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YBSTRACT

Cold bending of ﬁollow Strugtural Sections (HSS) of

' rectaﬁgular and sguare geometry résults in permanené
distortion of their cross-sections. The main objecti&e
of this study is to predict the relationship between the
radius of bend imposed on the HSS and such distortiéns.

A theoretical study is carried. out using the véria—
tional.principle of the total pdtentia; energy and a
Rayleigh-Ritz type procedure. Displacement functions
in the form of Fourier.series are. employed £o describe

_the deformed shape of the HSS after rolling. Non-linear
stra;n7displacement reiations are used tc account for
geometric non-linearity. Plastic deformatioﬁs are assumed
tc be governed by the Von-Mises yield criterion and the
total deformation theory of plaéticity. The analysis
also accéunts for linear strain hardgning of the material
in the plastic range.

At any instant of the folling_process, the lcading
on éhe HSS member consists of a concentrated load applied
at 1tsz§ia—point as well as friction between the membgr
and the’rollers of the bending machine. To>m9del the
rollinélproéags the load is assumed to be appliedhsucces—
sively at.diffepent points along the length of the member

causing it to deform plastically.



The resulting deflection at mid-span 6f the member .
is related to its relaxed radius of bend by.studying its
geometry during the rolling process. The results of the
theoretical analysis is compared to that obtained from an
experimental program. The good agreement betweén the
results substantiates the vélidity of the proposed method
of analysis.

The minimum radius of bend of an HSS is calculated
by specifying an upper limit for the'magnitudé of distor-
tions allowed in its cross-section. Two éifferent paré—
~meters are assumed to define that Pppér liﬁit.. The minimum
radii calculations could be based on either one depending
on the engineering judgement of the designer. The recom-
mended minimum radii based on this study are compared to
tﬁ;se récommended by three different steel compahies;
little or no agreement was found. A possible reason for

the disagreement is the lack of a common criterion defin-

ing the maximum distortion allowed in the cross-section.

vi
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unknown coefficients in the displace-
ment functions

area of the plate -

width of the cross-section

‘width of the cross-section after rolling.,

Y
membrane stiffness

deformation of the compression flange
modulus of elasticity

slope of the stress-strain curve in the
prlastic rance ’

secant modulus
friction force

force perpendicular to the beam at the
fixed roller

shear modulus

height of the cross—éection

Moment of inertia after rolling

moment of inertia about thé major axis
moment Jf inertia about the minor axis

curvature of the specimen at the exit
side of the machine

curvature of the specimen at the entry
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relaxed radius of bend
lengthlof the beam model

moment due to friction forces
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X,¥:2

plastic moment

applied vertical load

percentage increase in width after bending
percentage bowing in the compression flange

percentage change in moment of inertia

radius of bend

’radii of the outer and intermediate rollers,

respectively '

bending stiffness

distance between the fixed roller, on the
exit side, and the middle rol%gr along the
center line of the’ beam

distance between the two fixed rollers along
the center line of the beam

thickness of theﬂcrosg—section

total potential energy

in-plane displacement in the x-direction
elastic strain energy

total strain energy

in-plane displécement in the y-direction
out-of-plane displacement

external work due to vertical load
external work due to friction

co-ordinate axes

shear strain

total shear strain

plastic shear strain
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deflection of the beam under rolling

strain in the x and y directions,
respectively

-’

total strain in the x and y directions,
respectively

\\
effective total strain

plastic strain in the x and y directions,
respectively

effective plasﬁic strain

yield strain
coefficijpt of friction ,
Poisson’s ratio

stress in the x and y direction, respectively

effective stress ~

effective stress at any point along the
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vield stress in axial tension

" residual stresses

shear stress

Subscripts of the displacement components:

X, Y

denotes differentiation with respect to
x and y, respectively. Double subscripts
denote second derivative
' N
denotes effect of friction .
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INRRODUCTION

1.1 GENERAL -

The use of Hollow Structural Sections (HSS} for
construction purposes became very popular in the last
twenty five years. HSS posses many structuraL,‘érchi—
tectural and economic advantages as structural elements.
A widely‘used type oquSSwis one of sguare or fectangular
geometry. These sections can be used in many structures
as straight or curved members. There are many potential
appliéations for curved HSS such as in domes, arched
“roofs, machine parts, subway tunnels, highway barriers,
etc.

Mandrels gs well as different types of rolling
machines are used to produce curved HSS. The choice of
any bending method is usually based on both econcmy and
. engineering judgement. Availability, cést and the use of
the member after rolling are examples‘of the factors that
should be coAsidered when choosing the bending method.

In the present study, cold bending by means of a three-
roller machine of the pyramid type, was chosen. Com-

pared to other bending methods, the three-roller machine



seemed to be available, economic and most suitable for

the large behds required for construction purposes.
Rolling machines are commonly used to bend plates o£ beams
with solid sections. To the best knowledge of the author,
this is the first study to be coﬁducted on rolling of -

hollow structural sections.

1.2 MECHANISM OF THE ROLLING PROCESS

H
The three-roller machine of the pyramid type consists

basically of three rollers; two fixed in place, the outer
ones, a;g one movable roller in the middle, Fig. 1l.l.

The threé rollers are mounted vertically in the machine

as shown in Fig. .1.2. The specimen is fed into the machine
from cne side until it is supported on the two outer rollers.
The load is applied to the specimen through the intermediate -
roller by changing its positionuwith respect to the other
ones. The load is applied‘untii‘&'certain pesition of the
intermediate roller is achieved. The change in position

" of the middle roller is equal to the deflection produced

in the specimen at their point of contact. The rclling
process is then started to force the same deflection to

all sections of the specimep as they pass under the middle'
roller. This defiection can bé\related to the raéius of
bend of the specimen by studying its geometry during the

rolliné process.
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Fig. 1.2. Three-roller bending machine
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1.3 MOTIVATION AND OBJECTIVES "

A hollow structural elemeﬁt of square or rectangular
cross-section is composed of four thin plates. Because of
its strength, rolling of such section requires relatively
high leoads to achieve a permanent radius of curvature.
When these loads are applied during the rolling process,
the different compénents composing the element undergo
large permanent local deformations causing distortion in
its cross-section as shown in Fig. 1.3. Thei?ﬁount of

distortion resulting in an HSS section depends on its di-

- sy

mensions, material properties and the radius of bénd
.imposed.

. The distortion of the cross-section may affect its
aesthetic appeal or integrity to carry locads when used
after rolling. Therefore,-conditions or criteria should
be adopted to ;pecify certain levels of distortion as the
acceptable tolerable limits. Based on these conditions,
the minimum radius of bend cf an HSS elemeﬁt is determined.
There are no common guidelines on which the different steel
companies can base their choice of such conditibns. The
choice is usually arbitrary and can be based on either
visual inspection or the structural capacity of the member
after bending. Obviously different conditions result in
~different radii of bend for the same'sectiop.

The recommended values for the minimum radii of bend



Before Bending

After Bending

A

- Fig. 1.3. Cross—section distortion due to the
rolling process -



published by U.S. Steel, British Steel Corporation and the

Steel Company of Italy (Ferrotubi) are often contradictory.

As these recommended values aré based only on results ob-

tained from experimental studies, the need for a theoretical

analysis éo eétablish a method to predict'the minimum radius
of Bend for HSS is clear. Therefore, the objectives of the
present study are:

1. 'To develop an .analytical approach to calculate—the
relation between the radius of curvature of cold bent
HSS and the resulting distortion.in the cross-—section.

2. To rezbmmend different conditions that specify an
acceptable level of distortion in the é}oss-sectio?.
Based on these conditions the minimum i;dii~for the
different Hés profiles can be calculated.

3. To predict the magnitude of the residual stresses
resulting from the rolling process in the different
parts of the HSS.

4., To verify thecshalytical solution by comparing its

-

results to those obtained from an experimental study.

1.4 SCOPE ?

To achieve these objectives, a theoretical analysis
is.darried out using the variational principle of the
total potential energy and a ﬁa&leighLRitz type procedure.

P
Displacement functions with ufknown coefficients are

Ve



assumed to describe the deformed shape of the different
components of the hollow section after bending. Expres-—
sions for the total potential energy in terms of these
displacement functions in both the elastic and plagiic
ranges are develbped. The unknown coefficients of the
di;placement functions are then evaluated by minimizing
the total potential energy using Rosenbrock's method.

Non-linear strain-displacement relations are used to
account for the-effect}of large deformations. " A bilineaf
stress—strain relation . with linear s£rain harde;ing'is
assumed to describe the maiggial behaviour under loading.
The Von-Mises yvield criterion is adopﬁed to determine the
initiation of yielding at any point of the beam model and
;hé total deformation theory of plasticity is used to ob-
tain the stress-strain relations in the plastic range.

In the threé—rblle; machine, the lopd is applied
through the middle roller“by changing its position with
._respect to the other two réllers. The relation between
the radius of bend of the beam model and the middle roller
position is presented; This relation can be obtained By
studying the geoﬁetry of the model-inside the machine
durinq_the rolling procesé. A method is proposed to‘model
the rolling process,.the effect of friction between the
flénges of the model and the rollers is considered in the

A :

H



analysis and an estimate of the residual stresses result;
iné'frqm the rolling proéess is Falculated at different
points of the modél. . §q -

To verify tﬂb thébretical analysis, the results are
compared to those available from an éxperfmental program:
In this program}154 tg;té were conducted on 27 differént
sizes of HSS. Fach size was.bent'to four different radii
of curvature. Afterf}olling, sections bent to each’of the
four radii were acéurately measured. Multipl§ regression
analysis was used to obtain relations between the radius
of bend, the cross-section properties and the deformations
resulting in the cross-section due to the rolling process.
A comparison between the théqgﬁtical and experimental re-
sults is presented.

To calculate the minimum radius of bend, two condi-
tions which define the m@ximum‘allowable‘distortion in the
cross—section aré used: -
(a) Percentage increase in the width of the cross-

gection after bending.

(b) Percentage bowing in ﬁ?é compression flange
after bending. o ’
A comparison betweén the minimum radii of bend ob-

tained in this study and those published by three differ-

ent steel companies is presented.



CHAPTER II

\

LITERATURE REVIEW

2.1 GENERAL
~ The increasing use of thin plate elements in many
structures attracted many researchers towards the study
" of the different aspects of behaviour of such ‘eiements.
Stability, large deformations and elasto-plastic analysis
‘are some Qf these aspects that received most attention.

Closed form solutions for elastic plétes subjected
to small deflections are now available for many cases of
loading and plate ené conditions (2, 42, 44). However,
numerical methods such as finite 'difference, finite
element, finite strip or energy mihimizétion are usudlly
used if the analysis has to account for either geometric
or material non-linearity. The rapid developmen% in
digital computers made the application of these numerical
methods to many gpmplicated probléms poésible.

In thig chapter, some of tgé studies conduc;ed on
thin walled sections are reQiewed.' Most of.these studies
deal with the stability of the different components of-the“
section, A review of thé studies on the non-linear beha-

viour of plates is also presented. No published work



11

available‘on the rolling of beams with hollow sections.
However, scme of the researches carried out to study the
mechanics of the rolling process and the geometry of the
deflected shape of plates and beams with solid sections

during and after rolling are reviewed.

2.2 STABILITY OF THIN WALLED SECTIONS

Most of the studies carried on thin galled elements
are directed towa;ds studying the stapility cf the dif-
ferent copmponents composing the element. To simplify the
probleﬁ, many researchers considered only the case of pure
mgﬂent aépiied to these elements. The_typical approach
inlanalyzing this type of structures was to study the
chkling behaviour of the web element treating it as an
isolated element constrained along its longitudinal
boundaries by stiffness representing the flexural stiff-
ness' of the flanges (38). However, when the flanges‘are
themselves relatively thin, the stiffness of the compres; -
sion flange reduces during the bending process due to the
instability under the compressive stresses. So, the problem
is then one of interaction between the buckling strength
of the compression flange and that of the:;éb and either
one can dominate in determining thé critical load accord-

. ing to the dimensions of the element.

Graves Smith (12) reported that the fir attempt to
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analyze thin walled box girders as single integral struc-
ture was made by dividing the web of the section intd a
series of strips each under a locally constant stress.
Craves Smith avoided this appreximation by using theAtQtal
potential energy apprecach. Assuming elasfic and small de-
flection conditions, displacement-functions with unknown
coefficients were used to represent the out—of—plané'de—
flection of each plate composiﬁg the section. Using the
Lagrange multiplier method, the unknown coefficients of
the displacemegnt functions were obtained at the ;ritical
buckling load.

Rockey and Bagchi (39) used the finite element method
to solve the problem of web buckling in plate girders
under partial edge loading taking the stiffness of the
flange into consideration. The study concludes by showing
that the effect of the flénge thickness on the load distri-
buticn in the web and on the buckling load is quite con-
siderable. Tien and Wang {43) used the finite difference
method to calculate the effect of stress gradient on the
buckling load of thin walled box girders. Two loading
cases were used: a uniformly distfibuted lcad and a
central concentrated load.- Higher buckling loads were
ocbtained compared to those calculated frcom a case of
constant stress. Other approaches such as finite element

method (32, 37, 47) and finite strip method (14) have also
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- been used to study the buckling problem. ¢

2.3 NON-LINEAR ANALYSIS

"

Non-linear analysis can include either geometric or

material non-linearity effects depending on fhe'beha&iour

of the structure under lcading. If plastic and large
amounts of deformations Are expected, both non-linearities
have to be considered in the analysis. Becduse of the com~ )
plexity of such problems, most of the analyéis was directed
towards the study of single plates only. However, the
general procedu;;s used in the analysis of single plates
can.Se applied to thin walled sections provided that the
compatibility conditions at the cor:;fs of the section are
satisfied.

Graves Smith (13) used the total potential energy
apprecach to study the post-buckling behaviour of thin
walled box girders subjected to pure moment. The effect
of plasticity was accounted for by-using Von-Mises yield
criterion and Prandtl-Reuss relations. | |

. Rhodes and Harvey (36) studied the buckling of lipped
channel beams subjected to pure moment using the total
potential energy approach. They studied the post-buckling
0of the same section-using a semi-energy methed in which

the stresses and deflection throughout the section are

linked by solving Von-Karman's compatibility equations.
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 The results of the analysis were compared to those

obtained from an experimental investigation. The agree-—
ment of the results proved the validity of the approach
used in the theoretical analysis.

Different approaches have been used by many resear-
chers when studying the non-linear behaviour of‘plates.
Graves Smith (11), Moxham (31) and Little (26) used the
total potential energy approach but with different formu-
lations. Graves Smith used sophisiicated expregsions to
represent the deformed shape after elastic buckling. 1In
order to integrate the energy function within the plate
thickneSsﬂ.linear distribution of stresses was assumed.
The analysis was‘restricted to situations where unloading
from thé yield surface did not occur. This usually re-
guires high width to thickness ratios.

Moxham's displacement functions were straight Fourier
series. He used the deformation theory to calculate the
deformed shape. However, once that shape has been deter-
mined the flow theory was used to célculate the stresses
and strains. N

Little used the incremental flow theory. The number
of iteration reéuired to find the minimum of the total
potential energy was much less in Little's solution than
in the others. This was due to: (i) the use of both the

energy function and its gradient vectors to search for the
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minimum, and (ii) only the increase in the energy due to
the . loading incremenfs was minimized as opposed to ﬁini—
mizing the total energy at each load increment. The dif-
ference is the wvalue of the tdtal energy at the end of
the previaus lcad increment which‘is‘tgnstant.

Another approach was tried by Freize (%) and Harding
{16) using the dynamic relaxation’method. Although the
flow theory was used in both studies, different vield
criteria were adopted to determine the initiafi@n'of yield
.at the different points. Harding used Von-Mises yield
criterion. He‘divided the plate thickness into a number
of layers and the appropriate stress-strain relations were
derived at each layer depending on its stress level. To
avoid that, Freize used a full section yield criterion
propoéed by Ilyushin (19). This resulted in a grea£ re-
duction in computer time and computational efforts..

Finite element method has also been used in many
studies. Zienkiewicz (47) reviews most of the work done
to consider plasticity and large deformation in the analysis
using the finite element methed.

Bradfield and Chladny (3) compared- all the previous
approaches with respect to the number of degrees of freedon,
geometrical representation of. the plate, stress-strain

relations, representation of residual stresses and repre-

sentation of initial out of flatness.
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2.4 RCLLING PROCESS

Many researches are directed téwards_studying the
rolling process of single plates and begms with sélid
cross—seétions. However, due to the-complgxity of the
problem, no studies hdve been carried out on tﬁe rolling
of thin walled beaﬁs.' The mechanics of thel;olling process
was the main concern of many researchers. Through differ-
ent approaches, they were able to predict the load and
torque required to roll any specimen of any material and
dimensions as well as the pressure distribution between
the rolls and the material under rolling (17, 20, 21, 41).

Few researches were directed to study the geometry
of the specimen during and after rolling. Bassett and
Johnson (1) analyzed the plate bending problem using a
three-roller pyramid type machine. Two methods of analysis
were proposed to predict the final shape of a platé after
rolling:

1. Geometric analysis; based on the assumption that the
deflected form of the plate is an arc of a circle.

2. A load analysis using the uniaxial stress-strain
relation of the material of the plate.

The two methods weré applied to the rolling of plates made

of -two different materials: aluminum aﬁd steel. The ex-

perimental results were best accounted fo; by the geomet-

ric analysis.



Hanson and Jannerup (15) studied the bending of
steel beams with solid rectangular cross-secticns by
the three-roller machine. An iterative method is used
to study the gecometry of the deflected shébe of the
beam during rolling. The calculations baéed on this
method led to a cprvature function, fo¥ the beam under
rolling, which differs from the often assumed function
as an arc 6f.a circle. Although shear and friction
between the rollers anq_the’beam were neglected in the

*

analysis, agreement between the theoretical mocdel and

experimental results was reasonable.

L
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CHAPTER III
BASICS OF THE THEORETICAL ANALYSIS

3.1 GENERAL

Different numerical metheds can be used to analyze
the HSS rolling problem. A comparison between the finite
difference, the finite element and the total potential
energy.minimization methods yielded the conclusion that
the minimization of the total potential energy is most
suitab&e in this case.

As a result of the rolling process, the different
components of the HSS member undergo large amounts of
deformations in both the elastic énd the plastic ranges.
Therefore, both geometric and material non-linearities
have to be considered in the analysis.

In this chapter a brief comparison between the basic
concepts of the finite difference, the finite element and
the total potential energy minimization is presénted.

The basic principles of the Rayleigh-Ritz method of
analysis are also given and the methods for accounting
for both.geometric and material non-linearities are

explained.

18
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3.2 JUSTIFICATION OF THE ANALYTICAL METHOD

The equilibrium of linear elastic plates is con+
trolled by one differential equation of the fourth order.
Direct sclution of this equation is pessible for many
cases with.different boundary conditioqs and loading.
Because of the simplicity of the problem, closed form
solutions aredgﬁailable for many of these cases. On the
othgr hand, the behaviour of elastic non-linear platés
is described by two differential equations known as
Von-Karman's equations (6). In this case, the deflection
of the plate creates in-plane forces which in turn affect
the mpgnitude of the deflection. Therefore, the sblution
of such a problem is often iterative where the in—p;ane
forces in the plate are first assumed so that the deflec-
tion can be calculated. Using this deflection a second
estimate of the in-plane forces can be obtained. The same
procedure continueé until the solution converges.

The presence of plasticity introduces a major com-
plication as the stress-strain relation varies from point-
to-point in the plate according to the stress level at
each point. Only numerical techniques such as the energy
minimization, finite difference cr finite element methods
can be used to obtain a solution for such a problem. To
use the finite difference technigue to analyze non-linear

plastic plates, the two Von-Karman equations have to be



20

expressed in an incremental form at each podnt of ﬁhe
finite difference mesh. Using .these equations a step-
by-step solution can be cbtained. Graves Smith (11)

gave the complete derivaticn of these incremental equa-
tions. However, he concluded that for an unsymmetric
problem that involves more than one plate, such as in the
case of a channel or box secﬁions, this method leads to

a very large number of equations which make its use un-
feasible.

In the finite element method continuous updating
of the solution is re@uired to account for both material
or geometric non-linearity. tThe solution should be incre-
mental, where at each increment the stiffness of the_whole
structure has to be adjusted depending on the magnitude
of the applied load as well as the stress level at the
different parts of the structure. This précess requires
large storage capécity and‘long execution time on the
computer.

The energy minimization method is based on the assump-
tion‘of displacement functions with unknown parameters that
represent the defprmed shape of the structure and satisfy
its boundary conditions. These parameters can be evaluated
by minimizing the total potential energy of the structure.
This technigue is known as/Rayleigh—Ritz method. Compared

to other methods, the energy minimization ‘has many advan-
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tages such as simplicfty, small computer storage and,
more importantly, the'bésic method of analysis does not
change when material or geometric non-linearity is con-
sidered. Based on that, it was decided to use the energy

minimization as the method of analysis

3.3 THE RAYLEIGH-RITZ METHOQD

One of the most used methods in seolving many struc-
tural problems using the energy technigue is the Rayleigh-

Ritz method. This method can be used in the analysis of
H

deformations, stability, non-linear behaviour and vibration.

In this method, a structure having an infinifely large
number of degrees of freedom is repléced by a model of ,
finitg degrees of freedom. 'Therefore} to evaluate the
deformation of a structure under a system of loading, the
deformed shaPe of the structure is approximated by differ-
ent displacdement functions with unknown coefficients.

These displacement functions have to satisfy at least the
geometric boundary conditions of the structure and insure
compatibility between its different components.

The principle of minimum potential energy is then used
to evaluate the magﬁitude of the unknown coefficients of
the digRlacement functions. This principle states (34}):
“o%‘alljthe disp%acements which satisfy the boundary con-

ditions of a structural system, those corresponding to

stable eguilibrium configuration make the total potential -

Y
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énergy a relative minimum."

Therefore, the total potential energy is expressed
in terms of the unknown coefficients of the displacement
functions.' These éoefficients are then determined
that the total potential energy computed on the basis of
these functions is a minimum.

It should be noted that the accuracy of the results
obtained when using the Rayleigh-Ritz method depends mainly
on the successful choice of the displacement functions that
represent the deformed shape of the structure. One of the
major drawbacks of this method is that alﬁhough the dis-
placéments could.be evaluated fai;ly accurately, the cor-
responding stresses may differ significantly from their
exact values. This is due to the fact that the stresses
are Wased on the derivatives of the displacements, and
obviously the derivatives of an approximate function is
léss accurate than the function itself (34). Another im-
portant charactetristic of the Rayleigh-Ritz method is that
the diféerential equation of equilibrium does not enter
'into the analysis. However, equilibriun is satisfied in
an average sense through the minimizatipn of the total
poteﬂflal energy.

3.4 GEOMETRIC NON-LINEARITY

L)

3.4.1 Methods of Calculation

The amount of deformations resulting in any structure

“i
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dependé_on'}ts material characteristics, the magnitudeﬁ
of‘the applied load as well as Qn;the dimensioqs angd_
geometry of the structure. I1f amﬁtructure is expected
to have small displacements compared to its dimensions,
the additioan deformation resulting from the change in
the structure géometry is considered of secondary maéni—
tude and can be neglected. However, if the structure
undergoes large amounts of deformations these secondary
deformations will have moré dominant effects on the
structure behaviour and have to be considered in the
analysis. In this case the structure is described to =
have a geometric non-linear behaviour.

Different meghods can be used to account for geo-
metric qpn—lineaﬁﬁbehaviour of structures.l Pogner (35)I
summarized these methods in three approachesyg
1., Applying the load incrementally and solving a series

* of linear eguations that describe the structure be-
haviour at each load increment.
2. qumuld%ing a set of non-linear sim&ltaneous equa-
tiéns that govern the behaviour of the strucﬁure and
then seeking théi; solution by successive approxima-

~ . -
tion.

v bt

'Using non-linear strain-displacement rélations in
"EOI@qlating the problem.

..In the‘present study, since the minimizationoof the
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total potential energy method of analysis is used, the

third approach ie most appropfiate.s

3.4.2 Strain-Displacement Relations

A cartislbn coordinate system (x,y,z) is introduced

such that x and y are the axes in the plane of the middle
X\——J
surface of the Dlate and z is the perpendicular axis to’
this plane as shown in Fig. 3-1. The displacement of any
point in the middle plane in the x, y and z directions
L e ‘ '
are u, v and w, respectively. The straidfgbmponents at

any point at aﬁaistance 2z from the middle plane are given

by: ‘ . : ‘ ¥
E‘.x = ux - Z Wxx
= v, - ZW
y- 'y Yy |
= -+ - '
ny uY vx‘ 2zwxy (3.1)
where
€x’ Ey = strain components in the x and y directions,
respectively;

= shear strain;

u,v,w = displacements in the x, y and z directions,
respectively; and : -

z = perpendlcular distance between any p01nt and
the mlddle plane of the plate.

wts

The subscripts x and y in the displacement components u, v
and w denotes differentiation with respect to x and y,

respectively, double subscripts, denotes second derivative.
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To-account for geometric non—linearity, guadratic
‘terms are introduced in the strain displacement relations.
The qgadraéic terms in u and v are neglected because of
their small values (25). Therefore, the resulting strain

displacement relations can be written as (42):

g = u. - Z W + 0.5 w2 .
X - X XX X
. 2
c._. =V, - Z W + 0.5 w
Y Y YY Y
ny = uy + v T 22wxy + wxwy (3.2)

3.5 STRESS-STRAIN CURVE

To study the material behaviour under loading, simple
tension tests were carried out. A series of three tests
were conducted using the universal testing machine. Two
_stréin gauges were mounted on each spetimen, one on each
-side, and the average readings of these gauges was used
in the analysis. The average results of the stress-strain
curves obtained from these tests are shown in Fig. 3.2.
Based on the results of these tests, the stress-strain
relation can be approximated by a bilinear curve with
modulii of elasticity of,200,000 MPa and 5,000 MPa in

rthe elastic and plastic ranges; respectively, as shown
in Fig. 3.2 by the two straight lines. |

i 3.6 ELASTIC STRESS-STRAIN RELATIONS

In the elastic range, Hooke's law is used; the

-
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stress~strain relations are given by:

= Lo, - vo)

EX—ECFX UUY

€y = %(Gy - vcx)
_ 1 _ 2(1+v)

Yxy ~ G 'xy = E Txy (3.3)
*
where
g ,0. .= stresses in the x and y directions,

x y' respectivgly;
T = ‘shear stress;
v = Polsson's ratio;
E = modulus of elasticity; and,

G = shear modulus.

If the stresses are expressed in terms of the strains,

the stress-strain relations will become:

E
g, = (e, + ve_)
X l-vz x' Yy
_ B
oy = l—v2 (Ey + vex)

- E

Txy\j(‘l.qw Txy (3.4)

3.7 MATERIAL NON-LI RI

The expression material/non-linearity is used to
describe the non-linear (behaviour of a material under
loading. The steé®] maferial expresses such a behaviour

in the plastic range. To account for that behaviour, the
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plasticity theory has to be introduced. There are two
main requirements to construct a plasticity theory:
a. A vyield criterion.

b. A stress-strain relation.

3.7.1 Yield Criterion

In a case of a uniaxial stréss, the yield point of
the material can be easily determined. However, if
several stresses are acting in different difectionS, only
a specific combination of these stresses will cause yield.
The criteria for deciding which combination of multiaxial
stresses will cause yield are called yield criteria.
Several yield criteria has been proposed since 1773.
Maximum Stress Theory by Rankine, Maximum Strain Theory
by Saint-Venant, Maximum Shear Theory by Tresca and )
Maximum Strain Energy Theory by Beltrami are some examples
of these yield criteria (29).

One of the most accepted yield criteria is the one
known as the Distortion Energy Theory or the Von-Mises
Yield Critérion. This theory assumes that yielding begins '
when the distortion energy equals the distortion energy at

yield in simple tension. For a case of plane stress it

can be shown that yielding begins when (292):
dg = 04 (3.5)

where
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the yield stress in axial tension;

Q
0

and

Q
1l

e the effective stress which is defined as:

(3.6)

The Von-Mises yield criterion is widely used at the
present time becaukle it usually fits the experimental data

\-\___..-—-"' .
of steel structures better than any of the other theories..

3.7.2 Incremental and Deformation Theories -

In éhe plastic range, the amount of strain expressed
by the material under any load depends on the loading path.
Té obtain a stress—stfain relation in the plasticrrange,
ﬁhe vield criterion has to be used with one of the plasti-
city theories; namély, the incremental or the deformation
theory. The incremgntal theory accounts for the effect of
the loading path on the final stresses and, ‘therefore, the
load has to be applie?/zzz}stntally. However, to simplify(i
the process the deformation theory assumes that the plastic
strains are functions of the.cuii?nt state of stresses and
are‘independenh of the history of loading,. and hence the
"total load can be appliea in one step.

It should be noted that there are some cases of load-

ing where the incremental. theory reducés to the deforma--
£ :

tion theory such as the case of proportional or radial
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loading where all the stresses increase in ratio.
Budiansky (5) proposed that there are ranges of loading
paths other than the proportional loading for which the
basic requirements of the plasticity theory are satisfied
by the deformation theory. However, this has not been
established experimentally'yet. In stability problems
Gerard (l0) states that the deformation theory is in sub-
stantially good agreement with; the experimental results.
On the other hand, the incremental theory requires the
introduction of initial imperfection in order ‘to obtain
a satisfactory degree of correlation with tests.

In the present study, because of the large size of
the problem, the deformation theory is used. This helps
in reducing the time required by_the compuﬁer solution

to solve the problem.

3.7.3 Plastic Stress-Strain Relations

The Von-Mises vield criterion and the total deforma-
tion theory are used to develop the plastic stress-strain

relations. These relations are (29):

_ 4 t t
e = 3 Es(e:x + 0.5 Ey)
_ 4 t t
Uy— 3Els(sy-i-o.5 Ex)
_ 1 t .
x = 3 Eg Yxy : (3.7)

where
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gt,gt = total strains in the x and y directions,
XY  respectively;
y;; = total shear strain; and,
ES = sacant modulus, defined as:
o
= &
. E_ = x 53.8)
e
where
oo = the effective stress, given by Eg. 3.6
and
ez = the effective total strain, given by {29):
- 2 2 2
et = 2 (e:t + ef o+ efet 4 025 Yt )1/2 (3.9) .
€ 73 X Y XY Xy :

At any applied load, the displacement components at
any point in the structure can be calculated through the.
minimization of the total poténtial energy. The total
strain components are then calculated using equations 3.2.
To calculate the different stress components at the same
load, the effective stress 9 must be first estimated to
be able to use equations 3.7 and 3.8. A relation betweén

t

e, and ¢ can be obtained from the stress-strain curve.

This relation is given by (29):

t _ p 2 (1+v)
ea = €0 t T3 % ' (3.l0)

where sz = the effective plastic strain, given by:
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Pp_ 2 [P P P_P p 2
€ — (¢ + ey + Ex€y+ 0.25 'yxy] (3.11)
Y3
where
) 3
si,sp = plastic strains in the x and y directions,
Y -respectively; »
yg; = plastic shear strain

~

The plastic strain is the difference between the
strain and the elastic strain. To calculate the
plastic strain components, an iterative solution

quired to estimate the elastic part in the total

total
different

is re-

strain

components. Mendelson (29} proposed a simpler relation

e

to estimate gp. By expressing og at any load increment

as a series in terms of 9e at the previcus load incre-

ments, this relation is given by:

£ - 2 [+ /Bl '
Eg = 5 (3.12)
1+ 3 {{1l+v)/E] Ep
where . (
oa = effective stress at any point along the plastlc
region of the stress-strain curve;
and
Ep = slope of the stress-strain curve in the plastic

range.

For materials with linear strain hardening, equation 3.12

yields the exact value of the plastic effective strain

eg given by egquation 3.11.



<@

CHAPTER IV
ENERGY{FORMULATION

4.1 GENERAL : )

The analytical solution is based on the énergy mini-
ﬁization method using the Rayleigh-Ritz techniqué. Dis-
placement functions with unknown coefficients.are.assumed
to describe the deformed configuration of the HSS a%ter
rolling. The unknown coefficients are determined thrbugh
the minimization of the total potential energy of the HSS
using Rosenbrock's method of minimization.

In this chapter, a description of the theoretical
model used in formulating the problem as well as the as-
sumed displacement functions are given. Expreésions for
the total potential energy in both the elastic and plastic
ranges are derived. The numerical calculations for
evaluating the total potential energy and the minimization

process are also explained.

4.2 THEQRETICAL MODEL

Although the rolling process seems simple, the theo-

ret%cal modelling for it is very complicated. In the

rolling process, the load is ég?lied continually to the

34
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specimen under rolling throuch the middle roller. This
process is modelled by assuming that the load is applied
to the different sections of the specimen successively
one after the other. Therefore, at any instant of the
rolling process, the specimen is considered stationary
and subjected to a ;oncentrated load at its mid-point.
The specimen under rolling is modelled as a simply sup-
ported beam with a span length equal to the distance
between the centers of the fixea rollers of the bending
machine. The beam model is decomposed intoc féur plates:
two flange plates and two wéb plates simply supported at
their extremeties. The local axes of these plates are
shown in Fig. 4.1; the number‘shown identifies the dif-

ferent plates as follows:

Plate #1 compressicon flange

Plate #2 web plate facing the t side of the

rollers
Plate #3 tensionfflangg

* pPlate! #4 web plate facing the bottom side of the
rollers (the base of the machine)

The positions of the different plates when the spe-

cimen is mounted in the machine are as shofn in Fig. 6.5.

4.3 BOUMNDARY CONDITIONS

It is assumed that at any instant of the rolling prc-
cess, the model is a simply supported beam . The cross-
section is decomposed into four plates simply supported at

their extremities, Since the cross-section of the model
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Fig. 4.1.' Local axes of the four component plates.
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is compos

of relatively thin plates, plastic hinges tend
to form/at its corners at relatively small I . There-

| compatibility of rotations at the corners is

All other dispiﬁcement boundary conditions

disregarded.

These boundary conditions are:

(2) LongitWdinal direction:

at x = and at x = %
v1 = wl =0
_ _ (4.3)
Vy = Wy = 0
v3 = w3 =0

(b) Trahsverse direction:

u, at y = —.% = g at yil= %
)\ u4aty=;%_=uléty:-% .\
. u, at y = 3 = .u, at y = 3
u4aty\=,_—r25=u3aty=-1%
v, at y = - % =w, at y = % :
v4aty=—-1%=wlaty=—-}22 (4.6)
Vo at y = % = Wq at y - %
vy at y = %'= wq at y = - % 4
v, at y = -~ % = vy at y = %
w4 at y = -~ % =V at y = - % =0
Wo at y = % = Vq at y ; %
Wy at y = % = v, at y = - % =0

The subscripts 1, 2, 3 and 4 in the displacement com-

ponents denote plate's number.
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4.4 DISPLACEMENT FUNCTIONS

The exact deformed configuration‘of any s%ructuref
can be determined by solving its differential equation of
equilibrium. In many-cases,'closéd form solutions of such
equilibrium egquations do not exist. ﬁhis is usually due
to the complexity that arise from incorporgting compli-

- ’ cated-tyées of loading, boundary conditions and/or non-
l}near behavipur. In these cases assumed displacement
functions that approximate the deformed configuration of
theASEiucture are used. These approximate functions céﬁ
be chosen either directly based on a predic/;a deformed -
shape of the structure, or evaluated based/pn,an assumed

stress of strain state for the stftcturé{ In the present

analysis, the displacement functions are ssumed directly

based on the deformed shape of the model obtained from
the experimental program, a typical deformed section. is
shown in Fig. 4.2.
It should be noted that the assumed displacement
functions should satisfy some conditions, the most im-
- -pprtant of which is that they should be gecmetrically
admissible. Geometric admissibility implies two condi-
tions: |
| (1) The .assumed displacement functions should

3 o S .
satisfy all displacement boundary conditions and insure

L %Téments of the

compatibility between the differe
L]

structure.



b
- ’ -~
T ]'#1
h o+ W2
l |
t
'#3
Sec A-A
Local
Deformations

deformations

39

Before bending

d _ - Al

T

Overall

Fig. 4.2.
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After bending

Deformations of the beam model due to the rolling process.
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(ii) The assumed displacement functions should
improve the solution by bringing the value of the total
potential energy closer to the true minimum as more higher-
order terms are added to the previously used ones in the
displacement functions.

Other conditions such as completeness and the ability
to represent rigid'body displacements of “the structure
should also be observed (30).

Observing the deformations taking place in the HSS
during the rolling process, it can be shown that the dis-
placement consist mainly of two parts:.

-

(a} Overall displacement; due to the deformation of

the HSS as a beam.

(b) Local displacement, which varies in each plate

depending on its location in the cross-section.

'4.4.1 oOverall Displacements

This part of the displacement functions describes the
displacement of the center line of the model which is the
same as that of the ends of each plate, i.e., the corners
of the beam model. This.displacement is basically due to
the deformation of the model as a beam under concentrated
ioad. As the beam model is assumed to be simply suppoftedt
a sine-function in the longitudinal direction of the modél
is choseﬂ to represent this pre of deformation. Denoting
the longitudina} direction as the x-axis as shown in Fig.
1.1, the displacement functions of each plate will be as

follows:



Plate #1

u =

Plate #2

Plate #3

Plate #4

where

k7 h knx
L o> =2
Bk &7 ©°% ¢
0
. kTXx
ﬁBk sin —?—
“IB k knx
EByz Y 08 ¢ -
. kax
EBk sin =5
0
km h krx
EBy T 3 °°s T
0
. knrx
Z’Bk sin T
-Ip. k¢ kmx
EBy T Y cos
. kwx
EBk sin _L
0
unknown coefficient; and

1,3'5’--- ..
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(4.1a)
(4.1b}

(4.1c)

(4.1d)
(4.1le)

(4.1£)

(4.19)
(4.1h)

(4.11)

{4.13)
(4.1k)

(4.12)
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4.4.2 Local Displacements

This part of the’displacement functions represents
the additional deformations that take place locally in
each plate. These local deformations vary in the differ-
ent plaﬁés depending on the location of each plate in
the cross-section. Fourier series functions in both
the longitudinal and transverse directions are chosep to
represent these deformations. The different components

of displacement chosen for each plate are as follows:

Plate #1 X
u = EAr % sin rzx - ”. (4.2a)
b Fi .
_ b, . nw (y+az) mrx '
v = %ﬁ Cnm(Y+§) sin —¢— sin 7 (4.2b)
w = &5 qu(y+%) cos E%I sin Q%E (4.2c)
Plate #2 -
- - rax 4.24
u IA_ vy sin =5 (4.2d)
v=20 : (4.2e)
h
nr (y-oz)
. 2 mmnx
= =L - 4.
W n% C b sin o n —-— (4.2£)
Plate #3
_ —za. B rrx
u=-IA 3 sin =g (4.29)
- b av (y-a3) mr x
v = -LL C (y+3) sin —p—— sin (4.2h)
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__ b iy T 4.2i
w = E% G.j(y+2) cos =5+ sin lf— \b:> ( )
Plate #4
= -1 ‘sin EI (4.23)
u = qrAr Y sin —¢ .
\ v =20 i (4.2k)
w =20 . (4.22)
2. .
where Ar, Cnm' qu, Gij are the unknown coeff%cients;
i=j=m=n=p=q =1, 3, 5, ...; and r = 2, 4, 6, ...

The coefficient o is used to define the point w©f zero

out-of-plane displacement in the web plate. If the two

webs é{?

would e #een symmetric with the zero out of plane de-

ee to deform, the resulting deformed section

formation of the web at mid-point. However, plate #4 did
nét express any out-of-plane displacement aé shown in
Fig. 4.2. Preventing the out-of-plane motion of one of
the webs (plate #4)'15 the same as if the whole sectiqn
was pusheq‘sidegays until the deformation of that web
(plate #4) is zero; This will result in increasing the
deformations of the other web (plate #2) and relocating
its point of zero deflection below its mid-depth.

TQ déte:miﬁe the magnitude of the coefficiéht_u, two
factors have to be considered: _fifstly, the common shape

of,tﬁe‘different sections-résulting from the experiment

program, and Qecondly, the value of the total potenti
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.ment function is the same for both web plates and is gixs:
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energy at any specified coefficient a. 1In other words,
the chosen value for a should result in deformations that
comply with that obtained in the experiments and should
yield the lowest value possible for the Eotal_potential
energy~ To satisfy the deformed shape of tﬁe cross—'
sections, the point of zero out—of—plane'deflection should
Ee in the middle third of the lower half of the web plaﬁi;
i.e.‘, at a distance of y = 0.33 (%). toy = 0.67 (%‘). THTE
range is determined mainly by Visual‘inspectidn of the de-
formed sections. The tstal potential energy of three dif-
ferent sections: 101.6 x 101.6 x 4.78 mm, 177.8 x 127.0 x
6.35 mm and 203.0 x 203.0 x 9.53 mm, is «<alculated ét
differeht.values of « = 0.30, 0.40, 0;50 and 0.60, and 9n
all cases o = 0.60 yielded the leést value for the total

potential energy. Therefore, o=0.6 is chosen and kept

constant throughout the theoretical analysis.

4.4.3 Effect of Shear

The previously mentioned displacement functions
assumes that plane section before deformation remains plane
afte; deformation.'gfue to the short span of thé beam and
Fhe large amount ofaload used during the rolling process,
that assumptidn_will not be valid. A diéplacemen? function .

- L
is assumed to account for the non-linear deformation of

the web plate in the longitudinal direction. This displace-
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u = -ZH_ sin 9%1 ' - (4.3)

L

where Hg is an unknown coefficient and g = 1, 3, 5, ...

This displacement will also affect the ldhgitu@inai
in-plane displacemenf of the two flanges; the additional
displacement of the compression and tension flanges can
be obtained aftqr subétituting Yy = —% and y = %, respec-
- tively, in equation 4.3.

It should be noted that expression 4.3 is valid only

for one half of the beam model. The sign of the expres-

sion should be reversed to describe the shear displace-

ment of the second half. - (TJ’

4.4.4 Total Displacement Functions

~Since each of the previously mentioned displacement
functions satisfies all the boundary conditions, the total
N \,J di;plgcement functions are the summation of their respec-

tive components. Therefore, the totélédisplacement func-

tions are:

\ -
Plate #1
- km h krx |, gn h _. ITx .
u = gB, - 5 cos == + gAL 5 sin == + _éHg
i 4.4a
. b ' nw(y+a%) .@ — ( 4b)
v = %ﬁlcnm(y+§) sin ——¢—== sin — (4.4Db)

P
// (4.4c)

_ knx b ﬁ ) TX
w o= EBk'sin =+ ég D g(Y+2)cos PY gip X



Plate #2

Plate #3

Plate #4

ua =
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kT krx , r’x _ g . il
~[By, ;- ¥ cos St - IA_y sin - - I sin L
(4.44)
ﬁBk sin 5%5 (4 Jde)
h
T (y-2o3)
-If C_ b sin ———2 sin ME (4.4f)
kth knx _ h , rix _ ’£.4
—ﬁBk 5 3 cos —1— %Ar 7 sin =y~ éHg ( g)
b .
b nTr(y—a—) .
: kmx ‘ b iy TX
ﬁBk sin == % i Gi§y+2) cos =g sin
) (4.41)

) P4 ) w
- =0 - — - I g’y
ﬁBk T~ Y cos =7 EAr Yy sin = gHg sin ~“4

(4.43)
gBy sin == (4.4k)
0 "  (4.41)

These displacement functions should also be ngﬁfied

to account for the effect of the friction between the beam

model and the

rollers. This will be considered in Chapter 5.
| -

4.,4.5 Coﬁments on the Displacement Functions

”

deduced above.

It should be noted that the displacement functions

are chosen specifically to describe the
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deformed shape of the HSS in the present problem, i.e.,
using a specific machine and certain procedure of rolling.
In choosing these displacemént functions, three assumptions
are_made:

(1) The web plates are considered very stiff in
their own plane; i.e., local deformations in the y;direction
are neglected.

(1ii) The flange plates of the model are considered
narrow strips, therefore, u, is assumed to be constant for
all points located at the same distance x.

(iid), ‘'The shift of the neutral axis after deformation
is considered to be small and, therefore, neglected..

Figure 4.2 shows that weﬁlplate #4 did not express any
out of plane displacement. That. is due to Ehe fact that
‘during the ;;Iling process this plate was facing the base of
‘the rolling machine which acts as a'supporﬁiyo the specimen

under rolling.

4.5 TOTAL POTENTIAL ENERGY

4.5.1 Strain Energy

The strain energy is defined as the capability of the
internal forces (stresses) to perform work during the
deformation process of the body. The strain energy den-

sity, i.e. the strain energy per unit volume, is equal

to the area under the stress-—-strain curve. For an elastic
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linear stress-strain relation and a case of plane stress,
the strain energy Ue can be expressed in terms of the
different components of displacements u, v and w as

follows {Appendix A):

2 2 1, 2
j}; {[ux + vy + 5(1—-\:) (uy+vx) + Z\fuxvy]

c
1
P

2 2 2 2
+ [uxwx + vywy + (1=v} wxwy (uy+vx) + u(uxwy+vywx)]

+ 0.25 (wi+2w2w

2 4
+ aa
My tWyl b

S 2 2 2
+ = + + 2{(1- + 2vw__ W~ dA
j; [w Yyy (L=v)wiy + 209y Woy]

(4.7)

where
_ - . _ Et
D. = membrane stiffness = 5
l~-v
B3
S = bending stiffness = 5 i
12 (1=v7)
t = thickness of the plate, and

A = area of the plate

perg
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© .In the plastic range, the gEfective stress and the
effective strain are used instead of the one dimensional ' //J

stress and strain used in the elastic rangé.

b

The relation
between the effective stress and the effective strain is

taken from the uniaxial stress—strain curve. Therefore,

the abscissa and the:r ordinate of the uniaxial stress-strain

curve are replaced by et

and o
e .

e’ respectively (28,29).

~In this case and for a material with linear strain hardening,

the total strain energy, elastic and plastic strain energy,
for a case of plane stress can be expressed in terms of the
displacement components as follows (Appendix B).

A

- o e )} V
/" O 0O

[

U=0.5 (E e
-po

+ (%EPtf {[u}zc + vi; + uw, +0.25 (uy+vx)2]
A ‘

2 2 )
+ [uxwx + vywy + 0.5 wxwy(uy+vx)_

2 2
+ 0.5 (vywx+uxwy)]

2.2,
y) 1} 4a

2
4+ [0.25 (wx+w

-.PTlgEPtBL [w2 +w2 .+w2 + W wyy] da)
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2 - 2 5 "2
_ ' E 0.25 (u_+
e, 0 e o

-

2 2 - ' 2 2
+ [uxwx + vywy + 0.5 wxwy (uy+vx) + O.S(uxwy+vywx)]

2 b ¢

]

2.2 2 2 ‘—xm__,J{/
+ W + + + W, W
2l XX wyy wxy xx,yy].

' 2 2
+ {0f25(wx+wy)

+v.) +uw_ +vw 1
x XYy Yy XX :

z[2uxwxx + 2v. W + wxy(u

Y YY Y

' 2 2 ' 2 I
—.z[wxxwx + wyywy + wxywxwy + 0.5 wxxwy e '%

. 2,11/2
+ 0.5 wyywx]} qﬁ% (4.8)
where
4
C951€g T yield stress and strain, respectively; and '
<
V = volume of the~plate-

[ &3

4.5.2 Externai Work

External work is defined as the work done bf the ex-
ternal forces during the deformation process. The formula-

tion of the external work in terms of the different dis-

-~
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,plaéement components of the structure depends on the me

chﬁnism of applying‘the loads as well as the deformed con- @
figuration of the structure. For a transvegse'concentrated
load, P, causing an out“of Blane deflection, w, the external

work, W, is the product of the applied load, i.e., W = Pw.

This is an approximation leading to conservative results.
To be exact the area and:the P-w curve shoul@ be integrated
to obtain the appropriatg‘external work done on the éystem.
This is not possible since the deflection w is yet to be

0 L] * L) -
determined from the minimization process.

~

The total potential energy of the structure is the

summation of the strain energy U and the external work
] .

done W ; i.e.

T = U-W . ) (2.9)

4.6 EVALUATION OF THE TOTAL POTENTIAL ENERGY (T.P.E.)

<47,

) ”
4.6.1 Numerical calculations of %he T.P.E.

In_médelling the rolling process probler® the, load is

assumed to be applied incrementally through the middle.

movable roller. Applying the load incrementally i

necessary tqQ trab-";ﬁ progress of yielding in the dif-

ferent plates af %'f*lififmodél. This does not cancel

the advantage-o? gé‘;§¥;“g deformation theory of plas%i—

éity because adoptigg-ﬁhis'theory allows the ﬁse of fewer
' /

load increments each of larger magnitude. Ly

L ’ .
Evalugtion of the total potential energy is performed
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using a -computer grogram‘that was developed'by the -author
as a part of modelling the rolling process. At each load
increment, the total potential énergy is calculated.
Through the hinimization of that energy the corresponding

o,

deformed configuration ¢f the HSS can be determined. To
calculate the' strain eneréy of the beam model; the deriv;;
tivesﬂof the displacemént functions with respect to x and
Yy for‘each of the four plates composing the model are

cglculated. These derivatives are given in Appendix C.

;p order.to obtain ;7 ¢ in energy ¢f any structure,
the strain energy deﬁsity is integkated over the volume of
that structure. As shown in Appendix A the elastic strain

energy can be integrated easily with respect to the pla{;_\\\

thickness. However, a deliberate effort is needed to

\integrate iﬁ over the area of the plate especially if the

numbér of terms in the series reﬁresenting the displacement
pf the model is large. Thérefo;e, a nugerical integration
ﬁethod proposed by Weddle is used (33). This method re-
;;uires at least sgven inteératioh points and gives exact
'r%§ults for functions of any degree up to the sixth.
The total strain’ energy cannct be integrated with

respect to the thickness of the plate as easily as the E)
elastic one sihde a part of the expreésion is under the

square root. Therefore, numerical integration is performed

here also. Since the highest power of the thickness 'in the»
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N
total strain energy expression is only the second degree,
Simpson's rule of integration is used. However, Weddle's
rule is still utilized when integrating over the area of
the plate.

As all specimens are stress relievea after manufactur=~ .
ing, the beam modei will have no initial stresses at ;Le
beginning of the loadiné process. Therefore,‘onl§ elastic
strain energy is c0n§idered. As the load increases, part.
of the model beginélto plaéticize yhile the other parts
are still elastic. To account for such behaviour, each
plaﬁe in the model is descretized into a number .of ele-
ments. The strain energy of each element is calculated
depending on the stress level in that element. Each
element is assumed éo have constant stresses equal to that
at its center. The tdtal strain-energy of the model is

the summation of the individual elements strain energies.

e
¥

4.6.2 Comments

The use of the total potential energy minimization
method in the analysis offered many advéntages. In addi-
tion to those stated in Chapter 3, the method facilitates
'the.chéice of different displacement functions for each
pléte of the model to suit its deformation. However,
accounting for both geometric and material non-linearities
introduced some difficulties in the analysis. Geometric

non-linearity resulted in long and difficult expression
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for the‘total potential energy. Material non-linearity
forced the use of a mesh subdivision for the‘diffe;ent. .ﬁ
- elements of the model to account for its. elasto-plastic

~ behaviour. This eliminated one of the main advantages

of using trigonometric fd;ctions to represent.the de—
formed shape of the modél, namely the orthbgonality

chara terjjtic. This characteristic would have reducéd

the totdl potential energy expression when integrated

over the volume of the structure and made the exact in-

-
e -

tegration of the function possible. As a result of the
above difficulty, numerical inEegration had to be used to
evaluate the total potential energy at each load incfemgnt.
The minimization process regquires the evaluatio; of
the total potential energy functionlseveral times at each
load increment, each time having.a certain set of coef-
ficients, until the functiQn reaches its minimumfvalue at
the cérrect solution. Because of the non-linearity of
the problem, the number of iterationSrequired to obtain
the solution can be very‘high. If the integration of
the total potential energy.function is performed for each
iteration the minimization process would have required a
very long execution time. To avoid this the total poten-
tial energy expression is divided into smaller terms where

the unknown coefficients of these terms can be taken as

common factors outside the integration sign. The integra-
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tion is then performed once and its results is stored in
the computer. At-each iteration only a multiplication.

process of the trial coefficients by the stored integrated

values is performed.

-

-~

4,7 MINIMIZATION QF THE TOTAL POTENTIAL ENERGY

4.7.1 Introduction to Function Minimization

The minimization of the total potential energy is

based on the principle of stationary potential energy

ll the possible displacements whiéh satisfy the
conditions of\h structural system, those corres-
_pondiﬁg to equilibrium configurations make the total po-
tential energy assume a stationary value".

The total potential energy assumes a stdtionary value
at the so-called critical points of the functions. The

.
critical points of a func®ion may be points at which the

function is a relative maximum or-minimum. = Utilizing the
principie of minimum potential enerqgy, the structural probléms
can be described mathematically as: therelis a certain func-
tionT({c}) where {é} are some unknown parameters, and it

is required to evaluate {c} such that T({c}) is minimum.

In the present problem, T is the total potential énergy,

and {c} are the unknown coefficients of the displacement
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functions that describe the deformed shape of the struc-
ture.
The neEessary condition for the occurrence of a local

minimum is that the variation in the total potential energy

due to a small variation in any of the unknown coefficients

is equal to zerc, i.e.,

ST =0 / (4.10)

For linear problems, the unknown coefficients of the
displacement functions will be guadratic in the total po-
tential energy expressioﬁ. Therefore, equation 4.9 will
lead to a system of linear independent simultaneous equa-
tions in these coefficients. These equations gre tbe
first derivatives of the total potential energy with
respect to each of the unknown coefficients. Solving
these equations, the magnitude of these coeff%Eients can
be determined. For non-linear problems, equation 4.9
leads to a system of non-linear eqﬁations in which the
unknown coefficients will be coupled. In most cases the
task of solving this system of nen—linear equations is

' ]

very difficult. Therefore, a better appréach is to make
use of the mathematical programming techniques to minimize
the total potential energy and hence optain the magnitude
of the unknown coefficients at which the total potential

Y

energy is minimum.



4.7.2 Minimization Technigues

Different minimization techni&ggs/caq be used to
evaluate the solution of any structuragj?roblgm through
"the minimization of its potential energy. Séée df these
techniques are known as ﬁon—gradient methods wWhere only
the numerical value of the function is required'to search
for the function minimum. Other techniques are classified
as gradient methods where both the function as well as its
first derivatives with respect.tc each of the unknown co;
efficients are required for the minimization process.

_ Many of these minimization” techniques are prcﬁf;mmed
and stored in-the céﬁputer library in the form of sub-
routines that can be used directly in solving any problem.
In the present study three different techniques were tried:
the conjugate gradient method (7), the guasi-Newton method
(8) and the Rosenbrock method (40). The first two methods
are classified as gradient methods while the third one is
non-gradient. The computer subroutines based on ﬁhe first
two methods are provided by the Internaticonal Mathematical
& Stgtistical Libraries Inc. (IMSL) while thaﬁ/ggsed on
the third method is provided by the University of Waterloo
computer library. The three methods were successful in
obtéining the solution as long as the beam model,was still

elastic and deformations were relatively small. However,

the first two methods failed to yield the minimum of the
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_total potential energy when non-linearity started to af-
fect the solution. The failure of these methods could be

due to the following reasons:
.

(i) The shape of the energy function in space.
In non-linear problems, irregular shape of the function

under minimization is expected.

(ii) The accuracy of evaluating both the function
and its gradient. As both the function and the gradient
were evaluated by numerical integration a certain level

of accuracy is lost in the calculations.

It was decided thén to use a non—-gradient methqd to
obtaiﬁ the minimum of the function. Therefore, the#
Rosenbrock's method was successfully employed in the
analysis. The method can handle b;th constraint and non-
constraint minimization problems. The complete Algorithm
of the method is given in reference (40). A computer
subroutiﬁe, named CLIMB, which is based on this method is
used to perform the minimization processt

The minimization technique is an iterative process
'in which the value of the function to be:minimized is
calculated at different points in space-until it reaches
its minimym at the. true solution. The coordinates of

egch of these pointé represent a set of values for the

unknown coefficients of the function. To start the search
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for the minimum, initial values have to be assumed for the
unknown coefficients as a starting point. If these

values were too far from the true solution, more itera-
tions will be required tec obtain that solution. This

will considerably increase the execution time, of the com-
puter program because in each iteration the value of the
functicon has to bé calculated again.

In the computer program, there is a limit on the
number of evaluation;of‘the total potential energy func-
tions. Based+¢on the anélysis of many HSS models, this
limit was set to 200 times the number of the unknown co-
efficients in the function. The compﬁter program will
indicate if the minimization process consumed all.the
" specified number of iteration without reaching the mini-
mum of the function. In this case, a better choice .for
the initial values of the unknown coefficients should be
made. In all the cases solved this limit was found to
be adequate to complete Lhe minimization when any reason-

able initial wvalues were assumed. -



CHAPTER V
MODELLING OF THE ROLLING PROCESS

5.1 GENERAL

Plastic bending of beams using rolling machines is
an often-used process in industry. Although the process
seems rather simple, a tiorough analysis of it is very
complicated. Shear stresses, friction between the beam
and the rollers and the continuously changing geometry
of the béam during the rolling process are some of the

?
factors that defy an accurate analytical modelling of

\\\/tﬁg/process. The problem is even more complicated if

the analysis has to account for the cross~section de-
formation of the beam under rolling.

The number of publications studying the cross-
section deformation of beams subjected to plgstic bend-
ing is very limited. The main concern of most of the _
studies is the cross-secion strength rather than its
local deformations (18). Also very few publicat%ons
have reported studies on the geometry of the beams
during the rolling process.'.Such publications either

report experimental tests or make several restrictive

60

S
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assumptions to simplify the analytical modelling of the
problem.

In this chapter, the method used to model Ehe rolling
process is explained. The relation between the radius of
bend of the specimen and its deflection is derived. The
effect of the frictional forces between the specimen and
the rollers and the method to account for that effect aregl
explained. Finally, the calculations of the res¥dual .

stresses resulting in the model from the rolling process

is presented.

5.2 RADIUS OF CURVATURE

The main objective oé studying the geometry of the
beam madel during the rolling pfocess is to find the re-
lation between the middle roller position, i.e. the
deflection of the beam, and the relaxed radius of bend.
The relaxed radius of curvature is equal to the radius of
curvature of the specimen while inside the machine, i.e.
.the plastic radius of curvature, minus the effect of the
specimen springback. |

One of the main assumption adopted by many resear-
chers is that the deflected shape of the beam during
rolling is circular. In this case the pléstic radius of
curvature can .be calculated by simple geometry of the

machine set up (20).
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The assu;ption of constant radius of curvaturetspn—
tradicts the actual loading conditions which produce a
linearly varying bending moment as shown jinp Fig. 5.1.b.
Therefore, the present analysis adost a solution,
aeveloped by Hanson and Jannerup (1%), in which the actual
bpending moment is accounted for. It is assumed that the
bending moment is a linear function of theflength of the
arc, s, bétween the rollers.

Assuming that the beam attains its plastic moment

Mp at the point of contact with the middle roller, the -

.beam will have different curvatﬁres on either side of

the point of contact. These curvatures can be represented

by (15):

"p_s

_ kl(s) = kr e o<s<s; (5.1)

x ~1 s
M S.—S

2 .

ko (s) = B - S. <S<S (5.2)

2 EIx S, 51 1 2 -

where: sy = d;stance betweep the fixed roller, on the exit
S}de, and the middle roller along the center
line of the beam;

S, = distance betyeen the two fixed rollers along
the center line of the bean;

kr = relaxed radius of bend;
Mp = plastic moment; and *
Ix = moment of inertia about the major axis.

The second terT/in equation 5.1 represents the effect



63

} Cwfz I - 2/2 — -

(a) Parameters determining the geometry of the specimen

M M
P

(b) Bending moment diagramm

Fig. 5.1 Geometry of the specimen at any instant of the
rolling process.
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of the beam springback. The plastic moment calculations
for a hollow-section made of a material having linear
strain hardening are given in Appendix D.

Using equations 5.1 and 5.2 four relations that

-

describe the geometry of the specimen under rolling can

be obtained (Appendix E). These relations—are:
Sl * S .
Ty s:.n(—eo)_ + f cos (90+f 'kl-(s)ds)ds.* - r,sin (90
o] o .
= , -
+ Of kl(s)ds) = /2% {5.3)
. S fs?_ . Sy |
I, sin(eo+ 6[ kl(s)d_s) + . cos (90+£ kl(s)ds
: _ 1 ’

" s . - - S .
. 1 :
+ sf kz(s)ds}ds + r, sin (904- f kl(s)ds)

1 _ o
) ». l
A 52 =
y— + - f _kz(s)ds) = /2 7 {5.4)
s ‘ »
1
<
. 1 52
r, cos (eo+ kl(s)ds + f kz(s)ds) - %, cos BO
o s
l .
J .
; Sl ' s 52
- :5[ sin (8 _+ f }cl(s)ds) ds - f 3 sin (?0
s
. o 1l .
s L]

1 s - . |
+ 5[ kl(s)ds + J Kz(s)ds)ds =0 5.5)
g . 1 | v
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: v | (5.6)
§ = ry +r, - Y. : .6
. -
where
§ = deflection of the beam under rolling; ;qF
y = distance between the fixed rollers and the |
¢ middle roller during rolling;
r,=r + h/2;

2
r, =1, + h/2 ; and

“h is the depth of the beam. All the other para-

meters  are as defined in Fig. 5.1.a.

Equations 5.1 and 5.2 are then substituted in

equations 5.3 to 5.6. Therefore for é specified value

of k., the four unknowns in equations 5.3 to 5.6 are s,,
Sor BO and §. Since it is not possible to separate these
éﬁkﬁqwns énd solve the equations directly, an iterative
. procedure must be used to obtain’ the solution. A multiple
iterative ﬁrocedure using -the chord meéhod toéether yith
linear interpolation iterative method, -is uﬁilized (27) .
In this procedure initial values are assumed for each 'of
the four unknans; the'sglutidﬁ thén iterates to thain a
value for each unknown while the other t@ree variables

are kept'constant! The procedure continues uftil conver-
L] . . ) . »

gence is'féached for all the values of the fou:;pnknowns.

A special computer program was developéd~£o carrylout
X ) .

the steps of the solution. Using this program the movement °

of the middle roller, which is equal to the deflection

‘ v i ' . v
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of the beam under rolling &, corresponding to any specific

radius of bend can be calculated.

¢

5.3 EFFECT OF FRICTION

One of the major forces resulting from the rolling
process is the friction force between the specimen under
rolling.and the rollers. These friction forces result
from the movement of the specimen during the rolling pro—‘
éess. Noting that the two fixed rollers are Qriving, the
friction forces will be as shown in Fig. 5.2. The bending
moment and deflections resulting from this system of
forces are as shown in Fig. 5.3.

. To represent the effect of friction on the finql de-
formations of the cross-section, new terms have to be
added to the original dispiaeement functions chosen to
#describe the deformations :esulting from the vertical
lqads_gnly. If the deflection of the center line of the
specimen is as shown in Fig. 5.3.c; the displacement

functions that represent the effect.of friction are:

¥

Plate #1 _ )

o &g £ gk, 28T B cos 227 | (5.7a)
) v, = gke_sin'fﬁfx ' 7 (5.7
Plates $2 and #4 |

ug = ~Ek, i%i‘y cos 281X | (5.7¢)
vg = éke.;in foix . . (5.7d)
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Fh/Z
Fh
\ Fh/2
'Fh/2 Fh/2
Fh/2 Fh/2
(a) Bending moment
e T —
J
(b) Deflection ‘

4

Fig. 5.3. Bending moment and deflection due to
‘ Friction forces.
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Plate #3

ue = - Lkg 4fn % cos iﬁ%ﬁ (5.7e)

we = gk, sin 43;* | _ (5.7£)

wh’ere_ke is an unknown coefficient and e =1, 3, 5, ...
These functions have to be added to the original displace-
ment functions given in section 4.3.4 to produce the total
expression for the diéplacement functions.

The total potential energﬁ is modified to a&count for
the effect of friction. Using the derivatives of/the addi-
“tional terms due to friction, the strain enerdy can be cal-

culateds+ The external work done by the friction forces is

given by:
- : " (5.8

We IM.8 { a)
where

8 = (wf)x:

F = friction force;

Mf = moment due to friction forces, given in Fig. 5.3.
Therefore,

W, = F 1—1-'(w) | + Fhw i° | + F E{w ). | (5 8b)

f 2 f'x £'x PIAME ¢ -
=0 x:-ig‘. .};:2,’ .

Fh (tk 2T) Q/: (5.8¢c)

-
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The magnitude of the friction force, F, is given

by:

F=neTF . {5.9)

where n is the coefficient of friction and F. = normal
force as shown in Fig. 5.2. ‘//

For the rolling process of steel sections, a coeffi-
cient of friction of 0.07 - 0.09 is usually assumed (45).
(In the present analysis, a value of 0.08 is u;ed. The
value of Fn depends on the deflected shape of the speéi- )
men during the rolling process. To simplify the problem
this shape is considered symmetric with respect to Fhe
migdle roller to produce the same friction at;éach of the
outer‘roIlegﬁz‘—Therefore, the friction force Fn_is given

N ¥

by: ) . -

_P | ‘
F =3 cos & . (5.10)

where P is the vertical load applied through the middle

roller and,8  as defimed in Fig. 5.l.a.The two driving

& -

forces, Fn’ at the outside roller have to overcome the
friction force at the point of contact between the speci-
- fien and the middle roller.
Itpshould be noted that as the sequence of the roll-
ing process is to first apply the logd while the specimen
is stationary until it attains certain éeflection under‘L

the middle roller and then to start rolliﬁg, the friction

-

-

o L.
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[ ]

forces do not contribute to the total potential energy

until the specimen starts to move during the rolling

process.

5.4 RESIDUAL STRESSES

When a structure is ioaded'ﬁéyond its elastic limit,
some parts of the structure are permanently deformed while
the others are still elastic. If the applied load is re-
maved, the plastically deformed pérts prevent the remain-
ing elastic parts from returning td‘théir iniéial posi-

tions causing some residual stresses (46). The magnitude of

these residual stresses depends on the stress-strain relation

of the matexial as well as on'the stresses in the material
befofe the.releasefof the load. In the present study, the
material behaviour under le@ding is best described by a ¢~
bilinear -stress-strain relation with linear strain harden-
ing in the inelhastic range. It is assumed that the stress?
strain relation of the material is the same in tension and
compressidpeand the effect of Bauschinger is neglected.
Assuming that the material is éxially logded in

tension beyond the yield point, i.e. loaded to point d

in Fig. 5.4, the load required to produce a tensile stress
equal to 03 is Pd. If the load is removed, unloading will
take place along the line d e £ g which is parallel to’the

elastic line a b ¢. This process is equivalent to applying

a load of the same magnitu@sq‘Pd, at the same position but
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Fig. 5.4. Residual stresses.
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r
in opposite direction. This lcoad will produce compressive

stresses to balance the existing tensile ones.  The load,

P required to nullify the tensile stresses in the element

ol‘
can be calculated by simple proportion:

L
]

2a
)

P = -P

o b {(5.11}

where

o
it

b the load reguired to produce stress equal to Oy i
\ ,

oy = the stress at any point along the line a-c; and

|

L)
a the stress in the element before unloading.

0

d

Obviously P, is smaller than Pd' If.the unloading process

continues until the value of Pd becomes zero, compressive
stresses will étart to develop causing residual stresses.
The magnitude of.éhese stresses depends on the value of
Pd' therefore two separate cases should be considered:

1. If PysP_+P_ where P_ %s the load required to
produce the yie¢fd stress’in the material and P_ is as. de-
fined before, the unloading range will 5; entirely ’
elastic and the resié%§l stresses will be‘equal to o,
where f is any point along the line e g . __ {

2. If Py>P, *+ P the unloading range will be elasto-
plastic since the stresses resulting from the unloading
process are larger than that-of the %}eld stresseé cf the -
material in compression. In ﬁhis-case the residual stres-

e .

ses are eqﬁal to cﬁ where h is any point on the line gi.
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The magnitude of the residual stresses can be esti-
mated by assuming that a material having a stress-strain
relation represenfed by the lines d gi is subjected to an
applied load equal to Pg- If the resulting stress is o_,

s
the residual stresses o will be given by:

9, ag ~ ¢ (5.12)

.However, in the first case, where PdSPO¥Pcr the stress ¢

can be calculated directly by simple proportién wiéh the
:Selastic stress at any‘point b. The qoncepts and proce-

dures explained above are also valid for a cas%‘of a

" material subjected to stresses in more than one direction

(46,22) .

5.5 ANALYTICAL PROCEDURE

-

At any instant of the rolling process, thé specimen
under rolling is assumed to be a a&pply supported beam
subjectea to concentrated load at miz-span. The lcad is
applied through the middle roller by changing its position
with respect torthe fixed ones. The position of the middle

‘roller is calculated based on }he radius of bend of the
specimen required after rolling. Therefore, given the
required radius of bend, the position of FH; ﬁiddle roller
can be calculated by solving equations %.3 to 5.6. The

distance moved by the middle roller to reach its new posi-

-



75

tiSn is equal to the deflection of the beam model at mid-
© point.

The ioad is applied incrementally until the model
attainé the same value of deflection calculated before.
This .is done through an iterative.procsss that is used
to search for that value of the deflection. In each itera-
‘tion a new value of the déflection is calculated and then
coﬁpared/to that calculatéd based on the required radius
of bend. The seareh ends if the differencé betweén the
two def%gctions is less than 10% of the magnitude of the
required one. The deflection and the-deformed sh;pe of

" the cross-section are then.%alculated in each iteration by
minimizing the total potential energy of the model cal-

culated at that load increment.

Once this deflection is achieved the rolling brocess
starts to force the same deflection at all the other sec-
tions df the model when they pass under the load. There-
foré, the model is assumed to be moving to allow thé ioad
to be applied at another point. As the rolling is a con-
. tinuous process in which-ever& section of the model has to
pass undef the logd, the more-the number of lcad applica-
tions, the closer will the modelliné be to the actual pro-
cesg. The present computer prograﬁ allows the loéd to be,
applied at ali the mesh points along the longitudinal axis

of plate #1l.
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When the specimen moves with respect to the rollers,
the stresses in each element of the model change according
to the change in its position with respéct to the load.

All the elements moving closer to the point of application
of the load become subjected to increasing stresses whilg-
those moving away from it experience an unloading process.;‘
Therefore, when the:specimen moves, new stresses in the
diﬂferent elements of the model are calculated. These
stresses act as initial'stresseé in the elements fdf the
next loadihg step.

Since the position of the middle roller does not change
during the rolling process, all sections of the model should
have the same deflection whén they pass under the load.
Therefore, the iﬁeration process to reach for the magni-
~tude of the deflection is perforTed again when the load is
at~4i£s new point of.application. At this point the fric-
tion forces starts to enter the analysis. Because the
elements of the model have some initial stresses,_the load
required t§ achieve the same &eflection will be less than. I
that used initially. It shguld_be noted that the present
analysis assumes that the rolling process is completed' in
one pass of rolling. A full éass of rolling is completed
yhen at least a length equal to the distance between the
fixed rollers pass under the load.‘JThis.length is enough

to give all the required information for any 1ongef specimen.
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When a part of the model leaves the machine, complete

unloading occurs leaving some residual stresses in that
part. The magnitude of these stresses is calculated using
the procedure explained in the previous sectioé;- There-
fore, for a specific radius of bend that-.is requifed after
rolling, the cross-section deformed shape and an estimite
of the residual stresses resulting from the rolling process

are obtained.



CHAPTER VI

EXPERIMENTAL PROGRAM

~
-

6.1 GENERAL . -
. The test program was carried out at Hodgson's Steel
and Ifon Works in Niagara Falls, Ontario, Canada, by‘éome

of the staff members of €he_5teel Company of Canada .
(STELCO}. A detailed rééort that deséribeé the experimen-
tai'ﬁngram‘was published in ﬁay i978}4).' Since the pre- ’
sen£ theoretital analysis is.based on the results obtaiﬁed
from the experimental program, it was felt tﬁgt a brief

summary of that program should be included here for com-

pleteness and for the benefit of the reader.

Bending of the HSS is carried out on a three-roller
bending machine of the pj%amid—type-similar to that shown
in Fig. 1.2. This metﬁgd of bending was chosen because,
when compared to other mgthods, it.was available, economi-
cal and ideally suited for larg; graduate bends requ¥red
for construction purposes. Because of the coét involved,
no considerétions were given to heafing the members before

bending'or to packing them with any filler materiéi.

78
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6.2 S?ECIMEN DETAILS

. A series of 54 tests were condyéted on 27 different
sizes ofjsquére and rectangular HSS. Two épecimens of 2.5 m
length were tested from each size. Profiles tééteé varied
‘from 101.6 x 50.8 x 3.81 mm to 254.0 x 254.0 x 9.53 mm.
All materials conformed to CSA Standard G40.21, Grade 50W,
Class H. This specificatioﬁ calls for a minimum yield.>
.strength of. 345 MPa, a tenéile strength in the range of
.450-MPa'to 620 MPa and‘a minimum eiongation of 22% in
50 mm. The chemical ingradients of this type of steel
are described elsewhere (4). Sizes up to 616 mm in cir-
cumference were produced by a continuous weld procéss,
_while larger sizes were producéd by an electric resis-
tance Weid process and were subsééuently stress relieved.

A list of all HSS sizeé‘tested and their cross--

section properties are given in Table 6.1. The variables

s

in this table are defined in Fig. 6.1.

6.3 MACHINE DESCRIPTION

The afrangement of'th§ rollers in.the pyramid type
three-roller machine are as shown in Fig. l.l.‘ Rollers
1 and 2 are fixed in place while roller 3 is movable and
is used to appiy the ioad to the specimen. This arrange-

ment makes the member under bending analogous to a simple
' I

beam with point supports at the fixed rollers, with the

~
-

e S Ml T L A



Table 6-1

Properties of Cross-Sections

80

1016.0

Member Size A I I x106 I xlO6

h b £ x y .

2 - 4 4

{rm) (mm) {mm) (mm ) (Trum ) (mm ) (mm )
-101.6 50.8 3.81 1060 304.8 1.17 0.40
101.6 50.8 6.35 1640 304.8 1.95 0.64
101.6 50.8 7.95 1950 304.8 2.21 0.71
101.6, 76.2 4.78 1530 355.6 2.18 1.39
101.6 76.2 6.35 1860 355.6 2.69 1.71
101.6 10l1.6 4.78 1770 406.4 2.75 2.75
101.6. 101.6 9.53 3200 406 .4 4.45 4.45
127.0 76.2 6.35 2280 406.4 4.70 2.10
127.0 76.2 9.53 3200 406.4‘} 6.13 2.58
127.0 127.0 4.89 2280 508. 5.60 5.60
127.0 127.0. 9.53 4240 508. 9.48 9.48
152.4 101.6 .. 4.78 2280 '508.0 7.28 3.89
152.4 101.6 1 9.53 4240 508.0 12.40 6.51
152-.4 152.4 6.35 3610 609.6 12.60 12.60
177.8 127.0 4,78 2760 608.6 12.40 7.41
177.8 127.0 6.35 3610 608.6 - 15.80 9.40
177.8 177.8 4.78 3250 711.2 16.10 16.10
177.8 177.8 7.95 5240 711.2 24.80 24.80
203.2 101.6 4.78 2760 608.8 14.70 5.03
203.2 101.6 6.35 3610 608.8 18.80 6.35
203.2 101.6 9.53 5210 608.8 25.80 8.57
203.2 203.2 6.35 4900 812.8 31.30 31.30
203.2 203.2 9.53 7150 812.8 43.90 43.90
254.0 - . 152.4 6.35 4900 Bl12.8 42.90 18.50
254.0 - 152.4 9,53 7150 812.8 60 .40 27.20
254.0 254.0 6.35 6190 1016.0 62.70 62.70
254.0 254.0 9.53 9080, 89.30 89.30
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4

1
-

A =\hb - (h-2t) (b-2t)

C = 2(h+b)
I = [bh3 - (b—2t)(h—2t)3]/12
I = [hb> - (h=2t)(b-2¢)°1/12

Fig. 6.1 Properties of the HSS.
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load being applied tO(fhe beam at mid-span through the
movable roller. A typiEéiktest arrangement is shown in
Fig. 6.2. All tesfs'were carried out on two separate
machines. The details of the rolls diameters of these
machines are shown in Fig. 6.3. Specimens up to and in-

cluding 152.4 mm in depth were bent on machine No. 1

while machine No. 2 was used to bend the larger sections.

6.4 TESTING PROCEDURE

Two specimens of eaéh of the 27 profiles were used
in the test. Each specimen was bent to two different
radii 6f curvature giving information about four levels
of cross-section distortions with'ghe éorresponding radii
of curvature for each profile used. The first specimen
was bent to a radius at thch minor distortion of the
cross~séction was apparent. A section was markeéhnear
one end of thé specimen and this section was subjected
to no further rolling. The remainder part of the speci-
‘men was then bent tighter until the level of distortion
was considered unacceptably large. The spécimen was then
removed from the machine and accurate measurements of
the radius'of-bgnd at each end of the specimen was made.

+The rolling procedure was thén repeated with the
second specimen of the same profile. 1In this case, the

radii of bend imposed had intermediate values between

those measured from the first one. Cross sections were
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Fig. 6.2. Typical rolling arrangement



- 710 mm

Bending Machine #1

Bending Machine #2

Fig. 6.3. Dimensicns of the rolTs in the rolling machines
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t then cut from the portions bent to each of the four radii

and these were subsequently accurately measured.

6.5 ANALYSIS OF THE EXPERIMENTAL RESULTS

Results from a total number of 108 cross-sections
represénting the 27 different HSS sizes were analyzed.
In all cases, the distortions resulting from the rolling
process had almost the same pattérn, i.e., major deforma-
tions in both the compression flange'ahd web plate facing

¥ the top of the rolling machine while minor di;tortions

resulted in the Eension flange and the otherAyeb. The
effect of the rolling process on the cross-section pro-
file is shown in Figs. 6.4 and 6.5, and a list of al
dimensions of the distorted cross-section is given in
Table 6.2 (see Fig. 6.6).

Based on these results two different parameters were

calculated:

it

(1) Percentage increase in widﬁh after bending (Pb)

bl—b
Pb = -5 X 100 (6.1)

(ii) Percentage bowing in compreSsion flange after

bending (pe);

“

Pe = prX 100 - | (6.2)

where b, bl' e, h are as shown in Fig. 6.6. A list of
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Longitudinal view of the HSS after

rolling
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Fig. 6.5, Side view of the HSS after rolling.
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- Table 6-2
Cross-Secions Dimensions After Bending
Member Size Radius Dimensions After Bending
h b £ R By R, B, e
(zam) (mm) (mm) (m) (mm) (um) (mm) (mm)
101.6 50.8 3.81 | 0.84 95.2 90.5 55.6 2.4
1.22 | 96.9. 93.7 54.0 1.6
1.83 | 98.4 95 .2 54.0 0.8
‘ 2.44 | 100.0 97.6 53.2 0.1
101.6 .. 50.8  6.35 | 0.76 | 96.9 95.2 54.0 1.6
. 0.91 | 98.4 96.9 §53.2 1.2
1.52 |101.6  100.0 52.4 0.8
2.13 |10l.6  100.0 52.4 0.8
101.6 ° 50.8 . 7.95 | 0.5%L | 98.4 96.9 54.0 0.8
0.66 98.4 97.6 - 54.0 0.8
1.07 | 100.0 99.2 53.2 0.1
1.52 |{10l.6  100.8 53.2 0.1
{ 101.6 76.2  4.78 | 0.91 | 95.2 88.9 81.0 4.8
1.22 | 96.9 91.3 80.2 3.2
1.52 | 97.6 93.7 80.2 2.8
2.44 98.4 96.9 78.6 0.8
101.6 76.2  6.35 { 1.14 95.2 89.7 82.5 2.4
- ' 1.52 | 98.4 93.7 79.0 1.6
2.13 98.4  95.2 77.8 0.8
2.44 | 100.0 96.0 77.8 0.8
101.6 101.6  4.78 | 1.52 | 88.9 77.8  110.3 9.5
2.44 | 92.1 85.7  106.8 7.1
3.66 | 98.4 95.2  106.4 1.6
4.88 | 98.4 ‘96.9  104.8 0.8
101.6 101.6  9.53 | 0.66 | 88.9 84.2  109.6 3.2
0.91 | 95.2 92.1  104.8 2.8
-~ 1.37 96.9 . 95.2  104.0 0.8
2.74 | 98.4 98.4  103.2 0.1
127.0 76.2  6.35 | ©0.91 |112.7  106.4 86.5 4.8
1.14 |114.3  112.7 84.2 4.8
1.83 {120.6  119.1 81.0 = 1.2
2.44 {121.4  120.6 ~79.4 0.8

gt et v b s
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Table 6-2 (cont'd)
Member Size Radius Dimensions After Bending
h b t R hl h2 bl e
(mm) (mm) (mm) (m) (mm) = {rm) (mm) {(mm)
127.0 76.2 9.53 0.91 | 115.1 111.1 83.3 2.0
. 1.22 119.9 115.9 81.4 1.6
1.68 120.6 119.1 79.8 0.8
2.44 121.4 120.6 79.4° 0.1
127.0 127.0 4.78 1.37 101.6 65.1 141.3 31.7
3.05 | 111.1 96.9 138.1 12.7
3.68 114.3 101.6 135.0 11.1
4.27 120.6 112.7 133.3 4.8
5.49 120.6 115.9 133.3 4.0
127.0 127.0 9.53 1.37 112.7 101.6 136.5 5.6
1.52 111.1 104.0 134.1 4.0
2.44 114.3 112..7 130.2 3.2
4.27 120.6 115.9- ° 130.2 0.8
152.4 101.6 4.78 2.44 138.1 120.65 115.9 8.0
3.66 139.7 . 125.4/ 112.7 4.8
6.10 | 144.5 %35)9 107.9 2.8
152.4 101.6 9.53 1.22 | 133.3 127.0 115.1 4.0
1.52 | 133.3 127.0 114.3 3.2
2.44 141.3 136.5 108.7 2.8
3.66 146.0 141.3 105.6 1.6
152.4 152.4 6.35 2.44 136.5 117.5 163.5 18.3
3.66 139.7 120.6 161.9 " 15.9
4.27 | 139.7 125.4 161.9 9.5
4.88 141.3 131.8 159.9 6.3
177.8 127.0 4.78 2.44 | 162.7 146 .0 136.5 17.5
4.57 | 168.3 147.7 135.0 9.5
7.32 169.9 157.2 134.1 4.8
13.72 174.6 168.3 127.0 1.6
177.8 127.0 6.35 2.44 165.1 152.4 136.5 11.1
4.27 166.7 158.7 136.5 6.3
6.71 | 168.3 161.9 133.3 3.2
10.97 171.4 168.3 130.2 2.8
177.8 177.8 4.78 7.32 158.7 127.0 188.9 28.6
) 10.97 | 165.1 158.7 185.8 6.3
18.29 171.4 165.1 183.4 2.4
19.81 | 171.4 168.3 181.0 1.6




Table 6-2 (cont'd)
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Member Size Radius Dimensions After Bendiﬁg

h b t. R h1 h2 bl e
(mm) . (rom) (mm) (m) (mm) (mm) (rm) {mm)
177.8 177.8 7.95 2.44 158.7 133.3 188.9 20.7
7.32 l6l.9 152.4 186.9 8.0
10.97 165.1 158.7 185.8 4.0
15.24 | 171.4  168.3  181.8 2.8
203.2 101.6 4.78 4.88 186.5 171.4 100.6 11.1
8.23 192.1 181.0 109.6 8.0
112.19 195.3 190.5 107.2 l.6
15.24 156.8 192.1 104.8 1.6
203.2. l101l.6 6.35 2.44 181.0 169.9 112.7 13.5
y 3.66 184.1 177.8 111.1 7.1
5.49 190.5 184.1 109.6 2.8
13.72 195.3 '188.? 103.2 * 1.6
203.2°  101.6  9.53 | 2.44 | 184.1  18l.0  112.7 * 3.2
: 3.66 187.3 184.1 111.1 2.8
4,57 190.5 185.8 ° 109.6 2.4
6.10 193.7 187.3 106.8 1.6
203.2 203.2 6.35 | 9.14 180.2 161.1 214.3 20.7
13.72 184.1 169.9 213.1 12:7
18.29 192.1 187.3 211.2 3.2
24,38 193.7 188.1 209.5 1.6
203.2 203.2 9.53 7.32 177.8 171.4 214.3 5.6
9.14 . 184.1 . 176.2 213.5 5.3
10.97 184:.9 182.6 213.1 4.8
13.72 187.3 184 .1 . 211.2 2.4
254.0 152.4 ©.35 10.97 228.6. 206.4 163.5 19.0
. 15,24 231.8 214.3 163.5 15.9
24 .38 238.1. 228.5 161.9 6.3
- 30.48 238.1 233.4 161.9 2.4
254.0 152.4  9.53 ‘| 7.32 | 225.4 217.5 165.1 4.0
10.97 228.6 223.9 165.1 3.2
113.72 '228.6 225.4 165.1 3.2
16.76 231.8 227.0 165.1 1.6
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91

Member Size Radius Dimensions After Bending

h / b t R hy R, b e
(mm) (mm) (mm) (m) (mm) (rom) (romm) (mum)
254.0 254 .0 6.35| 15.24 | 219.1 185.8  273.0  32.5
- 24,38 215.9 185.8 272.3 33.4
30.48 222.2 200.0 269.97 15.9
- 36.58 228.6 215.9. 269.9 12.7

254.0 254.0 9.53 10.97 212.7 196.8 -273.0 12.7 |

13.72 | 215.9 208.0 273.0 9.5
18.29 |-'222.2 212.7 258.3 - . 6.3
30.48 229.4 227.0 268.3 .’ 4.8

)




Befbre bending : After bending

Fig. 6.6. Cross-section dimensions before and after bending.



93

these parameters for each radius of bend measured is given
in Table 6.3. -

- The results presented in Table 6.3 are spread over a
Gery wide range. It was apparent that there is ne simple
theoretlcalﬁrelationship between the radius of bend and
any of the preV1ous parameters. Therefore, it was dec;ded
to seek such a relationship by using a multiple regression
analxsis. The dependent variables were Py, apd.pe while
Ehe independent variables were-the radius of bend (R), the
dimensicns of the cross-section (h,b,é) and-the moments Gd} .
of inertia.of.the section (I ,I ). Several regressioﬂ re-
lations were obtained u /;ang several p0551b1e combinations
of the independ:ht variables. The two relations which
gave the highest multiple correlation coefficient were
chosen to describe the two parameters Py, and Pe-

For the ;elatien predicﬁing the parameter Py, two
models gave the same multiple correlation coefficient.
The first model included R, h, b, t, I, &nd I, and the
secend one includeé R, h?/t, hz/tz, bh/t, I, and Iy' The

multiple correlation coefficients of the two models were

-
—

0.844. The relationship predicting the parameter P, Was

best described by a model which included R, h, b, t, I,

and Iy. This model gave a multiple correlation COefflCl—‘

ent of 0.906. Therefore, the two relatlons used ‘in the

”

analysis were: .



Table 6-3

Percentage Change in Properties

Member Size Radius Peréentage Change

: in Properties

h b t R Py Pg

(mm) - (mm) {mm) (m) (%) (%)
101.6 50.8 3.81 0.84 9.40 4.70
1.22 6.25 3.15

\ 1.83 6.25 1.55

2.44 4.70 0.25

101.6 Y 50.8 6.35 0.76 6.25 '3.15
0.91 4.70 2.35

1.52 3.15 1.55

2.13 3.15 1.55

101.6 50.8  .7.95 0.51 6.25 1.55
© 0.66 6.25 1.55
1.07 4.70 0.25

1.52 4.70 0.25

101.6 76.2 4.78 0.91 6.27 6.27
1.22 5.20 4.17

1.52 5.20 3.63

2.447 |  3.13 1.03

oo

101.6 76.2 6.35 1.14 8.33 3.13
A 1.52 3.63 2.10

2.13 2.10 1.03

2.44 2.10 1.03

101.6 101.6 4.78 1.52 8.60 9.38
: ) 2.44 5.10 7.02

3.66 4.70 1.57

4.88 3.12 0.77

101.6 101.6  9.53 0.66 7:82 3.13
0.91 3.12 2.72

1.37 2.35 0.77

2.74 1.57 0.12

127.0 76.2 6.35 0.91 13.53 6.27
' - 1.14 10.43. 6.27
1.83 6.27 1.57

2.44 4.17 1.03

e b e A Bl P e A Calee o ek




Table 6-3 {(cont'd)

. Member Size Radius Percentage Change
in Properties
h b ) t R Pp Pe
(mm) (mm}) (mm) (m) (%) . (%)
-
127.0 76.2 9.53 0.91 9.37 2.63
S 1.22 6.80 2.10
1.68 P 4.70 - 1.03
2.44" S 4.17  0.17
127.0  127.0 _ 4.78 "1.37 11.26 25.00
. 3.05 8.76 10.00
3.68 6.26. 8.76
4.27 5.00 3.76
5.49 5.00 3.12
127.0 127.0 9.53 1.37 7.50 4.38
' 1.52 5.62 3.12
N 2.44 2.50 2.50
4.27 2.50 0.62
152.4 101.6 4.78 2.44 14.07 7.82
. : 3.66 10.95 . 4,70
" 6.10 6.25 2.72
152.4 101.6 9,53 1.22 13.27 3.90
' 1.52 12.50 3.13 -
2.44 7.02 2.72
3.66 3.90 1.57
152.4 152.4 6.35 2.44 7.30 11.98
3.66 . 6.25 10.42
4.27 6.25 6.25
4.88 4.95 4.17
177.8 127.0 4.78 2.44 7.50 13.76
4.57 6.26 7.50
7.32 5.62 3.76
13.72 0.00 1.26
177.8 127.0 6.35 2.44 " 7.50 8.76
- 4.27 7.50 5.00
6.71 . 5.00 . 2.50
10.97 2.50 2.18
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Table 6-3 (cont'd)

, Member Size Radius Percentage Change

. / in Properties

h b t R Py, Pg -

{mm) () {mm) (m) (%) (%)

177.8 177.8 4,78 7.32 6.26 16.07

~ 106.97 4.47 3.57

18.29 3.13 1.34

19.81 1.79 0.90

177.8 177.8 7.95 2.44 6.26 11.61

7.32 5.13 4.47

10.97 4.47 2.23

15.24 2.23 1.56

203.2 101.6 4.78 4.88 7.82 10.95

8.23 7.82 7.82

12.19 5.47 1.57

15.24 3.12 1.57

-203.2 10l.6 6.35 2.44 10.95 13.27

3.66 §5.37 7.02

5.49 7.82 2.72

13.72 1.57 1.57

203.2 101.6 9.53 2.44 10.95 3.13

: 3.66 9.37 2.72

+4.57 7.82 2.35

6.10 5.10 1.57

203.2 203.2 6.35 9.14 5.47 ©10.16
13.72 -~ 4,89 6.25 4

18.29 3.91 1.56

. 24.38 3.12 0.79

203.2 203.2 9.53 7.32 5.47 2.74

9.14 5.07 2.61

10.97 4.89 2.35

13.72 3.91 1.17

254.0 152.4 6.35 10.97 7.30 12.50

15.24 . 7.30 10.42

24,38 6.25 4.17

30.48 6.25 1.57




Table 6-3 (cont'd)
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2

Member Size Radius Percentage Change
in Properties
h b, t R Py . ‘P
(mm) (mm) . {mm) {m) (%) ~ (%)
254.0 152.4 9.53 |  7.32 8.33 2.60
- 10.97 8.33 2.08

. 13.72° 8.33 2.08

16.76 B.33 1.05

254.0 254.0 6.35 15.24 7.50 12.81
24.38 7.19 ° " 13.13

. 30.48 6.25 6.25

36.58 6.25 5.00

254.0Q 254.0 9.53 10.97 7.50 5.00
13.72 7.50 3.75

18.29 5.63 2.50

30.48 5.63 1.88

«d
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pt = (RO%) x 000 o 207y x (170006

« (1.142) (1 "ﬁ;594) x (0.00034) (6.3)

. x Y

-
bt = (g-1-513, . (,=0.098, |, -14.173) . | ~6.943,
'
. (Ix—1.332) X (iy7.251) x (0.000225) (6.4)

The first model describing Py, was chosen over thé‘
second one only because of its simplicity and similarity
to the model describing peL The standard error in equa-
tioms 6.4 and 6.5 were 0.275% and 0.448%, respectively.

To test the significance of the multiple correlation
coefficient (r) the critical value for r is calculated.
For the number of observations = 92, 6 independent véri—
ables and a 95% level of significance, the critical value
for r = 0.331 (23). Sincefthe multiple correlation coef-
ficients obtained for the relations 6.3 and 6.4 are greater
than 6.331 the hypothesis that there is no association
between the variables is rejected and the relations are
considered significant.

Comparisons between the measured distortion of the
cross—-section and those predicted by eguations 6.3 and 6.4
are given in Tables 6.4 and 615, respectively.

Equations 6.3 and 6.4 ére only valid for sections

with web depth in the range 110.0 mm to 205.0 mm. The
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Table 6-4

Comparison Between the Measured and
Estimated Values for Py

o

Member Size Radius P % |

h b t R Measured Estimatmf bifference
(mm) {mm) {mm} (m) (%)
101.60 50.80 3.81..| 0.84 9.40 .  9.22 -1.94
1.22 6.25 6.84 9.41
1.83 6.25 4.94 ~-20.90
2.44 4.70 - 3.93 -16.44
101.60 50.80 6.35 | 0.76 6.25 6.88 10.03
0.91 | 4.70 5.95 26.d8
L 1.52 3.15 3.95 25.39
2.13 3.15 3.02 -4.27
101.60 50.80 7.95 | 0.51 6.25 8.19 30.96
- | 0.66 6.25 6.66 6.55
1.07 4.70 4.52 -3.73
1.52 4.70 3.42 ~27.30
101.60 76.20 4.78 | 0.91 6.27 8.15 29.96
1522 5.20 6. 44 - 23.94
y 1.52 '5.20 5.41 3.95
2.44 . 3.13 . 3.77 20.58
101.60 76.20 6.35 | 1.14 | '8.33 5.46 ~34.40
- 1.52 3.63 4.34 19.60
2.13 | 2.10 3.31 57.83
2.44 2.10 2.97 41.57
101.60 101.60 4.78 | 1.52 '8.60 5.95 ~30.77
2-44 5-10 4-08 -20.05
3.66 4.70 2.95 ~37.28
4.88 3.12 2.34 = -24.94
101.60 101.60 9.53 | 0.66 7.82 6.77 -13.45
. 0.91 3.12 5.23 . 67.78
1.37 2.35 3.77 60.58
2.74 1.57 2.17 38.05
127.00 76.20 6.35 | 0.91 13.53 10.41  -23.05
| 1.14 10.43 8.70 -16.62
1.83 6.27 5.96 -5.02
2.44 4.17 4.73 13.46

*
by Eq. 6.3



Table 6-~4 (cont'd)
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Member Size Radius Py
h ‘ b t R Measured Estimated Difference
{mm) (mm) - {mm) {m) (%)

127.00 76.20 9.53 | 0.91 9.37 7.78 ~16.94
. 1.22 6.80 6.16 —9.48

1.68 4.70 4.77 1.39

] 2.44 4.17 3.54 ~15.22
127.00 127.00 4.78 | 1.37 | 11.26  11.09 ~1.53
3.05 8.76 5.85 33.28

3.68 6.26 5.03 ~19.65

4.27 . 5.00° 4.47 -10.69

127.00 127.00 9.53 | 1.37 7.50 6.42 -14.45
1.52 5.62 5.90 5.06

2.44 2.50 4.04 61.74

4.27 2.50 2.58 3.37

152.40 101.60 4.78 | 2.44 14.07 9.34 ~33.61
3.66 10.94 6.75 ~38.32

6.10 6.25 4.49 ~-28.19

152.40 101.60 9.53 | 1.22 13.27 9.67 -27.13
1.52 12.50 8.11 -35.12

2.44 7-02 5-55 -20.88

3.66 3.90 4.02 2.96

152.40 152.40 6.35 | 2.44 7.30 8.64 18.40
3.66 6.25 6.25 0.00

o 4.27 6.25 5.52 ~11.62

4.88 4.95 4.96 0.29

177.80 127.00 4.78 | 2.44 7.50 13.82 82.25
4.57 4.57 6.26 8.36

7.32 7.32 5.62 5.74

177.80 127.00 6.35 | 2.44 7.50 11.06 47.49
4.27 7.50 7.07 _5.74

6.7t .| 5.00 4.91 -1.77

10.97 2.50 3.32 32.93

177.80 177.80 4.78 | 7.32 6.26 6.56 4.72
10.97 4.47 4.74 6.11

18.29 3.13 3.15 0.67

19.81 1.79 2.96 65.14
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Member Size Radius pb%

h b t R |Measured Estimated Difference
{mm) {mm) {mm) {m) (%)
177.80 177.80 -/ 7.95 | 2.44 6.25 10.47 67.21
_ BES 7.32 5.13 4.35 -15.27

10.97 4.47 3.14 -29.65

15.24 2.23 2.42 8.41

203.20 101.60 4.78 | 4.88- 7.82 9.66 23.50
' . 8.23 7.82 6.36 -18.70

12.19 5.47 4.64 15.12

15.24 3.12 3.88 24.47

203.20 101.60 6.35| 2.44 16.95 13.64 24.52
3.66 9.37 9.86 5.21

5.49 7.82 7.13 -8.86

13.72 1.57 3.43 118.17

203.20 101.60 9.64 | 2.44 10.95 10.14 -7.42
. 3.66 9.37 7.33 -21.78

4.57" 7.82 6.14 -21.53

6.10 5.10 4.87 © -4.50

203.20 203.20 6.35] 9.14 5.47 6.03 10.15
13.72 4.89 4.35 -10.97
18.29 3.91 3.46 -11.53°

24.38 3.12 2,75 -11.91

203.20 203.20 9.53 | 7.32 5.47 5.19 -5.12
9.14 5.07 4.35 -14.29

10.97 4.89 3.76 -23.21

13.72 3.91 3.14 -19.70
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Table 6-5 .

Comparison Between the Measured and
Estimated Values for Pe

Member Si:ze Radius pe
) h b t R Measured Estimated* Difference
{(mm) (mm) (rm} (m) (%)
101.60 50.80 3.81| 0.84 4.70 3.75 ~ -20.13
1.22 3.15 2.13 - -32.25
1.83 1.55 1.16 - =-25.44
2.44 0.25 0.75 200.00
101.60 50.80 6.35] 0.76 3.15 2.03 ~35.45
0.91 2.35 1.55 -34.11
1.52 | 1.55 0.71.C -54.03
2.13 1.55 0.43 S -72.41
101.60 50.80 7.95} O0.51 '1.55 1.46 -5.69
0.66 1.55 0.99 -36.15
1.07 0.25 0.48 90.57
1.52 0.25 0.28 12 .04
101.60 76.20 4.78 | 0.91 6.27 8.48 35.25
1.22 4.17 5.44 30.51
1.52 3.63 3.90 7.50
2.44 1.03 1.87 81.79
101.60 76.20 6.35| 1.14 3.13 2.85 -8.96
1.52 2.10 , 1.84. -12.19
2.13 1.03 1.11 7 .45
2.44 1.03 0.90 -12.51
101.60 101.60 4.78 | 1.52 9.88 6.84 -30.81
| 2.44 7.02 3.34 . -52.42
3.66 1.57 1.81 15.20
4.88 . 0.77 1.17 52 .00
101.60 101.60 9.53| O0.66: 3.13 3.46 10.68
0.91 2 2.13 -21.66
1.37 g?%vu 1.15 49.01
2.74 0.12 0.40 235.02
127.00 76.20 6.35| 0.91 6.27 8.27 . 31.90
1.14 6.27 5.88 -6.20
1.83 1.57 2.87 83.05

*
by Eg. 6.4
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Table 65 (cont'd)
Mgmber Size Radius Pe
h b t R Measured Estimated Difference
(mm) {mm) {mm) | . (m) (%)
127.00 76.20 9.53 | 0.91 2.63 2.14 -18.51
1.22 2.10 1.38 ~-34.50
1.68 1.03 0.85 =-17.70
o | 2.44 0.17 0.48 183.49
127.00 127.00 4.78 | 1.37 25.00 22.29 -10.83
: 3. 10.00 6.64 ~33.58
3.68 8.76 5.00 =-42.93
4. r 3.76 3.99 6.17
"127.00 127.00 9.53 1.37 4.38 4.18 -4 .65
1.52 3.12 3.57 ( _14.39
2.44 2.50 1.74 -30.24
4,27 0.62 0.75 20.62
152.40 101.60 4,78 2.44 7.82 10.85 38.77
' 3.66 4.70 5.88 25.02
6.10 2.72 2.71 -0.27
152.40 101.60 9.53 1.22 3.90 ' 5.29 35.76
. 1.52 3.13 <% 3,80 21.29
2.44 2.72 1.86 -31.79
3.66 1.57 1.00 ~36.02
152.40 152.40 6.35 2.&4 11.98 11.67 -2.58
B.Eﬁ 10.42 6.32 -39.36
4, 6.25 5.00 ~19.93
4.88 4.17 4,09 -1.94
177.80 127.00 4,78 2.44 13.76 23.81 73.00
"4.57 7.50 9.21 22.82
7.32 3.76 4.52 20.12
177.80 127.00 6.35 2.44 8.76 13.47 53.71
’ 4.27 5.00 5.77 15.48
6.71 2.50 2.42 -3.15
10.97 2.18 1.39 -36.46
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Table .6=-5 {(cont'd)
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Member Size Radius Pe
h b t R Measured Estimated Difference
(mm) (rp) (mm) | {(m) : (%)
177.80 177.80 4,78 7.32 16.07 7.52 -53.20
) 10.97 3.57 4.08 14.24
18.29 1.34 1.88 40.43
18.81 0.90 1.67 85.30
177.80 177.80 7.95 2.44 l1l1.61 14.95 28.80
7.32 4.47 2.84 -36.53
10.97 2.23 1.54 -31.02
. 15.24 1.56 0.94 ~-40.03
203.20 101.60 4.78 4.88 10.97 9.35 -14.80
8.23 7.82 4.24 ~-45.80
12.19 1.57 2.34 50.00 .
15,24 1.57 1.67 "6.28 =
203.20 10l1.60 6.35 2.44 13.27 14.50 "9.23
3.66 7.02 7.85 11.80
5.49 2.72 4.25 56.24
13.72 1.57 1.06 =-32.29
203.20 10l1.60 9.53 2.44 3.13 4.99 59 .41
3.66 2.72 2.70 -0.67
4.57 2.35 1.93 -17.84
6.10 1.57 1.25 ~-20.55
RN
203.20 203.20 6.35 9.14 10.16 5.69 -43.97
13.72 6.25 3.08 ~50.73
18.29 1.56 1.99 27.76
24 .38 0.79 1.29 63.32
'203.20 203.20 9.53 7.32 2.74 —.3.52 28.51
9.14 2.61 2.52 -3.59
10.97 T~ 2.35 1.91 -18.76
13.72 1.17 1.36 16.33
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rasults of the four deeper specimens. (254.0 mm) were soO
inconsistent that they tended to distort the values ob-
tained in the ;egression analysis. When these results

are included in the previous models the multiple correla-
tion.coefficienté dropped to 0.616 and 0.647 for equations
6.3 and 6.4,lrespectively. Therefore, these results were
excluded from the analysis. A possible reasbn for this
inconsistency is that during the rolling of these déeper
sections, the bending machine seemeé to be working -at its

maximum capacity and frequent adjustment of the movable ]

roller was required'in order to complete the process.

‘6.6 MOMENT OF INERTIA OF THE DEFORMED SECTIONS

The deformation resulting from the'rqlling process
also reduce "the moment of inertia of the section. This

reduction increases with decrease in the radius of bend.

The percentage reduction, P;s in the moment of inertia Ix’

is described by -

3

I I '
.pi - X Ireduced % 100 - (6.5)
R 4
where Ireduced is the moment of inertia of the deformed

section. Values of pi for all the specimens tested in the

‘,expérimental program are given in Table 6.6 . Thirty six

specimens ex

essed reduction in the moment of inertia

of less than 10%; whilg 47 specimens showed a reduction
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between 10% and 20%, ;na the Femaining 25.specipené
-~ exhibited reduction of more than 20%.
" "It should be noted qpatwsince the_rol}ing‘Erocess
. induces residual stréssesi;n the ‘different parts of tﬁe
'rolled specimens; the moment of‘%nedtig of the deformed

section will no lapger be directly probortional to its

strength.
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Table 6.6

Reduction in the Moment of Inertia

Member Size Radius Percentage Change in
h b £ R I (py)
(mm) (mm) (mm) (m)
101.6 50.8 3.8l 0.84 11.78
. 1.22 8.81
~ 1.83 _ 5.94
2.44 2.96
101.6 50.8 6.35 0.76 8.09
1 0.91 5.57
1.52 0.00
2.13 - 0.00
"101.6 50.8 7.95 0.51 . 5.09
0.66 "4.54
1.07 1.90
1.52 0.00
101.6 76.2 4.78 0.91 | 13.73
- > 1.22 10.67
1.52 L 8.22
2.44 . 5.88
101.6 76.2  6.35 1.14 " '12.87 ‘
1.52 5 7.94
2.13 .43
2.44 ’ 4.93
101.6 10l.6 4.78| 1.52 27.09
2.44 19 l?O C.’,:t
3.66 ' 6.48
4.88%| 5.93 o
101.6 101.6 9.53{ 0.66- |, 24.97
. 0.91 13.57 .
1.37 9.67 ]
2.74 | 5.75
127.0 76.2  6.35 ‘0.91 20.06
. 1.14 . '16.28
1.83 8.25 ,
2.44 7.35




Table 6.6

N

(cont'd)
Member Size Percentage Change(iiﬂ
Radius I (p.)
h b t R x Py
{(mm) (mm) (mm) “(m)
127.0 76.2 7 9.53 0.91 17.26
1.22 10.85
1.68 9.08
2.44 7.62
127.0 127.0 4.78 1.37 47 .87 "
“ 3.05 26.91
3.68 22.50
4,27 11.74
5.49 10.16
127.0 127.0 353 1.37 24.78 .
: 1.52 25.61
2.44 19.22
4,27 11.46
152.4 101.6 4.78 2.44 20.12
3.66 17.79
6.10 9,94
152.4 101.6 8.53 1.22 22.18
1.52 22.39
2.44" 13.71 .
3.66 8.82
152.4. 152.4 6.35 2.44 24.60
3.66 21.26
4.27 19.35
4.38 15.91
177.8 127.0 - 4.78 2.44 18.78.
4.57 15.04
7.32 10.90
13.72 %5.51
177.8 127.0  6.35 2.44 15.31
4.27 12.05
6.71 10.59
10.97 6.95
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Table 6.6 {(cont'd.)

Member Size

Radius

Percentage Change in

h b £ R I, (py)
(mm) (mm) (mm) J(m)
177.8 177.8  4.78 7.32 27.89
10.87 13.63
18.29 7.87
19.81 7.11
] . *
203.2 101.6 4.78 4.88 17.00
8.23 11.05
12.19 6.96
15.24 6.23
203.2 101.6 6.35 2.44 20.02
: 3.66 16.26
5.49 11.12 L.
13.72 8.67
203.2 101.6 9.53 2.44 15,25
: 3.66 12.82
4.57 10.88
6.10 9.31
203.2 203.2 6.35 9.14 24.34
‘ 13.72 19.78
18.29 10.33"
24.38 9.39
203.2 203.2 9.53 7.32 23.15
- 9.14 18.25
10.97 15.91
13.72 14.31
254.0 152.4 6.35 10.97 20.96
15.24 17.72
24.38 11.77
30.48 10.61
254.0 152.4  9.53 7.32 19.90
10.97 16.94
13.72 16.56
16.76 14.72
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Table 6.6 (cont'd.)
=
Member .Size Percentage Change in
Radius I (p.)
h b t R x ‘Pi
(mm) (mm} (mm) (m) :

254.0 254.0 .. 6.35 15.24 29.81
. 24.38 31.16
i 30.48 25.53
36.58 19.16
254,0 254.0 9.53 10.97 30.49
13.72 26.60
18.29 23.18
'}0.48 16.61

\.

~
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CHAPTER VII f
RESULTS OF THE THEORETICAL ANALYSIS

7.1 GENERAL

The procedures.explained in Chapters 4 and
applied to the different profiles of the HSS.. The\calcula-
tions are carried out using a computerrprogram.that'

e
developed by the author. A flow chaft_that describes\the

In this chapter, general results such as the distri-

~
bution of bot? the local and overall dlsplacements an

S

distribution of the different component of stresses at

the

different sections are given. The effect of friction be—:
tween the specimen and the rollers is discussed and the
distribution of the residual stresses resulting from the
rolling process is shown. Comparison between the results
of the 'present analysis and that of a reference example is
given and comparison between the experimental and theore-
tical results is also presented. Finally, a paramefric
study is carried out to show the effect of the change in
the cross-section dimensions on the resulting distortions

in the section at various constant radii of bend.

~
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READ DATA

!

Calculate the coordinates of each element
in the mesh subdivision of each plate

N . Estimate the deflection, 45, at mid-point
based on the required radius of bend

Calculate the ek%ternal work due to

112

the initial load F

Calculate the elastic strain energy

- 5 ]
Calculate the plastic strain energy |

Ld——+ Calculate the total potential energyl

,
friction in addition to F

/

[Aginimize the total potential energx_J . .

Calculate the overall deflecticon, &, and the local

i deformations in the cross-section

Calculate the strains and stresses in the different
elements of the model

NO

F+5F

F

I
Indlude the effect of

‘ YES

. llove -the specimen and adjust
. the stresses in each element

The whole HSS lendath pas
gnder the middle roller

. T .

Fig.. 7.1, :Flow chart for the computer program.

-
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9

7.2 CONVERGENCE OF THE DISPLACEMENT FUNCTIONS

The numhg; of terms used in each series to describe
fT\'51:1115-, deformedlghape of the HSS afte; bénding is oné:qf the
main‘factors that affect the accuracy of.the.theoretical
results. The larger the number of terms, the closexr the
solution to the true one. In the present study, because
of the limitation on the storage capacity of the available
computer, oniy three terms are considered in each series.
Although the number of tefms is limited to three, it is
felt from the convergence of both the displacemdyfts and the
stresses that three terms are adequate to givé- easonably
accurate estimates for both ﬁhe deformations and the stres—
ses., According to Oden (34), three terms of the series
.that is used 'to prresent the overall deflection of the '
beam model, equation 4.1, will result in almost the exact
value for the displacement and with an error of 1§§§ than
10% in the stresses which is practically acceptable. The
convergence of the different displacement functions as well
as the stresses is demonstrated by solving a beam model of
203.20 x 203.2 x 9.53 mm cross-section dimensions; The
solution was carried out using one, two “‘and three terms.
The results of the three different solutions are given in

Table 7.1 and 7.2.
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7.3 COMPARISON WITH REFERENCE EXAMPLE

All efforts failed to find a similar problem for the
purpose of coﬁparison. It is believed that this is the
first study on rolling of hollow structural sections.
Therefore, the local deformations are only compgred to
those obtained from the experimental program in section
7.7. However, to prove the validity and the accuracy of
the operations caréied out by the computer program, the
maximum overall displacement of the center line of the
model, at mid-span, while still stationary is compared to
that obtained by the finite element method (24) in both
the elastic and plastic range. ‘ |

The dimensions of the beam and the stress-strain
rglation useF in this example are as shown in Fig. 7.2a
and 7.2b, respectively. The stress-strain relation is
approximéteq as shown in ghe figure to suit the present
computer program. In the finite element method a total
number of 768 elements were used while only 265 elements
in the present study gave reasonable agreement as shown
in'Fig. 7.3. Bgcause of the symmetry of the problem only
one-guarter Pf the model was solved.

The difference in the results between the finite
element method and the present study could be due to one
or more of the following reasons:

(2} The difference in the number of ‘elements used.
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i 6 . 1mm o e
- D
l 660 mm {
| ¥
(a) Dimemnsions
Stress
MPa
400 ~
pap—
300. = //
- / finite element
y) .
200 present analysis
100 —
L ] 1 1 L ] | | - _
1 2 3 4 6 7 8 strain x 10
(b) Stress-strain relations
Fig. 7.2, Dimensions and stress-strain relation for the

reference example.
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{b) The approximation in the stress-strain relation
(see Fig. 7.2b). ~ - .

(c) The approximation in estimating the magnitude
. of the stresses that results from using\the
Rayleigh-Ritz method.

7.4 DISPLACEMENT AND.STRESS ﬁISTRIBUTIOﬂS : (\
| The displacement of any point in the beam model con-
sists of two parts: overall and local displacéments. The
magnitude of such displacements depends on the applied load,
the stress level at the point at the time of the loadrap—
plication as well as on the position of the poin£ with
respect to the load. At any segtion,'the digplacement'
profile is obtained from the respective assumed displace-
ment function. The magnitude of the‘applied load and the
stress level at the different points-of the model will only

-

affect the magnitude of such displacement.
A cross-section of dimensions 177.8 x 127.0 x 6.35 m
is used to demonstrate the different displacement prpfiles
obtainéd from the assumed displacement functions. Each -
plate in the model was divided into 16 elements. The mode}
was subjecteé to different loads of 200, 300, 400, 500,.
- 5325 and 550 KkN. ‘Ali élements were élaétic“until the 500'kN
ioad ﬁés applied. This load initiatéq.?ield in 8 elements
in each of the compressibn and tension-flanges. In each

web, 12 elements belowed in yielding at a load of 525 KkN.

The 'profile of the out-of-plane displacement in the trans-

-
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.

verse and longltudinal directions are as shown 1n‘Flg

7.4a and 7.4b, respectively. Also the dlstrlFutlQE of the
in-plane displacement in the x and y directions are shown
in Figs; 7.5 and 7.6, respectively. -

=1

The disrribution of the stresses Tt cy, T#y and o

are shown in Figs. 7;7, 7.3,'7.9 and_7.10, respectively.
.The distribution of these stresses are shown in two sections
along the‘beam model- at x = /8 and x = 3%/8. It should |
‘be noted that the stresses resultlng from the overall defor-
mations are more/dominant when compared to that resultlng
from the local deformatlons. Therefore, although the ken-
sion flange has relativelf.small local deformations compared
" to that of the‘compression flange, -both flanges yield almost
at the same 1oa§; ) \ o
.In-the web.element, bending stresses age dominant at
. its ends while shear stresses. are much larger'than that of
behdiné in .the middle part of the web. That is the reason

for the nearly even distribution of the effective stresses

‘along the wweb elements.

7.5 'EFFECT OF THE NUMBER OF ELEMENTS IN THE MESH

- SUBDIVISION . ¥
-

" The number of elements in the mesh subdivision of each

1

-component of the beam model has an important influence on

-

the theoretical results. Since ﬁhe stresses are calculated

at the center of each element, a larger number of smaller

~TN
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P = 525 kN
4
P = 550 kN -TF\
o
P = 525 kN
P = 550 kN
\ L P =575 kN
\
p——] scale \ /
1 mm \ - /
\ /
= . ;
A
Q‘ ) -
--é_*——_\
) o
(a) Transverse'pfofile at x=3./8
Cc.L
}——o/ scale

4 mm

(b) Longitudinal profile along the centre of the compression
flange '

Fig. 7.4. Out-of-plane displacement profile.
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. P = 550 kN

P = 525 kN — : .
P = 500 kN ‘
P = 400 kN ,
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P=400 kN
P=500 kN
-P=525 kN
P=550 kN
jt  sCale
6.5 mm
N (a) Transverse distribution at *
x = g/8
c.L.
i scale .
0.02 m
P=500 kN
525 kN
550 kN

(b) Longitudinal distribution along the center of the
compression flange.

Fig. 7.5 Distribution of in-plane displacement irn the
x-direction. : ’
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P =
N P =
P =
F—- scale
0.04 mm
P = 550°kN
P = 525 kN
2 500 kKNe—,
(a) Transverse directien at x=3/8%
b—— scale

0.02 mm
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5007kN -
525 kN
550 kN

C.L.

P = 500 kN

P = 525 kN
P = 550 kN

z

(b) Longitudinal direction along the center of the
compression flange.

Fig. 7.6. Distribution of the in-plane diSplace3ent in the
y-direction.
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P = 500 kN
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Fig. 7.7.

A |

o (a) Section at*>x=34/8

¥ —————

- hY
P
P

+

(b) section at x=2/8

Distribution of o for two sections at 1/8

and 3/8 of the span.
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o
]

525 kN

= 500 kN \X"

= 525 kN

| p——{ gcale
100 kN

-+~

{a) Section at x=31/8
500 kN—
525 kN

s~
]

]

P = 500 kN \X'

P = 525 kN X

(b) Section at x=%/8

Fig. 7.8. Distribution of o_ for two sections at
1/8 and 3/8 of the span.
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500 kN

525 kN

Ea) Section at x=3/8
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Fig. 7.9.

J

(b) Section at x=L/8

Distribution of T
S XY

and 3/8 of the span.

for two sections at 1/8
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P = 500 kN

P = 550 kN j
.
P = 500 kN
P = 550 kNﬂ‘
p——’ scale =
250 kN =
(a) Section at x=3%/8
500 kN
550 kN

BN
N A~

(b) Section at x=%/8
-~

Fig. 7.10. Distribufiocn of g, in two sections at
1/8 and 3/8 of the span.
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elements arg.’ more Eapable of detecting tﬁe initiation and
the progress;on of yielding in the different parts of the
model. Thus, this‘refined modelling will give closer re-
sults to the actual values.

The effect of the number of elements is demonstrated
by solving the problem explained in section 7.3 with
variable number of elements. Mesh subdivision with 3z,
64-and 256 elements are used. The deflectioﬁ of the center
line of the beam is calculated.at~different load values.
The relation between the applied load and the maximum de-
flection at mid-span is shown in Fig. 7.11.

It ié cleér'that as the number of elements increases,
the obtained results become closer to the finite element
sol;tion. It should also be noted that as long as the

‘ﬁodei is entirely elastic all of the three mesh subdivi-

sions vielded the same deflection regardless of the number

of elements used.

7.6 EFFECT OF FRICTION

Friction forces act in the plane of the flanges of the
cross-section as a result of the contact bet&eén them and
the rollers of the bending machine. In modelling the rol-
ling process the friction forces are included in the anaiysis
ﬁhen the speeimen starts to move during the rolling process.

The effect of friction is studied by solving three
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different models, each model is solved twice. The first
solution accounted for the effect of friction while the
sec:;d disregarded that effect. In all cases the effect

of friction was too small to affect the final.defprmations
of the model. The change in the magnitude of deformations
resulting from accountiné for the friction forces was less
than 1%. This effect is so small that it can be neglected .
without considerable errgr in the results. This conclusion
is supported by many studies conducted in the rolling Pro-

cess where the effect of frictien was neglected—due to its

small value (1, 15, 21}).

7.7 DISTRIBUTION QF RESIDUAL STRESSES

The magnitude of the residﬁal stresses resulting_at
different parts of the HSS member due to the rolling process
depends on the geometry of the cross-section, its ﬁaterial -
properties as well‘as.on the imposed radius of bend. The
computer program’developed here;n, predicts the residual
stresses at the center and corner points of all the elements
in the mesh subdivision of the four plates composing the. HSS.

The magnitude of the residual stresses resulting, from
the roiling process could be quite consideraﬁle. To demon-—
strate, the residual stresses at the center of the compres-
sion flange #1 and at the qguarter point of the web plate #2

for different profiles of HSS are given in Table 7.3. It

can be observed that the effective stresses calculated from
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the residual stresses could be as high a510.9 times the
yield stress . Tighter radii of bend would-héve resulted in
still higher wvalues for the residual stresses. Generally,
the residual stresses in the longitudinal direction O in the
two flanges, plates #1 and #3, are greater than all the other
components of stresses resulting in the section. These’
longitudinal stresses are generally tensile in plate #1 and

compressive in plate #3 -

7.8 COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL RESULTS

The experimental results are presented in terms of the
two parameters Py and Pe at different radii of bend. The
analytical procedure was applied to different sizes of the

HSS. The results obtained are compared those measured .

in the experimental program. This parison is given in
Tables 7.4 and 7.5. Only ten different profiies are used
in this comparison. The first five profiles were chosen
from those sections bent on the bending machine #1, Fig.
6.3; while the rest were from those bent on machine #2.
,_All the ten profiles were chosen at randomgfrdm the twenty
seven érofiles used in the experimental program.’

Some profiles were excluded before choosing those used
in the comparison bétausevthere was doubt in the accuracy
of their results. For exagple, the deformations of the web
of the profile 254.0x152.4x6.35 were the same wﬁen_the'mem—
ber was bent to four different radii. Also the profiles

203.2x101.6x6.35 and 203.2x101.6x9.53 gave the same value

for the parameter Py irrespective of the different thick-
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-Table 7.4

Experimental Values forx Py
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Member Sdize ) =pb%
: Radius - X
h b t Experimental Theoretical
(mm) {mm} (mm) (m) :
101.6 50.8 3.81 0.84 7.40 7.87.
1.22 6.25 5.82
1.83 6.25 4.17
2.44. 4.70 2.12
101.6 101.6 4.78 - 1.52 8.60 4.92.
' 2.44 5.10- 3.9
3.66 4.70 = 3.75
4.88 3.12 =~ 3,13
127.0 76.2  9.53 0.91 9,37 6.47
' 1.22 - 6.80 5.72
1.68 4.70 5.32
2.44 4.17 4.92
127.0 127.0 4.78 3.07 8.76 6.81
3.68 6:.26 3.86
. 4.27 5.00 3.51
. 5.49 5.00 2.88
152.4 101.6 9.53 1.22 13.27 9.17
' , '1.52 12.50 9.05
2.44 7.02 8.70
3.66 3.90 6 .24
177.8 127.0 6.35 2.44 7.50 7.63
4.27 ~7.50 4.70
6.71 *| .~ <5.00 3.79
10.97 - 2.50 2.81
177.8 177.8 7.95 2.44 6.26 . 5.79
. 7.32 5,13 4.31
10.97 4.47 ©3.18
© 15.24 2.23 '1.85
203.2 * 101.6 4.78 4.88 '7.82 '6.70
8.23 7.82 - 6.12
12.19 5.47. 5.61
15.24 3.12 5.10




" fTable 7.4 (cont'd.)

i
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\
N,

Member Size Radius - pb%
A b t Experimental: Theoretical
(mm) . (mg) (mm) Am) T P
203.2 203.2 \ 6.35 9.14 | ¥ 5.47 4.10
13.72 4.89 3.63
18.29 .| 3.91 3.34
24.38 3.12 2.84
254.0  254.0 9.53 10.97-  4.46
' 13.72 3.75 "
18.29 3.25
2.38

30.48
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Table 7.5 ¢
Comparison Between Theoretical and :
Experimental Values for Pe
o
Member Size P %
Radius -
h b Tt Experimental Theoretical
(rum) (mm) (mm) 7 (m)
101.6 .. 50.8 - 3.8l 0.84 4.70 "4.25
' 1.22 3.15 3.61
1.83 1.55 2.89
' 2.44 0.25 2.20
101.6 101.6 4.78 1.52 9.3B 7.75 k
o 2.44 » 7.02 6.10
P 3.66 +| . 157 " 3.51
] 4.88 0.77 | 1.72.
127.0 76.2 ~ 9.53 0.91 % 2.63/f 1.89
1.22 2.10 1.61
, 1-68 L-’0/3 l- 42
. - 2.44 / |\ TT0.17 1.14
127.0  127.0 -4.78 07 10.00 7.02 »
: 3.58° 8.76 6.50
4.27 3.76 6.00
' 5.49 3.12 5.02
152.4° 101.6 9.53 1.22 3.90 5.59
: 1.52 3.13 5.37
2.44 2.72 4.70
3.66 1.57 4.10
177.80 '127.0 6.35 2.44 8.70 .6.13
4.27 5.00 4.90
6.71 2.50 4.35°
10.97 2.18 3.25
177.8 177.8  7.95 2.44 11.61 7.92
7.32 4.47 5.52
' 10.97 2.23 4.82
C -15.24 1.56 4.21
203.2° - 101.6 4.78|  4.88 0.95 7.50
: 8.23 7.82 1 6.05
° 12.19 I1.57 72,15
15.24 7 1.57 1.50 .




- : Table 7.5 {cont'd.)
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Member Size P %
- Radius

. h b t ' Experimental Theoretical

(mm) " (mm) {mmm )¢ (m)}

203.2 203.2 6.35 9.14 10.16 . 6.45
13.72 6.25 6.00
18.29 1.56 . 5.81
24.38 0.79 4,91

254.0 254.0 9.53 1 10.97 5.00 g .43
13.72 3.75 4,30
18.29 2.50 2.71
30.48 1.88 2.43
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ness in the two profiles. In many cases two different radii
gave exagtly the same value of deformations which is un-
likely to happen. A possible reason for such discrepancie#
is that the experimental program was carried cut in a work-
shop of a f&étory where the environment was not as controlled
as in a testing laboratory. Also because of the dangér
involved, the rolling machine had to be ;perated by a worker
who in many cases contributed to an error in the results by
-altering the test procedure explaineé in Chépter 6; How-
ever, for most specimens used in the comparison reasonable
‘agreement was shown between the theoretical and experimental
results.

The disagreement between some of the theoretical and
experimental results could be due to several reasons. 1In
addition to those ﬁentioned above, an important source of
discrepancy is that the analysis assumes that the rolling
process is completed in cne pass of rolling. Howe¥er, in
many cases the rolling machine operator has to use several
passes of rolling to obtain certain radius df bend, guch
7ahgses can alter the results considerably.

It should be noted that several passes of rolling were
sometimes required to produce a specific fadius of bend
because the process was done mainly by trial procedure.

Depending on the experience of the operator of the iolling

machine, the position of the middle roller, which defines the
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deflection of the beam under rolling, had to be changed.'
sgyeral times to obtain the_required radius of bend. How-
aver, édopting the prdcedure explained in gection 5.2,

that establishes the relationship between fherradius of bend
and the position of the middle roller, the change in posi-
tion of the midale roller correspondiﬁg té any radius of bend
can be predetermined using the developed computer program.
Thus, only one pasé of rolling qill bé sufficient to obtain
that radius-of bend and conclﬁde the rolling pfocess.

It is interesting to note that the méan and the stan-
dard deviatioﬁ of the differences between the measured and
the calculated values-for P, were 1.00% and 1.75%, respec-
tively, and those for the differences in P, were f0.4% and
2.1%, respectibély. To check the significance of the dif-
ferences between the theoretical and experimental results,
the T-E?st was used. The calculated values for t were
3.56 ané 1.15 for the differences in < and Pgr resbectively.
In this case the number of éegrees of freedom is 39, for a
1% level of significance, the tabulated value of t is 2.71
(23). This means that at 1% level of significance the
difference in Pe 1s not significant and can be attributed
to chance, while thé”difference in Py is significant. )
However, since the difference between the calculated and

tabulated values for t for the differences in Py, is small

and because of the lack of uniformity of the experimental
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results, that small difference in t can be neglected and the
differences in py ¢an be considered attributed to chance.

" A multipie fegression analysis is applied.to the values
obtained from the theoretical analysis and given in Tables
7.4 andi?.S. The purpose is to offer a simple and guick
‘method that can be used to give a reasonable estimate to
the deformations corresponding to any radius of bend. If
.the exact magnitﬁde of the deformations is required, the
_'computer program should be used. Otherwise, the following

expressions can be used: Y

L I 22.88 1
PLY = ‘Ro.sz) x (h37.94) x (b } x (tiiﬁﬁ’ x

22.51 1 '
(Ix ) X (m) X (14 -88) (7 .l)
' b4
. 1 31.00 1l 1 :
p.% = (——F=) (s} ) ( ) x | ) x
e R0.67 b30.9; t1.25
1 20.46 N
(I—m—s'} X IY x (0.0094) (7.2)
x ‘

The multiple correlation coefficients for equaticns 7.1 and
7.2 are 0.90 and 0.83, respectively, and their standard
errors are 0.19%;énd 0.32%, respectively. A comparison

between the calculated values and those estimated by equations

e . M A LS B A e Al s AL ks e e e S
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~

7.1 and 7.2 is given in Tables 7.6 and 7.7, resﬁectively.

7.9 PARAMETRIC STUDY

The magnitude of distortion resulting in the cross-
section is a function of the geometry of such sections.
The ratios between the depth (h), the width (b) ard the

thickness (t) of the cross-section have a significant in-
. -
fluence on the resulting distortion.¥ A series of beam

models having various such ratios are analyzed_aésuming
that they are bent to the same radius of curvature. The

relations between % and the two parameters py and P, de=-

scribing the deformations of the web and the compression
flange, respectively, are shown in Figures 7.12 and 7.13,

respectively. It is clear that as % increases both the de-

formations of the flange and the web increase. .Similar

relations could be obtained if the ratio % is drawn against

the parameters Pp and Pg- The defo’pfﬁzons of the flange
and the web also increase with increa in either the
width (b} or the depth (h) of the cross-section as shown l

in Figures. 7.14 an& 7.15.




Table 7.6

Comparison Between Calculated and

Estimated Values for Py
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Member Size pb%
Radius —
h i b t Calculated Estimated™ % Diffégence
(mm) (mm) (mm}) (m) . :
101.8 50.8 3.81 0.84 9.40 7.87 16.27
s - 1.22 5.82 4.38 \%§.24
1.83 4.17 3.54 5,10
2.44 2.12 3.05 -43.86
101.6 101.6 4.78 1.52 4.92 ° 5.20 5.69
: 2.44 3.91 4.07 2.81
3.66 3.75 3.29 12.26
4.88 3.13 2.84 9.26
127.0 76.2 9,53 0.91 6 .47 8.14 -25.81
1.22 5.72 7.00 -22.37
1.68 5.32 5.92 ®]1.28
p 2.44 4.92 4.88 0.81
127.0 127.0 4.78 3.07 6.81 4.81 29.37
3.68 3,86 4.38 -13.47
4.27 3.51 4.06 -15.67
5.49 2.88 3.56 ° -23.61
152.4 1l01l.6 9.53 1.22 9.17 8.62 6.00
1.52 9.05 7.68 15.13
2.44 8.70 - .6.00 31.03
3.66 6.24 4.86 22.11
177.8 127.0 6.35 2.44 7.63 7.39 3.14
' 4.27 4.70 5.52 -17.44
: 6.71 3.79 4.37 -15.30
%310.97 2.81 3.38 -20.28
177.8 177.8 7.95<| 2.44 5.79 6.58 -13.64
' ’ 7.32 4.31 3.72 13.69
J10.97 3.18 3.01 5\ 34
15.24 1.85 2.54 -37 .30
203.2 10l1.6 4.78 4.88 6.70 8.11 -21.0
8.23 6.12 6.18 - - 0.98
12.19 5.6k 5.04 10/16
15.24 5.10 4.49 ﬁ\i% 96

*Equation 7.1

-
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Table 7.6 (cont'd.)
Member Size pb%
—— Radius
h b t Calculated Estimated & Difference
(mm) (mm) (mm} (m)
203.2 203.2 6.35 9.14 4.10 4.17 -1.70
13.72 3.63 3.38 6.89 -
18.29 3.34 2.91 12.87
24.38 2.84 2.50 11.97
254.0 254.0 \ 553 | 10.97| = 4.46 4.29 3.81
T 13.72 3.75 3.82 -1.87
18.29 3.25 3.29 -1.23
30.48 2.38 . 2.54 -6.72
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Table 7.7

Comparison Between Calculated and
Estimated Values for Pe

Member Size P.?

Radius -

/ h b t Calculated Estimated® % Difference

{mm) (mm} (mm) (m)

101.8 50.8 3.81 D.84 : 4.70 4,25 9.57
1.22 3.61 3.48 - 3.60
1.83 2.89 2.65 . 8.30
2.44 2.20 2.19 A 0.45

~l10l.6 101l1l.6 4.78 1.52 7.75 - 7.30 5.80
2.44 6.10 5.31 12.95
3.66 3.51 4.04 15.10
4.88 1.72 3.33 ~-93.60

127.0 76.2 9.53 0.91 1.89 2.62° -38.62

: 1.22 l1.61 “ 2.15 33.54

1.68 l.42 1.73 -22.53
2.44 1.14 1.35 =18.42

127.0 127.0 4.78 3.07 7.02 5-6.97 0.71

l 3.68 6.50 6.17 5.08

4,27 6.00 5.58 7.00
5.49 5.02 4.72 5‘97

152.4 10l.6 9.53 1.22 5.59 4.58 18.07

_ 1.52 5.37 3.95 14.71

2.44 4.70 2.87 38.93
3.66 ‘ 4.10 2.19 46.59

177.8 127.0 6.35 2.44 6.15// 8.52 -38.98
4.27 4.90 5.84 -19.18
6.71 4.35 0 4,31 0.92
10.97 3.25 3.10 ‘4.61

177.8 177.8 7.95 T 2.44 : 7.92 10.38 -31.06
7.32 5.52 4.96 10.14

Lo . 10.97 4.82 3.78 21.58

15.24 4.2; 3.03 28.03

203.2 101.6 4.78 4 .88 7.56 5.55 26.00
8.23 6.05 3.90 35.54

. N 12.19 2.15 3.00 -39.53

15.24 1.50 2.58 -72.00

§
*Equation 7.2

~\




Table 7.7 (cont'd).
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Member -Size pe%
Radius -
h b t Calculated Estimated % Difference
(mm)* {mm) (mm) {m)
203.2 203.2 6.35 9.14 6.45 6.54 1.39
13.72 6.00 4.98 17.00 -
18.29 5.81 4.10 29.43
24.38 4.91 3.38 31.1¢6
254.0 254.0° 9.53 10.97 - 6.43 6.46 -0.47
13.72 4.30 5.56 -29.30
18.29 2.71 *4.59 -69.37
30.48. 2.43 3.25 -33.74
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CHAPTER VIII
y MINIMUM LE\'.ADIUS OF BEND

8.1 GENERAL‘
'gt is apparent from the results obtained taat cold
bending of unfiT&SE_EEQ will cause measurable distortion
ip the cross-section. The tighter the radius of bend im-
posed the.lafger'the amo ‘of ddgtortion that will re-
suizt5\mhese distartions affect the aesthetic appearance
as well as the capacity of the member to carry subsequent
ioad. According to the uses of HSS members after bendi§;:\\\
different criteria that define acceptable levels of distor-
\Eion in the cross-section can be defined. These criteria
aré’hsed to calculate the minimuﬁ radiu% to which a spe-
'cific member c¢an be bent. ' " '
. In this chapter, the minimum radii recommended by
bthfee diffefent steel coméanies for different HSS profiles
'age reviewed. Based on the results obtained in this stﬁdy
two different levels of accepfable distortion are recom-
mended. Two equations that define these limits are used =

to calculate the minimum radii of bend recommended for the

different sections. A comparison between these recommended

A
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-

values and those used by the different steel companies is

presented.

-

8.2 MINIMUM RADII RECOMMENDED BY THE STEEL COMPANTIES

Different steel companies recommend different Valﬁes'
forlthe minimum radii of bend of thé HSS. The valuesqre-
commended by U.S. Steel, British Steel and Fexrotubi, the
steel company of Italy, are given in Tables 8.1, 8.2 apd
8.3, fésbectively. All efforts made to obtain the basis’
on which these minimum values are‘calculéﬁed failed; these.
tables were givén a long time ago and no records of such ,
basis are now available.

Because of the lack of a common criterion on which the

minimum values are calculated, disagreements between these

values are likely to happen. Such disagreements can be

~

found when comparing the values given in the aforementioned

tables. ~

¢

8.3 RECOMMENDED MINIMUM RADII

The calculation of the minimum radii of bend for HSS
depends mainly on the definition of the acceptable level
of distortions in the cqbss-section of the member. Dif-
ferent criteria can be assumed to define that acceptable
level. 1In this study two criteria are considered likely

to be suitable: Jﬁ,

(1) Specification of an acceptable level of distor-



Table 8-1

s

Minimum Radii of Bend Recommended by <
U.S. Steel )

¥

Member Size

N

t

Miniﬁum Radius

_h b
(zm) (mm) (mm) (m)

150.00 50.00  4.76-6.35 0.46
63.50 63.50 4.76 0.61
6.35-7.94 0.56
76.20 _  76.20° 4.76 0.76
R 6.35-7.94 0.71
88.90 88.90 4.76 0.86
6.35-7.94 0.81

101.60 101.60 4.76-6.35 0.91
: 7.93-12.7 0.86
127.00 127.00  4.76-7.93 ' 1.14
9.53-12.7 1.07
152.40 152.40 4.76-7.93 1.37
9.53-12.7 1.37
177.80 177.80 4.76-12.7 1.78
203.20  203.20 6.35-15.8 2.03
254.00 254.00  6.35-15.8 2.54
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Table 8-2 -

Minimum Radii of Bend Recommended by

British Steel

Member Size -
h t Minimum Radius®
{ran) d {rm) (m)
12.7 1.8 0.06
15.9 1.8 0.08
19.0 2.0 0.10, -
25.4 2.0 0.13
38.1 2.6 0.19
50.8 3.2 0.25
63.5 4.0 0.32
76.2 4.9 0.46
88.9 . 6.3 0.53
101.6 6.3 0.61
114.3 6.3 0N 67
27.0 6.3 0.76
52.4 9.5 0.91
77.8 9.5 1.07
03.2 9.5 1.42 .
254.0 12.5 1.78
308.8 16.0 2.16
355\§ 16.0 2.84
406 .4 16.0 3.25
457.2 16,0 ™~ 3.66

*These minimum values do not depend on the
- flange width dimensions




Table 8-3

-

v
Minimum Radii of Bend Recommended by
" Perrotubi (Italian Steel Co.)

Member Size

{mm)

b
(mm)

Minimum Radius
{m)

g

110.0

130.0

150.0

170.0

190.0

200.0

250.0

50.0
o

50.0

60.0

80.0

75.0

100.0

95.0

5.00
3.80-5.00

[FLN %}
.

6.00
5.20-7.25
6.00

wwhkh
[] . [ ]
nmowunmo vmmoum o Ln

- 8.00
7.25-8.25
7.25
6.00

b L W
¢ & 4 0

15.00
10.15-11.50
10.15

=R geR Ut O

18.00
16.00
14.00
13.00125.00

(62 I~ g #L) o W W

16.00~18.00
14.00-20.00

=N
.
[ R
o
o

25.00
20.00
20.00-22.00

v U oW
. e
w o
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tion in the flange (pb).

(ii) Specification of an acceptable level of distor-
tion in- the web (pe).

The choice of a numerical value to define the ac-
ceptable level of distortion is a difficult task because
it depends on the uses of the HSS member after bending as
well as on the engineering judgement of the user. There-
fore, these numerical values may change from one case to
anothef. However, based on the visual inspeqtion of the
different specimens after rolling, values of 5.0% and 2.5%
- for Py and Pg7 respectively, seemed to be quite suitable.
At éhese values it was felt that significant levels of
distortion were reached (4).

The radius of bend corresponding to the specified

lues

values for Py and p, were then calculated. These v
for the minimum radii were calculated by linear inte
tion between the values_given in Table 6.3.

The wvalues obtained fro‘m the experimental resu or
the minimum radii of bend were spread over a wide range.
Therefore, multiple regression analysis was uéégjto obtain
relations that predict the minimum radii at these specified

values of distortions. The best relations obtained are (4):

2 . -
_ -4 h '
R(Pb=5%) = 18.16x10 < + 11.38 IY
-4 h?
-13.32x10 — - 1.581 " (8.1)

t
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-4 bh 8
t

R(p =2-58%) =13.82x10 1.92x10 ° I

2
+ 5.43x10 3 %?— - 1.092 (8.2)

The standard error and the multiplé correlation co-
efficients for equation 8.1 are 0.609 meters and 0.990,
respectively, and those for equation 8.2 are 0.372 meters
and 0.996. As explained in Chapter 6, the results for the
four large sections were excluded from the regression
analysis. Therefore, equations‘S.l and 8.2 are only ap-
plicable to sections with web depth between 100 mm and
205 mm. Comparison bepweenrthe actual values for the
minimum radii, calculated from the results of the experi-
mental program, and those predicted by equations 8:1 and
8.2 is giveg in Table 8.4. )
( It should be noted that there is no relation 5etweenb
the parameters Py and P and it is not necessary that they
occur simultaneously. Therefore, the two parameters>can
be treated separaﬁely and the minimum ragius of bend could

be based on either parameter with the other completely

disregarded.
i

8.4 COMPARISON BETWEEN RECOMMENDED AND PUBLISHED

MINIMUM RADII

The minimum radii of bend based on this study are com-~

pared to those published by the different steel companies.

~ -

A S — 7 1 A AR MA 4 - A A ek el T S = e e mm—e = — e
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Because of the reasonable agreement between the experimen-—,
tal and theoretical results obtained in this étudy, the
comparison can be held between either one of them aﬁd the
published data. Each steel company usesAdifferent profiles
of HSS. Calculating the minimum radii for all these pro-
files using the computer program requires a very large
amount of computer time. Therefore, it was decided to use

equations 8.1 and 8.2 to"obtain the minimum values recom-

S

mended by this study. The comparisons between these re-

" commended values and those recommended by the different

steel companies are given in Tables 8.5, 8.6 and 8.7.

Thé comparisch presented in these tables shows little
or-fo agreement between the minimum valués'recommended in
the prdbent study and those recommended by the different
steel companies. The minimum values recommended in the
present study are generally larger than those recommended
by U.S. S£eel and British Steel. However, good agreement

is found between the minimum values based on:pb and those

recommended by Ferrotubi for the profiles having web depth

up to 150.0 mm. PFor the larger profiles, Ferrotubi's

values are much higher than those recommended in the pre-
sent' study.
This discrepancy could be due to the following

factors:

(1) The lack of common criteria on which the minimum e
values are calculated. "

A‘\
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Table 8.6
Comparison of Recommended Minimum
radii apd that of U.S. Steel

Member Size Present Study
U.S. Steel
h b £ pb=5% pe=2.5% R (m)
(mm) (mm) (mm) R (m) R{m}
101.6 101.6 . 4.76 2.08 3.16 0.91
101.6 101.6 6.35 1.45 2.12 " 0.91 i
101.6 101.6 7.95 1.06 .. 1.51 - 0.96
127.0 127.0 4.76 4.28 6.04 1.14
127.0 127.0 7.95 2.79 3.29 1.14
127.0 127.0 9.53 2.44 2.62 1.07
152.4 152.4 4.76 7.08 9.89 1.37
152.4 152.4 7.95 5.07 5.69 1.37
152.4 152.4 9.53 4.62 |  4.66 1.27
177.8 177.8 4.76 10.49 14.81 1.78
203.2 203.2 6.35 12.54 15.69 2.03
~—
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Table 8.7

Comparison of Recommended Minimum
Radii and that of British Steel

LR Y

Member Size Present Study
’ =5% = British Steel
h b £ Py 5% Pe 2.5% R (m)
(mm) (mm) (mm) R(m) |~ R(m)
101.6 -101.6 6.35 1.45 2.12 - 0.61
114.3 114.3 6.35 2.33 3.13 | 0.69
127.0 127.0 6.35 3.35 4.31 0.76
152.0 152.0 9.53 4.62 4.65 0.91
177.8 177.8 9.53 7.44 7.28 ' 1.07
203.2 203.2 9.53 10.95 10.56 1.42°
J
) N




Comparison of Recommended Minimum

Table 8.8

Radii and that of Ferrotubi

160

Member Size

-. Present Study

pb=5% Pe=2.5% Ferrotubi
h b t R (m)
(mm) (mm) (mm) R (m) R(m) -
110.0 50.0 2.5 4.67 3.27 5.00
110.0 50.0 3.0 4.00 2.54° 5.00
130.0 50.0 2.5 7.14 4,34 6.00
130.0 50.0 3.0 6:20 3.44 7.25
130.0 50.0 3.5 5.41 2.80 6.00
150.0 60.0 3.0 8.80 5.51 8.00
150.0 60.0 3.5 7.75 4.57 8.25
150.0 60.0 4.0 6.88 3.87 ~7.25
150.0 60.0 4.5 6.15 3.32 6.00
170.0 80.0 3.0 11.83 9.39 15.00
170.0 80.0 3.5 10.50 7.90 11.50
170.0 80.0 4.5 8.46 5.92 10.15
190.0 75.0 3.5 13.44 8.77 18.00
190.0 75.0 4.0 12.04 7.55 16 .00
190.0 75.0 4.5 10,88 6.60 14.00
190.0 75.0 5.0 " °9.90 '5.84 15.00
200.0 100.0 4.0 13.73 11.33 18.00
200.0 100.0 4.5 12.46 9.97 20.00
200.0 100.0 5.0 11.40 8.88 20.00
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(1i) The amount of distortion is affected by the
rolling procedure. Therefore, any change in
that procedure could lead to different values
of the cross=-section distortions.

Therefore, as long as- there are no specific guideiines
for the testing procedure nor a common criterion to cal-
culate the minimum radii, any comparison or judgement on
the validity of certain minimum values will not be justi-
fied. . , S .

S

o
i



v “CHAPTER IX

SUMMARY AND CONCLUSIONS
9.1 SUMMARY
Curved Hollow Structural Sections (HSS) of rectan-—

gular and square geometry are commonly used for many
construction purposes. Different bending methods are used
to induce permanent curvature in the HSS to produce curved
elements. One of the most common methods of cold bending
is by the use of pyramid-type roliing machines. Bending

of HSS even to a-very large radius of curvature results in

"measurable distortions in its cross-section. The main ob-
- e :
jective of the present study was to develop an analytical

method to predict the relation Betweeq the radius of bend
imposed on the:HSS and the resulting disto;tion in its -
cross-section. . : . )
The minimization of the total potential enenéy using

the Rayleigh—Ritz approach was used as the method of
analysis. It was assumed that at any instant of the

olling.process, the hoMow specimen is a bedgnsubjected
to concentrated load applied at mid-span throuqh the

.

middle roller. The cross—sectign was decompqsed into four
. r . -

s
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"plates, i.e;}*%ro flange pldtes and two web plates simply‘
supported at their extremities. Displacement functions with
unknan coefficients were assumed to describe the deformed
shape of the cross-section after rolling. In these func-
tions different series were chosen to represent the over-
ail'deformation of the HSS, i.e., due to its action as a
beam, ‘-the local deformations of ea¢h plate, the effect of
shear as well as the effect of friction between the beam .
model and the rollers of the bending machine. " Expressions
for the total potential energy in terms of the different
components of displaéements were developed in both the
elastic and plastic ranges. The unknown coefficients in
*the displacement functions were then evaluated by minimiz-
ing the total potential energy of the struéture using the
Rosenbrock's method of minimization.
fo account for the geometric non-linearity effects,

non-linear straiﬁ'displacement_relqtions were used. A
bi-linear stress-strain relation wag assumed to-describe
the material’ behaviour under loading and the.VonFMises
yield criterion was adopted o determine the initiétion
of.yleld £n the model. The total deformation theory of
pldéticity was used to obtain the stres%-strain_relations
in fhe plastic range. . \

. In modelling the rolling process, the relation be-

tween the relaxed';adius df bend and the deflection at the
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point of contact between the model and the middle roller
was established. Using thi; relation, the deflection at
this point of contact corresponding to any required radius
of bend can be calculated. If the calculated deflection
is forced to the specimen, thaé reguired radius of bend
~can be obtained in one pass of rolling. The rolling
process was then modelled by assuming that the lcad is
applied at successive points along the length of the model.
_ Therefore, the load was applied incrementally at a certain
point until a specific deflection, i.e., specific radius of
bend, was attained. The model was then moved to allow the
load to be applied at a new location on the model. Theo
stresses were adjusted in all points of the model to suit
their new locations with respect to the applied load. Tﬁe
magnitude of the applied load Qas then changed to force the
same specified deflection to occur at the new point. 'The
process éontinued'until a full length equal to the spaﬁ of
the model‘paséed under the applied load. |

Because of the loading sys;gm, some sectiohs oé the
model deforhed plastically while the others were -gtill
elastfc. To accommodate such behaviour the mode£Q;:;~‘
discretized into a number of elements. The strain energy
of egch element was calculated\separately depending on
its stress level and then summéa up for the whole quéi.

. Vs
The solution was carried out using a computer program
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developed specially for this problem.

The solution obtained showed that the amount of defor-
mations resulting in the cross-section depends on the im-
posed radius of curvature as well as the cross-section dimen-
sions. The tighter the radius of curvature, the more is rhe
deformation resulting in the section. Deformations also
increased with increase in the width of the flanges and the
height of the webs of the cross-section and with decrease
in the thickness of both the flanges. and the webs. Results
are also affected by the number of terms used in each
series in the displacemenc functions and the number of
‘elements in'the mesh subdiuision used to model the elasto-
plastic behaviour of rhe beam model. An estimate of the
'reeidual stresses resulting in the model due to the rol-
ling procesds was also calculated.

The results of the theoretical analysis were compared‘
to those obtained from an experimental program.'J In this
. prograu, 54 tests were carried ou; on 27 different sizes
of the HSS. Each specimen wae ‘bent to four different radii
of curvature. The cross-section distortions corresponding
to each radius were accurately measured. Multiple regres-—

sion analysis was used to develop a.relationshipobetween

the raﬁius-of curvature, the cross-section propeérties -and

‘the distortions resulting in the cross-section. Fair agree-

ment was found between the theoretical and experimental

4

r

5
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results.

To calculate the minimum radius to which any HSS can
be bent, different criteria should be adopted to define
the maximum amount of distortions that can be tolerated
in the cross-section. Two parameters were used in the -
present study; namely, the maximum bulging in the web and
the maximum bowing in the compression flange. Values of
5% and 2.5% were assumed for these parameters, respectivelj.
Each parameter was treated separatefy; therefore, two sets
of minimum radii were obtained for the diff;j:ﬁﬁ/éizes of
the HSS. These minimum values were compare o those
publiﬁped by three different steel companies. However,
little or no agreement was found. The most probable reéson
for this disagreement is the lack of a cémmon aslterion on

which the calculations of the minimum values are based.

-

9.2 CONCLUSIONS AND RECOMMENDATION

On the basis of the .present:study the following con-

clusions may be reached:

™~
N 1

l. Cold bending of HSS members of rectangular and
square geometry results in permahent distortions in their
cross-section.’ The fair agréément between the experimental
and theoretical results estimating the magnitude &f these

‘distortions verifies the aksum ;gh which the theore-

ubstantiates the validity of
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the proposed method for modelling the rolling procedure.
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2. The magnitude of the permanent distortions resultﬁ
ing in the cross-section depends ondits dimensions;
material éroperties as well as on the imposed radius pf
gend. These distortions increiﬁe with decrease in the
thickness of the section, with increase in its depth and/

or width, and with decrease in the radius of bend.

3 The stresses at any point in the HSS are a com-
bination between those resulting from the overall defor-
mations of the HSS and those due to the local deformations

of each plate. However, the stresses resulting from the

bverall deformations constitute the major part of these

N ———
stresses.

y

4. The rolling procedire has é considerable effect.
on the magnitude of_the'distortions resulting in the HSS.
Adopting the procedure outlined in the present study, the
required”radius of Eend of an HSS member can be a%pieved

in one pass of rolling. "

-

5. The effect of friction between the rollers of the
bending machiné and the HSS member being rolled is rela-
tively small and, therefore, can be neglected.

6. The magnitude of the residual stresses resulting

in the different parts of the HSS member after folling
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can be relatively .large and should be considered in the

design of the member when used subsequently after rolling.

The numerical values chosen in the present analysis
to describe the maximum allowable deformations in the
HSS are based only on engineerihg judgement. The laék
of agreement between thé minimum radii calculated based
on these values and those recommended by the different
steel companies cited is due to the absence of a commen
criterion defining thecméxiqum di;tortion allowed in the
HSS. This disagreeﬁent could also be attributed to the
lack of common éuidelines that describe the rolling pro-
éedpre. ;Bb;efore, it is fecommended that an effort
should be made towards unifying the rolling brocédure )
of HSS members and definfﬁb different minimum radii ofﬁ
bénd that Qould be tolerable in the various uses of these

members‘afteﬁ)rolling.
,"

e
3




2.

3.

10.

11.

REFERENCES

Bassett, M.B. and Johnson,W. "The bending of plates
using a three-roller pyramid type plate bending
machine."™ J. of Strain Analysis, Vol. I, No. 5,
1966, pp. 398-414.

Bleich, F. Buckling strength of metal structure.
McGraw HIIT Book Co., New York, 1952.

Bradfield, C. D. and Chldny, E. "A review of the
elastic-plastic analysis of steel plates loaded
in in-plane compression.” The University of
Cambridge, Report CUED/D Struct./TR.77, 1979.

o

"Brady, J. F. "Determination of minimum radii for cold

bending of square and rectangular hollow structural
- sections." CIDECT Programme l1B, .final report,
May 1978. : ’

Budiansky, B. "A reassessment of deformation theories
of plasticity."” J. Applied Mechanics, 26, 1959,
Pp. 259-264. "

Cox, H. L. The ﬁuckling of plates and shells. The
MacMillan Co., New York, /I963.

Fletcher, R. and Reeves, C. M. “;ﬁnction minimization
by conjugate gradient." Computer Journal, Vol. 7,°
1964, pp. 149-154.

Fletcher, R. ™"Fortran subroutines for minimization by
quasi-Newton methods." Report R7125 AERE,
Harwell England, June 1972.

L’

Freize, P A., Dowling, P. J. and Hobbs, R. E. "Ultimate
load@ behaviour of plates in compression." Steel ,
Plated Structures, Proceedings of a Conference.
London, 1976, published by Crosby Lockwood Staples.

Gerard, G. "Plastic stability theory of thin shells.”

Journal of the Aeronautical Sciences, April 1957,
Pp. 269-=-2714.

Graves-5mith, T. R. "The ultimate strength of locally

buckled  columns of arbitrary length." Ph.D.

thesis, The University of Cambridge, U.K., 1966.

< ) 169



12.

13.

14.

15.

l6.

17.

18.

19.

20.

21,

22.

23.

170

Graves Smith, T. R. "The local buckling of box girders

under bending stresses."” Int. J. Mech. Sci., Vol.
11, 1969, pp. 603-612.

Graves Smith, T. R. "The post-buckled behaviour of a
thin-walled box beam in pure bending."” Int. J.
Mech. Sci., Vol. 14, 1972, pp. 711-722

Graves Smith, T. R. "A finite strip method for the
buckling of plate structures under arbitrary
loading.™ Int. J. Mech. Sci., Vol. 20, 1978,
Pp. 685-693.

Bansen, N. E. and Jannerup, 0. "Modelling of elastic-
-- plastic bending of beams using a roller bending
machine." Journal of Engineering for Industry,
Transaction of the ASME, Vel. 101, Aug. 1979,
pp. 304-310. * )

Harding, J. E., Hobbs, R. E., and Neal, B. G. "Ultimate
load behaviour of plates under combined direct and
shear in-plane loading."” Steel Plated Structures,
-Proceedings cof a Conference, London, 1976.
by Crosby Lockwood Staples.

Hill, ﬁ. The mathematical theory of plasticity.
Oxford ‘Engineering Science Series, 1950.

Horrocks, D. and Johnson W. "On the anticlastic cur-
vature with special reference to plastic bending:
A literature survey and some experimental investi-
gation." Int. J. Mech. Sci., Vol. 9, 1967, pp.
835_‘8.51 . ' hik

Ilyushin, A. E. Plasticite. Editions Eyrolles, Paris,
1956. :
4
Johnson, W. and Mallor, P. B. Engineering Plasticity
Von Nostrand Reinhold Bopk Co., 1gz§.(

ortner, D., Osterle, J. F._and Zorowski, C. r. "An
analysis of cold strip rolling." International
Journal of Mechanical Sciences, Vol. 2, 1960,
pp. 179-194. ’ :

.

Juvinall, R. C. Stress, Strain=and Strength. McGraw-
Hill Book Co., New York, 1967. .

Kennedy, J. E. ang Neville, A. M. Basic Statistiggl
Methods for Engineers and Scientists. econ
Edition. Harper239¢/ﬂ6§~Co., New York, 1976.




24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

-~
171

Kou-Kuang, C. "A triangular plate finite element for
large elastic-plastic analysis of automobile
structural components." Computers & Structures,
Vol. 10, 1979, pp. 203-215.

Langhaar, H. L. 'Energy Methods in Applied Mechanics.
John Wiley and Sons Inc., New York, l96Z.

Little, G. H. "Rapid analysis of plate collapse by*
live energy minimization.” Int. J. Mech. Sci.,
"Vol. 19, 1977, pp. 725-744.

McCormich, J. M. and Selvadori, M. G. Numerical
Methods in FORTRAN. Prentice Hall Inc.,
Englewood Cliffs, New Jersey,. 1965.

Mayers, J. and Budiansky, B. "Analysis of gﬁhaviour

' of simply supported flat plates compressed beyond
the buckling locad into the plastic range."”
National Advisory Committee for Aerdﬁautics,
Technical. Report 3368, 1955,

Mendelson, A. Plasticity: Theory and Application.
The MacMillan Book Co., New vork, 1370.

Monforton, G. "Advanced analysis of structures."
Course notes given at the University of Windsor,
Civil Engineering Department, January 1982.

Moxham, K. E. "Compression in welded web plates.”

Ph.D. thesis, The University of Cambridge, U.K.,
1970. \

Ny

Murray, L. A. and Wilson, E. L. "Finite element post-
buckling of thin elastic plates." AIAAa, Vol. 7,
1969, pp. 1915-1920. —

Nielsen, K. L. Methods in Numerical Analysis. The
MacMillan Co., New York, 1956.

Oden, J. T. Mechanics of Elastic Structures. McGraw-
Hill Book Co., New York, 1967.

)

a
Pogner, F. K. "Finite deflection, discrete element
analysis of shells." Ph.D. thesis, Case Western
" Reserve University, Cleveland, Ohio, 1968.

Rhodes, J. and Harvey, J. M. "The local buckling and
post local buckling behaviour of thin-walled
beams." The Aeronautical Quarterly, Nov. ‘1971,
pp. 363-388. .




37.

38.

39.
40.
41.

42,

43.

44,

45..

46.

47.

172

Robert, T. M. and Ashwell, D. G. "The use of finite
element mid-increment stiffness matrices in the
post-buckling analysis of imperfect structures.”

. Int. J. Solids Structures, Vol. 7, 1971, pp. 805-
823. ‘

Rockey, K. C. In Thin-Walled Structures. Edited by
A. H. Chilver. Chatto andZindus, London, 1967,
pPp. 248-270.

Rockey, K. C. and quchi; D. K. "Buckling of plate
girder webs under partial edge loading.” Int. J.
Mech. Seci., Vol. 12, 1970, pp. 61-76.

Rosenbrock, H. H. "An automatic meﬁhod of f£inding the
greatest or least value of a function." The
Computer Joyrnal, Vol. 3, 1960, pp. 175-184.

*

Shaffer, B. W. and Ungar, E. E. . "Mechanics of the
sheet bending process." J. of Appl. Mech. Trans.
of the AMSE, March, 1960, pp. 34-489. -

Szillard, R. Theory and Analysis of Plates. frentice—
Hall Inc., New Jersey, 1974.

Tien, Y. L. and Wang, S. T. "Local buckling of beams
under stress gradient." ASCE, Vol. 105, sSt. 8,
August 1979, pp. 1571-1588. - °

Timoshenko, S. and Gere, J. Theory of Elastic Stability.

McGraw Hill Book - Co., New York, 1961.

L]

Thomsen, E. G., Yang, C. T. and Kobayashi, S.  Mechanics
of plastic deformation in metal processing.
MacMillan Book Co., New. York, 1965.

Venktraman, B. and Patel, S. A. Structural mechanics
with introduction to elasticity and plasticity.
. McGraw Hill Book Co., 1970..ﬁ;

Zienkiewicz, O. C. The finite.element method. McGraw-
: Hill Book Co., 1977.




173

13

APPENDIX A
Elastic Strain Energy

The strain energy density is given by:

~

4]

u, = [ ode ' S ' (a.1)"

where ¢ and ¢ are the stress and strain, respectively.

For a plate element which has three components of stresses

-

and strains, the K strain energy density is given by:

X % : .
Uo = df cxdex + df ‘ cydsy + df TXYdYXY

fsx . JFY
E
= { {e_+ve )de, + (e + ve )de
1-y2 o X Y x5 Y x Y
Y
1 xy
+ 3 (1-v) OJ.; nydny] -
3 .
E 2 2 N 2
= —= + + 2 + 0.5 (1- . (A.2)
2(1_92) [e ey vexex ( v)ny]

-

substituting the strain displacement relations (Equations

4-2) and“collecting terms:
P —.

.

_ " E 2 2 — _ 2
u [ue + vy + 2vuxvy + 0.5 (1 y)(uy+v%) 1

e & A AL i o o bt e -
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E 2 2 -
+ —=— [uw +v.w o+ (1-V) wow_  (y +v.)
2(1-v2) X X vy Xy u x |
+ v(u w2+ v W 2)] \\\\\——-
Xy v x
+ =2 (0.25 wi + 0.25 wl + 0.5 Wikl
2{(1-v7) Y - Y .
+ ——EEE—— [w2 + w2 + 2({1-v) w2 + 2vw__w_ ]
2(1-v%) XX Yy xy xx"yy

- —_— + + (1-v , +
2(l-v2) [uxwxx vywyy ( ? L (uy vx)

- ' v (vywxx_fuxwyy) ]

Ez ’ 2 . . 2 )
- e [0.5 w__W_ + 0.5 W _WwW_ 4+ (l1-V) w _w.Ww
2(l—v2) XXX Yy Y Xy XY
2 2
+ 0.5v (wyywx+wxxwy<}lf
or, (A.3)

'Ud— fl{u,v) + fz(u;v,w) + f3(w) + 22f4(w) + zfs{u,v,w)

<

g

+2f(w) (A.4)

The strain energy is the integration of the strain energy

v density over the volume. Therefore,‘

-
.

e i ——



therefore,

t/2

t/2 »
: . 2
U = (£1+£p+E;) _/- 4zt £ _t/{ﬂ z°dz .

-t+/2

J/-t/2\ ,
+ (f5+f6) zdz . ,

~£/2

pafeh
N W

(fl+ f2+f3)t f_f4.

. B _
substituting the values of f;, f,, £, and f,
. \ .

D

2 .2 L .
+‘[uxWx_+ vywy.+ £1-v) wxwy (uy+vx)

+ viu w2
BxVy

-3

+v wi)]

+ [0.25 (w +w§)2]} aa”

E N

S

where
Et
D =
1-v2
3
s = __Et

12(1-v3)

(A.5)

(A.6)

_D 2 2 oo o oy 2
Ue— 2/;\\[_[‘\.1}( + vy + 2Vux.vy + 0.5‘ (1-v) (uyh_’xl ]

2 2 .2 Cam
+ El . [wxx + wyy + 2(].—v)’w}l:.y + 2v w:'-:xwyy] da

(A.7)
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APPENDIX B
.«  Total Strain Energy

The strain energy is the area under the stress-=strain

1

curve. In the plastic range fhe unjaxial stress-strain
relation is replaced by the effective stress-effective

strain relation. Therefore, the strain energy density is

the area under the ceff*gaffcurve; Assuming %he yield

.o \

" stress and strain are 95 and so'respectively (Fig. B.l),

the strain energy density will be given by:

-

= U, + Uy, + U (B.1)

03

where, Uj,, Uy, and U,, are the areas indicated by(@D ., -

and (3) respectively in Fig. B.l;

N
~J
_ ' B.2
_UOl 0.5 9555 . ' | ( )
-U02 - UO(Eeff—EO) . . . (B'3)
U = 0.5 E_ (€ - )2
03 ) p eff o .
‘ 2 2
= — - B.4
Q.S Ep(eeff Zseffeo+eo) ( )
therefore,
U = 0.5 0 e + o ¢ - o e + 0.5 E (52
o - 00 o eff o0 e o
-2« € +ez) | (B.5)
eff o Jo -

-

F e s T L T DAL e AT L S Tt 3 LTI e U8 o At T s L
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Or, 1N
U =g ¢ - 0.5 0 e+ 0.5 E 22
o] o eff - oo ’ p eff
- E € e+ 0.5 E 62 ‘ 6
p effo ) p o (B.6)
Integrating over the volume
U —l(c -E_t ) e ..d_+ 0.5 E e2 av
- Yo "po f eff v : p eff
- v- . v .
+ 0.5-(E'52—b ; )V (B.7)
. o oo S
where
2 [ 2, 2 2
E = — e- 4+ 7 + ¢ + 0.25 ;
“eff _fE X Yy - xey
and "V = volume ﬁ ] ‘

Substituting the strain-displacements relations into the

expression for ¢_.. yields: ¢ F\L}
f ’ / |
2 _ 4 .2 2 ‘ 2
- Jv Cersf =3 t/a fu, + vy + UyVy + 0.25 (uy+vx) }
+{ﬁ w2 4 v we o+ 0.5 w.w (u_+v_ )
TUxx Yy X'y x

+0.5 (v. w

2
Yy °x

2
+uxwy)]

2

2,2 -~
+ [0.25 (wx+wy) ] da
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1 3_[ 2 2 2
+ gt A [wxx + Vyy + wxy + wxxwyy] da
) {B.8)
and
2 f 2 2 2
£ = 2 {[u + v* + uv_ + 0.25 (u +v_)")
j; eff V3 Ny X y_ Xy y X
+ [u wz + v w2 + 0.5 w_w_ (u +v_)
x X vy ) X'y Yy X
2 2
+ 0.5 (uxwy+vywx)]
N 2,.2.2
+ [0.?5 (wx+wy) 1
2 2 2 :
+ + + W
z%[w wyy wxy L YYJ
-z [2 + 2v. W + uw
2w Yyyy T YyTxy T Txxy
+ uxwyy + vyw. ]
-z [w w2 + w ‘wz + W W W
- XX X Yy ¥y Xy X Y
+ 0.5 w w2+ 0.5w win /2 ay (B.9)

4 Yy X

Substituting Eqs. B.2 and B.3 in Eq. B.l yield an expression

for the total strain energy.
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Fig. B.1l.

Caff

Different .components of the total strain emergy.
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APPENDIX C

Derivatives of the Displacement Functions

The displacement functions for plate #%re:

_ h rTx - kr h krx : \

u = iArz sin == + : B.k T 3 s + Hg A{C.la)

nn (y+ax

— - . 2 mnXx

v=L§ Caplyp) sin —g 7 sin Ty (C.1b)

» ’

- ., kmx b PTY X

W= I Sk sin = +_<§ g pq(y+2—) cos S5 sin 45

) 5 (C.1lc)

The derivatives of these functions with respect to x and y
- _' 1

are.: .
\’,,- ..ux = EArEZ— %cos ﬂ;—}i - ﬁslk(]_"ilvjz % sin E"% (C.2a)
uy =0 . '(c'.zb)
Ve E Cop D sin T 2 o 5 (©

nw (y+ul—§—-)

vy =k IE1 Cnm[zlbl(y-!%) cos 5 {C.24)
+ sin o (yb+0%)] "sin E}E i

W, = E ;k%l cos k_;_}_c_
+IL pq%l(y%) cos BX¥ cos 47X (C.2e)



181

X
Yy © HT_
(C.2£f) -
wW_ =
XX
(C.29)
w_ ==L ID [(Pl)z(y’r—b) cos ELL
Yy 4dp pg Db 2’ b
S+ 2%} sin E%Z] sin'gl;-x - ' (C.2h)

- AT (valy BT g4 BEY _ o5 RTY grx
wxy é é qu 2[(y+2)13 sin ¢ cos % ] cos 2

(C.21)
For plate #2, the displacéhent,functions are:
/—\‘/-\J‘ -
= - o Iix - ;g kn ki - 5y gin LX
u %—:Ary sin — ]E kl.y cos —7 § g h
/
_ - ‘ (C.3a)
= . krx
= B TX (.
v . i x Sin 2 . (C.3b)
h
- ~ nn (y-a3) —
w= - Lo b sin ——g5 o sin = (C.3c)
The derivatives of these fﬁnctions-are:
u, = - LA yEl cos 2% 4 B (Ei)zy éiﬂ (C.4a)
X r'rt L 2 & k'L

v
L




&
I

£
]

Xy

For plate

%
1

- LA
rr

)}:(B

o ITX _ g KE o kmx T
sin =& kBx T C°8 —¢ >
_*1 cos E_zz
mm l nm (y_ G_) mmxX
%C‘ ) b sin 5 )
nﬂky—ug) i
5 nw 2 . mux
nC " b c§5 N sin ——
c (At 2 Y sin arly=eg) sin BIX
nm:" h . A
nm (y=asx)
nw, 2 . .. mTX
(TT) b sin B sin —g—
: 2 nw (y-a%) :
nmn ) mmx
%C he b cos o s —E

'h
2
bx
nm(y+5) sin
rrTx
X - g
in 51

are:

E_.Q knx
9.2‘ %
nv(yze3) mex
5 sin —
3 n(yﬁa) cos l%x sin
ij 2

3

Jnx
[

(C.4d)

(C.4e)

(C.4£)

(C.4g) -

(C.4h)

(C.41)

(C.5a)

(C.5b)

(C.5c)

t
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_ 7 hrn _.. ITX kn,2 h _. kix
a, = f‘Ar 5 5 sin + ichk(l ) 5 sin =
(C.6a)
u =0 C.6b
v { }
nm (y—ag)
- - T mr b . 2 mm X
vy L rzlcnm 7 (y+§) sin B cos = (C.6c)
b
. nr (y-a3)
= o (e 2
vy = § KCanlBUP cos —
nm (y-o.-lzz} . -
+ sin =] sin u (C.6d)
A
' kn knx J b im JTx
= I Kn - p I (o2 iry JTX
W kBk 2 cos 4;‘ Gij z (y+2) cos =% cos =7
(C.6e)
. - I T im b .o dimy iny _. JIxX
wy 3 iGij[b (y-lj) sin =5 cos =g~ sin =3
. (C.6£)
— . kn,2 _._ kix
Wex = “f By () ST e
‘ Jw, 2 b, iw . \Zi'Trx
.+ % EGij =) {y+3) cos —SY- sin = (C.69)
e oin 2,0 b iny
R wYY = g,z Gij,[_(.b) (y+§) cos =5
+ 22T gin ATY) sin TX * {(C.6h)

Tree W AEIL LR
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Jw im

b . iny _
Gij 7 [b(y+3) sin =+ cos

b
Xy 7 1

For plate #4, the displacement functions are:

&
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iry J X
p-Jjcos —¢

(C.61)

= - rmx _ g kn X L 97Y
u %Ary sin =5 i B, &Y cos —; ngg sin 4o
(C.7a)
_ knx
v = kBk sin 7 (C.7b)
w =20 (C.7¢c)
g
The derivatives of these functions are:
u = LA Ir cos 515 + B (51)2 sin .S (C.8a)
X ey T ) EB () Y 3 .
_ X" _ km krx gm gny
uy = %Ar sin = in T~ COs —3 %Hg T cos <
(C.8b)
_ k. krx
vx = ﬁBk T cos 7 {C.8c)
- i
All other derivatives are zero. -
-
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. APPENDIX D

Plastic Moment

The stress-str#in relation that describes the material
behaviour under ;oading is bilinear with linear strain-
hardening. Assuming a beam subjected to pure moment M and
loaded above the elastic limit, the stress and strain dis-~
tribution over the cross-section is as shown iﬁ Fig. D-1 .

The relations between the stress and strain are as follows:

o = Ee ' paft OB (D.1}

Q
li

S, + aE(e-eg) ? part BC (D.2)

Q
]

yield stress;

o
€. = yield strain;
E
B
Ep = glope of the stress—-strain curve in the plastic

range; and
E = slope of the stress-strain curve in the elastic

range.

For a hollow section, the plastic moment M_ is given

by: . ' .
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Ml = plastic moment for a solid section of dimensions

blxzcl; Fig. D.1l | .

M2 = plastic moment for a solid section of dimensions

*§E2XZC2.

An expression for Ml and M2 can be derived from the

moment of the internal forces on the cross-section.
Thus, for

h

€17 _ cq
M) = 2./[ oyb dy + 2 oyb dy (D.3)
(o] .

o o aTh

By similar triangles in the strain distribution diagram,

Egs. D.l and D.2 can be expressed as follows:

o = GO(E§H} D. 4)
g = g, \(l-a + ——%Xf) (D.5)
’ ko) 'Cl hl L} -
Substituting Eqs. D.4 and D.5 in Eg. D.3 and intégrating,
(;_’; the following expression for Ml-is obtained: .
2
h h
- 2 1,1 12171
My = 290y U3+ 50 "5 3!
c
. 1
b
2
h h
4 oa—i - E+i L1 L (D.6)
hl 3 3 Cy 6 c2
3(l-Ef)' 1 ‘

A similar expression is obtained for M, if bl’ Cqr h1 are

replaced by b2, c, and h2, respectively.
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To calculate Mp, the ratio % th;t describe the pene-
tration of the plastic zone in the cross-section has to
be specifiea. It should be noted that for beams made of
material with linear strain hardening behaviou;;the bend-
ing moment required to produce full plaét#ﬁ\:ection is
;qual to infinity. Therefére, the ultimate “bending resis-
ence of such beams is set equal to the bending moment which
will produce a' certain predeterm%ned amount of inelastic
strain at the extreme fiber of tﬁg beam. The- relation
between the ratio % and the maximum strain at the extreme.

fiber is obtained by similar triangles in the strain dis-

tribuﬁicn diagram; Fig. D.l as:

£ = 1 (D.7)
o I_hl; 1 )

where ¢ is the straiq at the extremé fibre of the cross-
section and s is\the strain at yield.

Based on the stress-strain relation shown in Fig{-3.§
the strain at yield equals 0.0017 while that at failure
equals 0.0189. Assuming that tpg ultimate bending moment
produces strain equal to 90% of that at failureé, the maxi-
mum strain a£ the extremé”fibef-qﬁ the cross section ‘will
be 0.017. Substituting the magnitﬁdés of the strain in
equation D.7, the ratio % will be 0.9, i.e., 90% of the

) ¥
cross-section is plasticized. It should be noted that a
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change of 10% in the magnitude of the ultimate'strgin will

‘only produce about 1% change in the value of %, there—

fore, the ratio % is set to be 0.9 throughout the

analysis.
Substituting % = 0.9 in equation D.6 yields:
2 - . -
M, = 20, byjc, [0.498 + 2.835a]; | * (D.8)

therefore, the plastic moment is giveh bgi_

_ 2., 2.
M, = 20, (b,c7rbyc3) (0.498+2.8350) (D.9)

o~

- —
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APPENDIX E

Radius of Curvature

This appendix bs based on the analytical method of
Ref. 15. Defining e as the angle between the x—axis .and
i

/
the center line of the beam model as in Fiq. E-1l, we find:
dx/ds = cos © '(E.l)

Since the curvature K is equal to d8/ds, the angle 6 can be

expressed ag follows:

S .
8 = Bo +~Zﬂ Kl(s)ds OSSSSli. gE:Z)
it
therefore,
S1 , :
8, = eo' +! K, (s)ds _' (E.3)
and
8 = el -_+-[ Kz(s)ds 5155552 (E.4)
1 -
therefore, .
“/ﬁl sﬁ
(2=8 %) Xls)ds+ J K (s)ds - (E.5)
l .

Substituting E.1 in E.2 and E.4 and ihtegrating we

get: N
s .

' 1 8 .
Xy = 6[ cos (eo +[ _Kl(s)ds)ds (E.6)

I e e L L LR R L P A L T . S R B R I - .
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and _
52 rS ]
X,=Xy =-§/ﬁ cos (8 + g}r K2(§)ds) ds.
1 ) 1
Therefore,
‘ 52 sl
Xy=Xy = f cos (ao + f 'Kl(s)ds + I Kz(s)ds)?é
. =1 _ o 1

(E.7)

If the distance between the centers of the fixed

rollers is g, the distance % to the left of the middle

!
-

roller can be expressed as: —~
% = rl«sfn.(-eo) + ¥, -1, sin al
therefore, -

’ ) S

1‘::L sin (-—eo) +

"~

1 3 s g
. Ccos (Bo +'o/- Kl(s))ds

: 1
- r, sin (8, +6[ Ki(s)ds):: -22; | 2 (E.8)

Similarly % to the right of the middle roller is:

~t

=T, sin Bl + (xz-xl) + ry sin 32

M=

therefore,

e e mw AR a4 e e ammm sy merma e = h e b ke A oo
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S1 - fsz fsl
x, sin (90-1-_/~ Kl(s)d§) + cos (80 + Kl(s)ds
(o] . = O ,
: 1
s J[sl
+ g/” Kz(s)ds)ds + ry sin (eO + Kl(s)ds
e}
l -
o2 . | |
+ f K,(s)ds) = 3 (E.9)
51 .

In addition to Egs. E.8 and E.9 two other relations can
be obtained by studying the geometry of the specimen in the

y-directions:

&
sin & = dy/ds . (E.10)
.- = -0 *
| yo r, cos { O) (E.11)
‘ S | '
Yy, = y0 + sin 68 ds (E.12)

Substituting Egs. E.2 and E.1ll in E.1l2 we get:

. s S
' Yl = r, cos BO +'o[ sin (Bo +f Kl(s)ds)ds {.13)

(o}
also
S2 s
Y, =y; + f sin (8, + f K, (s)ds)ds (E.14)
s S
1 1 ,
but y, = r, cos o, 5 o "

Sl . . 2 .
Y, = rj cos (3o +-U/ﬂ K(s}ds + _ Kz(s)ds)(E.ls)

o Sl
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Substituting E.13 and E.l5 in E.l4 we get:

‘ . 51 52
‘rl cos (BO + Kl(s)ds + Kz(s)ds) - ry cos 80
1 :

51 | S
- sin (eo-+J/‘ Kl(s)ds)ds

o o
S2 51 s N
- 1 sin (80 + / Kl{s)ds +.4/~ Kz(s)ds) ds=0
1 .
(E.16)

The position of the middle roller can be related to the
deflection of the beam model as follows:

'The middle roller position can be defined by y, where

Y. = Y] * T, cos 61 . (E.17)
/Sl s - v
Y. = ¥, cos 8 + 'sin (8 +-/f Kl(s)ds)ds
o (o
(E.18)

 The beam deflection & is egqual to:
2~ Ye (E.19)

Equations E.8, E.9, E.16 and E.19 are used to ocbtain
the values of Bo’ Syr S, and 6§ which are required to de-
scribe the deformed shape of. the beam model during the

rolling process.

e PR e hlamma 4 RTRL v HRTAC I LK AR el e ey T b bt 1 sl S B bt M o msoat D sk et
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Fig. E.1. Geometry of the deflected shape at any lnstant

- of the rolling process.
——a
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