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Abstract

An in depth study of general relativistic gravitational collapse is done using the
massless scalar field as the material model in a spherically symmetric space-time.
Particular attention is paid to the critical regime which separates black hole formation
and field dispersal. It is found that at this threshold certain field variables display
discrete self-similarity with a period of A= ¢*** and with each repetition ona spatial
scale A,~ 31.4 times smaller. These findings are in agreement with behaviour
discovered by Choptuik. A study of black hole masses which form satisfies a power
law with the critical exponent y= 0.364. Also, it is found that near the origin there can
exist regions of high curvature which will be visible to distant observers. Contrary to
what was expected, bifurcation in the light cone structure near the origin between
cases where infinitesimal mass black holes form and cases where conditions are
slightly too weak to form a black hole is significant. The study does not use an
adaptive mesh technique but instead utilizes null coordinates and an adaptive
quadrature technique on a number of different initial data surface profiles therefore
providing both independent verification of these phenomena as well as strong support

for initial data independence.

iv




For the Taxpayer.




There are many people whom I would like to acknowledge in regards to the
preparation of this work. I would like to thank Dr. Edward Glass who helped make
a difficult subject comprehensible and who always encouraged me to find out or work
out the answers to difficulties. Discussions with Dr. Glass were invaluable to my
research. [ would like to also thank my instructors and graduate committee members
at the University of Windsor who helped further my scientific knowledge. I am
indebted to David Garfinkle at the department of physics at Qakland University for
allowing me to refer to his code during the development phase. Without this reference
many impediments would have slowed down the work. [ am also very much obliged
to my friends, all of whom have given me encouragement and have kept me sane
throughout this work. To name a few: M. Cassar, A. Czajkowski, T. Harb, P.
Ledwith, P. Liew, C. Magnuson and M. Tambasco, although there are many others
who should be mentioned. I am especially thankful to Jennifer Babiak for

encouragement and support without which this work would not have been possible.

Andrew DeBenedictis

1996



Table of Contents

Abstract
Dedication
Acknowledgments
List of Figures

Notation
Chapter

1 Gravitational Collapse
Introduction
Gravitational Collapse of the Scalar Field
The Mass and Horizon Formulation
The Double Null System

2 Computational Method

Errors

3 Findings
Numerical Testing
Discrete Self-Similarity
Black Hole Mass Scaling Law
Gravitational Field Near the Origin

4 Analysis
5 Concluding Remarks

Appendices
Appendix A: Derivation of Formulae
Appendix B: Computer Code

References
Vita Auctoris

vii

v

viil

ix

— N

(VS I

23

26
27
29
31

45

52

55
56
65

92
95




List of Figures

Figure
1 Incoming null geodesics

2 Test scalar field profile

3 Subcritical evolution of test profile

4 Supercritical evolution of test profile

5 Critical evolution of test profile

6 Fitted profiles at similarity times of test profile

7 Black hole scaling of test profile
8(a-d) Form of u=0 scalar profiles
9(a-d) Evolution of profiles

10(a-e) Fitted profiles at similarity times
11(a-d) Black hole scaling law

12 Ricci scalar near the origin

13 Light cone structure near the origin

viii

15

35

36

36

37

38

39

40

41

42

43



Notation

The Einstein summation convention is used wherever there is an upper and
lower repeated index unless otherwise specified. Latin indices can take on values 1,
2, 3 while Greek indices can take on the values 0, 1, 2, 3.

The four-dimensional Kronecker delta is written as

8% = 1if v=a
0 if v+a

The sign of the metric, g,,, is such that, unless otherwise specified, the metric
on standard (unit) two spheres is strictly positive. The determinant of the metric is
denoted by g.

The Ricci tensor is a contraction of the Riemann curvature tensor on the first
and third indices. So that

Rp.v =R apav

Units are such that the gravitational constant, G, and the speed of light, c, are
both normalized to unity.

Partial derivatives are indicated by a comma such as

I 5

ar

while covariant derivatives are indicated by a semi-colon.




1.

Gravitational Collapse




1.1. Introduction:

Large-scale gravitational collapse is found in nature in the study of stars. Because
of the nature of the material medium (the fermions making up the star) and the
initial dynamics, black holes formed by the gravitational collapse of a star will have
a minimum mass; the Chandrasekhar mass. Equations governing such collapse

are extremely complex making exact solutions prohibitive.

A simplified model which still allows one to study the general physics of grav-
itational collapse is that of a massless scalar field coupled to gravity. With the
massless Klein-Gordon field as the material model, no stationary solutions are
admitted and therefore there are only two possible outcomes for any initial data.
These are: the formation of a black hole or alternately, evaporation where out-
going scalar radiation leaves behind a flat space-time. This property allows the
formation of infinitesimal mass black holes. Numerical studies of scalar field col-
lapse have been done for many years but, until recently, the fixed grid resolutions
used have been too coarse to study the phenomena discussed here. Choptuik [1]
carried out the first high precision numerical analysis of the region between the
two outcomes using an adaptive mesh technique based on the Berger and Oliger

algorithm [2]. Choptuik chose to scan a parameter p, some constant in the initial



scalar profile which governs the strength of gravity in the initial state. Two un-
expected results were found from this study. It was found that if the parameter
p was tuned to high precision to the critical parameter p* (p* corresponding to
the formation of a null mass black hole) the critical solution displayed periodic
discrete self similarity (DSS). That is, the field profile evolves to a copy of itself
after a set period of time A, =~ e-343 and on a spatial scale A, ~ 30 times smaller

than the previous similar profile. There is an infinite series of echoes at p = p°*.

The second result occurs in the slightly supercritical case. In this case it is

found that the mass of the black hole which forms follows the power law

M~@®-p)", (L.1)

where p is the value of the tuning parameter for the specific supercritical case, p*
is the critical parameter for the profile under study and v is the critical exponent

found by Choptuik to be universal and appraximately equal to 0.37.

Other spherically symmetric studies done by Garfinkle [3], Hamade and Stew-
art [4] and others have found results similar to Choptuik’s. A study of the complex
scalar field by Hirschmann and Eardley [5] found a value of 26 for A,. Hamade,

Horne and Stewart [6] studied the critical collapse of an axion/dilaton system



occuring in string theory where the axion and dilaton make up the real and imag-
inary parts of a complex field respectively. In the axion/dilaton case a value
for v of 0.264 was obtained indicating that the value of v may not be universal.
A study of the axisymmetric collapse of gravitons by Abrahams and Evans [7]
yielded a value of €%® for (A;)~! and A,. These latter studies seem to indicate
that the phenomena occur independent of symmetries and the material medium.
Hod and Piran [8] have recently suggested the existence of fine structure to the
black hole scaling law as well as having done a study of the charged scalar field
[9]. Studies of the phenomena in Brans-Dicke theory have also been done [10],
[11]. Finally, analysis of the Choptuik problem was done by Price and Pullin [12]

and an analysis of critical scalar field collapse was done by Gundlach [13].

1.2. Gravitational Collapse of the Scalar Field:

The Lagrangian density for the massless scalar field ¢ in the presence of gravitation

is given by:

£= 77 (0"0,0) - (L2)

From (1.2) both the wave equation,




=0 (13)

and the stress-energy tensor for the scalar field,

1
Tpv = ¢,y¢,y - 5 (guu¢,a¢'a) (]"4)

can be derived. The conservation law

™, =0, (1.3)

also implies the scalar wave equation (1.3).

We study the Einstein field equations

1
Ry = 3R = 87T (1.6)

where T, is given by (1.4) and g, is the spherically symmetric metric yielding

the line element (in curvature coordinates):

ds? = —a(t,r)dt? + a®(t,r)dr? + r’dQ. (1.7)



Both o and a are functions of time and radius and the radial coordinate 7 is
defined as a coordinate defining the area of metric two-spheres, Sa, centered at

r=20,

Area(S,) = 4mrt. (1.8)

Q is the metric of the two-sphere, dQ? = d6? + sin® (0) d?.

The non-zero Einstein equations expand to

@ 2, _.2(2
(ZT ¢,,-)vr =T (a(b‘t) R (]_9>

2 _
a,— 2a,,. = (a 1) a (1.10)

a r

2 1 1 1 1
227 (;a_r + Za,r) =87 (§¢r¢r + gz_¢t¢t> (l.ll)
4 0

50 = 167 (¢,0,) - (1.12)

We define the mass function by:

L (1.13)
T

so that the formation of a black hole is given by the condition




a2 -0

(1.14)

We now introduce a retarded time coordinate u as being a constant on future

light cones of each point on a central world line (Bondi coordinates). In this

coordinate system the metric (1.7) can be expressed as

ds? = — (62”) du? -2 (e”“) dudr + r?dQ?

and the wave equation(1.3) in full form reads:

-2 <¢,u,r + %‘ﬁu) +e'? [¢,r,r + (% + U, — ’\.r) ér} =0.

Following convention [14], the function h is defined by:

(1.15)

(1.16)

(1.17)

We also adopt the following notation: if f is a function of the coordinates (u and

r, say), then f is defined as the mean

f(u,r) = %‘/0"' f(u,r)dr’

(1.18)




and therefore

implying that

f =5 ()

7-()

Thus, from (1.17) and (1.19) we have:

With this notation the non-zero Einstein equations (1.9-1.12) reduce to:

admitting the solution

and

©
I
=|

U, + A, = 47T

v+ A= —4m / r' ¢ dr’

(1.19)

(1.20)

(1.21)

(1.23)



with solution

If we define

vdA —

then from (1.18) and (1.25),

v—-A

Q|
Il
o

While, (1.20) and (1.23), give:

g = exp [—47r/ %(h_gydw].

Substituting g and 7 in the metric (1.15) yields

ds? = — (gg) du® — (2g) dudr + r2dQ?

9

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)



and therefore the equation of an incoming null geodesic is given by:

o _ g
= =-3 1.30
Oou 2’ (1.30)
while the field equations become:
2 gr 2
—-== = r 31
g =8 () (131)
and
2_19 9r =9, 2
=9 [: +r (———) - 1] = 8agh .. (1.32)
T g g

The wave equation (1.16) along the incoming null geodesics becomes the nonlinear

evolution equation for the scalar field

1 1
h,—=gh, = —(g—3) (h—F). 1.33
w5k =59 g) (h—h) (1.33)

If we impose regularity at the origin and pick as a time coordinate the proper time
of an observer at the origir. (these conditions amount to g(u,0) = g(u.0) = 1) then
(1.33) ensures that the quantities h = ¢, v and A solve the Einstein equations. This

property along with the fact that the evolution is described along null geodesics

10



makes (1.33) the required equation to evolve the gravitational collapse of a scalar

field in the null formulation used in this study.

1.3. The Mass and Horizon Formulation:

The mass dynamics are strongly related to the dynamics of the scalar field itself,
¢ = h. The evolution of the quantity rh along incoming light rays (given by
applying the differential operator of (1.33)) leads to the evolution law for h if

regularity at the centre is assumed (see Appendix A for derivation and proof),

_1z _ 95 [T
(T‘E)'u 2g(rﬁ>,r - 2h+2/(; r(h‘ mdr

S 1 [79
_ . == Z(h- : 1.
= hu—50hs =5 /0 r(h h) dr (1.34)

The mass function (1.13) can be re-written in terms of the new variables as:

m = g (1 - g) , (1.35)

where m gives the total mass enclosed within a sphere of radius r at retarded time

u while the expression for the radial mass-energy density,

11



m, = 27> (h—ﬁ)z, (1.36)

allows us to write

m = 27r/ g(h—ﬁ)zdr. (1.37)
0

While the field equations give us (in terms of m),
m —lg(m) = 47rr? l—/rg(h—adr i (1.38)
2 T 2r Jo T ' )

This equation gives the evolution of the mass function (the left-hand-side) in
terms of the evolution of the scalar field (1.34) (bracketed term on the right-
hand-side). The total mass over all space (lim m(u. r)) , is the Bondi mass. The

mass evolution equation (1.38) implies Bondi’s theorem.

Condition (1.14) for horizon formation translates to the condition:

0 (1.39)

@ 19l

(from (1.35)) although the exact condition cannot be checked numerically (more

on this in chapter two).

12




1.4. The Double Null System:

There are advantages in implementing the use of double null coordinates. For
example, the problem of increasing the spatial resolution to track the shrinking
spatial features can be overcome by "tying” the radial grid points to incoming null
geodesics (see fig.1). As time evolves (by an amount A, say), the spatial features
shrink (by a factor A,), but the overall size of the grid as well as the grid spacings
also shrink as the grid points evolve along the incoming light rays. This way the
resolution is maintained. The double null coordinates, u and v are defined to be

constant on conjugate light rays.

In the transformation to double null coordinates, the radial coordinate, T,

becomes a function of the new coordinates,

r =r(u,v), (1.40)

and therefore we define

dr = %d‘u, (1.41)
Then the line element becomes:

13



ds? = —S2dudv + r2dQ2.

Where

or (u,v)
2 —
M=

and g is the same function as in the last section.

The Einstein-scalar field equations become:

r
2 T v 2
Zr,S, - =2 —(s,.) =0
er (d) )
ru v u,r,v
¢uu ‘b +¢ =0
T T

T .T 1
r'u'u + AL + —22 = 0.
T 4r

(1.42)

(1.43)

(1.44)

(1.45)

(1.46)

(1.47)

The evolution equations from the last section retain their form with the slight

modifications (1.40) and (1.41). For example, a function f is defined as (cf. (1.18))

Y L

14

(1.48)



time

120
100
80
60
40
20

1 2 3 4

Fig.1: The evolution of inward null yeodesics. The system is probed on the

incoming light rays to increase resolution as time evolves.
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2.

Computational Method
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The basic code involves a grid construct in space-time. For reasons which will
become apparent, we chose to study the behaviour of the dynamic quantity h.
Therefore, the value of h on the u = 0 surface is the initial data for the Einstein-
scalar field equations. The initial data is probed at optimum radii determined by

an adaptive quadrature technique based on Simpson’s rule.

The adaptive quadrature technique works as follows. The quantity

§= /;b hdr (2.1)

is evaluated using a form of Simpson’s rule:

N
s }; )+ 4k () + b (rie)]. (22)
where 1 = a, 7y = b, N is the number of intervals the function is split into
and 7 in the middle bracketed term is M Initially, the limits are a = 0 and
b = rpay, some maximum radius which encompasses the bulk of h and h. The

program evaluates s for N =10 and N = 3. If the difference is greater than some

user defined tolerance the program will evaluate

17



s=/’ hdr + | hdr (2.3)

using (2.2). Again, each part of (2.3) is evaluated with N = 10 and V = 5 and the
difference is compared to the tolerance. The process is repeated until all sections
are evaluated within the tolerance. With this technique, sections of s with large
curvature are sampled at more radii than sections with little curvature providing

optimum resolution on the initial data.

A difficulty arises in the double null technique where resolution can become
too coarse too quickly to study the spatial structure. This is due to the fact that
the null geodesic corresponding to the outermost grid point does not evolve to a
value close enough to the origin to maintain the required resolution (resolution is
generally maintained for at least some part of the run before being lost). There
is no apriori way to know if resolution has been maintained throughout the run
and therefore most of the run must be executed and the data analyzed before
this problem can be detected. To overcome this one can, to some extent, change
the value of rga, in the initial data. One ideally does not want the light ray
corresponding to T'max to hit the origin before the features have evolved. Also, the

light ray should not be too far out so that small features cannot be resolved by

18



the end of the evolution.

The motivation for using the adaptive technique is the following. Another
way to overcome the resolution problem is to increase the number of grid points.
By decreasing the value of the tolerance, one can arbitrarily (to machine limit)
increase the number of grid points. The initial grid points are positioned at

optimum radii for the initial data. However, the DSS condition,

h(r,t) = h(rAr,t + At), (2.4)

ensures that the data never departs drastically from the initial conditions.

Since the grid points are tied to the incoming light rays, the number of grid
points decreases as the light rays hit the origin during the evolution. To overcome
this problem a technique similar to that used in (3] is utilized.. In (3] the evo-
lution was allowed to proceed until half of the grid points were lost. These grid
points were then placed in between each of the remaining grid points to maintain
resolution. Here this procedure has been slightly modified in that the number
of grid points which have to vanish before re-introduction is allowed to vary for
each run. In practice, it was found that there is little advantage in keeping this

number small since the run takes considerably longer if the code is constantly

19



re-introducing grid points.

Inaccuracies occur near the origin in quantities where one divides by r. This

is overcome by first expanding h in the Taylor series;

h = hg + har + O(r?). (2.5)

Using this definition for h, the quantities R, g and G are given respectively by:

1
h=ho+shir, (2.6)
.92 2 4 -
g=1+§h,r + O(r?), (2.7)
g=1+ %hfﬂ, (2.8)

where (2.7) is itself a Taylor series in r. The above formulae are used for the first
three radii from the origin while Simpson’s rule for unequally spaced partitions is
used for all other radii. The value of hy is found by fitting the first four values of

h to a line where hq is the first h value.

The program requires the user to supply a value for the location of the out-
ermost grid point (rmax) on the initial data surface as well as a maximum and

minimum value for p where the maximum value is supercritical and the minimum

20



value is subcritical. Next the quantities h, h, g and g are calculated and then
evolved one step forward in time and the location of the grid points are evolved
along the fronts of incoming light rays according to (1.30). The time step, du, is
compared to the change in radii and is set so that the change in null geodesic

is less than a quarter the distance between it an null geodesic r¢_1. That is,

du < 2 Tk=1 (2.9)

The program continues until either full evaporation or black hole formation occurs.
The critical parameter is found utilizing a binary search technique, initially using

Prmaz and Pmin, based on whether or not a black hole forms.

The formation of a black hole is monitored by the behaviour of the quan-
tity g, with the vanishing of this quantity corresponding to horizon formation.
The condition requiring regularity at the origin (gr—0 = G,—o = 1) causes g to
diverge on the horizon as well as the divergence of § on the corresponding null
geodesic. Therefore, black hole formation is inferred by checking the divergence

of the functions.

To study the DSS phenomena the code was executed by first analyzing the

initial profiles of h and 7. The outermost grid point was chosen so that the grid

21



samples the bulk of the initial features. The tolerance was picked so that no more
than 500 grid points were used. This limit is due to machine speed and memory.
The code was then run until the critical parameter was determined to machine
precision (fpz = 10”6). Analysis of the data then allows for a refined estimate
of the outermost grid point and a refinement of the tolerance. After a few runs,
the parameters will be found yielding resolution that is almost adequate. At this
point, the changes in the parameters should be slight as drastic changes will alter
the initial conditions and subsequent dynamics to an extent that may worsen the
final resolution. Eventually, the outermost grid point is chosen so that it evolves
close enough to the singularity as to maintain adequate resolution but without

hitting the origin.

Next, the code was run to determine the scaling law of the mass of the black
hole. The code was run at supercritical values of p to form various mass black
holes. The double null technique is not very well suited for the study of the
scaling law since here one is treating a range of supercritical p and the outermost
grid point must not hit the origin during each of these evolutions. However, as
p approaches p* the outermost grid point may be too far out to resolve features
corresponding to black hole formation. There is therefore only a limited range of

p that can be scanned reliably using this technique.

22



2.1. Errors:

The technique used here, like all numerical techniques, is subject to a number of
errors. As previously mentioned, there are limits in accuracy due to the machine
floating point capability. There is a limit as to how close one can tune to the
critical parameter. Ideally one would like to critically evolve the system such that
the mass of the black hole which forms is as close to null as possible. In practice,
critical parameter precision to 10~ ¢ generally generates black hole masses of the
order of 10~5. This means that only a limited number of echoes can be created

before either horizon formation occurs or evaporation disperses the field.

Another source of error comes from treating a continuous evolution in a finite
number of steps. One can gain greater accuracy by decreasing the tolerance to
arbitrarily small, however this would be at the great expense of speed. To insure
that evolution steps are not too drastic the change in all probe radii is monitored

during each evolution step and is kept sufficiently small by condition (2.9).

As described earlier, quantities near the origin are based on the expansion
of h to order r. If the first few probe radii are sufficiently small this expansion
should be sufficient. Obviously the radii are at their largest at the start of the

evolution and therefore checking the first three radii at v =0isa good indication

23




of the accuracy of this expansion. For greater accuracy one could allow the code
to evolve the system with exact solutions of A until the values of r near the origin
become smaller than some value. After this point the evolution would procede

via the taylor expansion.

With the null technique used here one runs into the problem of having to
re-introduce grid points to the system. Once a grid point hits the origin it must
eventually be replaced somewhere in the evolution to ensure adequate resolution.
The problem is what value for h do we assign to this new point. After redefining
the array to accept the new grid points, the new points are given a value equal to
the average value of its adjacent grid points. That s,

lnes) = 5 (-1(oew) + B2 () (2.10)

giving 2 maximum error in this new point of

5 (h‘(rnew)) — lh-i-l(rnew) ; h'i+l(rnew)l . (211)

A better solution would certainly be to introduce an enormous number of

gridpoints at the beginning of the evolution and accept the losses as these points

24



hit the origin. The enormous number of grid points required for such a scheme

make this solution unfeasible given present computing power.
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Findings
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3.1. Numerical Testing:

In order to test the code, an initial "open” Gaussian test profile was used,

fo(l—ﬂ (roaz—ro—r+dzr+-§rﬂ
e I
e - (3.1)

PPN (et (2] + Ext [52])

3%o

#(0,v) = h(0,v) = o

where 1 and o are fixed and @ is the parameter treated as p. Erf is the error

function,

Erfz] = —j—__r A e~tdt. (3.2)

The reason for choosing such a profile is that the critical behaviour of this initial
data has been studied in [3] and therefore comparison of the results will provide
a test for the code used here. The results obtained here are in agreement with
those of Garfinkle verifying that the code does work. This test profile is shown in
figure 2.

As discussed earlier, the evolution of (3.1) has two possible outcomes: evapora-
tion or black hole formation. This data was evolved at subcritical and supercritical
respectively to produce figures 3 and 4. These figures are plots of the function
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h (vertical axis) and increase in time as one moves towards the back of the plot.
It can be seen in the subcritical case that after some initial evolution the scalar
field becomes trivial while the formation of a black hole can be seen near the back
of the supercritical plot. The spatial and temporal axes of the three dimensional
plots are not immediately meaningful. The scale on the radial axis increases as
one goes forward in time since the sample points move along the null geodesics.
The "bump” corresponding to black hole formation in figure 4 is therefore magni-
fied by a factor =~ 302 compared to the front of the plot (if the scale were constant
this bump would be a spike too thin to be plotted). The time axis represents time
skips (in terms of proper time at the origin) but, because of condition (2.9), the

increments are unequal.

The data was then evolved at criticality. The function h at p =p® is shown in
figure 5. After some initial evolution the scalar field settles to a periodic behaviour.
To examine self similarity, the regions where h is a maximum at 7 = 0 are plotted
together in figure 6. These plots were constructed by plotting the first maxima
and then multiplying subsequent maxima by a magnification factor, A, so that
the deviation between the plots is minimal. For this data a value of A, = 33.5
for the second data set and A, = 342 for the third data set provided the graph.

These results are in agreement with Choptuik’s [1].
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If u* is defined as the value of u when the singularity forms, we then define:

=—In(u —u), (3.3)

and use this as our measure of time. The plots in figure 6 correspond to T values
of 2.59, 6.04, and 9.51. These times are equally spaced with an average spacing

of AT = —In(A,) = 3.46. These results are also in agreement with (1]

The data was then evolved for a series of ¢y > p* to study the black hole mass
scaling law. As mentioned earlier, p cannot deviate greatly from p* limiting the
mass range that can be studied. The results, along with a fitted curve are shown

in figure 7. The equation of the fitted curve is

M =3.025(p—p")*°". (3.4)

The value of 0.375 for the exponent, 7, agrees with Choptuik’s results.

3.2. Discrete Self-Similarity:

To show that the phenomena are universal, four different initial profiles (plus the
test profile above) are evolved in this study. These families are listed in table 1
along with the parameter used as the parameter p.
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Profile Form of u = 0 data D

a) ¢o7'2 exp [" (r‘%m )2] ®a
b) ¢or exp [—3 (r — 70)] Po
c) ¢o tanh [(Z)°] bo

&) | oo {[exp (52) ~1] " + are [- (552)°] } | 4o
These profiles are shown in figures 8 (a-d) (solid) along with their radial mass-

energy density, m . given by (1.36) (dots).

These initial profiles were run until the critical parameter was achieved to
machine precision. The evolution of these profiles is shown in figures 9 (a-d)
where the axes should be interpreted as described in the previous section. In
profile ¢) it can be seen that the evolution is too far subcritical and goes to zero
shortly after the second maximum. A value for the critical parameter could not be
obtained within machine precision which would yield a solution closer to criticality
for this profile. As with the test profile, regions where h is a maximum at the
origin were picked and plotted together for each profile in figures 10 (a-e). Figure
10e shows regions for profile d) where h = 0 at the origin. Again a value of A,
was picked which minimizes the deviation between the family of curves. These

results are tabulated in the figure captions along with the time, T, corresponding
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to each plot and average AT. The similarity of these values strongly suggests
data independence. The average AT, taking all profiles into account is found to

be = 3.45 (A, = 0.0317) while the average A, is =~ 31.4.

3.3. Black Hole Mass Scaling Law:

Each profile from table 1 was evolved with various supercritical values of p to
create black holes of varying mass. Figures 11 (a-d) show the black hole mass as

a function of p (dots) along with a best fit curve (solid) of the form

M =k(p—p')" (3.5)

The value of k and the critical exponent, -, for each plot is given in the figure
captions. It can be seen that although k varies for different initial data, v is
approximately equal for each profile and therefore apparently universal for real
massless scalar fields. The value, averaged over all profiles, is v =~ 0.364. It has
been mentioned, [15], that this number is very close to the value of 1/e =~ 0.367
although at this time no arguments can be made requiring the critical exponent

to have the value 1/e.
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3.4. Gravitational Field Near the Origin:

The nature of the scalar field allows the creation of high curvature regions in
small areas of the space-time. A natural question which arises is how long does it
take for information from areas of extreme curvature to reach a distant observer.
At super-critical and barely subcritical, areas of highest curvature occur near the
origin after some evolution time. Near the origin, the Ricci curvature scalar is

given by (see Appendix A)

R,_o = 27h?, (3.6)

where h, is the same quantity described earlier. A plot of (3.6) as a function of
time is shown in figure 12 for profile d) at slightly subcritical (p = p" - 107 13).
The time axis should be interpreted as in earlier graphs. The oscillatory behaviour
due to the DSS phenomena is apparent along with evaporation towards the right
of the graph. It can be seen that the curvature becomes very large sometime

during the evolution as would be expected for near critical collapse.

An argument by Hamdé and Stewart [4] goes as follows. Study two evolutions
of the same initial profile with one evolution being slightly subecritical and one
being slightly supercritical (6p = ¢, with € << 1). Initially, the two solutions will
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evolve almost identically due to the similarity of the initial data. Bifurcation must
occur by late time however since one data set forms a black hole whereas the other
disperses. By continuity arguments, as € — 0 the time required for a subcritical

photon to reach the distant observer should become very large.

Calculations here and in [4] (who used a variation of the Berger-Oliger adaptive
mesh technique) suggest the opposite. The light cone structure near the origin
for profile d) is shown in figures 13 (a-b) with initial conditions identical to those
which produced figure 12. Each dot corresponds to an outgoing light ray starting
near the origin sometime during the period of maximum curvature (the time
period corresponding to the largest ™ bump” in figure 12). It can be seen that as
time evolves, the outgoing null geodesics develop shallower slopes. The opposite
of what one gets with black hole formation. A distant observer need only wait
a finite proper time to see subcritical strong field regions, even for conditions

arbitrarily close to critical.

The double null technique is not well suited for the above study and therefore
an explanation of how figures 13 a) and 13 b) are constructed is in order. Since the
radii are tied to the incoming null geodesics, quantities such as g (a quantity which
is required to evolve light cones via (1.30)) are also evaluated at the incoming
positions. If one picks a starting position, rg, near the origin and wishes to evolve
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this position outward a step in time du according to (1.30), g at 7o can be used.
Now a point at r = rg at a later time is required for evolution. The problem is
that since the radii have evolved inward, there is no guarantee that a point at o,
and therefore g(ro), is present at this new time. A second problem comes from
the fact that the size of the time steps are governed by (2.9) and therefore a null
line at time u; may be evolved a different amount of time than a null line at time

Uq.

The first problem can be overcome by evolving the initial data at a low value
of the tolerance. This way, there are a large number of grid points and the density
of these grid points is large at late times. To produce figures 13 a) and b) points
at different times during high curvature were found which agree within 107° of
each other. These points were singled out and used as 1o and evolved some time
along outward null geodesics. The change in r was then divided by the change in
time to reduce the problem due to different time skips. Thus, figures 13 a) and

13 b) are plots of Ar/Au for outgoing light rays near the origin.



scalar field

0.1
0.08
0.06
0.04
.02

Fig 2: The test profile at u = 0.
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Fig.3

Fig.4
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Fig. 3 and 4: Subcritical and supercritical evolutions of h for the test
profile. Note evaporation in the subcritical case as one progresses in
time. Also note the horizon formation (bump) near the rear of the
supercritical case. See main text for details about the plot azes.




Fig. 5: Critical evolution of h for the test profile. Notice that after
some initial evolution the behaviour becomes pertodic.
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0.02 0. 0.1
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Fig. 6: Fitted profiles of h where fig 5 is a mazimum at the origin.
The second mazima in fig. 5 is magnified by a factor of 33.5 while the

third mazima is magnified by a factor of 342.
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Fig. 7: Black hole masses at supercritical. The dots represent masses
of black holes which formed at supercritical p while the solid curve is

that of equation (3.4).
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Fig. 8 (a-d): Form of initial data, ¢, (solid) along unth radial mass-
energy density (dots) for families a-d.
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Fig. 9 (a-d): Evolution of Profiles a-d at criticality. Note in c that the
evolution is slightly too subcritical so that the field has dispersed near

the back of the plot.
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Fig. 10: Fitted profiles. Similarity times for profile a) are T = 2.47,
T = 591, T = 9.43 giving an average AT of 3.48. For profile b)
T =239, T =584, T = 9.33 giving an average AT of 3.47. For
profile ¢) T = 2.11, T = 5.57 giving an average AT of 3.46. For
profile d) T = 2.51, T = 5.98, T = 9.37 giving an average AT of 3.43.
The last figure displays fitted profiles for scalar field d with h =0 at
r = 0. For this case T = 1.70, T = 5.14, T = 8.53 gwing an average
AT of 3.42. Magnification factors are as follows: a) A, = 33.5 and
302. b) A, = 28 and 33%. ¢) A, = 29.5. d) A, = 30 and 34%. ¢)
A, = 32.5 and (32.5)%.
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(a)Mass (b)Mass
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Fig. 11 (a-d): Black Hole masses (dots) for profiles a-d along with
best fit curves. For profile a) k = 3.803, v = 0.396. For profile b)
k = 1.279, v = 0.381. For profile ¢) k = 0.439, v = 0.303. For profile
d) k =0.724, vy = 0.377.
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Fig. 12: Ricci curvature scalar, R, near the origin at marginally sub-
critical. Note the periodic nature due to the behaviour of the metric
functions.
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Fig. 13 (a-b): Light cone structure near the origin at marginally sub-
critical during a period of high curvature. Note that the value of dr/du
gets larger indicating a shallower light cone as time progresses. Each
figure was generated using a different starting point near the origin

(see main text).




Analysis
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There is no simple explanation for any of the above results. The apparent uni-
versality which this study shows of the phenomena seems to suggest that scalar
field collapse may be governed by a single solution to the Einstein-scalar field
equations. Analysis can be simplified by making the following assumptions. The
first is the assumption of continuous self-similarity (CSS). From the previous sec-
tion it can be seen that the period between successive echoes becomes shorter
by the factor A, and therefore the CSS assumption becomes acceptable after a
certain number of echoes. Note that A, = -Al—f and therefore a time coordinate
(assuming CSS) should exist such that metric components depend on a quantity

t = r/u where u is the retarded time coordinate. Further, it is assumed that the

space-time admits a vector field, §, such that the metric obeys

Lfgul/ = 29#&17 (4'1)

where L¢ is the Lie derivative with respect to €. Such a space-time is known
as homothetic. The interested reader is referred to [16] for a detailed study of
homothetic scalar field collapse assuming CSS. The scalar field evolution equation

in such a space-time becomes
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¢ = h(r/|ul) - kln|u|. (4.2)

One can immediately see that the parameter x plays a role analogous to the

parameter p. The self-similar Einstein-scalar field equations are:

(z9). =9, (4.3)
g, = 47g7’, (44)
g—§=d4r 2’z — (g - 2z) (+* + 257)] (4.5)

where g and § are the same functions described in earlier chapters. < is a function

such that

h(z) = / ﬁf—)dg. (4.6)
o ¢&
Solutions to differential equations of the form (4.3-4.5) are given in [16] (although

there are other CSS studies) and therefore will only be summarized here.

The subcritical solutions are characterized by x? > 1/4m while x? slightly less

than 1/47 permit some solutions with naked singularities. A transition between
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black holes (here the term black hole simply refers to space-times with an apparent
horizon) and naked singularities occurs in this regime. It is obvious from this
discussion that the critical point, described by p°, corresponds to the CSS case

where k = 1/47.

The self similar space-times such as those described here do not allow for black
holes with finite mass. One must therefore end the self-similar evolution at some
time and match it to a less similar exterior. The existence of naked singularities
in such a scheme may be supported by the behaviour of the light cone structure

near the origin as obtained in the previous chapter.

Creating a discretely self-similar solution is more difficult. In DSS symmetry

there can exist a ¥ and constant A satisfying the condition

(1/1.)" Guv = eznAg;wy (47)

where n is any integer and ¥, is the pull back of the diffeomorphism %. A solution
in just such a space-time is constructed in [13]. Coordinates o and z° are chosen
so that a point at p= (o, z®) will have coordinates (o + A, z*) under the action

of (p). This gives the metric the following property:
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9w (0,2%) = e""g““,, (o,2%), (4.8)

where g,,, satisfies

G (0.2%) =G (0 + A.z%). (4.9)

If a vector field x = 8/8 is defined it can be seen from (4.7) that ¥ corresponds
to a Lie dragging along x by a distance A and therefore, in the limit A — 0 one

gets the CSS condition.

Following [13], the coordinates used in (1.7) are transformed according to:

t = €T(o,z2) (4.10)

r = e’R(0,z), (4.11)

where T (0,z) = T (0 + A,z) and R(0,z) = R(0 +4,z) and = is a radial com-

ponent in z° = (z,6,¢). Line element (1.7) in these new coordinates becomes
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ds? = ¥ {—a? (T + T,,)do + T.dz|* + a® [(R + R;) do + R_dz]* + R%dQ?}

(4.12)

where, to satisfy (4.8), the metric functions must satisfy:
a(t,r) = a(e™™te™r) (4.13)
a(t.r) = a(e*te™r). (4.14)

One final coordinate transformation, t — £(t) such that @ = dt /dt a, completes

the construction of a DSS space-time.

The discussion here provides the basics for constructing a general DSS solu-
tion. There are many coordinates which satisfy the above conditions. For a more

complete discussion of specific cases the reader is referred to Gundlach [17], [13].

Unlike the self-similarity property, the black hole mass scaling law (1.1) has
analogies in other areas of physics. In statistical mechanics, for example, when

the temperature of a gas is at its critical temperature, the law

IP - Pcrl ~ I‘U = Ver s (4'15)
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holds where the left-hand-side is a difference in pressures and the right-hand-side
is a difference in specific volumes. Similar mathematical properties are observed in
studies of superconductivity and superfluidity in substances at low temperature.
From experiment it is found that the value of the exponent for these laws depends
on the particular gas or metal analogous to gravitational studies which indicate

that ~y is matter dependent (for example: compare results here with [6] and [18]).

Analysis on the scaling law can be done via perturbational techniques on the
critical solution {19}, [13]. In [19] a dominant linear perturbation mode is found
numerically (v = 0.3558019) for a perfect radiation fluid. In [13], a DSS space-
time is subjected to a perturbation yielding a value of v = 0.374 Both results
are in agreement with the study done here. In the DSS case studied in [13] a
periodic wiggle in the scaling law is found with a period in the quantity In(p— j28)

of A/2vy =~ 4.61, where A = In A,.
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Concluding Remarks
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I begin this section with a summary. A numerical scheme was employed which
follows the collapse of a massless scalar field in a spherically symmetric space-
time. The scheme does not use adaptive mesh refinement but instead utilizes null
coordinates along with an adaptive quadrature technique on a number of different
initial data surfaces. DSS in the field variable h was found when the system was
evolved at criticality. Also, at barely subcritical the light cone structure near the
origin becomes less steep at late times (u approaches u”, the time corresponding
to black hole formation). This behaviour is opposite to what one would expect

when the conditions are this close to black hole formation.

At supercritical values of p the masses of black holes which form follow the
power law M = k(p — p*)” where 7 is independent of initial conditions within the
class of matter studied here. Analogies between this power law behaviour and

phase transitions from statistical mechanics have also been presented.

There are some factors which affect the applicability of such a system to the
real universe. After all, a massless scalar field is a very simple matter model
unlike the matter which undergoes gravitational collapse in the cosmos. This
aside, there will rarely be initial conditions anywhere in the universe that will
allow the formation of infinitesimal mass black holes. It should be stressed that
theoretical studies such as this one are to be used to aide in the understanding
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of phenomena which are too complex given the mathematical formulation of the
problem and computing power of the present day. Other forms of matter in other
symmetries also show some of the properties found here (for example: see [7])
indicating that the phenomena are neither a product of the choice of matter or

the space-time symmetries.

The numerical method employed here has both advantages and disadvantages
over other techniques. There is the advantage of simplicity that the null for-
mulation provides over adaptive mesh methods (along with a considerable speed
advantage) while the adaptive quadrature algorithm provides a simple and quick
way for the user to increase resolution if needed (as in the study of the light cone
structure near the origin). The disadvantages come from having to "fine-tune”
initial conditions to ensure that the critical details are resolved throughout the

evolution.

The code was developed in C on an Intel 486 processor. Once the program
was working all runs (profiles a to d) were executed on a SUN SparcStation-10

for greater speed and accuracy.
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6.1. Appendix A: Derivation of formulae

6.1.1. The Wave Equation from the Lagrangian Density:

The Lagrangian density for a massless scalar field in the presence of gravitation

is:

L = \/__g% (g“”(ﬁ‘“qb‘y) (6.1)

1
= J__ga (¢'F¢‘“) M
Lagrange's equations for continuous systems are:

o[ ac | ocf .
pre [a (m)} TP (62)

Since ¢ is a scalar, the usual partial derivative can be replaced by the covariant

derivative. Now,

QO

oL _, 04
o= 3.)

1 .
— VL (6,753 + 6,075 = V6T (69

therefore, Lagrange’s equations become:
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9L | ocL -

Bz [a @) | ~ (V=997).
= V=g¢* , =0 (6.4)
= ¢, =0

6.1.2. The Stress Energy Tensor from the Lagrangian Density:

From field theory,

o 1 aL a -
Tj = \/___g [a (¢ )(ﬁ;ﬁ - £63 . (60)
Using the Lagrangian density given above,
a£ 1 VL 1744
5 (¢ ) = v _g'i (¢;ug# 6;; + ¢;ygl 61/) (66)

=T

and
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1,.
£85 = V=35 (6"4.) 55 (6.7

Therefore (6.5) becomes:

5= o [VEa6mes - VT (070, 5] (68

which, after lowering a and cancelling the denominator, becomes:

1 .
Taﬂ = ¢;a¢;,3 - 5 (gaﬁ(p,“(b;p) . (6’9)

6.1.3. The Wave Equation from the Conservation Law:

From (6.9) with partial derivatives replaced by covariant derivatives,

0 = T ad = ¢” a®s + ¢;a¢'ﬁ 8 5_(](,‘3 (¢‘"‘ﬁ(b;“ + ¢'“¢'ﬁ :#)

= ¢;ﬂ ;a¢;}3 + ¢;a¢;ﬁ B8 - (d);” ;a¢;# + ¢;“¢;u;a) (610)

oI N

= ¢P b+ ad” 5 7 (¢ b+ .07 a0 G80) -

Which, after re-labeling dummy indices,

58



= ¢.0” 5=0 (6.11)

6.1.4. The Evolution Law for h:

For simplicity in notation, define the operator D such that

D=— - -~ (6.12)

The evolution law for the quantity rh is given by (from the definition of h as a

function of h):

D(rh) = D(/orfzdr’) ,
_ %( [ b 152 ( I hdr’) (6.13)

From the evolution law for h we get,
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oh 1 - 1_
7 =5 @-9) (h—h)+37

(6.14)

SE

and we can therefore write:
1

D (rh) = /0 " [% (9—52) (h—h) + %ggg] dr’ — §§h. (6.15)

Recall that %; = (L}[) and therefore, the above can be rewritten as

183 1_8h 1_
D (rh =/ [-— h—"h +--—]d'——h. 6.16
(vh) A 350 (R=h) + 3955 dr' =37 (6.16)

Multiplying out the terms and integrating by parts yields,

l, o= 1 [f_0Oh,, 1 TG, ,
D(Tﬁ) = §[h91r1=o_§/o 9'6__,.,‘dr -5/(; o hdr

+1 / g2 4 — Lgn (6.17)
1]

Integrating the last term by parts and noting that h(u,0) = h(u,0) gives:



of
D(TH) = —§§h+§[§5r—;d1' (618)

!
|
| =
Q|
>
+
N~
o\_.‘
Q|
N
&
|
b
S——’
au
"\

Now, writing out the left-hand-side in long form as

oh 1_— 1 _0h

and comparing with the last line in (6.18), we can conclude that the evolution law

for h is:

6h 1_0h 1 [T_(h-=h
o g—=— g ——)dr. 6.20
5u_ 295r 2rog(w>r (6.20)
6.1.5. Quantities Near the Origin:
h is expanded as

h = hg + hyr + O(r?). (6.21)

Therefore, from the definition of h,
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B o= % / (ho + hur’) dr’ (6.22)
0
hlr
= hot
For g:
2
"(h—nh
g = exp [4#/ LT_l—dr’} . (6.23)
)

Substituting (6.21) and (6.22) in (6.23):

= exp :7r [ (h3r") dr’] (6.24)

= ’7rh2£2-]
= exp 13-

Expanding the last term in a Taylor series in 7 yields,

whir?

1+ + O(rY). (6.25)
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From the definition of g,

7 2
7 = l/ (1+7rh'rﬂ>dr’ (6.26)
r Jo 2

T

5 hfrz.

6.1.6. Curvature Scalar Near the Origin:

With G = ¢ = 1, the Ricci scalar for the massless scalar field is given by:

R =87 (6,.6°) . (6.27)

From [14],

(6a8°) = —2e " 2,8, +e > (8.)". (6.28)

Which becomes, after substituting g and § (see main text):

-2 y‘ 2
— = . 6.29
p ¢ub,r + p (¢.) (6.29)



Now, ¢ = h which, near the origin, is given by (6.22) while regularity at the origin

requires g = § = 1. Therefore, (6.27) becomes:

R = 8« (—)2 (6.30)

= 2mwh}.



6.2. Appendix B: Computer Code

/* a C program that will evolve the gravitational collapse of */
/* h (=d/dr (r*hbar)) (where hbar is the scalar field) using an */
/* adaptive quadrature technique. */

/* The space-time is spherically symmetric. */

#include <stdlib.h>
#include <stdio.h>

#include <math.h>

#define PI 3.1415926535897932

#define euler 2.718281828459045235
#define TOLERANCE 0.000000002600
#define SIGMA 5E-1

#define rb -.01 /* centre of first bump */

#define rc 2 /* centre of second bump */

double adapt(double a, double b);
double simpsons(double a,double b,int N);
void assignrad(double rad);

void comphbar();



void compgs();

double AMPmax=2.868250000000000000E-1;
double AMPmin=2.868210000000000000E-1;
double AMP; /* the CRITICAL (!!) parameter */
double r[500]; /* the radii */

double h[500}; /*differential of the scalar field */
double g[500];

double hscale[500];

double hbar[500};

double gbar[500];

double rrst[500];

double hrst(500);

double wgt[500];

double aint{500];

double rnew({500];

double hnew(500];

double dq;

double dv;

static int zeta;



double ktime;

double cmax,time ktimeo;
double umax=5.6667615395;
double ntime=12000; /* number of evolution steps */
int nprint=1;

int iprint=>50;

double xxtime;

double hl;

double u;

double dsc;

double rsc;

double wtl, wt2;

int kr;

int krmin;

int inew;

int iscale;

double discale;

double rmax=4.0700;

double bondi;
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double bhmass;
double schw;
int imin;
double tscale;
double curv;

double tmax;

/* */
double adapt(double a, double b) /* checks accuracy of integration */

{

double x=simpsons(a,b,10); /* the interval evaluated with 10 partitions */
double y=simpsons(a,b,5); /* the interval evaluated with 5 partitions */
if (fabs(x-y) > TOLERANCE)
return adapt(a,(a+b)/2) + adapt((a+b)/2,b);
else {
double w=(b-a)/10; /* partition width for this specific interval */
int i;
for (i=0; i < 10; i++)

{



double MP =((a+i*w)+(a+i*w+w))/2; /* the ten radii for this in-

terval */
assignrad(MP);
}
return X;
}
}
/* */

double simpsons(double a,double b,int N) /*evaluates using Simpsons rule*/

{
double s=0; /* the value of the integral */
int i; /* which rectangle is being evaluated */
double w=(b-a)/N; /* the width of the partitions */
extern double AMP;
for (i=0; i < N; i++)

{

double first=(a+i*w);

double last=(a+i*w+w);

double MP =(first+last)/2; /* the midpoint */
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double c=3* AMP*pow(first,2)*(1/(-1 + pow(euler,(first - rb)/
SIGMA))+ 0.02*first/pow(euler, pow(first - rc,2)/
pow(SIGMA, 2))) +AMP*pow(first,3)*(0.02/

pow(euler, pow(first - rc,2)/pow(SIGMA,2)) -

0.04*first*(first - rc)/(pow(euler,pow(first - rc,2)

/pow(SIGMA 2))*pow(SIGMA,2)) -pow(euler,(first - rb)

/SIGMA)/(pow(-1 + pow(euler,(first - rb)/SIGMA),2)*SIGMA));

double d=3* AMP*pow(MP,2)*(1/(-1 + pow({euler,(MP - rb)/
SIGMA))+0.02*MP /pow(euler,pow(MP - rc,2)/
pow(SIGMA,2))) +AMP*pow(MP.3)*(0.02/
pow(euler,pow(MP - rc,2)/pow(SIGMA,2)) -

0.04*MP*(MP - rc)/(pow(euler,pow(MP - rc,2)/

pow(SIGMA 2))*pow(SIGMA,2)) -pow(euler,(MP - rb)

/SIGMA)/(pow(-1 + pow(euler,(MP - rb)/SIGMA),2)*SIGMA));

double e=3* AMP*pow(last,2)*(1/(-1 + pow(euler,(last - rb)
/SIGMA))+0.02*1ast / pow(euler,pow(last - rc,2)/
pow(SIGMA,2))) +AMP*pow(last,3)*(0.02/
pow(euler,pow(last - rc,2) /pow(SIGMA,2)) -

0.04*last*(last - rc)/(pow(euler,pow(last - rc,2)
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/pow(SIGMA,2))*pow(SIGMA,2)) -pow(euler,(last - rb)/
SIGMA)/(pow(-1 + pow(euler,(last - rb)/ SIGMA),2)*SIGMA));
s =s+((w/6)*((c)+4*(d)+(e)));

}

return s;

/* ¥/

void assignrad(double rad) /* assigns initial radii to array */
{ /* and initial h(i] to array */
extern double AMP;
extern double r[500];
extern double h[500];
extern int zeta;
zeta++;
r[zeta]=rad;
h[zeta]=3* AMP*pow(r(zeta},2)*(1/(-1 + pow(euler,(r[zeta] - rb)
/SIGMA)) +0.02*r(zeta]/ pow(euler,pow(rzeta] - rc,2)/

pow(SIGMA,2)))-+-A.M:P*pow(r[zeta] 3)*
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(0.02/pow(euler,pow(r(zeta] - rc,2)/ pow(SIGMA,2))

-0.04*r[zeta]*(r[zeta] - rc)/ (pow (euler,pow(r(zeta] - rc,2)/

pow(SIGMA,2))*pow(SIGMA,2)) -pow(euler,(r{zeta] - rb)/SIGMA)/

(pow(-1 + pow(euler, (r[zeta] - rb)/ SIGMA),2)*SIGMA));

}

/*
void main()
{

double chi;
double a;
int iv;

int k;

int 1;

int irst;

int iodd;
int itime;
int irad;
int i1;

extern double AMPmax;
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extern double AMPmin;
extern double AMP;
extern double dv;
extern double bhmass;
extern double bondji;
extern double schw;
extern int inew;
extern int iscale;
extern double discale;
extern int kr;

extern int krmin;
extern int imin;
extern int nprint;
extern int iprint;
extern double ntime;
extern double time;
extern double xxtime;
extern double ktime;

extern double h(500];
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extern double hscale[500];
extern double r{500];
extern double rrst[500];
extern double hrst{500};
extern double wgt[500];
extern double rnew(500];
extern double hnew{500];
extern double u;

extern double umax;
extern double dsc;
extern double rsc;
extern double wtl wt2;
extern double dq;

extern double tscale;

int tuning=4;

int ihalve;

extern int zeta;

FILE *pFileh=NULL;

FILE *pFiler=NULL;
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FILE *pFiles=NULL;
FILE *pFiled=NULL;
FILE *pFilet=NULL;
for (ihalve=1; ihalve<=100; ihalve++) /* The tuning cycle */
{
printf( “running tuning cycle %i\n*“ ihalve);
if (tuning==95)
goto delete;

one:
AMP=(AMPmax+AMPmin)/2;
/* AMP=2.86823386684018E-1; Specific Amplitudes Defined Here */
cmax=0;
time=0;
ktimeo=0;
tscale=58;
zeta=0;
pFileh=fopen(*“sclrh,“a®);
pFiler=fopen( “sclrr“, “a*);
pFiles=fopen(“hscale“,“a");
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pFiled=fopen(“data*“,“a*);

pFilet=fopen(“time*,“a%);

tuning=95;

imin=1;

chi=adapt(0,rmax); /* integrate from r=0 to rmax */
printf(“\nThe value of integral using tolerance of %.20f is %.18f\n*
,TOLERANCE,chi);

printf( “zeta=%i\n \n*zeta);

[ exit(0); */
/* Time Evolution Loop —— */
for (iv=1; iv<=ntime; iv++)
{
iprint+-;

if (iprint==(nprint+50))
{
for (i=1; i<=zeta; i=i+5)
{
fprintf(pFileh, “%.20f “,hli]);
fprintf(pFiler, “%.20f\n “r{i]);
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}
nprint=iprint;
fprintf(pFileh, “\n*);
}
inew=imin;
for (k=imin; k<=zeta; k++)
{
if (r(k]>0)
continue;
inew=k+1;
}
imin=inew;
if (time >=umax)
goto three;
xxtime=tscale*log(1-(time/umax));
ktime=1-xxtime;
if (ktime <= ktimeo)
goto three;

if (ktime > 1600)
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goto three;
ktimeo=ktime;
for (k=1; k<=zeta; k=k+6)
{
hscale[k]=0;
}
u=umax-time;
dsc=0.7/zeta,;
krmin=imin+1;
for (iscale=1; iscale<= zeta; iscale++)
{
discale=iscale;
rsc=u*dsc*discale;
for (kr=krmin; kr<= zeta; kr++)
{
if (r[kr]<rsc)
continue;
krmin=kr;

wt1=(r[kr]-rsc) / (r[kr]-rfkr-1]);
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wt2=(rsc-tlkr-1]),/ (eflr]-rfla-1));

hscalefiscale]=wt 1*h[kr-1]+wt2*hkr];

goto two;

}

break;

two:

continue;

}

for (i=1; i<=zeta; i=i+6)
{
fprintf(pFiles, “%.20f\n “ hscalei);
}

three:

if (imin<=zeta/2)
goto four;

for (irst=1; irst <=zeta/2; irst++)
{
rrst[2*irst]=r|(zeta/2)+irst];
hrst[2*irst|=h[(zeta/2)+irst];
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}
for (iodd=1; iodd<=((zeta/2)-1); iodd++)

{
rrst[2*iodd+l]=0.5*(rrst[2*iodd]+rrst[2*iodd+2]);
hrst[2*iodd+l]=0.5*(hrst[2*iodd]+hrst[2*iodd+2]);
}
h([1]=0;
r[1]=0;
for (i=2; i<=zeta; i++)
{
rfi]=rrst[i];
h[i]=hrst[i];
}
imin=2;
Inew=imin,;
for (k=imin; k<=zeta; k++)
{
if (r[k]>0)

continue;




inew=k+1;
}
imin=inew;
four:
for (k=imin+1; k<=(zeta-1); k++)
{
wet [I]=pow((r[k+1]-r[K]),2)/ (6* (c[k]-r{k-1])*(rlk+1]-rlk-1]));
}
comphbar();
compgs();
schw=1-(gbar[zeta]/g[zeta]);
bondi=0.5*schw*r|zetal;
for (ii=imin+1; ii<=zeta; ii++)
{
if (fabs(h[ii]) <= 1.0)
continue;
goto five;

}

/* — updating r and h using evolution equations — */

81




dv=10;
for (k=imin+2; k<=zeta; k++)
{
dq=0.5*(r{k]-r[k-1])/gbar{k];
if (dq > dv)
continue;
dv=dq;
}
time=time+dv;
fprintf(pFilet, “%.20f \n* time);
for (k=imin; k<=zeta; k++)
{
rewlk]=r[k]-0.5*dv*gbar(kl;
a=0.5* (glkl-gbar(k]) /rlk];
hnew([k]= h[k]*exp(a*dv)+hbar [k]*(1-exp(a*dv));
}

for (k=1; k<=zeta; k++)

{
r(k]=0;
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h{k]=0;
}
for (k=imin; k<=zeta; k++)
{
elkj=rnew(K];
h[k]=hnewf(k];
}
} /* end of time evolution loop*/

goto six;

five:
bhmass=bondj;
fprintf(pFiled, “\n\nAmplitude=: %.20f\nA Black Hole Forms With Mass:
%.20f\n
,AMP bhmass);
fprintf(pFiled, “Amplitude: %.20f\nZeta:%i\nMaximum Curvature:
%.20f At Time: %.20f\n“ AMP, zeta,cmax,tmax);
printf(“\n A Black Hole Forms With Mass: %.20f\n“,bhmass);
if ((AMPmax-AMPmin)<2E-16)

AMP=AMPmin,;




AMPmax=AMP;
fclose(pFileh);
fclose(pFiler);
fclose(pFiles);
fclose(pFiled);
fclose(pFilet);
continue;
six:
fprintf(pFiled, “\nAmplitude: %.20f\nZeta: %i\nMaximum Curvature:
%.20f At Time: %.20f\n“,AMP,zeta,cmax,tmax);
fprintf(pFiled, “rmax=%.20f\n “ r(zetal);
printf( “rmax=r{%i]|=%.20f\n“ zeta,r(zeta]);
AMPmin=AMP;
fclose(pFileh);
fclose(pFiler);
fclose(pFiles);
fclose(pFiled);
fclose(pFilet);

if ((AMPmax-AMPmin)<2E-16)



exit(0);
} /* end tuning loop */

exit(0);

delete:

remove( “sclrr “);
remove( “sclrh“);
remove( “hscale*);
remove( “time*“);
goto one;

}

/% */
void comphbar() /* computes evolved values of the scalar field */
{
extern double h([500);
extern double r[500];
extern double hbar[500};
extern double wgt{500];

extern int nprint;



extern int iprint;
extern int imin;

int k;

int navg;

double havg;

double ravg;

double hravg;

double rsqavg;

extern double hl;
double hsum;

double crcl,cre2;
extern double curv;
extern double tmax;
extern int zeta;

FILE *pFilec=NULL;
pFilec=fopen( “curvat “,“a%);
navg=4;

havg=0;

ravg=0;



hravg=0;
rsqavg=0;
for (k=imin+1; k<=imin+navg; k++)
{
havg=havg+h(k];
ravg=ravg+r(K|;
hravg=hravg+(h[k]*r[k]);
rsqavg=rsqavg+pow(r[k],2);
}
havg=havg/navg;
ravg=ravg/navg;
hravg=hravg/navg;
rsqavg=rsqavg/nave;
h=(hrave-havg*rave)/ (rsqavg-pow(rave.2));
curv=2*PI*pow(h1,2);
fprintf(pFilec, “%.20f,\n “ curv);
fclose(pFilec);
if (curv > cmax)

tmax=time;
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if (curv > crmax)
cmax=curv;
hbar[imin|=h(imin]-0.5*h 1 *r[imin];
hbar[imin-+1]=h[imin+1]-0.5*h1*rfimin+1];
hbar[imin+2]=h[imin+2}-0.5*h 1 *r[imin+2};
hsum=hbar(imin+2]*r[imin-+2];
for (k=imin+3; k<=zeta; k+-+)
{
crel=(r[k]-r{k-1])*(h[k-1]-h(k-2]);
cre2=(r[k-1]-r[k-2])* (h[k-1}-h[k]);
hsurn=hsum-+0.5*(h[k}+h[k-1])*(r{k]-rlk-1]) +wgt (k- 1]* (crel +ere2);
hbar([k]=hsum/r[k];
/*  fprintf(pFileb, “%.20f\n* hbarfk]); */
}

/* fclose(pFileb); */

}

/* */
void compgs()

{



extern double g[500];
extern double gbar[500];
extern double aint[500];
extern double wgt[500];
extern int imin;
double asum;
extern double hl;
int k;
double crcl,crc2;
double gsum;
extern int zeta;
g[imin]=1+0.5*PT*(h1*pow(r[imin},2));
g[ixnin+l]=1+0.5*PI*(hl*pow(r[imin+l],2));
g[irnin+2]=1+0.5*PI*(hl*pow(r[imin+2],‘2));
asum=0.5*PI*pow(h1*r[imin+2},2);
for (k=imin+1; k<=zeta; k++)
{
aint[k]=(4.0*PT*pow((h[k]-hbar(k]),2)) /r[k];

}

89



for (k=imin+3; k<=zeta; k++)
{
crel=(c{k]-clk-1])*(aint [k-1]-aint{k-2]);
cre2=(r[k-1}-r[k-2])*(aint [k-1j-aint[k]);
asum=asum-+0.5*(aint k] +aint[k-1])*(r{k]-r[k-1]) +wgtk-1]*
(crel+cre2);
glk]=exp(asum);
}
gbar(imin]=1-(PI/6)*pow((h1*r[imin]),2);
gbar[imin-+1]=1-(P1/6)*pow((h1*rfimin+1]),2);
gbar[imin+2]=1-(P1/6)*pow((h1*r{imin+2}),2);
gsum=gbar[imin+2]*rfimin+2);
for (k=imin+3; k<=zeta; k++)
{
crel=(r[k]-r(k-1])*(gfk-1]-gk-2]);
cre2=(r(k-1]-r{k-2])*(glk-1]-glk]);
gsum=gsum-+0.5* (g[k]+g{k-1])*(r[k]-r{k-1]) +wgtk-1]*
(crel+ere2);

gbar[k]=gsum/x(k];
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