University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2001

Design and construction of a library-based software reuse model
to support distributed and grid computing.

Michael Hui. Zhang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Zhang, Michael Hui., "Design and construction of a library-based software reuse model to support
distributed and grid computing." (2001). Electronic Theses and Dissertations. 1646.
https://scholar.uwindsor.ca/etd/1646

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1646&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1646?utm_source=scholar.uwindsor.ca%2Fetd%2F1646&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g9., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

DESIGN AND CONSTRUCTION OF A LIBRARY-BASED
SOFTWARE REUSE MODEL TO SUPPORT
DISTRIBUTED AND GRID COMPUTING

by

Michael Hui Zhang

A Thesis
Submitted to the Faculty of Graduate Studies and Research
through the School of Computer Science
in Partial Fulfillment of the Requirements for
the Degree of Master of Science at the
University of Windsor

Windsor, Ontario
Canada
2000

i+l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitionset
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Waeilington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your Ne Votre réidrence
Cur fle Noire rétévence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-62307-6

Canadi

© Michael Hui Zhang, 2000
Copyright © 2000 Michael Hui Zhang

All Right Reserved, Absolutely no part of this thesis may be reproduced, stored in
a retrieval system, translated, in any form or by any means, electronic,
mechanical, facsimile, photocopying, or otherwise, without the prior written
permission of the copyright holder.

Abstract

In this thesis, we report on the design and construction of a distributed, collaborative,
object-oriented, library-based modeling system (CodeNet) to support reusing and
adapting components. By understanding and resolving the issues involved in the design
and implementation process of CodeNet, this work contributes to reuse-oriented software

design and development in the context of distributed computing.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved Page iv

Dedication

This paper is dedicated to my parents, my brother and his wife, my girlfriend, my

teachers, and my friends, for their love, patience and support.

Copyright © 2000 Mickael Hui Zhang. All Rights Reserved Pagev

Acknowledgements

[would like to acknowledge the support and guidance provided by Dr. Robert D. Kent,
whose time, dedication and effort has contributed in guiding me through this thesis. He
also significantly contributed to the quality and consistency of this thesis by thorough

reviews and by providing excellent feedback.

Special thanks to my parents and my brother’s family for their encouragement and

support and my girlfriend for her love and helping.

Last but not least, I would like to thank all my colleagues in the grad lab for providing a

friendly atmosphere through my Master program.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved Page vi

Table of Contents

... v
Dedication e s eanee v
ACKNOWIBAGOMENES ...ttt rieireereererrenensensnsasnonss vi
Table Of CONBNESoeeinieiiii e vii
List Of FIQUIS ...ttt eee e e eree e e e ensrensaenens ix
Chapter 1. INtroduUCHioNt e enee e e eenes 1

LU MOUIVALIONovnirniiiiiiiiiiniie et e e eeie et eerte e e sanereseeseeennse 3
1.2, Criteria fOor SUCCESSccuuriiniiiiniiiiieiireii et eereeerieer e enrevaneenns 5
1.3. Outline of the Thesisccoovveriniiiiiiiiiii e e 5
Chapter 2. LIt@ratur@ ReVIBWc.ovniiniiniiiiiiiiieiieeeeieenrnenrenennns 7
2.1. A Simple, Sensible Ideacoeivviiiiiiiiiri e, 7
2.2, REPIESENAtIONc..uovvniiiiriinieireiieeiiieeerereaneerineraeeenseneneeannsenrenes 8
2.3. Process Modellingccovviiiniiiiiiiiiiiie e 9
2.4. Composition and GeNErationcceeeeveuienereennerereennenseneenereeneees 9
2.4.1. COMPOSItION ...c.oeuneninnineniiiiiie et e ereerieeeaeneerrenseseenses 9
2.4.2. GENETALIONccovvvnrennriienneiiieeiineeiereereneenernesesennannennienes 10
2.5. Object Technology and ReuSecc.cevveiirniiniieiiiiiriiieeneneeen e enenee 11
2.6. Language MechaniSmsccocevvvuiiniieririiiiiiiiiineieene e seseinene 12
2.7. Software Reuse Library and Repositoriescccooveevnverencreennnennnnn, 13
2.8. Reuse in the General NetwWorkc.uviivuiiiviirieiiriiierenieeinernereeenenens 14
2.9. Software Engineering Environmentcccoevveiviineriierenererennneennns. 15
Chapter 3. Library-Based Code Reuse in the GeneralNetwork 16
3.1. General Concepts of Library-Based Reuseccceveevenirienceninenreennnnnees 16
3.2. Object-Orientation Technique in Library-Based Reusecccovveevnennnn. 16
3.3. Build Reuse Class Library in the Distributed Environment 18
3.4. Java: an Example of Internet Object-Oriented Programming for Software Reuse
.. 20
3.5. Critical Technologies for Library Operationsccevuvereerreennrennnnns 21
3.5.1. Retrieval Methodology Based on Natural Language Specification 21
3.5.2. Lexical Analysis and Parsingcccoeevuniennnrernneencrenseenncnnens 23
3.5.3. Application GENETALOrc.eevrrerenrnreeneerereereerseersensrseeessmnnes 26
3.5.4. Security of Software Reuse Libraryc.ccevevveeeennneeennnnernnnns. 28
3.6. OUr APProachcouiiinriiiiiiiiiei e et e ee e s esenees 28
Chapter 4. Design and implementation A Prototype System: CodeNet 30
4.1. SyStEmM OVEIVIEWenvnniniiininnirieieeeetienirteeenieneerensensseensnessenennsmnnes 30
4.2. The Selection of Appropriate Implementation Toolsccccvevuniennnnns 31
4.3 Featuresof CodeNetooooiiiiiiiiiii e, 33
4.4. System Design and Implementationc.ccoeuireririenerienrieeienaerennnes 36

Copyright © 2000 Michael Hui Zhang. All Rights Reserved

4.4.1. SyStem StUCIUTEccvvvrvrrneeennirennerenierneeerreneeernnereaernrnenens 37

4.4.2. SyStem MOdUIESuovvnnirniinniiiiiiieieeneeie e e e e 39

4.4.3. Use Case, Class Diagram and Sequence Diagramc.c..evunuee... 4

4.5. Design Proof and System Testingeeievriiieeereeeeeeeeneennrererennennn 56
4.5.1. Design Proofc.ociriiiiiiriiieiiiiee e e e e e e ranans 56

4.5.2. SYStemM TESHNG «..eovvvverrriiiiriieeerenieeeeriiiererieeeeeeenrneeeerennseessesrenes 58

4.5.3. LIMItAtiONScccvvnirnniiirneeiieeeieeeesirereeretneeesnnnessnnsnnesesnsiees 60

4.6. Demonstration and EXECUtiONcevvvieeeieeernierniieeeeenerenersesennns 61
Chapter 5. Evaluation and Concluding Remarksccoeveenvnevnrnnnvncnnennes 73
5.1. Evaluation of CodeNetcoiivniinriiiiiiiniiniiiieeiieeeeneee e e eveneees 73
5.2. The Future of Software Reuseccooevverevriiiiiiieeereieeeieeeneeeneens 74
S FUIE WOTK ..coeviiiiiiieiiecee e e ee e e e are e aaeee 75

ROIBIBNCES ...t et e e e e e e e eres s nen s 77
APPONGIXcooiiiitiniiitiiiiiiiiieit et rer e e e ererrre e areerareraensinens 82

VIHBAUCIONISc.ornmeeniniei it e e er e ereensanenreensnsnsarensnsnrens 89

Copyright © 2000 Michael Hui Zhang. All Rights Reserved Page viii

List of Figures

Figure 1. Architecture Of COAENELceuvvuiniiniiieiniireinieeineeeeeeeeeneenens 38
Figure 2. Structure of the Retrieval Systemccoouvviveieeereriiieriieeeeinnns 42
Figure 3. Module USe Caseceuevviiiiniieiiiii it aees 45
Figure 4. FUnction Use Casecoevvvinieniiniiniiniineineriereeeneeenernseneenns 46-48
Figure 5. System Class DIagramcccuvvuveiiniiniiniiniinieereeneennernrereeronenens 49
Figure 6. User Registration Diagramccooeeviveeeiniiireviiienieieninnnceenneeens 50
Figure 7. Server-Side Query Class Diagramccoeevviviinreriieniiereennenserenens 51
Figure 8. Insert Class Diagramcoeevniviiviieieiniieireeiiereeeierereeevr s reveenes 52
Figure 9. Update Class Diagramcc.ccoviuiiiiiiiiieniennicrineeriieeieerenereneeennes 53
Figure 10. Delete Class Diagramc...occoviviiiiiiiiiiiciiineecee e cnee e eneneese 54
Figure 11. Client-Side Query Class Diagramcccoevvevveeeeerenninieeenneeninnnnes 55
Figure 12. Program Packagescccccviiiiiieiiiiiiiieiir e e e 61
Figure 13. Server Side Main INterfacecovvvviviiviniiiierieireeeeeereneeereees 65
Figure 14. User Registration Formccooiiiiiiiiiiiiie e 66
Figure 15. Authorization FOrmcovriimiiiiiiiii e, 66
Figure 16. System Operation Console Part |c..cocevveniiiiiiiiiiininienieiieninennes 67
Figure 17. System Operation Console Part 2c.ccoevvevienieinieennenneenerneeneennns 67
Figure 18. Client Side Main INterfaceccovvvieniriieeniiinieeeiieireneneriens 70
Figure 19. Constructor Parameter Input Framec..ccoeevveeriiiiininininnnecnnenes 70
Figure 20. Function Parameter Input Framecc..ccoviiimiiiniiiriinniiininceneennne n
Figure 21. Application Generation Frameccuuuevermeeieeneiirnerinneeenniienennes !

Copyright © 2000 Michael Hui Zhang. All Rights Reserved Page ix

CHAPTER 1. Introduction

The power of new generation computers and, the same time their cheapness has produced
an increasing demand for software systems of higher and higher complexity. While the
field of programming had made tremendous progress, the development of a large
software system involves a number of difficulties in both technical and non-technical
aspects [SOMB89], such as: the problem being solved were not well understood by all the
people involved in the project; people had to spend a lot of time communicating with
each other rather than writing the code; people leaving the project affectedly the work of
other people, replacing an individual required an extensive amount of training about the
project requirements and system design. Many solutions were proposed and tried, but the
common consensus was to view the final software system as a complex product and the

building of it as an engineering job.

A way to improve the understandability and maintainability of a legacy system is
modularization. Modularizing an existing system consists of replacing a simple large
program or module with a functionally equivalent collection of smaller modules
[CAN9S]. Modularization is also useful for downsizing large applications from
mainframes to distributed client/server platforms [SNE94). Indeed, a changing hardware
platform is becoming a vital importance question for the economy and the
competitiveness of many companies. Therefore, software systems developed for the old
platform have to be available on the new one. In many cases reusing the existing systems

and adapting them to the new platform is cost-effective and can be preferable to new

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page |

development [SNE95]. Another reason for modularizing a system is the possibility to

reuse its single modules in the development of new software systems.

Software reuse has long been recognizes as a way to improve both the productivity and
the quality of new software projects [BIG89, FRAKES94, LIM94]. The reuse of software
components that have been already tested may reduce the costs of software development
and increase software productivity. Moreover, reuse-oriented software development can
reduce the maintenance cost [BAS90], because maintenance operations on a modularized
system can be better localized. On the other side, reuse is the examination and alteration

of a subject system to reconstitute it in a new form and the subsequent implementation in

the new form.

The concept of “software reuse” is not new. Software should be massed produced and
stored into repositories in order to be used to compose more complex components and
systems during software development. One of the most promising ways to make the
population of a repository of reusable assets cost effective and to obtain useful results in a
short time is by extracting and reusing them from the existing software [ARN92, CAL9I,
CAN94, DUNN93, HALL, PRI91]. Existing systems record in various forms
(requirements or design documents, code, test cases, and user manuals) a large amount of

knowledge and expertise. Therefore, they can become the main source of reusable

components.

In our system (model), the term reuse will refer to the process of obtaining reusable assets

from the class-based library. Design and reuse processes involve the following activities:

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 2

1. Identify the system components and their relationships;

[

Understanding their meaning and producing the related specifications;

3. Accessing the class library to identify reuse candidate components;

4. Inserting, updating and packaging the components (classes) in the library
independently;

5. Retrieval from the library by the natural language and generate the object-oriented

application code for the end-users.

1.1. Motivation

Software reuse has been recognized as one of the realistic and promising ways to improve
software productivity, quality and reliability, reduce maintenance costs and shorten time-
to-market [MCC99, JAC97]. Two of the challenging problems in engineering an
application from reusable parts are: (a) software component retrieval and (b) reuse by
composition and generation. A third challenge is adaptation of reusable components to fit
the needs of a new application system. However, at present much of the software reuse
activity has only been oriented toward the reuse of parts -- especially function -- stored in

reuse libraries, and most of the reuse systems were built in stand-alone environments.

The latest technologies are bringing a remarkable impact to software reuse. The most

significant change is raised by the object and network technology.

Object technology offers significant benefits in the construction of individual programs,
but the real power of object-based information systems is generally easier to modify and
maintain which can rapidly adjust to changing circumstances [MCC96]. By inheritance

and encapsulating methods with data structures, an object-based library can execute

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 3

complex analysis and data manipulation operations to search and transform multimedia
and other complex objects. Object technology makes software reuse a lot easier-- it
represents an orientation shift where the emphasis is to build cleaner, more standardized
objects in the reuse library which cut down on interdependencies which in turn helps
make objects reusable. Especially, the Object-Oriented language enforces what you want

developers to do and not to do [MEYER94].

At the same time, the fast growth of the Internet makes the research and collaboration on
software reuse using the World Wide Web especially encouraging. Internet has created a
potential market that is much bigger than any one before. The distributed software reuse

has quickly gained favour due to their intuitive interfaces and powerful yet simple

features.

These raise the question of how to make objects more reusable in the general network

and how can distributed objects be mixed and matched to form complete systems?

The prototype we decided that the way to build this portable prototype was to create a
reusable library architecture. It should be based on the class objects and can make objects
more reusable everywhere and distribute objects to form a complete system. Meanwhile,
it should provide a foundation for code reuse, scalability and the flexibility in the
distributed environment. Not only would this save time, but also it would result in better

quality systems for our end-users.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 4

1.2, Criteria for Success

This thesis deals with the identification and extraction from the existing class library to
generate the programming source codes in accordance with the end-user requirements. In
particular, a new approach to construct reuse systems by a distributed library system
mode! and a natural language-based application generator is investigated. The criteria for
success, to be judged in the following chapter, are as follows:

¢ Review of the existing reuse technologies;

o Description and evaluation of the existing database and distributed approaches;

¢ Design and development of a distributed library-based model for software reuse in the

general network;
¢ Description and evaluation of modules used in this system;
o Evaluation the contribution and creation of this new approach;
¢ Prototype implementation of this system to show that it is dynamic;

¢ Evaluation of this new model by demonstration and execution.

1.3. Outline of the Thesis

The remainder of the thesis is organized as follows:

Chapter 2 describes the current major technologies of software reuse, which include state

of the practice, research direction, gaps and challenges.

Chapter 3 explains library-based reuse concepts, how to build reuse class library in the

distributed environment, the critical technologies applied in our model.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 5

Chapter 4 describes the detailed design, features and implementation of the prototype

system called CodeNet ', and gives demonstrations on how to use CodeNet.

Chapter 5 highlights the evaluation along with the future work.

1 CodeNet is a new-released name of our system. It has an original name called DORLM
(Distributed Object-based Software Reuse Library Module) [ANDY00].

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 6

CHAPTER 2. Literature Review

2.1. A Simple, Sensible Idea

There is virtually no software project in which reuse should not be practised. Software
reuse is the process of creating software systems from predefined software components.
The basic idea underlying software reuse is simple. Rather than build each software
system from scratch as has been the normal software practice, with software reuse we
capitalize on the similarity of software systems by building them from reusable
architectures and building blocks [MCC98]. Because there is such a high degree of

similarity among software systems, this idea makes good sense.

Reuse makes sense because the similarity found across software systems is enormous and
undeniable. When we compare software systems, we usually find 60% to 70 %
commonality from one software application to another. This includes code, design,
functional and architectural similarities. At all levels of development from requirements
specifications to code, there are components that by the nature of implementing tasks and
representing information on a computer must appear over and over again in software
applications [ADL95). New technologies such as software automation, object-orientation
and client-server do not change this; however, they do make it easier to take advantage of
software similarities. Some software similarities can be predefined and built into software
tools (such as reusable code patterns in generators); others can be created as reusable

components, which are stored in software reuse libraries.

Although the idea of software reuse is simple and obvious, its implementation is not. The

practicc of software reuse often requires a change in the corporate culture, software

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 7

process, software tool set and software skill set; as well as, something to reuse. Reuse is
more difficult to implement than other software technologies because it works best when
applied above the single system level where there is more opportunity to reuse
components and to get the pay-back from the investment in reuse [SAR99]. The broader
the base on which to practise reuse the better. Ideally, reuse programs should extend

across multiple systems, project teams and even organizational boundaries [MCC98].

Also, without the availability of the enabling technologies discussed in this section,

reuse-based system would be far less feasible and effective.

2.2. Representation

Typically, the representation is a description of the reusable asset at some level of
abstraction. The types of reusable assets that may be represented include processes and
parts of processes, objects, products, and relationships among processes and products
[DOD9S5]. The assets may be physical (e.g., a hardware device) or logical (e.g., a
concept). Representation is a critical technology for the interdependent issues of process
modelling, product modelling, architecture implementation, and their interrelationships.
Common model representations are needed to facilitate the recognition and exploitation
of reuse opportunities within and across projects and domains [ASP93). Such
representations must be sufficiently expressive to capture structure, functionality,
behaviour, and constraints [DOD95]. At the same time, such representations must be

feasible to implement in terms of storage size and processing time for the models.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 8

2.3. Process Modelling

The term software process refers to processes that are intrinsic to developing and
evolving software systems [SIT96]. Models of reusable processes will be some of the
most important reusable assets within a domain. Such reusable processes must be
repeatable, defined, measured and optimising for specific application and product lines

within a domain [DOD95]. Rigorous models increase the probability of achieving these

goals.

There are two faces or sides of reuse that must be incorporated into the development

process to support the practice of software reuse:
e Activities for creating or acquiring reusable components.

e Activities for using reusable components as building blocks in the creation of new

systems.

A reusable component may be code, but the bigger benefits of reuse come from a broader
and higher-level view of what can be reused. Software specifications, designs, test cases,

data, prototypes, plans, documentation, frameworks, and templates are all candidates for

reuse [MCC94].

2.4. Composition and Generation
Composition and generation are two major software reuse technologies for the

development and maintenance of software systems.

2.4.1. Compasition

Composition refers to the development of new programs from reusable modules (and

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 9

more recently architectural frameworks) which largely retain their form and identity in

the new programs [BIRI87].

The first approach to composition relies upon "mining" or "scavenging" existing designs
and code for reusable assets. The second approach to composition reflects the position
that reusable assets should be designed, developed and supported for reuse. At a higher
level of abstraction, the third approach to composition, software schemas, emphasises
reusable algorithms and data structures rather than source code components per se
[DOD9S]. This approach, which is still in the research stage, uses formal semantic

descriptions of the algorithms and data structures represented in the schemas [GOG89].

2.4.2. Generation

In contrast to composition, generation technologies rely on reusable patterns rather than
reusable modules. Such patterns may take the form of code or transformation rules. For
example, an application generator contains embedded knowledge of the semantic patterns
that occur frequently in a given application domain [GRI94]. Executable code is
generated directly from a specified need for instances of such patterns. Examples of this
technology include parser generators and compiler compilers used to create new language

translators and application generators.

There are the four approaches to generation:

e Employ the primitive pattern generations that are a part of high-level programming
languages [DOD93].

¢ Based upon the semantics of a very narrow and well-understood application domain.

o (enerate executabie code directiy from software design specifications.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 10

o The transformational approach, uses a formal specification language to capture the

intended semantic behaviour [DOD93].

The most promising approach may be a hybrid of both generative and compositional
technologies. This technique is based on the notion that several kinds of assets (code,
tools, languages, framework) should be designed and packaged as a compatible set

[DOD95], so together they make the task of the application engineer much easier.

2.5. Object Technology and Reuse

Object-based programming supports reuse through class definitions, which provide
modularity and information hiding, and polymorphism, which allows procedures to be
used with a wider range of arguments. The object-oriented philosophy is compatible with
software reuse in that it seems to encourage people to identify and create reusable
abstractions rather than inventing new code [JF98]. Object-oriented toolkits and

frameworks foster the reuse of designs.

To succeed with object technology we must succeed with reuse. We must recognize that
reuse means fundamentally changing the software development process, including the
0O development process. An OO/reuse discipline inherits more than creating and using
class libraries. It requires formalizing the practice of reuse by including support for reuse

in OO development methods, tools, training, and measurements.

To employ software reuse combined with OO development effectively, reuse-driven
methodologies are an absolute requirement to get any reuse at all for large applications

[MCC95]. A reuse-driven methodology for objects consisting of six facets:

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 11

¢ Methodology

e Tools

¢ Run Time Environment

¢ C(lass Library Management
¢ Testing

¢ Continuing Operations.

Work is underway to define all six facets, then OO technology enable better support for

management and training for reusable components.

2.6. Language Mechanisms

Language mechanisms are the means by which software engineers express the

implementations they derive in software development [DOD93]. The reuse of

implementations is totally dependent upon the ability of a programmer to make it work in

a programming language. The relevant research areas include:

¢ program modularity (the expression of a program as a collection of parts),

¢ polymorphism and its particularly important specialisation in inheritance

¢ environmental issues, including the concurrent execution of, the distribution across
multiple processors of, and the handling of exceptional conditions by program

artifacts.

Languages supporting these facilities allow programmers to develop programs possessing

the characteristics necessary for reusability, portability and maintainability.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 12

The major gaps in language mechanisms from the perspective of reusability include how
to reuse software designed for computer systems with thousands of processors, local and
wide area networks with thousands of systems, and how exception handling migrates into

reusable components from the surrounding environment.

2.7. Software Reuse Library and Repositories

The most immediate problem in reuse is the building up of a repository of reusable
software components [GIR98]. Although reusable software components can be designed
and implemented during the development of new software projects, existing software is

widely considered to be the main source for the extraction of reusable assets [MAA91,

KIM90].

A reuse repository is a database for storing reusable assets. A reuse library is a repository
plus a search interface, an indexing scheme for the assets in the repository, and facilities
for change management and quality assessment of the assets. The library concept has
expanded to include providing support for helping the user to understand the assets, since
this is necessary for software reuse [DOD95]. In some cases, the concept of reuse library

includes additional capabilities such as composition and application instantiation.

There are several issues involved in building a repository. The first is a platform for the
repository. The primary alternatives are database management system (DBMS),
information storage and retrieval (IR) systems, Al-based systems, and hypertext. There
are lots of tools for all of these. The second issue is the indexing of the components.
Many techniques for indexing reusable components have been proposed. They fall into

four categories: library scicnce, artificial intelligence, hypertext, and formal specification

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 13

[DOD95]. Some operational libraries that are based on knowledge representation,
employs a semantic network/rule-based hybrid scheme, captures domain requirements
and (some) elements of software architecture as a context model for components, which
are then linked to the requirements and the architecture [WAL92]. An additional problem
is the difficulty involved in actually obtaining assets (especially large ones) that have

been identified and requested, due to network overload and inadequate performance.

There has been much work on reuse libraries, such as interoperability, interface design,
distributed heterogeneous databases, database security, asset quality assurance, change
management, and automated support for controlled vocabulary indexing [HEL91]. Better

representations of library collections are needed to help users find and understand the

parts they need.

2.8. Reuse in the General Network
The popularity of network has provided a new solution to cheaper and more efficient
Software Reuse Libraries (or SRLs). Network tools such as Netscape and Mosaic provide

simple and user-friendly methods to search and extract reusable assets from the remote

SRLs [POU95].

Distributed SRLs have quickly gained favour due to their intuitive interfaces and
powerful yet simple features. But the task implied by network-based software reuse
involves making SRLs accessible to users in machines from the mainframe-based to
workstation-based or other kind of environments. We need a way to not only locate
reusable software but also a way to locate other items of interest, such as key personnel

information about on-going programs, the latest developments in various technologies,

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 14

and trade studies previously conducted etc. The desired information retrieval tool has to

handle all these types of information and environments.

Another a major consideration of network implementation of SRL concerns security
problem. System must actually authorize users through the use of subnet masks based on

Internet Protocol (IP) address; this allows the acceptable level of access control to users.

2.9. Software Engineering Environment

A Software Engineering Environment (SEE) consists of platforms, framework services,
repository, and Computer-Aided Software Engineering (CASE) tools [DOD95]. Major
problems exist, especially for employing reusable assets, in that implementations of open
systems, framework interface standards, and distributed repositories for objects are not

yet available easily.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 15

CHAPTER 3. Library-Based Reuse in the General Network

3.1. General Concepts of Library-Based Reuse

A single or virtual software reuse library (a library of interoperable libraries) is developed
to provide users with quick and easy access to reusable software assets of interest.
Collections of assets (requirements, design, code, test, documentation, etc.) are acquired,
classified, certified and made available to users either directly from the library system or

from a server in a seamless manner using client processes [PER92].

Many organizations focus their reuse initiatives on a reuse library where members of the
organization can both store reusable assets and retrieve these assets when they need them.
Software reuse libraries use specialised methods for component classification and
retrieval. A recent survey of application programmers [BELL92], which was conducted
to discover user needs and attitudes toward reuse, shows that users consider reuse
worthwhile, but most of them (especially those without object-oriented experience)
expect more from application generators or from tools for automatic programming than
from reuse systems like browsers. A browser’s usefulness actually depends on the
features of software libraries as well as on the expertise of users. Such tools are useful in
the case of small libraries; in the case of users that have good knowledge of the library
content and extensive experience in its utilisation or as complementary mechanisms of

faster retrieval systems, like keyword-based reuse systems [PRI90].

3.2. Object-Orientation Technique in Library-Based Reuse
In order to deal with all the difficulties arising in the library-based reuse area, especially

the technical ones, a relatively acw design and coding methodology-- object orientation --

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 16

has been applied widely for this purpose. “Object-oriented programs are made up of
interacting components called objects” [BRADS6]. These objects may correspond to real
world entities, to computer hardware and software component, or to data structures.
Software construction using object-oriented language is the “assembly of objects to form
a system” [JOE0O]. An object is defined via its class, which determines everything about
an object. Objects are individual instances of a class. A class is a structured collection of
fields (variables) and methods (constructors and functions). These two components along
with classes make up the central components of an object-oriented application. To use a

class within a program, an object of that class must be created.

Object-oriented languages and methods have two features that are of special benefit to

library-based reuse: Information hiding and inheritance.

Information hiding is a concept that was known long before object-orientation came to
the scene [JOE00]; however, many researchers today feel that the concept came closed to
being concrete by using object-oriented methods, for object oriented methods focus on
showing “what” is to be achieved by each object, while hiding “how” this is achieved
internally. This feature is very helpful in library-based reuse, since it lets the developers
interact with components in the basis of their known functionality and not their internal
representation. Information hiding is achieved in object-oriented languages through
“encapsulation”, which “places a wall of code around each piece of data” [BRADS6].

Inheritance, on the other hand, is the feature proper of object-oriented languages and
methods. Inheritance is the concept where objects acquire (inherit) some or all of the

existing properties of other, already-defined, objects. The objects whose features are

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 17

reused in other objects are known as “classes”, and the whole set of classes and objects
that inherit from them is known as a “class hierarchy”. Thus, “programmers no longer
have to start each module with a blank page, but instead write a single statement that
references some class that is already in a library” [BRADS86]. Each subsequent statement
defines how the fact that certain structures will not be defined from scratch, but will
inherit from already defined one [HEN95]. Objects and classes can be seen as reusable
building blocks: “A minimum of coupling and a maximum of cohesion in class design

helps in generating such building blocks” [GALL95].

Object-oriented techniques as an “evolution”, not a “revolution” [BRADS86], for object-
orientation supplements the existing components of existing software with libraries and
techniques to extract those components and make use of them, as opposed to building
new components from scratch and this constituting a “revolution” every time a new

software is to be developed.

3.3. Build Reuse Class Library in the Distributed Environment

With the growing use of individual workstations, personal computers, legacy systems and
increased rates of adoption of the Internet and other networking platforms, reuse of
software components available in open distributed systems is a promising approach for

efficient development of complex distributed applications.

A complete distributed software reuse library is a way to unify the broad range of
existing and new systems in an organization in a consistent and coherent framework that
allows for the sharing of information and other resources across the enterprise.

Distributed applications within this framework must be simple, flexible, and manageable.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 18

Building a software reuse library in the distributed environment have until now remained
a fine art among a few developers Internet Service Vendors and corporations. Most of the
reuse systems were still built in stand-alone environments. Problems associated with
distributed design are difficult. These problems have included resistance to network
failures, inability to maintain persistence, numerous communication mechanisms and co-
ordination models, and the inability to dynamically react to changed or unknown network

states [LEQ99].

Today developers of distributed software reuse libraries have had to resort to solutions
that involve complex, multi-language, object-oriented, transaction-oriented software that
is expensive and hard to maintain. Or, they have had to internally develop solutions that
build code on top of bare metal such as TCP, and on top of a patchwork of middleware

and other point technologies of messaging, protocols, object models, and more [RON94].

For a distributed software reuse strategy to be successful, there must be common
communication interfaces and behaviour specifications between the libraries and objects
within the network. To function effectively, and to allow an organization to take full
advantage of true distributed library for software reuse, a distributed computing
infrastructure must be designed around a central core. In today’s market, the simplest
means of establishing that central core, and of extending the distributed computing
concept across an enterprise seamlessly and securely is Sun Microsystems’ Java
technology [SUNOO]. The Java language and the Java virtual machine provide an

unprecedented opportunity to solve age-old distributed application problems.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 19

3.4. Java: an Example of Internet Object-Oriented Programming for
Software Reuse

Java is an object-oriented language for Internet applications developed by Sun
Microsystems [SUNOO]. Its distinguished features can be summarized as simple, object-
oriented, distributed, interpreted, robust, secure, architecture neutral, portable, high-

performance, multithreaded, and dynamic language.

Java makes it possible to write component software in the Java programming language.
Components are self-contained, reusable software units that can be visually composite
components, applets, applications, and serverlets using visual application builder tools.

Software reuse in Java across three dimensions.

¢ Reuse Across Projects

Reuse across projects means that application source code, objects, or components from
one project can be productively leveraged in the next [JOE00]. Java is taking this a step
farther by not only empower reuse across projects within firms, but also support reuse
across projects at different companies by establishing collaborative repositories of

reusable Java components that member companies agree to share.

¢ Reuse Across Tools

Reuse across tools highlights the ability of Java development tools of modifying,

combining, or rewriting Java applications created with any other Java tools.

¢ Reuse Across Architectural Layers
Reuse across architectural layers points to the ability to move application modules or

business logic from one layer of an enterprise application to another [ROY95]. Java's

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 20

portability makes this dramatically easier for platform independence. Migrating Java
components across architectural layers is being made far easier by the adoption of Java in

products such as Oracle and Unify Modelling Language (UML).

3.5. Critical Technologies for Library Operations

Technologies that support reuse are the tools used to develop, find, understand, improve,
integrate, and test reusable components. Research on more friendly and effective reuse
systems is ongoing. A considerable number of tools and mechanisms for supporting reuse
activities in software development have been proposed. They provide assistance either to
application developers for retrieving, understanding, customising and composing
components in a software library, or to library managers to create, organize and

reorganize reusable development information in the software library [WEI94,

URBAN96, WEI92].

The subsections that follow describe the current status of the critical technologies and the

necessary improvements to them for widespread adoption of mature software reuse

practices.

3.5.1. Retrieval Methodology Based on Natural Language Specification

Most software retrieval systems usually retrieve a set of reusable candidates ranked by
similarity with user requirements. However, users dont want to invest a great effort in
selecting a component. So, in most cases, the list of retrieved candidates is not
completely analyzed even if the highly ranked components are discarded. The user
assumes that the best-suited components are the ones on the top of the list of candidates

{c.g. the first to the third). Thus, to select a component from the list, the user examines

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 21

only the associated information for those first components. If none of them satisfies his
requirements, maybe he will try to refine or rewrite the original query but, in most cases
he will abandon the search. Therefore, retrieval systems should exhibit more precision in
their answers, by discarding some obviously unwanted components from the set of

candidates and by retrieving only the ones that satisfy more precisely the requirements of

the user.

Most software retrieval systems retrieve components through a set of keywords provided
by a user employing either a controlled or a free vocabulary. These systems are simple
and effective for experienced users. The effectiveness breaks down for users not familiar
with the proper terminology. Such users may not know a proper keyword, and therefore
may use a synonym, a related term, or a more general or specialised term. In such cases,
keyword-based systems fail because they donY provide an answer or they retrieve a great

number of irrelevant software components.

The current survey also shows that most of the interviewed users prefer natural language
interfaces to retrieval systems than keyword-based interfaces. It seems more friendly for
a user to say, "I want to get a component that can do calculation operation.” than to think
in proper keywords, corresponding classification schemes and boolean combinations of
keywords. This is yet more critical for users not familiar with common terminology or

even worse with keywords systems based on a controlled vocabulary.

Queries in natural language allow for improving the precision of retrieval systems.
Precision can be improved by allowing queries and indexing software components with

multiple words or phrases extracted from the natural language descriptions. In a

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 22

particular domain, software libraries operate with a great number of common concepts
(e.g. file in UNIX system) and retrieval through single words reduces the precision of the
system by retrieving a great number of components that are mostly irrelevant to the final
requirements of the user [GIR93]. To achieve high precision is more crucial in software
domains than in typical domains of information retrieval systems. In software retrieval
systems the main purpose is not to retrieve all the material in which a particular pattern

exists but rather those that best fit the desired functionality.

Natural language processing techniques have been applied in information retrieval
systems mainly at the lexical, syntactic and semantic level [GIR93]. Some improvements
on retrieval effectiveness have been obtained with multi-keyword systems, using
statistical methods to index documents based on the multiple occurrence of keywords in a
text. These improvements are not enough and current research [PRI90] recognizes that
some form of natural language processing should be necessary to increase the
effectiveness in text retrieval and other text processing operations. Thus, most recent
information retrieval systems incorporate natural language processing techniques and this

experience seems to be useful for the design of software retrieval systems.

3.5.2. Lexical Analysis and Parsing

When insert reuse assets, such as classes, to a software reuse library, one of the more
common things we will be required to produce is lexical analyzer and parser. They range
from simple to complex and are used for everything from looking at command-line

options to interpreting source asset.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 23

The purpose of lexical analyzers is to take a stream of input characters and decode them
into higher level tokens that a parser can understand. Parsers consume the output of the
lexical analyzer and operate by analyzing the sequence of tokens returned. The parser
matches these sequences to an end state, which may be one of possibly many end states
[MCMO0]. The end states define the goals of the parser. When an end state is reached,
the program using the parser does some action -- either setting up data structures or
executing some action-specific code. Additionally, parsers can detect -- from the
sequence of tokens that have been processed -- when no legal end state can be reached; at
that point the parser identifies the current state as an error state. It is up to the application

to decide what action to take when the parser identifies either an end state or an error

state.

The lexical analyzer and parser actually perform their processing in three phases
[MCMO0]: parse the source code to determine definitions and references, resolve

references in the contents of the symbol table and generate the cross-reference report. In

more detail:

1. Determine Definitions and Note References
The first phase of the cross-reference tool goes through all the source code in the

specified directories (and their subdirectories.) The lexical analyzer and parser collects

information on the following constructs:
e Package Definitions
¢ Class Definitions

¢ Interface Definitions

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 24

e Method Definitions

¢ References to other symbols

For each of the above definitions found, a new symbol is created. This symbol may
reference other symbols such as a superclass that is being extended as part of a class
definition. During the first pass, these references might not yet be available; they could be
defined later in the same source file or in another file that has yet to be parsed. Because
of this, any references to superclasses, implemented interfaces, return types for methods
and parameter types are stored as placeholders by their names only [SCOTTO00). These
placeholders are held in an instance of the DummyClass class [SCOTT00]. These will

also be resolved during phase two.

2. Resolve Definition References

After the source-code parse, we have a symbol table that lists all constructs defined in the
source files. Each of these definitions may reference other definitions (for superclasses,
variable types and so on). This second phase will walk through all definitions in the

symbol table and resolve those references.

At the conclusion of this pass, the symbol table contains all symbols defined in the parsed

source files and proper resolutions to defined symbols. The next step is to find references

to the defined symbols.

3. Report Generation

This final phase looks at the data contained in the symbol table and generates a cross-

reference report.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 25

3.5.3. Application Generator

Application development is a complicated process. Developing and describing the
standards and methodology to be used in application development are even more
complicated. Because the business needs of today force us to develop applications rapidly
and to maintain them with limited resources, common standards must be enforced, code
reuse must become a daily activity, and productive tools must be implemented to

accelerate the application development process [PAT99).

The application generator provides the functionality to assist in the population of the
reuse base with generic code components and all the additional information (e.g. natural
language descriptions) required describing and reusing the components. This approach
reduces the need for an organization to write its own data capture, transformation and
load programs. Meanwhile, automatic application generation is a way to ensure

consistency between design and implementation stages of the software life cycle.

But how to design reusable software (from scratch or from existing components) is not an
easy task. Good knowledge of the application domain and past experience in the
development of applications in the domain are required. Existing components must be
properly qualified according to their reusable attributes before their redesign and
inclusion in the library base [CAL91, GIR92). Reuse guidelines are identified and
attached to the components in the library base in order to suggest typical uses of the

component and design guidelines to adapt them to a new context.

Generic code components will be created from scratch or by an abstraction process from

specific onecs. Leaming by analogy from past development experience and reversc

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 26

engineering are proposed techniques to deal with this abstraction process [CAL91]. In the
techniques for learning by analogy, the idea is to transform solutions of past problems
into potential plans to solve new generated problems [MIC86]. Reverse Engineering
techniques may provide heuristics to abstract generic specifications from existing
software at a particular specification level, and from the implementation level to the
design level to the requirements specification level [CHI90]. Some measures of the level
of reusability of the specifications extracted from existing applications will be done
before their inclusion in the software library. Common functionality, ease of
modification, correctness, readability and other attributes of reusability may be measured

by applying a set of metrics and models [CAL91].

There are many different kinds of application generators today:

e Stack based application generator: Generate code from source language to target
language using stack variable memory.

e Accumulator based application generator: Use an accumulator to compute values.
The accumulator holds one of the operands of a computation, the other being given as
a parameter of an instruction. The result is placed into the accumulator.

¢ Rule based application generator: Allowing the integration of legacy or use-
specification rule. It potentially is for supporting any language code and any
architecture.

e Web based application generator: Generate application in the distributed environment

including Internet.

e Pattern based application generator: Approach to generate domain specific

appiication code using patterns.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 27

e Form based application generator: The easy-to-use visual design interface versatile

application generator.

3.5.4. Security of Software Reuse Library
As the things of other distributed software agent, a major consideration of Internet

implementation of software reuse library concerns security problem.

Most library web servers include a login screen, which indicates that all activity is
monitored and that anyone who doesn? like this should logout. Many web servers even
dont include any such warning. Intangible Assets Manufacturing stated in its own web
policy document [LEO99] that, “most Web servers log all accesses. In theory, we could
compile a lot of information about you this way, and some web servers probably do.

Heck, they may even sell that information to other companies.”

There are several reuse systems, such as the Andrew File System (AFS) [LEO99], Access
Control Lists (ACLs) and standard UNIX file permissions, allow reuse system to grant
and deny access to the host environment. System may actually authorize users through
the use of subnet masks based on Intemet Protocol (IP) address; this allows the

acceptable level of access control to users.

3.6. Our Approach

Distributed library-based reuse is that area of software engineering that enables
developers of software to use already existing, off-the-shelf, components, instead of
having to “re-invent the wheel” at the start of every new development project [JOE0O].

Distributed library-based reuse model provides the means to integrate the data and logic

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 28

of multiple information systems into a coherent data management infrastructure [GEP00].
It constitutes a powerful, innovative model for generalized distributed computing. In
particular, it is very attractive because it adds object capabilities with distributed

computing context that already offer a number of other valuable advanced features

[GEP00].

Although the basic concept of reusability is well understood, the software community is
still debating on the proper definition of a standard for software reuse. Questions such as
which products of the software life-cycle should be reused, how to organize reuse
components, and how to make objects (classes) more reusable in the general network and
how can distributed objects be mixed and matched to form complete systems are still
being asked. Faced to these issues, we try to present a distributed library-based reuse
model (CodeNet) for creating, updating and querying a class-based library and generating
the specific applications in the distributed environment while considering the viability

and applicability of reuse fully.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 29

CHAPTER 4. Design and Implementation A Prototype System: CodeNet

4.1. System Qverview
In order to ensure that a model is of practical utility, it is necessary to construct an
implementation of it designed to test various aspects of that model. To this end, a

prototype system -- CodeNet -- presented in this chapter was created, designed and then

implemented.

CodeNet shall provide two kinds of major services: server side service and client side
service. In the server side, the users, who should be skilled programmers and experts,
can perform operations such as insert, update, delete and query classes and functions
(reuse assets) of various object-oriented languages with the library. In this side, we try to
provide a lexical analyzer to verify the user’s input content (classes and functions).
Meanwhile, a dynamic index of classes and functions in the library and a user-friendly

GUI will be provided for convenient use of various operations.

In the client side, through the general network, the end-users can design and program the
object-oriented applications (such as C++, Java) by this model in accordance with their
requirements. What they need to do, for example, input several simple arguments of the
application classes, and then this system will generate the suitable object-oriented
applications. Actually the end-users don’t even require understanding the detailed

structure of classes in the library.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 30

4.2. The Selection of Appropriate Implementation Tools

The selection of a suitable run-time environment and software tools to implement
CodeNet was not an easy process. Since the CodeNet is a distributed object-based
software reuse model, object-oriented and distributed technology should be selected to do
precisely that. This meant that the CodeNet implementation would be written as
computer software. In the end, four major technologies: UML, Java, CORBA as well as

Oracle were used to design and implement the concepts presented in this thesis.

The Unified Modelling Language (UML) is a language for specifying, visualizing,

constructing, and documenting the artifacts of software systems, as well as for business

modelling and other non-software systems [UML97]. It is one of the best choices for

building distributed object-oriented and reuse-based systems. The UML represents a

collection of best engineering practices that have proven successful in the modeiling of

large and complex systems. The primary goals in the design by UML were as follow:

¢ Provide a ready-to-use, expressive visual modelling language in order to develop and
exchange meaningful models.

¢ Provide extensibility and specialization mechanisms to extend the core concepts.

¢ Be independent of particular programming languages and development processes.

¢ Provide a formal basis for understanding the modelling language.

¢ Encourage the growth of the OO tools market.

e Support higher-level development concepts such as collaborations, frameworks,
patterns, and components [UML97].

¢ Integrate best practices [UML97].

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 31

Java, as a language and platform, has a number of desirable features that would serve to
facilitate an implementation of the CodeNet to prefer it over other general purpose
programming languages such as C++, C, Smalltalk etc. and their environment. As
mentioned in section 3.4, some of Java features like: (i) its compiled form can be
executed on virtually any existing computer; (ii) it is able to interoperate with web
browsers within a secure, easy to download environment for the user, and (iii) it is object-
oriented, support concrete and abstract classes, multiple inheritance of interfaces, and
class serialisation. These make Java satisfy code reuse in each platform and perform tasks

such as network socket /O and concurrency.

OMG's Common Object Request Broker Architecture (CORBA), is increasingly accepted
as a standard, cross-platform, cross-language distributed object computing framework.
CORBA allows clients to invoke operations on distributed objects without concemn for
object location, programming language, OS platform, communication protocols and
interconnects, or hardware. The CORBA object model provides a standard middleware
framework that enables CORBA objects to interoperate with each other. CORBA defines
a software bus that allows clients to invoke operations on objects that can reside locally
or remotely [CORBA99]. Moreover, to provide higher-level reusable components, the
OMG also specifies a set of CORBA Object Services that define the standard interfaces
to access common services, such as naming, trading, and event notification. By using
CORBA and its Object Services, programmers can integrate and assemble large, complex

distributed applications and systems by using features and services from different

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 32

providers. Thus, CORBA was selected as one of the major implementation techniques for

CodeNet.

Oracle is the world’s most popular database for Internet computing. Oracle 8 has brought
the relational database world into the distributed object area [ORACLE99]. The new
features of the product make it possible to combine the newer distributed object-oriented
structures with the traditional relational constructs. With Oracle 8, building and
maintaining systems will be faster, more easily and for lower cost. Meanwhile, Oracle 8
includes significant enhancement to keep pace with the technological requirements of
demanding Internet applications. Through integrated Java Virtual Machine, Oracle 8 has
improved performance to support for Java2, and allow applications to efficiently

implement and manage robust security policies [ORACLE99].

4.3. Features of CodeNet

CodeNet contains many features to help developers to build object-oriented applications

in the general network.

1. User-friendly GUI design

In CodeNet, the newest JFC API (Java2: Java Swing) was used for the GUI design.

o Integrated with the JSplitPane and JTabbedPane, the interface frame looks more
concise and flexible. The end-users can highlight one part of the whole interface to

input data or do operation. This kind of design offers a visual and comfortable

operation platform to users.

¢ Provides dynamic “Class View” updating through the JTree and JList. When the

server side users insert or deiete a component with the “class™ library, the updating

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 33

effect will be displayed in the interface at once. This kind of design will avoid the
unnecessary operation mistake and make the model more real-time.

¢ Dynamic button action, which was designed through the status flags, will make the
operations more vivid and precise. That is, one button can execute the different

actions in accordant with its dynamic label content.

2. Stored procedure and package
A set of related classes, procedures, functions, and variables are bundled together into a
package. This approach modularizes the whole system, the benefit is, it simplifies the

system architecture and reduces the development time and cost largely.

In the server side, because the reuse components (classes) in the library have various
representative patterns, the information of a complete component is divided into the
following segments: (i) key word part; (ii) import part; (iii) class head part; (iv) variable
part; (v) constructor part and (vi) function part. The constructor and function part also
consist of the three sub-parts: (i) head part; (ii) variable part; (iii) content part. Vector
technology was selected by this model to store the component information. Information
of each part would be stored into the different vectors. Through the CORBA and Java
Socket, these vectors will be delivered to the library and composed the complete
components for inserting into the library. The advantage of vector is that all kinds of
components may be stored and accessed flexibly without considering the limitation of
their amount and patterns. This point is exactly the deficit of the previous reuse system.
To combine GUI with information store process fully, GUI must provide the

corresponding scheme for browsing, searching and modifying all items of components.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 34

For example, add four buttons to manage the first, last, previous and next item of each

component.

3. Error handling and warning box

Since components of the library will be reused by the client users. The component
information must pass the lexical analyze before being inserted into the library. In all
interfaces, the user-input and user-selected data will be validated against by some rules,
such as a class constructor can’t have “return type”, variable name can’t be the same etc.
On the other side, the run-time error will be warned through the wamning box such as
server shut down, password isn’t correct etc. Moreover, in CodeNet, an automatic
message box, which can open and close automatically, was implemented to prompt the

users about the information, warnings and error messages.

4. Flexible search engine by the natural language

In the client side, a flexible search engine that was designed by Java Applet and Java
Database Connectivity (JDBC) will handle whatever the end-users input by the natural
language, and then find the key words of the sentences through checking the grammar
and vocabulary. The components that fit for the search requirements will be attained from
the remote library server and display in the client-side interface. This kind of design will
be suitable for all sorts of users, especially the users who don’t have any computer
experience. It makes great advances in the reuse area. Most of the old reuse systems just

aimed at the users like programmers or developers, not the general users.

5. Faster and more efficient generate various object-oriented applications

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 35

In the client side, a powerful application generator is available. It can be used to generate
source code about various object-oriented languages (Java, C++ etc.), based on the
parameters input by the users. The users don’t even require understanding the detailed
structure of components in the library. In addition, the generated application can be made
up with multi-components of the library. Furthermore, the application generator reserves
the program space for the end-users, that is, allowed to add the new program content as

users prefer.

6. Multi-thread and distributed control

CodeNet provides a robust environment for reusing remote library components. It
automatically handles all communication among clients, servers, and middle tiers, and
allows user to quickly and reliably deliver information to web browsers, laptops, servers,
and workstations. Also it supported multi-thread real time operations, which permits

multiple users to access the library server concurrently.

4.4. System Design and Implementation

The general purpose of our research is to contribute with concrete solutions to controlling
software development by turning easier the practice of software reuse. Particularly, the
system must be cost-effective, precise in its answers and domain-independent (i.e.

independent of the application domain of the software libraries).

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 36

This system design and implementation process strictly obeyed the principle of software

engineering, comprised with five phases: (1) requirement analysis and specification; (2)

system and software design; (3) implementation and unit testing; (4) validation,

integration and system testing and (5) delivery and maintenance.

Following sections will highlight the important stages and documents of this system.

4.4.1. System Structure

The architecture of the prototype system is shown in Figure 1. This system composed of

three main sub-systems:

The middle part of this model is the library server. It consists of a library server, a
user register module, a class library and a retrieval module. It is the system kernel.
Most operations and actions will be invoked and controlled here.

The left part of this model was designed for the client-side users. Users can access the
library server after the network security check. Through the application generator,
users may attain the application source code, as they prefer.

The right side of this model was designed for the server-side users who usually are
computer experts. The special privilege will be given to the server-side users for
accessing the library server. They allow to perform the operations such as insert,
update and delete, which the client-side users weren’t permitted to do. A lexical
analyzer was offered to verify user-input and user-selected data and compose those

data to components for storing into the remote library.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 37

8¢ 23ey ‘paa1asay sy |1V “Fueyz Y [9eYoIN 000 @ WuAdoD

dashpeuy IR | T~

b 0u¢=u§ ._..-ola..o.. ..8-..2.6
Magug m [eanjeN £q Mpojy [vAdtuY _/ uopeopddy

J38() JIAIIS

s[npojy uopwaisiday 13s) _v\

3NAIIS

vadoo AIAS PuIU) 3dej1Uujf 1938

19NOPOD JO 24MO8}IY2IY @} eunB)4

4.4.2. System Modules
Based on the system architecture, the following nine important modules should be

created, designed and integrated into a complete model:

1. Server Interface:

Controls the whole process in the server side. It includes:

¢ main interface: connects to the different interfaces through four major buttons -- user
register; enter system; help and exit.

e user registration form interface: provides the server-side users a way to input their
individual information.

¢ system server-side console: according to the language types, consists of the different
tabs such as Java tab, C++ tab. Four parts were designed in each tab: (1) dynamic list
of class (component in the library) names; (2) dynamic class index tree includes class
names and function names; (3) panel for inputting the class information and
displaying the query result, consists of key word part, import part, class head part,
variable part, constructor and function part. It is the core of the server-side interface;
(4) control panel, by means of invoking the buttons (insert, delete, query class, query
Junction, modify, restore, help and return buttons) to control the operations of the

server side.

e help frame: provides help information and user manual.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 39

2. Client Interface:

Controls the whole process -- search the suitable classes and generate applications for the

Internet end-users -- in the client side. It includes:

e search engine: is divided into two sub parts, (1) information part, lets the client-side
user input the generated class name, language type and the search standard; (2)
control part with buttons -- view all (view all classes in the library), search (query
library by the search standard) and clear.

¢ class index: is divided into two sub parts, (1) information part shows query result
about class names and function names by a dynamic tree style; (2) control part with
buttons -- submit (to pop up the parameter window) and generate application (to pop
up the application window).

e parameter window: based on classes and functions selected by the client-side user,
provides the different size frames to input the class parameters.

¢ application window: displays the generated application source code.

3. User Registration Module:

Provides registration form of the server-side user. Users don’t allow to use this system
without registration. The registration information includes name, password, address,
phone and experience in the computer area. System administrator will give each server-
side user a different privilege to access this system. It is an important security part in the

model. The server-side users can only access the system through their password.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 40

4. “Class” Library Database:

In order to promote the automatic retrieval, a reuse class library was constructed by both

the intra-library relation and inter-library relation.

Every component (class) in the library is handled as an object. All data of a class is
treated as a whole one. They connected each other through the identifier. System will
generate the identifiers automatically for each component when the server-side users
insert it to the library. Besides, a user information table, a language table and a key word

table were created for storing the corresponding information.

5. Lexical Analyzer and Error Handling Module:

Perform the grammar and validation check. In this system, a simple lexical analyzer was
designed and implemented. It provides a way handle some simple program lexical
analysis according to some object-oriented language rules. The work is still in its

preliminary stages and will be continued to develop in the future work.

6. Retrieval Module:
A robust library search engine looks for the most relevant and desired components for
reuse, based on the statements of the natural language. The retrieval algorithm is based on

the detection of similarities between the user query and software components in the

knowledge base.

Figure 2 shows structure of the retrieval system. A lexical, syntactic and semantic
analysis will be performed on the query to translate it into a frame-like internal

representation. The translation process uses lexical and semantic information in a

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 41

thesaurus and a semantic grammar with constraints. By this means, the Internet users can

get the candidate components easily and they even needn’t know the library structure.

Query

Grammar Constraints

Lexical, Syntactic
And
Semantic, analysis

Key Words of Query

Thesaurus

N

Matching
and
Similarity Analysis

Recommendations for
Candidate(s) > Customisation

Figure 2: Structure of the Retrieval System

7. Application Generator:

Provides assistance to generate the source code based with generic code components and
all the additional information (e.g. language type and class name). What the client users
need to do for application generation is just to input several essential parameters, which

must be used in the generated application.

In order to generate the multi-component based application, many sets of component

information need to be extracted and stored before combining and forming the

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 42

application code. The vector technology was employed again for this purpose. After that,
all items in these vectors will be united to form the compilable application in accordant

with the definite sequence and the object-oriented language rule.

8. Naming Service:

Serves as a directory for CORBA objects in the system. With naming services, either
client or server components on the object bus to bind and resolve other components on
the object bus by a user definable name. The naming services allow to associate a URL
with an object. Once the URL is associated with the object, any client of the web server
can access the object reference through the URL. It is a critical module for the distributed

system design and implementation.

9. Protocol between Client and Server:
Provides the communication protocol when transferring data package between client-side

user interfaces and the library server. The protocols consist of the following data

operation process:

¢ View all components in the library.
Input: “View All” < Output: all component names and function names
¢ Query by the natural language.
Input: “Search™ & the search standard defined by the natural language <> Output: key
words of search standard & query result: candidates of components.
¢ Submit and get parameter form.
Input: “Submit” & selected class names and/or function names <> Output: class

and’or function parameier type and amount.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 43

e Submit the filled parameter form.
Input: parameter values < Output: “OK”.
¢ Generate application.

Input: “Generate Application” & application class name & language type-> Output:

application source code.

4.4.3. Use Case, Class Diagram and Sequence Diagram
As the most important phase of software engineering -- design and specification, UML
(Unified Modelling Language) was selected to specify system actor behaviour (use case),

system class architecture(class diagram) and internal module design(sequence diagram).

Figure 3 shows the behaviour case of each actor in the system. Figure 4 describes each
event (function) of the system with design-oriented view. Figure 5 shows the static
relationship between classes and what objects and links the system may have at the any
time. Figure 6-11 shows actions and interactions, events and messages involved among
the objects, actions include process of insert, modify, delete, server-side query, client-side

query and user registration.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 44

Figure 3: Module Use Case

Apblication Generator Serv Module

Code Generator

Lexical Analyser

N

|- Central Server

7

Client-User Module Eerver-Usr Interface Modnle|

/

Qs
AN

Client User

AN
C A
%

Copyright © 2000 Michael Hui Zhang. All Rights Reserved.

Page 45

Figure 4: Function Use Case

<<uses>>
<<uses>>

O O
Client User Server User Server User
<<uses>>

<<uses>>

/ Q \ f -)\- V4 N\
Server User Server User

Server User

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 46

<<neee>>

<<uses>> <<uses>>

~
"

AN AN
Client User Client User
Q Client User | Application Generator *
AN\ = -
Server User Server User Application Generator

<<uses>>
<<uses>>

<<uses>>

Q
5 AN
Server User 7\ Server User | Lexical Analyser Q Server User
= /\
Server User Server User

Lexical Analyser

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 47

Lexical analyser

Server User - Server User 0 Server User
Server User /_R
Lexical Analyser Server User

<<uses>

C 192 0 O Q
A A N N A
Server User Server User Server User Server User Server User

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 48

mnequiep
281} JO suopeaado jo spup v oq

‘SI588]I
wopudidde asijsoy evay

6% 99ed

supnuo)

‘poasasoy sWSnyg [1V ‘Sueyz InH PRYIIN 000T © W3ukdoD

Aaqy] SSY'10w
Jo swopusado jo spupy ([oQ

‘suopwdjjdde payuapio
- 133{qo w1303y

<

“ANYMINN PUNIIM SIS
SIGURNINGLINE ‘SEINIVYELEP
‘Buppnpouy 333fqo us 5§ ojujew])

Aaamb pue 13351823
% YINS ‘swoidun)
WS 5833024

JA3S() UMD

‘poasasay swy3ry (1 ‘Suryz InH [EYIIN 000C © WBuLdo)

-

0s 29ey
LTLTE)]
wnpy
Op1033yaaeg
¢
(Juopnewac)uiiasfjraeg
1
t
)
AS IV wanay
g
(Op1omssuJITBNNIIYD

wny

¢

(Juopuurtojujsanpudy

¢

wnay

(Juopiewisojuidsjpuas

$J38[) JIAIISHUNLD

&

wesbuiq uonensiBoy se8(:9 einbi4

1§ a3eg ‘paatasay siydry (I “Sueyz mH [PRYIIN 0007 © Busdo)

>
Opprayrd
Opsoayrn
Opaoraqen
(¢
OpioxysseHind
g
JuopemiojuyssuiyLsand)
¢
Opsoxyssmpiand <
Opaosaysse)iand
S AnNyL vy
ANYL wampy
ANUL wamy
ANUL w1y
¢
Opi032n33q)
~
O3Baap4235119339)
q—
(JpiomsseJamenN N NYD
¢
(uoyiswitojulsIs)puds
‘¢
(Ouopewiojuiiaspuss

$J38(] JIAIIS

/|%H

weibeq ssel) A1onp) apiS-19a198 :/ ainbil4

7§ 29ey "paa1asoy SWBNY IV “SueyZ InH 198YdIN 000C @ W3uddo)

>
~ iy
- wnay
any
ey
ey
-
Oproragareg >
Av-ecnﬂ.-&-gugum >
(uasiimuyenxay
: >
ASTIVY wamay
aSTvd Iy
¢ ¢
Op1033940229) v
)3upsyxgawsnsseiINd)
Op1033yssuipuanu]
-
Opioraysse s
—>
> ANUL w10y
AL wamay
ANYL vany
ANNUL wany
&
Oproang»ay)
¢
O3B d 329D
¢
()proMSSRGIWMENNIIY)
> .
(wonswiojupsas)puds
-
(uopuuriojupsIspur§

£s 28eg ‘paasasoy SN IV ‘Sueyz InH SeYdIN 0007 © WBuLdoD)

>
waniy
>N
- Wy
winiay
wanpy
IRy
g
Oprogsse DA pop
¢
.fe..-.u..é.._-n_vu-!_:‘
(uazdpmuyqenxry
ANUL wInY
ANYL wanpy
¢ ¢
Opio33gmoan) —
Bup! £l LINE 39
Oemmmgomense3n4s 0 p2o23ys381 DAJPON <
Op10334ss91DAJIpPON
W
ANAL wny
ANYL winy
' ANYL wmay
ANYL wamay
o
Opso3aynr3g>d
o
03BAAg13sNIND
‘¢
(Ypiromsse JomeNRIIN)
-
(JuoniswIojulIIsPuEIS
-
(Juopsutrio)uInpWIS

s 98ug

‘pansasay SISy IV ‘Sueyz InH [Py 000T © W3uAd)

'
- -
i :
—» ——
N wanjay
~
aIny
~,
-~
Yy
¢
OpsosaygsseDRRQ
-
(Owoneuiojuysse|)aagaq
~
- ANWE wnay
AN Wy
. |
[]
Opaosamnesnd | 3upsixgamensse)nsag) <
() paosaysssDNNRQ <
0 proaysse 3NN
=
ANAUL wamy
ANYL wany
ANyl nanay
ANML wImy
d
Opiodaygwdaq)
—
OBaqpapgasn33q)
<+
(pP1oMSSRLIMENNIINNY)
>3
(wopuumrsojugiaspuds
—a
(uopsmaojujras)puas

gEEss S138() 1IAIIS

&5

weibelq sse|d ayaleqg 0L ainbi4

s o9ey ‘paa1asay SWINY NIV ‘SueyZ iy [9BYIA 0007 © WBuAdo)

Onnsaydmdnig
(3mago13ru0)
¢
(3poparvrauay)
g
(ojujaamuingpudg
(s13meisgprodsypuss
g
Opsorangan
¢
Op1033ysse)HLsand)
[}
v
Opaoraygay)
g
OpioraygsseyLisand)
-
Opiop43312D
¢
Opsspumsisandinduy
1 ¢
(psspumsisanindug

SA38() JUIAD

weibe|q $S8ID A19nD OpIS-uallD ;4 8inb)d

4.5. Design Proof and System Testing

CodeNet was developed from a variety of design documents. The documents include the
Design Scenario, the Software Requirements Document, and the Design Specification
Document. During these activities, system requirements are iteratively defined and
recorded as design decisions and implementation descriptions. These include proof of
traceability between system requirements and the hardware and software configuration
items comprising the design. The levels of system-wide design, system architectural
design and detailed design were also documented to provide the CodeNet reasonable

design, design refinements, and task implementation.

4.5.1. Design Proof

The following section will analyze and prove the reliability of system design from the

eight aspects:

1. Growth capability. CodeNet has the strong growth capability to deal with the different
object-oriented language classes, network environments and multiple clients/servers
model. But it is a great challenge to expand its library to store components of the other

languages (such as functional languages) and fields (such as mathematics).

2. Interoperability requirements. It is an innovation for CodeNet to combine various
technologies and co-ordinate them actions well. Moreover, a set of protocols was built for

better communication between the client side and the server side by means of CORBA

and Java Socket.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 56

3. Portable capability. CodeNet can transplant between heterogeneous platforms because
the communication middleware is CORBA and the implementing language is Java.
Moreover, it is convenient for end-users to get the required application code without

understanding the detailed structure of classes in the library.

4. Safety, security and privacy issues. A user registration module was build for security
consideration. Also, the system was programmed by Java language, which enable to
interoperate with web browsers within a secure, easy to download environment for the
end-users. However, the security problem of Internet communication between Internet

users and software reuse library still needs to be paid attention.

5. Stabilization capability. We considered carefully stabilization issues in the system
design stage. CodeNet can run normally and correctly if users perform various system
operations according to the user manual. Furthermore, the most exceptions have been
caught and system will give the warning information for the illegal operation and input.

But some bugs and limitations still exist to affect the system stabilization in a low grade.

6. Identification of system module status. All of system modules can be run properly and
co-operatively in the distributed environment. But lexical analyzer, application generator

and natural language based search engine also need to be further improved to work

perfectly.

7. Easiness to operate and understand. CodeNet is always evident to the user what can be
done next and how to exit and not let the users do something stupid without wamning

them. But due to the time limitation, “help” documents weren’t completed fully.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 57

8. All interfaces among system modules as well as external system interfaces.
Appropriate interfaces were defined among the different system modules. CodeNet can
work normally according to the user’s requirements. Through utilization of various GUI
design technologies such as dynamic index and dynamic button action, all interfaces

among system components work perfectly and are convenient to be operated by end-

users.

At a word, CodeNet is a potential and prospective product with a reasonable design and
architecture. However, it is just situated in the prototype stage. There are also some

limitations of the system model.

4.5.2. System Testing

Due to the limitation of time and resources, A brief theoretical testing analysis was
presented to aim at its performance and limitations. The correct and reasonable
operational behaviors of the system modules, classes, and methods were obtained during
the unit testing and debugging in the implementation stage. Some demonstrations, which
are described in the following, were performed to test the client and server connectivity
and the various services of CodeNet in the distributed environment. The results showed

the CodeNet had reasonable operational behaviors of both the client-side and the server-

side.

1. Testing environment.

i) Single PC.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 58

Windows 98, ORBacus, and Netscape 4.6 installed with Java 1.2.2 plug-in. (Note:

TCP/IP in the single PC is 127.0.0.1).

it) HPC server (IP: 137.207.154.3: hpc.uwindsor.ca).

i) HPC server and PC.
HPC server (IP: 137.207.154.3: hpc.uwindsor.ca).

PC (Windows 98, ORBacus, and Netscape 4.6 installed with Java 1.2.2 plug-in).

iv) UNIX workstations.

Two UNIX workstations with different IP address.

2. Testing content

System testing focused on the system function testing, which includes the following

testing parts:

i) CodeNet services.

e Server-side services: register and log on the system, insert, modify, query, and delete

the components.

¢ Client-side services: browse, query, and generate code.

ii) Different tiers’ connectivity, which includes the client side, the server side and the

class library.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 59

3. Testing conclusion
Through the function testing, the various operations based on the client and server

services were executed successfully, and the communication between the different tiers

was performed normally.

4.5.3. Limitations

Based on the observations of the above system testing, some major premises and
limitations of the CodeNet were reported in the following. The refinements of the

CodeNet were presented the future work.

e When the system server shut down, the client-side user interface, a Java applet
embedded in the HTML, still can be downloaded to the client user machine, but no
notification was provided to the client-side user.

o The system server could not run without kill the previous processes after the former
system server which has already shut down.

e The system could not insert the component with the same name of the already
existing components and the component with more than one constructor.

¢ The limitation terms built in the lexical analyzer limited the query accuracy. Although
the strategy was applied to assign the unknown terms to a noun category during the
lexical analysis, the system could not tell whether it is a meaningful query input from
the user.

e The classification scheme of the component and retrieval fully depended on the

indexing sentences describing the component functions obtained during inserting the

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 60

component. The meaningless indexing input could not provide a correct classification
enabling its later retrieval.

o Currently, the limitation of the code generator is that the code generator only
generates the code to deal with single function call, could not deal with the interactive

operations among the different functions. The work leaves to the re-user.

4.6. Demonstration and Execution

For reasons of development time and code complexity, the emphasis of system
implementation is the whole system structure and major functions. How to use and
execute CodeNet and a variety of screen captures of the demonstration programs will be

discussed in the next paragraphs.

Currently, CodeNet was installed and tested on the three kinds of platforms, Windows

98/NT, Linux and Unix.

Figure 12 shows in the Windows98/NT environment, three program packages for
running CodeNet: (1) “CodeNer” that is used to run the server-side operations; (2)
“zzSearch” that combines a search engine and an application generator in the client side;
(3) “CodeServer” that is a server program package in the client side. To execute the

operation of this system, you just need double-click the three icons.

ZZProduct
¥y B &

CodeNet z2Seaich CodeServer

Figure 12: Program Packages

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 61

o The Server-Side Operations

After double clicking the “CodeNet” icon, system will execute three programs: (1) the

naming service; (2) the library server in the server side and (3) the client interface in the

server side.

A main interface will pop up as Figure 3. It consists of four buttons:

o User Register: If clicking this button, a frame will pop up for server-side user
registration. Please refer to Figure /4. After user fills out this form and clicks
“submit” button, his individual information will be delivered to the library server, and
a system access privilege will be given to him. At the time, the server-side user can
access the system operation console by his password and perform various operations
with the library.

e Exit: Exit the System.

e About: Provide help and version information.

e Enter System: After clicking this button, an authorization information form will pop
up (see Figure 15). By inputting the correct name and password, system operation

console will pop up (see Figure 16 and 17). Otherwise, warning information box will

occur.

In the system operation console, a frame is used as the interface to get the user’s
information and display the feedback from the library server. Two tabs were designed for

management of Java and C++ language components separately.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 62

The left upper portion (display panel) composes three panels. The list and tree are used to

display the class and function names in the library. The empty text area is used to display

the generated application code when user inserts a class into the library. Through the text

area, user can know the corresponding source code with his input information.

The right upper portion (information panel) also contains two tabs (see Figure 16 and

17). One is class and variable part; the other is constructor and function part. This

portion is used to accept the user’s input information and display the query result from

the remote library server.

The lower portion (control panel) of user interface composes eight buttons for the library

operations.

Insert: After clicking this button, at first, this button label will become to “Save(l)”.
All text in the information panel will be cleared and wait user to input the class
information. As soon as user inputs the class information in the information panel, the
corresponding program code will be generated and displayed in the text area of the
display panel. If user want to input multiple parameters or functions in the variable,
constructor and function part, for operating the insert operation correctly, user must
click the “save” button (marked with a disk) after finishing inputting each parameter.
Meanwhile, when user finishes inputting each part of the information panel, he must
click the “finish” button (marked with “pass™). Otherwise, system will remind user to
do these with a message box. The direction arrow buttons (First, Last, Pervious,
Next) are used to browse all information sequentially. When finishing a whole class

input, click “Save(?)” and all information will be delivered to the remote library

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 63

server. After that, system will tell “insert success”, and the new class and function
names will be added to the list and tree in the display panel dynamically.

® Query Class: User must select a class name from the list in the display panel before
clicking this button. Otherwise, system will remind by a warning box. After this, the
class and constructor information (not include function information) will be displayed
in the information panel. Similarly, The direction arrow buttons were used to browse
all query results sequentially.

® Query Function: Similar to the “Query Class™ except that user must select a function
name from the tree indices. After that, the function information will be got from the
remote library server and displayed at the information panel.

¢ Modify: This button can be invoked only after user completed the “Query Class” or
“Query Function” operation. After clicking “Modify”, at first, this button label will
become to “Save(M)”. Then user can modify all class or function information through
selecting the item by the direction buttons. When finishing modifying, click
“Save(M)” and all updated information will be delivered to the remote library server.

¢ Delete: Delete the class or function information in the remote library after selecting
the class or function name from the display panel. After that, system will tell “delete
success”, and the new class and function names can be deleted to the list and tree in
the display panel dynamically.

¢ Restore: Restore to the original status of the server-side interface.

e Help: Display help information.

e Cancel: Return to main interface.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 64

E23 00 bt Dt Helatonad Toatatbie c Ben ey bem Moded Sy

- i Distributed Object-Relational Reuse Library Modet
g Copyright® Micha ¢l Hui 2 ng 8Andy ShengZhong .

Ly Fapisten

ot Sysdem

Abionn

Figure 13: Server Side Main Interface

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 65

Server User Register Form

‘
I
I

Subieng Hiss it

Figure 14: User Registration Form

Please Input Your Name and Password

Subennt Cane el

Figure 15: Authorization Form

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 66

Derarhion

A0 Elass Library
® Rciass Cal

i

D function minus

¢ I class Draw
D) function drawtine
D) tunction DrawcCir

R

R T s) “
;
;
!
4
f

rp DRSS MR Gt 21RO

A A RGOS

A P A P A s PR R A L FR ST P T1 7 TRl TR AT TTF R BT DT TR

BAALL L e e

b

Insaert Iy et IS TTTRYRVINY I} Treeheeny vt

Figure 16: System Operation Console Part 1

CIASS Cperartion angole

Class Library . R
Bclass ca DR

D) tunction minus e — _

’ GCIGSS Draw ‘ PALARIE YU g
D) tunction drawtine :

[tunction BrawCir

Bt

Figure 17: System Operation Console Part 2

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 67

o The Client-Side Operations

To run the client-side operations, first of all, double click the “CodeServer” icon, system
will start the library server program of the client-side. Secondly, double click the

“zzSearch” icon, system will execute the client applet (see Figure 17) in the Netscape.

The client applet is further divided into two parts. The left part is the “search engine” part
that is used to collect user’s input and query by the natural language. The right part is the

“class index” part whose objective is to provide the information for application generator.

In the “search engine” part, the first two text fields accept language type and class name
of the generated application. The third text field accepts the search standard with the

natural language. There were three buttons in the control panel.

o View all: After clicking this button, all class and function names will be got from the
remote library server and displayed in the “class index” part with the dynamic tree
pattern.

o Search: According to the user search standard, and deal with by the search engine
described as before, the query results will be got from the remote library server and
displayed in the “class index” part by a dynamic tree pattern. Meanwhile, the key
words of the search standard will be displayed under the query standard text field.

o Clear: Clear the content of text fields and wait for user’s input again.

In the “class index” part, the display part is a dynamic tree that is used to show the

feedback from the remote library server. The control panel includes two buttons:

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 68

Submit: Before clicking this button, user must select class and/or function names
from the index tree. Otherwise, a warning box will pop up to remind user. There are
three situations after user clicks the “submit” button: (1) if user selects a class name, a
constructor parameter window will pop up as Figure 18; (2) if user selects a function
name after finishing inputting the constructor parameters, a function parameter
window will pop up as Figure 19; (3) if user selects a function name without
inputting the constructor parameters, a constructor parameter window will pop up at
first, and when finishing inputting the constructor parameters (see Figure 18) and
clicking the “Next” button, a function parameter window (see Figure 19) will pop up
for user’s input. If user want to cancel this action, he can click the “Back” button and
return to the applet interface.

Generate Application: After finishing inputting the parameters, this button can be
invoked. After clicking this button, an application generation frame (see Figure 20)
will pop up. The application source code generated by user’s requirements will be

displayed in the frame.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 69

Fogine Pt Fass Inde . Part

DOBRLM Library
¢ A Class Library
¢ ciass Cal

1

: 0
D) tunction minus

i
1

7
| wantto find class about Plus. - E

5l
12}

rrr

Please Input Cal Constructor Parameters

Figure 19: Construcior Parameter input Frame

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 70

Figure 20: Function Parameter input Frame

K;‘: lienecated Apple ation

Application MCAL java { May 23. 2000)
--Use CopyICtri+cy X Paste|Ctri+pi to save the result

jaa.util.”;
hlic class MCAL {

hiic Draw extends Applet implements ActionListener({

hlic void drawline(fioat x1, float y1, float x2, float y2){

aphics g=new Graphics();
p.drawline(x1.y1,x2y2);

Return

Figure 21: Application Generation Frame
Copyright © 2000 Michael Hui Zhang. All Rights Reserved.

Page 71

To run CodeNet in the Linux and Unix environment, open the three terminals and input
the following commands in the appropriate directory of each terminal:

Java com.ooc.CosNaming.Server -ORBconfig orb.cfg

Java ServerCLA.Bserver -ORBconfig orb.cfg

Java WebServer.WebServer

Note: orb.cfg is an ORB configuration file to specify the IOP (Internet Inter-ORB
Protocol) address of CORBA services.

ORB configuration file

ooc.service.NamService = iioploc://hpc.uwindsor.ca:7721/NameService
ooc.service.EventService = iioploc://hpc.uwindsor.ca: 7720/DefaultEventChannel

To open the server interface, just input java CodeNet_SC —ORBconfig orb.cfg in the
appropriate directory of a new terminal or a machine installed the CodeNet, then the

server interface shown in the Figurel3 will pop up. To open the client interface, just

input the URL address through the Web browser to open the CodeNet web page across

the Internet.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 72

CHAPTER 5. Evaluation and Concluding Remarks

5.1. Evaluation of CodeNet

In this thesis, a prototype system was designed and developed in Java language and the
feasibility of the distributed library-base software reuse model was investigated by
tentative system quality testing. The system is user friendly, and allows users to insert,
delete, update and browse the components through various technologies and tools in the
server side. By allowing queries in natural language; precisely, by constructing the
indexing units of software components with lexical, syntactic and semantic information
extracted from the descriptions of software components; and combining a powerful
application generator, this model can generate various object-oriented language

applications in the general network.

Based on the work carried out in the thesis, a number of conclusions can be formed:

e Using CodeNet with its structure software library provide a better understanding of
design and construct a distributed library-based software reuse model.

e CodeNet should be a platform-independent product which integrates lots of
technologies such as object-oriented development (OOD), natural language process
(NLP), lexical analyzer process (LAP), information retrieval system (IRS) and
CORBA, Java database connectivity (JDBC).

o To some degree, the retrieval based on the natural language proposed here will make

the reuse model domain-independent and cost-effective.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 73

¢ The ideal automatic programming generator by retrieving formerly code components
that could be used in the generation of the source code increases the translation power
for software reuse.

¢ The system allows user to update library classes. It increases the amount of reuse
assets largely and expands this reuse model to a wider field.

e The system is opened to the Internet by using Java language, broker interface and

client/server module. All the users can access it from remote area by WWW.

5.2. The Future of Software Reuse

Software reuse has been developing bottom-up (starting with code modules, now
expanding to designs and requirements, and architectures in domain analysis), which is
consistent with how all engineering disciplines have developed. More mature engineering
disciplines are indicators of how reuse will evolve in software engineering. Of course, in
software engineering this information will likely be on-line in the form of encyclopaedias
/repositories with hypertext links and graphical user interfaces, perhaps as a web-based
repository on the Internet. It should eventually include domain models, architectures,
patterns, rules, mechanisms, generators, standard domain requirements, designs, code,
and tests for widely used domains, as well as process elements and models, results of
experiments, case studies, and metrics [GIR93). This information will gradually become
more formalized. An interim step in this transfer of technology may be to set up one or

more clearinghouses that collect and provide this information.

For this to happen, the following important technologies will need to mature to support

software reuse at a later time:

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 74

¢ Configuration Tracking [DOD95]
e Validation

¢ Product Modelling

e Architecture Implementation

e Application Instantiation

Configuration tracking is a combination of sub-teclinologies that range from being fairly
mature to progressing reasonably well (distributed systems) to being quite immature
(identity and conceptual closeness of adapted assets, determination of when adaptation
creates a new asset) [DOD9S]. The next item, validation that is very important for
software reuse, has been the object of research and development for some time, but has
experienced difficulty in reaching maturity. The last three items are the kernel
technologies of software reuse, which reflects their dependency on other technologies. To
a great extent, they consist of their enabling technologies, and it is believed that their

maturity will advance as their enabling technologies mature.

5.3. Future Work

Future work includes the integration of this reuse system in the IDEAL environment and
the population of the knowledge base with knowledge and software components. This
will allow us to evaluate the effectiveness and experiment with the retrieval system in a

real environment.

Furthermore, transferring CodeNet to multiple clients/servers model, the improvement of
the lexical analyzer and the complement of application generator are responsible for

making and testing. Meanwhile, some more complex situations (e.g. a variety of

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 75

relationships among library components) and more language kinds should be considered
and extended eventually. Concrete applications will be developed by using the distributed
environment in order to measure the expected reductions in cost and development time

through software reuse.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 76

References:

[ADL95] Adler, R., March, “Emerging Standards for Component Software”, I[EEE
Computer, Vol. 28, No. 3, 1995, pp.68-77.

[ANDY00] Andy Sheng Zhong, “Software Library for Reuse-oriented Program
Development”, Thesis Report, 2000.

[ARN92] R.S. Amold and W.B. Frakes, “Software reuse and reengineering”, CASE
Trends, vol.4, no.2, 1992, pp.44-48.

[ASP93] Arango, G., E. Schoen, and R. Pettengill, “Design as Evolution and Reuse”, R.
Prieto-Diazand W. B. Frakes (eds.), “Advances in Reuse: Selected Papers from the
Second International Workshop on Software Reusability”, Lucca, Italy, /[EEE Computer
Society Press, Los Alamitos, CA, March 1993, pp. 9-18.

[BAS90] V.R. Basili, “Viewing maintenance as reuse-oriented software development”,
IEEE Software, vol. 7, no.1, Jan.1990, pp. 19-26.

[BELL92] J. L. Bell, “Reuse and Browsing: Survey of Program Developers”, Object
Frameworks, ed. D. Tsichritzis, Centre Universitaire d'Informatique, University of
Geneva, July 1992, pp. 197-220.

[BIG89] T.J. Biggerstaff and A.J. Perlis , Software Reusability, voll. I and I, ACM Press
and Addison Wesley, 1989.

[BIRI87] Biggerstaff, T., and C. Richter, “Reusability Framework, Assessment, and
Directions”, I[EEE Software, Vol. 4, No. 2, March 1987, pp. 41-49.

[BRAD86] Brad Cox, “Object Oriented Programming: An Evolutionary Approach.”,
Addison-Wesley Publishing Company, 1986.

[CAL91] G.Caldiera and V.R. Basili, “Identifying and qualifying reusable software
components”, [EEE Computer, vol. 24, no. 2, Feb. 1991, pp. 61-70.

[CAN94] G. Canfora, A. Cimitile, and M.Munro, “RE2 reverse engineering and reuse
reengineering”, Journal of Software Maintenance: Research and Practice, vol. 6, no.2,
1994, pp.53-72.

[CAN9S] G. Canfora, A.Cimitile, and G.Vissaggio, “Assessing modularization and code
scavenging techniques”, Journal of Softiware Maintenance: Research and Practice, vol.7,
no.5, 1995, pp.317-331.

[CHI90] E. Chikofsky and J.Cross II, “Reverse Engineering and Design Recovery: A
Taxonomy”, IEEE Software, 7(1), Jan. 1990, pp. 13-17.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 77

[CORBA99] “Overview of the CORBA Component Model”, Object Management Group,
1999.

[DOD93] Department of Defense, “Software Reuse Initiative”, Virtual Library
Operational Concept Document, Washington, DC, 1993.

[DOD95] Department of Defense Software Reuse Initiative, Technology Roadmap, vol.1,
“Technology Assessment”, 1995.

[DUNN93] M.F. Dunn and J.C. Knight, “Automating the detecting of reusable parts in
existing software”, Proceedings of the 15" International Conference on Software
Engineering, Baltimore, Maryland, U.S.A., IEEE Comp. Soc. Press, 1993, pp. 381-390.

[FISHER] G. Fisher, A. Girgensohn, K. Nakakoji and D. Redmiles, “Supporting
Software Designers with Integrated Domain-Oriented Design Environments”, /EEE
Transactions on Software Engineering, 18(6), pp 511-522.

[FRAKES94] W.B. Frakes and S. Isoda, “Success factors of systematic reuse”, /EEE
Software, vol. 11, no.5, Sep. 1994, pp.15-19. Introduction to the special issue on
“Systematic Reuse”.

[GALL9S] Harald Gall, Mehdi Jazayeri, Rene Klosch, “Research Directions in Software
Reuse: Where to go from here?”, ACM Press, Proceedings of the Symposium on Software
Reusability SSR 95, pp. 225-228.

[GEPOO] Paul G. Brown, “Distributed Component Database Management Systems”,
Morgan Kaufmann Publishers, 2000.

[GIR92] M.R. Girardi, “Application Engineering: Putting Reuse to Work”, Object
Frameworks, ed. D. Tsichritzis, Centre Universitaire d'Informatique, University of
Geneva, July 1992, pp.137-149.

[GIR93] M. R. Girardi and B. Ibrahim, “A Software Reuse System Based on Natural
Language Specifications”, Fifth International Conference on Computing and
Information, Sudbury, Ontario, Canada, May 27-29, 1993.

[GIR9S] Maria del Rosario Girardi, “Classification and Retrieval of Software through
their Description in Natural Language”, Ph.D.Thesis, Computer Science Department,
University of Geneva, Switzerland, 1995.

[GIR98] M. R. Girardi and B. Ibrahim, “New Approaches for Reuse Systems”, 2nd
International Workshop on Software Reuse, Lucca, Italy, March 24-26, 1998.

[GOG89] Goguen, J., "Principles of Parameterized Programming,” T. Biggerstaff and A.

Perlis (eds.), Frontier Series: Software Reusability, Volume I -- Concepts and Models,
Addison-Wesley, New York, 1989, pp. 159-225.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 78

[GRI94] Griss, M. L., “PANEL: Architecting Kits for Reuse”, Frakes, W. (ed),
Proceedings, Third International Conference on Software Reuse: Advances in Software
Reusability, IEEE Computer Society Press, Los Alamitos, CA, 1994, pp. 216-217.

[HALL] P.A.V. Hall, “Software reuse, reverse engineering and reengineering”, Sofiware
Reuse and Reverse Engineering, P.A.V. Hall, Chapman & Hall, London, pp.3-31.

[HEL91] R. Helm and Y.S. Maarek, “Integrating Information Retrieval and Domain
Specific Approaches for Browsing and Retrieval in Object-Oriented Class Libraries”,

Proc. OOPSLA/ECOOP ‘91, ACM SIGPLAN Notices, vol. 26, no 11, Nov 1991, pp. 47-
61.

[HEN9S5] Henda Hadjami Ben Ghezala, Farouk Kamoun: “A Reuse Approach based on
Object Orientation. Its Contributions in the Development of CASE Tools”, ACM Press,
Proceedings of the Symposium on Software Reusability SSR 95, pp.53-61.

[JAC97] Ivar Jacabson, Martin L. Griss and Patrik Jonsson, Software Reuse:
Architecture, Process and Organization for Business Success, Addison-Wesley, 1997.

[JF98] Johnson, R. E., and B. Foote, “Designing Reusable Classes”, Journal of Object-
Oriented Programming, Vol. 1, No. 2, June-July 1998, pp. 22-35.

[JOEQO] Joe Abounader, “Software Reuse and Object Orientation”, Queen's University,
2000.

[KIM90] H. Kimoto and T. Iwadera, “Construction of a Dynamic Thesaurus and Its Use
for Associated Information Retrieval”, Proc. 13th International Conference on Research

and Development in Information Retrieval (SIGIR 90), Brussels, 5-7 Sept. 1990, pp 227-
239.

[LEO99] Zhengyu Leo Wu, “Software Reuse and World Wide Web”, University of
Windsor, 1999.

[LIM94] M.C. Lim, “Effects of reuse on quality, productivity, and economics”, /[EEE
Software, vol. 11, no.5, Sept.1994, pp.23-30.

[MAA91] Y. Maarek, D. Berry and G. Kaiser, “An Information Retrieval Approach For
Automatically Constructing Software Libraries”, IEEE Trans. on Software Engineering,
Vol. 17, no. 8, Aug.1991, pp. 800-813.

[MCC94] Carma McClure, “Reuse: Re-engineering the Software Process”, Extended
Intelligence, Inc., 1994.

[MCC95] Carma McClure, “Model-Driven Software Reuse”, Extended Intelligence, Inc.,
1995.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 79

[MCC96] Carma McClure, “Experiences from the OO Playing Field”, Extended
Intelligence, Inc., 1996.

[MCC98] Carma McClure, “Reuse Engineering: Extending Information Engineering to
Enable Software Reuse”, Extended Intelligence, Inc., 1998.

[MCC99] Carma McClure, “Value-Added Year 2000: Harvesting Components for
Reuse”, Extended Intelligence, Inc., 1999.

[MCMO00] Chuck McManis, “Lexical analysis and Java”, JavaWorld, 2000

[MEYER94] Bertand Meyer, Reusable software: The Base Object-Oriented Component
Libraries, Prentice-Hall, 1994.

[MIC86] R. Michalsky, “Leamning Strategies and Automated Knowledge Acquisition: an
Overview”, Computational Models of Learning, Berlin, Springer-Verlag, 1986.

[ORACLE99] “Oracle8 Release 2 New Features Summary”, Oracle Corporation, 1999.

[PAT99] Pat McCarthy, VisualAge Generator Templates: Creating a Well-Tailored and
Customized Solution, IBM Corporation, 1999.

[PER92] D. Perry and A. L. Wolf, “Foundations for the Study of Software Architecture”,
ACM Software Engineering Notes, Vol. 17, #4, 1992,

[POU9S] Jeffrey S. Poulin and Keith J. Werkman, “Software Reuse Libraries with
Mosaic”, Software Reuse Conference 95, 1995.

[PRI90] T. Price and M. R. Girardi, “A class retrieval tool for an object-oriented
environment”, Proc. 3rd Int. Conf. Technology on Object-Oriented Languages and
Systems, Sydney, 28-30 Nov. 1990, pp 26-36.

[PRI91] R. Pricro-Diaz, “Making software reuse work: an implementation model”, ACM
SIGSOFT Software Engineering Notes, vol.16, no.3, 1991, pp. 61-68.

[RON94] Boisvert, Ronald F., “A Web Gateway to a Virtual Mathematical Software
Repository”, 2™ International World Wide Web Conference: Mosaic and the Web,
Chicago, Illinois, 17-20 October 1994,

[ROY95] Roy Rada, “Software Reuse”, Intellect Press, Oxford, England. 1995.
[SAR99] Marjan Sarshar (Ed.), Systematic Reuse: Issues in Initiating and Improving a
Reuse Program, Springer, 1999.

[SCOTTO00] Scott Stanchfield and Terence Parr, “Parsers, Part IV: A Java Cross-
Reference Tool”, MageLang Institute, 2000.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 80

[SIT96] Murali Sitaraman (Ed.), Fourth International Conference on Software Reuse -
April 23-26, 1996, IEEE Computer Society Press, 1996.

(SNE94] H.M. Sneed and E. Nyary, “Downsizing large application programs”, Journal of
software Maintenance: Research and Practice, vol.6, no.5, 1994, pp. 105-116.

[SNE95] H.M. Sneed, “Planning the reengineering of legacy systems”, IEEE Software,
vol. 12, no.1, Jan.1995, pp. 24-34.

[SOMB89] 1. Sommerville, Software Engineering, Addison-Wesley, 1989.
[SUNOO] “Sun System Java Homepage", Http:// www.sun.com/sunsoft/hotjava.
[UML97] “UML Summary”, Rational Software Corporation, 1997.

[URBAN96] M. L. Urban and I. N. Chang, “Information Architecture as a Framework
for Reuse”, 1996.

[WAL92] Wallnau, K. C., 1992, “Towards an Extended View of Reuse Libraries”,
Proceedings of the 5th Annual Workshop on Software Reuse (WISRS), Palo Alto, CA.

[WEI92] B.W. Weide, “Scalability of reuse Technology to Large Systems Requires Local
Certifability”, Software Reuse Conference ‘92, July, 1992.

[WEI9%] B.W. Weide and W.D. Heym, “Reverse Engineering of Legacy Code is
Intractable”, Ohio State University Technical Report OSU-CISRC-10/94, 1994.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 81

APPENDIX: CodeNet Source Code Definition

This appendix contains the CORBA IDL and configures classes, the Java packages and

classes for the CodeNet Source code. The names of the packages and Java classes are

appeared in italic.

1. CORBA IDL: zz.id/

This file contains the IDL interfaces of the CodeNet.

module CodeNet{

/1 user register

boolean userRegister(in string name,
in string pass,in string email,in string phone,
in string address, in string exprience);

/! user login
boolean userLogin(in string userName, in string password);

/! modelling the components
typedef string classFeature;
typedef string package;

// import list
typedef string import;
typedef sequence<import> import_list;

// class head

struct ClassHead {
string parent;
string attribute;
string name;

b
// implement part

typedef string implement;
typedef sequence<implement> implement_list;

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 82

// variable list
struct variable {
string attribute;
string name;
HH
typedef sequence<variable> variable_list;

// constructor part

struct constructor_para{
string attribute;
string name;

b

typedef sequence< constructor_para > constructor_para _list;

struct constructor {
string attribute;
string name;
constructor_para _list para;
string body;

I

// function functionalities and function part
struct fun_para{
string attribute;
string name;
b
typedef sequence< fun_para > fun_para _list;

struct function{
string function;
string attribute;
string name;
fun_para _list para;
string body;
HF
typedef sequence< function > function _list;

// insert the components

boolean insert(in long lanID, in string classFeature, in string classPackage, in
import_list import, in Class_Head head, in implement_list
implement, in variable_list variables, in constructor con, in
function_list fun);

// get class indices

typedef string class_fun;
typedef scquence<class_fun> class_funList;

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 83

class_funList getIndex (in long userID, in long lanID);
/1 delete the component
boolean delete(in string className, in string funName);

/1 query function

typedef string function;

typedef sequence<function> funList;

funList getFun(in long lanID, in string className, in string funName);

I/ query class

typedef string className;

typedef sequence<className> classList;

classList getClassDB(in long lanID, in string className);

// modify function
boolean modifyFun (in function, in long lanID);

// modify class

boolean modifyClass (in long lanID, in string classFeature, in string classPackage,
in import_list import, in Class_Head head, in
implement_list implement, in variable_list variables, in
constructor con, in function_list fun);

// retrieval, browse, and generator

void getRetrieval (in string text);

typedef string index;

typedef sequence<index> index_list;

index_list query (in long lanIDY);

index_list browse (in long lanID);

void specify (in string name);
string generation ();

2. ORB configuration File: orb.cfg

ORB configuration file
ooc.service.NameService=iioploc://hpc.uwindsor.ca:7721/NameService

ooc.service.EventService=iioploc:// hpc.uwindsor.ca :7720/DefaultEventChannel

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 84

3. CodeNet Server main program: CODENET_SC.java
This is the CodeNet server-side user interface. Run this class, can open the server-side

main user interface.

4. Package: ServerREG

This package contains classes that deal with the user register and log in to the CodeNet.

4.1. Classes
o This is the GUI definition of the server user main interface.
ServerGUI
¢ These classes are defined in hierarchy to define the GUI of the server user register
ServerUserReg
TopPanel
CenterPanel
ButtonPanel
e These classes are defined to perform the new user-registering request and connect to
the system server of the DORLM.
RegUser
CorbaProcess
5. Package: ServerCLA
This package contains classes that have the major functions of the CodeNet. The
functions include implementation of the IDL, getting the indices, inserting the
component, querying the class, querying the method, modifying the class, modifying the

method, deleting the class, and deleting the method.

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 85

5.1 Classes

These classes are defined to implement the 22.idl interface to serve as the system

SErver.

Server_impl
Connect_DB
Insert_User
Login

This class is defined to bind the system server.

BindingServer

This class is defined to deal with the user register and login to the CodeNet in the
system server side.

ServerPass

These classes are defined to deal with the partial natural language process of
translating the component classification sentences and the user query sentence to a

frame-based internal representation, the component index storage, and the synonyms
operation.

GetLexicon
GetTerm
Parse
GetSyn

These classes are defined to build various graphic user interfaces for the server-side

user.

SCClass
SclientClass
SCinput

SCList

SplitPaneDemo
SCCTree

SCControl
DialogWindsow

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 86

DialogWindow?
App_Err_Window

o These classes are defined to perform various operations for the server-side user.

InsertClass
BuildTotalData
LexicalAnalysis
DeleteClass
GetListInit
GetUserID
ModifyFun
ModifyCla
QueryClass
QueryFun
WriteIDClass

6. Package: WebServer
This package contains classes that have the major functions of the web server of the
CodeNet. The functions include client-side connection, system server connection,

database server connection, multithread handle, and various operations for the client-side

user requests.

6.1. Classes

o These classes are defined to run the web server, handle multithread, and connect to

the database server.

WebServer
WebServerThread
Connect_DB

e These classes are defined to perform various operations for the web client user
requests in the web server side.
GetClassIndex

GetConPar
GetFunPar

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 87

TrimTerm
LexicalAnalysis
AppGen

7. Package: ClientCLA

This package contains classes that define the graphics user interfaces for the client-side

user and perform various operation requests in the web client side.

7.1 Classes

o These classes are defined to build various graphic user interfaces for the web client

user.

ClientSearch
QuerySplit
CCTree
ClaWindow
ConWindow
FunWindow

Fun2Window
App_ErrWindow

o These classes are defined to perform various operation requests for the web client
user to browse the SRL, query the SRL, and code generation.
ConnectWebServer
Getlnit

Lexica
AppResult

8. HTML

e This is a web page of the CodeNet embedded with the Java applet,
clientSearch.class.

zzSearch.html

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 88

Vita Auctoris

NAME: Michael Hui Zhang
PLACE OF BIRTH: Hunan Province, P.R. China
DATE OF BIRTH: July 1%, 1972

EDUCATION:

¢ M. Sc., Candidate, Department of Computer Science, University of Windsor,
Canada, (2000).

¢ B. Sc., Department of Computer Science, Changsha Institute of Technology, China,
1994,

Copyright © 2000 Michael Hui Zhang. All Rights Reserved. Page 89

	Design and construction of a library-based software reuse model to support distributed and grid computing.
	Recommended Citation

	tmp.1363786207.pdf.q2m0o

