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ABSTRACT -

.

[ - -
. [

Digital-signal processing of 1-b and 2-D Sigpals 1s

[

pecoming:imcreasingly important, awd is fiading applicactions

covering various sclientiric disciplines. One ot the impor-
. ’ . .

tant brancaes in digital sigqnal prLocessing 1s digital b}L-~

teripg. . R .

M )

Among tue wumber or structure ox digltai gfilters, tae
L] ! - \

recursive (LIR) is known for its coaputational viriclency.

'in tals tnesls an aLternuEngapproach tu  the direct
design ?OL 1-D  recursive 'dxqitQI ‘filters S;LLSEVinq pLe-—
Scrioédjmﬁﬂnitude specitlcations~qith or without constant_
Qcoup delay 1s pEQScntcd.\ Tne mebhod uwses an Lterative
teqhuique ﬁo dinimize tﬂe Zean  SgQuale eLror between the de-
sired gnd tﬁc designed rilter respoase (IQSQOuaes) in ordér
to c;léulatg the toetflclents oI the ﬁiltct's.transtec tunc-
tion.

Using a new stability test\(9)f the stability of the de-
signed ffilter is quaranteed. Through the process o: L)Dtiml;dtlun
the variable substitution tecnnique 1s uéed to wnsure that
the parametel 0L tae denominator satiskics the necessary aud
suificient conditxons ror stapility.

Based on the same stability test a detuod 1s Presented

for ‘the design of a'class of 2Z-dimensional recursive digital



. <
filters with or without constant yroup delay characteristics
and Sepaﬁanlu denominator transfer runction.
Two 1-D polynomials in zlund z, having all their ze-
ros inside tne unit circle is generated and assigned to tue
denominator of the 2-D transrter tfuaction uhiie the numerator

is lett to a general case of 2-D ponu~-separable poiynogial in

y d .
2, an z,

-The variable substitution techhiqué is again used
through the process of . optimization to transfer the problem“
from a constrained optimization to a simple unconstrained

optimizatien problem.

¢ =iii-
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Chapter 1

INTRODUCTION

1.1 DIGITAL SIGNAL PROCESSING IN (1-=D) -AND (2-D)

i
Siqnals arise in almost every tield of sScience and
engineering, e.d., 1h adcoustics, biomedical engineering,

communications,‘conttoi systems, radar, seiswology and tel-
CneflYa TWwo genceral classes of isiqndls can be identified,
namely continucus-time and discrete-time siqnals.;

A continuoﬁs—time signal is one that is definéd at

, .

cach and every 1iastant or time . Typical exanples are a
voltaye Huveﬁorm and the velodity'oﬁ a sgpace vehicle as d
fuaction orf tiue. A discrete -time signal, on the other
nand, is one that 1s defined at di$crete instants or tiame,
perhaps every millisecond, s#econd, or day. Examples of tiils
type of signal are tne closling price of a particular commod-
it; on the stock exchange and the gdally precipitation as a

function of time.

In signal processing a dimension can meau any paysi-

cal d?main in winlch a signal is defined. Tigoe, ~§pace and
frequency are examples of such domalns. Iu somne cases, the
signal is derined in one or two dimensions. Acoustics sig-
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hY

nals are such exawples of one dimensional signals. Seismic

/

and geophysical siqrals are exapmhles of two dimeasional sig-

.

nals. ~

1.2 DIGITAL FILTERING

The last decade has witunessed sowme tremendous advanc—
es 1n  tne technology of digital systems, with a dramatic
drop in the cost of pasic nardware elements uéed in imple—_
menting such systemns. 1S a result, many applications of di-
gital signal processinq have become feasinlé, ' dnd this in
-turn‘has stimulated the development of further-theory. Une
oxmthe 1muor£¢nt braaches in digital signal pcgcessiuq LS
digital filterlnq wiich 15 the main theme of tuls thesié)

A digital rcilter, like an analog filter, can be
represented by a uetwork wnich ¢omprises a collection 9f in—
terconnected elements. the problem orf desiqpning rilters is
odef;; £inding f£ilter coerficients such that sonme aspect of
the filter's response (c.yg.,time réspoﬁse, frequency res-
ponsc) approximdate a desired behavior in a speciried manner
{C.g., Tilnimuan medah Square or Diniwmax error);

As such, the Wfilter design preblen! is uaéically a
mathemnatical approximation problem. The domain in whicu the
approximation problemn 13 sclved determines how and where the
resulting filtur cail be used. Thus if the approximation

N
problen is solved 1n the 2-flane, the resulting filter is a



- 3
digital filter, if it is solved in the s—pldne,,.the result-

ing is an analog filter. The common ground amony all these

filters 1is the matunematics of functions with rilter-like

properties.

. - ‘. ' \.
1. 221 - -
~ characteristics of 1-D and 2-D digital filters

: - l

-

Digital filters rall into two classes., Filters whose
spatial response contains kd finite number of non-zZero sam—
ples, are called Finite Inopulse hesponse (FIR) rfilters, and .
thosé waose spatial responée-contains an infinite number of
non-zero sanples, are called Inrfinite Impulse Bespousé {(IIR)
OF tecursi§e filters. \\\ .

<«

In the one dimensional case, the output y(m), of a

Fla filter, assuniig a&an input sequance x(m), 1s gyiven by

, _ N-1 A
y(m) = 7 h{k) x(m - k) (1.1)

Wwhere (k) is the i1mpulse response Jdefined over the interval
0 £ k <N-1. Similurly, 4in the-two dimensional case, the

ourput array y{m,n}) can be written as

; K~1L.~-1 '
y(m, n) = } I h(k, &) x(m-k, n-28) (1.2)
=0 . i

I

/



‘ 4
where x{m,n) Ls the input array and hi{k,l) 1s tﬁe'impulse
Le'sponse dgfiued over‘the iu;erval 0 £k 57K~1, 0<1 < L-1.

A oﬂe dimensibndl tedursiVe-fiiter, on the other
~hand, 1is characterized by the dirference equation:

, N M .
y (i) =k20 ak) x(m=k) =L b{R Y(BR) acencenanaas(lld)

where v(m) 1S taoe output sequence.
x{m} 1s the input segquence.

The impulse response, n{m), corresponding to (1.-3) is cau-
: ; T
"sal, i.e., h(m)=0 for m < 0 and it extends up to inrinity
for positive values of o.
In the two dimeﬂsiondl case, oﬁ the otaer nand, a
difference equation that characterizes a two dimensional IIR

filter can pe wiNitten as:
Kl I..1 ) I1 Jl o ; -
ymm) = 3 1 a(k,1) x(m-k,n-£) - J I b(i,j)y(m-i,n-j) (1.4)
. =0 £=0 - .1=0 j=0 1i+j#0
N .

where X,y arCe the input and the output arrays respectively,

K1,L1,I1 and J1 are all‘inteqers.
‘
A two dimensional recursive digital rfilter 1s said to
pe causal if the impulse cesponse h{m,n) is zéro for m and n
less than zero(l1). It can be seen that the lwpulse res-
ponse oL this filter is spread over only the upper quadrant
or the right half plane in the spatial domain. This type of

Lilter 1is also reterred to as a gquarter b&dne recursive fil-



5
ter, since its impulse tesponse is confined to one guarter
of the spatial domain.

)

z-transform and filter transfer function

N
The z—-transform of a segquence x(n),for-= < n ¢ =

is defineda as

.
o N

X(2) = L %{0n} Z'  aevecececcaceccncneass(1.5)
n=.=«
wherco Z = exp{sT)
where s and z are complex variables. The Sequence x(n) 'in

(1.3) 1s obtained be sampling a coutinuous signal x(t) once
every T units of time ( T is the sampling period which 1s
chosen based on the sampling theorem). The complex yvariable
s and tihe sampling period is defined as :

S = 3w and T =21/ us

'where w is the continuous \freguency variable and ws 1is the
sampling freguency (both expressed in radians). The ccmplex

—~

variable 7 can be written as

z = exp (sT)



o]
From tue avove definﬂ%ion, the transier functions rfor

nonrecursive and recursive digital filters could be deriven.
Thus Tor a cousal FIx filter whose impulse response h{pn) is
zero for values of n outside of the range 0 < n < N-1, the

transter function can be written as : ' '

. N-1 |
H(z) =~} h(n) z™ | (1.6)
‘n=0 - . : .

Similarly, tihe trunster function corresponding to the

causal recursive {IIk) filter ( i.e., the impulse ceésponse

hi{n) 1is defined for 0 g.n { ®) is obtalned as :
' N
H(z) ) h(m) " = L —— (1.7)
n=0

] b. z?
j=o0 7

with the assumption tnat npo root of the denowinator rolyno-
mial 1s cancelled by any rcot of the numerator polynomial.
A two dimensiondai ¢ transiora can be defined in ex-

actly the same wmauner a5 the one quensiondl Zz transform

. [y
ifence , for a two dimensional sequence x{m,n) , defined for

JLL m and n, the z—-transforw 1s defined as 3

. =) o m n '
X(zl,zz) = =aaln=§m x(m,n) z;° z, (1.8)

where Zi = exp(SiTi) and zi = exp(ssz)



7
whoere $1,59,2] and z 7 are complex variables. X(m,ﬁ) is a
sequence obtained by sumplinq;a cont inuous two sSpatial di-
‘rections X and v. #With couplex variable§ ﬂr,ﬁz and the san-

pling periods Tl_and Ti' s0 that.

- sy = 4y s, = v,

21/ le 9 = 2m / HEZ

]
]

3
1

where ul.dnd wz are continuous spatial freguency variables

2

x(tl,tzj is sazpled in x aad ¥ spatial directions. The con-

and vs'y and ws ArCe tue  ilregquencies at HEiEEESﬁe signal

plex variables zl and :2 can be written as :

zy = exp (5T;) , z9 = exp(5,T,))

It tollows from the above discussion, that qiven a
FLR rilter whose i1mpulse response h{m,n) is zero outside the
region 0 < m < i and 0 < 0o ¢ W , the two dirensional trans—

fer function can be obtained as :

M N

H(z, 22) = Y ] h(m,n) zf‘ z

m
m=0 n=0 Z

(1.9)

For a two dimensional recursive digital [ilter the
transfer function <can be obtained rroa the difference equa-

tion (1.2} dé:‘



m o_m
- H(z.,2z,) = ) Y h(m,n) z, z
1022) 7 Lo LR 1 %2
r
K L
Zl El a(k, &) z,° e
k=0 220 1
= (1.10)
Ly 91 i
17 17 b(i, ) z{ zj ;
'=0 s B
1 _']'-0

1.2.3 .Recursive and Nonrecursive Filters

!

Berore a solution 1is sought fdf the approximation
problem,a choice must be made between a recursive aud a non-
recucsive‘desiqn. . In recursive ﬁilters the poles of the
transter function can be pldced'anyuhere inside the unit
circle. A consequence ol this degree of freedom 1S that
high selectivity c¢an ceasily be -achieved with lbu—ordep
transter Lunctions. In nonrecursive rilters, on the ther
hand, with the poles fixed at the oriyin, high selectivity
cen e aciiceved ouly by using .d relatively aigh order for
tlie transier rfunction. For the same specification the re-
quirumeﬁF in a noirecursive desigyn can be as high as 5 to 10
times that in the recursive designa. :Foc axauple, toe baud-

pass filter with tae following specification (2} 3

Minimum attenuation for 0 < W < 200 45 43
Passband ripple for 4990 < w < o600 : 0.2 dB
Minimum attenuation for 700 < w < 1009 :; 45 4B

sampling rreguency 2000 rad/sec.

can lLe met using a nonrecursive iilter of order 52 or a re-

cursive tilterc of order 8.
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" In practice, the cest of a digital Cfilter tends_io
increaée and its speed tends to decrease as the order of tue
tfansﬁer function 1s increased. The nounrecursive filters
‘have the advantage of cghstdnt-qroup* delay and . stability
while the recursive filters suicers from stability rproblens

and tne gqroup delay can only be approximate. ' .

1.2.4 v .
Magnitude and Group Delay of a Filter

The transrer tuaction H(z) QL a one dimensional fil-

ter can be written in tne form:
i{z) = |H(z)|expn'8(zn

whoere Iu(z)r 1s the maynitude and B (z) 1s the phase respoiuse

of H({z). The magnitude¢ response of the filter is defined
as:

H = |H(z)]| o Re(H(z))? + I 2

[H) | = |Hz)| T ReHED™ + ImHG:)" | .0

z=e Z=e
(1.11)
and the phase response.is defined as:
_ _ -1 ImH(z
B(Ul) = B(Z) _ J(UT = tan WE?% _ _'](.UT (1.12)
~z=e z=ge
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The group Jdelay of a filter is a mNmeasurg 0L average
spatial or tiwe delay as a function or frequency. The ,group

delay 1s now . defined as:

T(w) - é wa ' | ‘ ' i . | (1.13)

T( w) can be expressed 1o terms of ii{z) as:

(1.14)

) R[meﬂm]

2=e3mT .

+ The maguitude LCespadse and the‘ qroub delay for two
dimensional filters cdn be defined 1in a manwerl similar to
the one dimensional case. For a two diaensional filter,
there exist qroup&'deiays in each of the spatial directions
and are functious of both the_spatial trequenc@és.

consider a two dimensional filter .. transfer function
expressed in a roram similar.to {(1.7) as3

H{zl.zz) = |H(zge2,) exp (i 8(2,25)) - S S ER & b

AS berfore, the magnitude response is defined as:’

|H(wl;w2)\ = |H(z1,z.2)|\ :
Zl ¥

~eJunT
zz=ejw2T |
‘ | (1.15)  °
2 b
= Re {H(zl,zz)} + Im {H(zlazz)}" )
1, =ejm1T

1°€"
22=er2T“
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“and the phase respogke defined as:

-1 Im H(zl,zz)

», H(wq,w,) =H(2y,2,) .. = tan |
1*¥2 . 1272 zl=e3m1T Re H(zl,zz) L - jo T
. ]
zz=e3w2T _ju T
Z.,5€
] 2
(1.16)
The group delays can now be defined as:
BB(wl,wz) _
‘rl(wl,wz) = = '_—_B_LUI—_ (1.173.)‘
| 28 (wy,0,)
T, (0g,0,) = - —w, (1.17b)

Tl(wl,wz) and Tz(wl,mz) can be‘expressed in terms of

\ .
the two dimensional filter transfer function H(zl, 22) as:

z 3 H(z,,24)
= - . 1 . 1*°2
Tl(wl,wz) = Re H(Zl,zz) 3 Zi- :} l . leT
z,=e
1 Ju,T
2,°¢ (1.18a)
. 2, 3 H(zl,zz] ‘
TZ(mlswz) = - Re H(zl,zz) : Bzz jmlT
zl—e-
; =glW2T

(1.18b)
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1.3 '
IMPORTANCE OF PHASE IN 1-D AND 2-D SIGNAL PROCESSING
It is proven that for many imayes, the phase or thae
Fourier transroru 1S MmoLCe iwportant than the magnil-

tude (37,38). Specifically if,_

F{u, v) =l F(u, v) | exp(B(u, v) )

denotes the two—dimeusxonai.Fouriur transform of an image
£(x,y) then tae inverse Fourier transform of B(u,v)has many
recognizable features in ‘coﬁmOn witn .the oriqihdl image,
uhcréas the inverse Fourler transiorm of lF(u,v)| gencrally
bedrs no resemblance to the oriyginal imagea fluang (38) il-
lustrated thls tact oY modlrying an image gucu that tne
phase 1S pr95erved but the wagnitude of_all the spectral
components 1s set to unity and the inverse Fouriéc transforn
was coaputed to obtain tane phase-only equivalent imaqe.‘ The
puase—dnly image clearly retains ﬁauy'ot the features of thne
original. But gontrast to the magnitude-only iméqe, i.e., the
inverse Fourier oi tae {F(u,v)l would have a sgall triqht
region nearc the oriqln i1 a dark bacxground with no resea—
blance to the original image.. 1t was evident that the
pihasc—-only image often has the guneral appearance of a
high—pass filtered version of the original with -additive

broadband noilse.
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"Oppenheln ét al. {39}, carriéd out a similar experi-
ment with speuch W1th 51m11ar results. ;‘Speﬁifically, fhe
maqnltude of the Fourier transrorm- of an entlre bentence was
' set to unity -and the inverse transform was cowputed to ob-
"tainrthe phase—onl?wequivalent speech. The specérdqf&m-of
the original sentence dnd the spectroaram of the phdSe—ouiv
equivdlent shows taat the basié formant structure of the or—
_iqinél seHtence  hds been preserved. It was also zeportf
ed {39) that by listeninq to - the processed sentence a tbtdl
lntelllqlhllltY 1: retained dlthouqh the speech has the gea-
eral qualltv dSSOCLated with high-pass rllteLlnq and thL &n-
troduction of_additive uncorrelated noise.

The pré}ious'di3cussion, shows that the design of re-
cursive digital filters that approximates both magnitude and
group delay responseslis Gr greate inportance in soRe appli—_
cations ia both 1-D and 2-D signral ‘processing.

In tais tnesis the desgin of 1-D and 2-D recursive
digital filters witn or without liunear phase Cnaractefistics

based onh 4 new §tauilitv test is introduced.

1-4 SUMHMARY OF PREVIQUS HORK

Within the past decade vast amount of papers have
been publisned in the area of filter design and stability ot
one-dimensional and two-dimensiondal recursive digital £il-

1

ters.



b3 Since the concernu is on the design of 1-D and 2- e—
curs;ve;diqitdl'filters. based on a new stability tes
overview of rfilter design methods in botan 1-D ard 2-D’is

gliven.

1.4.1

£Esign of 1-D reéuréive digital filters
Generally, tunere are two approaches to the design of
1-D recursive digital filters, namely indirect ' and direct
methods; In indirect methods, one of the classical analoy—
filter approx;mations { e;q., Buttervorth, Bessel, Chebysh-
ev,’ Elllpﬁié} 1s uesd to qeuerate an auaioq tfansfer funq-
tioq thbh .15 subsequently discretizedlbv tne-use ‘o[ any
trgnsﬁormation technique {€.g., bilineatr tcansformation, the
invg:iqnt impuise responsé, matched z—-transforn) (2). Amanq
the techniques'ﬁhdt rall into the cateqoryrot direct digital
IIR ueéiqn are magnitude-~squared rfunction design - and tiame
domain methods (14). In mdqnitude—squdted ﬁuuction design
the wmagnitude-squared oﬁ the filter transfer fuﬁction is ex-—
pressed as fne‘ratio of two triqndmgfric functions of w and
by suitablevchoice of the Eunctipns, various types of diq%f'-
tal filters éan pe desigued to maﬁch prescribed characteris;
' tics. Tnis technique is readily extendable to several other
classe§ of filter:s directilv(i.e, without fhe use of fre-
guency transiormation technique) "and need not be restricted

to lowpass filters (14). The diificulties with this techni-
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que are tworold, ‘First, d Suitable rational trigncmetric
polynomial must be tound to pgovide the desired filteringqg.
Secondly, the magonitude-squared rfunction must be factored to
findlthelpoles and zeros. This fractorization is yepnerally
nontrivial and therefore makes this a complex filter design

met hod.

Burrus aud PdER;(15), Lropiiy and Salozar (16i, have
. ’ ) g

shown that it is possible to: design an IIR filtep wvhose ia-
pulse respoase ;proximﬁtes 4 desired impulse response. Un-
fortunately, since this method involves only time domain
copsiderations, the resulting frequency domdala approximation
to the £f£ilter stoppband 'résbonses {wvhere a 40—&5 stopband
loss is desired) 1s generally unhacceptable. The filter
coefricients obtianed by tnis technique, however, may often
be suitable as an inltial queés to mére sopaisticated cptim-
ization algorithas tqf desiqgqning -IIR filters in terms or
frequency response specifications.

-Another approach to the desiqn of 1IK can be classi-
fied as optimization method. In this;met@od .the desired
discrete-time transier runction is obtained directly from
the given specifications through the use of an iterative
method ;dsed on lineaf or ncn-linear programning (17-20) to
minimlze SOM¢ e€FCOrC criterion subject to the appropriate de-.
sign egquations. In tne case o1 existing recursive digital

filter design tecnniques, the linear phase is realized via
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qroup de¥ay equalization (14,26), where a non=linear optimi-
. n . - -

zation prqpedure is enpgloyed  for the ipproximqtion; Thg
overall design procedur{lH,Zb) involvés two stéps, the #p-
prbximation of_‘maQnituea folloved by group délav-equaliza—
" tion which compénsates ;or‘the non-linearitiés‘in the phase

response or the maynitude only filters. This method requi-

erCs two phases ot optimization which is proven to be time

CONSURLINGa

g

1.4.2

Design of 2-D recursive gdigital (IIR) filters

The &fea oi 2-D recursive digital filters design have
becen o1 qréaﬁ interest to manf researchers over the last de-
caded The first design. method tor-2-D (IIR) filter 1s due
tOo EBale. HALL (21). e introduced the sepirable rroduct
techniqﬁe which enables the design of any Two-dimensional
rectangular cut—-oft boundapy type filter by the use of two
oneQdimensional recursive filters in cascade.

Shanks et al. (10} introduced the first transtorma-=
tion techpnigque wialch takes-a stable {1-D) analog filter and
uses a £rdnsformdtion to rotéte the amplitude resgconse 1in
(2-D) . A pi~linear transicrmation is then used on each va-
riable to produce a (2-D) digital transfer tunction. Howev—
er, there is no guarantee of stability and the approach suft-
fers f;om the warping eftfects of tae bi-linear

transformation on the frequency rCesponse.

1
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Costa and venetsanopculos (22) devised a method of
using this approach to produce circularly sywanetrcic filters
while quaranteéinq the stability. However, tueir technigue
'produces filters_of'hiqh crder.

The trdusrormgtion technique due to AcClellen fol-
lowed by a dzcomposition techunique due to' Pistor {23) was
used by Bernabé et al. (24) in ordér to obtain four one-
qugdran£ recursive digital f£ilters. OLbviously tne filter is
inefiicient fLrom the point orf view of thé numbef ot multi—l
plicdations per saﬁplé.

Anotaner appreach 01 the design of 2-D recursive digi-
tal filter is the digect design.y ﬂérid dud Faumy (25,20)
developed 1lp design technligue to dﬁproximate maqnitudé and
droup delay reséonses. The technique 1s an extinsion of it-'
erative teéhnique Lor tune d?siqn of recursive filters due to

Deczky (27).

Aly et al.(28) aund chotterda et al. (29) intreduced
linear—proqramming drproach tor the design of 2-D (1I&) £il-
ters that appreximate the magnitude respouse as well as toe
group delav. The advantage of this techanique is its spead
and that the global miniﬁum 1s cbtained through the aoptimi-
zaticn process. However, 1t regquires miniamizaticn of a
weighted error functiou(untcue ercror) rather than the real
one. The memory requirements are large due to the lncreased

number of paranmeters, the stability constraints used in (29)
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were only sufiicient conditiofis, hence the designed filters
belong to a subclass of stable filters.

Multi-variable natwork theory has found application

in the design of two- and multi-dimensional recursive digi-

tal filters. Ramamooctay and Bruton (30) have shown how a
2-D -recursive digital filter can be designed by usiJh the
properties of the immittance function of a lossless fregquen-

cy independent (nl1+n2+1)-port network having nil-porcts termi-

_nated by sl-type capacitors, the next pZ-ports terminatad bly

G

s2-type Capacitors and the remalning port by a resistor.
This technique, houever,l has tailed to deal w#itu the rpossi-
bilaty of existeﬁce of 2-D transrfer runctions having poles
with non-essentiail singularities of the.second kind which
could resﬁlt in unstable 2-D diglital filters.

Ahmadi and samachandran (3i) modified phe above teca-
nique by imposing the constraints for a 2-D SHP strict
iiurwitz polyndmial) to bLecome a VHS? (very strict hurwitz
polynomial) as peunalty function (32) in the process of op-
tlmiiation thereby Juardnteeing the stability. However, tuis
metnod bears heavy coupututional costs; The generation of
YySHP was rfurther investigated (33,34) to ensure that the
denominator of the filter is always a ViSSP, to avoid the
uncertainty of the metiod (35) and also does not required
any constfained aptimizaticn method (32) which results in

considerable savings 1n computational time.
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N

Charalausous (35Lshowéh that the design prcblem or
2-D circuldrlv:symmetcic Qiqital tilters can be simpiifved
if separable denominﬁtor transfer fuanction 15 used and that
many userull filters can stiiL_be ‘designed. At the end of
the optimization process the location of the poles 1s
checked land the polé inversion technique due to Steig-
litz (36) 1s used to replace any pole,outsidé tue unit circle
with its mirror—imaqe with respect to the unit circle. This
technigue redﬁces phe Staplility problem. from 2-D case to 1-D
case and reduces the numper of variables be (n?-1) where n
is the order oi the rfilter ‘hence, it requeires less compu-
“tdlonal tinme. Due to the useo; role inversion technique tae

linear-phase can nst Le oltained.

1-5 '
HOTIVATION AND THESIS ORGANIZATIO

In the recent years the design of sStable recursive
filters has been and is still beiny carried cut due to the
facts that recursive flilters ofﬁef greater speeu of filter-
ing, smaller wemory regulrements and easier implementation
coupared tol nonrecugLsive filters. In wmost of the design
techniques of 1-D recutsive digital rfilters using the optim-
ization meihods the stability of the designed f£ilter can be
qua%anteed by replacing all possible poles which 1is placed
outside the unit circle hy its mirror i1maqge with respect to

the unit circle, nence, . stabilizing the designed unstable
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filter. The | main dfdubaék with this method is‘.that the
‘phase respanse of'tne filter in not invariant under this
méthod. In this thesis a method for the design of 1-D re-
cursive diditdl f;lters with or without lineac phase charac;
teristics where tae stability problem is avoided through thue
use of 4 hew stability criterion is presented. . The method
was exXtended to the d@siqn oL a class of 2-D [filters with
separable denominator transfer function. - Both the dencmina-
tor pelynomials satisty the neRessarcy aﬁd sufiicient condi-
“tions for a'polynomidl to have all its zeros inside'the unit
circcle. Hence, the stability oir tne desiqned filter is en-
sured and testing i1t 1is not necessary which reduces the cqm¥
pution time ({also due to the fact tnat the nuaber ot "the va-
riables is reduced by n+3 yhere n 15 the oraer of tie
filter). Also approximaticn of magnitude as well as group
delay response i3 ‘new possiole  since  the pole inversion
pethod is not used. A prlméry result of tone p:opqsed method
1s reported in{42-u4d).

Chapter 2 discussaes the stability‘ of 1-D and 2~D re-
cursive digital rilters , useful definitions apnd theorens
are given, Chapter 3 discusses the deslign of 1-D recursive
digital filters, tnén, a direct desiqgn approach is present-
ed. In order to illustrate the usefulness of the method sev-
eral examples are Jgiven. Chapter 4 discusses the design of
2-D recursive digital f£ilter. A desiqn method of 2-D filter

u5ing Separable transfer runction 1is introduced aund several
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examples are shown in order to illustrate the usfullness of
the method. Chapter 5, the rinal caapter, is the canclusion

of the thesis.

"



Chapter II

STABILITY

Generally the term stability is used to indicate that
_donvolviana fil;er with any bounded input sequence of num-— .
bers always VLelds-a hcunded output seqguence oL nuphers.
Since, as 1t can be seen rrom Bgn. (1.3)  and Eqn. (1.4}, in
recursive Lilters the past,odtput values dare used in calcu-
latinq the present oune, Such value can 'become‘arbitcdrilv
large irrespective of the size or the i1rput values. There-
fore, Cecursive 1ilter§ may by unstable. In this chapter,
definitions for the stability 'of 1-D and 2-D systens are
qiveﬁ: Hethods for testing the stdb;lity of recursive digi-
taf/tilter§ are discussed. Then a wethod rox qcnaLatihq a
polynomidl haviug all 1its zeroé -iusidé the unit circle 1is

Jivell.

stability of 1-D discrete systen

in order to understand the various conditions
and tests ror stavility some definitions must first ke de-
rineda These derinitions will be first made for the 1-D

case then the same can be extended to the 2-D casea
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Definitiou 1 : A function i{n) in one variable n is said
to be absoclutely bounded 1L and onl{ 1f :

‘i(u)l ¢ M K

Definition 2 : A function i(n) in one variable n is said
to be absolutely bummablu if and only if :

Z]x(n)| < v
for all integer leUEb of n unuré m and N
arCe positive real numbers.

-~

One kind oﬁ‘stauxlltv to consider is bounded input
bounded ?u;put stanility. A system is said to bg BIEQ sta-
ble if and only it for any bounded input, the output is al-
ways bouunded.
rne restriction to be placed om tne.filter's iopulse res-
pPONSE h(n) to ensure that the output of tae av tem o {n} S
also absolutely pounded can be derived by expressing the
output o{n) as the cuhvolutioﬁ of the input i{n) and the iam-

pulse response h{nj}.

of) = ) h(p) i(-P+1) ceceemamecccasaaas(2.)
p .
and Ly 4pplying Scnwarz's inequality, gives :
l o(n)l < E "h(p)‘ 1 i(n—-p+1) cemcanenwwa{2a2)

but since li(n)t < M for ail integer values ot its argqument,

the inecquality reduces to
X ‘o(n) ‘<:1'): \h{p) I

shich restricts the i1mpulse response to an absolutely supma-—

ble function. So tnat, if the 1npulse response h(p) is ab-
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solutely sumbable, aud‘the-inpdt i{n) is absolutely bcunded,
thefi the output o(n) 1is also apsolutely bounded;

another kind of stability is summable input, summable’
out put [SISO); A systea is said to be SIS0 if and cnly if
for any‘summdble input 1({n} the output o{n}) i3 4lso summa~
ble.
flere again the restrictions on the filter's impulse response
h{n) can be derived througqh applvinq.Schuarz's inegquality to

the convolution sum of equation (2.1}.

+

o(n) =} h(p) i(n-p+1)
P

1 lo(m)|

§ 1ih(p) i(n-p+1)|
n np ‘

<31 thp) litm-p+1)]
np
< N Ylh(p)|
p

Phererore, a lecessary and surricient condition for stabili-

ty is:

H~18
o

[h(p)| < = (2.4)

where n{n) is the i1mpluse response or the given filter.
FIL filters satisfy the above conditions, sSince their

) «

inpulse respouse 13 defiped only over a bounded linite,

i.e., h{n) is defined ror K < n < 4. However, 1n the case

of recursive rilters, the impulse response is uabounded and
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in order to meet tne stability criterion, it 1is redquired
that poles of tine transter function be inside the unit circ—

cle.

Thus given an IIR filter:

(ORS ol

a(n)'zn

o

jwT

=Z| 1=

b(m) z™

ip

=

in order for this to be Stablé, the singularities {( often
referred to as zeros) of B(z) should be inside the unit cir-
cle in the z-plane. Therefore, in desigring recﬁrsivg fil-
ters or tne form given in (2.5),proper étability constraints
aave to be ipmposed on tne coefficients b(h); so tuat the zZe-
ros of B(z) lie 1unside the umit circle in the z—plane.
Hetiods are available 1in the literature reqarding the

location of the rLoots orf a polynomial an & wWithin the unit

circle such as  Schurc—-Cohn (1), Jury test {2} + the 1nners

test {(3), the use off Lnverse bilinear transrormation (4).
Alsa, st%Pility tests nave been formulated based on tne 2=
domain céntinued fraction expansion (6,7) relative to the
bilinear function z-1/z+1 or in terms of (z-1) and (1—51)
ractors (8); IBaSed oh Schusslert!s theorea (5) wramachandran
at ai. {3) pcoposaed a4 new stability test and sone necessa&y
conditions tnat have to be satisfied by the denominator po-

lynomial of a stable i-D\discrete systen.

.5)
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'Recently, Schussler (5) formulated a set of conditions to

" determine the stability of -a discrete system, it can be

stated as rolows :

Schussler's Theorem:

Let D(z), a polynomial ox degree m having

real~coetficients, be descriped as:

m m-1

D(i) tap.q 2 +es=ast al z + @0

[}

d
m -
= ¥ aj Z' e cmcecnmamnenaaaw {2.0)

where a, is always positive.

D(z) can be decomposed as the sum.of the mirror-imayge

poiynonial,

. m - 1
Fqlz) = 120 D(z) « 2" D(z )]
and the anti-mirror image pclynomial,

-1
Fa(z) = 120 D2y - 2" Dz )]

For D(z) to have ali zelos inside the unit circcle, the ne-
cessary and sufficlent conditiong are :

(1) The zeros of Fy(z) and F,(z) are located ‘on the
unit carcle,

(ii) They are siaple,
(111)- They sceparate eacn otner, and

(iv) |a0/am|< 1
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The proper;ies df Fl(z) gpd Fz(z) were studied by Ramachandran
~and et al (9) in order to generate a 1-D polynomial of order m
which has all its zerd; inside the.unit circle, it has been
shown that such a polynomial can be obtained using the foilow-

ing rélationship.

case (a): (m even)

\

| : o 2 n-1 3
"~ D(z) = KeT—]' (z°+2a; z+1) * (2 -1) '1—11' (z% +28; z+1)
i=1 , i=

(2.7)
'n = m/Z,IKe >1 and 1 >0y > 8y > 0y°? By v > BLq
> a > =1 (2.8)
case (b)) (m odd)
| 5 n 2 n_2
" D(z) = KQ (z +1) £=£ (z° + 2ai z+1) + (z-1) l=l(z +ZBi z+1)
' ' (2.9)
K >1, 1>a1">sl>a2>82--->an>sn>-1 (2.10):

-

This method of generating m order polynomial will be used

later in the proposed design method. *

2.1 :
STABILITY OF 2-D RECURSIVE DIGITAL FILTERS

The stability of 2-D recursive digital filter is deter-
mined by the coefficients of the denominator polynomial
B(zl,zz) of the z-transfer function of the filter.

The same defihitiqn for absolutely bounded and absolutely

2=D case in two variables, and th reéfriction on the impulse

-

summable defined for the 1-D casi;iii;;asily extend to the

response can also be derived by applying Schwarz's inequality

to the convolution sum as follows.
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e -..Io_Lm,_I_l_)Al;_Sugl_ pi‘“_.|lA1h(1-3.1.p2) Hi(m.-Pl-rl', n‘-Pz+1)| 1211

and if the input is absolutely boﬁﬁaed:'ile;;
Ii[ml, m2)| S M<ew

for all integer pairs of its arguments; then

,om)| s M h(py» P,)
.|0(T1 my)| % g I} I P1» P .

‘which again restricts the ippulse %ésponsé to an absolutely

summable function. Tue samne pbogedure can be follbwed to
derive the restriction Lor .rsuwmable input sSumpable output

stability.

lHowever, tcstinq"the‘Stability then is difficult due

to the fact thdt.the fundamental theorems of algekbra is not

applicéble to tup4varidhle tunctioas; namely, the dencmina-—

‘tor factorization is not always possible and hence testing

the stability by finding the poles of the z-transter func-—

tion as in the case of 1-D, 1s not possible. The first sta--

bility test introduced by Shank (10), -is a direct extension

of the conditions -for Stability in the 1-D casc to the 2-D

case, which can be stated as follows;

Shank's Theorem: '

Given that B(zl,zz)' 15 a polynomial in (zl.zz), for

the coeificients or the expansion of 1/8(21,22) in a posi-
tive powers of zl and 32' to converyge absolutely, it 1s ne-
cessar?‘and suffic}ent that B(zi,zz) not be zero Eorl 211
and {zz.lsimpltaneouslv less than or equal to one.

[N

£
L.l’r"
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.B(Zl, 22) "76 0 /-\'

i 1

i.e., for

Stated another way, the theorenm

‘-JleES"(Eeﬁl or coaplex) . _of 2y

zero, and for which zl and z

or equal. tp one in mdqnltude,

will be unstable, L1f there are

, are blMUlthEOUolf lass than.

s
|zll > 1

says that if there are any

2 tor wiaich B(z ) is

1%

then the filter 1/B(z

1
Will be

rzz)

not the 1/8(41,22)

stable, unfortﬁnately, testing the stapility using Shank's
theorem is very tedicus to apply since, for each particular
‘value of o
z. =20 e d cyuation B(z o, ) = 0 has to be solved
1 1 1 1 =2 ;

for zé‘and that

large number or points in dl).

This theory W4S Lurther simplified by Huang (11)

ercome the difriculties associated with 1it.

{
fication leads to the
Tne system is stable il and only

The maps of d

#5as to be repeated for'ali

{ in practice a

in order to

This simpli-—

‘tollowing two conditions

ik,

1. 1 2 (zl;lzllzlJ in thez2 pPlane, according
to B(zy,2,) = 0 lies outside (22%|22| 1) ; <
2. HNo point in dq= [zl}lzll < 1) maps into .the pointiz, =0
by the relation B(zl,z2 y = 0.

Even thouqh, duang?

be easier but involves an infinite

1s still not simple to apply.

s Theorem could modify Shank's theoren to

nenber of stepsv it
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5tability of 2-D filters. Anderson and Jury (3,12)

and also Maria and‘Fahmv (13) sianplitfied tuaese results by
putting thé Stability in terms of the root locations or po-

sitivity of & set of . polynomials in one variable. While

this represénted a considerable simplification, the proce-

_duﬁe‘;sfstiLl computationalily dirlicult except for lcw-order

cases(3).
As it could be seen from the previous discussion that

Stability of 2-D rilter is not as simple 'as the case of 1-D

.and stabilizing the unstable filter is alse more complicated

than that or 1-D. This prcblem and diificulty can ke avoid—
ed it the following assumption is made, that 15, the denomi-
nator peolynomidl cun be expressed in the separanple product

form of two polynomials on in each variable z and 22.



~Chapter 11T
e

DESIGN OF 1-D BBCURSIVE DIGITAL FILTERS

INTRODUCTION

Contrary to some pcpular heliefs, a gredt deal of 1-D
recursive digital filter desiyn does not depend intrinsical=-
ly 6n continuous- time filter design but instead pakes use
of the wide body of kncwledge that is available in the 1lit- .
eréture on Lie design of such fllters. Instead or redevel-
oping the theory(i.e., crestructuring the mathematics to the
case of digital filters) tor digital filters, siaople méppinq
procedures can be used to transform filters in one domain to
fliters 1inu ﬁhu‘otner domain.

~— .

A second mechod tor designing recursive digital fil-
ters is direct closed rorm design in the z-plane. Begiuning
with the desired cesponse of the Lilter, one can often de-
cide where to plage pole3 ana zetoé to approximate this res-
pORSEG directlv(ld).? A third way in which 1-D recursive d;—
gital filters are oiten designed 1s by ‘usinq optimization
procedures to place poles and zeros at appropriate positioons
in the z-plane to approximdate in some sense the desired res-—

PONSE.



3.2 1-D BRECURSIVE DIGTAL FILTER DESIGE FROM CONTINUOUS-
TIME FILTER -
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The most popular technigue ror designing 1-D filters

is to digitize an analog filter that satisties the desiqgn

speci fications. There are many techuiqugf for designing

«dnaloy prototype rilters when the specificatiuns are of tne
\

form ot a loﬁpdss, bandpass, highpass or bandreject fllLLL.

Among the well—-Known analog filter classes are the Butter-

wortn, Bessel, Chebyshev and Elliptic filters.

AL analoyg fti1lter transter function can ue written as:

N
l=

Hy(s) = 55) © ;
TT

The most widely used Procedures for dligitiziug the

transfer function of Ey. (3.1) include,
1. The 1nvariant impulse.;rdnsformation.
2. The nodified 1nvariant impulse transforcnation.
3. The matched z-transform technique..
4. The bilineal transformation.
In the next section each pf thesé techniques will

brierfly discussed. '

be

.1)
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. 4

3.2.1

Invariant Impulse Transformation

T he charactefistic rtoperty of this transitormation is
that the impulse rc%pouse Of the resultiny digital filter 1s
a sampled Vers%on\ oL the analoq'ﬁilter's imnpulse rLesponse.
Iu order to understand tais method consider an analog filter
H{s}, .a corrgspondiﬂq digital filter, represented by H(z),
can be deEiv;d bf usiny the ﬁollowiﬁq procedure.

1. Deduce h(t), ‘the impuse respoanse of the anaqu'fil—

ter.

2. Replace t by uT in h{t).

3. form-ﬁhe 2=-Trausicrm of h(nTi.
Advanéaqes‘of this method are that a stable analog rfilter
yields to a stable diyital rilter, also the dehomindtor's
deqree 14 H(Z) dau not exceed the numerator degree énd H{z)
13 therefore realizable. This method preserVes'the'pha§e as
well as the loss cnaracteristic of the analog filter. How—
ever, alidasing eérotsthend tb cestrict fhe'invariaut—impulse'
response méthod to the design of allpole filters. The bmigh-—
er sanpling frequency ﬁives better results hecause aliasind

errors are less pLonounced.

Hodified Invariant-Impulse response Method

N\
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A modified version of the invariant-impulse response
.can ke applied to filters with finite trdnsmlublon Ae:os.

Conblder the transter Lunctlun

HA(s) H T—F - s:)

HA(S) = =gy = — : (5.
. 1_I' (s - pi)
1=1
HOHAl(s) |
. HA(S) = T (s - = - - - - (3.
where,
MO Hy (s) = =
B(S) 2 B(s)

The design can be acconplished by using the following Eroce-~
dure.

1. Find the poles and residues Of'HAl(S) and HAZ(S).

2. Form Hy (2) and H (z) using invariant-impulse res-
- D1 D2 TR
pouse method.
Al(z) Bz(z) . )
HD(Z) - A, (z) B, (2) ' (3
3.2.3 . o
Matched z-Transform method

An alternative abproximatiqﬂ‘method for the design of
recursive diyital iilters is the so-called nmatched Z-trans-
formatiou.

" in tuis nethod, qiven @ ccntinuous~-time transter function
like tﬁdt in Bqn. (3.7), a corresronding discrete-tine trans-

fer runction can be formed as

Z)

3)

.4)
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M
. '7 ' L -|“1|
Hy(z) = (2+1) 7 —=
TT

-where L is integer.

3.2.4.

Bilinear-Transformation Method

The bilincar transfermaticn is a simple contoruwal

.

fappLny Lrom tne s—-plan2 to Lo¢ zZ-plaune waich preserves the

fesirted aelyebraic rorm, it 1s detfined by

wn

)
ST
[t Il o]
+

The nature of this pappiny is-that the entire jw axis

in the s-plane is wapped onto the unit circcle; the lett-hand
s-plane is‘mapped.lnside the unit cicélé in the z-plane and
the right-halt s?plane'is majpped outside tne z-plane unit
circle. It also nasrthe ploperty that realizable, stable
continuods systemhs are MALpPed to rualiiahle, stapnle digital
systed. One disudvantaye of thlis techniyge is that the fre-
Juancy respbnse of the continuous sysfem Rust pe piece—wise
constant to compensate tor tue eltcctﬁ or tue nonlinear re-
lation between analogq and digital frequencies. Also-neither
tne 1mpu1;e resyponse  nor the énase resgonse of
the anialog rilecer i phesérved in a Jdigital filter ottained

Ly bilinear transitormation.
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DESIGN OF 1-D RBCURSIVE DIGITAL FILTERS BASED ON A
NEW  STABILITY TEST.

-

lLinear and non-linear proyramming procedures are-;rg—
guently used for the.design o1 recursiye digital filters.
The stabiilty of the dgsiqned tilter can be qguaranteed by
ceplacing all bossible ﬁoles which are placed outside tue
unit circle by its mirroﬁ 1nage with Trespect to the unit
circle, rhence, stabilizing the designed unstdble,filﬁer.
This stabiliédtion procedure, however has .a drawback, which
is, the phase response of the ﬁilter-is not invdariant under
thiis stabilization preocess. | I; the method to be presented
in tiis thesis this problem nas been avoidéd through inpos-

ing pecessary and sufrficient conditions on the coetficients

of a 1-D polynomial of any order to have all its zeros in-

side the unit circcle, based on a new stability test (9)

throughout the optimiZatian pLoOCesSsS.

3-3.1 '
Generation Gf 1-D Stable Polynomial

1
pased on Scuussler's theorem , Ramachandran and Garcg—
our Showed 1in chapter 2 that a ~ 1-D polynomial of crder m
whiich has all its zeros inside the unit circle ‘can Le gener-

ated using the following relationsihip.

£
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Case (a): (m even)

. n 5 ' 2 n-1 '
D(z) = K, 1:;[ (z° + 20, z2+1) + (z j‘l) TT (2 + 28; z *+1)

i=1
n (3.5)
with K, > 1 and n =

| 3

and c0nditionf'1 > al'>'Bl > e, > 62 --e- > 8 > a, > - 1(3.6)

n-1
Case (b): (m odd) | | T
n 2 . n_o,
D(z) = Ko (z+1) | (z°+2 . z+ 1)+ (z-1) [ I(z + 2 i 2 +1)
i=1 . i=1
(3.7)
with K, > 1 and n = n1£ 1 )

»

3-312 . t v
Formulation of The Design Problem
3-3-2-1 ) ) ’
Approximation of The Magnitued Response QOnly
Since 1-D polynomial on the form. of Eqn.{B;S) or
Eqn. (3.7) is shown to have all its zeros imside the unit

circle if conditions ojf Eqn. (3.6) or Egn. (3.3) respectivelv
15 satisrfied. Bqn. (3. 9) or ign.(3.7) 1s assigned to the
denominator of a 1-2 transter function. The error hétﬁeen
the ideal and the desigred magnitude response of the 1-D

fllter is calculated USing the relationship.

) © jw T jw T
EyQuwy, n, o, B) = Hyte ™ )l— l Hy (e ™ ) (3.9)

AN
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where EM is the error of ‘the magnitude respouse and 'HI|and
are qg@nitude response ot the ideal and the desiqned‘tilter
respectively. The calculation of the cost function using
Eyn. (3.9) could pe obtained using any su;tablé eLror’criter—
100, Among the nost widely uséd error criterions,

1. The least mean squared error‘cciterion
This errorc criterion calculates. the cost Ffunction

using the following relationship.

2. The Minmax error criterion
In this case tie cost funcg;;; to be minimized L1s
the maximum error in tne passband and  the stopband,

waulch can be expressed in tne rollowing relaticnship,

> .

EpinMax (%> 2s @, B) = Max “Em(j“’m)” G

mel
ps

dhere IpS 1s the set of ‘a;l discrete pointé in the passband
and tne stopband orf the 1-D filter. . Now .any suitable noa-
linear optimaization techuiqué can be used to calculate tho
parameters orf the 1-D filter's z-transfer tunction in such a
way that the cost function 15 minimized subiject to const-

raint of Bgn. (3.6) or Eqn.(3;8). This constraint optimiza-

||

.10)

11)
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tion problem can be transicrmed to an unconstraint optimiza-

tiou problem by the use of variable substitution method.

4
3.3.2.2
Variable substitqsion method (45}
Since, the polyncmial of order m on the form of

Bgn. {(3.5) or &qn. (3.7) asgighed to the denominator of i}D

Lilter's transter function, must satisf{y the constraints,

Case (a): (m even) :
1>a1>81>012“> BZ——--> Bn_1>(l > =1
Case (b): (m oad) ‘ )

. - e - > > =
1 >ap;>8) >ay > B,y > %y . B 1

A variable substitution can be used - to ensure that--the
conﬁtraints Will always Lbe satisfied through the'optlmiza—
- Lion process, heﬁce; tne resultiﬁq Lilter is.quaranteed to
\\\\ be stable. Tae ' following variable substitution is used
\\\<\(fbr the.case ét even order), | |
‘ 2

“_\l.\ ' - 8 1 -
i AN Cos T e

-

—

=
1

e 2
"(61 + 82 + 63 _] . .
a,.p-cosme (3.12)
: 2n-1 |
: - 1 .84
i=]
a -

cosm e
1
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Now any unconstraint optimization umethod cCan be used for the
calculation of the neu filter's coefficients n and to min-

imize the cost function B2qne. {3.10) or Eqne. (3.11) -

3.3.2.3
Approximation of the naqnitude and Group Delay
Response

The error bethEn the iﬁeul and tne designed yroup
_ delay cespoﬂse of the 1-D filtervis calculated in the same
ﬁushion-the errd; of the maqni;ude response w;s calculated
using the relatioasalp,

o jup T .
E (jwm) = Tfr-xtw (e ) . (3.13)

T
w

L] .
wnere Ty is a constant rcepresenting the ideal group delay

Lesponse of the filter aﬁd its value 1s chosel egqual to the
order ot the fiLter (27} and Tm i3 the group delay response
of the designed filter calculated as shown by th.(1.14).
The General cost ctfunction for both the maqnitude and group
delay can be calculated using either the leas£ ﬁean squarced
error cciterion or tpe miﬂﬁhx\g;xbr crife;ion,

The general mean sduared _error EG is calculated using:

Eqn. (3.9) and Bqn. (3. 13) in the following manners

Bglo, o £o ) = 1 By Gupd v 1 B Oen)
. mel 0 ;
Ps pPS
(3.14)
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The general minmax arror E , On the other hand, can ke cal-

culated from the samne Lwo equations 1in the followinyg mahper:

. me I

EG(jw,_g; B, n) = Max.‘ Ma x \E (]m )\ Max lE (jw )[1
' Ps. _ 'p

vhere Ips is the.set oE  all Qisgrete pqints in the passband
and stopband'gnere.lp is;tbe.set of all polints in the pass—
band ot-th; i-D filter. Aqain to deulqn a 1-D ﬁilter‘satig-
vlnq pEEbbleed mdqnltudL aand coubtant group delay repon
., Q{ n should be calculated in such a way that Lg is miniwm-

ized subiject to constralnt ol Eqn.(3.6) or fun.{3.8) . Eg

can be minimized elther py utilization of any suitable non—

linear optim;z@tlpn routine witn linear constraints or to
)

transiorm the proplen to an uncoustraint one using the vari-

able substitution netihod previously discussed.
3.3.3 Design Examples

Tn order to illuét:ate tae usefulness of the frroposed
nctnod,- ral exampltb ‘of recursive digital iiiters satis—
tying a prescribed @aghitude response with and without couns-
tant group delay chnaracteristics were designed.

Iin the E£irst example, design of a lﬁwpdss £ilter with the

following aaplitude specification 1s required.

The order ol the [ilter 1s considered'to be egual to four

and the comstant grLoup delay cnaracteristic is .not reguired.



: 1~ for 0<|w|<
v (i) | = o ,’
0 tor 2.5 <] w | < S5 rad/sec

3

"where the sampling frquency = 10'rdd/SeCs
Table (3.1) shoug the valueé_bﬁ N, o and B of the filter's
transier functiod‘obtalned- be iﬁinimizinq the leasf mean
square error Eqn;f3:10) while Fiq.(3.1) shqwé thelmadnitude
response of - the desiqngq tilter. ‘The stdnility of the fli—
ter: can be seen from the locations of the ploes in
Fig. (3.2). Table(3.2) shows the values of the zeros and
~ ploes of the filtecjs transfer function.

Tﬁe second example'desiqus a4 bandpass %ilter with tne
fallowing umplitude épeclﬁication, >

«5 radssec

. 0 for 0 < Iwl < 0
|H (ju)l ={1 for 2 < Iwl < 3 Lad/sec
0 for 4.5 < IwI < 5 rad/seca.

where the sawopling frequency = 10 rad/sec.-

»

Again-the order of the filter is COnsidergd to be equal to
Lour and the constant group dglav.characteristic is not re-
quiréd. Table (3.3) snows the 'values of n,ra and B of the
filter's frdﬁsfer function.while-Fiq.(B.B) shows the magni-
tude response of the desiqned filter. The filter caﬁ be
‘ghoﬁn to be stable by the 'lOCatious of the poles in-
Fig. (3.4) ., Tghle(j.d) shows the values of the zeros and

ploes of the filter's transfer function.

a
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o

In the last example a lowpass filter with following

amplitude specification is designed,

: 1 for 0 < [w) < 1 radssec
IH (30 I ={ .
"0 for 2.5 < [wi < 5 rad/sec.

where the sampling freguency = 10 rad/sec.

and the constant group, delay characteristic. Tae order ot

the tilter in this example is considered to be equal to four.

50 the _in Equ. (3.13) 15 set edhal éo four. Table (3.9)
shows the value of the parameters of the desiqned'filtep
while Fig.{3.5) and Fiqg. {3.0) show the magnitude and group
delay respouse of tne designed filter respectively;
é

Fiqe {3.7) and Taple({3.b) show the location and valués of the

zeros and ploes of the desiqned tilter's transfer function.
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Figure (3.1) Amplitude response of the lowpass filter\yi Hf
the passband and stopband edges of 1., rad/sec
and 2.5 rad/sec respectively.

el s = -
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Numerator Coeff. Denominat}or Coeff. Typical Values of 9
n0‘= 0.34060 a, = - 0.86360 8]_"= 0.42898

n, = 0.66972 ) Bl =  0.01l00 62 = 0.71845

n, = 0.56831 oy = '_.0.92700 ‘ 8, = 1.18537

n, = 0.30067.

n, = 0.09598

Table (3.1) The coefficienﬁs.of Jlowpass filter

i

The Zeros of Hp(z) . The Poles of Hp(z)
z(1) =~-1.1278 + j0.3435 {p(l) =-0.7227 + i0.2156
z(2) =-1.1278 - j0.3435 |p(2) =-0.7227 - j0.2156
Z(3) =-0.4385 + j1.5865 |p(3) = 0.6767 + j0.3578
z(4) =-0.4385 - j1.5365 |p(4) = 0.6767 - j0.3578

Table (3.2) The values of the zeros and poles of the
) designed filter's transfer function

Im
»

Re

b 4

Pig. (3.2) The location of the zeros and poles with
respect to the unit circle in the z-plane
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| (2 |
111E 01 -
.101E 31 -
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.506E 39 -
.495E 20 .
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LQRE 2@ A.QSE 1019) 2L ©1 .29 01 .39E 91 L4585z @l
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Figure (3.3) Amplitude response of the bandpass filter with the

‘ passband edges of Vo1 T 2. rad/sec and wp2 = 3, rad/sec.



Numerator Coeff. 1 Denominator Coeff. Typical Values of 6
n, = 0.42153

n, = - 0.01460 o, = - 0.50610 - 8, =0.725

n, = - 0.76596 B, = - 0.06845 6, = 0.480

ny = - 0.01610 @, = 0.39296 . 83 = 0.435

n, = 0.41503

Table (3.3) The coefficients of a bandpass

filter
The Zeros of Hp(z) The Poles of Hy(z)
2(1) = 0.9922 + jO0.1558 p(l) = 0.3497 + j0.6796
2(2) = 0.9922 - j0.1558 .| p(2) = 0.3497 - jO.6796
Z(3) =-0.9728 + j0.2457 p(3) =-0.2515 + j0.7122
z(4) = -0.9728 - j0.2457 p(4) =-0.2515 -

jo.7122

Table (3.4) The values of the zeros and poles of the
' designed filter's transfer function:

Im

Re

R
e

Fig. (3.4) The locations of the .zeros and poles with
respect to the unit circle in the z-plane.
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le(z) | o
. 110E aiT Q o
~191E 91 . o )
.SQ7E 00 .
.B12E 20 .
.7xaé'ea.
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.516E 23 .
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.320E @9.
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| .124E 00 -

. 258E~01 , . . : . . -
QeE 20 .98E 0@ .20 @1  .29E 1 .35k @1 .45 o1
w rad/sec

XMIN =  .CQODOE 60 YMIN =, 257922-01
XMAX =  .49Q@0QE 01 YHMAX =  .1Q0954E o1

Figﬁre(B.S)Amplitude response of the loﬁpass filter with the
passband and stopband edges of 1. rad/sec and
2,5rad/sec respectively. ’
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o2 -

o1 -

Q% -

Glu“—’ﬂﬂ—‘\\\\\\\gﬁh__—

o1

ooE @@  .98E 0@  .2OE ol oof o1 .39E 01  .4SE o1

w rad/sec

XMIN = _QOGRRE 80 YMIN = .12158E o1
KMAX = 490005 01 YMAX = .23563E 02

bl

Figure (3.6). Group delay response of the lowpass filter
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Fig. {(3.6b) The group delay of the designed lowpass
filter in the passband only
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Numerator Coeff. Denominatoxr Coeff. Typical Values of ©
n, = (_).10940. .
= - 0.09563 = - 0, = 0. '
n, 956 @, 0.92450 81 0.36461
n, = 0.07519 B, = - 0.76160 8. = 0.3841699
2 _ 1 2
= . = - . 0 =
n, 0.25029 oy 0.5824 . 63 0.32485
n4 = - 0.07875

Table (3.5) The coefficients of a lowpass
filter with constant group delay

characterlstlc
' The Zeros of Hy(z) . ' The Poles of Hp(z)
z(1) =~-0.5242 + j0.4312 < p(l) = 0.6448 + j0.2030
z(2) =-0.5242 - j0.4312 | p(2) = 0.6448 - j0.2030
z2(3) = 3.3177 + j0.0 p(3) = 0.6137 + j0.5940
z(4) = 0.9089 + j0.0 p(4) = 0.6137 - j0.5940.

Table (o 6) The values of the zeros and poles of the
de51gned filter's transfer function
Im

% Re

Fig. (3.7) The locations of the zeros and poles with
| respect to the unit circle in the z-plane.
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In"order to coupare the results‘obtained using this
technigue with those of the direct design method the sane

exduwples were redesigned. The filter transfer tunction;

g i
. ) a; z
H(z) = 130 .
. ) by 2z’
j=o0 | . -
Was assiyned to dp (2) in Eqno. (3.9) and the mean squared ep-—.

ror was minimized. The lccation of the poles and zeros with
respect to t ho uni't circle in the z—plane was determined and
tﬂe‘pole Luversi;n technique due to Stiglitz(36) was used to
Stabilize the last exaaple.

Fiq.(3.8)' Shows the magnitude response of a‘ 1-D low-
PassS [ilter with tue same 'EpacLﬁicaticns of the Ffirst exam-
ple. Tdble[3.f) _ éhous the iiltert's coeificients And
Fig. {3.9) shows the locat;§n5 of the poles and Zeros in tne
Z-plane while Table(3.8) shows their values.

The pagnitude resgonse of 1-D bqﬁdpass.ﬁiltet is
shown in Fig. (3.10) whicn aprroximates the spacifications of
the second example. Table(3.9) and Table (3.10} suow the de-:
slgned filter's cuefﬁicients and the values of the Zeras and
the poles respectively wnile Fig. (3.11) shows the ploas and
Zeros locatlion iu the z-plane. *

A lowpass fllter with a coustant qroup delay charac—
teristic was designed. Fig. (3.12) and Fiq.(3.1jj show the

magnitude rbsponsa and group delay response of the desiqned

filter. Table(3.71) and Table(3.12) show the filter's coef-
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ficients and the ploes and zeros of the thé designed f£il-

-

ter's trausfer function.

an be seen fron the.pgles‘locations, since ano
reftrictions on thé pales locations were made, all the de-
signea filters/uere pnstable.'

In order to .illUStEdte the eﬁfect of sigbilizinq an
unstable filter using the methode reported in (3o) tle low-
pass filter witn the constant group delay specification was
stabilized. Fig.{3;13)and Fig. {3.14) show the wsagnitude and

_ ¥
group delay responses respectively.

[

A

From the resultes of the direct "desigu we can See
that the stability or tne designed filter is not guaranteed
and testing the stability 15 necessarye Stabilizing an un-—
stable rfiiter does' not change the maqn;tude response ( the
response is multiplied with 4 constant ractor) but the group

delay is no lonrger constant.
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@) |

0.12E01 ¢
0.10E01 |
0.87E00

0.72E00 -
0.57E00 .

0.48E00 |
0.27E00 -

0.12E00 1

- 0.30E-01}

0.0E00 0.1E01 0.2E01 O0.3E01 0.4E01 O0.5E01
. w rad/sec

Figure (3.8) The magnitude response of a 1-D lowpass filter
designed using the direct approach



Numerator Coeff. Denominator'Coeff.
a; bi
a, = 0.2280899 bd~=- 2.9654980
a; = 0.5384600 by =-0.4468799
a, = 0.6839299 b, =-1.2145990
a; = 0.5537899 bz = 0.4215700
a, = 0.2397199 .} b, = 0.4758399
" Table (3.7) The coefficients of lowpass
o filter designed using the
direct approach
The Zeros of HD(z) The Poles of Hﬁ(z)
z(1) =-0.9062 + j0.3997 | p(1) = 1.1813 + j0.7707
z(2) =-0.9062 - j0.3997 { p(2) = 1.1813 - j0.7707
z2(3) =-0.2489 + j0.9529 { p(3) =-1.6242 + j0.7033
z(4) =-0.2489 - j0.9529 { p(4) =-1.6242 > j0.7033

Table (3.8) The values of zeros and poles of the
designed fourth order-filters

Fig. (3.9)

Im -

Re !

The location of the poles aﬁd zeros with
respect to the unit circle in the z~plane.

54



55

()|
0.13E01 ¢
-0.11E01
0.99E00
0.8450p

0.69E00

0.54E00
0.39E00
0.24E00

0.90E-01 °

- -060E-01

-y

7 ——

0.0E00 0.1EQ1 - 0.2E01 0.3E01 0.4E01 0.5E01
' ' ' . w rad/sec

Figure (3.10) The magnitude response of 1-D bandpass filter
designed using the direct approach

/’*"
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‘Numerator Coeff. Dehéminator’quff.
a; ‘ . bi-
aO-= -0.2917699 b07= :1.9727170
a1 = 0.0093400 bl = 0.5448098
azf= 0.4181799 b2 = 3,4707170
@z = 0.000550 by =-0.3970497
34 ==-0,3081398 b4 = 1.9716070

Table (3.9) The parameters of the designed
bandpass filter using the direct

approach
The Zeros of Hy (2) ~ The Poles of Hp(z)
z(1) = 0.9092 + j0.3723 | p(1l) =-0.2649 + j0.7850
2(2) = 0.8092 - j0.3723 | p(2) =-0.2649 - j0.7830
Nl 2(3) =-0.9083 + j0.3949 | p(3) = 0.3656 + j1.1536
z(4) =-0.9083 - j0.3949 | p(4) = 0.3656 -~ j1.1536

Table (5.10) The values of poles and zekos of the
designed filter's transfer function

Im

Re

4

Fig. (3.11) The locations of zeros and poles with '
respect to the unit circle in the z-plane.
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|Hp(2) |

0.13E01
0.11E01{
0.99E00

0.84E00
0.69E00
0.54E004
0.39E00 ¢

0.24E00 |

0.90E-01]

- 0. 60E-01.

- 0.21E00 — . _
0,0E00  0.1E01 0.2E01 0.30E0L 0.40E01 0.S0E01

T : w rad/sec

Fig. (3 12) The magnitude resposne of-a 1-D lowpass filter w1th
‘constant group delay characterlstlc
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- 0.43E01

0.40E01 .

0.38E01 1{

0.3SE0L {

0.33E01

0.30E01

0.28E01

© _0.25E01

0.23E01
0.20E01

0.18E01

Figure
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0.2E01 0.3E01 - 0.4E01 0.5E01
w rad/sec

(3.13) The group delay response of the designed
1-D lowpass filter
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Numerator Coeff. | Denominator Coeff.
a; . . by
3, = 0.29856530 | by =-0.17248460
ay = 0.00256598 | b, = 1.45944200
a, = 0.02792882 | b, =-3.58752300
az = -0.06321770 b3 = - 3,71607300
a, = -0,02456379 b4 = -1.16782500
Table (3.11) The coefficients of a lowpass.
1-D filter with constant group
delay designed using the direct
approach '
The Zeros. of HD(Z) The Poles of HD(Z)
lz(1) = 1.5395 + j0.0 p(1) = 0.1916 + j0.0
z(2) ==-3.2622 + j0.0 p(2) = 1.8787 + j0.0

z(3) =-0.4255 + j1.4964| p(3)
z(4) =~0.4255 - j1.4964 p(4)

/B

0.5559 + j0.5183
0.5558 - j0.3183

I
1

fﬁble (3.12) The values of zeros and poles of the
“designed filter's transfer function

% Im.

E

r

Fig. (3.16) The locations of the zeros ‘and poles with
respect to the unit circle in the z-plane.
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| Hp€z) |
0.20801 "}
0.18E01 -

0.16E01
0.14E01.

0.12E01"
0.10#01 -+

0.84E00-

0.64E00

0.44EQ0

0.24E00 . A

0-40]3-01- t T 4 L v
0.00EC0 .0.10EQL 0.20E01 0.30EQ1 0.40801 0,.50E01

w rad/sec

Figure (3.14) The magnitude response of the stabilized lowpass
filter
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0.74E01" 1
0.69E01 ¢
0.64E01 |

0.59E01 A

0.54E01 T

0.49E0L1 |

0.39E01

+

9

0.34E01-4

-
0.29E01 %

0.24E01 <+

) ' s bt ScmreT——
0.0EGO . 0.1#01 0.2E01 0.3E01 0.4E01 0.5E01

w rad/sec

Figure (3.15) The group delay response of the stabilized
lowpass filter ’



Chapter IV

DESIGN OF 2-D RECURSIVE DIGITAL FILTER

INTRODUCTION

A

The problens associated with. the design of 2—-d recur-
sive diqital filters which are highly non-linear with com-
- Plex approximation probleus are,-

(1) Stability, #

(11) Extensive amount or computation time required even Wwith
ldrge main trame computer. . :

It hds been shown in (33,&0), that. tihis problem for 2;D fil-
ters with circular sygmetric characteﬁistics Cdll be =simpli-
fieaqa if Separahle denominator transfer fuﬁctibn is used. 1In
this case, the stability problem is of 1-D case which can be
testéd at the end ﬁt the design process and tne poles out-
side the unlt circies in 2 zzlblane can be replaced Ly its
mirror image with LFespeCt Lo unit circles in Zy¢ Z, plane,
heuce stability of the desiqned 2-D filters. Also, a reduc-
tion of _(n2-1) multipliers coeiricients { #here N 1is thé
order of the filter) «can be achieved which leadq to saviaug

of considerable compution tiamec. 'IThis stabilization techni-
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que unfortunately chahges the phasg charactegistic of the -

desiqned filter,' L.€., it the dégigued fflter has linear
phase characteristics at.'the end of this process the phase
resﬁonse will no lonryer remaln linéar. | - s

In the method presented 1in ‘this chapter, ﬁased on a
neg'stability cri{erion(Q), conséraiﬁts’are deriveh for the
Coeificients or a class o 1-D polynomial of order n to have
all its zeros iﬁside the unit circle. The derived 1-D po-
lynomial 1s'thén assigned: to the denouinatcr or a 2-D sepa-,
rable product polynomlial in Z1s €9 Tnen using any sﬁiz;ble
‘.non*lineac optlmizatiou 'téchnique to caiculate the coeffi-
cients of phe riltcr's z-transier rfunction iu such a.way so
as to minimize d suitahle-erroi criterion | i.e;, CLiamax,
least mean squdre or Lp_e::or cfiterion, etc.). between the
'idéal and tnhe designed resgonse of the 2-D filter Subject to
the stability constraints }mposed on the coefficients cf the
two 1-h polynomials in Zq and Z, in the denomiﬁator; There-
fore, a simultaneous design or auplitude and phase responses
of a 2-D filter satistyiny prescribed magnitude and phase
responses can pe achieved by the propuosed method.

A variable substitution techaigque is used to trans-
forﬁ the constraint vptimization problem to an unconstraint
optimiiatipn one., Although, this method desiqns oﬁlv a sSub-
class of 2-D rilters, it is shown that many practical Z—D

filters can be designed using the proposed method.
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4.2

HARACTERIZATION DF 2-D BECUHSIVE DIGITAL FILTER WITH
SEPARABLE DENOHINRTOR. '
) While a 2-D recursive diqital filter is characterized
by its z-tranfer functioun . ,
N N . )
A . | . i i
- . : N(z.,z.) Z z n(i,j) Zl 22 .
Hy(zy,2,) = preaiy = 1 (4.1)
1'% T, T W W - -
Uz I I dak,e) 2,5 2,
k=0 =0

Where N and.D are polynomials in { 45 = exp s3Ti, i=1,2)

uheré s4 and Ti', i=1,2 are cowmplex va;idblés and sampling
ﬁeriods respectively. With the desiqu.problem 9L oktaining
ti'e polynomialls coérﬁicieuts n(i ,.j)_ and d( k, 2 ) 'such
tuat tae z-transfer runction evaluate d.on the unit circies

in zl and 22 plan approximate to- the desired response of the
filter beside maintaining the sStability of the filter. The

later condition requires

2
D(z;, z,) # 0 for (fﬁ\|zi| 2 1 )
i=1
S
The approximation can be carrle;\\out iq digital (z) domain

by any suitable optiyization method

put the Jdifficulty lies
in maintdininq thL stability of thé desiqned filter, and

btdblllZlnq tﬁr'unbtahle filter.

\
~/
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A separable denominator filter, on the other hand, is’
one way to overcome this prchlenm. Thus, Aif it is assuned

that tne denominator polynorial is of the form,

where,

.Di(zi) = 1 dicoz, i=1, 2, (4.3)

In this‘case the 2-0 fllter is characterized Ly its z-trans-

fer tunctioa of tae torm,

Y s o)
n(i,j) 3] J
Ho(z,,2,) = N(zgo2) - i=0 j=0 1 72
pvea*“2 Ei(zf)Dszz) % : % ;
cdys 2 ] d.. 2z ]
= 11 °1 320 23 “2

[

Now the stability problem is of 1-D case and testing the
stability and stabilizing the unstable filter is much siwn-
pler task than beivre. It is shown' later that simplifica- -
tion althouyh excludes a large class of 2-D filter but does
not etfect the désiqn Of many uséiul 2-D .rilters which are
widely used in the area ot imaqe processing and seismic data

processing.
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4.3 FORMULATION OF THE DESIGN PROBLEM

4,3.1 Approximation Of The Magnitued Response Only

Since, the denominatoridf the 2-D filter is on the form
shown by Eqn.(4.3) one of the Eqn.(3.5) Eqn.(3.7) is

assigned to each of D,(z4) and Dz(iz) Q:\fﬁe following form,

: -
N - 2 . _
Di(zi) ﬂ.hei %=i [zl + Zuji Z3 +1)

2 n-l
+ (2" - 1) 'l;'lr (27 + 2843 z; +1) | - (4.5)

where n = % for 1 =1, 2

so that the z-transfer function of the filter will be on the '
form,
N N i
¥ } n(i, i) = z.3
R 1 2
H [2 - ) i=0 J—'O
Dy"1?*"2 n .

- n 2 . 7 kn-l 2 .
K, TT (27 + 20, 2, +1) + (2, - 1) I:I (z, + 2By5 2, +1¥J
2 1=1 .

(4.6)
The error befuegn the ideal and’ the designed res?onse of the 2-D

filter calculated using the following relationship,

H Hp e , €

]mlmT JwZnT]
I

jw, T jw, T
. . 1 2n™
EM[Jmlm’ JwZn] ) [e ‘m e P ]

>

4.7) -
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Hhere Eh1is tﬁe error oif the magnitude response and HI andHD
are magnitude_réspouse of the ideal filter and the magni-
tude response;of.the designed Etilter ffom Eqﬁ.(ﬂ.ﬁ)" fESDeCf

tively. J.The nora used in this method 1s the 1least mean

square e:ror-(Ezz) criterion which is defined as

R R .
Eg, = I 1 0 By (Juyps Ju,)
. m, meIps ‘

Where 1ps is the set of alljdisgrete poipts ;u the passband
and the stopbaid of the ﬁi}tér. Now any shitabie non-linear ,
_optimization £ecnnlque can be useq._tb calculate ;he parame-
térs of the 2-5 fti1lter's z-transier rfunction S0 as t¢ minim-
ize Ly, in Bqu. (4.8) subject to the constraints 9f Eqa (3.9)
or -(3,8); This constraint optimization problem can be
transformed to waconstraint protlem bv‘the use Of variable
su?&titution ﬁethod simila: to that used in the 1-D case
with two Sets of variables one for each of the polynomialslbl
(zl) and Dz(zz)'as descriteq belowi.

NOW any uncoustraiant optimization wmethod can ke uti-
lized for calcuiation of new filter's coefticients h and to

minimize Egqn. (4.48).

o
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2
-Bij _
Ctnij = COS mT e
. L
2 25
- (8,2 +8,%)
- 13 2]
By 1,13 cos T e !
: -1, - | (4.9
. - e_, ) .
izl A
o cos T € o
1,1,

4.3.2 Qgroxlmatlon of the uagn1tude and group delay
responses.

[}
-

It is often desired”tgf}%féqn a 2-D filter that approximates
mdqnitudé besponse as ';Ell as - lineax.phase charactefis;
tics (i.e., constant group delay responses) Since fcer many
iRages, the.phase oL the fburief transform is more impprfant
than theimdqniﬁude or regponse ( 37,38). -
‘The group delay Lesponse with respect to ¥ and L is
calculated using Eqﬁ.(l.lS.a) aud;ﬁqn.(l.ls.b)'resgectively.

The error between the ideal and the-deéiqned group delay of

2-D rilter is calculated .using the following relationship,

jw o jw, T
=Ty V- Tw. [ ' , e °n (4.10)

L

-

where Ty dnd-TIZare constants Tepresenting the ideal group
1 : : ‘

delay with respect to Hl and wzrespectively-and these values
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are chosen equal to the order of the filter (29Y). The’%&and T

‘ I
are the 'group delay responses of the designed filter with
_ respect io;wl and,wz_IGSPecpively.

The 1§%eral »mean sqdared érror EG is célculated usinq‘

Eqn. (4.8) and Bgn. (4.170) in the following manner:

v - Y 43,

2 2"

‘EG(wlm’ w2n) = z 2 EM (mlm’ w2n] * z-‘z BTw [wlm’

.m, me I m, me I

PS ps "1

—m,nyst Wy

where Ips;s,*thé set of. all discrete points in the stopband

-

and passband where -Ip is the set of all discrete points in

passband ohly.

LY

4.4 :
'DESIGN EXAMPLES

L

To illustrate the usefulness of the ,proposed techni-
. « '

qué; Several desiqh exanples of 2-D recursive hiqitai fil=
f &
ters satisfyinq magnitude Tesponse with and without ccnstant
group delay charfhteristicg are designed.
In the first eﬁampie, design bfﬁa louﬁas? tilter w%th

the ftollowiug amplitude speciticatipns is requireq;

A
| Fa¥

. ) ‘ _ 41 for o0 w2
A

Il

W

1A
A

~ ¢ | 0 for 2.5
. Yy . S

2

mZn]

) T (wlmf won) L (4.11)

»

1 rad/sec

(4:12)

-

—2-‘5 =5 rad/sec '
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The .constant gqroup delay characteristic is not required.

The_'order of the desiqhed filter is chosen to be four.

Thererore, N(z ,Z2 ) 1n Egn.{4.6) is of the form:
N(zy5 z5) = 11 n(i, ) z; zf . (4.13)
: i=0 j=0 i ~ :
and ﬁ(zi) for i = 1, 2 is also chosen to be. fourth order as
follows:

- (ziz + 20, z

A
D(z;) = K - .
i ey =1 j1 “2

+ 1)
’ .

S CREE S e A

+ 1) . (4.14)
for i =1, 2

The filter's transfer function is formed by substituting
Eqn.(4.13) and Eqn.(4.14) in Eqn.(4.6) as follows:

- L N(Z_ :_ZJ _
HD(21,22] ='thi) %LZET'

4 4 c . o,
- : I 1o oni, )zt 2t |
_ _ i=0 j=0

2 ' : )
2 2 2 ‘
|E<ei '1[:{ [_22 t205, 2, 1) + (27 -1) (2, TZBiZ,ZZ 1-1):| (4.15)

The E 1is formed_by substitutinq Eqn.(4:12) and Eqn. (4.15)
in Eqn. (4.7) 1In order to ensure that the stability const-

raints or Eqn.ia;é) ( since, the polynomials D(z;} for i=1,2

T 2 : 2 2 .
E‘ei TT {2y + 205y 20 %1) + (2] - 1) (5 +'2‘3’11""1*"1)] X
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is of even order) is satisfied the variable substitution method

of Eqn.(4.9) is utilized as follows:

2

-9

a21 = cis T e
o ' 2 2
-(031 * 051)
- 11 21
811 = COS T e

_ 2 2 \93 | ’
04 =COS:fTe (811+821 ! 1) ' | )
22
.. = CcOS T é.ei; ' i
12 ; :
ey ey ~
812 = COS T e )
‘ 2 2 2
o, = COS T é-(elz ' 622 ’ 832]

12
‘Now any suitable non-linear optimization method can be used to \
minimize EM[dam, Wy My g]in_Eqn.(4.7). The technique used in -
this example is due to Fletcher and Powell f@l)s The gradient
of the E with respect to variables vector n, are calculated
using the relationship;

VEg _ : - " s :
2 ) ‘H (jw jw n, 6 )I - |H (jw jw )l X
Thors Zm m [ D im? Zn’ =* = I im’ Zn
== o : 5 ‘
| | | 3 H, jw, ,jw, n,0)
1  n,8 - D Timion =

Zn

X Re: H, jw jw
. . ] D im’
[Hp ey 39555 0, 8)|
\l - ———
Figs.(4.1) and (4.2) show the 3-D plot of the magnitude response

and the contour piﬁt of the designed 2-D filter respectively.

Table (4.1) shows the values of the n, and of the designed filter. "
The poles of the transfer function are ;hown in Table (4.2) and
theif location with respect.to the unit circles in Zy and z, are

shown in Fig.(4.3).

® > &*
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In the second example, design of a bandpass filter

with the following specification 1s reguired;.

A

rO for 0 < wZoy w; < 1 rad/sec

. : ) 1
: jw, T Jws T
HI{ Im™ o 2n } = (”f (n; <3 rJ@/sec”

e , 1 for 2 ¢ + <
2 Y/ . . )
0 for 4 ¢ W, * 0, <5 rad/sec
L

The order of the- filter is again considered to be rour. Thae
» : ‘ , . .
transier.func?iou will ne tuc'séme as that or thg firét ex—
ample, Fiq.(d.u) and (4.5) show the 3-D plot of the de-
signed filter aund the contour plot respeétively. Table(Q.J)
shows thelvalues of n, & and B or the desiqned-xilter.‘ Tne
poles and zeros of the transfer function are shown in Ta-
ble({4.4} . The locati&u uith‘respecyito the unit -circles in

zland Z, 15 siuown in Eig. (4.0) .

The last example, is for the design o©of 2-D loypass
filter witin constant group. delay characteristics uitE\tne

following magnitude specixications;

2 2

_ 1 for 0 & [wy *+ W, < 1 rad/sec
. lemT sznT \
11€ y € )
12 2
v 0 for 2.5¢ "+ W, < 5 rad/sec



The ideal group delay 15 chosen équal to the order of the

filter which is four. The group delay response with respect

to,wiand Wyis calculated using Eqn.(1}.18a) -and Eqﬁ.flrls.b),
this 1s to be subsf;tutéd into Egne.(4.10) to formulate E
: : : 1
and E. = The .general mean squared error is formulated by
v 2 - . .

substituting Eqn. {4.8) and EBqn. (4.10) into Eyn. (4.11) “and
minimized to fihd the values of n, O that approximates both
thne madnitude and the cbnstant group delay.
Fiq.(u.f), (4.8) and (a;9)_.sho; the 3-D plots of'the.paqni— >
tude response, group delay response with respect to mj.and
the group delay respouse with respect to:@z 0f the desldneﬁ
filter respectivelys
VO ) ' N
Table (4.5) is the values orf the n, & and_g of tﬁﬁ designed
Liléer, uheré table{4+6) =shows the poles of:the two denomi-
nator plovhomials and f£ig.(4<10)* shous .the\&ncation of the
pdles,nith reépect'to thg unit circles in not@ the z]-and z2
planes. Fig.(4.11) shows the contour plot of the magnitude

response.
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N .100€ 01
"N\ .831E ee
N\ .643E 09
N .464E 00
N\ .285€ @9
\ .107E @9

Figure (4.1) The 3-D plot‘of the normalized magnitwyde response
of the designed 2-D lowpass filter :
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lowpass filter

NUMERATOR COEFF. |DENOMINATOR COEFF.
Ngg = 0.51000 |
n = 0.45000 n - .89000

01 24
n = 0.98990 n .19000

02 30 :
n.. = 0.45000 n .05000

03 - 37 . .
n04 = 0.05000 32 .37009\ alZ = - 0.60300
n10‘= 0.75000 n33 .22000 811 = 0.07920
n;l = 1.01000 'n34 .BZQQO Gyq = 0.57890
n12 = 1.29900 _n40 .01000 0o ==-0.64360
nig = 1.55000 n41 .16000 821 =-0.01300
Nyg = 0.42000- n42 .59000 Ayq = 0.50790
n = 0.70000 n .46000

20 43 -
n = 1.55000 n .57000

21

44

922 = 1.44990 )
N,z = 1.%1000
Table (4 1) The coefficients of the designed 2-D
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Figure (4.2) The contourplot of the designed 2-D lowpass filter ’
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The Zeros of D, (z4) The Zeros of D,(z,)
2(1) = - 0.4404 + j0.6646 | z(1) = =0.3722 + j0.6908
2(2) = -0.4404 - jO.6646 | z(2) =-0.3722 - j0.6908
2(3) = 0.4300 + j0.5826 | z(3) = 0.4670 + j0.5684
2(4) = 0.4300 - j0.5826 | z(4) = 0.4670 - j0.5684

Table (4.2) The values of the zeros of D (zl) and
D (z ) of the de51gntd 2-D lowpass filter

z,-plane

Re

Im{

g
oA
o

Re
{b)

Fig. (4.3) (a) The locations of the zeros of D (zl)
in the z,-plane.

(b) The loca%lons of the zeros of D (z2)
in the zzmplane



78

- Figure (4.4) 3-D plot of the magnitude response of the
2-D bandpass filter.
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ERATOR C

NUM O EFF. | DENOMINATOR COEFE.
Ny = - 0.29500 : )

ngy == 0.02000 | m,, = 1.21000

Ny, = .0.86500 | ngy = 0.02000

Ngs = 0.57500 | ngy = 0.46000

ng, = 0.19500 | ng, = 1.47898 | a;, =-0.29546
nj, = 0.44500 | ngo' = 1.21498 | By, = 0.15016
myy =-0.0750L | ng, = 0.73000 | a;, = 0.38061
ny, = 2.03499 | nyy =-0.10000 | oy, =-0.28257
nys = 2.24499 | nyy = - 0.32000 | B,; = 0.09558
ny4 = 0.59500 | my, =-0.00500 | apy = 0.34292
ny, = 0.68500 | m, = 0.29500

n,, = 1.38499 | n,, - 0.25000

ny, = 1,97500

nys = 3.84990

Table (4 3} The values of the coefficients of the

designed’ 2-D bandpass filter
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~

The Zeros of Dlﬁzl) The Zeros. of DZ(ZZ)
z(1) =-0.2570 + j0.8168 z(1) = -0.1972 + j0.8082
2(2) =-0.2570 - 30.8168 | z(2) =-0.1982 = j0.8082
2(3) = 0.1502 + j0.6573 | 2(3) = 0.1252 + j0.6826
2(4) = 0.1502 - j0.6573 2(4) = 0.1252 - j0.6826

Table (4.4) The values of the zeros of -the denominator
Dl(zl) and Dz(zz) of the designed 2-D

bandpass filter

. Pig.(4.6)
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location of the zeros of D, (z;) in
z,-plane.
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-

Figure (4.8) (3-D) Plot of the Group Delay Response With Respect

to wl of the 2~-D Filter
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NUMERATOR COETFEF. DENOMINATOR CQE?F.
n = «0.45500

00 _ .
n = (0.13000 ‘n24 = 1.30000

01 s
n = 0.96500 n30 = 0.12000

02 _ .
pOS = 0.6%500 Nyq = 0.60000 .
n04 = 0.24500 n32 = 1,60999 912 -0.2954§
n10 = 0.41500 ngz = 1.25498 811 :0.15016
nll = 0.,12499 n34 = 0.74000 } 911 0.37}27
n12 = 2.10499 Ngg = -0 05?00 Gy, -0.28257
nl3 = 1.33499 n41 = -0,30000 821 0.08156
n14 = 0.715D0 n42 = 0 14500 a21 0.32189
n = 0.85500 |n,. = "0.32500

20 v e
n = 1.56499 | n = - (0.36000

‘ : 44 g

21, .
n = 1.98500 - ,

22 )
n23 = 3.06599 o /,—_

I
* Table (4.5} The inziz/Kg/Zhe coefficients of the
design -D lowpass filter with constant
group delay '
’J
‘n

AN
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”
The Zeros of D (zl) O The Zeros of DZ(ZZ)
. ] ¢ <
{lz(1) =-0.2518 + j0.8266 z(1) =~0. 7126 + JO 00
z(2) =-0.2518 - j0.8266 z(2) = - 0.8405 + JO 0
z(3) = 0.1512 +_j0.6508 z(3) = .0.7231 + j0.1833
z(4) = ,0.1512 - 30.6508 z(4) = 0,7231 - j0.1833
Table (4.6) The valuesof the zeros of D (zi) and D (zé) '
of the designed lowpass fllter w1th constant .
group. delay Character1§f1cs o
L\-—-‘- :
Im T
- )
‘'z 4plane \
o I
o
Re
- (a)
Y
o : .-
*
Im
) “
) zz-plane
Re (b)
Fig. (4.10) (a) The locations of the zeros of D (z ) in
: the zl—plane .
(b) The locations of the zeros of D (22) in
the 2~plane.
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Chapter V

CONCLUSION

-

Based on «a recently reported stabllity critercion{(39)

an iterative method for the gesign of 1-D [ecursive digital
N —‘~ ) o k '
filter satisfying a given gagiitude response Wwith or without
constant group -delay chdracteristics 1S presented. Condi-
. . | & o
tions are imposed oOn the parafnetels of the ddnominator poO-

Iynoﬂ%al of tne illter's z=transrer function Lo enshte‘tpe
stability of thg designed filter.

The petuoa 4as compared with ghose of the dir€ct de-
sign and it has been ;houn that, while the propused'method
alwa&s‘leads to stable ‘filters the direct degiqn approach

v

Joes not. Also, the progosed method can {dpproximate tae
Q- .
pagynltude response Jitan censtant group delay characteristics

JLich can not be ooptalned DY tne direct approach if Stabili-
}

-

zation tecunijque (3uv) is used.

h désiqn aethod <for a class of 2—D' filters having a
separable denominator transter iunction 1s presented. Basgd
on the sane stdhLlity' criterionlthe stability of the de-
signed filter 15 guaranted. The method 1s extended to thd
design of linear-phase 2-D filters.

The method‘require n2-+3 ljess variables than that of

.

the general case oL 2-D and hence, the method requlres a

- 88 -



) - 89

nodest awmount of compution- time. The stahilltﬁ.problem 1s

reduced to 1-D case waich is more simple than that of gener-
al case of 2-D4&° Hany useful filters can be designed using
the proposed method as shcwn by the deg$ing examples. The

coustraint optimization rproolen of calculating the parame-

ters of  the desiqned Liltetr is transformed to an unconst-

\

raint optimization .problem by the  application of the varia-

ble sabstitution method. . : ; ¢
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