations based on a subset of UML diagrams to
reduce the complexity. The most common choices for the subset are UML class diagrams
and UML statechart diagrams, because these represent the structure and the behavior of
the model. Other diagrams, such as UML deployment diagram, UML collaboration
diagrams or UML sequence diagrams are sometimes used in conjunction with UML class
diagrams and UML statechart diagrams either to set up a concrete system model, or to
define correctness criteria. In the present work, we consider only UML class diagrams
and statechart diagrams. We will mention later on, some other restrictions that we
imposed on these diagrams in order to facilitate the automated translation, and to keep the
formal model manageable.



3.2 Modeling Distributed Systems

We model a distributed system as an XML-style deployment file, a set of UML class
diagrams (with restriction) and a set of UML statechart diagrams (with restriction).

Unlike some other attempts to model distributed systems with UML [5 8 10 11], our
approach focuses on modeling the behavior of distributed systems in order to verify
rather than to improve the formalness of the specification. We will emphasize on the
interprocess communications and explicitly define a set of practical and formalized
notations in our model for common IPC primitives provided by middlewares, namely the
CORBA-style remote object systems and the MOM channels. The former includes
ORBs, (portable) object adapters, remote objects and the client interfaces. The latter
includes session-based point-to-point message channels and publish/subscribe-based
distributed event channels.

In our design model, a distributed system is a set of processes that use IPC primitives
provided by middlewares to coordinate with each other. We are interested in component-
based processes, each containing a set of local components. Each local component is
accessible directly only within the process boundary, and only through its interface. The
communication among processes is carried out by either the DOS middlewares or the
MOMs.

The deployment file configures the processes. Each process is specified as a set of local
components. If the DOS middleware is used, a process may also host portable object
adapters. The thread models of ORBs and POAs and the remote objects each POA
manages are all specified in the deployment file. If MOM is used, the MOM channels are
defined in the deployment file as system resource.

The behavior of local components and remote object components is specified in UML
diagrams. The interprocess communication is carried out by calling functions on client
interfaces of DOS middleware or MOM in such components. If the system uses DOS
middleware, the remote objects are accessible application-wide through client interfaces
in form of special stub and response objects (see Section 3.2.2). If the system uses MOM,
the distributed event channels are accessible application-wide through client interfaces in
form of special publisher and Subscriber instances (see Section 3.2.2). Session-based
point-to-point message channels are accessible application-wide through client interfaces
in form of special sender and Receiver instances (see Section 3.2.2).

In the following sections, we introduce the deployment file, followed by the special client
interfaces we defined. Then, we explain the restricted syntax of UML class diagrams and
UML statechart diagrams in our model, which defines general behavior of local
components and remote objects.
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3.2.1 The Deployment File

The role of the deployment file in our model is similar to that of a UML deployment
diagram. It contains the information to construct a concrete system from the abstract
model (classes) defined with UML class diagrams and UML statechart diagrams. We
decided to define deployment files instead of customizing existing UML deployment
diagram mainly because the latter does not fully support the design of distributed
systems.

3.2.1.1 The Semantics of the Deployment File
The deployment file constructs the system in three steps.

First, we statically create a set of local components and a set of remote object
components from the component interfaces and the IDL interfaces defined in the UML
class diagrams. Each component is assigned a unique identifier.

Second, we set up the middlewares. We are interested in specifying the aspects related to
the resource management of the middlewares, which affects the correctness of the
business logic. For this reason, we include in the deployment file information such as
thread policy, channel size, etc. and omit information such as security policy, etc.

e If DOS middleware is used, in the deployment file we specify a set of POAs and a
set of ORBs. Each POA or ORB is given a unique identifier, and a thread policy.
Each POA contains a set of remote object components. A POA resides in a
process. The remote object component it manages can access the local
components in that process through component interface. A POA also belongs to
a particular ORB and accepts the service request from that ORB.

e If MOM is used, a set of distributed message channels will be defined in the
deployment file. A distributed message channel is given a unique name and
specified as either a publish/subscribe channel (a distributed event channel), or a
session-based point-to-point message channel. In our model, channels are typed:
Each channel can only carry the elements of a certain datatype. For simplicity, the
buffer size is unique for all channels. The file also specifies the overflow policy,
which applies to all point-to-point message channels. New messages coming to a
full channel will either be dropped or be blocked according to the overflow
policy.

Finally, from the deployment file, we can construct processes from the local components
and POAs created above. Each process is specified as a set of local components and/or a
set of POA references. Unless the process does not own any local components, the
execution of a process starts with a method named main. A process can only have one
main method and it must reside in a local component.

The physical deployment of processes is not shown in our model, because when a
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middleware is used, the physical deployment of the processes can be changed without
influencing the functionality of the entire system.

3.2.1.2 The Syntax of the Deployment File

The deployment file in our model is a valid XML document [22]. The element types are
defined in an external DTD file named deploy.DTD:

<!ELEMENT Deployment (Component Set, Middleware, Processes)>
<IELEMENT Component Set (Component Group)+> o :
<!ELEMENT Component_Group EMPTY> :
<IATTLIST Component_Group
type (localjremote) - #REQUIRED
interface NMTOKEN #REQUIRED
id range PCDATA . = #REQUIRED>

<IELEMENT Middleware (CORBA" MOM")>
<IELEMENT CORBA (ORB)+> -~
<'ATTLIST ORB id 1D #REQUIRED
<'ELEMENT ORB (POA)+> .
<IELEMENT POA (Component)+> T
<IATILIST POA

id ID #REQUIRED

thread_ policy (mam thrcad | thread _per POA }thread __per clxentl

<!ELEMENT MOM (psChannel)? (ptpChannel)‘? >
<IELEMENT psChannel EMPTY> '
<IATTLIST psChannel- -
name NMTOKEN #REQUIRED -
. buffer_size (1]2(3/415/617(819]10) iy
message: datatype (#PCDATA]mtlshortfhyte[bool) #IMPLIED
max_subscriber (1]2|3|4/5) 27 »

<!IELEMENT ptpChannel EMPTY>
<IATTLIST ptpChannel
name NMTOKEN #REQUIRED
- buffer_size (1|2/3/4/5/6/7/8/9]10) <3
- message datatype (#PCDATAImt[shonlbytelbool) #REQUIRED>

<'ELEMENT Process Dcployment(Process)+> o S
<!ELEMENT Process ((Main_Class, Local Components")? POA IDs?) Envuonment‘b '
<IATTLIST Process idID #REQUIRED> - S
<IELEMENT. Main_Class EMPTY)

<TATTLIST Main_Class class. name NMTOKEN #REQUIRED>

<IELEMENT Local. Components (Component)+>

<IELEMENT POA -IDs IDREFS> '

<IELEMENT Component‘ (Initialization)+>

<!ATTLIST Component id ID ¥ REQUIRED>
<IELEMENT Initialization (Attribute)+>

12



<IELEMENT Attribute EMPTY> .
<IATTLIST  Attribute
~ attName NMTOKEN #REQUIRED _
. value PCDATA #REQUIRED>
<'ELEMENT Environment (Signal}+> '
<IELEMENT Signal EMPTY> ' P
<'ATTLIST Slgnal type NMTOKEN #REQUIRED »
, o ma .subscnber (1|2.|3 |41516(7/8/9]10) 1> >

Figure 3.1 The deploy.dtd file

The file formally defines the syntax of the element types. In the rest of this section, we
will explain the syntax and semantics of each element type in more detail.

3.2.1.2.1 The Header Element
The header of the deployment file is fixed:

<7xml version="1.0” standalone=" ‘no”?%> :
<IDOCTYPE Deployment system “c: \mlxup\deploymcnt dtd”>

Figure 3.2 Deployment File Header

It shows that the dtd file is compatible with xml version 1.0 [22]. The path for the file
deployment.dtd may need to be changed if c:\mixup is not the directory containing the
file.

3.2.1.2.2 The Root Element

The root element must be a Deployment element. A Deployment element contains three
child elements, namely a Component_Set element, a Middleware element and a
Process_Deployment element. The Component_Set element is needed to create a set of
component instances, including both local component and remote components. The
middleware element is used to set up the middleware and the related IPC resources and
the Process_Deployment element is used to create a set of processes from the
components defined in the Component_Set element.

3.2.1.2.3 The Component_Set Element
The Component_Set Element is used to create component instances. Component
instances are grouped by their interfaces. Accordingly, the Component_Set element

contains one or more Component_Group elements. A Component_Group element has
three attributes, namely interface, type and id_range.

Attribute interface is the name of an interface class defined in UML class diagrams.
Since we allow only one class to realize a component interface in UML class diagrams
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(See 3.3), the attribute inferface uniquely identifies the behavior of the component.

The attribute fype can take either value local or value remote. The value of the attribute
type is related to that of the attribute interface: If the value of the attribute interface is a
class name of a remote interface, then the value of type must be remote. This identifies
the components defined in the Component_Group element as remote object components,
which will be deployed to POAs and be accessible application-wide. On the other hand, if
the value of the attribute interface is a class name of a local interface, the value of fype
must be Jocal. This identifies the components defined in the Component_Group element
as local components, which will be deployed to a process and will not be available across
the process boundary.

The attribute id_range must be in the following format:

m_n
where m, n are positive integers with i<=j. It declares an integer range [m, n] for the
identifiers of the components with interface type interface. We require that the id_ranges
from different Components elements do not overlap with each other. Each reserved
component id stands for a unique component instance. The initialization of the
component, if necessary, is carried out later when deploying the component.

3.2.1.2.4 The Middleware Element

The Middleware element declares the interprocess communication facility. Since we
support CORBA remote object invocation and message passing through MOM channels,
the Middleware element may include a CORBA element and/or a MOM element,
depending on the chosen middleware.

3.2.1.2.4.1 The CORBA Element

The CORBA element is used to set up CORBA ORBs and POAs. It contains a set of
ORB elements. Each ORB element contains a set of POA element, an attribute named
thread_policy and an id. The ORB ids must be continuous positive integers starting with
“1”. The ORB thread policy can be either multi_thread or single_thread. The former is
the default value. The value single_thread identifies the ORB as a single_threaded ORB,
which means all requests are processed serially by the ORB. The value multi_thread
identifies the ORB as a multi_threaded ORB, which means that the requests can be
processed by ORB concurrently.

Each POA element represents a Portable Object Adapter. A POA element contains two

attributes, namely id and thread_policy. The id attribute uniquely identifies the POA. Its
value must be in the following format:

p_l

where p_ is the prefix, and I is any positive integer. No two POA can have the same id
value.
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The attribute thread_policy identifies the thread policy of POA. The value of attribute
thread_policy can be:

POA_thread_policy value Description

main_thread All POA with POA_thread_policy valued main_thread
shares a single working thread.

thread_per_ POA The POA wuses a single working thread to handle all
requests to the remote objects it owns.

thread_per._client Each client to a remote object (a Stub instance) is assigned

a working thread. Multiple service requests from the same
client (from the same Stub instance) are queued.

thread_per_object Each remote object the POA owns is assigned a working
thread. Multiple service requests sent to the same remote
object are queued.

thread_pool_n The POA uses a working thread pool of size n to handle

all service requests it received. 1<n<10. We restrict the
pool size to 10 to reduce the complexity of the resulting
model.

Figure 3.3 POA Thread Policy

The default value of POA thread_policy is thread_per POA. Note that the last three
values of the thread policy are not defined in CORBA specification: In CORBA
specification, only single_threaded POA thread policies are standardized. These include
main_thread and the thread_per POA (also called single_thread) policies. The multi-
threaded POA thread policy is left to the vendors. Here we have chosen to model three
most commonly supported multi-threaded POA policies: thread per_client,
thread_per_object and thread pool.

A POA element contains one or more Component elements. Each Component element
indicates to add the remote object component to the POA. A Component element
contains an attribute named “id” and zero or more Initialization element. The attribute id
is a positive integer in the id_range of a Component_Group element. The attribute fpe of
the Component_Group element must be remote. An initialization element declares how to
initialize a component attribute. It contains two attributes, name and value, where name is
the name of the attribute, and value is the initial value of the attribute. The Value element
contains the value of the element defined in the Name element. The value must be
completely specified. If the attribute represents a group of values, such as an array or
object attribute, the values must be grouped in “()”.

3.2.1.2.4.2 The MOM Element
The MOM element includes a set of ptpChannel elements (point-to-point message

channels) and a set of psChannel elements (publisher/subscriber distributed event
channels). These channels can be accessed by any component by referring to its name.
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Each element defines a channel.

A ptpChannel element contains three attributes, name, buffer_size and message_datatype.
The value of name is the name of the channel. It must be unique. The buffer_size attribute
defines the number of messages the channel can hold. The buffer size should be set to
minimal to reduce verification complexity. The default value is 3. The attribute
message_datatype declares the datatype of the messages passing through the channel. In
our model, a channel can only carry messages of a certain type. The value of
message_datatype can be of a default datatype, namely inz, short, byte, bool or bit, or it
can be a Data stereotyped class defined in a UML class diagram. A single dimension
array of these datatypes may also be used. A psChannel element has an additional
attribute: max_subscriber. This attribute sets the maximal number of subscribers the
channel can have. The default value is 2.

3.2.1.2.5 The Process_Deployment Element

The Process_Deployment element contains one or more Process element. Each Process
element indicates that such a process should be created. In our model, a process may own
a set of local components and/or a set of POAs. A POA manages a set of remote objects
(See 3.3.3.4.1, The CORBA Element). Unless a process is a pure remote server, in which
case it contains only the POAs, the execution of the process starts with the main method,
which resides in a Main stereotyped class instance.

In our model, the execution threads within a process may use local signal events to
communicate with each other. A Process must also set up the signal events it used.

Correspondingly, a Process element in the deployment file may contain a Main_Class
element, a Local_Components element, a POA_IDs element and a set of Signal element.
The Local_Components element cannot exist without a Main_Class element. A Process
element also contains an attribute named id, which takes the following form:

process_n

where n is a positive integer. The value of id should be unique. It identifies a process
from others.

The Main_Class element contains an attribute named class_name. The value of the
attribute must be the name of a Main stereotyped class defined in UML class diagrams in
our model. We use the Main_Class element to create an object instance of that class. This
object cannot be initialized, and the execution of the process starts with its main method.

The Local_Components element contains one or more Component elements, which are
similar to those in POA elements (See 3.3.3.4.1, The CORBA Element). The only
difference is that the #ype value of the corresponding Component_Group element should
be local instead of remote.
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The value of the POA_IDs element is a list of POA ids, which identifies the process as
the owner of these POAs. A POA must be owned by one and only one process

Each Signal element sets up a type of signal event. It includes two attributes. The first is
type, which is a Signal stereotyped class name defined in UML class diagrams. The
second one is max_subscriber, which defines the maximum number of listeners allowed
for that signal event within the process. There should not be more than max_subscriber
number of execution threads acting as the receptors of the signal event in the process.

3.2.1.2.6 A Deployment File Example

We conclude the introduction to the deployment file by giving an example. The UML
class diagram used in the example of the deployment file is defined in Figure 3.8 in
section 3.2.3.2.2. The deployment file declares a distributed system with two processes.
The system uses a middleware that supports both DOS and message-oriented
communication. The CORBA ORB is a multithreaded one, and the buffer size for
distributed message channels is 6. When the channel overflows, the new message will be
blocked. Three local components of interface type “CI” are declared and deployed to the
two processes. Three remote object components with interface type RI are declared and
deployed to two POAs. Both POAs are owned by the same process. There are two
distributed message channels: one is a publish/subscribe channel, the other a ptp (point-
to-point) channel. The second process uses signal event S, which is local and there can be
at most two reception threads for S in the process (which will be introduced in section
4.4.2).

<?xml version="1.0" standalone="no"?> : e
<IDOCTYPE Dcployment system “c: \m1xup\deployment dtd”> ;
<Deployment>
<Component_Set> ,
<Component. Group type = “local” interface = “CI” id_range =3_5>
<Component. Group type = “remote” mterface = “RI” id range = 10 12>
</Componcnt Set> b : v v

<M1ddleware> '
<CORBA>

'Zj <POA’1d"“p_' » thread __pohcy*“thread _per object”> . 5
<Componentid=“10"> -
</Component> .~
<Component id = “11">
<Initialization>
“<Attribute attName:= “a” value = 457>
</In1t1a11zat10n> :
</C0mponent>
</P0A> .

. poa__thrcad_pohcy
7> </Component> -

R

<POA poa,_;d p

. “thread_per_object™ -
. <Component id = -
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</POA>
</ORB>
</CORBA>

<MOM channel s1ze~“6”> - o L
<psChannel name = “eventC” buffer snze 3message datatype‘-“MT”max subsmnbe"r;%= it e

' I,, <ptpChanne1 name-—“ptpC” buffer size = 4message datatype “mt[3]”> = .
</M1dd1eware> e

<Process_Deployment> :
<Process id = “process._ 1>
<Main_Class class_name = *“MC1”>
<Local Components>
<Component id = 4> </Component>

. <Component id = “37>

© <Initialization> - ' ,
<Attr1but name*“c” valu ':“(3'4.5)”>' e

! </LocaLComponents> -
. </Process> .

<Process id =* ‘process. 2>
<Main Class class: name = “MCZ”>
<Local Components> -
<Component id = “5” > </Component>
- /Local Components>

_<POA_IDs>p_0p_I<POA IDs> |
<Signal typ ‘S” max subscnber-—“Z” ></Slgnal> '
 </Process> ' L
 </Process. Deployment>
</Deployment>

Figure 3.4 A deployment file example

As we can see, the deployment file is a valid XML document. It is well structured,
precise and complete. The deployment file can be easily updated, especially when we
change the configuration of the middlewares.

3.2.2 IPC Client Interfaces

As we mentioned at the beginning of section 3.2, in our model, interprocess
communication is handled by objects of six special IPC client interface classes, namely
Stub, Response, Publisher, Subscriber, Sender and Receiver. The interface instances can
be used as class attributes, as method parameters or as local variables within a method.
Before introducing the syntax and semantics of UML class diagrams and UML statechart
diagrams, we define these six special interface types for issuing IPC requests.

We defined a UML package named “IPC utility” which includes the class diagrams that
define the six interface types. The class diagram is shown in figure 3.5. These interfaces
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are of a special interface stereotype, named /PC, which is not shown on the diagram.

<<Interface>> <<Intetface>>
Stub Publisher

bindtype: bool,id: byte) : void

bind() : void connect(channel_name: String) : waid

send_deferred(method_name: String parameter_list: List) : void publish( persistency: boo! priority: bool, message: Dbject) : void

send_oneway (method_narme: String.response0bj: Response) : void

send_swne(method_name : String parameter_list: List) : void

Stub(1D L_interface_type: String) : void <<Interface>>
Sender
<<Interface>>
Raespons e connect(channel_name: String) : woid

poli_response() : bool send( persistency: bool priority: bool,message: object) : void

get_responsel) : void pollQ : bool

<<Interface>> <<Interface>>

Subscriber Receiver

connect(channel_narme: St : woid
subscrbe(channel_name: String) : void ¢ - ng)

browse() : Object

poliQ : bool
lermpty Queue() : void receive() : Object
consume() : Object poliQ : bool

Figure 3.5 IPC Interfaces

In our model, the /PC interface stereotype is reserved for the above interface types. Since
most developers prefer treating middlewares as black boxes, the behavior of these
interfaces is not defined by UML statechart diagrams. Instead, they will be incorporated
directly into the PROMELA code by the translator.

In the rest of this section, we explain the functionality of each IPC interface type.

3.2.2.1 The Stub and the Response Interface Instances

A Stub instance is a client proxy of a remote object. A Response instance is used solely in
method send_deferred of a Stub instance. They form the client-side CORBA interface

3.2.2.1.1 Initialization and Connection

In our model, a Stub instance can only access remote objects of a certain type. It is
always initialized with an IDL interface name, which is actually the type of the remote
object it can access. For example, the following statement creates a Stub instance stubObj
that can access a remote object with IDL interface RI:

Stub stubObj = new Stub(“RI”);
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For simplicity, in our model, a Stub instance can be connected to only one remote object.
If the Stub instance is used as class attribute, the type of the remote object must be
provided as the initial value of the Stub instance. Otherwise, the Stub instance is assigned
to a type of a remote object by the above statement. The connection to an actual remote
object is achieved through the bind method. We do not allow rebind in our model.

The bind method may be called without any parameter. In this case, the Stub instance is
connected to any of the remote objects with a suitable IDL interface. Currently, we do not
assign priority to the suitable remote objects, regardless of their location, thread policy,
etc.

The bind method may also be called with two parameters. The first parameter is a
boolean flag. It identifies the second parameter as either a POA id (when the flag has
value 0 or constant POA_ID) or a remote object id (when the flag has value 1 or constant
OBJ_ID). In the former case, the Stub instance is randomly connected to a remote object
with a suitable IDL interface in that POA. In the latter case, the Stub instance is
connected directly to the remote object with that particular id. For example, the following
statement connects the Stub instance stubObj to the remote object with id 71, which is
defined in the deployment file in figure 3.4 as a remote object with interface RI:

stubObj.bind(OBJ_ID, “117)
On the other hand, the statement:
stubObj.bind(POA_ID, “p_0")
connects stubObj to either remote object /0 or remote object 11.

For simplicity, we do not consider disconnecting a Stub instance from a remote object.

3.2.2.1.2 Remote Method Calls

After a Stub instance is bound to a remote object, service requests can be sent to the
remote object through the Stub instance.

We model remote method calls of all the three synchronization styles standardized in
CORBA.

e A remote method can be called synchronously: the caller halts its execution until
the remote call completes.

e A remote method can be called with deferred synchronization: the caller
continues its execution after the remote methods call, and polls the result of the
call later.

e TFor a remote method without returning parameters, it can also be called
asynchronously: the caller continues execution after issuing the call.
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A restriction we put on all remote methods is that they cannot have a return value. This is
due to the nature of Promela. If needed, a return value can be simulated as a special
output parameter (as denoted by out in some programming languages such as Ada).

A synchronized remote method call is performed through the send_sync method. The
method takes the name of the remote method and a list of the method’s parameters as its
input parameter. For example, suppose a method on IDL interface R/ is defined as the
following:

rm(int p1, int[3] p2) : void

where pl is an in/out parameter and p2 is an in parameter. The remote method can be
called in a statechart diagram as:

stubObj.send_sync(“rm”, v1, v2)

where stubObj is a Stub instance, v1 is an integer attribute and v2 is an integer array
attribute with three elements.

An asynchronous remote method call is defined analogously through the send_oneway
method.

A deferred remote method call is a bit more complicated. It is performed through the
send_deferred method. Before the method can be called, a Response object must first be
defined. The response object will be sent together with the remote method name and
remote method parameters. For example, the following statement calls the method rm
with deferred synchronization:

stubObj.send_deferred(rm, response, vl1, v2)

Here, response is a pre-defined Response instance. A Response instance is always
associated with a method in a remote object. The caller continues its execution after
having issued a deferred call and later on, calls either the poll_response() or the
get_response() methods of the response object. The method poll_response() returns 0 if
the remote call has completed and 1 otherwise. In either case, the call returns
immediately. The get_response() method, on the other hand, will be blocked until the
remote call completes. When the method returns, all output parameters will be updated.
In the above example, the value of v/ will be updated when the method get_response()
returns. For more details, please refer to Figure 6.3 in section 6.1.
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3.2.2.1.3 The Short Cut for Remote Attribute Access

As we will explain in section 3.2.3, a remote attribute attr is exposed on IDL interface
with two functions, “set_attr” and “get_attr”. If ““set_attr” is omitted, the attribute is read-
only.

For simplicity, we allow the following statements in the UML statechart diagrams:

stubObj.attr = v

which assigns value v to attribute attr. The statement is equal to:
stubObj.send_sync(“set_attr”, v)

On the other hand, the statement:
p = stubObj.attr

assigns the value of attr to p. The statement is equal to:

stubObj.send_sync(“get_attr”, p)

3.2.2.2 Publisher and Subscriber Instances

A distributed event is a message stored in a distributed event channel as defined in the
deployment file. The Publisher instances publish distributed events and the Subscriber
instances receive distributed events.

A Publisher instance contains two methods: connect and publish. Method connect
connects the object to a distributed event channel. Suppose a distributed event channel
defined in the deployment file is called eventC, the following statement connects the
Publisher instance publisher to eventC.

publisher.connect(“eventC”)
For simplicity, we do not allow reconnection or disconnection in our model.

Method publish publishes an event by sending it to the distributed event channel. The
priority of the event message can be specified as either urgent or normal. The persistency
of the message can be specified as either persistent or transient. An urgent message may
be retrieved before a normal message sent before it. A persistent message must be
retrieved by all the subscribers. It might block the publisher if the channel is full. A
transient message may be lost if the channel is full. A transient message will never block
the publisher. urgent, normal, persistent, transient are constants used in our model:
urgent = persistent = 1 and normal = transient = 0.
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The message itself can be an attribute of a default datatype, or be specified as an object,
with its class definition given in the class diagrams. For convenience, the method can be
called differently in the statechart diagrams: the object can be substituted by a list of
parameters, each representing an attribute in the object. For example, in Figure 3.8 class
MT is specified with two attributes, namely a boolean flag and an integer. In the
deployment file shown on Figure 3.4, the message type in the distributed event channel
eventC is defined as “MT”. Suppose a Publisher instance called publisher is already
connected to the channel evnerC. Then the following two cases are equivalent in our
model:

casel: MT mt = new MT(FALSE, 10); publisher.publish(normal, transient, mt)
case2: publisher.publish(0,0, 0, 10)

Note that FALSE is another constant, with FALSE = 0. The opposite is the constant
TRUE, with TRUE = 1.

The order of distributed events published by the same publisher will be reserved.
However, distributed events published by different publishers might be retrieved in an
order different from the one they were published.

A Subscriber instance receives distributed events. It contains four methods: subscribe,
emptyQueue, consume and poll.

Method subscribe is used to connect the Subscriber instance to a distributed event
channel. In reality, the method creates a hidden message queue, which is accessible only
by the Subscriber instance. The queue will receive a copy of each message sent to the
distributed event channel after the queue is connected to it. When the queue is full, new
message coming to the queue will be dropped.

Suppose a Subscriber instance is called subscriber and the distributed event channel it
wishes to receive messages from is eventC, as defined in Figure 3.4. Then the statement:

subscriber.subscribe(“eventC”)
will connect object subscriber to channel eventC.

In our model, method subscribe can only be called once for simplicity. The message
queue can be forcefully emptied by calling method emptyQueue, when necessary.

Method consume retrieves and returns the oldest message in the message queue. If the
queue is empty, the method call is blocked. Similar to the publish method defined for
Publisher instances, method consume may return a list of object attributes instead of a
single object. For example, the following two sets of statements are equivalent:

bool flag; int k; Mt mt; mt = subcriber.consume(); flag = mt.flag; k = mt.data
bool flag; int k; (flag, k) = subscriber.consume()
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Method poll is a non-blocking call. If the message queue is empty, the method returns 0,
otherwise it returns 1.

3.2.2.3 Sender and Receiver instances

A Sender instance sends messages to a ptp (point-to-point) message channel. It is similar
to a Publisher instance.

The method connect in a Sender instance is similar to the one in a Publisher instance. The
method send in a Sender instance is similar to the method publish in a Publisher instance.
The only difference is the message will not be broadcasted to its receivers as the
distributed events were to their subscribers.

A Receiver instance receives messages from a ptp message channel. It is similar to a
Subscriber instance. The syntax for method poll is the same in both classes. Instead of
method consume in a Subscriber instance, we have two methods receive and browse in a
Receiver instance. A message in a point-to-point message channel is not broadcasted. If
more than one Receiver instances wish to read the same message, method browse instead
of receive should be called. The former reads the message without removing it from the
channel, while the latter will read and remove the message. The method connect connects
the Receiver instance to a point-to-point message channel, similar to the one in a Sender
instance.

3.2.2.4 Conclusion

In section 3.2.2, we introduced the six IPC client interface classes we defined. They
represent the IPC client interfaces provided by the middlewares we introduced in Chapter
2. By incorporating these interface classes into our design model and their behavior into
the verification model accordingly, problems caused by resource limit, event-reordering
phenomena, etc. can be caught during the verification.

3.2.3 Syntax of the Restricted UML Diagrams

As we explained at the beginning of this Chapter, a pre-condition for any automated
translation of UML models is that the designer must design concrete and unambiguous
UML diagrams. The UML class diagrams and statechart diagrams used in our model are
no exception. The syntax of these diagrams must be restricted to remove ambiguity and
incompleteness. Another reason to restrict the UML diagrams is to cope with the
expressiveness power of PROMELA language. The expressiveness of PROMELA
language is stronger than most other formal specification techniques, but still, it is much
more restrictive compare to general UML notations.
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The most rigid restriction we put on the UML diagrams is the range of datatype allowed
in the model, which will be explained below. Other restrictions concerning UML class
diagrams will be explained in section 3.4.2. The restrictions concerning UML class
diagrams will be explained in section 3.4.3. There is no guarantee the translator will catch
the violation on these restrictions. The translator may abort or produce problematic
PROMELA code with or without warning.

3.2.3.1 Datatypes and Constants

In our model, basic datatype includes only integer and subset of integers. More precisely,
the basic datatypes are:

- int: Aninteger. (-(27°31-1..2"31-1)

- short: A short integer. (-2715-1..2"15-1)
- byte: Value 0..255.

- bool: ValueOor1

- bit: ValueOorl

Customized datatypes can be constructed from the above basic datatypes by declaring in
UML class diagrams Datatype stereotyped classes that contain no method definitions.
Classes without a stereotype may also be used as datatypes, but not always. We forbid
using a non-stereotyped class as datatype unless it is for a class attribute of another non-
stereotyped class. The role of different class stereotypes in our model will be explained in
the next section.

For multiple-data declaration, we only support fixed-size single-dimension arrays. In
other words, the multiplicity value of any class attribute must be n..n or n, where n is a
positive integer. In addition, an array cannot be used as method parameter. To get around
with these restrictions, users can define Datatype stereotyped class with array attributes.

While these restrictions seem to us rather limited at the first glance, they are sufficient
enough to specify many abstract design models. In fact, they are much more flexible than
the datatypes provided by most other formal specification languages. Some languages,
for instance, only allow datatype defined through enumeration.

For clarity, we define a set of constants in our model:

Constant Name Constant Value Situation
TRUE 1 used as a boolean expression
FALSE 0 used as a boolean expression
urgent 1 used as message priority
normal 0 used as message priority
persistent 1 used as message persistency flag
normal 0 used as message persistency flag
OBJ_ID 1 used as the binding option for Stub
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instances

POA_ID 0 used as the binding option for Stub
instances

Figure 3.6 Constants

3.2.3.2 UML Class Diagrams

In our model, UML class diagrams provide the building blocks of a distributed system:
The building blocks are classes. In this section, we explain different class stereotypes and
the relationships between classes.

3.2.3.2.1 Class Stereotypes and Interface Stereotypes

Different stereotyped classes or interfaces play different roles in our model. We already
introduced the IPC interface stereotype in section 3.2.2, which is reserved for the six pre-
defined IPC client interfaces introduced in the same section. In addition to the IPC
stereotype, we defined five other class and interface stereotypes, namely
Component_Interface, IDL_Interface, Main, Signal and Datatype. The former two are
interface stereotypes and the latter three are class stereotypes. An interface with
stereotype Component_Interface is a local component interface. Local components in our
setting are specified in the deployment file using such interfaces. A class with stereotype
IDL_Interface is a remote interface. Remote objects are specified in the deployment file
using such classes. Classes with stereotype Main are used in the deployment file for the
instantiation of the object with the main execution thread of a process. A class with
stereotype Signal is a local signal-event type. A class with stereotype Datatype is used
solely as a customized datatype. No other class stereotype may be defined in our model.
The syntax and semantics of the five class stereotypes are summarized in Figure 3.5:

Class|Interface Syntax and Semantics
Stereotype

Component_Interface | A component interface that is directly accessible within the
process boundary. The deployment file uses interfaces of this
stereotype to create local components.

IDL_Interface A remote object interface, which is accessible application-wide
through IPC interfaces. The deployment file uses interfaes of
this stereotype to create remote object components.

Main A class owns a main method. The method has no input or
output parameters. The main method is reserved for Main
stereotyped class only. The deployment creates the Main_Class
element of a process from these classes.

Datatype A class without any method. The class is used solely as attribute
datatype. In our model, any class without methods must be
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defined as a Datatype class.

Signal A class without any method. It represents a local signal event
used in statechart diagrams.

Figure 3.7 Class stereotypes

In addition to classes of these five stereotypes, users may also define classes without any
stereotype. In the next section, we present the relationships between the classes and
interfaces in UML class diagrams.

3.2.3.2.2 Relationships between Classes/Interfaces

The translator will ignore any relationship between classes/interfaces defined in the class
diagrams other than generalization and realization. Relationships such as composition
and association among classes, for example, is allowed but ignored by the translator,
since they will not affect the behavior of the system specified in UML statechart
diagrams.

When generalization relationship exists between two classes, the subclass will include the
class attributes and the methods defined in the super class. We do not support attribute
overload or method overload for super- and sub- classes. This means if a class attribute or
a class method is defined in the super class, it cannot be re-defined in the subclass.
Multiple inheritance is supported. Note that the order of the class attributes is important
to the Signal class and the Datatype classes used as message types for distributed
channels. To solve the order confusion caused by multiple inheritance, we suppose in
such classes, the class attributes are organized in the alphabet order.

In our model, generalization relationship can exist between two classes if and only if one
of the following rules applies:

- The classes are of the same stereotype

- The super class is a “Datatype” class.

- The super class is a non-stereotype class and the subclass is not a Datatype or Signal
stereotype class. We add this restriction because a non-stereotype class in our model
always contains methods, while Datatype or Signal stereotype class does not allow
class methods.

Since the IDL interfaces and the Local interfaces will be used to define components in
our model, for simplicity we forbid a class realizing an interface of local or IDL to be
used as super class.

In our model, realization relationship is reserved between a Component_Interface
stereotyped interface or an IDL_Interface stereotyped interface and a non-stereotype
class. No other type of interface may be defined in our model. All methods in the former
must be implemented by the latter.
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Special methods are those starting with sez_ and gez_. Such methods are reserved for the
read/write of class attributes (See section 3.2.2.2). Suppose the interface has a method
named get_attr(obj: C), where obj is an output parameter, then the class realizing the
interface must have a C type class attribute named attr. If set_attr(obj:C), where obj is an
input parameter, is not defined in the interface, the attribute will be a read-only attribute.
As a short cut, such attributes can be referred to directly in the statechart diagrams instead
of using the sez_ and ger_ functions. (See section 3.2.2.2)

No return value is allowed for any methods in our model. A return value, when needed,
must be substituted by an output parameter, as the case of the gez_ methods.

Figure 3.8 shows a UML class diagram example.

ObJClass
<<Signal>> <<Datatype>> ] ObjClase <My
T daa :int
; Dﬂ - bool daa2 :int o it M
id : byte 39 - boo —— newOp(Q) ; void data : bool
data : int L AN maingJ : vold
op(p1: int,p2: byte) : bool
<<Interface*>
A Ccmponent_interface sterectype
interacc. - Cl
v in set_c and set_mt ane input parameters. opi(p: int) : void
p in get_c and ge:_fnt are output parameters. LH Imolementation
set_c(v: int) : void -
<<Main? s get_o(p: int) : void <] _________ privatevar : byte
i stub : Stub
M2 sd_tnt(v. MT)  wuid - . .
get_mt(v: MT) woid private Operation(} : void
data : bool
main() : void
<<interface>> R
#n IDL_interface stereotype interface (3] <:]‘ “““““ 2 int
v i1 set_a is aninput parameter -
p in get_a is an output parameter = =jop(p: boo) : void b : bool
thrzadPo is 3 “Thread” sterestype method which, set_a(v: int) : void
whan ralled | starts A nem eeansttinn thread - R R
get_alp: i) : void
<<Thread: > thread Op(>: bool) : void

Figure 3.8 A class diagram

Note that in the current stage, our translator does not check visibility violations. In other
words, the translator treats all attributes as public. For example, if a private attribute is
accessed from outside of the object, the translator will not complain.

The behavior of non-stereotyped classes used in UML class diagrams is defined by UML

statechart diagrams. In our model, except for the ser_ and get_ methods, each class
method is described by a statechart diagram.

28



3.2.3.3 UML Statechart Diagrams

UML statechart diagrams represent the behavior of entities capable of dynamic behavior
by specifying its response to the receipt of event instances [17]. In our model, UML
statechart diagrams describe the behavior of the classes, including the correctness criteria
of the behavior. Each class method, except the set_ and the get _ methods, is described by
a statechart diagram. The behavior of a class is thus defined by the collection of statechart
diagrams corresponding to its methods.

A UML statechart diagram is a graph consists of states (notes) and transitions (arcs). In
this section, we regulate the syntax of UML statechart diagrams so that they can be
recognized by a translator. First, we explain the restrictions on states. Second, we explain
the restrictions on transitions. Then we explain how concurrency and synchronization are
modeled.

3.2.3.3.1 Restriction on States

A state is a condition or situation during the life of an object in which it satisfies some
particular condition, performs some particular activity, or waits for an event. In UML
statechart diagrams, a state is denoted as a round rectangle with a name section and an
internal action section. UML provides several state types. We forbid history, sync, fork
and join states in our model, and composite states in our model cannot be split into
concurrent regions. In other words, there will be no concurrency element in statechart
diagrams, except the call to a Thread stereotype method, which starts a new execution
thread in the statechart diagram. Sub-state machine is another feature omitted.

The state name needs not to be unique. In our model, a state with name starts with end,
progress, accept, atomic or d_step, is special:

- A state whose name starts with end is a state that is acceptable as a valid termination
point of the process execution. If a process stops at a state other than a state with
name starting with end or its end states, SPIN will report a deadlock violation during
verification or simulation.

- A state whose name starts with progress must be visited infinitely often in any
infinite system execution, otherwise SPIN will report error during verification or
simulation.

- A state whose name starts with accept can only be visited finitely many times in any
infinite system execution, otherwise SPIN will report error during verification or
simulation.

- If a composite state has a name starting with “atomic”, the translator will interpret the
internal action of the composite state as been executed atomically.

The first three are for verification purpose. They will not affect the system execution. The
last two are used for synchronization purpose and for reducing complexity.
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To simplify the translation process, the only internal transition of a state we allow in our
model is an entry action. Actions will be introduced in more detail in section 3.2.3.3.2.

We mark the entry action belonging to the top composite state of a statechart diagram as
a special action. It is the only action allowed for defining local variables. Since a
statechart diagram in our model represents a method, we need to define local variables of
the method. In our model, local variables must be defined in the entry action belonging
to the top composite state of a statechart diagram. Multiple variable declarations will be

66,99

separated by “;”. For example, the following entry action defines three local variables:
int a, b[2]; Stub ¢ = new Stub(“RI");

We do not support variable overloading. The name of a method parameter or a method
local variable cannot be the same as a class attribute of the class that owns the method.

3.2.3.3.2 Restriction on Transitions

A transition is shown on a UML statechart diagram as a labeled arrow between two
states. The state the transition leaves is called the source state of the transition and the
state the transition leads to is called the target state. If the source state is an initial state,
the transition is called an initial transition. If the target state is an end state, the transition
is called an end transition. If the source state is a fork state, we call the transition a fork
transition.

The labels on a transition may contain:

- An event signature which triggers the transition when it occurs.

- A boolean expression guard which must be satisfied for the transition to fire when it
is triggered.

- An action expression that performs some action when the transition is fired.

A transition is friggered when the event occurs, or, if it has no trigger event, when the
system leaves its source state. A transition fires when it is triggered and the guard
condition is satisfied. The action on a transition will be enabled when the transition fires.
The system state transfers to the transition target state when the action completes.

Compared to other UML translation efforts [12, 13, 15, 18], our UML statechart
diagrams are simple in structure (very little concurrency elements, for example) but rich
in event specification. We only allow basic transitions in our model. High-level
transitions (i.e. transitions initiated from the border of a composite state), complex
transitions, etc. are not supported.

In our model, the restriction on trigger events is minimal. UML statechart diagrams
supports four types of trigger events, namely signal events, change events (i.e. a boolean
expression, the event is triggered when the expression is evaluated to true), call events
(method calls) and time events. We do not support time event, as PROMELA has no way
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of modeling time. Event on a transition can be either a signal event or a change event.
Call events are also supported, but is customized slightly. Since a statechart diagram in
our model describe the behavior of a method, for simplicity, we omit the call event at the
beginning of each statechart diagram. A method call action, which generates a call event,
will create a statechart diagram of that method and execute it at spot, as if the method call
is the entry point to a sub-statechart diagram. The special case is when the method call is
to a Thread stereotyped method. In this case, the method is executed on a separate
execution thread as if it starts from a separate outgoing transition of a fork state.

The type of signal events is defined in a UML class diagram as a Signal stereotyped
class. Unlike other translation attempts, we support event parameters. If the event has
parameters, the value of the parameters can be either stored in an attribute or discarded by
using scratch variable “_> during reception. For example, in Figure 3.8, we defined a
Signal stereotyped class LE. Then, a transition with event:

S(boolVar, _, intVar)

will cause the transition to be triggered by an S event. The S class has three variables,
namely data, flag, and id. The class attributes are ordered by the alphabet. When the
event occurs, the value of attributes intVar and boolVar will be set to the values of the
corresponding event parameters. Event parameters are saved in order. The variables from
the super class precede other class variables. Note that since local events are not visible
beyond process boundary, the transition can only be triggered by an S event in the same
process.

The change event is a boolean expression. The event will occur when the boolean
expression becomes true. We require that the boolean expression be enclosed with
braces”()”. For example, a transition with the following event label will be triggered
when a becomes equal to /:

A boolean expression can also be used as a transition guard. When the expression is used
as a change event, a transition is triggered whenever the expression becomes true. When
it is used as a guard, however, the transition cannot fire if the expression evaluates to
false in the moment the transition is triggered, even if later on the expression changes to
true. Guard expressions are usually used to branch the flow.

In our model, the basic boolean expressions include:

- Reserved word: “FALSE” and “TRUE”.
- Numbers: 0: false. Any number other than 0: true.
- Comparison. Compare data attribute values and constants with *“>77°<”, “=7 “1=",

“>=’, “<=”
Py .
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Basic boolean expressions can be combined into complex boolean expression by using
6‘&” “I” and “"7

In our model, an action (i.e. a transition action or the entry action in a state) may perform
one of the following tasks:

- Assign/modify value of an attribute.

- Publish a local event.

- Call a method and wait for its completion.

- On the final transition, return values to the method caller.
- Assert the truthfulness of a boolean expression

A method may assign/modify the value of an attribute in its statechart diagram unless the
attribute is owned by another process or another method. An attribute is referred to by the
following rules:

- If the attribute is a local attribute of the method, or a class attribute of the object that
owns the method, the attribute is referred to directly by its name.

- If the attribute belongs to an object that resides in the same component as the method
but does not own the method, the attribute will be referred to by prefixing its name
with the object name followed by a dot ““.”. For example, studentObj.score refers to
an attribute named score in an object named studentObj.

- If the attribute belongs to an object that resides in the same process but not the same
component as the method, the attribute will be referred to by prefixing its name with
the interface type of the component, plus “(component ID)”, the object name and “.”.
For example, LI(2).studentObj.score referes to an attribute named score in an object
named studentObj in component 2, which is an L/ type component.

To distinguish a local event from a method call, a local event must be published by the
following action:

event(signalClass, pl,...pn)

where event is a keyword. signalClass is the name of a Signal stereotyped class. The rests
are parameters. Accordingly, no method can be named event in our model.

A method is referred to in the same manner as an attribute. Note that interprocess
communication in our model is achieved by calling methods through an IPC stereotyped
interface.

If a method has no out, inout or return parameters, the final transition of its statechart
diagram must be a blank transition. For a method with i output parameters (i>0). The
final transitions must have no trigger, no guard. Its effect must be a “return” action. A
return action takes the following format:

return(vl, ...vi)
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Here keyword return identifies the return action. Accordingly, in our model, a method
cannot be named “return”. Each return value (vl ...vi) can be either a number or an
attribute name. The sequence of the return values is the same as the sequence of the
method’s output parameters defined in class diagrams. The return parameter precedes
other parameters. Each return value must be compatible with the datatype of its
corresponding output parameter. For example, a return value 4 is illegal if the
corresponding output parameter is of datatype bool.

An assertion action traps violations of simple safety property during verification and
simulation:

assert(boolean_expression)

In the above action, assert is a keyword identifying an assertion action and the parameter
boolean_expression is a boolean expression that should hold true at that point of
execution. The action is always executable. SPIN will report error if the expression is
evaluated to false or 0 during verification or simulation. To avoid confusion, no method
in our model can be named assert.

3.3 Conclusion

In this chapter, we defined a UML design model for distributed systems with
middleware. We use a deployment file to set up a concrete system from classes and
interfaces defined in UML class diagrams. The behavior of the UML classes is defined in
UML statechart diagrams.

The UML statechart diagrams in our model uses predefined IPC client interfaces to
perform interprocess communication. We minimize the concurrency elements in the
UML statechart diagrams and consequently greatly simplified its structure. Our focus is
on the modeling of signal events, method calls, change events and transition guards,
which makes our approach unique from other attempts to translate UML diagrams. In
addition, we incorporate verification elements in the UML statechart diagrams, such as
assertion statement, progress and legal end states, etc., so the SPIN model checker can be
used to verify the correctness of the model. At current stage, however, we do not support
LTL property specification.

In the next three chapters, we’ll introduce the translation of the UML design model
introduced in this chapter. In chapter 4 we will introduce the elements with no
relationship to interprocess communication, especially the local components and the
signal event. In chapter 5 we will introduce the elements related to MOM. In chapter 6
we introduce the elements related to DOS middleware.
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Chapter 4 Mapping Objects to PROMELA

In Chapter 3, we introduced our verifiable UML design model for the distributed systems
with middlewares. Starting from this chapter, we show how such a model is mapped into
the PROMELA verification model. Our UML design model is object-oriented. Each
object contains a data area and an operation area. In this chapter, we show how to map
objects.

PROMELA is not an object-oriented language and it does not support method invocation.
Similar to other efforts made on translating objects of various languages into PROMELA
[2 6], we choose to map the data area of an object into a PROMELA record and the
operations into PROMELA inline macros. The main character of our translation is that
the restriction on the syntax of the operations is minimal, although neither references nor
pointers are allowed in the model.

Section 4.1 introduces the mapping for object data and section 4.2 introduces the
mapping for operations, including the mapping for signal events.

4.1 Object Data Mapping

To map the data area of an object, we define a PROMELA record type for the class of the
object. A record of that type is then defined to represent the data area.

4.1.1 Record Type Definition

For each class defined in the UML design model, we generate a PROMELA record type
(typedef) to represent its data area, unless the data area is empty. The data area of a class
may not be equal to the set of the data attributes of the class: Unless the class is a
Component_ Interface or IDL_Interface stereotyped class, the data area of the class
includes its own data attributes and the data attributes of its super classes. Otherwise, the
data area of the class is the data area of its implementation class.

Suppose a class named “classname” has n attributes in its data area. For the ith attribute,
we denote its datatype as “type_i”, its name as “name_i” and its multiplicity as “mul_i”.
We define att_i as name_i if mul_i = 1, as name_i[mul_i] if mul_ij>1.

If n>0 and the class is not a signal stereotyped class, the following PROMELA record type
will be defined for the class:

typedef classname_Class

{
type_l att_I;

type_n att_n;

/
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If the class is a signal stereotyped class, the following PROMELA record type will be defined
Jor the class:

typedef classname_Class

byte x_pid; /*The id of the process in which the event sender and the event receiver
reside */
type_1 att_I;

tpe_n att_n;

/

In other words, the name of the PROMELA record type is the class name suffixed with
_Class. For each data attribute in the data area of the class, a data field with the same
name and datatype is added to the PROMELA record type. The multiplicity of the data
attribute is translated into array size.

With the record type definition in place, we can define a record to represent the data area
of an object.

4.1.2 A Record Representing an Object Data Area

There are two types of objects in our model. The first is the component objects statically
defined in the deployment file. The second is the data objects dynamically created in the
execution of the methods.

A component object must be a instance of a Component_Interface, Active_Object or
IDL_Interface stereotyped class. Each component object is given a unique id. The
component objects of the same class type are defined as a group and given continuous
ids. For example, the following statement in the deployment file defines three component
objects, the class type is L1/, and the ids are 3, 4, 5, respectively.

_<Component_Group type = “local” interface = “LI1” id_range = 3_5>

To represent the data areas of such objects, we define a global record array for each
component group defined in the deployment file:

Let us denote the name of a component group class as “classname”, the id range of the

component group as low_high. Let arraysize = high-low+1. Then the global record array is
defined as:

clussname_Class classname_obj[larraysize];

The ith element in the array represents the data area of the object low+i.
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A data object, on the other hand, must be an instance of a Data stereotyped class. Such an
object has no operations. They can be used as local attributes of a method or can be
passed as input parameters of a method in a value-passing manner.

The mapping of the data objects is straightforward: the name of a data object variable
remains unchanged, while the variable datatype changes from the class name to the
corresponding PROMELA record type (c.f. section 4.1.1).

4.1.3 Related Macros and Inlines

For clarity and convenience, we define a set of PROMELA macros and inlines to
simplify the read/write of object data. For each record type (typedef) in our verification
model, we define a copy inline and a clear inline. In addition, for each component object
class, we define a getObj macro.

The reason for us to define the copy and the clear inlines is that the typedef structure in
PROMELA is rather limited. It cannot be used directly in value assignments: the only
way to copy a PROMELA record to another is to copy each and every record attribute
separately. For example, the statements below will result in a compiling error, when a, b
are both PROMELA records:

A_Class a, b;
a.attr4 = 5;
b =a; /* Error! Correction: b.attrA = 5; or x_assign_A(b, a) ¥/

To solve the problem, we define a copy inline and a clear inline for each record type. The
role of the copy inline is to copy the value of a record to another and the role of the clear
inline is to reset the values of all data attributes in a record to 0. To reduce the complexity
of the verification, the copying and the clearing are performed atomically without
interleaving.

1. The “copy” inline:
For each record type named “RecordType”’, we define an inline
“x_copy_RecordType(x_a, x_b)”. X_a, x_b should be variables of the record type
The algorithm for the inline is as follows:

for each data field “‘f” in the record type, let’s denote its datatype as FType
if fis not an array,
if FType is primitive , x_a.f = x_b.f;
else x_copy_FType(x_a.f, x_b.f),
end if;
else
for each element in array f,
if FType is primitive ,
x_a flj] = x_bflj].
else x_copy_FType(x_a.flj], x_b.flj],
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end if
end for
end if
end for

2. The “clear” inline:
For each record type named “RecordType”, we define an inline
“x_clear_RecordType(x_a)”. The input parameter a should be a variable of the

record type. The algorithm for the inline is as follows:

for each data field “’f” in the record type, let’s denote its datatype as “FType”

if fis not an array,

if FType is primitive , x_a.f = 0;

else x_clear_FType(x_a.f),

end if;
else
for each element in array f,
if FType is primitive ,
x_afli] =0,
else x_clear_FType(x_a.fj]),
end if
end for
end if
end for

For example, the following table shows the data area mapping for classes A, B, C and CIL.
Since the class A and the class B are both super class for the class C, the record type for
the class C includes the data attributes in the class A and the class B. Since the class C
implements the class CI, the data area mapping for CI and C is the same.

UML Class Diagram PROMELA Records Inlines
<<Data>> typedef A_Class inline x_copy_A_Class(x_a, x_b)
A B { intattrA[3]}; } { atomic{
attrA : int x_a.attrA[0] = x_b.attrA[0];
[methodAQ : vid Erh : byte typedef B_Class x_a.attrA[1] = x_b.attrA[1];
Py l|5 { byteattrB; } x_a.attrA[2] = x_b.attrA[2];

c

attrC : bool

typedef C_Class
{

3

inline x_clear A_Class(x_a)

lme‘thod C(ein: int,cout: beol cinout: byte) : void int attrA[3]; { atomic{
. byte attrB; x_a.attrA[0] =0; x_a.attrA[1] =0;
( Realize>> bool attrC; x_a.attrA[2] = 0;

<<IDL_interface>>
Ct

}

typedef CI_Class

H

inline x_copy_B_Class(x_a, x_b)

attrd : byte { { atomic { x_a.attrB = x_b.attrB;
hnethod Ceein: int,cout: bool cinout: byte) : void int attrA[3]; I3
byte attrB;
*Multiplicity for attrA in class A is 3...3* bool atrCG; inline x_clear B_Class(x..2)

}

{ atomic{ x_a.ateB =0; } }
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*In the method methodC of the class C:

- cinis an input parameter inline x_copy_C_Class(x_a, x_b)

- cout is an output parameter { atomic{

- cinout is an input/output parameter x_a.attrC = x_b.attrC;
x_copy_A_Class(x_a, x_b);

*Deployment file fragment: x_copy_B_Class(x_a,x_b);

<Component_Group type = “local” b

interface = “CI” id_range = 3_7> inline x_clear_C_Class(x_a)

{atomic {x_a.attrC =0;
x_clear_A_Class(x_a);
x _clear_B_Class(x_b); }}

Figure 4.1 Data Area Mapping

For each component object group defined in the deployment file, we define a getObj
macro:
For each component group, suppose its class name is “classname”, the id range of the
group is low_high. We define the following macro:

#define x_classname_getObj(j) classname_obj[j-low] /*low<=j<=high*/

The macro takes a component object id as input parameter and returns the record
representing its data area.

4.2 The Mapping for Object Operation Area

The operation area of an object includes a set of methods. In our model, each method is
assigned with a statechart diagram to define its behavior. In this section, we introduce the
mapping for methods in local objects. The mapping for remote methods (methods that
belong to remote objects) will be introduced in the next chapter.

This section is organized as follows: In section 4.2.1, we list the problems in expressing
methods and method calls in PROMELA. In section 4.2.2, we explain the method types
in our model. In section 4.2.3 we outline the mapping of methods and method calls. In
section 4.2.4 we introduce the mapping for statechart diagrams in detail.

4.2.1 Problems with Expressing Methods and Method Calls in PROMELA
The concepts of method and method call do not exist in PROMELA, since PROMELA

does not support functions. Instead, a PROMELA program consists of a set of processes
running concurrently. A PROMELA process can communicate with other processes
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through communication channels or global variables. It may also create another process,
both of which will then run concurrently.

It is natural to model an active method (i.e. a method that executes on its own execution
thread) as a PROMELA proctype and a call to an active method as a run statement that
creates a process instance from the proctype. However, there are several limitations:

- A PROMELA process does not return a value.
- The input parameters are always passed by value: The notation of the pointer or the
reference does not exist in PROMELA.

On the other hand, using PROMELA processes to simulate passive methods (i.e. methods
that must to be executed by others and using their caller’s execution thread) is possible
[8] but too expensive. This is because the number of processes in the concurrent
execution is limited to 256 during verification for SPIN, and each call to a passive
method makes use of a separate process.

For passive methods, a practical solution is to use PROMELA inline construct, which is a
macro expansion, to simulate them. A PROMELA inline is a block of code that will be
cut-and-copy to where it is called. Since it is a macro expansion, PROMELA inline is
very efficient. However, as a substitute for methods, it has several limitations:

- inline commands do not return values.

- recursion is forbidden.

- unlike functions, the internal structure of an inline construct is visible to its caller. For
example, a variable defined in a PROMELA inline will become a local variable of the
calling process. If the same inline is called twice in a process, and a variable is
defined in the inline, a syntax error will result since the variable is defined twice. On
the other hand, any change made to a parameter passed to an inline will be made to
the parameter itself in a pass-by-reference manner, instead of a copy of the parameter.

4.2.2 Method Types in Our Model

In our model, we use three kinds of methods, namely the main methods, the thread
methods and the passive methods. The former two are variations of active methods.

- A main method can only be defined in an Active_Object stereotyped class. It is
defined as a method named main, without any parameters. A main method is self-
executed. Each process in our model may own an active object, the main method in
which serves as the start point of the process.

- A thread method is a method whose name ends with _thread. A thread method must

be called by other methods, but they run on separate threads. A thread method may
take input parameters, but it will not have any output parameters since it will execute
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concurrently and independently with its caller. A thread method can be recursively
called but not infinitely.

- Any other methods are passive methods. They must be called and executed on the
same thread as its caller, that is, the caller will be blocked until the passive method
finishes. A passive method can have input, output or input/output parameters, but no
return value. If needed, an output parameter can be used to hold the return value.
Since PROMELA inline does not support recursion, we forbid recursive calls to
passive methods.

In our design model, all method parameters are passed-by-value. However, we do allow
the input/output parameters. The value of such a parameter will be updated when the
method call is finished. Unless the parameter needs to be accessed concurrently by
methods on different execution threads, declaring it as an input/output parameter will
have the same effect as passing it by reference.

4.2.3 Mapping Methods and Method calls

In the PROMELA verification model, we map active (i.e. main or thread) methods into
PROMELA proctypes and passive methods into PROMELA inlines.

4.2.3.1 The Mapping for Main Methods

A main method will be mapped into a PROMELA proctype. For each Active_Object
class, suppose its name is cn, the following PROMELA proctype will be generated as the
mapping for its main method:

proctype main_cn(byte x_objID) /* each call should pass an object id */

{

X main_cn_locals  x_local; /*variables local to the method. See section 4.2.3.3.1 */

)

For each active object in the design model, the PROMELA init process creates a process
instance from its main method proctype.

Suppose in the deployment file, the id range for the component group is low_ high. For
low<=j<=high, the following process will be created in the PROMELA init process:

run main_cn(j);
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4.2.3.2 The Mapping for Thread Methods

A thread method will also be mapped into a PROMELA proctype. However, unlike for
main methods, no process instance will be created by the init process. An instance of the

proctype will be created when the method is called.

For each thread method in our model, let us denote its name as methodNameThread and
the name of the class who owns the method as className. Suppose the method has N
input parameters and we denote the datatype for the Jth parameter as fypeJ and the name
for the Jth parameter as pJ. The following PROMELA proctype will be generated as the

mapping for the method:

proctype methodNameThread_className(byte x_objID, typel pl, ... typeN pN)

{

X_methodNameThread_className_locals  x_local; /* see section 4.2.3.3.1 */

}
where x_objID is the object id.

Accordingly, a call to the thread method in statechart diagrams will be mapped into the

creation of a process instance in PROMELA:

Thread Method Call in a Statechart Diagram

Translation in PROMELA

className(objID).methodName_thread(vl...vn)

run methodname_className(objID, vl,...vn)

Figure 4.2 Translate method calls to a Thread method

4.2.3.3 The Mapping for Passive Methods

As we explained in section 4.2.1, passive methods in our model will be mapped into

inline macros.

e C(Class variables are translated into global variables in PROMELA prefixed by object
ids. Whoever uses a class variable should provide the proper object id, as explained in

section 4.1.

e Method parameters are not translated into inline parameters directly. This is because
the inline parameters have the call-by-reference nature, while here we want to
simulate the call-by-value effect, as it is the most commonly used mechanism in
object-oriented programming languages. We define input types, output types and
related macros to copy the input parameters at the beginning of an inline call and to
copy back the output parameters at the end of the inline call.

e Local variables, i.e. variables defined in each method, are also treated specially.
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PROMELA inlines allow us to define local variables. However, as we mentioned, the

internal structure of an inline construct is visible to its caller process. As a

consequence,

e if an inline contains local variables, no process can call it twice.

e if two inlines contain local variables with the same name, no process can call both
of them

Since these will cause an error of duplicated definition, we do not use inline local
variables for the method local variables.

Local variables cannot be simply globalized with the inline names either. As a simple
example, if two processes call the same inline, they will access the same local
variables defined in that inline. In another word, these local variables are no more
local to each process. Consequently, we need to define local variables local to each
process.

Our solution is to nest the local variables, input and output parameters of a passive
method into its caller. The caller will then pass these variables as the input parameters
to the inline. To do so, we make use of the method invocation graph to retrieve the
related information.

e Since a method can be called by the same process more than once, if we simply
establish the one-to-one relationship between methods and inlines, the translated
inline can also be called by the same process more than once. This can be problematic
when we have labels in the inlines because in PROMELA, labels cannot be
duplicated within the same process. To avoid the confusion on the labels in the
PROMELA model, each passive method call action in the statechart diagrams will be
translated into a different PROMELA inline, and each label on the statechart diagram
may correspond to a set of labels in PROMELA model, differentiated by the method
calls. More precisely, we make use of the method invocation graph to distinguish the
same method in different method calls and translate them into different inlines: these
inlines are all the same except that their names are suffixed by the names of different
method calls and the labels in each inline are correspondingly translated together with
the inline names.

4.2.3.3.1 Record Types for Passive Methods

For each passive method defined in a class diagram, suppose its name is methodName,
and the class that owns it is named class. We define three PROMELA record types:

X _methodName_class_ins X_methodName_class_outs X _methodName_class_locals

Note that the prefix X__ indicates that they are new record types not corresponding to any
class in UML diagrams.
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For simplicity, we do not define input/output datatype. An input/output parameter is
treated as both an input and an output parameter. The first record type contains the input
and input/output parameters of the method and the second contains the output and
input/output parameters. The third record type contains some local variables of the
method. For each passive method (a passive method as defined in UML class diagrams)
called in the method, let us denote it as mCalled which includes both the method names
and the class name, the following three records will be added to
X_methodName_class_locals:

X_mCalled_ins x_mCalled_ins;
X_mCalled_outs x_mCalled_outs;
X mCalled locals x_mCalled_locals;

In other words, the input, output parameters and the local parameters of a method will be
nested into the local variable of its caller.

Suppose in the class diagram in table 4.1, the method methodA in class A contains a
single integer variable named Jocal4 and the method does not call any other methods.
The method methodC in class C contains two local variables: an integer named localCl
and a boolean variable named JocalC2, and the method calls methodA in an object of A:

entryfint localCl ; bool local C2

. -[ } A(3) methodA() ' ] s

Figure 4.3 A segment of the MethodC statechart diagram

The following PROMELA record types will be generated:

typedef X_methodA_A_locals
{ intlocalA; }

typedef X_methodC_C_ins
{ int cin;
byte cinout;

}

typedef X_methodC_C_outs
{ bool cout;
byte cinout;

}

typedef X_methodC_C_locals
{ int localCl;
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bool localC2;
X _methodA_A_locals x_methodA_A_locals;

}

Note that during the translation, empty record types, such as X_A_methodA_ins, are
omitted. For each generated PROMELA record type, an assign inline and an init inline
similar to those in the aforementioned table will also be generated. Their definition will
not be repeated here.

Note also that we do not allow recursive calls, thus the type definitions are well-formed.

4.2.3.3.2 Create PROMELA inlines to Represent Passive Methods

We translate a passive method into a ser of PROMELA inlines according to the method
invocation graph. This graph can be derived from UML statechart diagrams. As we do
not allow recursive calls, it is actually a Directed Acyclic Graph (DAG).

- Each class method will become a node in the graph. The name of the node is the
method name suffixed with “_” and the class name.

- Ifin its statechart diagram, on transition with id #id, method A4 calls passive method B,
a unidirectional arc from node 4 to node B will be added to the tree. The arc is
labeled by tid.

For example, the figure below shows the statechart diagram with three methods, namely
the main method in class C, the passive methods ma in class A4 and mb in class B. The
number on the left of a transition shows the id of the transition. The main method in class
C calls method ma in the object with id 4 in class 4, and method mb in the object with id
1 in class B. The method ma in class 4 calis method mb in two objects with id 3 and 7 of
class B, respectively. The method mb in class B does not call any other method.

1| A(4).ma0);
(4).mal); 7 [ B(1).mb(0,13
2 | B(1).mb(0, 3) 3| Be2).xib(0, 3) 4 kmie
(a) Method main (b) Method ma (e) 1"_‘“"1‘:1 ’1'3"’
in class C in class & n class

Figure 4.4 Sample Statechart Diagrams
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From the sample statechart diagrams above, we can generate the following method
invocation graph:

Figure 4.5 Method Invocation Graph for Figure 4.4

An invocation path for node B is a path in the invocation graph from any node A to node
B. Given an invocation graph, we can generate the invocation paths for each node.
Suppose that following the transitions il ->i2 ->... ->iN, we can travel from node 4 to
node B. Let p=1i1_i2..._iN. The following inline will be generated for the path:

inline B_p(x_objID, x_in, x_out, x_local) { x_B_clear(x_local); ... }

e The input parameters, x_in, x_out, x_local might be omitted if the method does not
have any corresponding parameters.

e A passive method may be called multiple times by a method. The inlines related to
these calls share local variables. For example, method mb_B is called twice in method
ma_A and the input parameter x_Jocal in the inline mb_B_3 and the inline mb_B_7
will be the same (See section 4.2.3.3.3.) To erase the changes made by a previous
method call, the x_Jlocal parameter of any passive method inlines will be cleared
before being used.

In Figure 4.5, there are four invocation paths for node mb_B:
2,3,7,1_3

Accordingly, the following PROMELA inlines will be generated for method mb in class
B:

inline mb_B_2(x_objID, x_in, x_out, x_local) {x_mb_B_clear(x_local); ...}
inline mb_B_3(x_objID, x_in, x_out, x_local) {x_mb_B_clear(x_local); ...}
inline mb_B_7(x_objID, x_in, x_out, x_local) { x_mb_B_clear(x_local); ...}
inline mb_B_1_3(x_objID, x_in, x_out, x_local)  { x_mb_B_clear(x_local); ...}

The content of these inlines are similar: the only difference is the label name. We suffix
all labels in a PROMELA inline with the inline name to avoid confusion.
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4.2.3.3.3 The Mapping for Passive Method Calls

In the UML design model, a passive method may be called by an active method or a
passive method. Correspondingly, its mapped PROMELA inline may be called in a
proctype or in another inline. In either case, the local variable record (x_local) of its
caller (see 4.2.3.3.1) will contain an input, an output and a local variable record for the
passive method. A passive method call will be mapped as three parts:

1. Assign each field in the input record as the value of the corresponding input
parameter.

2. Invoke the proper inline. The name of the inline is constructed from the caller
inline/proctype name, the passive method name and the id of the transition on which
the method is called. If the caller is an inline, the name of the caller contains
information about its own caller, the information of which will then be passed down
to the passive methods it called.

3. Update the value of output parameters by assigning them with the values in the output
record.

Suppose the passive method pm of object oid is called on a transition whose id is tid.
Suppose the transition belongs to the statechart diagram of the method callerM in the
class CallerC. Suppose object oid is an instance of class PC.

Let us denote the input parameters of pm as inl...inN, the output parameters of pm as
outl ...outM. Suppose on transition #id, ivl,...ivN are passed as input parameter values,
and op1,...opM are specified as output parameters.

The method call action on the transition tid for the inline callerM_CallerC_path, which is
an PROMELA inline for method callerM in class CallerC, will be mapped as:

/* x_local is the local variable record of the caller */
atomic

/*Set the input parameters */
x_local.x_pm_PC_ins.inl =ivl ;

x_local.x_pm_PC_ins.inN = ivn;
}
pm_PC_path_tid( oid, x_local.x_pm PC ins,
x_local.x_pm PC_outs, x_local.x_pm_PC_locals);

atomic

/*Set the output parameter values */
opl = x_local.x_pm PC_outs.outl;

opM = x_local.x_pm_PC_outs.outM;
}

Note that if method mMethod is an active method, path does not exist so the inline name
will be pm_PC_tid.
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Our translation guarantees that an inline will never be used twice in a PROMELA
proctype. By suffixing all labels in an inline with the name of the inline, conflict on label
names is eliminated.

4.4 Translate Statechart Diagrams

In the design model, each method defined in the UML class diagram is assigned a
statechart diagram to specify its behavior. In this section, we outline the translation for
such statechart diagrams, which will form the internal statements of the PROMELA
inlines and proctypes we mapped in the previous section.

In section 4.4.1 we review the statechart diagram in our design model. In section 4.4.2 we
introduce the translation for the local signal trigger event. In section 4.4.3 we introduce
the translation of variable names, which decides the translation of boolean expressions
and variable assignment actions. In section 4.4.4 we introduce how to translate a state and
how the translation for each state is organized together to form the translation of a
method statechart diagram.

4.4.1 Statechart Diagram Review

As explained in Chapter 3, a statechart diagram in our model contains basic states,
composite states and simple transitions. A state can have an entry action. The special
entry action is the one in the container state of the statechart diagram, which defines local
variables.

A transition may contain a trigger event, a guard condition and an action:

- The trigger event can be a change event or a signal event.

- The guard condition must be a boolean expression.

- An action can be a variable assignment action, a local method call, an IPC action
through calling methods on IPC interfaces, the raising of a signal event, or a
PROMELA assertion statement.

The states are linked by transitions. From the initial state of the statechart diagram, the
control flows from one state to another via an executable transition. The transition is only
executable when its source state completes and the executable condition on the trigger
event and the guard condition is satisfied. In table 4.6, we listed the possible
combinations of the trigger event and guard condition and the executable conditions for
each of them:

47



Transition Type Executable Condition

Trigger Event | Guard

Signal | Change

No No No Always executable

Yes | No No When the signal event occurs

No Yes No Whenever the change event expression becomes true.

No No Yes The guard condition is true at the time the control first
exits the source state.

Yes No Yes The guard condition is true when the event occurs. If the

guard condition is false when the event occurs, the event
is discarded and the control remains on the exiting point
of the source state

No Yes Yes The guard condition is true when the change event
expression is evaluated to true. If the guard condition is
false at that time, the change event is lost and the control
remains on the exiting point of the source state.

Figure 4.6 Transition Firing Conditions

4.4.2 Translating Signal Events

A signal event represents the reception of a particular asynchronous signal. In this
section, we introduce the mapping of signal events to PROMELA. The introduction is
partitioned into four parts. We introduce the PROMELA mapping for the definition, the
generation, the dispatching and the reception of signal events.

4.4.2.1 Signal Event Definition

In the design model, signal event types must be defined in UML class diagrams as Signal
stereotyped classes. Similar to other classes, for a Signal class named S, if it has one or
more class attributes (the signal event is parameterized), we define a PROMELA record
type S_Class for the class. “Class” is a predefined suffix.

For each signal event type, we define a global channel to hold all generated signal events
of that type. Suppose the signal event class type is named S and » processes uses the
signal, the channel is defined as:

chan signal_S = [n] of {byte, S_Class};

Where the first byte of each element in the channel denotes the process id of the event
generator.
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4.4.2.2 Signal Event Generation

To simplify the translation, in UML design model, the action for generating a signal
event takes the following format:

signal(S, v1,...vn);

where signal is the keyword to distinguish a signal event generation action from a method
call action. S is the signal event class name, and vi,...vn are parameter values. In
PROMELA, the event generation action will be translated into the following statement:

signal_S!(pid, v1,...vn);

where pid is the process id of the event generator. A signal event sending action will be
modeled as sending a message to the corresponding global signal event channel.

4.4.2.3 Signal Event Dispatching

The effect range of a signal event is local. In other words, only the execution threads
belonging to the same process as the one sending the signal event should be able to
receive it. If a signal event does not trigger any transition when it is dispatched, the event
will be discarded. We do not support reception of signal event in remote methods at this
time. Only main methods, thread methods and passive methods called in the main
methods and the thread methods can receive signal events.

To realize such functionality, we define a dispatcher process that is responsible for
dispatching all signal events. The generation of the dispatcher process takes three steps.

First, the following information is gathered statically from a UML design model:

a. Signal event types.
b. The ids of processes that use a particular signal event type.
C. The maximal listeners allowed in a process for a signal event.

After gathering the information, for each parameterized signal event type and for each
process that uses the signal event type, we define a global variable to hold the current
signal event of the type in that process. Suppose the signal event type is S and the process
id is pid, the global variable will be defined as:

S_Class x_signal S_pid;

In addition, we define the following customized datatype at the beginning of the
PROMELA program:

mtype = {undef, unavailable, available};
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Suppose in process pid, the maximum number of listeners for signal event § is n. We
define an array of size n of mtype flags for each S and pid. Each element in the array
represents the availability of signal S in an execution thread.

mtype x_signal_S_flags pid[n];

For example, the following boolean arrays will be defined for process 1 and process 3 in
the previous figure:

mtype x_signal_S_flags 1[4];
mtype x_signal_S_flags 3[2];

The value undef means that the flag has not been linked to an active execution thread.
The value unavailable means the corresponding signal event is not currently available for
the thread associated with it. The value available means that the event has arrived and is
currently available.

With the signal event channels, the related global variables and the related boolean flag
arrays in place, we can define the signal event dispatcher process. First, we define the
following PROMELA code segment for signal event S and process pid. Suppose in
process pid, the maximal number of listener threads for event S is n (the value
max_listener defined in the deployment file for process pid and signal S):

dispatch(S, pid) =
signal_S?7pid, x_signal_S_pid ->
if
::x_signal_S_flags pid[0] '= undef-> x_signal_S_flags_pid[0] = available;
::else -> skip;
i

if

:x_signal_S_flags pid[n] !=undef -> x_signal_S_flags pid[n] = available;
::else -> skip;

fi;

In the above code segment, a match receive(i.e. only the event messages with first byte
equal to the constant pid will be received) for the is performed on the signal event
channel. A signal event generated from process pid is retrieved if it exists in the channel
and its value saved in the corresponding global variable. If a receptor thread in process
pid is active, the signal event flag corresponding to it will not be undef. Any S signal
event flag that is not undef is set to available to indicate that an S signal event is currently
available for the corresponding thread. The effect range of a signal event is within the
process.
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Suppose in the system, the signal event types used are SI...Sn. For any §j (1<=j<=n),
process pidjl ...pidjk uses them. We define the following signal event dispatcher process:

active proctype signal_event_dispatcher()

{
do
:: atomic
{
if
::dispatch(S1, pid11);
;&ispatch(Sl, pidik);
;:.c.iispatch(Sn, pidnk);
fi;
}
od;
}

This process is active from the start. It repeatedly selects a signal event and dispatches it.
If no signal event is present in any channels, the dispatcher process is blocked.

4.4.2.4 The reception of a Signal Event

A signal event should be discarded if it does not trigger any transitions in current stage of
a statechart diagram. The reception and/or the discarding of signal events are performed
by the corresponding execution threads. At the beginning of an execution thread, we
reserve a signal event flag for each signal event type used in the execution thread. A
signal flag index is saved in a local byte variable of the main/thread method process for
later reference.

First, we define the following code segment:
flag_reserve(S, pid) =

byte x_signal_S_flag index;

do

0 x_signal_S_flag pid[x_signal S_flag index] == “undef” ->
x_signal_S_flag pid[x_signal_S_flag index] = “unavailable” ->
break;

.. else -> x_signal_S_flag index = x_signal_S_flag index+1;

od;
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The code segment finds the first undefined flag in the signal event flag array and reserves
it for the execution thread by changing the flag to unavailable.

After reserving an index for each signal event type received in the thread, we can start
translating the reception and the discarding of signal events.

The reception of a signal event is translated in two parts:

1. Save the event parameter values to the corresponding variables.
2. Clear the signal flags.

Suppose in the statechart diagram, a transition includes the following trigger event:

signal(S, p1,...pn);

If an execution thread in process pid includes the transition, The trigger event will be
translated as:

x_signal_S_flags_pid[x_signal_S_flag index] == “available” ->
ptl = x_signal_S_pid.attl; ...ptn = x_signal_S_pid.attn,

In the code segment, x_signal_S_flag _index is the flag index saved for the current thread
for signal S; ptl...ptn are the translated variable names and att ...attn are the signal event
parameter names. The code segment checks if signal S is currently available for the
execution thread. If not, the code segment will be blocked. If it is available, the values of
the event parameters will be saved into the corresponding variables.

4.4.2.5 Discarding Signal Events

A signal event will be discarded if it does not trigger any transition after dispatched. To
achieve that, we add a signal event clear up section when the system exits from a none-
composite state. A signal event is discarded by setting the corresponding flag to
unavailable.

Suppose an execution thread in process pid is the receptor of signal type SI...Sn.
Suppose the flag index of the execution thread for signal type Si is index_i. The
following clean-up code segment will be added to the beginning of each state of the
execution thread:

cleanup(pid, S1, index_1, ...Sn) =
signal_S1_flag pid[index_1] = “unavailable”;

signal_Sn_flag pid[index_n] = “unavailable”;
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4.4.3 Attribute Translation

In our model, all boolean expressions are constructed from accessible variables and
constants. In addition to being used as guard conditions or change events, boolean
expressions are also used in assertion statements. To translate boolean expressions,
change event, assignment, etc. we actually only need to consider how to translate the
attributes used in them.

The attributes a method can access include its input and output parameters, its local
variables and any data attribute of an object within the process boundary.

In statechart diagrams, the data attribute of an object different from the method object is
accessed as:

CN(oID).attr

where attr denotes the name of the attribute, oID denotes the component id of the object
(as defined in the deployment file), and CN denotes the name of the object class.

In the PROMELA verification model, such an attribute is translated as:
X_CN_getObj(olID).attr

See section 4.1.3 for the definition of the getObj macro.

The rest of the attributes include the input, output parameters, the local variables and the

data attributes of the method object. All of them are accessed directly (by name only) in

the method’s statechart diagram, but translated differently in PROMELA verification
model. Suppose the attribute name is p, and the object class type is CN, then:

Attribute Type Translation
Input Parameter of a Thread P
Method
of a Passive X_ins.p
Metood
Output Parameter X_outs.p
Local Variable x_local.p
Object Data Attribute CN__getObj(x_objID).p

Figure 4.7 Translate Attributes
(See section 4.2.3.3.1 for the definition of x_ins, x_outs, x_local and x_objID)
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4.4.4 Translation of States and Their Outgoing Transitions

Now we have introduced the translation for signal event triggers, signal event generation
actions, boolean expressions, assignment actions and assertion actions. The translation
for IPC related actions will be introduced in Chapter 5. In this section we introduce how
to use these elements to translate states and their outgoing transitions.

First, we translate a basic state as a label. If the state has a name, the label name is:
stateName_methodName_stateID

Where stateName is the name of the state. StatelD is the unique id given to the state in
the XMI file. The methodName is the translated PROMELA proctype or inline name for
the method that the statechart diagram belongs to.

If the state has no name, the label name is:
methodName_stateID

If the state has an entry action, the label is on the beginning of the translated entry action
statements. Otherwise, the label is on the beginning of its output transitions.

Suppose the state has n output transitions t1...tn and they are partitioned to five sets Tg,
Ts, Tsg, Tc, Tnone:

- Tgincludes the transitions that have guard conditions and no trigger events.

- Ttincludes the transitions that have trigger events and no guard conditions;

- Trg includes the transitions that have both trigger events and guard conditions;

- Tnone includes the transitions that have neither guard conditions nor trigger events.

For transiton j (1<=j<=n), let us denote the translation for the trigger event of transition j
as event_j, the guard condition as guard_j, the action as action_j, and the generated label
for the target state as target_j, the generated label for the source state as sourceLabel, we
define the following code segment:

Tg_transition(j) = condition_j ->action_j; goto target_j;
Tt_transition(j) = event_j -> action_j -> goto target_j;
Tnone_transition(j) = 1->action_j -> goto target_j;
Ttg_transition(j) = event_j->

if

::guard_j -> action_j ->goto target_j;
::else -> goto sourceLabel,
fi;

From the above code segments, we define code segment transition(j):
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if tj belongs to Tg, transition(j) = Tg_transition(j);

if tj belongs to Tt , transition(j) = Ts_Tc_transition(j);

if tj belongs to Tnone, transition(j) = Tnone_transition(j);
if tj belongs to Ttg, transition(j) = Ttg_transition(j);

Using the code segments above, we can define the following PROMELA statements to
represent the state and its outgoing transitions. Suppose Tg = {tl,..,tk} (k<=n):

sourceLabel: cleanup();
state_action;
if
::transition(1);

:transition(n);
else -> /*A guard condition should only be evaluated once. Since PROMELA
continuously evaluates all boolean conditions, we must take the transitions
with guard condition and no trigger event out after first evaluation. */
if
:: transition(k+1);

:: transition(n);
fi;
i

After the entry action of the source state is executed, an executable outgoing transition is
randomly selected and executed. Note that a transition with both a trigger event and a
guard condition may return to the exiting point of the source state. Since the transition
belonging to Tg should not be considered if the initial evaluation is false, transitions
belonging to Tg are omitted in the else statement.

4.4.5 Organize the Translation for the Statechart Diagram

A statechart diagram must directly own one and only one initial state. The statechart
diagram must end on an end state.

If more than one transitions are executable when the control leaves the source state, the
control will randomly flow from one of them to the next state.

A composite state whose name starts with afomic or d_step will be translated into a
PROMELA atomic/d_step block.
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Chapter S Modeling MOM in PROMELA

In the previous chapter, we defined a verifiable UML model for designing distributed
systems. In this chapter, we introduce how the MOM related elements are translated into
PROMELA. Such elements include the MOM channels and Publisher, Sender, Receiver
and Subscriber interfaces. The translation will be integrated into the PROMELA code the
translator generated from the UML model.

The chapter is organized as following: In section 5.1, we will introduce the PROMELA
model for point-to-point (PTP) channels. In section 5.2, we will introduce the
PROMELA mapping for distributed events.

5.1 PTP Message Passing

In this section, we model PTP message passing mechanism in PROMELA. In section
5.1.1, we will review the features of PTP message passing. As introduced in Chapter 3, in
the design model, PTP message passing is realized by declaring PTP channels in the
deployment file and creating Sender, Receiver interfaces associated with them in UML
diagrams. In section 5.1.2, we introduce the mapping for a PTP channel in PROMELA.
In section 5.1.3, we model the Sender interfaces. In section 5.1.4, we introduce the
dispatcher processes associated with Sender interfaces. In section 5.1.5, we introduce the
mapping for Receiver interfaces.

5.1.1 Features of PTP Message Passing
In Chapter 2, we defined the PTP message passing model for MOM middlewares:

- A PTP channel appears to user as a message queue.

- A PTP channel only accepts messages of a certain datatype. This is due to limitations
imposed by PROMELA).

- A message is assigned with a priority: normal or urgent. An urgent message may be
retrieved ahead of a normal message, even if the latter is sent earlier.

- A message is assigned with a delivery mode: persistent and transient. A persistent
message will never be lost. If the queue is full, the sender will be blocked until the
channel becomes available again. A transient message may be lost during a transition:
it will be dropped if the queue is full, and it may be lost during a transition. We
provide transient delivery model to give users a way to verify system behavior
corresponding to the message-lost phenomenon.

- We use Sender interfaces to serialize messages of the same priority, which
corresponds to the partial message order enforced by the middleware. Messages from
different Sender interfaces are not ordered, which represents the message re-ordering
phenomenon that middlewares cannot filter out.

- Message can be retrieved in two ways: it can be read and removed from the channel
(receive), or it can be read without been removed (browsed).

56



5.1.2 The Mapping for PTP Message Channels

In the PROMELA model, a PTP channel defined in the deployment file will be mapped
into a PROMELA channel. More precisely, a ptpChannel element in the deployment file
will be mapped into a PROMELA channel by the following rules:

- The name of the channel is the value of the name attribute in the Channel element
prefixed by x_ptp_.

- The size of the channel is the value of the attribute size in the Channel element.

- The element type of the channel is the message datatype of the PTP channel plus two
boolean flags, one for priority and the other for the delivery mode.

5.1.3 The Mapping for Sender Interfaces

In the UML design model, processes send messages to a PTP channel through a Sender
interface associated with the channel. A sender interface has three methods, namely
connect, send and poll.

In the PROMELA verification model, each Sender interface is mapped to a synchronous
gate channel. The name of the channel is the name of the Sender interface prefixed by
x_ptpGate_.

When a Sender interface is connected to a PTP channel, the gate channel is initialized
accordingly and a dispatcher process is activated for the gate channel. The dispatcher
process is determined by the PTP channel. The send method will send a message to the
gate channel, which is then processed by the dispatcher process. The poll method will be
mapped into a PROMELA statement checking the fullness of the channel:

Sender related PROMELA mapping
Actions in UML
Sender s chan x_ptpGate_s; /*Synchronized gate channel. */

s.connect(“tulip”) x_gateChan_s = [0] of {bool, bool, MT}; /*initialize the gate channel */

s.send(urgent, x_senderChan_s'1,1,mt;
persistent, mt)

run x_ptpDispatcher_tulip(x_gateChan_s); /*starts a dispatcher process */

s.poll(); full(x_senderChan_s); /*returns 1 if the channel is full, O otherwise */

Figure 5.2 PROMELA mapping for a Sender interface (tulip is a PTP channel)

In the next section, we explain the functionality of the PTP dispatcher process.
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5.1.4 The PTP Dispatcher Process

In the PROMELA verification model, we define a dispatcher proctype for each PTP
channel. An instance of a Sender interface connected to the PTP channel will activate a
process of that proctype, which manages the messages sent to this channel from a
synchronous gate channel representing the Sender interface (See Figure 5.2).

The name of the dispatcher proctype for a PTP channel is the channel name prefixed by
x_ptpDispatcher_. All dispatcher proctypes for PTP channels are essentially the same:
the only difference is their message element type, which is determined by the message
element type of the channel.

In the following table, we show the main PTP channel and the dispatcher proctype
defined for that channel from a Channel element in the PROMELA file:

A “Channel” Element PROMELA MAPPING
in the Deployment File

<Channel name = “wlip” chan x_ptp_tulip = [4] of {bool, bool, MT};

:l‘:g‘:;ls_ltz;p:i“ptp” o Igroctype x_ptpDispatcher_tulip(chan gate)
message_datatype =

MTs

bool priority, persistency;

MT element;

x_ptpDispatcher (gate, x_ptp_tulip, priority,
persistency, element )

}

Figure 5.3 PROMELA mapping for ptp channel “tulip”

The major part of any PTP channel dispatcher proctype is the inline “x__ptpDispatcher”.
The inline “x_ptpDispatcher” repeatedly remove an element from the gate channel, which
is a synchronous channel associated with a Sender interface, and send it to the main PTP
channel:

inline x_ptpDispatcher(gateChan, ptpChan, priority, persistency, element)
{

xr gateChan; /*declare the process as the sole receiver process for channel “inChan” to reduce the
verification complexity*/
endl: do /*repeat*/
:: gateChan?priority, persistency, element; /*get a message from inChan */
if
;1 persistent- > /¥*Message delivery should be guaranteed */
end2: mainChan!priority, element;
i else->  /*Message delivery is allowed to fail */
atomic
end3: { if
:: full(ptpChan) -> skip; /*drop the message if the channel is full */
i else >
if
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:: ptpChan!priority, element;
:: skip; /*randomly drops a message — for testing */
fi;
fi;
b
fi;
od;

Figure 5.4 The x_ptpDispatcher inline

We use the possible interleaving among dispatcher processes between the time a message
is retrieved by a dispatcher and the time the message is added to the main PTP channel by
the dispatcher to simulate the message re-ordering phenomenon. On the other hand, the
messages sent from the same dispatcher process, consequently, from the same Sender
interface are ordered, which simulates the partial message-ordering imposed by MOM.

We also model persistent and transient messages. A persistent message (persistency = 1)
will never be lost, but may block the sender when the channel is full. A transient message
(persistency = 0) will be dropped if the channel is full. In addition, a transient message is
randomly dropped, which is useful when user want to examine the error-recovery
behavior in message-lost situations. The end labels are added to avoid confusion in
deadlock detection — blocking is legal while removing or sending a message.

The following graph deciphers the relationship between a PTP channel tulip and its
Sender interface A, B and Receiver interface X,Y,Z :

sender A
e S

gateChan_A | pipDispatcher_tulip /Tj‘f__z{,»

PROMELA PTP channel rcoeiver Y
¥_ptp_tulip

sender B

gatcChan_B ptpDispather_tulip

Figure 5.5 PTP message passing

coeiver Z

The message priority and the browsing/receiving of the message are modeled on the
receiving end — the Receiver interfaces, which will be introduced in the next section.

5.1.5 The PROMELA Mapping for Receiver Interfaces
Receiving a message from a PTP is simple. A receiver interface will be mapped as a
reference to the PTP channel to which it connects. A Receiver interface in the UML

design model has four methods, namely connect, receive, browse and poll. The table
below demonstrates the mapping of Receiver interfaces by example:
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Receiver Related Actions PROMELA Code
in UML Statement

Receiver rev chan x_ptpReceiver_rcv;
Rcv.connect(tulip) rcv = x_ptpReceiver_tulip;
Mt = rev.receive(); if

:x_ptpReceiver_rcv??1,mt; /*retrieve the oldest message*/

fi

(a,b) = rcv.browse(); if

zrev?? <1,a,b>; /*read the oldest message */
zrev?_<ab>; /* read the oldest urgent message*/
fi

Rev.poll(); empty(x_ptp_tulip);
p

Figure 5.6 PROMELA mapping for a Receiver Interface

The translations of method connect and method poll are straightforward (Compare with
the translation for Send objects).

In the mapping for the browse and the receive method, either the oldest message in the
channel is received/browsed, or the oldest urgent message in the channel is
received/browsed. In other words, a message with higher priority is given a chance to be
retrieved before the normal priority messages ahead of them. The content of the message
updates the value of the corresponding variables.

5.2 Distributed Event Channels

In this section, we model distributed event mechanism in PROMELA. In section 5.2.1,
we will review the features of distributed events. As introduced in Chapter 3, in the
design model, distributed events are realized by declaring distributed event channels in
the deployment file and creating/using Publisher, Subscriber interfaces associated with
them in UML diagrams. In section 5.2.2, we will introduce the mapping for a distributed
event channel. In section 5.2.3, we will model the Publisher interfaces. In section 5.1.4,
we will introduce the mapping for Subscriber interfaces.

5.2.1 The Features of Distributed Events

In chapter 2, we defined the distributed event model for MOM middlewares.

- A number of publishers can publish distributed events (sent a message to a distributed
event channel). The messages are broadcasted to a number of listeners.

- Events are assigned with priority.

- Events are either persistent or transient: A persistent event must be retrieved by all its
subscribers, while a transient event might be lost.
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- Events from the same publisher will be serialized, while events from different
publishers may interleave.
- A distributed event channel is typed — it can only hold a particular type of messages.

In the UML design model, distributed event channels are defined in the deployment file,
Publisher interfaces and Subscriber interfaces are created/used as class attributes and/or
method local variables in UML diagrams to use these channels. As we can see, a
distributed event is similar to a PTP message in all aspects except that it broadcasts the
message to the subscribers.

5.2.2 The PROMELA Mapping for Distributed Event Channels

We map a pcChannel element in the deployment file as a global PROMELA channel (we
call it the main channel), a boolean browsed array and a byte integer subscriber_count.
The boolean array and the byte integer are used for broadcasting purpose.

A psChannel Element PROMELA Mapping
<psChannel name = “rose” chan x_psChan_rose = [1] of {bool, bool, MT};
buffer_size = “5” byte x_ps__subscriber_count_rose;
message_datatype = “MT” bool x_ps__browsed_rose[3];

max_subscriber = “3>

Figure 5.7 The PROMELA Mapping for a distributed event channel

The size of the main channel is always /. The name of the main channel is the name of
the distributed event channel prefixed with “x_psChan”. Similar to the PTP channels, the
message elements in the channel contains two additional boolean flags, one for priority
and the other for persistency.

A main channel receives messages from dispatcher processes, each of such processes
associated with a Publisher gate channel. The messages in the main channel are
broadcasted to Subscriber listener channels by broadcaster processes. Each of such
processes is associated with a listener channel:

subscrber X
————

listenecChan_X

\ﬁ\Di:patchcc_msc psB.ro&dcastﬁf_msc
PROMELA event chanoel = | listenecChan Y | subscdbec Y

Ch
/ pe-nan_fose \ psBroadcaster_rose
~
publishec B ' cChan_ B | PsDispatcher_cose psBroadcaster_mse

A Y bscrib
listenecChan_Z M

publisher A_f gaicChan_a

Figure 5.8 The distributed event mechanism
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5.2.3 The PROMELA Mapping for Publisher Interfaces

In the PROMELA verification model, A Publisher interface is mapped into a dispatcher
process and a gate channel. The dispatcher process is determined by the event channel to
which the interface instance connected. Similar to the Sender interfaces, the use of
dispatcher processes reserves the event ordering within a Publisher interface while
enables message interleaving among different Publisher interfaces.

The main part of a dispatcher process for a Publisher interface is a call to inline
x_ps_dispatch:

inline x_psDispatch(gateChan, mainChan, element, priority, persistency)

{
xr pubChan;
do
:: inChan?priority, persistency, clement;
gateChan!priority, persistency, element;
od;
}

The definition of dispatcher processes is similar to that of PTP channels and will not be
repeated here (see Figure 5.3).

The following table shows the PROMELA mapping for a Publisher interface pub:

Publisher Interface PROMELA Mapping
Publisher pub chan x_psGate_pub;
pub.connect(“rose” x_psGate_pub = [0] of {bool, bool, MT};
run x_psDispatcher_rose(x_psGate_pub);
pub.publish(normal, persistent, mt) x_psGate_pub!0,1, mt;

Figure 5.9 The PROMELA mapping for a Publisher interface

5.2.4 The PROMELA Mapping For Subscriber Interfaces

A Subscriber interface will be mapped into a listener channel, a broadcaster process, and
some message receiving statements,

The size of each listener channel is the size of the event channel defined in the
deployment file. The name of the listener channel is the name of the Subscriber interface
prefixed by x_psListener._.

The broadcaster process is determined by the distributed event channel to which the
Subscriber interface instance connects. The process will repeatedly browse the
corresponding main channel and send the browsed element to the listener channel. To
avoid browsing the same event twice, the dispatcher process uses an element in the
boolean browsed array. The message is deleted from the main channel when all its
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dispatcher processes have browsed it. The integer subscriber_count keeps the number of
Subscriber interface instances connected to the main channel. The detail of the
broadcaster processes will be introduced in the next section.

For example, a Subscriber interface sub connected to the distributed event channel rose
(see Figure 5.7), the PROMELA mapping for sub will be:

Subscriber Interface PROMELA Mapping
Subscriber sub chan x_psListener_sub;
Sub.connect(“‘rose”); x_psListener_sub = [5] of {bool, MT};
run x_psBroadcaster_rose(x_psListener_sub);
mt = sub.consume(); if

::x_psListener_sub??1,mt;
::x_psListener_sub?_mt;
fi

Sub.empty() atomic
{/* drop all elements in the listener channel */
do
::empty(x_psListener_sub) -> break;
::else -> x_psListener_sub ? _, , ;
od;
}

Sub.poll() empty(x_psListener_sub)

Figure 5.10 The PROMELA mapping for a Subscriber interface

5.2.5 The Broadcaster Processes

A broadcaster process is associated with a distributed event channel and a listener
channel. For each psChannel element in the deployment file, which defines a distributed
event channel, we create a broadcaster proctype. Each Subscriber interface instance
connected to the event channel will activate a broadcaster process from the proctype,
using the listener channel as the input parameter (see Figure 5.10).

The functionality of a broadcaster process is to repeatedly browse the main channel and
send the browsed element to the listener channel. A broadcaster process will never
browse the same element twice. To achieve this, broadcaster processes take turns to
reserve a browsed flag in the browsed array. The array index is determined by the number
of existing broadcasters (subscriber_count) of that distributed event channel. The flag is
set to 1 before browsing. After browsing an element, the broadcaster process set its
browsed flag to 0. The flag will not be set back to / until the browsed element is deleted
from the main channel.

An element will not be deleted from the main channel until it has been browsed by all the
broadcasters, in other words, when no flag in the browsed array is of value /. After the
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element is deleted, all element in the browsed array that is reserved by a broadcaster
process (index<subscriber_count) will be refreshed to I so the broadcaster processes can
start browsing the next element.

An element is sent to the listener channel in the same way as a PTP message.

Broadcaster protocols are essentially the same, except that they refer to different main
channels, subscriber_count integers and browsed arrays. The element type may also defer
from one another. Here we explain the broadcaster proctypes through an example.

inline x_psBroadcaster_rose( IsnChan,)
{
/*Reserve a boolean “browsed” flag, update “subscriber_count” */
atomic
{ byte index; /*’browsed” flag index*/
xs IsnChan; /¥*Reduce verification complexity, set the process as the sole sender for IsnChan*/
index = x_ps_subscriber_count_rose;
X_ps__subscriber_count _rose = x_ps_subscriber_count_rose+1; /*update subscriber_count*/
X_ps_browsed_rose[index] = 1;

}

MT element; /*event element */

bool persistency, priority; /*persistency = 1: persistent event. priority = 1: urgent event
persistency = 0: transient event.  priority = 0: normal event*/

byte count; /* A counter variable for setting reserved:“browsed” flag back to 1*/

do
:: atomic
{ x_psChan_rose?[_, .element]; /*an element is available?*/
x_ps_browsed_rose[index] > 0 ->/*if the element hasn’t been browsed*/
x_ps_browsed_rose[index] =0; /* browsing*/

if
::/*If not everyone has finished browsing, browse the element*/
x_ps_browsed_rose{0] | x_ps_browsed_rose[1] | x_ps_browsed_rose[2]
->x_psChan_rose ?<priority, persistency, element>; /*browse*/
:: /*Otherwise, retrieve the element, refresh “browsed” flags*/
else -> x_psChan_rose?priority, persistency, element; /*read & delete*/
do /*update flags*/
:: count<x_ps_subscriber_count,rose ->
x_ps_browsed_rose[count] = 1;
count = count+1;
:: else -> count = 0; break;
od;
fi;

/*send the browsed element to the listener channel according to persistency value,
compare to Figure 5.4*/
if
ipersistency -> lsnChan!priority, element;
else -> if
::full(IsnChan) -> skip;
zelse -> if
::1snChan!priority, element;
::skip;
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fi;
fi;
fi;
}
od;
}

As shown in the example, we simulate the broadcasting of distributed events through
browsing. We also simulate the event-reordering phenomenon among publishers. To
reduce complexity, however, we did not model event-reordering phenomenon among
subscribers. In our model, events will arrive in all subscribers in the same order. In other
words, we modeled a centralized distributed event system, in which events are processed
by a unique dispatcher process.
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Chapter 6 The Remote Object System

A CORBA remote object system includes one or more ORBs, the object implementations
and the clients. A client issues requests. The ORB is responsible for finding the object
implementation for the request, to prepare the object implementation to receive the
request, and to communicate the data that make up the request. The object
implementations, managed by object adapters, are responsible for servicing the requests.

In Chapter 3, we introduced the CORBA-style remote object system in the design model.
In this chapter, we will introduce the corresponding PROMELA implementation.

The basic idea is to define the request channels for clients to transfer requests and the
result channels to give back results to the clients. Different worker-thread processes are
generated and linked to different request channels according to POA thread policies and
ORB thread policies, they represent the object implementations.

We will introduce the mapping in three parts. First, we introduce the mapping for Stub
instances, which represent the client interfaces. The finding of object implementation is
also included in this section. Secondly, we introduce the generation of worker threads,
according to ORB thread policy and POA thread policies. Thirdly, we compare our work
with others.

6.1 The Mapping for the Clients -- Stub Instances and Response Objects

A Stub instance in the UML design model represents a client. Each stub will be translated
into a set of channels. The channels will be defined at the time the Stub instance is
created. When a Stub instance is created, it is specified as a Stub instance for a remote
object type. For each method defined on the object interface, two channels are created,
one for sending request and one for getting result. Suppose the Stub instance is named s
and the method on the remote object interface is named m. The channel will be defined
as:

chan stub_s_m;

The channels will be initialized when the Stub instance is bound to a remote object. The
initialization of the request channels depends on the thread policy of the POA that
manages the remote object. A new channel may be created and then passed into a worker
thread, or the channel may be a reference to an existing channel (shared with other
clients). Suppose the Stub instance is bound to a remote object with id oid, which has n
method named m!...mn.

Suppose the IDL class name for object oid is C. The following table shows the translation
of a Stub instance bound to oid. (1<=j<=n)
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POA Thread Policy Binding Translation

main_thread ... Stub_s mj =mj_oid_in; ...

thread_per POA ... stub_s_mj =mj_oid in; ...

thread_per_obj ... stub_s_mj =mj_oid_in; ...

thread_pool(n) ... stub_s_mj =mj_oid_in; .

Thread_Per_Client ... stub_s_mj = [0] of {byte, X _mj_C_ins, chan); ...
run worker_thread_C( stub_s ml, ..., stub_s_mn);

Figure 6.1 Translation for Binding on the server side

The channel mj_oid_in is for method mj in remote object oid, which is shared by the
clients to issue mj requests to oid. Unless the POA who manages the remote object uses
the Thread_Per_Client thread policy, mj_oid_in will be defined globally as:

chan mj_oid_in = [0] of {byte, X_mj_C_ins, chan};

The byte flag indicates the style of the method call (synchronized, asynchronized,
deffered) and the element of the datatype X_mj_C_ins contains the input parameters of
the method, if there is any. The channel element is the channel for sending back result.

The definition of worker_thread_C will be introduced later. For each Stub instance, a
return channel is defined for each method. For method mj, the return channel will be
defined as:

chan stub_s_mj_return = [0] of {bool, X_mj_C_outs};

The boolean flag is added for those methods without returning values so they can be
called synchronously or asynchronously.

After binding, the Stub instance can be used to send requests to the remote object oid.
The request can be sent synchronously, asynchronously or deferred synchronously, using
method send_sync, send_oneway and send_deffered, accordingly. Suppose mj has n
parameters, pl, ...pn. We denote the input parameters as pin_1 ... pin_k and the output
parameters as pout_r,...pout_n (r<=k+1). The translation of different calling style is
given in the next table:

Method Call Mode | Translation

send_sync(mj, stub_s_mj!0, pin_l1,...pin_k, stub_s_mj_return;
pl,...pn); stub_s_mj_return?_, pout_r,...pout_n;
send_oneway stub_s_mj!l, pin_1,...pin_k;

(mj, p1,...pn);

send_deferred stub_s_mj!2, pin_1,...pin_k , stub_s_rsp_mj
(mj, pl,...pn, rsp) rsp_return? , pout_r,...pout_n;

Figure 6.2 Translation for method calls of different synchronization model
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In the send_deferred mode, a response object is used as an input parameter. A response
object is mapped to a special return channel. Unlike the return channels associated with a
method of a Stub instance, the channel of a response object is an asynchronous channel,
which hold the result for the client to poll later. In our model, a response object is
associated with a particular remote method, and no more than two remote method calls
should be pending on a response object at any time.

Response Object Translation

Response rsp chan rsp_return;

rsp = new Response(C, mj) rsp_mj_C_return = [2] of {bool,
C_mj_outs};

rsp.get_response() rsp_return?_pout_r,...pout_n;

rsp.poll_response() empty(rsp_return)

Figure 6.3 Translation for the Response objects

For simplicity, we did not show the mapping of the Response object name in the above
table as in section 4.1

In this section, we have introduced the translation of clients, including how to send
requests and how to get results. In the next section, we introduce how to decide the
binding between a Stub instance and an object implementation.

6.2 Binding an Object Implementation to A Stub Instance

Binding an object implementation to a Stub instance, in the PROMELA mapping, is
equal to determine the id of the remote object and initialize the set of stub channels
accordingly (See Section 6.1).

Three binding options were given in the design model: A Stub instance may be bound
randomly, bound to a remote object with particular id, or bound to a remote object within
a particular POA.

During the binding, all remote objects are of the same priority. In other words, if two
remote objects satisfy the binding option, they will have the equal change to be bound to
the Stub instance, despite the object location, the available thread resources, etc.

Suppose stub is created as a Stub instance for IDL interface type C. Suppose in the
system, C type remote objects is scattered in POAs named pid_l1...pid_k. Suppose in
pid_j, 1<=j<=k, remote objects oid_lj...0oid_mj are C type remote objects. (1j<=mj).
Suppose C has n methods, denoted as m_l...m_n. Suppose that the ORB that pid_j
connects to be orblDj.

Let us define:
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set_stub_channels_obj(stub, oid, orbID, 0 ) =
atomic{
stub_s m_1 =m_1_oid_in;

stub_s_ m_n=m_n_oid_in;

}

Denoted by the last parameter (“0”), the above code segment is for binding the Stub
instance to an object that resides in a POA with thread policy other than
thread_per_client. The ORB that the POA connects to is orbID. The channels are set to
reference to the existing request channels belonging to the remote object.

set_stub_channels_obj(stub, oid, orbID,1 ) =
atomic {

stub_s m_1 =[0] of {byte, X_m_1_C_ins, chan);
stub_s m_1 =[0] of {byte, X_m_n_C_ins, chan);
}

run worker._thread_C( oid, orbID, stub_s_ml, ..., stub_s_mn);

Denoted by the last parameter (“1”), the above code segment is for binding the Stub
instance to an object that resides in a POA with thread policy being thread_per_client.
The ORB that the POA connects to is orbID. The request channels are specifically
created for this Stub instance (client), and a worker thread is activated to perform the
implementation tasks of the remote object (server).

set_stub_channels_poa(stub, p, orbID) =
atomic {
if
:: set_stub_channels_obj(stub, obj_1p, orbID, (poa_thread_policy ==
thread_per_client));

:: set_stub_channels_obj(stub, obj_mp, orbID, (poa_thread_policy ==
thread_per_client));

fi;
3

The above code segment randomly binds the stubs object to a suitable remote object in
POA p that is connected to ORB orbID.

set_stub_channels_rand(stub) =
atomic {
if
::set_stub_channels_poa(stub, pid1, orbID1);

::set_stub_channels_poa(stub, pidk, orbIDk);
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fi;
}

The above code segment randomly binds the Stub instance to a suitable remote object in
the system.

The binding will be translated as:

Binding Action Translation

stub.bind(OBJ_ID, o) set_stub_channels_obj(stub, o, (poa_thread_policy ==
thread per_client));

stub.bind(POA_ID, p) set_stub_channels_poa(stub, p);

stub.bind() set_stub_channels_rand(stub);

Figure 6.4 Translation for binding on client side

After binding, the communication between the client (the Stub instance) and the server
(object implementation) does not need monitoring. Clients send request as message to the
channel, and the server will retrieve the message from the channel.

6.3 Object Implementation — The Definition of Worker Threads

In this section, we introduce the worker threads. Remote objects are managed by POAs.
According to the thread policy, a POA is given some thread resources. A remote method
call can only be serviced if there is thread resource available. Otherwise the call will be
blocked until so.

In Chapter 3, we have introduced the translation for local objects. The translation for
remote objects is similar. All methods on the IDL interface will be translated as passive
methods. The variable set/get methods are translated accordingly. In this section, we
define worker thread processes, which retrieves remote method call requests from
channels and invoke remote method inlines accordingly. The definition and the creation
of worker threads are determined by the ORB thread policy and the POA thread policy.
Worker thread processes have a similar structure, the only difference being their scope.

6.3.1 ORB Thread Policy

In our PROMELA model for CORBA distributed object system, for simplicity the clients
(Stub instances) and the object implementation (worker threads) are linked together
directly by request channels. In reality, such requests are first sent to the ORB itself, then
the ORB dispatch the requests to the corresponding POAs. If the ORB is single_thread,
the transfer of the request by ORB may block the execution. If the ORB is
multi_thread(we suppose the thread resource is unlimited for an ORB), the blocking will
not occur. We suppose the communication between ORBs will never block.
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Suppose in the deployment file, n ORBs are defined, with id 1...n. If ORB i...j are
single_thread ORB and the rest are multi_thread ORB, following code segment will be
added to the PROMELA file:

mtype orb_busy[n]; /*mtype is defined in Chapter 5. The value can be undef, unavailable
or available*/

init

{
/* Set the ORB flag */
orb_busy[i] = available;

orb busy[j] = available;
}
6.3.2 The Main_Thread Policy

An ORB owns a special execution thread, which is referred to by the POAs as the main
thread. If the thread policy of a POA is specified as Main_Thread, any service requests to
the remote objects managed by the POA will be serviced by the main thread. Since all
POAs with the Main_Thread thread policy will share the thread, the concurrency is cut to
minimum and the concurrency control task will be greatly simplified or even eliminated.
The drawback is that such a thread policy can easily cause deadlock due to the
competition of the main thread.

For each ORB defined in the deployment file, if any of the POAs under it specified its
thread policy as Main_Thread, we define a worker thread to handle all the remote
methods in such POAs.

Suppose the ORB id is orbld. Suppose ORB orb_id has n POAs with Main_Thread
thread policy. Suppose the POA ids are poa_l...poa_n. Suppose poa j (1<=j<=n)
manages jm number of remote objects, with object ids obj_ji...0bj_jm. Suppose the
remote object obj_jk(jl<=jk<=jm) has jkz methods, the name of these methods are
m_jkl...m_jkz.

Suppose the IDL interface type for object obj_jk is Cobj_jk. Let us define the following
code segment:

create_channels_obj(o) =
chan m_ol_o_in = [0] of {byte, X_m_ol_Co_ins, chan);

chan m_oz_o_in = [0] of {byte, X_m_oz_Co_ins, chan);
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create_channels_poa(p) =
create_channels(obj_p1);

create_channels(obj_pm);

define_element_obj(o) =
X_m_ol_Co_insx_m_ol_Co_ins;

X_m_ol_Co_outs x_m_ol_Co_outs;

X_m_oz_Co_ins x_m_oz_Co_ins;

X_m_oz_Co_outs x_m_oz_Co_outs;

define_element_poa(p) =
define_element_obj(obj_p1);

;iéﬁne_element_obj(obj _pm);

process_request(m,o, C, orbID) =
/*get a request for method m in remote object 0. The IDL type for 0 is C */
m_o_in?style, x_m_C_ins, returnChan; /* style is a byte flag defined beforehand */
atomic
{
if
:: /* wait for the flag if the orb is single thread orb*/
orb_busy[orbID] == available ->
/* reserve flag*/
orb_busy[orbID] == unavailable;
:: /* continue if the orb is multi_thread orb*/
orb_busy[orbID] == undef -> skip;

i
}
m_C(o, x_m_C_ins, x_m_C_outs),
if
:: style == 1 -> skip; /*asynchronized call does not require return. */
:: else ->returnChan!1, x_m_C_outs;
fi;
/* release flag if the orb is a single thread orb */
atomic
{
if
:: orb_busy[orbID] == unavailable -> orb_busy[orbID] = available;
:: else -> skip;
fi;
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In PROMELA, the ORB and the Main_Thread POAs under it is translated as:

/*create global request channels */
create_channels_poa(p1)

create_channels_poa(pn)

active proctype worker_thread_orb_orbID()
{

/* mark the worker thread process as the sole receiver of the global request channels
above to cut down verification complexity*/
xrm_111_obj_11_in;

Xr m_nmz_obj_nm_in;

/* define elements to hold input parameters and output channels for each remote
method */
define_element_poa(pl)

define_element_poa(pn)

/* define a return channel reference and a flag for the call’s synchronization style*/
chan returnChan;
byte style;

/* repeatly remove a request from a channel and process it */
do
::process_request(m_111, o_11, Co_11);

::process_request(m_nmz,0_nm, Co_nm);
od;
}

The scope of the worker thread process is the object implementations in any remote
objects managed by a Main_Thread POA under ORB orbID.

6.3.3 The Thread_Per_POA Policy and the Thread_Pool Policy

A POA may also be assigned with its own threads to handle all remote objects in it. If the

thread policy is Thread_Per_POA, one thread is used to handle all remote objects in the
POA. If the thread policy is Thread_Pool(psize), 1<=psize<=9, a set of threads are used
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to handle them. The Thread_Per_POA policy is actually the same as the Thread_Pool(1)
policy.

Suppose the thread policy for a POA with id pid is Thread_Per_POA. Suppose the POA
manages m objects obj_1...obj_m. Suppose the remote object obj_k (1<=k<=n) has kz
methods, named m_kl1...m_kz, accordingly. Suppose the ORB the POA connects to is
orbID. The POA and the remote objects managed by it is translated as:

create_channels_poa(pid)
active proctype worker_thread_poa_pid()
{

xrm_11_obj_1;

Xr m_mz_obj_m;
define_element_poa(pid)

chan returnChan,;

byte style;

do

::process_request(m_11, o_1, Co_1, orbID);

::;process_request(m_mz,o_m, Co_m, orbID);
od;
}

Suppose the thread policy is Thread_Pool(psize), we only need to change the second line
above to:

active [psize] proctype worker._thread_poa_pid()

It activates psize processes from the proctype instead of one. The scope of the worker
thread is the remote objects within the POA.

6.3.4 The Thread_Per_Object Policy and the Thread_Per_Client Policy

For a POA with the Thread_Per_Obj policy or Thread_Per_Client policy, we need to
define worker thread whose management scope is a particular remote object. The only
difference between the two thread policy is that for a POA with Thread_Per_Object
policy, a worker thread is activated from start for each object. For a POA with
Thread_Per_Client policy, a worker thread will be activated by a client (a Stub instance)
of a remote object.

For each object with id oid in the POA, suppose the methods within it are named

ml...mz and the IDL class for oid is C. Suppose the ORB the POA connects to is orb.
First, we define the following code segment:
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process_request_chan(channel, m, o, C, orbID) =
/*get a request for method m in remote object 0. The IDL type for o is C */
if
:: orb_busy[orbID] == available -> orb_busy[orbID] == unavailable;
:: orb_busy[orbID] == undef -> skip;
fi;

channel?style, x_m_C_ins, returnChan; /* style is a byte flag defined beforehand */
m_C(o, x_m_C_ins, x_m_C_outs);

if

:: style == 1 -> skip; /*asynchronized call does not require return. */
:: else ->returnChan!1, x_m_C_outs;

fi;

if

:: orb_busy[orbID] == unavailable -> orb_busy[orbID] == available;
:: else -> skip;

fi;

The code segment is similar to code segment process_request(m, o, C). The only
difference is that the request channel for method m in remote object o is no longer fixed
as the global channel, but as an input parameter.

If the POA thread policy is Thread_Per_Client, the following translation will be added to
the PROMELA file:

proctype worker_thread_C(byte oid, byte orbID, chan cl, ...chan cz)
{

Xrcl;

XTI CZ;
define_element_obj(oid)

chan returnChan;

byte style;

do

::process_request_chan(cl, oid, C, orbID);

::process_request(cz, mz,oid, C, orbID);
od;
}

If the thread policy is Thread_Per_Client, a process will be activated from the proctype
whenever a Stub instance is bound to the object. (See Section 6.1)
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If the thread policy is Thread_Per_Object, a process will be created from the proctype for
the object in the init process. In addition, a set of global request channels are added for
the object:

create_channels(oid)
init
{

run worker_thread C(oid, orb, m1_oid_in, ...mz_oid_in);

6.4 Conclusions

In this chapter, we defined our PROMELA mapping for CORBA distributed object
system. The translation can be easily adapted to other distributed object systems, such as
Java RMI or DCOM.

Our translation is inspired by the research work in [5, 10, 11]. Compared to other
research work, our translation focuses on the distributed system built on top of the
distributed object system, rather than the distributed object system middleware itself.

The translation is automatic. Instead of trying to represent the structure of ORB and
POAs, the PROMELA code we give represents their behavior. The rigid proof of the
correctness of the translation is beyond the scope of this thesis.

We discuss both the single thread ORBs and the multi_thread ORBs. We modeled all
common thread policy for object adapters, including main_thread, thread_per_poa,
thread_pool, thread_per_object and thread_per_client. The remote method calls can have
parameters. The part we left out intentionally is the Inter-ORB communication: we
assume such communication is always successful and never blocks. Readers interested in
this part can refer to the work done in [10].
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Chapter 7 Related Work & Conclusion

The research work presented in this thesis can be partitioned roughly into three parts:

e Translate UML diagrams to PROMELA.
e Define MOM client interface in UML and model MOM behavior in PROMELA.
e Model DOS middleware behavior in PROMELA.

The three parts are integrated together to form a verification tool for distributed systems
built on top of middlewares.

Our UML diagram translation is closer to the research work done on translating
programming language to PROMELA [2 3 6] than other UML-PROMELA translations
[12 13 15 18]. The reason is that the latter focus on the de-composition of UML diagram
structures, such as the de-composition of composite states with concurrent regions, the
complex transitions, etc. and the rigid correctness proof for such de-composition. The
execution elements in such research are cut to minimal. For example, in [12] the authors
only consider transitions with non-parameterized signal events. Execution elements such
as guard conditions, call events, change events are all omitted, which severely limits the
expression power of UML statechart diagram. In our approach, we only consider UML
statechart diagrams with very simple structure — each statechart diagram represents a
class operation. On the other hand, we distinguish change events from guard conditions,
which some researchers have ignored [18]. The signal events in our model can have
parameters. We have modeled method calls, including remote ones. We have modeled
distributed PTP message passing and distributed events through specially defined
middleware client interfaces. Some verification information is also included in our
model, such as assertion statements, legal end state, progress state, etc. which allows a
novice user to maximally benefit from the power of SPIN. In addition, we do not limit the
users on the deployment: Users can create as many objects from a class as needed, and
the deployment can be changed easily on the deployment file without changing UML
diagrams. In some other approaches ([18] for example), users are allowed to have only
one object per class, and one statechart diagram per class.

We integrated the middleware services into the PROMELA verification model generated
from the UML model. Message oriented middlewares have not been considered by
others. We realized the PTP message passing and the distributed event broadcasting
mechanism in PROMELA. DOS middlewares, such as CORBA, have been examined by
others [10,11]. Our approach, however, focused on the correctness of the distributed
system built on top of such middlewares, instead of verifying the correctness of the
middlewares themselves. In addition, our translation is automated.

While formal techniques have long been recognized as invaluable for improving the
quality of design specifications, they are also mocked as “toys for mathematicians”.
They can only handle small applications and they are hard to understand and to use,
unless by someone with strong mathematics and logic background.
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Numerous research works have been done to improve the acceptance of formal
techniques. Some of them aimed at increasing the power of formal techniques. Nowadays
model checking tool such as SPIN can handle over 200,000 states. Others aim at the
composition and the de-composition of design specifications, so that the formal
techniques can be used to verify a design specification block-by-block, layer-by-layer.
Still, there are research work aiming at simplifying the application of formal techniques
so that they are acceptable by common programmers. Our research belongs to the third
approach. We simplify the verification of distributed systems with middleware by
providing proper UML elements and the automated translation to PROMELA. SPIN may
still be considered a “toy” by others, but at least we can make it a toy for everyone.
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