University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1996

Design and optimization of high performance binary adders for
digital signal processing.

Jinghong. Wang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Wang, Jinghong., "Design and optimization of high performance binary adders for digital signal
processing." (1996). Electronic Theses and Dissertations. 1651.
https://scholar.uwindsor.ca/etd/1651

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1651?utm_source=scholar.uwindsor.ca%2Fetd%2F1651&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

E * ! National Library Bibliothéque nationale

of Canada du Canada

. Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques

395 Wellington Street 395, rue Wellington
Ottawa, Ontano Qttawa (Ontario)

K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

- Canada

Your fhe Volre 18idnence:

Our i Notre réference

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si F'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
3 la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

I* B National Library
2 ¢fCanada

Acquisitions and

Bibliothéque nationate
uu Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
QOttawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Your fde Volre réfdrence

Out e Nolre rdidrence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d'auteur qui protége sa
thése. Nila thése ni des extraits
substantiels de celie-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-11035-4

Canada

Nome | N NG L
Dissariafion Abstracts Inferational is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the contert of your dissertation. Enter the corresponding four-digit code in the spaces provided.

T, . o b : -
I I'“r‘!’ PR -:a_x«[_{‘ ﬁlf’-’ﬂ_f"f!f‘ oot ' ":.?J,(\L,.:.r'l-)nq D 5 6‘! [1!‘ . -

SUBJECT TERM J) SUBJECT CODE

Subject Categories
THE HUMANITIES AND SOCIAL SCIENCES
COMMUNICATIONS AND THEARTS Paychology ... 0528 PHILOSOPHY, RELIGION AND

Architecture Reoding0535
A HISOY .o Q377 Ro]igiongl ..0527 mfgﬁgﬁr
inema 0900 Sciances 0714 Relicion Y s
DO «...cccocreeniat semistsssssanes 0378 Secondary0533 o
Fina Arh ...0357 Sociol Sciences . L0534 SR e

Information Scionce ... 0723 Sociclogy of . Canadian .

A - Cler
Journalism w0391 - 0529 S e Europzan . .0335
L Science .. 0399 'Is'f;ccher Troining ... 0530 mﬂg‘y ol,t",'af‘ Lalin%\mericun . 0334
e St el GRS
A8 ommUnGanon: ' Derigs ot Sotes .
h Communication . gigg Vocational ..c.cv.vnneve 0747 SOCIAL SCIENCES mor,' of Science .. .0535
1 S T T u"GUAG!’ LITERATIJRE AHD ﬁr:lﬁ:g;& Siudies 0323 p°|,||m[5é',en'ce 03 B
EDUCATION LINGUISTICS Archoeology ... Genertl ..o rirssnesnn 0615
Generol ... 0515 Language Cultoral o International Law and
Administrat 514 ol . Physicol | Relafionsccoceirmere. 0616
Adult and Cenl 516 : . Public Administration .. 0617
reuttoral 0517 Ancient ... 0289 Businass Adm R :
ﬁgncu ral ... A Linguishic g%g? gged . 0310 s;::fw:rk 83}’2
u R T ST . ’dadsm o - wn'i 0272 d aramssimsevasidTArarIITIRIRAY
Bilingual and Mulficuthrel0282 yiergture | Banking ... o770 Socigogy | 0626
Community College 0275 gf:;:{go[‘ 8;3} m:&g{:‘m en! 83%3 Crimino!@'aﬁa'ﬁéﬁa@‘:0627
Curriculum and Instruclion 0727 Comparat 0295 Canadion StugdlesOSBS Demographyco.ooizvienen. 0938
Eorly Childhood0518 Medfpesul 0297 Economics Ethnic and Racial Studies 0831
P fary ... gggg Modern0298 General ..o veeeeeceen.. 0501 l"'é'v'g-wl and Family
C;z?doc:ceandCounml 0619 Alrican03 Agricultural.......0503 | dmh'l'esl e
Health i " 0280 American ...0591 Commerce-Business0505 nRuls fal end La
Hinhay e 0745 Asion0305 Finance0508 p b?choréss&:"l-w""
g s GmememUeE vl s
""" ;e - anadion (French}
};"d“"‘;rf‘f““"'“ - --ggg? English .oovrr..oooese 0593 Theory .. o511 ThDe"E“’Pg'iQ' O
Lnnusuuuu“d;a'll.ii;r‘gtu‘r; 8379 Germanic03 Folklore0358 T o ethods 0709
Ma en?ulics e 080 Lafin American0312 Geography . .0368 J‘L“:P" c'd"?" T Bl 0000
Mosic 053 Middle Eastern0315 Gerentalogyvveeiereiiesirninns 0351 W o Sty 1onal Flanning s
Philosophy of 058 T PN ¢ < b History e
Ao i " 0523 Slevic and East Evropean ..., 0314 Generaloervririeiies werer. 0578
THE SCIENCES AND ENGINEERING
BIOLOGICAL SCIENCES Geodasy uoeerrrriecercerenennsirinns. 0370 Speech Pothol .0460 Engineerin
Agriculture Geology 0372 Toxicology0383 Generalooovvverieririnns 0537
Genoralcrvieernsiinsinns Geophysics . 0373 Home Economics0386 Aerospace0538
Agronomy I;?drdogy 0388 Agricuttural 0539
Animal Culture and ineralogy .. 041 PHYSICAL SCIENCES Automotive . .. 0540
ANumlhl?nrh j 0473 gcleoboh'imy 83;2 Pure Sciences Eil?medic‘ol - ..8541
nimal Pathelogy .. alececclogy Chemist hemical ..0542
oty 00359 Foloorcaiy 08 Gomoral e 485 Geciics G il 0344
Forastry and W 0478 Palynal ogy 0427 ggri'cu.hurld - 0749 Heat ond 111ermodyn::nu1iéls-::0348
Plont Culture .. 0479 Physicolo%!eogmphy vereseesrniiar: 9368 B."c‘hY"c‘.’ ' 83%? Hydraulic Q545
nﬂﬂ: ggﬂ“?l‘l’m' . 83?9 Physical Oceanography 0415 Ir:gf :m‘c’ Y 0488 Industrial
ant Physiology L0870 e : Marine ...,
Range Manogemant ...0777 HEALTH AND ENVIRONMENTAL lucloar ... 0738 Molericls Sciande ..
Bi IWood Technology 0746 SCIENCES P 491 Mechanical
O ol 0306 'E_Invimnsr:gmlul Sciences 0768 Physical 494 mﬁ:‘i"{g’@y :
alth Sciences P, 195
Analomy ... 0287 General0566 Rodiatio Nuclear ..
Boton " 0309 Audiclogy . «..0300 Mathemalics .. " PCI'C Tgmg :
Call ¥ " BATe Chemotherapy 0992 Physics 52’9 eum v
Ecol eryr | "'0329 Den“"f}' anee . 0567 Genergl e 06035 S r:lhrysg'n Mun
En °97|ogy " a353 Educalionvurvieiresranenn 0350 ACOUSHES coverpiriniininnnen 0986 Geolgéher:g lence
Genalics " 0369 Hospilal Management 07469 Astronomy ond ey %QY .
prtiaa iy 5793 Human Development 0758 ASODIYSICS 1.e...oes v seses e 0608 Plostis Teehnaton
Mictobioloas” 041D Immunologyc.cceceerevnnnr... 0982 Atmaspheric Science............ 0608 T Us!icsT e‘i‘ nowogy -
Molecular 2. 0307 Medicine and Surgery 0364 BYOMIC 1o 0748 10FE TechnOlOGY .
Neurascience 0317 Mentol Health0347 Electronics and Efed‘rll:lgf o 0607 PSYCHOLOGY
Oceanography .. 0414 ﬁﬁ;;'{‘gn 8298 Elﬂpe‘glgry Particles an 0798 General 0621
v 111 [P igh Energyccoovienins N
e T B
Vorincry 0778 Ogcupotional Healhond™ Maleculor e 0609 Developmenial 70620
Bioptyaey 0472 Ophibalmology 038l Oplics ... w0752 Se5d
Generol 0784 Pathology 037) Radiation - 0756 Persor::ﬂi 0625
Modieal 070 armacology .0419 Solid Stote 7T N i A e
Pharmocy R —— Potob ey - 0res
EANTH JclEncEs 0425 Public Hoalh .. 0573 Applied Sciences psychometrics . 0632
GOSN —oovrrrreremeres eereros 059 Eecrt«lu?gn 0574 Applied Mechanics 0346 (1+] EOTUOUUNRRRUTUUSUROT o .|

‘0575 Computer STIBACEcoverveereer. 0784 _ @

© 1995 lJinghong Wang

All Rights Reserved. No part of
this document may be repreduced,
stored or otherwise retained in a re-
trieval system or transmitted in any
form, on any medium or by any mecans
without the prior written permission of
the author

Abstract

In this thesis, recently developed concepts and circuit design techniques associated with
Enhanced Multiple-Output Domino Logic (EMODL) are explored for the design of high
performance dynamic carry lookahead adders (CLAs). In order to improve the area and
speed of the EMODL design techniques, we investigate the trade-off betwceen the number
of cascaded gate stages and the gate fan-in of each stage by varying these factors in four
different architectural structures for a 32-bit CLA. From HSPICE simulation results,
which show that the number of cascaded stages is a more critical factor than the gate fan-
in, a three stage 32-bit dynamic CLA is designed and tabricated in a 1.2 CMOS technol-
ogy. Both HSPICE simulation and test measurements show a critical path of 2.7ns. In
comparison with a recent design reported by Hwang and Fisher, which requires five

stages, our new architecture demonstrates improved arca-speed performance.

Acknowledgments

I would like to express my sincere gratitude first and foremost to my research advisor Dr.
Graham A. Jullien for his support and guidance throughout my study at the University of
Windsor. I am grateful to Dr. William C. Miller for his constant support and thoughtful
comments for this work. I would also like 1o thank Dr. S. Bandyopadhyay for serving on
my thesis committee. | was very fortunate to have the opportunity working closely with
Professor Zhongde Wang, who has been a constant source of advice and encouragement. I
would also like to thank him for spending his busiest nights proofreading my preliminary
draft of this thesis. Dr. Richard J. Caron from Department of Mathematics and Statistics
also took interest in my research. I appreciate his enthusiasm and patience in many discus-
sions I had with him. I am also thankful to many of my friends and the fellow students in
our VLSI Research Group for their help and friendship. Last, but not the least, my most
sincere gratitude must go to my husband and our parents for their understanding and lov-

ing support so that I could reach my goal.

University of Windsor

Table of Contents
ADSITACL. cuvvevesrereereesisesmessasasssiresosasesessssssssesessstasasnssvesssssssssesassnssesasssnssasassssssosasass reererersannans iv
ACKNIOWIBAGIMENLS . ceveeenerrereciisiserrme et sttt sscr s ssana s sab s s s n s s Y
TADIE Of COMIBILS. c.veveemrrererrersoreniesrssssssiresssstrenssaertasssensssssstnmnssensasssssassisassssssesarasassassns wreensVI
LISt Of FAGUIES...veceieeeerererriissinsns i st ss b rsn s b saans NIRRT |
LiSt Of TaDIES.cvueerrireereecsiricsrerenerressessssstssnsnssnsnsssessosnes vererstesnnreebestsieaead eresserssinereasrsssreres Al
Chapter 1 Introduction.....ccoovvereeressennnas freereseene s nnasaans reetetereessetr et e e an s rnennaes i
1.1 Research Motivalion cui e 1
1.2 Thesis QT ANIZALION ..cvrivesciinserieteir s s st s A bt A SRR s 3
Chapter 2 Architecture DISCUSSIONS .oiiivciereniiisessensisssssesssniessens ST PYROPRRRN 5
2.1 TN OAUCHOM . e vrerarrarsareserasersnacsmsssssssnsss sassmssss s s ne s st sr s e s sbspsanssa st nrbataenssanassastsntneshanesmssenastsneesd
2.2 Typical Adder ATChItECTUIES 1uvvnereinriiienrnrsrnis s s s s s e s s 6
2.2.1 Carry-RipPle AQQET vornreienimesinmnsmanisssasnssssmssnsmsimss s s 6
222 Carry-Lookahead Adder ... 11
223 Carry-SKiD AT s e nnssasaes 13
224 Carry-Select Adder .o s, 16
2.2.5 Hybrid Adder .. irss s s ssesesssens 17
23 CLA and the Pseudo Complement CONCEPL. ... frannere 18
23,1 Carry Lookahead Algorithm .. 18
2.3.2 Pseudo Complement CONCEPL.....uuimiirersmsisssormserenssssstisissssssarssissssssanssssassasnsens 21
2,.3.3 Proof of Correctness for the Pseudo Complement Concepl....iiesineenernensan 22
2.4 SUIIINIATY 1vvvrereersirssssessrismsssnssestisssesssseressssrs s rsesbs 19804 shssas srssessissessassntarasassasassensansbusaebbababaseass 24
Chapter 3 Circuit Implementation TeChNIQUEScc.eiiiiiiiiniermsennessesseinsnaces 26
3.1 ITOUCTION. v cverererssermsscsissssssistssessssstssssssssssssressssnssssesssnmsssnseaasss sasbararsnseassnsassasass ereens 26
3.2 Typical CMOS Circuit Realization Approaches ...oenminianmmmine, 28
32,1 Static CMOS LOZIC cvvninriieiiesssrereseisssarossssiiossssissssssessssaensassrsssissasns sassssasssss 28
32,2 Pseudo TMOS LOZIC. . s ineenssesenraasins 29
3.2.3 Dynamic CMOS LOBIC ... iinssnininsninsionissimssssenssosiasnsssmsansng 3
3.2.4 CMOS DomiNe LOZIC commiiiicssinnsssssisssmssismsssisesssistonsonsusrsaressasississssentssassass 33
3.2.5 Zipper CMOS LOZIC v miasinssmssisss 35
3.2.6 Cascode Voltage Switch LOZIC (CVSL) iuunmmmmmmmmmsismmsemamiiassmsanse, 37
33 Maultiple Output Domino Logic (MODL)....cvmirciisiorsismississismsssasssissssssssssd 8
3.3.1 BasiC SUUCIUIE..ccvmcrermremsrasssnsassssssnsasesres et SR b AL bSO OO PR 38
3,32 SNeAK PathS..virsiiisrmreanenrmneirrssisasssasansi g mstosiseseresistssssetosssrssvassass s ssss s sasnes 4]
3.3.3 Example of MODL ZaleS.....ccreecerimemrmmsrmsssmsssessismnsssmsistssasssniens reersnbasasraibars 42
3.3.4 MODL and Manchester CAITY Chain v miinseemssssssmnessstarsssirsarsinssisns 44
3.4 Enhanced Multiple Qutput Domino Logic (EMODL).....cuvrrerens SOOI 45
35 SUMMIATY ..eecoerinsissanrisesssersesssrsssssmssssssossssmsss asasssssnssmsnessssossansss s 18011 rh 4 I4EELS TSRS L0 S0 ES O R0 pes 49
Chapter 4 A New 32-Bit CLA Design.......cocenininnmnnsnssnsnsernees veeseeterenesssesssanes veeeenend0
4.1 INtTOAUCHION e .evveuvenrerasrassarsesnsasersasssnssns sessansssssesssnastsnsnsrsssnssassans sossas sasasens SO 50
4.2 EXIStNG APPIOACHES 1uvcveeisimsersricmsrssensnmecssiseaseseissississssorsssisstsansssssssssssstsssssssnssssssssansnnses .51
421 Typical CLA ArchiteCtUIC . covsrsrsmsniersrssmmsrssnessisssrsrssssronsssrmsssisisres peevessasrsressssers 51
422 Hwang and Fisher’s 32-Bit Addercvicmsirinne crevrmsaseneasnes vy 51
43 New 32-Bit CLA Design Crteriavsmsmsusminisssisnsssisiisenen aihsesssitens sarerssanes .
43,1 Architecture DESCHPUONeoveereeemmsrsrerssssrnressasssmssssssisississsrssmsasssssnssersssesarssesd 4
432 Why Pseudo COMPIEMENL ..c..cueveriimimossisssassssmsasisississnssssssessasasmssemmsrasses vereseerasdd

vi

University of Windsor

44

45

Chapter 5
5.1
52

5.3
54

Chapter 6
6.1
6.2

References

Appendix A
Al
A2

Al

A4

Appendix B
Appendix C

Vita Auctoris

implementation 0f A 32-Bil CLA ettt s ssnan ! 61
44.1 Architlecture FIOOr PIAT v ieccccrreerenneriesesssmisssesmsssnssssessmsanssssmssassassssassans 61
442 Layoul FIOOr Plan ... nsiisssssssssssssssssssssssssen 2
443 Cell EXBMPIES e crvererctibis st ss s s s s e s st st sena s s esscnensnsd 64
444 Simulation and Testing RESUIS (et ss s ses s avas st rrsns e vas 66

Area-Time OptmIZation ..ot 72
INUTOUHCHION v cvvve e sssbserase st i semsmsasemsabab et ks b sb st sae st sa st sbssaa s s san s st ar s n st s segba s setsnsnans s ss 72

TIMiNG ADAIYSIS covveiirsmeninisrersrers e rgs s sasnans: OO P 73
5.2.1 Sclection of OR-Pi 0T XOR Plucrrevrueerirerernrisnsois ssmesesersmiisssssssismesssnssssmssssssssssss 19
5.22 Fan-In and NUmMber 0 SUECS o vt s i isssesnasresnias sanasass s ansssasn 74
523 TranSisStor SIZING oot sasasns st rs e ber st st e sensasias 75

Experiments with FOur CLA SCHEINGES v..uiiriviminissmsississsmsssssssrssssmssssrsssasasessisnsessassssss 19
CompariSon AN SUMMIATY oot sssssressas st amisssssbsssssssssasaess 87

Conclusions and Future ResSearCh. ...iiiiiecirisieressessssesssnnsniassssesssnssnns 39
COMCIUSIONS e eseseersesseenemsessesenserssesnasesatseesassentsesstaness sarsssssessnsstetossassensessoassaresnesststssorersssdd

Examples of Full-Custom Designed Cells in the 32-Bit CLA.......ccoeeeeev. 94
TEIEOAUCLION 1 ev vt vseeeeeererenrere st st et sseesesensemssarasasensssensesesteratsntsnsssssssissssnssnesensessrssssssrneassssserss O
S1EC ONC vt sriiicnrieere et ab it b st 1 s e st ra e pen R s s OB B ESS R ERe S0 RS SRR 95
A2T BIOCK Bl oetsrieecoceoreeresseseitersrsessssssessssastessasssinssese s ssosasasisss ssssmsasssmesesesnsissassobsssssn @
A22 BIOCK B2 oottt sessass s ssreestsssssssos st sa s sesssesssessssssseasasesessasesssnssasd 1
A23 BlOCK B oorercoecsiecininnssersssssessemesnssssrssiossaverssnsssensssessesssosscsoeasmsassssaseasasensss J00
A28 COlXOR et ssesse s e s res s asa st et s sbesbans as e bsataeva e mad b bani b bt 103
A1 BIOCK BA ittt st s s st e s st s s s ans s vbe a2 sm et an e e saen 104
A3.2 BIOCK B urrieeeoeeoseeeeeeerestsstsenssesesosssssssssssssesssssmssnrossssssosssssas sosnssasasasesssssssnsross L0
Ad.l BlOCK BO.riiiiiviir i it cen st e entesss s e reserssssr it s a s v s s ben nan s nea b Ve red 111
A2 BlOCK BT eooieieiissrnsssseesresssssessssssssssssmssssisssssnrasesssssssssressesssssassesssssssssassons | 12
AdT BlOCK B8ttt s crnins s s e sn s s e v s s ns b e e a8 113

A Proposed Methodology For Automated Design With Transistor Sizing.....
w115

C Program for Transistor Sizing Using Nonlinear Programming with
ACHVE Set MEhOT e ssss s enssssessssssrssssmassessassessnosssens L 20

University of Windsor

List of Figures

Figure 2.1 4-Bit Carry-Ripple AQET ...t 7
Figure 2.2 Full Adder Using Standard CMOS Gate....ooeureciiiviennininennnnie s, 9
Figure 2.3 Reconfigured Full Adder.. .o 9
Figure 2.4 Full Adder Using Transmission Gate.......cccovenmiiiisnimeinisssssses i 0
Figure 2.5 Modified Transmission Gate Full Adder........cvccernesinininncnnniiniin, 10
Figure 2.6 Block Diagram of 4-Bit Carry-Lookahead Adderccocevervnninsisnnesiianns 12
Figure 2.7 4-Bit Carry-Lookahead Unit....ociivininineceiiesnnnns 12
Figure 2.8 Input Data Example for Carry-Skip Mechanismccocoieevininiriininiinns 14
Figure 2.9 Two Level Carry-Skip Scheme ..o 14
Figure 2.10 4-Bit Manchester Adder with Carry=SKip ...ocovvveiiniinrsensensessnnse s 15
Figure 2.11 8-Bit Carry-Select Adder ... 16
Figure 2.12 24-Bit Hybrid Adder ..ot 17
Figure 3.1 Static Combinational CMOS gate........ Hueesrisesenineseastartenesenssstsssesbesesaensanens 29
Figure 3.2 Pseudo nMOS Logic Gateccimevimeriininisneisinierssse s sesscsssenss 30
Figure 3.3 Dynamic DMOS Gate......ccvninininmmninninisnnineninsssmmenmsssssne PR 31
Figure 3.4 Correct Dynamic Cascades.......uunmnmmmnmmmrmmmenessiinnen, 33
Figure 3.5 Domino Logic Gate......... SOOI UURPSYOTVOTOROES 34
Figure 3.6 Zipper Logic CIICUIl cuvvrmimiviierinerininisnssisrsssssses s nsssisinisssiscsorsnsess 35
Figure 3.7 Clocks for Zipper LOZIC vttt stsssisssssnniie s 36
Figure 3.8 Cascode Voltage Switch LOZIC ..cvvvvvvniciniiccinniiiiienesenncssnnnesns 38
Figure 3.9 SDL Gates Generating fl and f.......ccciviiiecnninnninnin 39
Figure 3.10 MODL SHUCIULE w.vcremiieiriininininsnsiensnireisniressassasisnssesasmssssssssnss sestisinssssns 40
Figure 3.11 Sneak Path EXamplecccoveveniniriniiiinieiisnnesisssrsssssssssssisiisssseses 42
Figure 3.12 1- and 2-Bit Propagate Termscccoeeremiennninnicnsninssssssssssnssnisn 43
Figure 3.13 4-Bit MODL Carry Generator.......cccouereruvcnnrecnsnsesinisssmssssssssssssssssssissnnes 44
Figure 3.14 4-Bit Manchester Carry Chain with Carry Output for Each Bit Position..45
Figure 3.15 SDL Gates with Common Base TO.........ccinininienc s 46
Figure 3.16 EMODL StIUCIIIE ovueuriecrrecesnssnrssmsstsessesessssisessiscessasersssssnssssssassssassssnes 46
Figure 3.17 4-Bit EMODL Sum Generator.......ciceveeueeerieniniensessaninsssssssssssssnsiniensions 47
Figure 3.18 A Carry Chain Built by Serial and Parallel Circuit........coveiniieesissisninns 48
Figure 4.1 Conventional CLA StrUCIUIE...cieeerrmiscsrsorsisirisisessisesssersossssssssnsssssassssnssnias 51
Figure 4.2 Architecture of Hwang and Fisher’s 32-Bit CLA ..ccccooemniincvrnsiornnnnnn 32
Figure 4.3 ADynamic XOR Gate.....oimrinrininssosensisermnnsiimssssssisisiisiemsrrenss 53
Figure 4.4 The New 32-Bit CLA SIrUCIUIEcciivmnmerinirinniversrersssssssssssinininrnsnarens 54
Figure 4.5 Group Generates for (ggk,1, ggk,2, g88K,3) urnnemmessicnscsminnssionisiisns 56
Figure 4.6 Group Propagates for (gpk,1, gpk,2, g8pK,3) ccevminrrnrensissicisenninirinnnnnn. 56
Figure 47 Complements of Group Generates (ggk.!1, ggk,2, £8K,3).crocrnmrirrenrirenn, 58
Figure 48 Complements of Group Propagates (gpk,1, gpk,2, 8PK.3)..cccvvnsuiinneniuncins 59

viii

University of Windsor

Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure A.]
Figure A.2
Figure A.3
Figure A4
Figure A.5
Figure A.6
Figure A7
Figure A.8
Figure A.9
Figure A.10
Figure A.11
Figure A.12
Figure A.13
Figure A.14
Figure A.15
Figure A.16
Figure A.17
Figure A.18
Figure A.19
Figure A.20

Pseudo Complements of Group Generates (ggk.1, ggk,2, ggK,3).uumrunne. 60
Pseudo Complements of Group Propagates (gpk,1, gpk.2, gpk,3).ccveeeen. 60
Architecture of New 32-Bit Adder......iinriremcineieccessienena 62
New 32-Bit CLA Layout F100r Plait.......cocevumemiinsinenicencensinsinsissisiconenns 63
Scanned Picture of the Chip........... eeeeeeere st eseseens e s eseaess s A enennes st 64
Schematic of Cell B7 with Transistor SiZing......cnerrneiresscssnsesscns 65
Layout 0f Cell B7....ccovvinmriercinnrmnnisnnsimssossasssssssnnminsssssesierssrasssnssssssens 66
HSPICE Simulation from Mask Extracted Circtit.....ceeeernneciisscsrirossnnns 67
Chip Layout with Ten Critical Path Adders......cccmeeniiinseciinnr s 70
Testing Fesult of the 10-Critical-Path-Adderveveermeceisicscrcnsiiicinisinnnnse 70
nFET Chain with Fan-in of 6. 76
RC Model for 6 Fan-in nFET ChaiN......rrimennisneenn, 77
Configuration of SChEmE I 80
Layout of Critical Path for Scheme ... g1
Configuration of Scheme IL.....ciiveneciiii e 82
Layout of Critical Path for Scheme ... 83
Configuration of Scheme Il ..o 34
Layout of Critical Path for Scheme IIl ...cooiennenniiiiiininininieanne 85
Configuration of SCheme IV v 86
Layout of Critical Path for Scheme IV c..iniiimrieiensiesesnne 87
Schematic Of Cell €4 ..uinimierearieninrieniesiitiiiissssssreesnsssssssssessssassnssinsnsases 95
Layout 0f Cell €4 cociivimimimmminncnnennrnneisissesessrmasasnssstssssssiinsasssasssesnsassses 96
Schematic 0f Cell K4 ittt ersassssasenss 97
Layout of Cell K4 .coivmireeneicnmrinnrrrenres i sssissssssissscasessenssasans 98
Schematic of Cell Pkd..viimmiiniierinrieiinneisesrsnsne i sanns 99
Layout of Cell PK4ocvueermrrenrreesventninssriinssssssssmssssssstsssssissssasssssnsssseness 99
Schematic of Cell K3 ..o bt sensens 100
Layout of Cell K3 w.oririiriremeimnsnncrerirninimsssscssssssiisnsnesssrsessss 101
Schematic of Cell PK3 ..ot sessasese 102
Layout of Cell PK3 c.cvvieieviiisnerenieninnensinscrenrasssssssssssasisssssssssessnass 102
Schematic of Cell Xl 103
Layout 0f Cell X .ccuminiermmennnsnreisiesessissnssnssenssnasessasssssesasssssessssssasasases 103
Schematic if Cell C8..vivreriirsrsetiriitssesnecsisssisssssis s snerssssssssssessssssses 104
Schematic of Cell C12 .civiimmerintainisssiesnns s sscsssssssssessssesrsssesasass 105
Schematic Of Cell €16 ..iiirrernrererreerinerirsrsssssisenesisasssessrnessessssssesaess 105
Layout of Cells ¢8, ¢12 and €16 in One....cvrvvsmmeescasenreesnnsisisnsssnsssaseians 106
Schematic 0f Cell 823 isisssisnsenss 107
Layout of Cell 823 ... b ssesssssssissssasasasass 107
Schematic of Cell Z826...cvmiimnieninmnmmiisssnrssssnsssesssecsssnsnses 108
Layout of Cell 826umicieriiitcrcictisisisrerinsssssssee s ssssessssstsiassasenss 108

University of Windsor

Figure A.21
Figure A.22
Figure A.23
Figure A.24
Figure A.25
Figure A.Z6
Figure A.27
Figure A.28
Figure A.29
Figure A.30

Schematic of Cell 2229 i e rsresens 109
Layout of Cell 2829 v 109
Schematic of Cell ZP23K i 110
Layout of Cell ZP23K ccviiiienrinin i sensenissssesssssasnes 111
Schematic Of CEll SK4 ..ottt 111
Layout of Cell SK4....vviivcerieeiiririentisinrrncneeecsasesnessessesecstraesssesisssesenens 112
Schematic 0f Cell SK3 v bis 12
Layout of Cell SK3....umimiiiiicisi s e esssases 113
Schematic Of Cell SK32 v s ssesra et esnesnsssssmssnsnes 113
Layout of Cell SK32....cueemrmmeminmnesssnnsssssisienssssssssssssesssssssssessssss 114

University of Windsor

List of Tables

Table 2.1. Area-Speed Characteristics of Five 16-Bit Adders ... 24
Table 4.1. First-Order Scaling on MOS Device Parameters....cvniiinininis 68
Table 4.2. First-Order Scaling on MOS Device Parameters......ovcoieviniininienennes 68
Table 4.3. Comparison Between Two DESIZNS ..ccovvervemnrnescemminnsiiini e 69
Table 5.1. Performance COMPATiSONSvcercemiriinsiniserssrssmssssssesnssesssnssssisssssesnes 88

xi

Chapter1

Introduction

1.1 Research Motivation

In data processing systems such as microprocessors and digital
signal processors (DSP), the Arithmetic/Logic Unit (ALU) and
multiplier are the engines of the system. In the ALU and multiplier,
which perform the operations of ADD, SUBTRACT, MULTIPLY
and DIVIDE; the ADD operation is ubiquitous. In the multiplier,
for example, partial products are obtained through several stages of
full adders or carry save adders, and the final product is received
from a final multi-bit adder stage. It is clear that the speed of the

processors is directly affected by the speed of the adder.

It is well-known that processor speed slows down dramatically
when communicating with external memory. Utilization of cache
memory and register files is one of the solutions. The more memory
and registers that can be placed on the chip, the faster the processor
will operate. Since smaller components result in more chip
components, the size of the adder is an equally important design

issue.

The performance of a system is characterized by its specd, size and

power dissipation. As portable computers become popular,

Introduction

Research Motivation !

University of Windsor

minimizing power dissipation of adders is important in saving battery life. Generally
speaking, dynamic power dissipation of a dynamic logic circuit is caused by current flow
during precharge and discharge. The magnitude of current flow per unit time depends
primarily on the number of transitions, number of transistors that is involved in logic
transitions and the size of those transistors (i.e. factors that affect charge movement during
transitions). Although studies on reduction of power dissipation is an active area, we have
restricted the objectives of this thesis to the design of high speed and hardware efficient
carry lookahead adders. Since the number of transistors used by the adder is a vital
clement for estimating the silicon area and power dissipation, however, design
philosophies that decrease the number of transistors will be advantageous to improving

the overall circuit performance.

Starting from analyzing and comparing various adders at both the architectural level and
circuit level, we determine that CLA architectures, associated with dynamic logic
implementations, are very efficient. This choice is enhanced by the availability gf several
new concepts, including pseudo complement mapping techniques and EMODL circuit
styles. A 32-bit CLA is designed accordingly and demonstrates that these new concepts

lead to area efficient low critical path delay CLA designs.

We show that the 32-bit adder, laid out in 1.21 CMOS technology, has a smaller area than
a recent design by Hwang and Fisher [15] using a 0.9 CMOS technology. Our HSPICE
simulation results also show that the new design is 15% faster than Hwang and Fisher’s
design. A ten serial connected critical path adder is fabricated and /O pad calibrators used
to minimize the error introduced by /O pad delays. The test result is consistent with the

HSPICE simulation results obtained from the complete 32-bit adder.

When the adder is designed using EMODL circuit techniques, its critical path delay is
affected by many factors. The most important ones are: the fan-in and fan-out of each gate,
the dimension of each MOS transistor and the number of cascaded gates in the critical
path. In this thesis, we investigate trade-offs of these factors with regard to area and speed

by designing and analyzing four different schemes of a 32-bit adder. Optimization

(3]

introduction Research Motivation

University of Windsor

approaches, including sizing transistors, and moditying the number of cascaded gate
stages and the fan-in of each stage, are discussed. Examples of four adder schemes and
their simulation results are provided. By comparing the performance of the four designs,
we conclude that the 32-bit CLA, with only three worst case gate stages, is the best

structure.

1.2 Thesis Organization

The thesis is outlined as follows. Chapter 2 reviews the current efforts in high speed adder
design, at both the algorithm and architectural level. The CLA algorithm, which is
considered the fastest, is then selected as the basis of our new adder design. Finally, a
recent design concept, referred to as “pseudo complement” and associated with the CLA

algorithm, is discussed.

In chapter 3, evolution of high speed CMOS circuit design techniques from static CMOS
to domino logic is illustrated. The multiple output domino logic (MODL) technique is
discussed specifically. The idea of MODL is then broadened to suit more gencral and
flexible circuit designs. This results in a new circuit family which we refer to as enhanced
multiple output domino logic (EMODL). This new circuit style proves advantageous to

speeding up the CLA operation. Examples of EMODL gates are also given in this chapter.

Details of our newly designed 32-bit CLA are described in chapter 4. The reasons for
using our proposed new design methodologies, such as pseudo complement sparse carry
chain and EMODL sum unit, are explained, and a conventional 32-bit CLA is uscd as 4
comparison target design. Layout and HSPICE simulation results of the new 32-bit CLA
are presented, and the comparison confirms that our CLA offers better performance than

the best existing published design.

In chapter 5, further studies on optimizing the area-time characteristics of the 32-bit CLA
are conducted. Elements that influence the CLA performance are examined carefully.

Four 32-bit CLA designs, with different configurations, are constructed based on varying

Introduction Thesis Organization 3

University of Windsor

these elements over a reasonable range. Critical paths of the four CLAs are simulated for
experiment verification. Comparison results obtained from the simulations provide us

with an empirical guide to optimal CLA design.

Chapter 6 summaries the main contributions of this thesis and suggests some directions

for future research.

Schematics associated with layout examples of all the building blocks of our 32-bit adder
are given in Appendix A. The schematics are also labeled with transistor sizes. A auto-
mated optimization procedure is proposed in Appendix B. A preliminary C program for

gate delay minimization is given in Appendix C.

Introdluction Thesis Organization

Chapter?

Architecture
Discussions

2.1 Introduction

Addition is one of the most important arithmetic operations
performed by both general-purpose and signal-processing
microprocessor systems. Implementation of high-speed adders is
demanded and motivated by the progress in VLSI technology.
High-speed adders can be designed using -carry-lookahead
algorithms, carry-skip mechanisms, carry-select structures or
various combinations. In this chapter, we shall look into some

typical implementations of word-wide adders as follows:

1) carry-ripple adder [37];

2) carry-lookahead adder [6];
3) carry-skip adder [9];

4) carry-select adder [1] and
5) hybrid adder [21];

The carry-ripple adder is a straightforward implementation of
adders, but it is slow in operation. Its Jong carry propagation path
extends from the least significant bit position to the most significant
bit, and so the ripple-carry generation delay is linearly proportional

to the size of the adder. The carry-lookahead adder improves the

Architecture Discussions

Introduction 5

University of Windsor

performance of the carry-ripple adder by generating the slow signals, i.e. carries, earlier
than the evaluation of the sum. The carry-skip adder improves the performance of the
carry-ripple adder by making the carries available earlier under certain conditions, trading
the available time against resources. In the carry-select adder, the sums with predefined
carries are duplicated, at the expense of additional resources, to reduce the number of
levels in the adder. The hybrid adder combines two or more types of the above adder

designs to generate better trade-offs between speed and hardware requirements.

Both carry-lookahead and carry select adders have O (logn) time complexity, but carry-
select adders require more actual hardware. This is because carry-select adders have to
precompute the sum results for all possible carry bit values, i.e., 1 and 0, and use the carry
from the previous bit position to choose the proper result; thus the speed advantage is a
trade off driven by the replication of carry select sections. When the word length, n, of the

adder is larger than a certain bit number, carry-lookahead adders are faster than carry-skip

adders since carry-skip adders exhibit a total delay of O(Jr_l) . The carry-lookahead
architecture is chosen in this work because it is considered to be among the fastest circuit
topologies for performing addition, and its size is relatively small. In this chapter, after
brief discussions of the other adder architectures, we will describe the carry lookahead
algorithm in more detail, and then discuss the recently introduced concept of “pseudo

complements” [35] which is beneficial to improving the CLA performance.

2.2 Typical Adder Architectures

2.2.1 Carry-Ripple Adder

An N-bit carry-ripple adder consists of N full adders linked together by the carry inputs
and outputs. This is the smallest possible parallel adder. However, it is also the slowest.
This is because the carries are connected in series, and the addition will not finish until a
carry generated by the least significant full adder ripples through N -2 intermediate full

adders to the most significant full adder. As an example, the block diagram of a 4-bit

Architecture Discussions Typical Adder Architectures 6

University of Windsor

carry-ripple adder is shown in Figure 2.1. This adder takes (ay, ..., ag) , (b3, ..., by) and
carry-in ¢, as inputs, and produces the sum (s, ..., 55) and carry output ¢ . The i-th
stage has inputs a;, bi, and c; (the carry-in) so that the basic addition algorithms for the

i-th bit position are given by

5; = a; Db, S (2.1)

Cipy = a‘.bi-l- (a'.@b,-) ¢; = aibi+ (a,.-l-b,.) ¢ (2.2)

where ¢, , is the carry-out bit at the i-th stage. The cascaded carry scheme used in

connecting the full-adder circuits introduces significant delay into the circuit. For

example, the third bit sum output s, is not valid until ¢, is valid, which in turn needs the

carry bit ¢, generated by the 0-th bit position.

4] pa l€] FA € FA €L FA |
: : . :
C4 S3 52 S7 S0

Figure 2.1 4-Bit Carry-Ripple Adder
2.2.1.1Full-Adder Designs

By expanding and reformulating eqn. (2.1) and eqn. (2.2), one can get the following

results:

Architecture Discussions Typical Adder Architectures 7

University of Windsor

C;pq = aibitag;+ bic; (2.3)
g,y = abiragc+he; 24)
5= abc;+ abc,+abic,+ abc; (2.5)

By substituting eqn. (2.4) into eqn. (2.5), sum 5, can be re-written as:

8= abici+ (a;+b+¢)8; (2.6)

A full-adder schematic according to eqn. (2.3} and eqn. (2.6) is given in Figure 2.2. By
simple optimization of the p-channel transistors, a full adder schematic with the same
function yet different configuration is shown in Figure 2.3. The interesting feature of this
circuit is that the pFET logic block identical topology as the nFET block, which tends to
simplify and reduce the layout design than of Figure 2.3 compared to Figure 2.2. In
addition, the full adder in Figure 2.3 is faster due to a lower height in the pFET chain.

Both full adders consist of 28 transistors with buffered s; outputs.

VQD
4L
1h 54 4L
cng | %7 L,
a; ¢
a0 < L e
]I_ a; . a: . . ai _‘
e 1 -’lﬁ e T
Fb;

Architecture Discussions Typica! Adder Architectures 8

University of Windsor

Figure 2.2 Full Adder Using Standard CMOS Gate

Vbp
Q

1k
Cit+l L

E
1H | HH

—dL O

-

L
——
T

~—e b : . 0
a.
[Re, .
b;o Vss
c; o

Figure 2.3 Reconfigured Full Adder

A rather different full adder configuration employes a transmission gatc to accomplish the
exclusive-or (XOR) function [23]. This adder configuration is illustrated in Figure 2.4. The
adder has 24 transistors which is less than the ones shown in Figure 2.2 and Figure 2.3,

and has the advantage of having equal s; and ¢, | delay times.

Modification of the transmission gate full adder is given in Figure 2.5. This adder was
discussed in [38] and implements the same function as the full adder shown in Figure 2.4

but with fewer transistors.

Architecture Discussions Typical Adder Architectures 9

University of Windsor

—-{ 5
——E Civt

oo gy

MLTFLW

T3
L1
p

—+
£
T

Figure 2.4 Full Adder Using Transmission Gate

J

ﬂ Si
-E Cit1

Figure 2.5 Modified Transmission Gate Full Adder

z;ﬂ? —{—%}
L T2

c,.o_ﬁir

LL{‘}H{}J Jwﬁhr{}

Architecture Discussions Typical Adder Architectures 10

University of Windsor

2.2.2 Carry-Lookahead Adder

Carry-lookahead adder (CLA) algorithms are designed to give “look-ahead™ capabilitics
which provide the carry-in bits to each stage without waiting for each bit evaluation. To

see the basic idea, we define a carry generate function

g; = ab; 2.7
and a carry propagate function
p;=a,®@b; (2.8)
so that the carry-out bit is given by
Cip1 = 8T P (2.9)

applying this to the 4-bit adder gives the carry-out bits as

¢ = 8ot PoCo
€y =g+ p (80"‘1’0%)

Cy = 8+ Py (8)+ P (8o + PoCo))
€4 = 83+ P4 (g, +p, (8, + P (gg+ PoCy)))
Adding a CLA unit to the parallel adder as shown in Figure 2.6 greatly increases the speed

of the network. The circuit of Figure 2.7 is a 4-bit carry lookahead unit with 3 level ¢;

logic.

Architecture Discussions Typical Adder Architectures 1

University of Windsor

azb; ay b, arby agby ¢y

P3 |83 4P2 |52 |-\ﬁ’1 |81_tPo |80

CLA Unft

Y

Figure 2.6 Block Diagram of 4-Bit Carry-Lookahead Adder

C4 53 52 St

€] Cs Cy

A

g Po &1 P g2 M 2 P Co

Figure 2.7 4-Bit Carry-Lookahead Unit

Architecture Discussions Typica! Adder Architectures 12

University of Windsor

2.2.3 Carry-Skip Adder

The carry-skip adder uses the idea that if corresponding bits in the two words to be added
are not equal, a carry-in signal of that bit position will be passed to the next bit position.

Using the two N-bit binary operands, A= (a, ...,ay) and B= (b", .. by o the carry

input and carry output at bit position i as ¢, and ¢, _, respectively, and the sum at the bit

position i as s,, the following relations for s; and ¢, | are well-known:

5;=a,9b®c (2.10)

C,

o1 = Qb+ (a+b)c; (2.1

Carry-skip adders are best understood by first looking at a carry-ripple adder. In this adder
a carry signal may have to propagate all the way from the least significant position to the

most significant position. An example would be the case where Vi except 0, ¢,=0, a,=1,
and Vi, b;=1. Note that in every bit position through which the carry signal travels, a,
and b; are different. This is a significant fact because, in general, a carry signal will
propagate through a bit position { if and only if a, # b,. In another words, if a;= b;, then
all carry signals to the left of position i are independent of all inputs in positions 0
through i — 1, Thus, the chances that a carry signal travels a fong way is small, because the
probability of having a long string of bit positions all with a,# b; is small. The carry-skip
adder takes advantage of this observation. The bit positions are divided into blocks of

contiguous positions, as shown in the example of Figure 2.8. The blocks are numbered 0,

1, 2 and 3 from right to left. When a block has all the positions i with a;# b;, such as

block 2 in Figure 2.8, the carry-out of that block is the same zs the carry-in to the block.
Also the carry input to the bit positions in block 2 are either ali 0’s or all I’s, depending on
whether the carry input to the least significant bit of the block is 2 0 or a 1, respectively.
Thus no carry signal has to propagate through this block in a position-by-position fashion.

Architecture Discussions Typical Adder Architectures 13

University of Windsor

A 10100101011 |10100(01011
B 01101]110100]01010101100
block 3 block2 block1 blockO

Figure 2.8 Input Data Example for Carry-Skip Mechanisimn

There are two general types of carry-skip adders: constant block width, as illustrated in
Figure 2.8, and variable block width. For a variable block width carry-skip adder, multiple
levels of carry-skip mechanism and variable block sizes are used in order to create a faster
circuit. For example, Figure 2.9 illustrates a basic structure of a two-level constant block
width carry-skip adder. This stage consists of three adder blocks and a second level carry-
skip mechanism. The carry skip can be implemented with a multiplexor selected by the
group propagate. Each adder block has five full adders grouped together and a first-level
carry-skip mechanism. In variable block width carry-skip adder, the number of full adders
in the adder blocks can be different, and the number of adder blocks in each stage can also

vary in order to achieve fast carry-skip speed.

I el f

L =
First-Level Skip

Second-Level Skip

Figure 2.9 Two Level Carry-Skip Scheme

Recently carry-skip adders, using a Manchester adder with carry skip mechanism, has
become popular. Figure 2.10 shows a 4-bit Manchester carry chain implemented in

dynamic CMOS logic. This adder circuit operates as follows: the nodes are precharged

Architecture Discussions Typical Adder Architectures 14

University of Windsor

during phase ck through p-channel transistors, and the circuit is evaluated during phase
ck. Depending on the values of a;, b, and ¢;, a carry can either be generated or

propagated. Theoretically, a Manchester carry chain adder is a carry-lookahead chain
implemented by dynamic logic. This is because a Manchester adder also uses generate
and propagate terms to produce a sum and carry as shown in Figure 2.10. Again, carry

generate and carry propagate signals are defined as:

8= ab. p; = a,.@bl.

[
So that sum s; and carry c; | are determined by
s; = p; D

Civ1 = 8T PG

ck—el'lf —

e e M S — i iy f— — T — e S St S — e —" — ——

Dynamic AND Gate

=
1
1
1

Figure 2.10 4-Bit Manchester Adder with Carry-Skip

Architecture Discussions Typical Adder Architectures

University of Windsor

The difference between the dynamic carry-lookahead adder and the carry-skip adder,
using a Manchester carry chain, is the attachment of a bypass transistor D5 and an
additional dynamic AND gate (carry-skip circuitry) which turns on D35 if all carry
propagate signals are true. Note that the critical path of the Manchester adder is the series
connected pass transistors D1 — D4 in the carry chain. Although the carry-skip circuitry

has a similar construction to the carry chain D1-D4, the node capacitance at
intermediate nodes is approximately half that of the carry chain. Thus the carry-skip
arrangement improves the worst case carry propagation time if all carry propugates are

true; this, in turn, improves the overall speed of the adder.

2.2.4 Carry-Select Adder

Another approach to building fast adders that trades-off area for speed is to use a carry-
select adder. The basic scheme is shown in Figure 2.11. Two carry-ripple adder structures
are built, one with a zero carry-in and the other with a one carry-in. This is repeated for a
certain sized adder, for instance 4-bits. The previous carry then selects the appropriate sum
using a multiplexor or tri-state adder gates. The stage carries and the previous carry are

gated to form the carry for the succeeding stage.

$p-53 aray b4-b7
A4 A4 A4
C_‘Q. Cy 1 cgli)
A4 A4 A4 Sq4-S7A1)
asaz bp-b 58
0%3 Yptl3 g 497
i 45 70) }
cgl0
0 — 8(0)
Y4 4
a4'a7 b‘rb?
=D

Figure 2.11 8-Bit Carry-Select Adder

Architecture Discussions Typical Adder Architectures 6

University of Windsor

2.2.5 Hybrid Adder

The above discussion reveals that different types of adder implementations have their own
advantages and disadvantages in operation speed and hardware expense. Hybrid adders
tend to combine two or more types of the above adders for maximizing advantages while
minimizing the disadvantages. For example, the 32-bit adder used as the 16x16 multiplier
accumulator in the ADSP-2105 DSP device (developed by Analog Devices Inc.) is a
hybrid adder employing a carry-skip scheme combined with a carry-select adder. In [21],
another hybrid adder is developed which utilizes carry-lookahead and carry-select
structures for obtaining a balanced load distribution and regular layout, with the expected

increase in hardware resources.

0182 ProsBr0 L)
ppg; § PrBol— :
g S Pt I —cn 8 Bit Adder |1
ek E RS T
o—c, 8 Bit Adder [<
P &t
Sy
g PiosBro
Pofls {—c, 8 Bit Adder g
E Sian
P &~
Pp8r —{P38s Ié:mgm o—c, 8 Bit Adder
—pg 8 Pofup—
wdpng) § ProsBiof—
Po8s —{Pp 0
¢, 8 Bit Adder p—1,,
Pngs Pi:0.830 ma—
P»E2 8 P20 sB2:0 f—
E P10 o510 frmem
Pes8o

Figure 2.12 24-Bit Hybrid Adder

Figure 2.12 shows the block diagram of a 24-bit hybrid adder using combined carry-
lookahead and carry-select structures. The carry-lookahead logic is realized by a

Manchester carry chain, denoted as Mcc in the block diagram, Each Mcc block contains

Architecture Discussions ‘Typical Adder Architectures 17

University of Windsor

four bits and produces carries on the boundaries of 0, 8 and 16. Therefore the uniform
carry select section is composed of an 8 bit-wide carry-ripple adder. Eight bit boundaries
prove to be convenient because the eight bit carry-ripple adder operates in slightly less
time than the carry tree, thus the sum data are set up at the selection multiplexers just

before the select signals arrive.

2.3 CLA and the Pseudo Complement Concept

2.3.1 Carry Lookahead Algorithm

Referring to the discussion of basic CLA algorithm in Section 2.2.2, the arithmetic

description of the basic organization of an n-bit CLA can be stated as follows:

Given an n-bit adder with two binary summands (a,,...,a;) and (b,,...,b,) ,and a
carry-in ¢, we first define three auxiliary logic variables: carry generate g,; carry

propagate p;; and half sum x;, as follows:

g = ab, 2.12)
p; = a;+b; (2.13)
X = a,®b; (2.14)

a;, b, and c; are the inputs at the i-th bit position, p; denotes that a carry will propagate
across bit position i, and g; denotes that a carry is generated at bit position /. The final

sum s; and carry ¢;, can be expressed as:

s, =x.®Dc (2.15)

;1= 8 P (2.16)

Architecture Discussions CLA and the Pseudo Complement Concept 18

University of Windsor

An alternative definition of p;, as shown in eqn. (2.17), also frequently appears in the
literature. (We refer to it as XOR-p; in later discussions, and refer to eqn. (2.13) as OR-

p;)

p=a;®b; (2.17)

In such case the half sum variable x; is no longer necessary to produce the final sum s;

and can be replaced by p;. Therefore, the final sum s; and carry ¢; are computed as:

5; = p; D (2.18)
;1= &+ P (2.19)

Preference of either definition of p; depends on the adder algorithm chosen and the design

criteria. A detailed comparison of the two will be given in Chapter 5.

Continuing with the definition, an operator “o¢”, which is introduced by Ladncr and
Fischer [18], is defined as follows:

(8pPR0E8pPp= (8;+ P8, PiP)) (2.20)

Operator “0” is associative [6], and can be proved by the following:

Foraay (g;.,:P;.4) (8;,1°P;+1) and (g,p;), wehave
[(8is2 Piv2)0(8iy1p Piy)]10(8 P)
= [(8i42FPiv28is 1 PivaPis)]10(8 P)

= [(8142t Pis28is1 T Pis2Piv18) (PiiaPiyP)]

and

Architecture Discussions CLA and the Pseudo Complement Concept 19

University of Windsor

(8; 42 Pi.o)o0 [(8412 Piy 1) o(g; P,‘)]
= (842 Pis2) 0L &1+ P18 PiyiP)]

= [(8 2+ Pis28is 1 Piv2Pir18) (PiyaPiv1Py)]

Therefore,
[(8,2 P,-.,.z)o (8010 Pis 1o(g p;)

= (8,2 P,‘+2)0 [(8iy1:Pii1) 0 (8 P,-)]

Note that operator “o” is not commutative. This is easily seen in eqn. (2.20); the left argu-
ment (g,,p;) on the left side of the equation is treated differently from the right argument

1P

(gpp;) . 1 p;=0,we define the operator “o” as

(gpPPo(gp0) = (gpp)og= 8+p8; (2.21)

L1 4]

Given the fact that operator “o” is associative, we can choose 2 k and we define two more

logic variables “group carry generate” gg, , and “group carry propagate” gp; , . Then the

pair (88; 1 8P;, ;) can be formulated as:

(gg,"k, gp,'.k) = (840 Piow)0(8ii_yp Piyp_1)0...0 (g; Py (2.22)

where i is the starting bit position of the group and & indicates that the length of the group

isk+1.gp;,; signifies that a carry will propagate from bit i to bit { + & + 1. Similarly
88; , denotes that a carry is generated in at least one of the bit positions from i to

i+ k+ 1 inclusive and propagated to bit position i +k+ 1.

From eqn. (2.19) to (2.22) we gelt

Civ1 = (g,-: p;) oc; | (2.23)

Architecture Discussions CLA and the Pseudo Complement Concept 20

University of Windsor

= (gp P 08— Pi_1)0...0(py &) 0¢y

and
Civkal = (g.é,',k’ gp; 1) oc; (2.24)
It is worth mentioning that both expressions of p; can be applied to eqn. (2.20) to (2.24).

However, different CLA structures will be generated from different choices of the p, det-
inition. In the case where XOR logic is applied to the carry propagate, as defined in eqn.
(2.17), the generation of p; for each pair of input summands is required. This stage, how-
ever, is not required when using OR- p; logic. The disadvantage with the latter approach is

the potential for false evaluation caused by sneak paths that can occur in MODL circuit

implementations. This problem will be discussed in Section 3.3.2.

2.3.2 Pseudo Complement Concept

Using the XOR function in sum generation requires both true and complement signals for
x; and ¢;. In a static CMOS logic implementation, the complements can be produced by
adding an inverter to the original variable. In domino logic design, the complement result

can not be produced in the same way. Since we are considering full domino logic design

for the adder implementation, we have to create both the true and complement signals for
x; and c; using separate domino logic circuits prior to the evaluation of the sum s;. The
circuits for the complements of gg; , and gp; , may need more transistors and greater

fan-in, and thus more silicon area and critical path delay, than their true counterparts. This
fact will be illustrated in detail in Section 4.3.2 of Chapter 4. In order to gencrate the

complement carry chain in parallel with the true carry chain, while retaining the same

circuit delay and silicon area, we define a pseudo complement generate g; = CT,I;; , and

pseudo complement propagate p; = E‘. + 5—‘., or p; = EI @ !;,: a; ® b, [35]. Note that g,

is not the real complement of g;, since g, = a;b;= Z'l£+5£, and p; is not the rcal

complement of p, for p, = a;+b= ab;,0or p; = a, 9 b,.

Architecture Discussions CLA and the Pseudo Complement Concept 21

University of Windsor

When the operator “o” applies to two pairs of pseudo complement generate and propagate,

it is defined as:

(8, PP o(8pb)) = (8;+ D8 ;D)) (2.25)

Then the pseudo-complement group generate gﬂg,-,k, and the pseudo-complement group

propagate g}),-' x are generate in a fully parallel way:

(ghgi,k’ 8]9:‘,}:) = (§i+k’ Picuo (g,'.,.k_pﬁf.,.k_[)o--oo(gp 2;) (2.26)

The complement carry chain can be derived from g; and p; in the same manner as the

carry chain is derived from g; and p;.

G = (8, P)0T;_, (227)

= (é,-: P,') o(g;_], P,‘..l)o---o (I;O: .5;0) 067)

and
& ra1 = (880 8P K) OF; (2.28)

Note that substituting a; and b; with @; and b; to either XOR-p, or OR-p; also gives

different types of pseudo p;, i.e. XOR-p; or OR-p;. Either one will function correctly for

computing the complement carries. The proof is presented in the following section.

2.3.3 Proof of Correctness for the Pseudo Complement Concept
Type I: p; Using OR Logic

Given: g =ab, p;

Il

B
<4
o

i1 = (8pPoc;

Architecture Discussions CLA and the Pseudo Complement Concept 22

University of Windsor

Prove: Ei-l- 1 = (gj! ﬁg) OE:'
Proof: ¢;.q1 = (8 ppoc;

= ab;+ (a;+b)c;

&

ia1=abi+ (a;+b)¢;

(@,+b) - (apb;+¢)

ab;+ (a,+b)¢,

3

=&t pic;

= (8 B 0%,

Type I: p, Using XOR Logic

Given: g =ab, p;=0a®b ¢ = (& pi)oc
Define: gf = CMI-IBI ﬁl’ = (—I-I@B‘

Prove: ¢ = (8p D)ot

Proof: Let us prove (g, p;) ot; isactually ¢; .

= C-IIE"*' (C—l!@El) C,
= ab;+ (ap;+ab)¢,
= ab;+ag;+bc= ab;+ (a,+b)¢

Now look at ¢, ;:
Since: c;,, = (&, Pp)oc;

= &t P

Architecture Discussions CLA and the Pscudo Complement Concept

23

University of Windsor

“Cis

o

i+l

= ab;+ (4;@b)c;

ab;+ (a;©b)c;

(a,+b) - (@5 +¢)

ab;+ (3,+b)¢;

(g','s f),) ot;

2.4 Summary

Five types of adder structures have been reviewed. The implementation and comparison
work of these five types, using 16-bit adders, was published by Callaway and
Swartzlander [7]. These adders are carry-ripple adder, constant block width carry-skip
adder, variable block width carry-skip adder, carry-lookahead adder, and carry-select

adder. The performance comparisons of these adders are summarized in Table 2.1

%

Carry-Ripple 36 54.27 144 0.2527
Constant 23 28.38 156 0.4492
Width Carry-
Skip
Variable 17 21.84 170 0.5149
Width Carry-
Skip
Carry-Looka- 10 17.13 200 0.7454
head
Carry-Select 14 19.56 284 1.0532

Table 2.1. Area-Speed Characteristics of Five 16-Bit Adders

Table 2.1 shows that carry-lookahead is the fastest, but its size is relatively large. This can

be improved by utilizing advanced circuit implementation techniques. We also learn,

Architecture Discussions

Summary

24

University of Windsor

from the table, that the relative adder sizes are consistent with the number of gates. In
another words, comparing the gate counts of adder designs may be helpful in judging

relative sizes before the actual layout implementation.

Knowing that the carry-lookahead algorithm offers the fastest adder architecture, and with
the help of pseudo complement techniques in mapping complement carry chains, we are

confident that the speed of the adder we develop will be superior to other adder designs.

We now invest our effort in reducing the cost of the adder by exploiting high performance

circuit design methods.

Architecture Discussions Summury 25

Chapter3

Circuit
Implementation
Techniques

3.1 Introduction

Circuit design is equally important as algorithm and architecture
design in achieving high performance systems. Since CMOS
technology is still in a dominant position in most IC products, we
examine possible CMOS circuit alternatives to find a solution for

high speed adder design.

Static CMOS is the most widely used CMOS circuit style because it
gives full-rail output voltage swing and exhibits high noise
immunity. Also it provides the basis for more advanced dynamic
circuit designs. The shortcoming of static CMOS circuit is that it
uses both nMOS and pMOS transistors in equal quantities, with
typically larger sized pMOS devices. This leads to large charge
movement during transitions, slowing down the circuitry and

increasing the power dissipation.

An N-input static CMOS gate thus requires 2N MOSFETSs, which is
twice the number needed to perform the logical operation. An N
input pseudo nMOS gate only requires N+1 transistors which may
be useful to consider when layout problems start to overwhelm the

need to maintain low power dissipation; this type of gate produces

Circuit Implementation Technigues - Introduction 26

University of Windsor

static power dissipation in addition to dynamic dissipation during switching. Other

drawbacks of pseudo nMOS circuits are that the logic swing V,, -V, is always less

than V(,,, and ratioed transistor sizes are usually needed to achieve acceptable output

voltages. This places constraints on the layout design.

Dynamic logic circuits perform logic operations using the properties of capacitive charge
storage nodes. Clock signals are required to predefine charge states and to evaluated the
logic function. The main advantage to using dynamic CMOS logic circuits is that they arc
generally faster and more compact than equivalent static gates. However, the operation is
more sensitive to layout geometries, and the problems of charge leakage and charge
sharing can become critical. Also glitches will occur when single phase dynamic CMOS

gates are connected in series.

Domino logic [17] is designed to provide glitch-free cascades of nMOS logic blocks by
adding a static inverter to a basic dynamic circuit. Any number of logic gates may be
cascaded and operated by a single phase clock, provided that the sequence can evaluate
within the evaluation clock phase. The limitation of domino logic is that only non-
inverting structures are possible. Also, charge sharing can be a problem, which is common

to all the clocked-CMOS circuits,

Zipper logic [20] is designed in a way that both nMOS and pMOS dynamic circuits arc
used. Four clocks are grouped in two pairs. Each pair is used for one type of dynamic
circuit. The two clocks in each pair are in phase but have different amplitudes in order to
diminish charge sharing problems. The two types of dynamic circuits (n-p) are serially
connected one type after the other resembling a zipper structure. Problems that occur with
this type of logic include poor speed response of the pMOS blocks and the cxtra effort

involved in accomplishing four clock controls.

Differential cascode voltage switch logic (CVSL) {11] combines complementary logic

arrays with a differential latching circuit. Usually a cross-coupled pMOS latch circuit is

Circuit Implementation Techniques Introduction 27

University of Windsor

used. The circuit has the advantage of providing complementary logic functions.
However, the sizing of the latching circuit can be highly influential to the overall circuit
speed. Also CVSL performance is not necessarily superior to a conventional static CMOS

gate [31].

Multiple output domino logic (MODL) [15] provides more than one output, using a single
circuit, where one output is a subfunction of the other. This approach increases the overail

system speed by reducing the device count and gate interconnection complexity.

In the following sections we will take an in-depth look at the above mentioned circuit
design techniques. Then we discuss a recently introduced CMOS gate family called
enhanced multiple output logic (EMODL) [34] and [35]. EMODL extends the MODL
style to a more general case, where a more complex logic gate can be built upon a
common base which may not necessarily be a subfunction output. This technique provides

a higher degree of device saving,.

3.2 Typical CMOS Circuit Realization Approaches

3.2.1 Static CMOS Logic

Static CMOS logic gates are formed with completely symmetric nMOS and pMOS
transistor arrays. The logic function of each gate is implemented twice. For example, a
combinational gate that performs the AND/OR invert function having one 3-input AND
logic OR with one 2-input AND, is shown in Figure 3.1. The five n-channel transistors
have all the information to represent the required logic function and so do the five p-
channel transistors. Using both arrays in a fully complementary CMOS circuit provides
the advantage that, except for the very brief period when the output or the inputs are
making logic transitions, there will be no current flowing through the circuit and no static

power consumption.

Circuit hnplementation Techniques Typical CMOS Circuit Realization Approaches 28

University of Windsor

The problem with this fully complementary approach is that for complex gates of the type
shown in Figure 3.1, a substantial amount of area can be wasted, particularly considering
the larger width p-MOS transistors required for symmetrical characteristics (the same
function could be performed with six transistors in the pseudo-nMOS configuration shown
in Figure 3.2 and discussed in the following section). As a result of the extra transistors,
the capacitive load of the input gates of a fully complementary circuit are considerable
higher than the loads of a pseudo nMOS circuit, since each gate connection goes to both a
p-channel and an n-channel transistor. Taking into account the fact that p-channel
transistors are generally two or three times the size of n-channel transistors, the total gate
load of each connection will be threc or four times higher than that of a pseudo nMOS

circuit.

To P-Channel

To N-Channel

Figure 3.1 Static Combinational CMOS gate

3.2.2 Pseudo nMOS Logic

Pseudo nMOS logic uses only nMOS transistors to form the logic function, and a single

pMOS as a load. The pseudo nMOS gate which represents the equivalent logic function as

Circuit Implementation Technigues Typical CMOS Circuit Realization Approaches 29

University of Windsor

the circuit of Figure 3.1 is shown in Figure 3.2. The pMOS load is grounded so that it is
always in a conducting mode. As a result, the output voltage will never reach Ov when a
logic low is supposed to be presented. This is typical of raticed nMOS logic circuit where

the gain ratio of the p-transistor load to n-driver transistors B,/ B,.... sets Vo -

To N-Channel Only

Figure 3.2 Pseundo nMOS Logic Gate

There are N+1 transistors in an N-input pseudo nMOS gate. Compared to a
complementary gate, the capacitive load on each output is lower as a result of using only
one transistor for each term of the input function. The density advantage pseudo nMOS
gates have over fully complementary gates is obvious. There is, however, no real speed
advantage over standard CMOS because pull-up current always flows caus.ed ty the
grounded pMOS load, and this increases the puli-down time. Making the pull-up current
very small does not solve this problem because then the pull-up time is large. As a result,
the speed of CMOS and pseudo-NMOS are very close; CMOS has twice the capacitance
but also twice the available current. The other problem with pseudo nMOS gates is the

inevitable static power dissipation in the p-transistor load.

Circuit Jmplementation Techniques Typical CMOS Circuit Realization Approaches 30

University of Windsor

3.2.3 Dynamic CMGOS Logic

The operation of a dynamic circuit is divided by the clock into two distinct phases: the
precharge and evaluate intervals. For an N-input dynamic nMOS circuit, there will be
N+2 transistors involved including N n-channel transistors for the logic function, one p-
channel transistor for precharge and one n-channel transistor as a “ground switch” for
enabling the evaluate interval. A dynamic CMOS gate with the same logic function as the
static CMOS gate described in Section 3.2.1 is shown in Figure 3.3. CK is a single phase
clock. CK = 0 defines the precharge interval when the p-channel transistor is conducting

while the n-channel “ground switch™ is turned off. The main purpose of the precharge is to

allow the output to be charged to V,,, before the actual output value is determined. The

input voltages are also accepted at this time. When the clock switches to CK = 1, the
circuit enters the evaluate interval where the p-channel transistor is cutoff and the “ground
switch” is active. A conditional discharge occurs depending on the logic levels of the

inputs to the n-transistor chain.

To N-Channe! Only
I+

14—|E
4

I
I3—-| 5_|t

CK

Figure 3.3 Dynamic nMOS Gate

Circuit Implementation Techniques Typical CMOS$ Circuit Realization Approaches k1|

University of Windsor

The advantage of the dynamic circuit is that the load capacitance is the same as the pseudo
nMOS gate but the full pull-down current is available. The pull-up time is improved by
use of the “ground switch” and the pull-down time is also increased due to the same
reason. The dynamic circuit is roughly twice as fast as either pseudo nMOS or full CMOS.
In addition, there is no static current path so static power dissipation is much closer to
CMOS than to pseudo nMOS. There is a dynamic power penalty compared to CMOS
because each gate must be precharged high in every cycle, but this is often compensated
for logic circuits with high transition rates by the reduced charge movement during these

transitions.

There are inherent problems with dynamic circuits where several logic gates are
connected in series. Firstly, input logic transitions can only be allowed during the
prechaige phase. If this condition is not met, charge redistribution effects can corrupt the

output node voltage. Secondly, simple single phase dynamic CMOS gates can not be

cascaded. When the gates are precharged, the output nodes are charged to V. During

the evaluate phase, the output of the first gate will conditionally discharge. However, some
delay will be incurred due to the finite pull-down time. Thus the precharged node of the
first stage can discharge the output node of the following gate before the first gate is

correctly evaluated, which results in erroneous evaluation for the second gate.

This problem can be avoid by using the alterrating polarity arrangement shown in Figure

3.4. Connecting nMOS outputs to the gates of pMOS transistors does not cause problems
because the precharge voltage of V,, forces a pMOS transistor to turn off. The same
holds true for pMOS outputs connected to the gates of nMOS transistors. The main

drawback of this type of circuit is that pMOS logic chains are slower than equivalent

nMOS arrays. Unfortunately they can not be avoided.

Circuit Implementation Techniques Typical CMOS Circuit Realization Approaches 32

University of Windsor

I Is—|
I s
34 —
To nMOS
Logic Stage
CK }

T

Stage 1 Stage 2

Figure 3.4 Correct Dynamic Cascades

3.2.4 CMOS Domino Logic

The CMOS Domine circuit shares the same characteristics as dynamic circuits. A
corresponding domino circuit gate is shown in Figure 3.5. It consists of two parts. The first
part looks the same as the dynamic pseudo nMOS gate in Figure 3.3 and is clocked in the
same way, with a precharge phase followed by an evaluation phase. The second part is a
static CMOS buffer. Only the output of the static buffer is fed to other gates of the circuit.
All the above mentioned problems of dynamic circuits are solved by attaching this
inverter buffer. This is because during precharge, all the domino gate outputs are set to low
as the outputs of the dynamic chains are precharged high, therefore ali the transistors that
are driven by the domino gate outputs are turned off. In addition, during evaluation, a
domino gate can make only a single transition, namely from low to high. Because of the
nature of the dynamic gate which drives it, it is impossible for the buffer to go from high

to low during evaluation. All nodes can make at most only one transition and then must

Circuit Implementation Techniques Typical CMOS Circuit Realization Approaches 3

University of Windsor

stay there until the next precharge. As a result there can be no timing glitches at any nodes

in a row of domino gates.

Since there is no need to worry about timing glitches and since, during precharge, all
domino outputs turn off the transistors they drive, all domino gates may be switched from

precharge to evaluate with the same clock edge.

+—— To N-Channel

L

CK- -

Figure 3.5 Domino Logic Gate

Many types of circuits when made with domino gates can be significantly faster than a
corresponding circuit made with other techniques. The circuit has the low power of a
dynamic circuit since there is never a dc path to ground. Also, the full pull-down current is
available to drive the output nodes. At the same time the load capacitance is much smaller
than for CMOS because most of the p-channe! transistors have been eliminated from the
load. Meanwhile, the use of a single clock edge to activate the circuit provides simple
operation and full utilization of the speed of each gate. One limitation of this circuit
technique is that all of the gates are noninverting. This initially appears serious since, for
example, an XOR function is not possible. XOR logic is commonly used in many complex
circuits including arithmetic logic unit (ALU). The problem can be solved by inverting the

output of the last stage of domino circuit to drive the needed static XOR, since the domino

Circuit Implementation Techniques Typical CMOS Circuit Realization Approaches 34

University of Windsor

gate is fully compatible with standard CMOS gates. An example of this approach can be
found in Section 4.2.2.

3.2.5 Zipper CMOS Logic

Zipper CMOS is another example of a dynamic logic family. The main feature of zipper
CMOS is the use of four clocks to control an nMOS-pMOS logic cascade as shown in
Figure 3.6.

T

CK1X }JMpl a4l Mp3
- —
nMOS
Logic
-II-_- Stages B

I O U [S

-
1 I1Mn] 1 Mn3

]]

CK.Zl{':1 - Mp2 4" Mp4
|]
1 pMOS
—d| Logic —q
Stages :I
—-—4&]

cxe % '
|.1Mn2 { Mnd

Figure 3.6 Zipper Logic Circuit

Circuit Implementation Techniques Typical CMOS Circuit Realization Approaches 35

University of Windsor

Clock signals CKI and CK1X are in phase with each other, and are connected to the
nMOS logic stages. Similarly, CK2 and CK2X are in phase, and define the timing

intervals in the pMOS circuits. The clocks are defined so that

CK1-CK2=10 (3.1)

Figure 3.7 illustrates the clocking signals. Consider first the waveforms for CK1 and
CK1X. We see that CK1 has an amplitude which ranges from O to V DD but that CK1X is
restricted to the range [0, (V- VTP)] . where VTp is the threshold voltage of the

pMOS device. Since CK1X is applied to the p-channel precharge transistors Mpl and

Mp3, limiting the amplitude to a maximum of (VDD -V)) keeps these devices on the

edge of conduction during logic evaluation. This reduced amplitude is designed to

overcome the problems of charge sharing and charge leakage in the nMOS logic stage.

CKI
Vpp
: i A +l
L (TR T (3T12) 2T
CKI1X
V DD e comtn e . o (e e il e S el S .
Voo ¥1j /—
4 4 »!
(T12) T GT/2) 2T
CK2
Voo /'—\ /—\
I\ ol
0)) 1 L L -
(T/2) T (GTR) T
K1
CKiy
VDD-_[___[__
Yo — —
0) T GT2) 2T

Figure 3.7 Clocks for Zipper Logic

Circuit Implementation Techniques Typical CMOS Circuit Realization Approaches 36

University of Windsor

The clock pair CK2 and CK2X are design to perform a similar function. CK2 undergoes a
full-rail swing, but CK2 is restricted to the range [V, V5] . Noting that CK2X controls

the n-channe! precharge transistors Mn2 and Mn4, we see that the increased amplitude

keeps these devices on the edge of conduction during a pMOS evaluation interval.

The name “zipper CMOS” arises from tracing the logic signal “up” and “down” as it
propagates from left to right in the network; this is similar to a zipper closing. The design

style itself is complicated by the need to generate and route four clocking signals.

3.2.6 Cascode Voltage Switch Logic (CVSL)

This is a differential style of CMOS logic requiring both true and complement signals to
be routed to gates. Two complementary nMOS switch structures are constructed and then

connected to a pair of cross-coupled p-channel transistors. A symbolized gate is illustrated

in Figure 3.8. The logic circuit on the right side uses input variables (&, b, ¢) to forma

logic block f, while the left hand side logic has complementary inputs (g, b, ¢} and is
denoted by f. A condition of f = 1 implies that conduction is established through the f

logic block. Gate level outputs are denoted by (g, §) . This illustrates one implementation
of dual-rail logic where both a function and its complement are generated at the same
time. The dual-rail advantage is achieved at the expense of the extra routing, active area,
and complexity associated with dealing with double rail logic. In addition, this form of
circuit is slower than a conventional complementary gate because during the switching

action, the p-channel pull-ups have to fight the n pull-down trees.

Circuit Implementation Techniques Typical CMOS Circuit Realization Approaches k)

University of Windsor

q - : : > q
a— L f T I
Input 7— |, Complementary
Set _ Input Set
c— ¢ ?
Closed L _L_ Open

Figure 3.8 Cascode Voltage Switch Logic

3.3 Multiple Output Domino Logic (MODL)

3.3.1 Basic Structure

Multiple output domino logic (MODL) circuit was introduced in [15] to provide a faster
and more compact system than standard domino logic (SDL). Unlike SDL, MODL

produces more than one function outputs from a single logic gate.

As we know from the domino logic introduced in Section 3.2.4, there is only one output
generated from a SDL gate. In many cases, especially in the case where recurrent logic,
such as carry generation, is involved, one function is often a subfunction of the other.
When the function and its subfunction are needed to be generated as separate output
signals, replication of circuitry will be required for SDL circuits, as illustrated in Figure

3.9. As function f1 is a subfunction of function f two SDL gates are necessary to provide

both outputs, as a result the nMOS logic tree T'1 is reused in the f generation circuit. Note

Circuit Implementation Techniques Multiple Cutput Domino Logic (MODL) 38

University of Windsor

that in the SDL gate for function f, an additional precharge pMOS is often necessary to

prevent charge sharing.

—iL HE—

'—l o f1 I
| nMOS
I Logic Tree
nMOS | T2
Logic Tree {
Tl ——
nMOS
Logic Tree
clk—— !

T
i clk HJl

Figure 3.9 SDL Gates Generating fI and f

The main concept behind MODL is the elimination of replicating circuitry, by using the
subfunction available in the logic tree as an output by adding a precharge device and a
static inverter at the corresponding node, as shown in Figure 3.10. Comparing with Figure
3.9, we can see that MODL requires fewer extra precharge devices since nodes internal to
the logic tree are being precharged for functional output purposes as well as for preventing
charge sharing, whereas these additional devices usually exist in a SDL tree to prevent
charge sharing. Thus MODL is considered less susceptible to charge sharing than SDL

circuits and saves additional devices.

By looking once more at Figure 3.10, we notice that the nMOS logic tree of each MODL
gate drives more than one static inverter so that the overall capacitive loading of a MODL
gate is more than that found in an SDL gate. This calls for the enlargement of the pull-

down devices in order to discharge the increased capacitance. In the actual layout,

Circuit Implementation Techniques Multiple Output Domino Logic (MODL) 9

University of Windsor

however, the area savings due to reduction of gate count and interconnection complexity

exceeds the area increase due to incrementally larger device sizes.

.

nMOS
Logic Tree

o1

clk I

Figure 3.10 MODL Structure

Although the area advantage of MODL over SDL is apparent, the speed advantage at the
gate level is not so obvious because each MODL gate implements more than one function.
However, performance improvement can be achieved by capitalizing on this fact at
architectural level. Therefore, the overall organization of a given block of logic is
optimized in terms of the use of MODL techniques. By using a MODL circuit style, the
overall device count is reduced and therefore the fan-out for a given output is reduced.
Meanwhile, parasitic wiring capacitance is lessened as a consequence of a smaller overall
layout. This results in an overall reduction of load capacitance for a given logic stage. As a
final point, the reduction of capacitance also results in a reduction in power dissipation.
Generally speaking, use of MODL can reduce silicon area, increase circuit performance,
and decrease power, because of the reduction of device count, wire length, and

consequently output loading.

Circuit Implementation Techniques Multiple Output Domino Logic (MODL) 40

University of Windsor

3.3.2 Sneak Paths

One of the problems a MODL circuit may encounter is the occurrence of sneak paths,
when an OR-AND form of MODL gate is constructed. A sneak path is defined as a path in
the circuit which causes a false discharge from a lower output node through a higher

device to ground. This is illustrated through an example in Figure 3.11. As mentioned in

Section 2.3.1, carry propagate p; can be expressed as either a;+b; (OR-p;) or a; ® b;
(XOR-p,). If the OR logic is used for p;, a sneak path will be formed through node N1,

devices DI, node N2, device D2 and “ground switch™ D3 to ground, under the condition

a,. .= b

e i+2 = 1 and ;| = bi+l = 0. No matter what value c; holds, since

a.. .=b

il i+ = O resultsin g; ;= p;, = 0, node N/ is expected to hold at logic high,

thus ¢, , is supposed to be logic “0” during evaluation phase. On the other hand, since
a,,, = b;,, =1 forces g, ,= p; ,= |, node N2 will be discharged to a logic low
through D2. Unfortunately, during evaluation the p-channel devices are turned off which

terminates the power supply to node N/, meanwhile devices D/, D2 and D3 are turned on

by p;, - &;,, and clk. Device DI behaves as a bidirectional pass transistor which form a

path conducting through DI, D2 and D3 to falsely discharge node N/ to ground. Thus
c;, is evaluated mistakenly as logic “1” instead of “0"y. Sneak path problems appear to

only occur in MODL type circuits.

In order to avoid this sneak path problem, the XOR form of p, should replace the OR-p,

in the same circuit. In this way, under the same condition «; , = b, = 0 and

= b

a.

- . IS EL) — - aQ ¢ 5
(2 iv2 = 1, p;,, is no longer “1” for p; , = 4, ,®b; o= 0,asaresul, D/

i

is cutoff and effectively blocks the sneak path from N/ through N2 to ground.

Circuit Implementation Techniques Multiple Cutput Domino Logic (MODL) 4]

University of Windsor

clk—of
Nz_i >_ci'r2
!."I*? D1
%{:‘:—IEDZ }NI D"‘Cm
ey .
o
7 5
¢ -
|
clk—

Figure 3.11 Sneak Path Example

3.3.3 Example of MODL gates

Since the overall savings in device count is due to a reduction of circuit replication, the
actual advantage of MODL over SDL is directly dependent upon the degree of recurrence

in the logic functions being realized. For example, a 2-bit carry propagate using X OR logic

is defined as dp;, = p;,p; and the 1-bit propagate term is p;= a;® b.. Note that p, is

a subfunction of dp; ;. A MODL gate that generates both terms are shown in Figure

3.12.

Another example is a carry generation circuit. Referring to eqn. (2.10) and reformulating it
to eqn. (3.2), we find that carry generation logic is in a highly recurrent form.
Implementing the logic described in eqn. (3.2) using MODL gives a 4-bit carry generator
shown in Figure 3.13. This MODL gate uses 22 devices, whilc the equivalent four SDL
carry-generating gates would require 46 devices including those pMOS for preventing
charge sharing. The number of transistors used with MODL is less than half of that with
SDL. There is no doubt that MODL is advantageous for implementing highly recurrent

logic like carry generating functions.

Circuit Implementation Techniques Multiple Qutput Domino Logic (MODL) 42

University of Windsor

€)= 8o+ PoCy
cy = 81+ P (8 Pyly) = &+ PiCy
Cy = 32+P2(81+P1 (80+P0C0)) = 8ot PoCy

€y = 83+ P3(8a+ Py (8140, (8g+ PgCp))) = 83+ P3Cy

Figure 3.12 1- and 2-Bit Propagate Terms

(3.2)

Circuit Implementation Technigues Multiple Output Domino Logic (MODL)

43

University of Windsor

Ps"'||: >9—04

P2

Pi—

i o
h

clk

%_.E s
h

Figure 3.13 4-Bit MODL Carry Generator

3.3.4 MODL and Manchester carry chain

If we look back at the Manchester carry chain embedded in Figure 2.10 and make some
corresponding arrangement to have a Manchester carry chain for generating consecutive

carries, we get the circuit shown in Figure 3.14.

Comparing Figure 3.14 with Figure 3.13 we can see that a MODL carry generator is
functionally and structurally equivalent to a dynamic Manchester carry chain. The
difference between these two is perhaps in their evolution and layout style. That is, a
MODL carry generator is treated as a single combinational logic gate while a Manchester

carry chain has evolved from a blend of MOS pass transistor logic and combinational

Circuit Implementation Techniques Multiple Qutput Domino Logic (MODL) 44

University of Windsor

logic. Regardless, MODL is a general CMOS logic style, but the Manchester carry chain

is an MOS circuit specific to carry generation.

ck~o|'|f ﬂIE —df- °IE =||'_J

Lk
TT | TT | T

o e | e | e | e[

ck —|

Figure 3.14 4-Bit Manchester Carry Chain with Carry Output for Each Bit
Position

3.4 Enhanced Multiple Output Domino Logic
(EMODL)

The MODL concept arises from the idea that one logic tree can generate its function and
subfunction without replicating subfunction circuits. This can be extended to a more
general multiple output domino logic structure which we have referred to as enhanced
multiple output domino logic (EMODL). Unlike MODL circuits, one output of an
EMODL gate is not necessary to be a subfunction of the other. Nor is a subfunction
necessary to be an output of the EMODL gate. In another word, a subfunction of an nMOS
logic tree, which may not lead to an output, forms a common base to two or more

functional outputs. Similarly, these functional outputs may not be restricted to a function-

subfunction relationship. As illustrated in Figure 3.15, the nMOS logic tree 70 is a

Circuit Implementation Techniques Enhanced Multiple Cutput Demine Logic (EMODL) 45

University of Windsor

common base to both functions fI and f2. fI is not a subfunction of f2, and f2 is not a
subfunction of fI. Merging the two SDL gates to an EMODL gate, as shown in Figure
3.16, eliminates the requirement of replicating the nMOS logic tree T0, and also saves
additional precharge devices required in the equivalent SDL circuits. The enhanced
MODL concept provides the same area advantage over SDL circuit as MODL does, but it

provides more flexibility and freedom for creating circuit designs than MODL.

D 72

nMOS nMOS
Logic Tree Logic Tree
T3 T4
nMOS
Logic Tree
nMOS nMOS D
Logic Tree Logic Tree
TO TO

ctk————l[l czk_.___”i

Figure 3.15 SDL Gates with Common Base T0

©
P

fi Do— 2
nMOS nMOS
Logic Tree Logic Tree
T3 T4
| nMOS
Logic Trec
TS
nMOS
Logic Tree
TO

clk—‘&

Figure 3.16 EMODL Structure

Circuit lmplementation Techniques Enhanced Multiple Output Domino Logic (EMODL) 46

University of Windsor

An immediate example of EMODL design is the generation of four consecutive sums as

shown in Figure 3.17. With carry input ¢, sums s, ;, 5;,4. 5,3 and 5, are
generated from a single EMODL tree. Note that all the carry propagate p, inputs used in
Figure 3.17 are produced by XOR of variables a, and b, . The nMOS tree in the dashed
box, which represents functions ¢, , , and ¢, ,, is the common base to the generation of

Sp 420 Sp 43 and s, 4. Note that neither ¢, | nor ¢, is required as output signal. And

the four consecutive sums have no function-subfunction relationship.

clk — Stes
- Sk+3
Aot o i
k3 Cys3
- P+3 Pk+3
pk+'3—|l:pk+3_||: clk _41E l_[>_ "'I: A
Cs2 — ka2 Ek+2|:
pk+'2_| P Dkill
_ s]
I~ 1
I | ~
Ocs3 t | I gk+&1—|E
A
k2 } rak+?|:
gk-s-Tll:l Ck—l /9\k+T| i

Figure 3.17 4-Bit EMODL Sum Generator

Circuit Implementation Techniques Enhanced Multiple Qutput Domino Logic (EMODL} 47

University of Windsor

Another example of the advantage of the flexible design style provided by EMODL is the
carry generation circuit shown in Figure 3.18. Five sparse carries are generated from
group generates and propagates and the carry-in. It is easy to see that this EMODL carry

chain is a modification of the MODL circuit discussed in Section 3.3.3. Without increasing

the height of the gate, carry ¢ q is generated from the same nMOS tree (indicated by
dashed box) that generates the carry ¢, . In this case, the common base is related to an
output node. It is important that the input variables p, in the circuit are generated

originally from the XOR logic of summands 4; and b,. This guarantees that the EMODL

carry generator is sneak path free.

9

9q,n+1
g clk —ulE U ek qﬁ_
T Cp [>o-

Pp.n+t I Pgn+1
9n,l+1pn+"|_ clk —of ¥
L E [
)| TL
=
| T
[A1 |clk—-| c
— — D
| Pij+1 _.I
I 9jk+1 — |
| 4 felk —of
le_TC _TL el
I Pjk+1 I
| |
| |
Cx
| L
3
clk—

Figure 3.18 A Carry Chain Built by Serial and Parallel Circuit.

Circuit Implementation Techniques Enhénced Multipte Output Domino Logic (EMODL) 48

University of Windsor

3.5 Summary

The evolution of high speed low area circuit design techniques trom static CMOS to
EMODL logic has been traced in this chapter. Dynamic circuits provide higher speed and
lower cost than equivalent static circuits in implementing complex gates with high fan-in
and fan-out. Among the various types of dynamic circuits, domino logic is probably the
most suitable in system designs with cascaded gates. Multiple output domino logic allows
single logic gates to produce multiple functions. It is particularly recommended for
recurrent logic such as carry generating circuits where device count reduction is desired.
Moreover, this kind of circuit is more stable than standard domino and other dynamic
CMOS circuits. The MODL idea is then extended using the enhanced MODL iechnique

which results in greater transistor savings and more design flexibility.

Circuit Implementation Techniques Summary 49

Chapter4

A New 32-Bit
CLA Design

4.1 Introduction

In this chapter a novel high performance dynamic carry-lookahead
adder is introduced. We compare this new adder with an ultrafast
and compact CLA which was recently reported by Hwang and
Fisher [15]. The novel features of this new 32-bit adder are the use
of the pseudo complement concept, sparse carry chains and
EMODL circuit style. The pseudo complement technique
guarantees a dual-rail carry chain possessing identical circuit
delays, so that use of a dynamic sum stage becomes possible. As a
result, the speed advantage of a full dynamic CLA is realized. The
dynamic sum stage is composed of an EMODL gate, which is
capable of producing consecutive sums from a single carry input.
This allows the carry chain to generate only those carries which are
required by the EMODL sum stage. This so-called sparse carry
chain technique eliminates the usual stages for generating the
carries for each bit position which are required in all other
published adders, including the comparison design of Hwang and
Fisher [15]. The circuit and layout architecture of the new 32-bit
CLA are detailed in this chapter. HSPICE simulation and chip test
results demonstrate that the performance of this design is superior

to other published designs.

A New 32-Bit CLA Design

Introduction 50

University of Windsor

4.2 Existing Approaches

4.2.1 Typical CLA Architecture

The conventional CLA architecture consists of three major parts, as shown in Figure 4.1.

a.

— | Partl i pi Part I1 o Partlll |
Preliminary j———| Carry Chain |—'w| Final Sum . "y

L Stage Stage Stage

Figure 4.1 Conventional CLA Structure

The first part is the preliminary stage where carry generates and propagates for all bit
positions are produced. The second stage is the carry chain which produces the carry and
its complement for each bit position. This part normally contains several gate stages and is
the major contribution to delays in the adder critical path. The third part is the final sum
stage. It is usually cemprised of XOR cells to produce sums for all bit positions. The inputs
of this stage are the two input operands and the carries of each bit position generated by
the carry chain. For a typical 32-bit static CLA, with moderate fan-in and fan-out, 4 worst

case delay of seven gated stages [15] is normaily required.

4.2.2 Hwang and Fisher’s 32-Bit Adder

Using the MODL technique, Hwang and Fisher reported a 32-bit CLA with five gate
delays in the worst case. Figure 4.2 shows the block diagram of this adder. A non-
complementary circuit structure was exploited for generating carries for cach bit position.
The complements of carries for all the bit positions are obtaincd by using a group of static

inverters. Finally static XOR gates are used to produce the final sums.

Unlike the first stage of the conventional CLA, where carry generate and propagate terms

of every bit position are produced from each individual gate by the definition g; = ¢ b,

A New 32-Bit CLA Design Existing Approaches 5l

University of Windsor

and p; = a,® b, Hwang and Fisher’s CLA produces 1- and 2-bit generate and propagate
terms g, dg;,, and p,dp,, from each MODL gate. This saves one gate delay. Note
that dp;, = p;,,p;- Since the static sum unit requires p; for each bit position,

additional circuits have to be used for generating p; , , separately.

a3 bgz S0

S T

Carry Generates
and Propagates

pifdpp,i

gi/dgiﬂl

Group Generates
and Propagates

Ggll
DGg;

Gpy/
DGp;

Group Carry
Generator

T

Carry Generator

]

Static Sum Unit

3

§31

Figure 4.2 Architecture of Hwang and Fisher’s 32-Bit CLA

This adder is hybrid in circuit style since it uses dynamic circuits to generate carries and

static circuits to produce sums. Obviously, the inherent speed and area disadvantages of

A New 32-Bit CLA Design Existing Approaches 52

University of Windsor

the static circuits limit the performance of this adder. Unfortunately, the use of static XOR
gates can not be avoided when the non-complementary carry chain approach is used, since
a dynamic XOR cannot be built in a single phase clocked dynamic circuit (except at the

first stage), as demonstrated in Figure 4.3.

clk—

Ci -II-Tr G —II:]
e "]t
i Xi—
" o

clkk4

Figure 4.3 A Dynamic XOR Gate

Assuming x; = ¢,@b;=1 and X; = q,

;@ b; = 0 are generated at the same time during

evaluation. When clock clk is in evaluation phase, ¢;= 1 reaches the input of XOR gate
after the delay required by the carry chain. Suppose, after another inverter delay, ¢,
changes to “0”, so that output s; also should be “0”; unfortunately, this does not happen.
The problem is that &; is always driven to “1” by the static inverter duri'ng precharge,
since ¢; is precharged to “0”. Only when c; switches from “0” to “1”, can ¢; change to

“0" after an inverter delay. In the situation shown in Figure 4.3, as soon as c¢lk changes to

“1”, the predetermined ¢; is high, when x; is also high; a false discharge of node 3; then

A New 32-Bit CLA Design Existing Approaches 53

University of Windsor

occurs before ¢; has the time to turn to *0”. Once this false discharge has taken place, s;

can not be recovered. Thus the nature of the non-complementary structure limits the
applications of high-speed circuit techniques. A pure dynamic CLA, which is faster than
the hybrid one, can only be realized by a dual-rail carry chain.

4.3 New 32-Bit CLA Design Criteria

4.3.1 Architecture Description

A block diagram of our new 32-bit CLA is given in Figure 4.4. The three parts are actually
three gate stages in the real circuit implementation. From the first stage, ¢,, group
generates gg, and propagates gp, are produced. Then ¢, ¢, ¢4, and further group
generates Gg j and propagates G p ; are generated in the second stage. Finally, all the sums

are produced by carries ¢,, ¢g, ¢,,, ¢ as well as Gg. and Gp by the third stage. In
Y 47 €81 €20 C1p] j

parallel with this, the pseudo complement carry chain, which utilizes exactly the same
domino circuits as the corresponding carry chain, supplies the complement sparse carries
and pseudo complements of further group generates and propagates to the EMODL sum

stage. There are only three gate delays in the worst case.

a—> Group
Gencrates and <y Sparse €4,C12,C16
Propagates g, gpi | Carry Chain ['Gg Gpy | pyry 1y
bi——b
Part Part I EMODL [~=# 5
i R—— Pseudo Pseudo Sum St
Complement T; _{ Complement | %8.%12, %16 um Slage
Group £ Sparse 8o &o.
Generates and k, 5Pk Carry Chain 8. LD
b—» Propagates

Figure 4.4 The New 32-Bit CLA Structure

A New 32-Bit CLA Design New 32-Bit CLA Design Criteria 54

University of Windsur

4.3.2 Why Pseudo Complement

The “pseudo complement” concept was first introduced by Wang in [35]. The term
“pseudo” was chosen to differ from the “real” complement of a logic term. As we know,
complementary carries are necessary for performing the XOR operation used in generating

the sum of a binary adder. The function of a pseudo complement is to produce the
complement carries from pseudo complement generate and propagate (g, p;) instead of
the complement generate and propagate (g, p;) . We will show, later, that the use of

pseudo complement expressions to generate the complement carries is superior to the use

of complement terms since it results in a circuit with higher speed and smaller silicon arca.

To illustrate the idea further, let us compare the MODL implementation of group carry
generates (g8, |, 88 » 58,3) and propagates (gp; 1, 8P » &P 3) » their
complements and pseudo complements. Note that k is the starting bit position of the
group. The Boolean expressions for (gg, 1. 88, 2 ggk':,,) and (gpy 18P » 8P 3)

are:

8811 = 8ks1 P8k BPry = PrsPy
88k2 = Sre2t Pri2881, 8Pr 2 = Pry28Pr
88k 3 = 8rs3tPrs388y2 8Pr3 = Pry38Py 2

The MODL circuit implementations are shown in Figure 4.5 and Figure 4.6,

A New 32-Bit CLA Design New 32-Bit CLA Design Criteria 55

University of Windsor

N R N I ! Y

clk |

]

Figure 4.5 Group Generates for (ggy, ;, 281 2 88k,3)

clk

Figure 4.6 Group Propagates for (gp; ., &Py 2 8P 3)

A New 32-Bi* CLA Design » INew 32-Bit CLA Design Criteria 56

University of Windsor

The complements of (88 1> 88,2 ggk_3) and (gpk'l,gpk_,_,,gpm) are given as

follows:
Eék,l = §k+l(§k+l+gk) é—,’?’k.l = P T
88k2 = Bryo (Frao+88k1) 8Pk2 = Py ot 8Pk
Egk.3 = §k+3(ﬁk+3+§§k,2) E’k,:& = ﬁk+3+g—15k,2

Obviously, é_gk, 1. 88k 2 and Egk':; can not be integrated in a MODL gate ditectly. Nor

can gpy 1, 8Py 2 and gpy, 3. Either they have to be implemented in three separate SDL

gates, or their logic formulation should be modified to the following equations in order to

reaiize the MODL implementations.

88,1 = By (Prut +Pra180) 8Pkt = Proy Py Py
E?k,z = §k+2(ﬁk+2+Pk+2é_gk,l) Ef’k.z = l_’k+2+l’k+gé?l_’k.l
883 = Brys Pryst Prs388k2) 8Pk3 = Prost Prya8Ph2

The MODL implementations are shown in Figure 4.7 and Figure 4.8. It is easy to sce that
not only the transistor counts are more than the circuits shown in the previous two ligures,
but also the fan-in of the gates for generating complement group generates arc higher.

Thus the resultant speed of the circuits is slower.

The pseudo complement approach solves the above problem in a perfect way. It comes
from the idea that the complement carries that are needed by the XOR sum stage arc not

required to be produced from the intermediate complement generate and propagate terms,

If we replace the real complements of these intermediate terms, such as ;= a, + b; und

p= a;Db,, based on g, = ab; and p; = a; ® b,, with pseudo complement terms

g;=ab;, and p=a,®b=a;®b, then the pseudo complements of

A New 32-Bit CLA Design New 32-Bit CLA Design Criteria 57

University of Windsor

(88 18842 ggk'3) and (gpk' 1 8Py gpk’B) can be expressed in the same logic

forms as their true terms respectively.

88k = gk“ +f)k+1§k 8Pk = ﬁk“ﬁ’k
88k2 = §k+2+f’k+zggk.l 8Pk,2 = pk+2gpk,l
£8k3 = Bpoqt P, 188k2 8Pr,3 = Pp,38Pk2

As described by Eqn. (2.25)-(2.28), eventually the complement

carries can be obtained

from these pseudo complement terms in the same way as the carries are derived from the

original generate and propagate terms.

Ekﬁl

DBk

D2

clk :]:l

Figure 4.7 Complements of Group Generates (2g, 1, 88x,2 88,3

A New 32-Bit CLA Design New 32-Bit CLA Design Criteria

58

University of Windsor

3 g
Do—'FEm

Pk+_3i l:l
>—D§k.’.’

Pk+_z| l:l'
r >—Fg-k.l

Pk+_||
@{E 'P'k+_ll Fkﬁl |:l"p'k+3 l:l
clk] q

Figure 4.8 Complements of Group Propagates (gpy, 1, 8P 2 &Pk,3)

Figure 4.9 and Figure 4.10 are the MODL. gates which produce the pseudo complements
of (88, 1,88y 2 88 3) and (gp;) 8Py, &P 3) - The circuit structures are exactly

the same as those of Figure 4.5 and Figure 4.6 respectively. In another words, by
substituting the inputs of the circuits in Figure 4.5 and Figure 4.6 with pseudo complement
terms, we get pseudo complement outputs. This approach can be applied continuously in

the complement carry chain until the complement carries are obtained.

The advantages of pseudo complement approach can be summarized to three points; (1)
less device count and fan-in than the usual complement approach, hence smaller hardware
and higher circuit speed; (2) complementary carry chain with the same delay guarantees
that EMODL sum unit function correctly, therefore a full dynamic design is realized; and
(3) layout design load is reduced since the complement carry chain layout is simply the

duplication of the carry chain.

A New 32-Bit CLA Design New 32-Bit CLA Design Criteria 59

University of Windsor

o DO— s
ke !:l
L 1’ >—ggk.2
ke t;
- - -
k+1
A__nq E Bl "‘k+_z’ tl E'kﬂl I:l

-

clk

Figure 410 Pseudo Complements of Group Propagates (gp; 1, 2Pk 2 8Pk, 3)

A New 32-Bit CLA Design New 32-Bit CLA Design Criteria 60

University of Windsor

4.4 TImplementation of A 32-Bit CLA

4.4.1 Architecture Floor Plan

Our new 32-bit adder is constructed by nine different types of blocks, denoted as B, - By

and XOR. Figure 4.11 is the architectural floor plan of this 32-bit CLA which consists of
three stages in total. The pseudo complement carry chain is omitted from the diagram for

simplicity. Block XOR accepts adder inputs a; and b,, or in the complement chain @; and

b;, and produces the XOR results for use in the final sum stage.

The first stage is composed of three different types of blocks B, — B,. Two B, blocks

generate ¢, and ¢, separately. Eight (4 x2) B, blocks prepare group generates and
propagates (88, 4 and gp,, 4) and their pseudo complements (gﬂg,,,_ 4 and g}),,h 4) in 4-bit
length. Six (3 X2) B3 blocks prepare group generales and propagates (g€, 4 and g P 3)
and their pseudo complements (gag,,_ 3 and g}),,, 3) in 3-bit length. In the second stage, ¢,

c,, and ¢ are produced from B, in the sparse carry chain, which are sufficient for the

third stage to generate the final sums for each bit position. In addition, further group carry

generates and propagates Gg,, 4 and Gp, which group lengths of 3 are produced from
B, for the final stage. This final stage in Figure 4.11 consists of three types of EMODL

gates B - Bg. Five B, cells take complementary sparse carries and the XOR of input

operands as inputs and generate the sums from bit position 1 up to bit position 20, with

each cell having four successive sum outputs. Another three B, cells generate sums from
bit 21 to 29. Each cell gives three sum outputs based on ¢ 4, 14, Gg; 3, GPy, 3 4nd their
pseudo complements. The only difference between block B, and By is the additional
circuit in By that produces carry ¢, for the most significant bit. Schematic examples of

blocks B, — By are included in Appendix B.

A New 32-Bit CLA Design Implementation of A 32-Bit CLA 6l

University of Windsor

Y

big-baz

-4
a30-d32 e BS‘ €32
3 —>» 530-532
B—ggzm 8P27.3
byy-bas—3l— L
, o
A7ty —>> =M P > 57-5
[G203 GP2o 3 > By R
o o B Og263 OGP i
B, 186243 8Pa] = 5[Ggzs3 Opass
bzq-bz [noa
424~ 826 — > _; B7 = %452
B 28213 8P21.3 >
by1-by 2 l 2
871-i3 »{ %] B [~ 521523
L~
B £E17.1 P17 -
byr-bap—s|—2 >
0 17-8g0 =, T %] Bg p~ st7-520
Clo o
88134 BP134 > B4 Cs
B> >
bi3-byg—> =
137816 3w %] Bg —=si3-s16
L
B, £89.4 EPo4
29212 —5m %] Bg == %12
?— B854 BPsa
bs-bg—s 2 > QO‘
a58g—3 >|X] Bg|—> 55
B, |
by-b 1 g
a4]] B6 —3» 5)-Sy
Co —4

Figure 4.11 Architecture of New 32-Bit Adder

4.4.2 Layout Floor Plan

The 32-bit adder has been full-custom laid out, using 1.2p CMOS double metal double-
well technology. The layout and the physical distribution of the cell blocks for the 32-bit
CLA core are shown in Figure 4.12. From the cell distribution diagram shown on the right
hand side of the figure, we can see that there are two different columns which are partly
interleaved to build the first stage and the last stage respectively. The second stage is

inserted between the two columns and takes no extra space, since the area of the two types

A New 32-Bit CLA Design Implementation of A 32-Bit CLA 62

University of Windsor

of blocks B, and B are relatively small. The circuits outside the CLA core are inverters

for driving the inputs of the adder so as to provide a realistic input waveform for

comparing with HSPICE simulation results.

|

ey

lav u
! .. H
Y - v ¥
4 A 4 . r .
- - b * . » . "
1 3 ' t s 2 eany a Y
/ 5
1 o Rrmrms d- N
i A .
- H s

T T Pl

i

o ;
R S

Figure 4.12 New 32-Bit CLA Layout Floor Plan

A New 32-Bit CLA Design Implementation of A 32-Bit CLA 63

University of Windsor

In the layout, metal two is used for long horizontal connections between the cells. Metal
one runs vertically among cells and is used for local interconnections. The LSB of the
adder is at the bottom, The carry-in is zero. The total width of the adder area is the sum of
the widths of the first and last stage cells. The height of the adder is kept low since the

cells are placed carefully as illustrated in Figure 4.12. The total area of the core is

337 x 2169|.Lm2 . Figure 4.13 shows a scanned micrograph of the chip.

Figure 4.13 Scanned Picture of the Chip

4.4.3 Cell Examples

The schematics and layouts of all the cells designed are listed in Appendix A. We will only
give an example design of cell B, in this section. B, is an EMODL gate with three
consecutive sum outputs. Even though this cell has the same maximum fan-in as the

schematic shown in Fi‘g/hre 3.17, which is the cell type B, used in our adder, it can only

generate three sums since the carries have to be produced by both carry-in and group

generates and propagates.

A New 32-Bit CLA Design Implementation of A 32-Bit CLA 64

University of Windsor

We should notice that the height of the nFET tree strongly affects the efficiency of the
EMODL circuit. The higher the tree is, the more sums can be generated from a single
EMODL gate. thus the fewer the carries that have to be produced throughout the carry
chain; this means that the number of stages in the critical path is reduced. However, the
investigation in reference [8) points out that if a uniform size is applied to all the n-
channel transistors, the discharge time of a serial connected n-channel transistor tree is
quadratically related to the height of the tree. In this case, we should avoid using gates

with very high fan-in.

clk—sf | 10.01|I-D—523

u

A

Figure 4.14 Schematic of Cell B; with Transistor Sizing

On the other hand, transistor sizing techniques may mitigate the quadratic relationship
between the discharge time and tree height. As we know from the RC delay model [12],

the delay of a dynamic gate depends in a complex way on the sizes of the series path

A New 32-Bit CLA Design Implementation of A 32-Bit CLA 05

University of Windsor

transistors, since the size of each device controls both its effective resistance and its
capacitance. Generally, the delay versus size function is monotonic (i.e. without a
minimum), and so we limit the maximum size of the transistor based on area constraints.
If we assume that each transistor uses a minimum length given by the process design
rules, we can minimize the delay by varying the width of each transistor. Using the
analytical optimization approach, introduced in [3], we can minimize the gate delay by
tapering the transistor chain so that the transistor closest to ground has the largest width,
with transistor size decreasing monotonically from ground to output. In this way, the

discharge time is reduced by 30%, and the utilization of gates with relatively high fan-in
and complexity becomes practical. As shown in Figure 4.14, the maximum fan-in of B, is
5, where the width of each transistor is labeled beside it. The length of each transistor is

1.211. A layout according to this design is given in Figure 4.15. The 32-bit CLA using this

complex gate gives improved overall performance compared to existing adder designs.

B N O _\ N . N
- - o \ N v Y
0 :_-\..-: Tl .
= = P N vt g Ik:.-.‘._
\ Y 3 2o oy
z D 0 _ N
N M IR IREN
TIIIS o3 (R~
N\ : 5 D thi]\
s i 1 th &
\ n e — T hEat
- 2 1 \
e M \ 3
\ =] ey tl\'" NEECR A
\ = :- 1 Xk b"':\
N <. - ;“H_
> e IR
N B e R
N LED Ty B | A SH PR RN
SR AR - ¢ oINS 3 ' —— * =S
\ D U “OS "UR W WO S h S W N . N - .
. S “SUYI U N e, S, NS, AR, N, S " N . N o . . N —— "

Figure 415 Layout of Cell B,

4.4.4 Simulation and Testing Results

HSPICE simulations on mask extractions of the new 32-bit CLA have been performed.
The results show a worst case delay of 2.7ns (Figure 4.16). For comparison, the delay of

the 32-bit adder given by Hwang and Fisher, which was fabricated in a 0.9u CMOS

A New 32-Bit CLA Design Implementation of A 32-Bit CLA 66

University of Windsor

technology, is 3.1ns. Applying reasonable scaling criteria we would expect our design to

be faster and smaller than their design.

* default hepice pimulation run title card. [u 1n se

clk—»-J}— /61E in volts
s20—P— /626 in volte

5 =5
4.5 =
4
9.5
3 : :
2.5 = R rTRE
) 3
1.6
1]
B.5

Iwas

n
H]

HHAL

16n 12n 14n

Figure 4.16 HSPICE Simulation from Mask Extracted Circuit

First order MOS scaling theory based on a constant field model is introduced in [37].
Although this is not an accurate model for sub-micron device scaling, it is still a powerful

guideline to identify the improvements that can be expected as processes are scaled.

Basically, if we apply the scaling factor o to all the dimensions including those vertical to
the surface, the concentration densities in the process, as well as the device voltage as
shown in Table 4.1, we should get the resultant effects as listed in Table 4.1, Table 4.1
clearly shows that delay, area and power are all decreased in a smaller dimension
technology. Howé\jer, when supply voltage is not scaled, the comparison of delays and
power dissipations between two technologies is not as straightforward as the table implies.
Clearly though, as parasitic capacitance is decreased in the smaller dimension technology,
the overall speed of the circuit will be faster. The voltage scaling does not affect the

Iayout, and so the area scaling is still applicable.

A New 32.Bit CLA Design Implementation of A 32-Bit CLA 67

University of Windsor

- PARAMETERS 'SCALING FACTOR
Length: L 1/a |
Width: W 1/0
Gate Oxide thickness: . 1/0
Junction depth: XJ. 1/0
Substrate doping: N, or N, o
Supply voltage: V 1/a
———————————— ————————————————————————

Table 4.1 First-Order Scaling on MOS Device Parameters

PARAMETERS = | SCALING FACTOR
Electric field across gate oxide: E |
Depletion layer thickness: d 1/0
Parasitic capacitance: WL/t 1/0
Gate delay: VC/1 I/a
Dynamic power dissipation: P, /02
Gate area: WL | /GZ

Table 4.2 Influence of First-Order Scaling on MOS Device Characteristics

Table 4.3 compares the main characteristics of our design with Hwang and Fisher’s. The
equivalent area of our design, scaled from 1.2 technology to 0.9 is calculated according
to the first-order scaling theory. The scaling can not be applied to the worst case delay, but
the speed advantage of 0.9} technology over 1.2t is clear. This means that our design in
1.2 technology with a 2.7ns worst case delay is clearly faster than Hwang and Fisher’s

CLA in 0.9 technology with a reported delay of 3.1ns. The performance of the new CLA

is unquestionable better than the conventional design.

A New 32-Bit CLA Design

Implementation of A 32-Bit CLA 68

University of Windsor

N.A.---Not Applicable

. Area
: :- Lo “No.of a No. of
" Design | Technology | Stages | Delay (ns) | (Wm’) Devices
Hwang 0.9 5 3.1 341x1976 1325
and
Fisher’s
Our New 1.2 3 2.7 337x2169 1269
Design
Scaled 091 3 N.A. | 278x1627 1269
Estimate

Table 4.3 Comparison Between Two Designs

Obtaining an accurate test result from the 32-bit adder chip is difficult because the
expected addition time is less than 3.0ns while the delay introduced by the 1/O drivers and
the measurement equipment is around 20ns. In order to reduce this delay effect, we have
fabricated a chip with ten specially designed adders connected in series. These adders
contain only the critical path in the actual 32-bit adder with equivalent loads for the
missing circuitry. Figure 4.17 shows the layout of the ten-critical-path-adder along with a
calibration circuit built by connecting an input pad directly to an output pad (including
drive and protection circuitry). In testing, two parameters have to be measured. One is the
delay of the ten-critical-path-adder through the 1/0 pads, the other is the delay between the

calibration input and output pads. In this way, the delay of one critical-path-adder cun be

TotalDelay 1 N
- —. est results > 4.18 show
Caithration VO Pad Delay X5 The test results in Figure show 2

calculated as

measured delay time of 27ns for ten critical-path-adders after calibration. Therefore, each
critical-path adder is equivalent to 2.7ns. This verifies our HSPICE simulation result, of

Figure 4.16, which was performed on the entire 32-bit adder.

A New 32-Bit CLA Design Implementation of A 32-Bit CLA]

University of Windsor

1

Figure 4.18 Testing Result of the 10-Critical-Path-Adder

A New 32-Bit CLA Design Implementatics o & 32-Bit CLA

70

University of Windsor

4.5 Summary

A new CLA architecture has been designed and implemented in 1.2p CMOS technology.
The new feature of this design is the utilization of a recently introduced pseudo comple-
ment mapping technique, an enhanced multiple Domino logic (EMODL) circuit style and
a sparse carry chain. The worst case delay path of this 32-bit adder is reduced to three gate

stages instead of five reported in a recent paper by Hwang and Fisher.

The 32-bit adder is fabricated in 1.24 CMOS technology with a smaller area than the
Hwang and Fisher design (using a 0.94 CMOS technology). HSPICE simulation results
show that the new design is 13% faster than Hwang and Fisher's. A ten serial connected
critical path test circuit is fabricated with calibration circuitry to remove the delay caused
by the /O pads and drivers. The measurement results from this test chip verify the

HSPICE simulation results obtained from the complete 32-bit adder.

A New 32-Bit CLA Design Summary 71

ChapterS

Area-Time
Optimization

5.1 Introduction

The Area-Speed optimization of adders has been extensively
studied. Lee and Oklobdzija [19] examined the delay characteristics
of carry-lookahead adders with respect to a delay model that
accounts for fan-in and fan-out dependencies, and a heuristic
method for finding optimal CLA structures wes presented. Wei and
Thompson [36] proposed a systematic method of implementing and
optimizing a static CMOS CLA with regard to area and time. In
[10] Chan, et. al. investigated the worst case carry propagation
delays in carry-skip adders and block carry-lookahead adders, and
found that delays not only depend on the intrinsic gate delays, but
also on how the full adders are grouped structurally into blocks as
well as the number of levels. All these studies indicate that area-
speed optimization of the adders has to take into account many
factors such as fan-in and fan-out contributions to individual gate
delay and the effect of varying gate sizes and number of cascaded

gated stages.

In this chapter we will analyze the area-delay characteristics of the

dynamic CLA designed with our new techniques. In particular, we

Area-Time Optiniization

Introduction 72

University of Windsor

will focus on analyzing the critical path delays of several CLA configurations and use the

simulation results as guideiines for future CLA design.

5.2 Timing Analysis

The critical path delay is the longest time a signal takes to propagate from the input of the
system to the output. This delay depends on the individual gate delay and the number of
gates the signal has to travel through in the critical path. The gate delay is a function of the
gate fan-in and fan-out, the gate complexity and the size of the devices. The number of
cascaded gates in the critical path is mainly affected by gate fan-in and complexity [32]

and [33]. In this section we will examine the critical path delay from three major factors.

5.2.1 Selection of OR-p; or XOR-p;

As we know, there are two ways of defining the carry propagate p; as the intermediate
term used in CLA algorithms. The definitions are given in eqn. (2.13) and (2. 17). In eqn.
(2.13), an inclusive-OR (OR- p;) operation is applied to the two summands, whereas eqn.
(2.17) uses the exclusive-OR (XOR-p;) operation. Using different p, definitions will

result in a CLA with different architectures and different performances. Especially with

the introduction of the MODL circuit technique, which increases the speed and reduces

the area, the CLA structure will substantially change, based on the different choices of p;,

based on removal of the sneak path problem.

The sneak path problem has been discussed in some detail in Section 3.3.2. An example

has shown how a sneak path occurs when using OR-p; and how it can be prevented by
replacing OR-p; with XOR-p,. Another solution to this problem, avoiding the usc of
XOR-p;, is by decomposing the MODL circuit into several SDL gates. Neither solution is

perfect. The drawback of the OR-p; with SDL approach is the increase in device count,

fan-out load and interconnecticn complexity between the gates. The advantage is that one

Area-Time Optimization Timing Analysis 73

University of Windsor

stage of gates which is required for generating the XOR-p, of each input pair, is
eliminated from the critical path. On the contrary, the use of the XOR operation sacrifices

one stage to generate p; for each input pair, but a sneak path free MODL circuit can be

obtained.

5.2.2 Fan-In and Number of Stages

Both fan-in size and the number of cascaded gate stages determine the circuit speed. For
an adder with a given input word length, the number of stages in the critical path decreases
when the gate fan-in increases. Although fewer number of stages may be advantageous to
improving critical path delay, it also requires a CLA structure with higher fan-in and fan-
out for each stage and more complex interconnection. This tends to increase the circuit

delay.

MODL techniques provide circuits with high speed and low device count. In addition, we
acquire further hardware savings by introducing EMODL, which generates several sums
from a single gate by sharing common factors. With the introduction of EMODL, highly
complex gates can be realized such that the number of stages in the critical path can be
reduced, which may be advantageous for decreasing the critical path delay. On the other
hand, complex EMODL gates may slow down the evaluation speed due to high fan-in,
large fan-out load to the previous stage, and non-negligible parasitic capacitance present -

due to complex interconnections between the transistors in the gate.

According to the RC delay model [12], the dynamic discharge delay is quadratically
proportional to the fan-in size, assuming that the transistors in the nFET chain have the
same width (square-law delay model) [8]. From this point of view, we should avoid
increasing the fan-in of er:h gate. However, If we limit the gate fan-in to a small size, the
number of stages in the critical path will increase. In spite of this, proper transistor sizing
may reduce the discharge time when the fan-in is relatively high. This leads to another

design topic of transistor sizing. We will describe it qualitatively in the next section.

Area-Time Optimization Timing Analysis 74

University of Windsor

5.2.3 Transistor Sizing

Here we concentrate on clocked dynamic circuits. There are two phases in the operation of
the dynamic circuit: precharge phase and evaluation phase. In the precharge phase, the
clock is low, and the output is precharged to Vpp through a pFET. The input signals are
allowed to stabilized during this phase. In the evaluate phase, the clock switches to logic
“1”, The worst-case delay appears when all the inputs of a series-connected nFET chain
from output node to ground are high, resulting in discharging of the output node to
ground. In a typical dynamic circuit, the worst-case evaluation time is longer than the
precharge time; therefore, the limiting factor in the clocking speed is thc worst-case

discharge time of the nFET chain.

Transistor sizing influence on the discharge time can be analyzed qualitatively by
observing the domine CMOS five-input NAND gate given by Figure 5.1. FETO activated
the evaluation phase when clock “clk” is high. FET6 is a pFET used to precharge the

internal node “N” to Vpp when the clock is low. A buffer inverter is connecled to the

output node to couple the consecutive stages of the Domino logic chain.

When the size of FET5 in Figure 5.1 is reduced, two effects are present: one tends to
increase delay; the other tends to decrease delay. First, the delay tends to increase as the
resistance of FETS5 increases. This is because the charge on the output node takes more
time to discharge. Second, the delay tends to decrease as the parasitic capacitance
decreases, since the charge stored in the capacitance decreases. When the length of the
nFET chain is very long, the second effect is more significant than the first one. This is due
to the fact that the charge on the output node and the parasitic capacitance of FETS has to
drain through the summed ivsistances of FETO-FETS. Decreasing the capacitance of
FETS plays a more significant role in decreasing the discharge time than the increase in
resistance of only one FET. We can conclude that in a long nFET chain the delay time can

be decreased by decreasing the size of FETS.

Area-Time Optimization Timing Analysis 75

University of Windsor

clk —of EF;TG

ins =|| FETS
(WiL)s

ind ={| FET4
(W/LY

in3 FET3
_lrt (WiLn

in2 | FET2
1 (W/L)

in1 <| FETI
—(WiL)

ck—| FETO
g/ (WiL)

Figure 5.1 nFET Chain with Fan-in of 6

We get a deeper understanding of the problem by studying the generic RC model, in which
cach nFET is replaced by one link of the RC chain representing the channel resistance and

the parasitic capacitance. Such an nFET chaia model is shown in Figure 5.2.

The estimate discharge time can be approximated by Elmore’s delay formula [12]:

N i
tp= Z(Y Rch,. (5.1)

i=0\j=0

As we know, R, is inversely proportional to (W/L);; the parasitic capacitance C; increases

with channe! width, and is approximately proportional to (W/L);

Area-Tinw Optimization Timing Analysis 76

University of Windsor

R3Z r-\:L C3
L

Ra <
Il

Rj Ci
L

Rg G
il

Figure 5.2 RC Model for 6 Fan-in nFET Chain

The discharge delay of the nFET chain, shown in eqn. (5.1), can be rewritten in the {orm:

th= Ry(Co+ €+ Cy+ 03+ C+Cy)
+ R, (C, +C2+C3+C4+CS) + R, (Cy+Cy# Cy+Cs)
+ Ry (Cy+ C,+C5) + R, (Cy+Cs) + RCs

Suppose that we reduce the size of each FET by a factor o, < 1, such that

(W/L); = o, (W/L),

The resistance and capacitance are changed accordingly to:

Atrea-Time Optimization Timing Analysis 7

University of Windsor

i

So that

Aty will be positive if the following relationship is established:

{15<{x4<0t3<(12<(11<0t0<1

This means that the best performance results when we successively reduce the MOSFET

size ratios starting from the top transistor (closest to internal node “N") down towards

ground. A 10-30% reduction of ¢, is generally achieved by using this sizing approach

compared to a design using the same area but identical transistor sizes.

The speed of an EMODL gate can be improved considerably by using the discussed tran-
sistor sizing techniques. The disadvantages introduced by the square-law mode! are allevi-

ated so that we can trade gate height for fewer stages in the critical path.

Arca-Time Op:mization Timing Analysis . 78

University of Windsor

5.3 Experiments with Four CLA Schemes

Based on the analysis of the previous section, we design forr different circuit configura-
tions of a 32-bit CLA, and compare their area-time characteristics. The structures of the
four CLA adders are illustrated in Figure 5.3, 5.5, 5.7 and 5.9. Each square in the figure
represents a domino logic gate. The number in the square indicates the fan-in of that gate.
The bold line highlights the critical path in each architecture. The fan-out load is also iden-
tified by the bold line. The four architectures are configured differently with an intent to

cover a reasonable range of the possible variations of the factors discussed in the previous

sections. The first and third schemes employ p; = a,+b; as the carry propagate term.

The second and forth schemes use p; = q; @ b;. Scheme 1 has a fan-in pattern: 5,4, 5,

with three gate stages in the critical path. The second scheme has a fan-in pattern: 2, 4, 4,
5, with four stages. Scheme III has also four stages but the fan-in pattern is 4, 3, 3, 4.

Scheme IV consists five stages with fan-in pattern: 2, 3, 3, 3, 4.

Note that with the utilization of EMODL circuitry, the critical path of the adder may not be
the signal propagation path from the least significant bit data input to the most significant
bit sum output, as one would expect. It may, in fact, vary according to the configuration of
each particular design, depending on the number of stages, the complexity of the nFET

tree in the gate, and the gate fan-in and fan-out. For example, the critical path for our first

two schemes is from carry-in, ¢, to sum output at bit 20 sy, while the critical path for

the latter two schemes is from 10 355

The first scheme, which is also the architecture presented in the previous chapter, has three
cascaded stages only. The fan-out of the first stage in the critical path is 4, which is quile

high since MODL gates are replaced by SDL gates in the second stage resulting from the

use of OR-p,. The highest fan-in is 5. And the maximum fan-out is 5. Transistor sizes are

designed carefully based on the idea discussed in Sectiun 5.2.3. Layout of this schame is

shown in Figure 5.4.

Area-Time Optimization Experiments with Four CLA Schemes 79

University of Windsor

%27-29— 4 Gy7.3P27.3 S

27-20~ = | Sa0s
2426 4 192335233 |

24-26— 4 _
b 123§ 4 Gy13P213 — $27.29
21-23 B
8172045 19124 2174 52426
17-20™ o
%13-16- 5 Gi34 P13 4 52123
13_'1126-: = 1904 P04 — $17-20
b

9-12 -

d5. 8= 3 Gs.4P5 4 S13-16
D54 — S9.12
%1-4

14

— 814

Figure 5.3 Configuration of Scheme I

Aren-Time Optimization

Experiments with Four CLA Schemes

80

University of Windsor

Figure 5.4 Layout of Critical Path for Scheme I

Area-Time Optimization

Experiments with Four CLA Schemes

gl

University of Windsor

Alternatively, in scheme 1I, retaining a similar configuration to scheme I, we add a
preliminary stage to provide the carry propagate p; = a; @ b, for each bit position. Asa
result, the number of stages is increased to four and MODL gates are able to be used to

reduce the fan-out of the first stage to 2. The maximum gate fan-in and fan-out of this

schemes are still five. The layout of the critical path is shown in Figure 5.6.

g32 P32
%32— 3 Gy7.3P273
3T | -
Gyg 3P24 3
3 Gog.10P20.10
P
3 Grn 3P0 3
2 4 G17.4P17,4[
X
Gya 4P
4
31
Go 4P
4
e Gs 4P
4 5.4%Y5,4
az—
br™ Cyq .
a, g2Dp 4 5 b-8s3
bi 2
1
Co S IS4

Figure 5.5 Configuration of Scheme II

Arca-Time Optimization Experiments with Four CLA Schemes 82

University of Windsor

Figure 5.6 Layout of Critical Path for Scheme II

Area-Time Optimization

Experiments with Four CLA Schemes

#3

University of Windsor

In scheme HI, we limit the maximum fan-in to be four in order to shorten the intrinsic gate
delay. However, we have to increase the number of stages from three, in scheme I, to foar
to accomplish the 32-bit addition. Note that the fan-out of the second stage increases sig-

nificantly due to the use of SDL gates. The corresponding layout is shown in Figure 5.8.

. Gog 3Prg 3 —
v I Goe np Ga1 P21 7 4 =530
2 A A

b25-27" 7 1925303 [3 ‘ 7
85 24 G2.3P22.3 Cig 25-30
22241 3P, Goi AP

22-24™ 4 n 2 214 214 ‘ 4 - 5192

Gio 2P o

11(';-2211— 4 b 231 4 FSa400
16-18= 1 11630163 [3 |S1227127 C,]
b1618"' 4 |_- 4 —599.94
dys. G P C
b1315---- 7 15123 Piaa 5 G12.4P12.4 s 7 S
13-13~ G a P N :

10-127 10,3 ©10.3 i2 H
b1g.-17+ 4 b 4 =535
a7.90 =2 1573 P73

b — S10-12

279

4-6™1 4 <

b, ¢ 7.9

a3

Figure 5.7 Configuration of Scheme III

Area-Time Optimization Experiments with Four CLA Schemes 84

University of Windsor

P

Figure 5.8 Layout of Critical Path for Scheme III

Area-Time Optimization

Experiments with Four CLA Schemes 85

University of Windsor

Similar to scheme II, scheme IV adds one stage of XOR-p, generation circuit to scheme

I and switches to MODL circuits while retaining the main configuration of scheme 111

Figure 5.10 is the critical path layout of scheme IV.

£32,P3
§3 3 CogaPoga .—Z—S“_n
L 3 1253 P23,3 Ga1.7Pa1 7) $98.30
3 B =3 4 =
3 022.3P22.3||' Ga1 4Pa1 4 s S 1021
C .‘
5 3 15103 P03 3 c24 72426
7 1016:3P163 3 G137P121 g | gy EEEEN
C .
X 3 Sm‘il.ulT Gr24Pios TR TS 6.8
Gy0.3P CI;I S
31 3 |03Pi03 | g SAERE
G73P73 C
3 4 ~S10-2
G43P43 Co
] 3 4 s
= c
b 3 : 4 ==S4.6
a7

Figure 5.9 Configuration of Scheme IV

Area-Time Optimization Experiments with Four CLA Schemes 86

University of Windsor

Figure 5.10 Layout of Critical Path for Scheme IV

5.4 Comparison and Summary

The results from the four different architectures are summarized in Table 5.1. The
HSPICE simulation results from the mask extracted circuits, and the transistor counts, are
also listed. Our experiments indicate that counting active devices provides a reasonably

accurate comparison of layout area.

From Table 5.1 we see that scheme I and HI, which use OR as the carry propagate opera-

tor, provide better area-time performance than their counterparts which require one more

Arca-Time Optimization Comparison and Summary 87

University of Windsor

stage to compute the XOR for every bit position. We also note that the Speed-Area result of
scheme I, which uses the least number of stages and device count, is the best among all the
four schemes, although the fan-in of gates in every stage are quite high. This result is
counter-intuitive to the square-law delay model, which is more suitably applied to non-
sized transistor trees. Comparing scheme Il and III, which have the same fan-out load and
same number of stages, scheme III is much faster. This is probably because a design with
lower average fan-in results better performance. The delay difference between scheme 11
and IV is small. Although scheme IV has one stage more than scheme 1V, its fan-out and

average fan-in are smaller. This may cause its delay slightly smaller than that of scheme 1.

Type of p, a;+b; a, Db, a;+b; a; @b,
Fan-In Pattern 54,5 2,4,4,5 4,3,3,4 2,3,3,3,4
Qutputs in C4r €162 C320 | €104 %160 | €30 Cor Cop Cps O35 Cyo
Critical Path 520 €32+ 20 30 €27+ ¥30
Max. Fan-out 5 7 7 5
No. of Stages 3 4 4 5
HSPICE 2.Ins 2.63ns 2.36ns 2.55ns
Delay
Device Count 1397 1691 1537 1826

Table 5.1, Performance Comparisons

Generally speaking, CLA critical path delay is affected by many factors in a very complex
way, especially when transistor sizing technique is involved. Major concerns in
determining the CLA architecture are the number of cascaded stages, the fan-in profile and
distribution of fan-out load with respect to the related fan-in. The distinguish area-speed
advantage of scheme I implies that the primary consideration is the number of stages in

the critical path.

Area-Time Optimization Comparison and Summary BY

Chapter6

Conclusions and
Future Research

6.1 Conclusions

High performance adder design techniques have been reviewed. In
order to achieve an area-speed optimal adder we need to combine
advanced architecture design methodologies with high performance
circuit realization techniques. The 32-bit high performance adder
introduced in this thesis employs the carry-lookahead algorithm
and full dynamic logic circuit techniques. This is based on the
investigation of various types of adder architectures and circuit
implementation styles. We have found that the carry-lookahead
architecture is the fastest and dynamic logic delivers a circuit with

less silicon area and higher speed than static logic.

New design methodologies have been developed so that a superfast
and compact 32-bit CLA design has been achieved. The recently
introduced pseudo complement concept has heen used to realize
complementary carry chains with equal delays. As a result, a
dynamic sum unit has been successfully designed. The new
EMODL circuit style has been explored for building the sum unit in
the adder, and resulting sparse carry chain circuits have been

exploited. Only those carries that are necessary to the EMODL gate

Conclusions and Futvie Lesearch : Conclusions a9

Univerity of Windsor

are generated in the sparse carry chain and the usual circuits for generating every carry bit

are eliminated.

An example 32-bit CLA has been designed based on these techniques and implemented in
a 1.21 CMOS technology. HSPICE simulations of the entire CLA and test results from a
dedicated critical-path-adder chip have demonstrated that the performance of our CLA
design is better than that of the advanced 32-bit CLA designs appearing in the recent

literature.

Additional work has been conducted to provide guidelines for designing optimal CLA
architectures, with respect to area and speed, using the above methods. Four CLA
schemes, configured with changing fan-in, fan-out and number of stages, are used in a
design experiment. Simulation results show that the number of stages is the primary

variable in building high performance CLA adders.

6.2 Future Research

Topics for future studies should concentrate on the development of automated
optimization approaches to search for area-time efficient CLA architectures. Resulting
tools can probably be generalized to any digital system which uses multi-stage domino
logic. An interesting addition to such a tool would be the estimation and optimization of

power dissipation for CLA designs.

Although our work has concentrated solely on CLA adders, it is quitc possible that the
design concepts explored in this research work, can be extended to other arithmetic and

logic units employed in modern computer systems on silicon.

Conclusiunsﬁand Future Research Future Research i)

University of Windsor

B e e

REFERENCES

[1] Bedrig, OJ.: “Carry-Select Adders”, IRE Transactions on Electronic Computers, pp.
340-346, vol. EC-11, 1962.

[2] Best, M.J. and Ritter, K.: “Linear Programming---Active Set Analysis and Computer
Programs”, Prentice-Hall, 1985.

[3] Bizzan, S.S.: “High Performance VLSI Circuit Techniques”, Master thesis, Depart-
ment of Electrical Engineering, University of Windsor, 1991.

[4] Bizzan, S.S., Jullicn, G.A. and Miller, W.C.: “Analytical Approach to Sizing nFET
Chains”, IEE Electronics Letters, pp. 1334-1335, vol. 28, No. 14, 1992,

[5] Brayton, R.K., Hachtel, G.D. and Sangiovanni-Vincentelli, A.L.: “A Survey of Opti-
mization Techniques for Integrated-Circuit Design”, Proceedings of The IEEE, pp.
1334-1364, vol. 69, No. 10, October 1981.

[6] Brent, R.P. and Kung, H.T.: “A Regular Layout for Paralle] Adders”, IEEE Transac-
tions on Computers, pp. 280-284, vol. c-31, No. 3, March 1982.

[71 Callaway, T.K. and Swartzlander, Jr., E.E.: “Estimating the Power Consumption of
CMOS Adders”, Proceedings of 11th Symposium on Computer Arithmetic, pp. 210-
216, June 1993.

[8] Chan, P. K. and Schlag, M.D.E.: “Analysis and Design of CMOS Manchester Adders
with Variable Carry-Skip”, IEEE Transactions on Computers, vol. 39, No. &, pp.
983-992, August 1990.

[9] Chan, P. K. and Schiag, M.D.F.: “A Note on Designing Two-Level Carry-Skip
Adders”, Journal of VLSI Signal Processing, vol. 3, pp. 275-281, 1991.

[10] Chan, PK., Schlag, M.D.F., Thomborson, C.D. and Oklobdzija, V.G.: “Delay Opti-
mization of Carry-Skip Adders and Block Carry-Lookahead Adders Using Multidi-
mensional Dynamic Programming”, IEEE Transactions on Computers, pp. 920-
930, vol. 41, No. 8, August 1992,

[11] Chu, K.M. and Pulfrey, D.1.: “Design Procedures for Differential Cascode Voltage
Switch Circuits”, IEEE Journal of Solid-State Circuits, pp. 1082-1087, vol. Sc-21,
1986.

University of Windsor

{12]

{13]

[14]

[15)

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Elmore, YV.C.: “The Transient Response of Damped Lincar Networks with Particutar
Regard to Wideband An.plifiers”, Journal of Applied Physics, pp. 55-63, vol. 19,
January 1948.

Fishburn, J.P. and Dunlop, A.E.: “TILOS: A Posynomial Programming Approach to
Transistor Sizing”, Proceedings of International Conference of Computer Aided
Design, pp 326-328, November 1985.

Glover, F. and Laguna, M.: “Tabu Search”, Modern Heuristic Techniques for Combi-
natorial Problems, Colin R, Reeves (Ed.), pp. 70-150, Blackwell Scientific Publica-
tions, Oxford, 1993.

Hwang, 1.S. and Fisher, A.L.: “Ultrafast Compact 32-bit CMOS adders in Multiple-
Output Domino Logic”, IEEE Journal of Solid-State Circuits, pp. 358-367, vol. 24,
No. 2, April 1989.

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P.: “Optimization by Simulated Anneal-
ing”, Science, pp 671-680, vol. 220, No. 4598, May 1983,

Krambeck, R.H., Lee, C.M. and Law, H.S.: “High-Speed Compact Circuits with
CMOS”, IEEE Journal of Solid-State Circuits, pp. 614-619, vol. Sc-17, No. 3, June
1982.

Ladner, R.E. and Fischer, M.J.: “Parallel Prefix Computation”, Journal of ACM, pp.
831-838, vol. 27, No. 4, October 1980.

Lee, B.D. and Oklobdzija, V.G.: “Improved CLA Scheme with Optimized Delay”,
Journal of VLSI Signal Processing, pp. 265-274, vol.3, 1991,

Lee, C.M. and Szeto, E-W.: “Zipper CMOS™, IEEE Circuits and Devices, pp. 10-16,
May 1986.

Lynch, T. and Swartzlander, E.E.: *“A Spanning Tree Carry Lookahead Adder”, ICEL
Transactions on Computers, pp. 931-939, vol. 41, No. 8, August 1992,

Matson, M.D. and Glasser, L.A.: “Macromodeling and Optimization of Digital MOS
VLSI Circuits”, IEEE Transactions on Computer-Aided Design, pp. 659-678, vol.
CAD-5, No. 4, October 1986.

Mead, C. and Conway, L.: “Introduction to VLSI Systems”, Addison-Wesley, 1980.
Nye, W.T., Sangiovanni-Vincentelli, A.L., Spoto, J.P. and Tits, A.L.:
“DELIGHT.SPICE: An Optimization-Based System for the Design of Integrated
Circuits”, Proceedings of 1983 IEEE Custom Integrated Circuits Conference, pp.
233-238, May 1983.

Polak, E.: “Computational Methods in Optimization”, Academic, New York, 1971.

92

University of Windsor

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[33]

[36]

(37]

[38]

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P.: “Numerical Reci-
pes in C---The Art of Scientific Computing”, Second Edition, Cambridge Press,
1992.

Shoji, M.: “CMOS Digital Circuit Technology”, Prentice Hall, New Jersey, 1988,

Shoji, M.: “FET Scaling in Domino CMOS Gates”, IEEE Journal of Solid-State Cir-
cuits, pp. 1067-1071, vol. Sc-20, No. 5, October 1985.

Snyu, J., Sangiovanni-Vincentelli, A., Fishburmn, J.P. and Dunlop, A.E.: “Optimiza-
tior-Based Transistor Sizing”, IEEE Journal of Solid-State Circuits, pp. 400-409,
vol. 23, No. 2, April 1988.

Shyu, J.: “Performance Optimization of Integrated Circuits”, Ph.D. Dissertation,
College of Engineering, University of California, Berkeley, November 1938.

Song, P.J. and De Micheli, G.: ““Circuit and Architecture Trade-Offs for High-Speed
Multiplication”, IEEE Journal of Solid-State Circuits, pp. 1184-1198, vol. 26, No 9,
September 1991.

Wang, J., Wang, Z., Jullien, G. A., Bizzan, S. Luo, W., and Miller, W. C.: “Circuit
driven delay optimization of EMODL carry lookahead adder”, Proceedings of 28th
Asilomar Conference on Signals, Systems and Computers, Conference Record, pp.
550-554, Pacific Grove, Cal., USA, Nov. 1-3, 1994,

Wang, J., Wang, Z., Jullien, G. A. and Miller, W. C.: “Area-time analysis of carry
lookahead adders using enhanced multiple output domino logic”, ISCAS’ 94, May
30-June 2, 1994, London, UK.

Wang, Z., Jullien, G.A., Miller, W.C., Wang, J. and Bizzan, S.S.: “Fast Adders Using
Enhanced Multiple-Output Domino Logic”, Submitted to IEEE Transactions on
Solid-State Circuits, June, 1995,

Wang, Z., Jullien, G.A., Miller, M.C. and Wang, J.: “New Concept for the Design of
Carry Lookahead Adders”, Proceedings of 1993 ISCAS, pp. 1837-1840, May 3-6,
1993, Chicago, USA.

Wei, B.W.Y. and Thompson, C.D.: ““Area-Time Optimal Adder Design”, JEEE
Transactions on Computers, pp. 666-675, vol. 39, No. 5, May 1990.

Weste, N, and Eshranghian, K.: “Principles of CMOS VLSI Design-A System Per-
spective”, Addison-Wesley Publishing Company, 1988,

Zhuang, N. and Yu, H.: “A New Design of the CMOS Full Adder”, IEEE Journal of
Solid-State Circuits, pp. 840-844, vol. 27, No. 5, May 1992,

93

thiversity of Wandsy

Appendix A

Examples of Full-Custom Designed Cells in the 32-Bit
CLA

A.1 Introduction

Schematics and layouts of cell blocks B -By and XOR are provided in this appendix. All
designs are domino logic circuits. The pseude complements ol cells 8 - B4 are not
included because the schematics and layouts are exactly the same as the original cells
except for a switching of the input polarities. All the schematics are labeled with transistor
sizes, where the unit micron (1t) is omitted. The size of the inverter buffer used in the
domino logic gate is labeled with only channel widths. The number above the inverter is

the width of the p-channel transistor, and the number below it is the n-channel width. The

channel length for all the transistors is 1.2

The cell blocks are divided into three sections. As illustrated in Figure 4.11, there are three

stages in the 32-bit adder. Therefore each section represents one stage. Stage one contains
blocks B, - B, and XOR cell. Stage two comprises blocks B, and By. Blocks B -8, urc
used in stage three. Blocks B, - B include more than one cell types. For instance, block

82 includes dells gk4 and pk4. In such cases, all the cells that belong to one block are

listed under the category of this block.

Labeling of inputs and outputs are taken from the schematics in Cudence. They are not the

same as the logic terms appearing in the equations in this thesis.

Appendix A Examples of Full-Custon Designed Cells in the 32-Bit CLA 94

University of Windsor

A.2 Stage One

A.2.1 Block B,

I
L]

o[22

12 15 ' }_I_sln.z .
. | FE R aj—||%2/l.2

b, o
—|20n2 Hl20n2 Yy,

il —
2152 | a
[~ a pu—
¢ Al 2012

HY
Alz0n2

=

Figure A.1 Schematic of Cell c4

Appendix A Exumples of Full-Custom Designed Cells in the 32-Bit CLA 95

University of Windsor

/

=~ i
2% NENEAN [D T

Ev &
e o
RIS (R
Bt IS
T I R Y b

CHEAESE BN D R IR I AN B I A PRSP R O 1

\f\ NN

LT LT LT T I-JI- i

; e

E:’h \:‘\‘(\‘\ \‘ é‘-\i '::: \ \ \ \i\[. \‘:l

/////////&@////////

¥ 'u-rrq WAl '-).-t' LW SE W O £ uE K, A)
N e oy BN '\ g‘\;\-:j_“ LM
_xq\\?t"\.{,. TN '\-’\C{ h '.\\7\ i

llIIIlllllll‘Illllll
F IR S T T R S S T RO TR TR Y N }

/

Figure A.2 Layout of Cell ¢4

Appendix A Examples of Full-Custom Designed Cells in the 32-Bit CLA 96

University of Windsor

A.6.3 Block B,

clk—o{l__‘o“‘2 —qtlon.z

bk —
_-‘ilzn,z bk—2| 6/1.2 ak—zi 8/1.2
X kk

kafon2 ak—"]El 2
akl [
o 2 BN
| k7512
) bk, }—
—l Ylisn2
.]
clk —po/1

Figure A.3 Schematic of Cell gkd

Appendix A Examples of Full-Custom Designed Cells in the 32-Bit CLA 97

Univensity of Windsor

NS SN N N N N NN
é N{&; ﬁl?&{:ﬁ ‘H.’l}‘s *

REARLTT BT ARWILTEYY
- 0

.
o . .
P ST BN
N x_‘l' T 'E_E‘S] _{ KR RIS
5 _l.u [+ g '_‘. v .
D

ek
e

B 777

-ﬁ%:%J¥

e
TR T

i
'/I.
ol

e G 0D

o e v
AR IARSIAVEA S WAL WY) 1
RN R AN
p Y) -) L L R e o
0y S NI EMANR 0
2 J

FEREXERE PR

e

NG -'.-._-.‘ ".'.-' R AN

R RN RGN
» L] L] 4 E] . [* 1 . [i

7NN L

V]

Figure A.4 Layout of Cell gk4

Appendix A Examples of Full-Custom Designed Cells in the 32-Bit CLA 98

University of Windsor

clk—fj10/1.2

clk—{]20/1.2

Figure A.5 Schematic of Cell pk4

A

E S S S S S NS

& H

rd

Pin

- A ._..:...-.-
e D

L L ST LT LRI E DRI S LT E TR

somaae o

LIRS RN O " ASS I 3 IEEI IR

Aty

et
,}Jg.’
v, rd
EAL LA AL, %

A ..‘._.’:_‘5.: .,: 1

d

Cr

25

o
7Y l‘{'.c_'

BER

G
KT

AT

IV VeG4

v
s
4]

»
BN IIFRIRIBRRE)

Figure A.6 Layout of Cell pk4

Appendix A Exampies of Full-Custom Designed Cells in the 32-Bit CLA 99

University of Windsor

A.6.4 Block By

clk—|10n.2

9.6
E 6
bk ak; 37
=iz 8.2
- k-
bk—“{ 8/1.2 blg||12M.2 a—-|‘zzn,z
bka 212
] ak,
aky | -|E/1.2
' bk
- —1|I3—_‘on.2

clk —[301.2

Figure A.7 Schematic of Cell gk3

Appendix A Examples of Full-Custom Designed Cells in the 32-Bit CLA 100

University of Windsor

N S SN SN N N N NN

A

TACALREALEE

%

R ey

. a
AN

V7

-,

<

Yy
€

. 1.‘

//2////////////////

Figure A.8 Layout of Cell gk3

Appendix A Examples of Full-Custom Designed Cells in the 32-Bit CLA 101

University of Windsor

clk—oj|10/1.2

_'l—r__}
L]
%

bk, b ak 3.
ez Yy

(=3
=
o

ak, H
Hle/1 2 Hlen.2

Hlsr1.2 4612

=
:lj
| T

clk—|20/1.2

Figure A.9 Schematic of Cell pk3

Noneay k305 AN

S i L s b [
IO [vy . b | o "
RRSRIE S R ol 1 b
Qi
T T TN R T e e b Bt s
N AN O
.) Ll .. I e iy
-, AR . A . SN
.
.
»

4
%
o

i
i

Fiapit

i

NS
Frncd]

vy \
I.l A L
PN 2
sEN
s :.."
e b
e
.ht. .:.I-
frrty GG Xy N
(g ’ \;\.
N
\\\\\

Figure A.10 Layout of Cell pk3

Appendix A Examples of Full-Custom Designed Cells in the 32-Bit CLA 102

University of Windsor

A.6.5 Cell XOR

- 9.6
3

I}I—IE‘I.Z

4—]f7/1.2

e
"vr’.r‘.
1k

AU B

P

£/

MBI AINA I Y

/ _.-'_
z!
£7
"B

¥

AT
s TR -
s L]

f

A

o ”, l“

] CRSICVINT ¥
T

?j-

.'. m-'
B

———t T

Ly

/S S

/L EEAEDS
:

e el al -

BERTE

MLEETLTY SRR LT

i

A

Figure A.12 Layout of Cell xi

Appendix A Examples of Full-Custom Designed Cells in the 32-Bit CLA 103

University of Windsor

A.1 Stage Two

A.3.1 Block By

clk—f} 7/1.2
9.6
1 D:s.z .
[| T
] g —|81.2
s 3/12

clkﬂ%ﬂ 2

Figure A.13 Schematic if Cell 8

cle—of| 1012
Dd';(.)_c
70 12
PiaH 3/12 g|2—|
ps—{{12/1.2
gs—lﬁ'l.z
cs | 1511.2

clk—lE)/].z

P =
-

Appendix A Examples of Full-Custom Designed Cells in the 32-Bit CLA 104

University of Windsor

Figure A.14 Schematic of Cell c12

40
! Ci16
B 10
Pz} 15n.2 glzﬂEI.Z

P12

ps—{|25/1.2

ca—4|301.2

clk—[4512

Figure A.15 Schematic of Cell c16

Appendix A Examples of Full-Custom Designed Cells in the 32-Bit CLA 105

University of Windsor

BRIVUINE
NN \1:] N AR
[A Py 3 AR) G b 4
\ \ \ Z ..h.t\.' £
™ - 1 [— =
NN N\ ™ m—ﬁ-wi ek N m X
BRI A N | R 3
R ¢ a2 ﬁ."\}‘%‘l‘ N R o
\ E .\ :\ \:\ m AT TN) ___'1 ‘;‘?
N RS T bt LN B L
NN \ 'f;f ~ 2] BN AN AN N R [B
\ 2l AE -"- ('-' 0 3 .-‘ % ;3.-:. ‘: 4
ND RESRRSE
\\\\ o
™ N 5
N B ™ ‘1\ NN
NIINNDY 33
N 3
] LN NN 2
N NN ™ <H N
Y 1K ?‘. E
T A LA ;
N T SN
g™ N E’}: 7 N
\\\\\ g N
\ (s e N] AEaNA |
NN B LA Bl St PR
Sipaw o T ek
W NN B R e - ;
NNEr et T s
DI T?&“ﬁ'} 2 Rl
P15p1a:8c4clk PRI I =

Figure A.16 Layout of Cells c8, c12 and ¢16 in One

Appendix A Examples of Full-Custom Designed Cells in the 32-Bit CLA 106

University of Windsor

A.3.2 Block Bs

clk—d| 5112
9.6
J T £8n3
pa—{| 10n.2
gzg—| 10/1.2
E20—]} 151.2

clk—] 20112

Figure A.17 Schematic of Cell gg23

%
7
=

¥,
1

%
e vty
.'-'.ﬁ" /

whvss.

el

[
- P

Figure A.18 Layout of Cell gg23

Appendix A Examiples of Full-Custom Designed Cells in the 32-Bit CLA 107

University of Windsor

clk—]51.2

Pas—{ ﬁ'l.z &26—]] 8/1.2

P 10/1.2

S PLELPLELTLeL T

Figure A.20 Layout of Cell gg26

Appendix A Examples of Full-Custom Designed Cells in the 32-Bit CLA 108

University of Windsor

clk— 1.2 isn.z

By~ | 6/1.2 E20—| &/1.2

P26—{] 8/1.2 B26—{| 8/1.2

P23~ |10/1.2

20— Ll'_jl.'l.z

clk—}20n.2

Figure A.21 Schematic of Cell gg29

SONN N NN N N NN T

%

x

FEREE L INE Dt

. N
E-’\\(f\\f([Tt N T
~

AN \ ¥ 3 eniy

e,

TR
R

A

~1

=3
=] i,

"1
[
a

2
- "’yg’
S
S

ORISR

RIS IREARY WYY

FE
A

0 -Af-
A

v,

/ -

Ll e

o

NSNS

3 DRERERNED ¢
by E L1 ANEVEARAS 3 [N
@I-‘-}' e + o0 kg TN
BN O PRy N
Lhy LR .
pny BLUDRNOD It _::‘-.‘_-\.\
T T, Ny | Ny "‘3
\wl‘ B S A B A) Y E 5% e a4 Rz
£ IR AR O R n CAnA o 0 M
A . . Y
N B R R R R R B
..... ittt bt

Figure A.22 Layout of Cell gg29

Appendix A Examples of Full-Custom Designed Cells in the 32-Bit CLA 109

University of Windsor

clk-.;IJS”'z Hsaae S0
I_ ‘-ll_ 1 -

Pag—} 6/1.2

Pas— Ell 2 o
[
S £p23

- 32
Paa—{{ 10012 :

Pa—]| 15/1.2

clk—4] 20/1.2

l

Figure A.23 Schematic of Cell gp23k

~_/'£‘/
//

-.-: s] “.‘ ! - QA h
R NENN 1| R

TR TRTERETTRTIEY WL P I BT

el

e

=71

L1 QN
b N
L8 nAK B
R D0 o N
"
L}

P
VAR AR ANV A A

gy
¢
&
/.

"

|
Y

N D

. ' f

N SRy

A

X rr
RELs

& 7o

]

ECECCDE O

PSP IET LIS LS

v

o
=9
i8]
=

=

¥3

e

XTI 777
2

o

/]
37
s

N

A
%

Appendix A

Examples of Full-Custom Designed Cells in the 32-Bit CLA

1H)

University of Windsor

Figure A.24 Layout of Cell gp23k

A.2 Stage Three

A.4.1 Block By

clk._qiwn.z
._ﬁaﬁ_sk

Az

*Ka = S sk |
x-il_ﬁil-z clk—f EOII.Z I—ﬁz— 3 xk_4| Lo

3% ks)
A : w12 %K
] clk—of E:m.z I—ﬁﬁg-skﬂl: 3 o112
aky cR =,
—iEm'z 3oz

ak xk; 1] XK, 7 xk xky 1= Ky |
15/1.2 H|151.2
_71211.24 |51|.2-|E cﬂ"q 12006 Sk-lﬁ 812 ~l15/1.2° |15
ak, = xk xk; j= xk; = K j= B
bk, E”'gk l{E, Lolzon 2wz 4[n.2 Y[zon24 20/1.2 152
2012 EE{ 20/1.2
. c X —
blﬂ|l_.__wln.z 302 P

clk—] 401.2

Figure A.25 Schematic of Cell sk4

Appendix A Examples of Full-Custom Designed Ce'ls in the 32-Bit CLA 111

University of Windsor

Y Y 5 S N e — -~ L — - o Y Y b -
\
P2 h
A My
P N
N NN
: S N
N o B 'E:.‘_“\
i3 RS IR
\ u_‘t'. ': r'~'_'<
N : RS
N TR
[i HE
oL
N TR
N v ey,
b E:a
[,
T

Figure A.26 Layout of Cell sk4

A4.2 Block B,

clk—q 1.2 9'2 23

clk—-ali lO!I.zrD;;(::— 2 xn_{ &2

X
12 “ylen.a

a3

_|Em.z 820, 190712

clk=][20/1.2

Figure A.27 Schematic of Cell sk3

Appendix A Examples of Full-Custom Designed Celis ih the 32.Bit CLA 12

University of Windsor

L N N N ™ N

=S

D anlle - eyt L [DR
SRAPNS 33} 12 W Sl o
B P e :‘_ |w; b I
- PN b t < <
REITEE Y e

e
R r¥ i

N o P o AP A BB A oS Do

123}

LL

“"?t

o=

o kg Fg
i

o
by
LEAlG
PAVAT AV AV EV4Y

¥ WA

3
(s
'l

“Ery

:.m‘ i
it

LN S S

% 37
- r';
PENCWIONC A N
et 0 b
. ‘.'%‘." - e) b
| N I 28N
. N AW — Y | U

Figure A.28 Layout of Cell sk3

A4.3 Block By

_Lr

clk I !
10/1.2 6 112 N6
—| ;)—' Cs clk * 5
32 2 — | E3.2 22

x T |42 5 32
JLIELZ u_ll: clk— Em.zrﬁz—sal [

X3 x3| X |
_|E|,2 _||6n.2 . 3L||6n.z] g

=
[=]
3

2 5
b—‘—'|El.z . Hlena
. by X30 ' L
e, IEL2 Wz “Hylena , 812 X3 F—Te '53_01 =i
5l

clk—| 201.2

Figure A.29 Schematic of Cell sk32

Appendix A Examples of Full-Custom Designed Cells in the 32-Bit CLA 13

University of Windsor

L L4

L
et

v

P

L 24

¢
bty
|4

7 7V A ¥ d /7 7 7

7
A7 AL

&
L1
|1
v
1
’
1
7
A
L
A
1A
v
11
1]
1
¥
/1
Bl
!
1
s

Figure A.30 Layout of Cell sk32

Appendix A Examples of Full-Custom Designed Cells in the 32-Bit CLA 114

University of Windsor

Appendix B

A PROPOSED METHODOLOGY FOR AUTOMATED
DESIGN WITH TRANSISTOR SIZING

As we know, dynamic logic circuits evaluate within one clock cycle, and the speed is
determined by circuit delay. We can estimate the system delay as the sum of the delay for

cach gate involved in the critical path.

5
Dy = Y D,

=1

where D is the total system delay, D; is the gate delay at stage i and s is the number of

cascaded gate stages.
Here we proposc an optimization procedure which comprises the following four steps:

Step 1. Set up circuit configuration, such as number of stages and fan-in pattern;

Step 2. Minimize each gate delay D, by sizing transistors;
Step 3. Comparing resultant D with that of the previous structures;

Step 4. Continue with step 1 until D is no longer decreasing,

An appropriate algorithm has to be determined for step 1. A simple exhaustive search may

be feasible enough for giving configurations that vary in a reasonable range. Other integer

Appendix B A PROPOSED METHODOLOGY FOR AUTOMATED DESIGN WITH TRANSISTOR SIZING 115

University of Windsor

programming technique such as simulated annealing [16] and tabu search [14] may also

need to be investigated.

Step 2 is the core of this program. It is actually a transistor sizing problem whose object is
to minimize the gate delay under the area constraint. For a dynamic circuit, it is equivalent
to sizing the transistors in the series-connected nFET chain in order to improve the
discharge time. A distributed RC delay model as described in Section 5.2.3, eqn. (5.1} is
widely used. In [27] and [28], based on an RC delay model, Shoji proposed a heuristic
scaling technique which can reduce the discharge delay of a Domino CMOS gate by up to
30 percent. The profile of the transistor sizes in the nFET chain can be featured as a ladder
so that the FET closet to the ground is the largest, with FET size decreasing monotonically

from ground to the output node.

Several authors ([5], [22] and [24]) use mathematical optimization techniques to solve the
transistor sizing problem. In this approach, the problem is formulated as a constrained
nonlinear mathematical program and a timing analyzer or a circuit simulator such as
SPICE is used to evaluate the delay constraints. This approach usually converge to the
global minimum and provides more accurate results. The drawback is the exiensive

computational time required for solving the problem in an unnecessarily large dimensional

space.

A combined heuristic and mathematical programming approach to transistor sizing was
presented by [29] and [30]. First a fast heuristic algorithm TILOS [13] is used lo obtain an
initial sizing of the circuit and then a nonlinear optimization method---feasible direction
algorithm was adopted to the transistor sizing problem, which can get the solution in
spaces of reduced dimensionality. This combined approach is a good compromise between

the speed of the heuristic algorithm and the power of mathematical programming.

Sami Bizzan, from our VLSI research group, developed an analyiical approach to sizing
nFET chain with single variable based on certain assumptions [3] and [4]. The analytical

technique uses an empirically determined condition on the time constants of the classical

Appendix B A PROPOSED METHODOLOGY FOR AUTOMATED DESIGN WITH TRANSISTOR SIZING 116

University of Windsor

RC delay mode. Simulation results demonstrate that the analytical technique is

comparable to classical numerical sizing methods, yet consumes less computational time.

Our proposed gate delay minimization procedure is to combine the analytical approach

and a nonlinear programming algorithm into two phases:

Phase I: Analytical approach which can obtain feasible initial sizing with low

computational cost;

Phase II: Quasi-Newton nonlinear programming algorithm [25] and [26] associated with
the active set method [2]. The optimal result can be achieved mathematically with

quadratic convergence.

The reason we use a nonlinear programming algorithm is that in the RC delay model,
discharge delay is a nonlinear function of transistor widths as the parasitic capacitance is

proportional to transistor width and the channel resistance is inversely proportional to the
width.

Quasi-Newton nonlinear programming with the active set method can be summarized as

follows:

Suppose there are m series-connected transistors in the rFET chain, w; is the width of the

transistor / in the nFET chain. w is a set of w; which includes all the transistors in the

nFET chain. The gate delay minimization problem can be expressed as:

min D (w)

. . T ,
with constraint g; w<w, =~ i=1,...,m

Appendix B A PROPOSED METHODOLOGY FOR AUTOMATED DESIGN WITH TRANSISTOR SIZING n7

University of Windsor

Although a; = 1, we stili keep it for explaining the active set method more explicitly.

Wi is the maximum width allowed for transistor /.

Note that the nonlinear function D (w) can be related to a Taylor series approximation:
D =D T))+l(1 7TH ’ ’ O() »3)
(w) =D(w)) +g; (w=w, 5 (w- w) Hi(w—w)) + [- uj"
where g ; is gradient 8= VD (w J,.) H i is Hessian o - VD (w)).

We can start the computation with a given set of transistor widths w, <w ., where

0~ ax’

Woo= \Wima x|i= 1, ...m} . This is obtained from the analytical transistor sizing stated

in phase I. Now we define the active set as:

. T
[(Wj) = {llar' wj= Wima.\'}

We will manipulate the active set in phase II aiming at achieving a set of transistor widths

of the m input nFET chain that leads to the least discharge delay. Starting with the first
scheme, letting Wiy = wj+ ojsj, we will determine $; with g .sj<0 50 that

D (Wj + cjsj) <D (Wj.) . Then the D (w) minimization problem is changed to:
.. T 17T
min g5+ 5§ Hj.s'

2

L T .
with a; s= 0, ze[(wj)

Appendix B A PROPOSED METHODOLOGY FOR AUTOMATED DESIGN WITH TRANSISTOR SIZING 118

University of Windsor

Seto ;= min{1,G j} , 6 ; is called the maximum feasible step size where

Having g; and the above solved $ j» We DOW check if D (wj. + ojsj) <D (WJ.) Jfitis
true, stop working in this scheme. If it is not satisfied, let ¢ &0 J./ 2 and repeat solving

oy until D (wj+ cjsj) <D (WJ.) . If it happens where o= 6j, add { to active set / (wj)

Dropping constraints from the active set, we need to compute the Lagrange multiplier | i

This second scheme sets the goal to find a set w i such that

g~ E wa;, withp,‘.zo,iel(wj)

iel(w;

We now solve the above equation for . If i; 20, we have the optimum solution. If
(uj) L < 0, then we drop constraint & from the active set / (wj) . Repeating both schemes

until D (w) is minimized, we store the received transistor sizes and continue the

automated program with step 3.

Even though the proposed transistor sizing procedure requires the gradient and Hessian
to be computed, its quadratic convergence provides a significant reduction in the number
of iterations, saving a great deal of computational effort. A preliminary C program for
step 2 is attached in Appendix C. The interested reader can use it as a basis for future
work

Appendix B A PROPOSED METHOPOLOGY FOR AUTOMATED DESIGN WITH TRANSISTCR SIZING 119

University of Windsor

Appendix C

C Program for Transistor Sizing Using Nonlinear
Programming with Active Set Method

The following is a preliminary C program for the gate delay minimization step
discussed in Appendix B.

/*Matrix active[nxn):active-set NXN dimensions
Matrix gradient[nxn]:gradient of the objective function
delay(width)

Matrix hessian[nxn]: second gradient of the objective
function delay(width)

width({i]: Width of the ith NFET
num_fanin (i) number of fan-in of the ith gate
num_fanout[i] number of fan-out of the ith gate

delay(w[]j], i): objective function, delay of the ith
gate

num_input: number of input

num_stages: number of stages

*/

#include <stdio.h>
#include <math.h>

#define MINW 5.0e-6 /* Minimum transistor width */
#define MAXW 50.0e-6 /* Maximum transistor width */
#define ITMAX 100 /* Maximum allowed number of

iteration */
#define EPS 3.0e-8 /* Machine precision */
#define CJA 2.9e-4/* Diffusion area capacitance(pf/um2) */

Appendix C C Program for Transistor Sizing Using Nonlinear Programming with Active Sel Method 120

University of Windsor

#define DIFF_HANG 2.8e-6 /* Length diffusion extends
beyond the active area(um) */

#define CJP 3.3e-10 /* Diffusion perimeter
capacitance(pf/um) */

#define RSH 25.0e-6 /* Sheet resistance */

#define CGTA 1.38e-3 /* Gate capacitance(pf/um2) */

tdefine MASKCHANNEL 1.2e-6 /* Mask channel length(um) */
#define INV_WIDTH 23.0e-6 /* Inverter channel width */
f#define FACTOR CJA * DIFF_HANG + 2. * CJP

#define CONSTANT 4. * CJP * DIFF_HANG

#define WP 10.0e-6 /* Width of the charge
transistor PFET */

float delayfunc(int *height, float *width, int *fan_out,
float *gradient);

void direction(int *heiyht, int *active_index, float
*gradient, float hessian{][20], float *sj});

int checkuj(int *height, int *active_index, float *uj};
void solveuj(int *height, int *active_index, float
*minusgrad, float *uj);

int mulztg(int *height, int *active_index, flcat *gradient,
float *ztg);

float lnsrch(int *active_index, int *colum, int *fanout,
float *oldwidth, float *funval_old, float *gradient, float
*gj, float *newwidth);

void hessianfunc(int *height, float *oldwidth, float
*newwidth, float *oldgradient, float *newgradient, float
hessian[][20]);

void gradientfunc(int *height, float *width, int *fan_out,
float *gradient);

float snrm{int *n, float *sx);

void solve(int *row, int *col, float zhz[][20], float *mzg,
float *p);

Appendix C C Program for Transistor Sizing Using Nonlinear Programming with Active Set Method 121

University of Windsor

float delayfunc(int *height, float *width, int *fan_out,
float *gradient) /* calculate gate delay with RC model */
{

int i, 3;

float gate_width, resist[20], capacit[20], delay, interm,
Sumc, sumr;

delay = 0.;
gate_width = (float)(*fan_out / 3.) * INV_WIDTH;

for(i = 0; 1 <= *height; i++) {
resist[i] = RSH / width[i];
if(i == 0)
capacit[i] = FACTOR * (width[i] + WP) + CONSTANT +
CGTA * MASKCHANNEL * gate_width;
else
capacit[i] = FACTOR * (width[i] + width[i - 1]) +
CONSTANT;
]

for(i = 0; i <= *height; i++) {
interm = 0;
for(j = 0; j <= i; j++) interm += capacit[j]:
delay += interm * resist([i];
}
/* delay *= 1l.el0; */

for(i = 0; i < *height; i++) {

sumc

!

0;
sumr 0
for¢(j = 0; j<= i; j++) sumc += capacit([j]:;
for(j = *height; j < i; j--) sumr += resist[j];
gradient[i] = 2 * FACTOR * sumr - resist[i] * sumc /
width[i] + FACTOR * resist([i]:;
1

Appendix C C Program for Transistor Sizing Using Nonlinear Piagramming with Active Set Methad 122

University of Windsor

sume = 0;

for¢(i = 0; i <= *height; i++) sumc += capacit[i];

gradient{*height] = FACTOR * resist[*height] -
resist(*height] * sumc / width{*height];

printf("delay = %e\n", delay);

return delay;

)

void direction(int *height, int *active_index, float
*gradient, float hessian[][20], float *s3j) /* determine sj,
the descent direction */
{

int i, 3, i_zh, i_zhz, j_zhz, i_p, colum;

float zhz([20]([20], mzg[20], pl[20];

i_zh = i_zhz = j_zhz = i_p = 0;

colum = *height;

for(i = 0; i1 <= colum; i++) {
if(active_index[i] == Q) {
j_zhe = 0;
for(j = 0; j <= colum; j++) {
if(active_index[j] == 0)
zhz{i_zhz][j_zhz++] = hessian[i][j];
} /* end of for(j} */
i_zhz++;
1 /* end of if(active_index) */
} /* end of for(i) */

for(i = 0; i <= colum; i++) {
if{active_index[i] == 0)

mzg[i_zh++] = -gradient[i];

Appendix C C Program for Transistor Sizing Using Noalinear Programming with Active Set Method 123

University of Windsor

solve(&i_zhz, &j_zhz, zhz, mzg, p); /* solve (zThz)p =
mzg */

for(i = 0; i <= colum; i++) {

if{active_index[i] == 0) [
sj[i] = pli_pl;
i_p++;

H

else
sj[i] = 0.;

int checkuj(int *height, int *active_index, float *uj) /*
check if all of uj are greater than 0 */

{
int i, flag = 0;
for(i = 0; 1 <= *height; i++) |
if(ujfi) < 0.) {
active_index[i] = 0;
flag = 1;
1
}
return flag;
}

void solveuj(int *height, int *active_index, float
*minusgrad, flocat *uj) /* solve for uj */
{

int i;

for(i = 0; i <= *height; i++) {

if(active_index{i] == 1) uj{i] = minusgrad[i];

Appendix C C Program for Transistor Sizing Using Nonlinear Programming with Active Se1 Method 124

University of Windsor

(D
-
14)]
1]
=
e
[
It
(=]
[

int mulztg(int *height, int *active_index, float *gradient,
float *ztg) /* calculate zTg */

{
int i, k = 0;

for(i = 0; i <= *height; i++) {

if(active_index[i] == 0} ztg[k++] gradient[i];

return k;

float lnsrch(int *active_index, int *colum, int *fanout,
float *oldwidth, flocat *funval_old, float *gradient, float
*sj, float *newwidth) /* find the new width set and active
set for less delay value by varying sigma */
{

int i, 1, iter, flag = 0;

float sigma, sigmahat, funwvalue;

for(i = 0; i <= *colum; i++) {
if(sj{i] » EPS) {
sigma = (MAXW - oldwidth[il) / sjli];
if (flag == 0) {
sigmahat = sigma;
flag = 1;
}
else if (flag == 1) {
if(sigma < sigmahat} {

sigmahat = sigma;

Appendix C C Program for Transistor Sizing Using Nonlinear Programming with Active Set Method 125

University of Windsor

1 = 1i;
} /* end of if(sigma) */
} /* end of if(flaq) */
} /7* end of if(sj) */;
1 /* end of for(i) */

sigma = 1 < sigmahat? 1 : sigmahat;

for(iter = 0; iter < ITMAX; iter++) [
for(i = 0; 1 <= *colum; i++) newwidth([i] = oldwidth[i]
+ sigma * sj{i];
funvalue = delayfunc(colum, newwidth, fanout, gradient);
if(funvalue < *funval_old) {
break:;
}

else sigma /= 2.0;

if(sigma == sigmahat)

active_index[l] = 1;

if{funvalue »= *funval_old) {
for(i = 0; i <= *colum; i++) newwidth[i] = oldwidth([i];
funvalue = *funval_old;

return funvalue;

void hessianfunc(int *height, float *oldwidth, float
*newwidth, float *oldgradient, float *newgradient, float
hessian[][20]) /* calculate Hessian of gate delay function
*/

{

int i, 3;

Appendix C C Program for Transistor Sizing Using Nonlinear Programming with Active S¢l Method 126

University of Windsor

float delta[20], gama[20]}, hdelta[20], fac, fae, fat([20];

for(i = 0; i <= *height; i++) {
delta[i] = newwidth[i] - oldwidth[i]:
gama[i] = newgradient(i] - oldgradient[i];

for(i = 0; i <= *height; i++) {
hdelta[i] = 0.0;
for(j = 0; j <= *height; j++)
hdelta[i] += hessian[i][j] * deltal]j];

fac = fae = 0;

for(i = 0; i <= *height; i++) {
fac += gama[i] * deltafi];
fat{i] = gama[i] - hdelta[i]:
fae += fat[i] * deltalil;

for¢(i = 0; i <= *height; i++) {
for(j = 0; j <= *height; j++) {
hessian[i][j] += (fat[i] * gama[j] + gama[i] *
fat[j]) / fac - (fae / (fac * fac)) * gama[i] * gama[j];
}

void gradientfunc(int *height, float *width, int *fan_out,
float *gradient) /* calculate Gradient of delay function */
{

int i, j, colum;

float gate_width, resist([20], capacit{20], delay, interm,
SuUmc, sumr;

Appendix C C Program for Transistor Sizing Using Nonlinear Programming with Active Set Method 127

University of Windsor

colum = *height;

gate_width = (*fan_out / 3) * INV_WIDTH;

for(i = 0; i <= colum; i++) {
resist[i]l = RSH / widthi{il;
if (i == 0)
capacit[i] = FACTOR * (width{i]l + WP) + CONSTANT +

CGTA * MASKCHANNEL * gate_width;

else

capacit[i] = FACTOR * (widthf[i] + width[i - 1]) +

CONSTANT;

}

for(i = 0; i <= colum; i++) {
interm = 0;
for(j = 0; j < i; j++) |
interm <= capacit[i] * resist[i];

delay += interm;

for¢(i = 0; i < colum; i++) |

H
sume 0;
0

It

sumr :

for(j = 0; j<= i; j++) sumc += capacit[i];

for(j = colum; j < i; j=-) sumr += resistfi];
gradient[i] = 2 * FACTOR * sumr - resist([i] * sumc /

width[i] + FACTOR * resist[i];

}

sumc = 0;
for(i = 0; i <= colum; i++) sumc += capacit[i];

gradient[colum] = FACTOR * resist[colum] - resist[colum]

* sumc / width[colum];

}

Appendix C C Program for Transistor Sizing Using Nonlinear Programming with Active St Method

128

University of Windsor

float snrm({int *n, float *sx) /* compute square root and

adjust for scaling */

{

/* Initialized data */

static float zero = (float)0.;
static float one = (float)l.;

static float cutlo
static float cuthi

[

/* System generated locals */
int i_ 1;

double ret_val, r__1;

/* Builtin functions */

double sqrt();

/* Local variables */
static float xmax, scale;
static int next, i, j, ix;

static float hitest, sum;

sum = Zero;
scale = one;
hitest = cuthi / (float) (*n);

/* begin main loop */

for (i = 0; i < *n; i++)

(
r_1 = sx[i] / scale;
if (fabs(r__1) > cutlo)
{

if (fabs(r__1) >= hitest)

{
xmax = fabs(r__1);

scale *= xmaXx;

(float)4.441le-16;
(float)1l.304el9;

Appendix C

C Program for Transistor Sizing Using Nonlinear Programming with Active Set Method

129

University of Windsor

sum = sum / r_1 / r__1 + one;
}
sum += r__1 * r__1;
}
else if(fabs(r__1) == zero) continue;
else
(

sum = sum / r__1 / r_1l + one;

sum sum * r_ 1 * r 1;

/* end of main loop. */

ret_val = scale * sgrt(sum);
return ret_vwval;
1 /* snrm */

void solve(int *row, int *col, float zhz[][20], float #*mzg,
float *p) /* solve for pl[i] which is the factor of s[j] */
{

int i, j, k, n, m;

float r, e[20], c;

n

*row;

m *col;

for(k = 0; k < n; k++) {
for (i = 0; i < n; i++) {

if (i == k) continue;

r = zhz[(i][k] / zhzik][k];

for (j = k+1; j < m; j++) zhz[ij[j] -= r *
zhz [k]1([j];

mzg(i] -= r * mzgl[k];

Appendix C C Program for Transistor Sizing Using Nunlinear Programming with Active Sei Method

130

University of Windsor

for(i = 0; i < n; i++) {
pli]l = mzg[i] / zhz[i][i];

void main() /* the main body */
(

float stepsize, constraint[20]([20], width[20],
newwidth[20], gradient[20], minusgrad[20], ztg[20], uj[20],
sj[20], oldgradient[20], oldwidth{20], activeset[20],
hessian[20][20]), norm, funval, funval_new;

int i, j, iter, active_index([20], colum, row_ztg, flag,

fanout;

/* initialize widths */
printf("Please input the height of the tree:"};
“scanf("%d", &colum);
‘urintf("Please input the fanout of the tree:");

scanf("%d", s&fanout);

width[0] = MINW;
width[colum] = MAXW;
stepsize = (MAXW - MINW) / colum;
for(i = 1; 1 < colum; i++)
width[i] = width[i-1) + stepsize;

/* initialize active_index */
for (i = 1; i < colum; i++) active_index[i] = 0;
active_index[0] = 1;

active_index[colum} = 1;

/* initialize hessian */
for (i = 0; i1 <= colum; i++) {
for (j = 0; j <= colum; j++)
hessian{i][j] = 0.0;

Appendix C C Program for Transistor Sizing Using Nonlinear Programming with Active Set Method 13

University of Windsor

hessian[ij[i] = 1.0;

/* calculate objective function initial wvalue and gradient*/

funval = delayfunc(s&colum, width, s&fanout, gradient);

/* minimization main loop over the iterations */
for (iter = 0; iter < ITMAX; iter++) (|

/

* calculate zTg */

row_ztg = mulztg({&colum, active_index, gradient, ztg);

/* normalize zTg */
norm = snrm{&row_2ztg, ztg);
if(norm < EPS) { /* solve -gj = Atj uj for uj */
for(i = 0; i <= colum; i++) minusgrad([i] = -
gradient([i];

solveu]j(&colum, active_index, minusgrad, uj):
flag = checkuj(&colum, active_index, uj);

if(flag == 0) { /* we have the optimal solution */
for(i = 0; 1 <= colum; i++) printf("width[%d] =
$f\n", i, width{ily;

for(i = 0; i <= colum; i++) printf("gradient[%d]

il

$f\n", i, gradient[i]);

printf("delay 3f", funvaly;

i

printf("delay
exit(0);
}
} /* end of if(norm) */

$f", norm};

/* determine new direction sj */

direction(&colum, active_index, gradient, hessian, sj);

Appendix C C Program for Transistor Sizing Using Nonlincar Programming with Active Sct Method

132

University of Windsor

/* determine new widths */
for (i = 0; i <= colum; i++) {
oldgradient[i] = gradient(i];/* save old gradient */
oldwidth{i] = width[i]; /* save old width */
]
funval_new = lnsrch(active_index, &colum, &fanout,
oldwidth, &funval, gradient, sj, width);

printf("new function value = %e\n", funval_new);
funval = funval_new;

hessianfunc{&colum, oldwidth, width, oldgradient,
gradient, hessian});
for (i = 0; i <= colum; it++) {
printf("active_index[%d]= %d\n", i, active_index[i]);
for (3 = 0; j <= colum; j++) printf("hessian[%d][%d]~=
$f\n", i, j, hessian([i][]]):
}

} /* end of for(iter) */
for(i = 0; i <= colum; i++) printf("width([%d] =
$E\n", i, widthl[il);

printf("delay = %e", funval);

} /* end of mindelay{) */

AT

Appendix C C Program for Transistor Sizing Using Nonlinear Programming with Active Set Method i3

Vita Auctoris

Jinghong (June) Wang was born on June 5, 1965 in Beijing, China. She graduated with the
Bachelor of Engineering from Tsinghua University, Beijing, China in 1988. After gradua-
tion she worked for three years at the Institute of Microelectronics, Tsinghua University,
Beijing, China, in ASIC design tool development and microprocessor analysis. During the
course of her Master’s study, she worked for a year at Semiconductor Insights Inc.,
Kanata, Canada, analyzing microcontrollers and DRAM devices. In the meantime, she

also received a special gift - her son David Yicheng Luo.

	Design and optimization of high performance binary adders for digital signal processing.
	Recommended Citation

	tmp.1363786207.pdf.4FLKy

