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ABSTRACT

Cellular manufacturing represents a major technological innovation to
most organizations. One of the problems in the design of cellular
manufacturing systems is the cell formation, which is essentlally the
identification of part familles and machine groups. Cells are formed
using new and often automated machines and material handling systems. A
Judiclous selection of processes and machines are necessary for cell
formation. With the introduction of new parts and changed demands, new
part families and machine groups have to be identified. The redesign of
such systems warrant the consideration of practical issues such as
relocation expense on existing machines, investment on new machines
etc.. Usually, the manufacturing facility cannot be completely divided
into cells. Rather, a portion of it remains a large functional job
shop. Thus, there is a need to select parts and machines for
cellularization. This has a great impact on the utilization of cells.
The creatlon of exclusive cells with no inter-cell movement is a common
goal for cell formation. However, many times it is not economical or
practical to achieve exclusive cells. Material handling is an important
factor to be considered In this situation. In fact, new technology and
faster deterioration rate of certain machines could render the
previously allocated parts/machines undesirable. Thus, there is also a
need to determine if the old machines must be replaced with new or
technologically updated machines. The objective of this research is to
develop mathematical models to address these issues for cell formation
encountered in cell design and suggest efficlient solution methodologies

to solve the models developed.
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It is assumed that a part can be produced through one or more process
plans. Each operation in a process plan can be performed on alternate
machines. Thus, for each process plan we have a number of production
plans depending on the machines selected for each operation. It is also
assumed that the demand for a part could be split and can be produced in
more than one cell. The plans identified to produce the same part in

different cells could be different.

The cell formation problem, in addition to ldentifylng part families and
machine groups : to specify the plans selected for each part, gquantity
to be produced ihrough the plans selected, machine type to perform each
operation in the plans, total pumber of machines required, machines to
be relocated, machines to be replaced and parts and machines to be
selected for cellularization considering demand, tim2, material handling

and resource constraints.

Some pertinent objectives to be considered are minimization of
investment, operating cost, machine relocation cost, materlial handling
cost and maximization of output. Consideration of physical limitations
such as upp bound on cell size, machine capaclity, material handling

capaclty etc., should also be incorporated into the cell design process.

Accordingly, a number of mathematical models are developed to provide a
framework for discussing the issues related to design of cellular
manufacturing systems. All the models developed are large scale linear

and mixed integer programs. For the solution of the linear and relaxed
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mixed integer programming models, an efficient column generation scheme
is presented. In the problems under consideration, column generation is
achleved by solving simple assignment problems. A branch and bound
scheme on the integer variables leads to an optimal solution for the
mixed integer programs. Each node in the branch and bound tree
represents a solutlon to an augmented continuous probiem with additional
constraints on the integer variables. These additional constraints are
easlly Incorporated without increasing the size of the prohlen by the
bounded variables procedure. A number of illustrative examples are
solved te lllustrate the application of the solution methodology.
Computational experience is provided for a few test problems and
sta’istics on number of nodes, number of plans generated, number of
plvot operations, number of assignment problems solved and time for

execution are included.
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CHAPTER 1

INTRODUCTION

Manufacturing systems for discrete-parts production can be classified as
Job shop, batch and mass production. Job shops involve low-volume
production of a large varlety of parts. A typlcal job shop has several
departments, where each department provides processing facilities for
speclfic operations (eg. drilling, milling etc.). The parts have to
move from one section to another for various operations. With such a
layout, the part spends a substantial amount of time ( about 95 % )
waiting in front of machines and on set up. The large amount of waiting
and set up time increases the manufacturing lead time resulting in low
productivity. Mass production (Transfer lines) applies when high-volume
production of a very few products exists, Changing a transfer line to
the production of a different item is costly in terms of lost
production. Batch productlon describes medium-volume production of a
moderate number of products. They are characterized for high lead times

and low productivity.

The concept of cellular design emerged to reduce set ups and batch
sizes. The remedy lay in sorting out parts into groups that have common
characteristics - shape, tolerance, process of manufacture etc.. Small
groups of machines were formed and then groups of parts were allocated
to machine groups. All the operations needed for a part~group were to
be performed within the machine group. The need for flexibility and

high productivity led to the development of Flexible Manufacturing
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System (FMS). FMS is an automated manufacturing system deslgned for
small batch and high variety of parts which aims at achieving the
efficiency of automated mass production, while utilizing the flexibility
of a job shop. The development and implementation of FMS has recelved
wide spread popularity resulting in a prolific bibliography of
literature. A comprehensive review of the several frameworks for
analysls, planning and control of these systems is glven in 0’ Grady and
Menon {1986), and Buzacott and Yao (1986). The benefits of cellular
manufacturing stress that FMS justifications must proceed on the basls
of explicit recognition of the nature of the cellular manufacturing. In
this thesis the focus is on the design of cellular manufacturing systems

for a variety of situations.

1.1 Cellular Manufacturing Systems (CMS)

Cellular manufacturing involves processing of similar parts (part
famllles) on dedicated clusters of dissimilar machines or manufacturing
processes (machine groups). Thus, a manufacturing cell is a collection
of dissimilar machines or manufacturing processes dedicated to a
collection of similar parts. Cellular manufacturing is common in metal
machining, fabricating and manual assembly operations. In the metal
machining industry a cell may consist of three to fifteen machines with
an average of six machines. Very rarely will a machine group have
identical machines. Parts in a family will require all the machines in
the cell, but it does not mean each one of the parts in the family will
require processing on all the machines in the cell. Some parts may

require machining only on a few machines.



Most manufacturing systems are hybrid systems. That is, they are not
elther job shops or flow shops or cell shops, but rather a combination
of interrelated subsystems. Job shops have jumbled material flows and
flow shops have more or less unidirectional, dominant flows. Cell
shops, however, do not bear these connotations. The internal flows of a
cell can be either straight or jumbled. In essence, a cell can
represent job shop or flow shop subsystems. It follows from the
definition above that both a transfer line for machining parts and an
assembly line could be classified as cells.

The most clalmed advantages of CMS are reduced lead time, reduced
in-process inventory, smaller lot sizes, reduction in the number of
production equipment, reduced labor cost, reduced material handling,
reduced tooling requirements, simplified production control procedures,

improved productivity and better overall control of the operations.

As any other system CMS has its own disadvantages. A few of these are
increased capital investment, lower machine utilization and
impossibility of having 100% cellular Manufacturing. By taking a
Judicious decision one can reap the benefits of CMS which far outwelghs

the disadvantages.

1.2 Design of Cellular Manufacturing Systems

Designing cellular systems is a complex undertaking with broad
implications for the organizatlon. The decisions to be taken in a
design process are numerous. A first distinction can be made between

declsions related to system structure and operational procedures
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(Wemmerlov and Hyer 1986). To the first group belong cholce of part
types to be processed in the cell, the type and number of machines on
which these parts are processed, the routings, the type and number of
material handling equipment, system layout, the type and number of
operators, and the type and number of tools and fixtures for the cell.
Issues related to procedures include detailed job deslgn, organization
of supervisory and support personnel around the cellular structure,
formulation of inspectlon and maintenance policies, modifications to
cost control and reward systems, design of production planning and

control, and related hardware and software acquisitions.

It 1s not possible to delineate a strict sequence of decisions to be
made in connection with cell design. One can say, however, that
structure-oriented decisions tend to precede procedure-oriented ones.
At this stage it should also be clear that the system structure and
procedures can be changed due to experiences derived during the
operation of the cell system over time. For example, the part
population, the machine routings, or even the machine population are
subject to change during the implementation phase or later, due to
changing internal or external conditions. Within the group of
structural decisions, the ldentification of part familles and machine
groups take on a particular significance since most subsequent decisions

depend on these choices.

Evaluation of design decisions can be categorized as relating to either
the system structure or system operation. Typlcal considerations

related to system structure are listed below:



Equipment relocation cost (low)

Equipment and tooling investment (low)

Existence of inter and intra cell movements (low)

Floor space requirements (low)

Extent to which parts are completed in a cell (high)

Flexibility (process parts on multiple machines

and/or in multiple cells - high )
Evaluations of system design decislons are incomplete and not totally
meaningful unless they also relate to the operation of the system. A
few typlcal performance variables related to system operation are:

Equipment utilization (high)

Work-in-process inventory (low)

Queve lengths at each work station (short)

Job output rate (high)

Job throughput time (short)

Job lateness (low)

Time in queue at each station (short)
A major problem throughout the cell design process is the necessity of
trading-off objectives related to structural parameters and performance
variables against each other. For example, higher machine utilization
can be reached if several cells route their parts to the same machine.
The drawbacks are Increased queuing and control problems, The list of
possible trade-offs can be made quite long. It is the nature of the
design process to be open-ended, and to have few initial restrictions on

the solutions., This is what makes the cell deslgn a complex problem.



1.2.1 Cell Formation Problem

One of the problems in the design of CMS is the cell formation, which is
essentially the identification of part families and machine groups. It
i1s a GT phllosophy where the manufacturing system, in total or in part,
has been converted intoc cells. The simplest application common in batch
manufacturing environments, is to informally rely on part similarities
to galn set-up efficiencles when sequencing jobs at a work center. The
second application is to create formal part families, dedicate equipment
to these families, but let the equipment remain in its original
position. The ultimate GT application in manufacturing is to form
manufacturing cells. A sequential or simultanecus approach could be
adopted for cell formation. The sequential appreoach first forms the
part families or machine groups followed by machine assignment or part
allocation respectively. The simultaneous approach determines the part
families and machine groups simultaneocusly. Though, the simultaneous
approach is better it usually suffers from computational difficulties.
Considering the fact that CM represents a ma jor technological innovation
to most organizations, a number of problems are encountered which are
situation specific. A few of these problems are discussed in the

following sections.

1.2.1.1 New Machines

Many cells today are formed using new and often automated machines and
material handling equipment. Flexible manufacturing systems (FMS) are
examples of such automated cells where production control activities are
also under computer supervision (Buzacott and Yao 1986). Considering

the versatility of these machines and high capital investment a
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Judiclous selection of the processes and machines 1s necessary for cell
formation. For reasons such as design standardization and computerized
process planning, some firms use geometric-features-based grouping to
design part families. In a recent survey of 53 respondents in US, 62 %
indicated the use of one or more classification and coding schemes in
conjunction with GT applications. The part families were determined
without the reliance on production methods (Wemmerlov and Hyer 1987b).
The problems here are :

1. How to ldentify the machine groups such that all the parts in a
family are processed within the group ?

2. If the number of part familles identified is large, then, how to
assign one or more part families to the machine groups to form the
desired number of cells ?

3. However, if the part families are not established , then, how to

identify the part families and machine groups simultaneously ?

1.2.1.2 Hachine Relocation

Cell development is evolutlonary and, therefore, always in a state of
flux. Steady and predictable demands are desirable features for parts
produced in cells. However, over time, as products are phased in and
out and parts are redesigned, the composition of the part families in
the cells will change. This may lead to capacity imbalance problems
where too much or too little work is loaded onto the cells. A survey
conducted by Wemmerlov and Hyer (1987b) indicates the percentage of new
parts averaged 11.3 % with a range from 5 % to 25 %. With the
introduction of new parts and changed demand the new part families and

machine groups should be identified. The cost of physically moving



machines to new assignments for frequent reassignments is uneconomical.
At the same time once the cells are formed it should not be considered
an irreversible decision. The planning horizon is not long enough to
allow us to buy new machine tools, rather the number of types of
machines avallable is fixed and is normally determined at inception.
The cost of moving equipment was also one of the most common reasons
given by the firms for not bullding cells and practlcing machine
dedication instead (Wemmerlov and Hyer 1987b). Thus, a ma jor problem
the industry faces today is how to assign the parts to the known machine
groups and which machines are to be relocated such that exclusive part
families and machine groups are identified at minimum relocation cost ?
If, however, the capacity available is not sufficient should the
relocation be accompanied or substituted by a higher degree of

investment in new equipment ?

1.2.1.3 Selecting Parts and Machines

Essentially, the objective of cellular manufacturing is to create
speclalized cells that can process a limited number of different job
types. Usually, the manufacturing facility cannot be completely divided
Into speclalized cells. Rather, a portion of the facility remains as a
large functional job shop. The odd Jobs which cannot be completely

machined in a specialized cell are usually assigned to the functional

Job shop.

The extent to which a company accounts for the manufacturing activities
in specialized cells can be measured by the fraction of all annual hours

in the plant that are expended in cells. This is referred to as the



extent of cellularization or degree of cellularization of the company
{Wemmerlov and Hyer 1987b). The majority of the surveyed companies(of
27 companles) had a limited number of cells, and 75 % reported that 25%
or less of the annual machine hours were expended in cells. Thus, firms
with cells might have to operate two systems simultaneously until it is

fully cellularjzed.

The parts selected to be manufactured in the cells have a great impact
on the utllization of cells. Also, which cell among the feasible cells
the part should be assigned to is critical because i1t prescribes the
overal) balance of the CM system. A load imbalance occurs when some
cell machines or processes are more utilized than others. Some of the ad
hoc procedures employed in selecting parts to be manufactured in cells
are based on selectling parts which require a particular machine, visual
examination of part drawings, identifyiny parts which belong to a
particular product line, select parts with same name or function, by
examining the codes etc. (Wemmerlov and Hyer 1987b). Thus a few problems
that exist in a company that is partly cellularized or is in an
inception stage of converting a job shop or adding new machines to have
a pllot cells are:

1.How to select the parts to be produced in the machine groups already
ldentified 7

2. If the company decides to start with a few pillot cells and the machine
types avallable for the purpose of cellularization is known then how to
simultaneously form the required number of machine groups and select the

Subset of parts to be produced in these cells ?

3.If, however, only the number of cells to be identified is known, then

9



how to ldentify the subset of machines and parts in the cells 7

1.2.1.4 Material Handling and Replacement

The creation of indeperdent cells, i.e., cells where parts are
completely processed in the cell and no linkages with other cells in the
factory exist, is a common goal for cell formation. However, many times
it 1s not economical or practical to achieve cell independence,
especially, when under-utilization, load imbalance and higher capital
investment are the potential threats of introducing cellular

manufacturing.

Therefore, there is a need to include the additional important cost,
namely the material handling cost in cell formation. If possible, the
ideal situation would be to eliminate all handling. Hcuever, since this
cannot be done, the next best alternative is to minimize the negative

effect of handling on the facility.

In a typlical manufacturing system, the assignment of parts to different
cells could take place periodically depending on the change in the
volume of production and part mix. This is generally motivated by work
load changes and/or machine utilization improvements. In fact, new
technology and faster deterioration rate of certain machines in cells
could render the previously allocated parts to a cell undesirable. Thus
there is a need to replace these machines and substitute with new
machines. These new machines could be technologically updated or the
same. If the machines are different there is a need to identify the

part families again.
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1.3 Organization Of the Dissertation

The dissertation is organized and presented in nine chapters as follows.
In Chapter 1, an introduction to cellular manufacturing systems and cell
formation problem is given. A complete review of existing literature on
cell formation problem is given in Chapter 2, Motivation for the
proposed research and objectives of the research are also included in
Chapter 2. In Chapter 3, mathematical models are developed to
illustrate the influence of alternate process plans on cell design. The
matheratical models for cell formation considering the purchase of new
machines is presented in Chapter 4. The mathematical models for cell
formation considering machine relocation are presented in Chapter 5.

In Chapter 6, mathematical models for selection of parts and machines
for cellularization are presented. Material handling and replacement of
machines are considered in the models presented in Chapter 7.
Computational experience on test problems is reported in Chapter 8. The
contributions of the research, limitations of the work and directions
for future research are given in Chapter 9. The solution methodology
developed Is presented in the respective chapters and illustrated with

examples,
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CHAPTER 2

LITERATURE REVIEW

Modeling of cellular manufacturing systems has received considerable
attention from researchers. Numerous heuristies and analytical methods
have been reported in literature for the design of cells. A
comprehensive review of the available lliterature is discussed in
Wemmerlov and Hyer (1986). Chu and Pan (1988) provided a
state-of-the-art review on the use of clustering techniques in cell
formation. In the following section a detailed chronoleogical review of

literature including the type of modeling and solution approaches is

glven.

2.1 Chronological Review
The available literature is classified into one of the following:

1. Coding and classification based methods

2. Evaluative methods

3. Similarity coefficlent methods

4. Heuristic methods

5. Matrix based methods

6. Network based methods

7. Mathematical models

The literature is reviewed in a chronclogical manner in each category.
In the evaluatlve methods, the analysis of the routing information is
done manually. When this analysis is done analytically it 1s referred

to as similarity coefficlient methods. In the matrix based methods,
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machine-part groups are formed by manipulation of the matrix using some
algorithms. The network based methods represent the machine-part matrix
in the form of a bipartite graph and use network decomposition methods

or other heuristic procedures.

1. Coding and classification based methods

Opitz (1970) developed a coding scheme for parts based on geometric and
technological attributes. Part families are formed manually or using
analytical methods so that parts with similar attributes are grouped

into a family.

Kusiak (1983) extends the classification and coding system for FMS by
taking into account the requirements imposed by tools and fixtures for
the manufacturing of a given part. He has proposed the application of a
hierarchical clustering algorithm to form part families. A distance
matrix is calcuiated from the parts code using suitable distance
metrics. The problem is also modeled as a p-median problem with an
objective to minimize the total sum of distances in a part family to the
part family median and solved using the effective sub gradient algorithm
(Kusiak 1985),

Gongaware and Ham (1981) and Han and Ham (1986) reported multi-objective

clustering techniques to form part families based on similarity vectors

as well as part codes.

Hyer and Wemmerlov (1985) have discussed the structures, applications

and implementation of the GT oriented coding systems. Some of the more
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common avallable coding systems available in the U.S are also described.

Dutta et al. {1985) presented a methodology using a coding system

derived from Oplitz code to form design and tooling families.

2.Evaluative methods

The concept of production flow analysis (PFA) was first introduced by
Burbidge (1971). The main feature of PFA is that it involves the
s&stematic listing of the components in various ways, in the expectatlion

that groups of machines and components may be found by careful

inspection.

El-Essawy and Torrance (1972) proposed Component flow analysis (CFA)

which is almost similar to PFA.

Burbidge (1973) also reported a method called Nuclear synthesis which is
based on selecting machines used by a few components as starting points
for various cells, or nuclei. The next machine is allocated on the
basis that it has the smallest number of components left unassligned to a

group. Once the Nuclear synthesis is completed, these nuclel are

modified,

Purcheck (1974) has adopted a set-theoretic approach. He suggested the
use of a lattice diagram where the edges represent the various
combinations of possible manufacturing processes routes that can be
generated with the existing production facilities. The lattice diagram

grows exponentially as the set is enlarged and hence its usefulness is

14



limited to being an illustrative device. A linear programming technique
is used for comblning the manufacturing facilitles demanded by the

process route to form host and guest cells.

De Beer et al. (1976) suggested a modified form of PFA. The method
invelved first determining what combination of operations should be made
to specify a specific 'level of autonomy’ followed by determining the
requisite capaclity per operation in each group. They identify three
categories of machines namely primary, secondary and tertiary depending
on if a machine type is present in only one cell, more than one cell and
all cells respectively. Once the cells are formed, every routing ls
assigned to a group of routings depending upon whether they fit into all
cells, some cells, one cell, or no cell. Every group is then assigned
to one or more cells and the maximum and minimum of work load per

machine type is computed in every cell.

Burbldge (1977) described how PFA could be carried out manually. De
Beer and De Witte (1978) have attempted to extend the PFA approach to
consider explicitly the question of machine duplication. This method

has been termed as production flow synthesis.

3.Similarity coefficient methods

McAuley (1972) introduced the the zero-one matrix, constructed with rows
representing machines and columns repregenting components. An element
of the matrix is 1 if a component visits the corresponding machine and 0
otherwise. He used the jaccard similarity coefficient (defined as the

number of components which visit both machines, divided by the number of
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components which visit at least one of the machines) followed by a
single linkage cluster analysis to form machine groups. The procedure
glves a set of solutions at different similarity levels, from which the
best could be chosen on the basis of other criteria. This method might
however link two clusters whose members may be quite far away from each

other in terms of similarity.

Carrie (1973) applied numerical taxonomy for finding part families and
machine groups and demonstrated that this method could get the same
result that Burbidge (1973) got by hand. In these methods (Carrie 1973,
McAuley 1972) one has to specify the threshold level of similarity or,

declde in advance the number of groups.

Rajagopalan and Batra (1975) developed a graph theoretic method which

uses cliques of the machine-graph as a means for grouping machines. The
vertices of this graph are machines and the arcs are jaccard similarity
coefficlents. The main disadvantage of this approach 1s that due to the

high density of the graph, large cliques are not vertex disjoint.

De Witte (1980) has suggested three similarity coefficients based on
routing and machine times to indicate the interdependence of machine
types. The method consists of four steps, namely, gathering
information, analyzing relations between machines and allocation of
machine types to cells, allocation of components to cells and finally
counting the work load for each machine type in each cell, and

allocatlion of the requisite number of machines to cells.
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Waghodekar and Sahu (1984) have presented a heuristic approach, called
MACE, based on the similarity coefficient of the product type. The
method yielded a minimum number of exceptional elements when tested on a
number of problems and compared with similarity coefficient of additive

type. It is computationally stralghtforward.

Faber and Carter (1986) adopted a different similarity measure based on
the number of parts processed by both the machines. They introduced a
graph theoretic algorithm for grouping the machines. The polynomially
bounded algorithm uses the network approach to optimally find the

densest sub graph of a graph.

Steudel and Ballakur (1987) suggested a two stage dynamic programming
heuristic which first determines the optimum chain so that the sum of
the bonds among the machines is maximized followed by partitioning the
chain to form machine groups. A similarity measure, called Cell Bond
Strength based upon part routing and production requirement data was

Introduced.

4.Heuristic methaods

Purcheck (1975 a) has proposed a classification scheme which combines
machine requirements and machine sequences by coding them in the form of
strings of letters and digits. Various mathematical programming

formulations has also been suggested by Purcheck (1975 b).

Lemoine and Mutel (1983) presented a dynamic cluster algorithm for part

families and machine cell recognition. The method takes into account
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the capacity and the load of the machines and some other user's
constraints. Another characteristic is that they consider the machine
tool set as the sum of p similar machines type subsets so that they

automatically balance the the machine types on the cells.

Rodriguez and Adaniya (1985) suggested an interactive procedure to
obtain the number of cells and machines allocated to each cell such that
there is a balance between the average set-up costs and inventory
holding costs. The procedure uses ROC algorithm to generate block
diagonal matrix. Then it schedules the products using the concept of

economic lot sizing and checks for feasibility, machine utilization

etc..

Purcheck (1985) tackles the problem of machine-component grouping in a
different fashion. Group formation is done in terms of minimum
differences between masters and maximum combination of masters. A
master is defined as a unique or most complex part that has to be
processed in one cell. The heuristic proceeds by computing the master
sets and their differences. Then the corresponding work load 1is
computed and the combination of master sets is revised, if required,

based on certain acceptability tests.

Askin and Subramanian (1987) proposed a heuristic procedure for economic
determination of machine groups and corresponding component families
considering costs of work-in-process and cycle inventory, intra group
material handling, set-up, variable processing and fixed machine costs.

The three stage procedure initially reorders part types based on routing
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similarity and then attempts to combine adjacent part types to reduce
machine requirements. Finally groups are combined where economic
benefits of utilization offset those of set-up, work-in-process and

material handling.

Ballakur and Steudel (1987} have provided an efflicient heuristic
considering within-cell utilization, work load restrictions, and cell
size restrictions. A two stage clustering procedure is suggested. In
the first stage, an 'admit or reject’ declsion 1s made for each work
centre based on the work load fractions. 7The actual number and

assignment of machines to a work centre are made at the second stage,

Meenakshisundaram and Fu (1987) proposed a technique based on the
hospitality and flexibility relationships suggested by Purcheck (1975).
Host cells are formed using the route sheet of parts and a reduction in

number of cells achieved using the integer programming technique.

Mosier (1989) has reported the development of a number of
slmilarity-based coefficlients designed for applying hierarchical cluster
analysis to the cell formation problem. He also discusses an
experimental investigation applying these and other well known

similarity coefficients in conjunction with some well known clustering

algerithms,

Harhalakis et al. (1990) have suggested a simple two step heuristic
algorithm. The first step of the heuristic is a bottom up aggregation

procedure to minimize what is defined by them as ’Normalized Inter-Cell
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Traffic’. The second step is a procedure to attempt further
improvement, in which the significance of a machine to a cell is

vallidated. A large scale industrial application has also been provided.

5.Matrix based metheods

Bhat and Haupt (1976) developed an efficient clustering algorithm known
as matching algorithm on the concept of matching between two rows
(columns). This method is computationally efficient, as the change in
the number of matchings need not be recomputed for each possible

arrangement, whenever a row ls rearranged.

King (1980 a,b) suggested an algorithm, known as rank order clustering
algorithm (ROC) for simultaneous grouping of machines and parts by
considering the part-machine incidence matrix as an array of binary
numbers and arranging them in increasing (or decreasing ) order. By
repeating the process for rows and columns he obtained disjoint groups.
King and Nakornchal (1982) later extended the algorithm to enable the
identificatlon of bottleneck machines in the system. They also
suggested ROC2 which takes into account the weaknesses of ROC and is
computationally more efficient. Here several rows and columns are

sorted at the same time instead of element by element as done by ROC.

Chan and Milner (1982) suggested the direct clustering algorithm which

progressively restructures the matrix until there is no more improvement

due to restructuring.

Kuslak (1985) suggested the rank energy algorithm which orders the rows
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and columns of the matrix and its transpose based on their welghts.
This algorithm generates solutions of acceptable level and is superior

to the existing algorithms of this type.

Chandrasekaran and RajJagopalan (1986 b) proposed MODROC, an extension to
the ROC algorithm. The deficiencies of ROC are removed to a great
extent. This method uses ROC 1n conjunction with a block and slice

method and a hierarchical clustering method.

Selfoddin{ and Wolfe (1986) improved on the existing methods hased on
simllarity coefficient method by dealing with the duplication of
bottleneck machines and employing a special data storage and anatlysis
technlque to simplify the machine-part grouping process. The
duplication is based on the number of inter-cellular moves and starts
with the machine generating the largest number of inter-cellular moves
and continues until no machine generates more inter-cellular moves than
specified by the threshold value. Alternative solutions can be examined
by changing the threshold value. The method, however, does not consider

machine duplication cost and production requirements of parts.

Khator and Irani (1987) introduced the heuristic procedure called the

Occupancy Value Method. The occupancy values were defined for each part
based upon the number of parts and machines and routing. The procedure
progressively develops block diagonalization starting from the northwest

corner of the matrix to form the groups.

Kusiak and Chow (1987) developed two efficlient algorithms to solve the
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machine-part grouping problem. A cluster identification algorithm
suggested to form the groups from matrix is reported to be the most
efficlent algorithm developed to date. A cost analysis algorithm is
developed to solve the augmented formulation of the problem, which

assoclates cost with part and limits the number of machines in each

cell.

Kuslak (1987) proposed a generaiized GT concept, based on the generation
of a number of different process plans for each part.The presence of
alternate process plans improves the diagonal structure of the finpal
matrix and reduces the number of bottleneck machines. The problem is

also modeled as a 0-1 integer program.

6.Network based methods

Kusiak et al. (1985) and Kumar et al. (1986) modeled the parts and
components grouping as an optimal k-decomposition of welghted networks
problem. The decomposition problem is approximated as a quadratic

assignment problem and 1s solved in two phases.

Vannelli and Kumar (1986) showed that the problem of ldentifying the
minimal number of bottleneck machines is equivalent to finding the

minimal cut nodes of a graph. A heuristic based on dynamic programming

approach is developed to solve the problem.

Chandrasekaran and Rajagopalan (1986 a) formulated the groupling problem
as a blpartite graph and derived an expression for the upper limit on

the number of groups. A non-hierarchical clustering method is adopted
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for grouping components into famllies and machines into cells. After
dlagonally correlating the groups, an ideal-seed method (Ideal-seeds are
centrolds of the imaginary perfect groups with essentially the same
block diagonal structure as the groups formed initially) which reorders
rows and columns Is used to improve the groups, A quantitative
criterion called grouping efficlency which is the welighted average of
utilization and inter cell movement is developed to compare alternative

solutlons.

7. Mathematical models (and heuristic approach)

Choobineh (1988) proposed a two stage approach for cell design,
Clustering techniques, with a proximity measure using the manufacturing
operations and operations Sequences, are used for forming the part
families which constitutes the first stage. An integer programming
model is used to specify the type and number of machines in each cell
and the assignment of part families to the cells. It is assumed an
operation can be performed on more than one machine type, which is a

very realistic assumption.

Co and Araar (1988) presented a three stage procedure for configuring
machines into manufacturing cells, and assigning the cells to process
speclfic sets of parts. First, operations are aszigned, with the
objJective of minimizing the deviation between available capacity and the
work load assigned to each machine. This results in a machine-part
matrix, which is manipulated using an extension of King’'s algorithm to
form part-machine groups. Then a direct search algorithm is used to

determine the number of cells, and the composition of each cell,
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Askin and Chiu (1988) have proposed a mathematical model considering
costs of inventory, machine depreciation, machine setup and material
handiing. They decompose the model into two subproblems and suggest a

heuristic approach for solution.

Kasllingam (1989) in his dissertation has developed a nunber of
mathematical models for machine allocatlion problem, machine~-part
grouping problem and new parts allocation problem. He has devised
methodologles to solve large instances of the models developed. New
indices to express similarity between two machines and between a part
and machine are developed considering the processing requirements and
capabllities of machines. He has also extended his machine~part

grouping formulation to account for the presence of alternate process

plans for parts.

Shtub (1989) has shown that the slmple cell formation problem, in which
one process plan is considered for a part and the general case y in
which several process plans are considered for each part type, is
equivalent to the Generalized Assignment Problem. This can be

considered as another approach to the problen.

Seifoddini (1989) considers the economic trade off between machine
duplication in cells and inter-cell movement in cell formation. This
procedure is agaln based on decomposing part/machine matrix but

considers the production volumes and processing times.
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Srinivasan et al. (1990) present an assignment model to solve the
grouping problem. A similarity coefficlent matrix is used as the input
to the assignment model. Closed locps in the form of sub tours are
ldentified after solving the problem and are used as the basis for
grouping. They have alsc shown that thls method is superlor to the
p-median model both in terms of quality of solution and computational

time.

2.2 Motivation for Proposed Research

A comprehenslve review of various approaches to design of cells was
discussed in the previous secticn. Much of this research has been
directed towards developing cluster algorithms which decompose a
part/machine incidence matrix into nonoverlapping, diagonally adjacent
blocks or clusters of cells. The common clustering criterion used is a
similarity or dissimilarity index. Among the measures of performance
are the number of exceptional elements and bottleneck machines. Rea)
life factors such as costs, processing times and production volumes
which influence the cell formation are often lgnored. Also each
operation of a part is assumed to be performed on one machine. Further,
the clustering algorithms do not guarantee the formation of mutually
exclusive cells. Attempts have also been made to formulate mathematical

programming models, but the presence of alternate process plans have not

been considered explicitly.

The process plan for a part is not unique. Two or more process plans
can be generated for each part. Each process plan will identify a

sequence of operations to manufacture a part. Also operations for a
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pért can be performed on more than one machine. So far only selection
of one plan for a part has been considered for a part. In practice
using two or more plans for a part and producing 1t in more than one
cell may lead to better operational/routing flexiblility and better
resource utilization. Therefore, there is a need to integrate the above

factors and develop efficient procedures that can generate optimal

solutlions.

Although numerous heuristics and analytical methods have been reported
in literature for cell formation, the redesign of cells giving

considerations to machine relocation and machine replacement has not

been addressed.

Also, not much work has been reported in the area of selection of parts

and machines for cellularization.

All this indlcates that there is a need for development for procedures
that can generate optimal solutions with consideration to stated design
goals. Then, instead of relying more or less on trial and error, such
procedures could, in the design stage, overcome operational difficulties

with cellular manufacturing systenms.

3.3 Objectives of Proposed Research

The objectives of the proposed research are as follows:

1. Identify a number of issues related to cell deslign with:
- New machines

- Machine relocation
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- Selection of parts and machines

- Material handling and machine replacement

. Develop mathematical formulations for cell design to address the
lssues identifled.

. Suggest efficient solution methodologlies to solve the models
presented and illustrate the application with examples.

. Report computational experience on randomly generated test problems.
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CHAPTER 3

INFLUENCE OF ALTERNATE PROCESS PLANS ON CELL DESIGN

A generallzed group technology problem of manufacturlng a group of parts
In which each part can have alternate process plans and each operatlon
in these plans can be performed on alternate machines is consldered.

The objective is to model and analyze how alternate process plans
influence the resource utilization when part families and machine groups
are formed simultaneously. Accordingly, three integer programiing
models are developed to successively study the effect of alternate
process plans and simultaneous formation of part families and machine

groups.

3.1 Alternate Process Plans

In this research, it is assumed that a part can have more than one
process plan and each operation in a process plan can be performed on
more than one machine. For example, consider the manufacture of a gear.
If the Initlal raw material is in the form of a bar stock, the
following eight processing steps are required to transform the raw
materlal into a finished gear:

PROCESSING STEPS (PS):

PS#1 : Facing

PS#2 : Turning

PS#3 : Parting-off

PS#4 : Facing

PS#5 : Centering
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PS#6 : Drilling

PS#7 : Slotting

P5#8 : Gear teeth cutting

A different set of processing steps can be identified 1f the raw
material is in a different form, say, blanks elther cast or forged.
Once the processing steps have been 1dentified, the process planner
determlines the possible sequences of processing before grouping the
processing steps into operations. The eight processing steps in the

gear manufacture can be grouped into different sets as follows:

PLAN #1 PLAN #2
Operatlon 1. PS#1,2,3 PS#1,2,3
Operation 2. PS#4,5,6 PS#4,5,6
Operation 3. PS#7 PS#7,8

Operation 4. PS#8

It is possible to alter such grouping to suit the manufacturing system
requirements. For example, in the gear manufacture the first six
pProcessing steps can be combined to perform them with one setup, say, on
a turret lathe. Further, processing step PS#6 can be separated and
performed on a drilling machine. Also, each operatlion in the plans can
be performed on a number of compatible machines. For example, the gear
teeth cutting operation can be performed either on a milling or a gear
hobbing machine if plan # 1 is used. If plan # 2 1is used where the gear
teeth cutting and slotting operations have been combined, it can only

be performed on a milling machine.
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3.2 Mathematical Formulations

The objectlive 1s to model and analyze how alternate process plans
influence the resource utilization when the part famillies and machlne
groups are formed simultaneously. Accordingly, three integer
programming models are developed to successively study the effect of
alternate process plans and simultaneous formation of part families and
machine groups. Model-3.1 assigns machines to parts. The part/machine
matrix obtalned from this model can be an input to one of the
currently available models for cell formatlon (Chandrasekaran and
Rajagopalan 1986 a,b, 1987, King 1980 a,b, King and Nakornchai 1982,
Waghodekar and Sahu 1984). It may be pointed out that the cells thus
formed may result in exceptional elements. However, this predicament
can be circumvented if the part famllies are known. Model-3,2
presented in this chapter assigns machines to known part families to
form cells. The part families so known are generally formed based on
part attributes. In a recent survey of 53 respondents in the United
States (Wemmerlov and Hyer 1987b), 62 % indicated the use of one or
more classification and coding scheme in conjunction with GT
applications. The part families were determined without the reliance on
production methods. Model-3.2 adopts a sequential approach to cell
design. This may not uncover natural part families to result in
efficlent resource utilization. Hence Model-3.3 is developed which
identifies part families and machine groups simultaneously. All the
moedels specify the process plan for each part, machine type to perform
each operatlon in the process plan selected and the total numper of
machines required to process all the parts by considering demand, time

and resource constraints. The objective function of the models is to
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minimize capital investment.

Model-3. 1:

Assume that there is a set of parts with given demands. FEach part has
alternative process plans and each operation in a process plan can be
performed on alternative machines. Informatlon regarding the processing
times and processing costs of operations on different type of machines
for all process plans is known. In this sectlion an Integer programming
model 1s developed to select machines and a process plan for each part
such that the total capital investment on machines is minimized
considering demand, time and cost constraints. The budget on operating

expense is also known. The model is as follows:

(IPM-1)
Minimize f = E cC 2 (3.1)
1 fm m m
subject to:
; Ykp =1 v k {(3.2)
Z @ x“u:p) = a_(kp) Ykp v s,k,p (3.3)
kps dg xm(up) tm-(kp) E- b“n zIn v m (3.4)
kpuz: dk Xms(kp) cl“(kp) =B v (3.5)
X“(kp) - (0, 1) v m, s,k,p
Y - (0,1) v k,p (3.6)

kp
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2m = 0 and integer v m

The objective function (3.1) minimizes the total investment. The
constraints of the optimization model are given by (3.2)-(3.6).
Constralnts (3.2) guarantee that only one process plan is selected for a
given part. Constraints (3.3) ensure that all the operations in the
selected process plan are performed on one of the available machines.
Constraints (3.4) ensure that the capacity of each machine type is not
violated. The demand for parts 1is also accounted for in thils
constraint. The manufacturing operations identified in a process plan
can be performed on more than one machine type. The operation time and
cost on these machining centers vary. Constraint (3.5) restricts the
operating cost of producing all parts by the process plan and machine
selected %o the budget. Constraints (3.6) indicate the 0,1 and
integer variables. The number of 0-1 variables, integer variables and
constraints are ( E Pk+ kpm§ a_(kp) @ ), M, and

( K+ k§ S(k,p) + M + 1 ) respectively.

Model-3, 2:

Model~3.2 is an extension of Model-3.1. This model assumes that part
famllles are known and results in cell design by selecting a process
plan for each part, machine type for each operation and number of
machines of each type in different cells. Constraints (3.4) are
modified to ensure that the capacity of each machine type in each cell
is not violated. Accordingly, the model is as follows:

(IPM~2)

Minimize f2= m; Cm sz (3.7)
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subject to:

E Y =1 v k (3.8)
P kp
= , .9
Z « X;a(kp) a_(kp) Ykp Y s, k,p (3.9)
xps (Bkr ko Xn(kp) t“(kp) = hm zmr v m, f (3.10)
kpmg dk x;s(kp) c  kp) S B v (3.11)
X (kp) = (0, 1) v mnsnkbp
ms
Y - (0,1) v k,p (3.12)
kp
ngz 0 and integer v m,f

The objective function (3.7) minimizes the total investment on machines
of different types assigned to all the part families. The constraints
are given by (3,8)-(3.12),

Constraints (3.2), (3.3), (3.5), and (3.6) of Model-3.1 correspond to
Constraints (3.8), (3.9), (3.11), and (3.12) of Model-3.2 respectively.
Constraints (3.10) ensure that the capacity of each machine type in each
cell is not violated. The number of 0-1 varlables, integer variables
and constralnts for this model are:

( EPk + :me a_tkp) @ ), MF, and ( K + kg S(k,p) + MF + 1)

respectively.
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Model-3. 3;
The objective of Model~3.3 is to identify part famllles and machine
groups simultaneously. Therefore, the indicator Bkr which identifies

part k belonging to family f in Model-3.2 1s made a decision variable
and is redefined as Teo *

where,

{ 1 1if part k belongs to cell ¢
Ir =

ke 0 otherwise
Additlonal information on the number of cells toc be formed and maximum
number of machines 1n a cell is needed for developing this model.

Accordingly the model can be stated as follows:

(IPM~3) Minimize f_ = X cC 2 (3.13)
3 me m  me

corresponding to equation (3.7)

subject to the constraints

(3.8),(3.9].(3.10).(3.11),(3.12) and
Z rkc =1 v k (3.14)
Z 2 = MAX v c (3.15)

where MAXc denotes the maximum number of machines in each cell.

Also, the indicator Bkr in constraints (3.10) is replaced by Fc The
product of two 0-1 decislon variables makes the constraints (3.10)
nonlinear. The method suggested by Glover and Woolsey (1973) can be

used to linearize the constraints and is explained below. Consider the
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product term rkc.xmtkp), where both e and thkp) are 0-1 integer
varlables. Each product term is now replaced by a continuous
linearizatlon variable Lcm(kp) and additional constraints (3.21) and
(3.22). The linearized model can be stated as follows.

(IPM-3) Linearized

Minimize f = Z cC 2 (3.16)
3 me m me
subject to:

ZY =1 v k (3.17)
P

ap~i1
R

- xm(kp) = a_tkp) Ykp v s,k,p (3.18)
kpo clk I..cm (kp) tms(kp) = bm zmc v m, c (3.19)
km dk Xms(kp) c (ko) = B Ul (3.20)

. th a + [ - = Z
ke mop %o B(kp) - amsas(kp)xmn(kp) msg Lcm(kp) - amas(kp)

v k,c (3.21)

=
l‘kc mel {kp)

v c,m,s,k,p (3.22)

X (kp) 2
mu( p) Lcms(kp)

g r.=1 v k (3.23)

Z; 2 5 MAX v c (3.24)
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<m

L Sup =0 ¥ c,a,s,k,p

X;B(kp) - (0,1) v m,s,k,p
o - (0, 1) v k,p (3.25)
cha C and Integer v m,c

The number of 0-1 variables, integer varlables and the constraints for

MODEL-3 are ( T P + Zakp aa + KC ), MC, and
k k kpms 8 ms
(K + k§ S(k,p) + MC + 1 + K + C ) respectively. Besides
(C. Za (kp) ) additlional continuous variables and
kpmes 8 me

{ 2C. Z a (k) & + KC )} constralnts are introduced due to
kpme s ms

linearization.

3.2 Example and Analysis of Results

An 1llust.ative example is given for all the models. Four different
part types of known demand are manufactured each having 2, 2, 3 and 2
process plans as given in Table-3.1. Each operation in a plan can be
performed on alternate machines. Three types of machines of known
capaclty and capital cost are avallable and their compatibility to
perform an operation is given in Table-3.2., The time and cost
information for performing an operation on compatible machines for a
process plan is given in Table-3.3. Using the data given in Table-3.1,
3.2 and 3.3, the first model was solved and the results are glven in
Table-3.4. For solving the second model the additional information on
part families is given in Table~3.5. The results obtained by solving
the second model with data from Table-3.1, 3.2, 3.3 and 3.5 is shown in
Table-3.6. The information on maximum number of machines in a group

(cell) 1s needed to solve the third model. It is assumed that two cells
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have to be formed with a restriction of 2 machines in each cell. Using
data given in Table-3.1, 3.2 and 3.3 the model was solved and the
solution is given in Table-3.7. The budget avallable for the operating
cost is assumed to be $ 200. All the models were solved using LINDO (PC
Version). The nonlinear constraints in Model-3.3 were linearized using
the method suggested by Glover and Woolsey (1973). The number of 0-1
varlables, integer varlables,additional continuous variables Introduced
due to linearization and the total number of constraints in the

linearized Model-3.3 are 59, 6, 84 and 214 respectively.

The results shown in Table-3.6 and 3.7 indicate that both the models
have selected the same process plans for each part. However, the
objective function values (capital investment) given by Model-3.2 and
Model-3.3 are 800 and 600 respectively. The presence of alternate
machines and simultaneous formation of part families and machine groups
by Model-3.3 1s the maln reason for this resource savings. Moreover,
Model-3.3 forms the natural part families which otherwise is assumed to
be known for solving Model-3.2. This indicates that the sequential
approach of forming part families and asslgning machines to part
famllles can lead to inferlor performance in terms of resource
utilization. Although this observation ls made with only one cost
vector, the same conclusion could be drawn for any other cost vector.
This follows from noting that any solution, specifically, the optimal
solutlon using the sequential approach, provides a feaslble solution for
the simultaneous approach. Thus, the situltaneous grouping model would
provide results at least as good as the sequential model. In Model-3.2

and Model-3.3 it is assumed that exclusive cells are formed without any
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inter-cell movement. This leads to higher caplital investment than that

obtained by Model-3.1 where we consider all the parts in one cell.

Further, to analyze the influence of altcrnate process plans, Model-3.2
and Model-3.3 were solved by consldering only one process plan for each
part generated by Model-3.1. The results obtained are given in
Table-3.8 and 3.9 and the objective function values are 900 and 850 for
Model-3.2 and Model-3.3 respectively. However, when multiple process
plans are corsidered, these values are 800 and 600 respectively. Both
the models indicate the need for higher resource requirements in the
absence of alternate process plans. It is worth mentlioning that the
third model can also be used to decide the optimal number of cells by
speclfying an overestimated value on the number of cells (C). Only the
required number of cells will be formed. To illustrate this, the third
model was solved by specifying C equal to 2 with a restriction of 2 and
3 machines in each cell. The model selected two machines of type 2, one

machine of type 1 and all parts were identified in one cell.

3.4 Summary

The design of a cellular manufacturing system 1s dependent on the choice
of process plan and machine tools. The models developed capture the
flexlbility avallable in considering alternate process plans and machine
types for forming part families and machine groups. The first model
gives us the part/machine incidence matrix which can be used for cell
formation using one of the currently available technlques. The second
model can bé used to form machine groups assuming that the part familles

are known. The third model identifies part families and machine groups
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simultaneously. All the models select a process plan for a part and
assign machines to operatlons considering demand, time and cost
constralnts. It was shown that alternate routing in consldering
alternate process plans/machines and simultaneous formation of part
familles and machine groups can result in efflcient resource
utilization. Here, it may be emphasized that these models cannot be
implemented for large size problems because of the 0-1 and general

integer programming nature of the formulations.
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TABLE 3.1: Data on as(kp) indicating operation s of part k to be

performed for the process plan p; and the demand (dk) for the
part k.

rart part part part
k=1 k=2 k=3 k=4
process plun process plan process plan process plan
P=1 p=2 p=1 p=2 p=1 p=2 p=3 p=1 p=2
operation
s=1 1% 1 1 1 1 1
s=2 1 1 1 1 1 1 1 1 1
=3 1 1 1 1 1 1
DEMAND 10 10 10 10

‘a1u1)=1 Indicates operation 1 has to be performed on part 1 if
precess plan 1 is selected.

TABLE 3.2: Data on L. indicating if operation s can be performed

on machine m; capacity (bm) on machine m; and the cost (Cm) of
machine m.

MACHINE
m=] m=2 m=3
s=1 1 1
s=2 1 1
5=3 1 1
CAPACITY 100 100 100
CosT 100 250 300
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TABLE 3.3:The time (tms(kp)) and cost (cms(kp))required for machine

m to perform operation s on part k using process plan p.

k=1 k=2 k=3 k=4
p=1 =2 =1 p=2 =1 p=2 p=3 =1 p=
s=1 m=1 5,3 3,4 2,2 81 1,2 9,7
n=3 7,2 4,3 2,2 9,2 2,1 8,9
s= m=2 3,5 9,8 7”8 33 33 1,2 59 23 9,8
m=3 4,3 7,9 7 2,3 4,4 2,4 3,10 2,4 10,9
8=3 m=1 8,8 10,9 8,5 11,7 7,4 3,5
m=2 7.7 8,9 6,6 8,8 9,5 2,5

TABLE 3.4:Solution for Model-3.1.
a)Objective function value = 550

b)Indicates the plan selected p and machine selected m for
operation s.

k=1 k=2 = k=3 k=4

p=1 p=2 p=2 p=1

s=1 m=1 m=1
s=2 m=2 m=2 m=2 n=2
5=3 m=1 m=1 m=1

c¢)Optimum number of machines of type m selected.

No. of machines

m=1 3
m=2 1
m=3 0

TABLE 3.5:Data on ka indicating if part k is a member of part
family f.

part
k=1 k=2 k=3 k=4

family

f= 1 1
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TABLE 3.6:Solution for Model-3.2.
a)objective function value = 800

b)Indicates the plan selected p and machine selected m for
operation s.

k=1 k=2 k=3 k=4
p=1 p=2 p=1 p=1
s=1 m=1 m=1 m=1
5=2 n=2 m=2 m=2 m=2
s=3 m=1 m=1

c)Optimum number of each machine type m assigned to each cell ¢

cell cell

c=1 =2
m=1 2 1
m=2 1 1
m=3 0 0

TABLE 3.7:Solution for Model-3.3.
a) Objective function value = 600

b)Indicates the plan selected p and machine selected m for
operation s.

k=1 k=2 =3 k=4
p=1 p=2 p= p=1
s=1 m=1 m=1 m=1
s=2 m= m=2 m=2 m=2
s=3 m=2 m=2

c)Data on L indicating if part k is a member of cell c.

part
k=1 k=2 k=3 k=4

cell
c= 1
c= 1 1 1
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d)Optimum number of each machine type m assigned to each cell c.

cell cell
c=1 c=2
m=1 0 1
m=2 1 1
m=3 0 0

TABLE 3.8:Scolution for Model-3,2.
a)Objective function value = 900

b)Indicates the machine selected m for operation s with a fixed
plan p for each part k.

k=1 k=2 k=3 =4
p=1 p=2 =2 =1
s=1 m=1 m=1
s=2 m=2 m=2 m=2 m=
=3 =1 m=1 =1

c)Optimum number of each machine type m assigned to each cell c

cell cell

c=1 c=2
m=1 2 2
n=2 1 1
m=3 0 0

TABLE 3.9:Solution for Model-3.3.
a) Objective function value = 850

b)Indicates the machine selected m for operation s with a fixed
plan p for each part k.

k=1 k=2 k=3 k=4

p=1 p=2 p=2 =1
g=1 m=1 m=1
§= n=2 m= m=2 n=2
5= mn= m=2 m=2
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c)Data on L indicating if part k is a member of cell c.

part
k=1 k=2 k=3 k=

cell
c=1 1 1
c=2 1 1

d)Optinum number of each machine type m aegsigned to each cell c

cell cell
c=1 c=2
m==1 1 0
m= 1 2
m=3 0 0
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CHAPTER 4

CELL DESIGN WITH INVESTMENT CONSIDERATIONS

Cellular Manufacturing has been recognized as a critical element in the
revival of outdated and unproductive plants. New technologles often
support and mandate CM. In the past cells were often created by
rearranging existing job shops with conventional machinery. The current
move towards computer-integrated manufacturing (CIM) has focused our
interests In the creation of cells using new and often automated

machines.

4.1 Mathematical Formulations

In this chapter, a number of mathematical models are developed for the
creation of new cells. It is assumed that a part can be produced
through one or more process plans. Each operation in a process plan can
be performed on alternate machines. Thus, for each process plan we have
a number of production plans depending on the machines selected for each
operation. It is also assumed that the demand for a part could be split
and can be produced in more than one cell. The plans identified to

produce the same part in different cells could be different.

Thus, the cell formation problem, in addition to forming part families
and machine groups is to specify the plans selected for each part,
quantity to be produced through the plans selected, machine type to
perform each operation in the plans and total number of machines

required considering demand, time, material handling and resource
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constralnts.

The ultimate application of GT in manufacturing is the formatlon of
mutually exclusive cells. If it 1s assumed that there is only one
unique process plan for each part the creatlon of mutually independent
cells may not be possible without duplication of machines. The
duplication of machines require additional capital investment. However,
if we permit alternate process plans for each part and assign operations
to machines during cell formation, it may be possible to select process
plans which can be processed within a cell without additional
investment. We therefore consider the minimizatlon of investment as one
of the criteria for design of cellular manufacturing systenms.
Accordingly, four mathematical models are developed for cell formation.
All the four models developed are large scale mixed integer progranms.
Since the number of machines of each type selected is restricted to be
non-negative integers, the models implicitly minimize the
under-utilization of machines. The optlon to select more than one plan
for a part and produce it in more than one cell allows us to derive
benefit from flexibility. The assumptions and notatlon are stated

before develcping the models.

Assumptlions and Notatlion:

We have M (m=1,2....M) machine types and K (k=1,2....... ,K) parts to be
manufactured. The demand for a part k is bounded from below by dk.
Machine type m is available for bm units of time during the plan
horizon. A part k (k=1,2....K) can be manufactured through any of the

Pk process plans. A process plan for a part ( say part k, plan p) can
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be viewed as a set of operations :1,2...... S(kp) to be performed. Each
operation can be performed on alternate machines. For each part and
process plan combination, the cost and time for each machine allotted to

each operation are given. Accordingly,

time for machine m to perform operation s for
L _tkp) = (kp) combination.

o« 1f machine m cannot perform this operation.

and
cost for machine m to perform operation s for
c_(kp) = (kp) combination.

o« if machine m cannot perform this operation.

We now define a production plan to be an assignment of machines to
operatlons for a given (kp) combination. Several production plans
could be used to produce part k using process plan p. Thus, we define

the following :

X(1kp) = Number of units of part k produced using process plan p and
production pian 1.
Ltkp) = Number of different production plans for (kp) combination.

We have a large number of production plans for (kp)combinations. Every
feasible assignment of machines to operations in the process plan gives
rise to a production plan. Let a production plan be designated by

numbers afikp) for I e Li{kp) so that:

1 if in plan 1 machine m is assigned to operatiocn s
a (lkp) = for (kp) combination.

0 otherwise.
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Model-4.1:

The objective of this model is to assign machines to parts, This is the
simplest situation leading to a single cell, when the number of part
types and machines required is few. A typical cell consists of 3 to 15
machines (Wemmerlov and Hyer 1987). This can also be referred to as a

process plan and operation allocation problem. The model is formulated

as follows:
(MIP-1)

Minimize M41 = Z C 2
n omow

subject to:
pz: Xukpy = d v k (4.1)
); [):a Qxp) t (kp)] Xkp) s b 2Z v n (4.2)
kp E ns ng m o
[ ):a (1kp) ¢ (kp)] X(kp) = B (4.3)
kpl ms mg wmws

2m non-negative integer variables (4. 4)

X(lkp) = 0O v  Lkp

The obJective function minimizes the total investment on machlnes
assigned to all the parts. Constraints (4.1) guarantee that the lower
bound on demand for all parts is met. Constraints (4.2) ensure that the

capacity of each machine type selected is not violated. Constraint (4. 3)
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restricts the operating cost of producing all parts to the budget.

Constraints (4.4) indicate the integer variables.

Model-4. 2:

This model adopts a sequential approach to cell formation by assignlng
machines to known part families. This model has wide appllicability
because a number of companies have indicated the use of one or more
classification schemes in conjunction with GT applicatlions for
determining part families. 7The part families thus formed were
determined without reliance on production methods (Wemmerlov and Hyer
1986, Hyer and Wemmerlov 1985). For developing this model we assume
that part families are known. Iaformation en whick part belongs to

which part family is denoted by an indicator Bkr'

1 if part k belongs to family f.
ka =

0 otherwise,

Accordingly, the model is:
(MIP-2)

Minimize M42 = z c 2
mf m mf

subject to;
p; X(lkpy = dk Y k (4.5)
)l; B“. pg [ Z ams(lkp) tm‘(kp)] XOkp) = bm zm_ v n,f (4.6)
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ek [ mZ a _(lkp) CmB(kp)] Xtikp) s B (4.7)
me non-negative lnteger variables (4.8)
Xaxp = 0 ¥ l,k,p

The objective function minimizes the total investment on machlnes
assigned to all the part families. Constraints (4.5),(4.7) and (4.8)
correspond to (4.1),(4.3) and (4.4) of Model-4.1

respectively. Constraints (4.6) ensure that the capacity of each

machine type assigned to all the part families 1s not violated.

Model-4. 3:

For developing Model-4.2 we assumed that the part families are known.
This method may not uncover natural part families, because the part
families were formed bar:: on part attributes and were not based on
production methods. Moreover, not all companies have well developed
coding schemes to establish part families. To discover natural part
families and machine groups we have to form them simultaneously. The
objective of this model is to identify part families and machine
groups simultaneously. For developing this model we define the decision
variable to reflect the fact that the demand for a part can be allowed
to be produced in more than one cell. The plans chosen to produce
these parts in the respective cells may be different but they are
exclusively processed in that cell with no inter cell movement. The

model is stated after defining the following:
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X(1kpc)= Number of units of part k produced using process plan p and
production plan 1 in cell c,

Likpe) = Number of different production plans for (kpc) combination.

b .
a_ (lkpe) = for (kpc) combination

{ 1 if In plan I machine m is assigned to operation s

0 otherwise,

(MIP-3)

Minimize M43 = Z cC 2
mc m mc
sub ject to:

=
cpE X(1kpe) dl:

YV k (4.9)
h;{gamunmtmmNJMmszbm%c vV mc (4.10}
ckp); [ m); a_ (lkpe) cm(kp)] X(ikpc) = B (4.11)
zm s Maxc YV ¢ {4.12)
2“ non-negative integer variables (4.13)
X(ikpc) =2 0O Y 1,k,p,c
The value of C (e=1,,.. +C), which denotes the number of cells is based

on judgment. It is suggested that this value be an overestimate, Only

the requirad number of cells will be formed leaving the other cells
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empty.

From an operational control point of vliew if the decislon maker feels
the demand for a part should be produced in only one cell and does not
comply with our assumption, the following additional constraints will

ensure that:

r =1 v k (4.14)

X X(lkpe} S Mr v k,c, M is a large number (4.15)

Constraints (4.14) guarantee that a part is assigned to only one cell
and Constraints (4.15) ensure that a plan is ldentified only in the cell

in which tihe part has been assigned. This model can be brliefly stated

as:
Model-4.3,1:

{MIP-3.1)

Minimize M43

subject to : Constraints (4.9) to (4.15).

Thls model achieves the ultimate goal of GT application in manufacturing

by grouping parts and machines simultanecusly to foirm mutually excluslve

cells.

Model-4. 4;

If in Model-4.2 the number of part families identified is large or for
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some practical reasons the company wants a few sets of parts to be
always produced in the same cell then we can assign one or more part
famllies to a cell. We develop Model-4.4 to address this situation. It
forms part groups and machlne groups simultaneously by assigning one or
more part families to cells. We define the following decision variable
before stating the model.

X(lkpef)= Number of units of part k in family f produced using process

plan p and production plan 1 in cell c.

1 if in plan 1 machine m s assigned to operation s
a2 (kper) - for (kpcf) combination.
o 0 otherwise.
and

I 1 if part family f is assigned to cell c.

rI‘c = l

0 otherwise.
(MIP-4)

Minimize M44 = Z C 2
nc o mc

subjJect to:
cpg Xiper) = B, . d vV k,f (4.16)
“‘p); { Z a_, lkpef) t“(kp)] X(lkper) = bn zmc V mc (4.17)
c:kpz: [ ,,Z: A, tikpef) Cm(kp)] XQxkper) s B (4.18)
Z znc s Maxc YV ¢ (4.19)
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Z r =1 v f (4.20)
fc

c

kpZ Xtkper) = M rrcv f,c, M is a large number (4.21)
ch non-negative integer variables (4.22)

r 0-1 varlables
fc

X(lkper) =2 O v l1,k,p,c,f

In Constralnts (4.16) we have an equality sign to ensure that parts are
produced only if it belongs to that particular part family. Constraints
(4.20) guarantee that a part family ls assigned to only one cell.
Constraints (4.21) ensure that a plan for a part is selected only if
part k belongs to family f and family f is in cell c. The other

constraints are similar to those described in the previous models.
4.3 Solution Hethodology
The method of solution for Model-4.1 is described in detail first and

extended to the other models.

Method of Solution for Model-4.1:

In this formulation L(kxp) 1s large for each (kp) combination and,
therefore, the number of varlables will be large. Moreover, the integer
restriction on 2ln further complicates the model. If we remove the
integrality restriction on 2n » We have a large scale llnear program. A

direct application of the simplex method is not practical. We will
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therefore solve this problem by the revised simplex method using a
column generatlon scheme that will be developed in the next section.
Once the linear program 1s solved a branch and bound algorithm on Zm
values glives an optimal solution. As already mentioned each node in the
branch and bound tree represents a solution to an augmented continuous
problem with additional constraints on the integer variables. These
additlonal constraints are easily incorporated without increasing the
size of the problem by the bounded variables procedure. The column

generation scheme is given next.

Column Generatlon Scheme:

The approach to be considered here is a method of gererating the desired
column at each iteration of the simplex method. This strategy 1s
adapted from the Dantzig-Wolfe Decomposition Principle (Dantzlg and
Wolfe 1961). The method of generating columns is different in each
case, depending upon the special structure of the problen
(Chandrasekaran, Ane ja and Nair 1984, Gilmore and Gomory 1961). In the
problem under consideration column generation is achieved by solving a
simple assignment sub-problem. The method of generating the column is

glven below,

At any general iteration, let us define the simplex multipliers
corresponding to (4.1), (4.2) and (4.3) as nk(k=1,2. ..... K),
um(m=1.2,....M) and v respectively. Now the pricing scheme for
determining the entering variable, if any, is to look for any variable
Xixp) such that the associated reduced cost E(lkp) = Clkp) - Ztikp) is

negative. Since X(ikp} does not appear in the objective function the
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Chkp) value is zero. Thus we have Z(lkp) > 0. Accordingly,

T+ Z u E a (xp) t (xkp) + v [ a (lkp) C {kp) > Q v k
k m m s ms me ms ma ms
or, ):a tkp) [ (Fu) t xp) + (~v) ¢ p) } < n v k
mE mu m me o8 k
Defining, ce_ (kp) = (—um) tm-(kp) + (-v) c . kp) (4.23)
Zkp) > 0 <=> X a (lkp) cc (kp) < ¢ v k
mAs ms ms k

Thus, for a fixed k,p consider the following assignmenrt problem of
assigning machines to operations.

Define 0-1 variables ams as

s Y m,s

{ 1 if machine m is assigned to perform operation s.
a =

0 otherwise

Let cC  kp) = cost of assigning machine m to perform operation s.

The problem is:

Minimize 2 = [ cCc {kp) a
sm me mE
subject to :
Z a =1 Y s
m ma
a =0ort v m, s
me

The optimal solution to this problem can be obtalined by the following
simple "greedy" procedure:
Let m = Min cc (kp) v 5

8 m os

Optimal assignment is given by:

{ 1ifm=n
a = ®

ns 0 otherwise
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Let 2° be the cost assoclated with this production plan. If 2°¢ T,
then, 1t is a candlidate column to enter the basis. The (K+M+1) column

values of the entering column are

First K valves [ 00O ...... 1 C]

k position.
Next M values [ E alatls' § azstzs' ......... § aHst"s]
Last 1 value [ Za ¢ ]

If for every (kp) comblnation the optimal assignment zZ° > x . Ve check
1f any of the slack, surplus or Z column can enter. These columns are
explicitly known. Thus the relaxed MIP-1 can be solved. Branch and
Bound on Zm varlables will solve the original mixed integer progran

optimally (Dakin 1965).

Branch and Bound on Zm:

Model-4.1 was solved as a linear programming problem. Somes of the
variables namely Zn are required to be Integers. Suppose I is an
integer. Then, since the range I < Zn < 141 is Inadmissible, divide all
the solutions to the constraints into two non-overlapping groups. i.e.,
(1) seolutions in which 2; < I.

(1) solutions in which 2 = I+1.

Thus we have two subprohlems with an additlonal constraint at each
branching node. The linear programs are agaln solved using the column
generation spproach. If this solution is integral then it 1s one
solution to the problem and stop branching on that node. If it is
non~integral, we agaln branch on the variable which is non-integral, add

each of these constraints to the continuous problem and solve the
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augmented problems. Repeat the procedure for each of the two solutions
so obtalned. The branching will always terminate in one of two ways; we
may reach an integer solution or we may find that the current set of
constraints has no solutions. The solution to the complete problem will
be the best integer solution reached in this way. Although we regarded
the constralnts on 2m at each node additional to the original
constraints in the linear program, 1t can be easily incorporated without
increasing the size of the problem by the bounded variables procedure,.
Thus, by solving a large scale linear program of the same basis size at
branching nodes, an optimal solution iv obtained for the mixed integer

program. The algorithm for solving Model-4.1 is given next.

Algorithm-4.1:

Step-0: Start the initial basis with all the slack and artificial
variables.

Step-1: Choose a part k and process plan p and the assignment cost
matrix as given in (4.23).

Step-2: Find a minimal cost assignment such that

Cl = Z a (lkp) cc {kp) < m for all =« 20, u =0 and v s=0.

nE ms ma k k o

If c' > L for all (kp) combinations go to Step-5, else go to
Step-3.

Step-3: Enter the new column and update the basis. Go to Step-4.

Step-4: Check for the surplus and slack variables to enter the basis.
If
L < 0 introduce surplus variable corresponding to part k.

un > 0 introduce slack variable corresponding to machine m.

v > 0 introduce slack variable corresponding to budget.
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If any of them can enter go to Step-3, else go to Step-5.
Step-5: Check if any of the 2m column can enter. If, yes then go to
Step-3, else go to Step-6.
Step-6: If 2ln values are integers then stop else branch and bound on

Zm. Add the additional constraints and go to Step-1.

Method of Solution for Model-4.2 and Model-4.3:

The method of generating the columns for MIP-2 and MIP-3 are
similar to MIP-1 as described above. The assignment costs for the

sub-problem in MIP-2 and MIP-3 are:

cc (kp) = (-umf Bur) tms(kp) + (-v) c_,kp) v k,p,f
and
cc (kp) = (-uhc rkc) tms(kp) + (-v) c  xp) v k.p,c

for a fixed k,p,f and k,p,c respectively. u and u _are the
multipliers corresponding to constraints (4.6) and (4.10) respectively.
The number of column values of the entering column will be (K+MF+1) and
(K+MC+1). Algorithm-4.1 with the new assignment cost matrix solves

these two models.

Method of Solution for Model-4.3.1 and Model-4. 4;

For developing Model-4.3.1 and Model-4.4 we have introduced additional
0-1 variables, namely, rkcand L They appear Ja the Constraints
(4.14), (4.15) and (4.20), (4.21) respectively. We suggest an implicit
enumeraf.lon on these variables to solve the models optimally. The

algoritimm for solving Model-4.3.1 is given next.
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Algorithm-4. 2:

Step-0: Solve the mixed Integer program (MIP-3) optimally using
Algorithm-1. If the solutlon to this program speclfies that
each part type should be produced in only one cell then you
have the required solution hence stop else go to Step-1.

Step-1: Select any part k that has been identified to be produced in
more than one cell. This can be known by looking at the plans
in the basls, l.e., a few rkc varlables are fractions. An
implicit enumeration on Tre will solve the model optimally.

For example, if part 1 is produced in twe cells 1 and 2, to
ensure it is produced in only one we branch into two nodes. At
node 1 we set r11=1 and at node 2 r11=0. The problem is solved
again using Algorithm-1, except that now in the branch r11=1.
we select only plans for part 1 in cell 1 to enter the basis
while checking for column entering and do not consider other
c=2,...C for k=1. We do just the opposite in branch 2 where
r11=0. We consider all plans for ¢ # 1 for k=1. At every
branched node we solve a mixed integer program. Model-4.4 can

be solved similarly.

4.4 Examples

Consider a hypothetical example of Just one part to be manufactured for
purpose of illustration of Model-4.1. Two process plans have been
identified for manufacturing this part. Each plan requires two
operations. Two types of machines costing 100 and 200 each are
avallable to perform these operations. The machine avallabilities are

100 time units for each type. The demand for the part is 100 units and
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has to be produced within an operating budget of S00. Thus we have M=2,
K=1, d1 =100, p1=2, r(il)=r(12)= 2, b1= b2= 100 and B =500. The
production cost and time for each of the two plans are given by the

following matrices:

m s
¥ [100 100 100 100
k=1, p=1, cms(11) = |, 2 tmﬂulj = 3 2
[2 2 3 2
k=1, p=2, cmn(iai = lios 100 tmsua) = 100 100

There are a total of 8 plans for this problem. The solution for this
problem is rather obvious. The application of the algorithm to this

example problem is illustrated next.

The method is started with all artificial and slacks in the basis. The
initial basic variables column is [;1,82,53.54]. the right hand side
column is [100,0,0,500] and the dual variables are {M,0,0,0]. M in this
context 1s a very large number. Since the dual variables corresponding
to machines and budgel 1s zero any plan can enter the basis. Say we
assign machine type 1 to both operations in p=1. The column for the
basis entry is P1[1,200.0.200]. The bacis and the inverse are updated
by the usual simplex rules. The new basic column is {gl,Pl,sa.s4], the
right hand side column is (100,0,0,500] and the dual variables are
[M,-M/200,0,0]. With the new dual variables find the assignment cost
and pick, for each operation, the machine with lowest cost. The column

entering, basic column, RHS column and dual varlables at following

1terations are given below.



Column entering Basic column RHS column Dual varilables

P2 [1,0,5,4] [gl.Pl.Pz,s4] [100,0,0,500] [M,-M/200, -M/5, 0]

P® [1,5,0,4] [;1,P3.P2,s4] (100,0,0,500] [M,-M/S,-M/5,0]
With the present assignment cost no more plans can enter the basis. Now
check if any of the :Zm column can enter. The Z column corresponding to
machine type 1 is 21[0.—100,0,0]. Since CJ-Z] <D 21 can enter the

basis. Thus we have,

Column entering Basic column RHS column Dual variables

z1

(0,-100, 0, 0] [21,P3.P2,s4] (5,100,0, 100} [5,-1,-1,0]
Check again if any plan, surplus, slack or Z column can enter before

terminating.

Let us consider the following data for illustrating the application of
Model-4.2 and Model-4.3

K=4, M=2, d1= da= d3= d = 10, = P2= P3= 1, r(11) = r(21) = r(31) =
r(41) = 2, b1= b2= 150, B=700, Max1= Ma.x2= 2, C1= 100, C2= 2900 .l"11 =
r31=r22=r42=1,and
5 5 s 5
k=1, p=1, Crg 1V =_1oo 100 tms(n) = 100 100
(10 10 ] [10 10
k=2, p=1, Cns 21 =_1oo 100 tm(an = (100 100
[100 100] [100 100
k=3, p=i, c . =_5 s J tmm) = s 5
(100 100] 100 100
k=4' p=1' cms““ =_10 10 i tms“” = _10 10

The column entering, basic column, RHS
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each lteration are listed in Table-4.1 and Table-4.2 for Model-4.2 and
Model-4.3 respectively. For Model-4,2, the basic column and RHS column
in optimal solutlon are:

1 .3 .4 _5
Basic Column [211.2 221'222'P PP, P .59]

RHS Column {10/15, 20/15, 10/15, 20/15, 10, 10, 10, 10, 300]

12’

A branch and bound on zmr will give 211= 1, 212= 2, 221= 1 and 222= 2.
The optimal solution at the first node for Model-4.3 1s given in

Table-4.2 (Iteratlion # 13).

4.5 Summary

In this chapter four large scale mixed integer programs were developed
for operations allocation and cell design. Model-4.1 assigns machines
to parts. Model-4.2 assigns machines to known part families to form
mutually exclusive cells. The part families so known are generally
formed based on part attributes. This method adopts a sequential
approach t. cell formation and may not uncover natural part famillies
leading to poor resource utilization. Therefore, Model-4.3 was
developed, which identifies part families and machine groups
simultaneocusly. If the number of part families identified is large it
may be eccnomical to assign more than one part family to a cell and
ldentify the machline groups. Model-4.4 groups part families and
machines. All the four models specify the plans selected for each part,
quantity to be produced through the plans selected, machine type to
perform each operation in the plans and the total number of machines
required to process all the parts by considering demand, time and
resource constralints. The objective function of the models is to

minimize capital Investmer.. A column generatlon scheme was provided

€3



for an efficient solution to the relaxed mixed integer programs. The

solution technique generates columns (plans) for each part type by
solving simple assignment problems. Illustrative examples were solved

to illustrate the solution technique.
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TABLE 4.1: Computational detalls for solving Model-4.2.

Iteration # 0:
Basic Column
RHS Column

Dual Column
Iteration # 1:
Column Entering
Baslc Column
RHS Column

Dual Column
Tteration & 2:
Column Entering
Baslc Column
RHS Column

Dual Column
Iteration # 3:
Column Entering
Baslie Column
RHS Column

Dual Column

Iteration # 4:

Column Entering
Basic Column
RHS Column

Dual Column

Iteration # S:

Column Entering

[51.32,53,54,55.56,5",5

(10,10, 10,10,0,0,0,0,700]

a'59]

(M,M,M,M,0,0,0,0,0]

P'{1,0,0,0,10,0,0,0,10]

- - = = 1
[51,52,53,54,P '55'57'53’59]

(10,10, 10, 10,0,0,0,0, 700}

{M,M,M, M, -M/10,0,0,0,0]

P*(1,0,0,0,0, 200, 0, 0, 200]

- - = = .1 .2
[51'3 »S,08,P,P%, s

2’73 18415,

7°78' 79
(10,10, 10,10,0,0,0,0,700]

[M, M, M, M, -M/10, -M/200, 0, 0, 0]

P°(0,0,1,0,0, 10,0, 0, 10]

- = = = 1 3
[51.5 S ,s4,P P, s

8 ,s
2’73 'y’ 9]

7
(10,10,10,10,0,0,0,0, 700]

[M, M, M, M, -M/10, -M/10, 0, 0, 0]

P*10,0,1,0,0, 10,0, 0, 10]
- = - =- 1 3 L3
[51.52,53,54,P ,P7,P .sa,sgl
[10, 10,10, 10,0, 0,0, 0, 700]

[M, M, M, M, -M/10, -M/10, -M/20, 0, 0]

P°[0,0,0,1,,0,0,0, 20, 20]
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Basic Column
RHS Column

Dual Column
Tteration # 6;
Column Entering
Basic Column
RHS Column

Dual Column
Tteration. & 7:
Column Entering
Basic Column
RHS Column
Dual Column
Iteration # 8:
Column Entering
Baslc Column
RHS Column

Dual Column
Iteration # 9:
Column Entering
Basic Column

RHS Column

[s 18,1 S

- 1 3 4 ;5
1 IS4IP )P IP 'P Isgl

3
(10,10,10,10,0,0,0,0,700]

[M,M, M, M, -M/10, -M/10, -M/20, -M/20, 0]

211 [01 0: Or 0: -1501 00 or Os 0]

= = = 1.3 4 _5
11,52.53,54.P ,P°,P",P .sg]

[10/15, 10,10, 10,10,0,0,0,600])

(2

[M/15, M, M, M, -M/150, -M/10, -M/20, -M/20, 0]

221[0,0,0,0.0.-150.0,0,0]

- - 1 3 4 .5
[211.52.221.54,P P7,P,P .sgl
(1015, 10, 10/15, 10, 10, 10, 0, 0, 500]

[M/15,M,M/15, M, -M/150, -M/150, -M/20, -M/20, 0]

Zla[0.0,0,0,0,0,—150.0.0]

- 1 .3 4 .9
[211,212,221'54,P IP IP IP .59]

(10715, 20/15, 10/15, 10, 10, 10, 10, 0, 300)

[M/15, 2M/15,M/15, M, -M/150, -M/150, -M/150, -M/20, 0]

222[0,0,0,0.0,0.0.-150.0]

1,3 .4 S
[211,212,221,222,P F°,P,P .59]

[10/15,20/15, 10/15, 20/15, 10, 10, 10, 10, 300]

Dual Column [H/15,2M/15,M/15.ZM/IS,-H/150,~M/150.-M/150,-M/IS0,0]

[ Q-

sito ;;corresponds to constraints (4.5), S to Sy corresponds to

constraints (4.6) and 8y corresponds to constraint (4.7).
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TABLE 4.2: Computational details for solving Model-4.3,

Iteration # O:

Basic Column [51'52'53'54'55'55'57'58’59’510'511]
RHS Column [10,10,10.10,0,0,0,0.700,2,2]
Dual Column [M,M,M,M,0,0,0,0,0,0,0]

Tteration # 1:

Column Entering P'[1,0,0,0,10,0,0,0, 10,0, 0]
- - = = = 1
Basic Zolumn [51,52.53.54,P '56'57'58’89'510'511]
RHS Column (10, 10, 10, 10,0, 0,0, 0, 700, 2, 2]
Dual Column [M,M, M, M, -M/1G,0,0,0,0,0,0]

Iteration & 2:

Column Entering P?(1,0,0,0,0,0, 10, 0, 10,0, O]
- = = = _1 2
Baslc Column [91,52.53.54,P ,sG,P ,58,39,510,511]
RHS Column (10,10, 10,10,0,0,0, 0, 700, 2, 2]
Dual Column [M, M, M, M, -M/10, 0, -M/10, 0, 0, 0, 0]

Iteration # 3:

Column Entering P3[1.0,0,0,0.200,0,0,200.0.0]

- = = = 1.3 .2
Basic Column [51,32,53,94,P P,P '53’59'510’511]
RHS Column (10, 10, 10, 10,0, 0,0, 0, 700, 2, 2]
Dual Column (M, M, M, M, -M/10, -M/200, ~M/10, 0, 0, 0, 0]

Iteration # 4:

Column Entering P*[1,0,0,0,0,0,0, 200, 200, 0, 0]

- T = = 1.3 3 4
Basic Column [51,52,53,54,P P ,P5, P .59,510.311]
RHS Column [10,10.10.10,0,0.0.0,700,2,2]
Dual Column [M,H.M,M.—M/IO,-M/ZOO,-M/IO,-M/ZO0.0,0.0]

Iteration # S:

Column Entering P°[0,0,1,0,0,10,0,0, 10, 0, 0]
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- = = = 1.5 _2 4

Basic Column [51,52.53,54,P ,P7,P°,P .59.810.5111
RHS Column [10,10.10,10,0,0,0,0.700,2.2]

Dual Column [M.M,M.M,—M/IO.-M/lO.-M/lD,-M/ZOD.0,0,0]

Iteration # 6:

Column Entering ?°[0,0,1,0,0,0,0, 10, 10, 0, 0]
- = = = 1 8§ 2 _6
Basic Column [51,52,33,54,P ,P7,P°,P .59,510.511]
RHS Column (10, 10, 10, 10,0, 0, 0, 0, 700, 2, 2]
Dual Column [M, M, M, M, -M/10, -M/10, -M/10, -M/10, 0, 0, 0}

lteration # 7:

Celumn Entering 211[0,0,0,0,-150,0,0,0,0.1,0]

- = 1 _§ _2 _&
Basic Column [211.52.53,54,P ,P°, P, P ,59,510.511]
RHS Column [10/15,10,10,10,10,0.0.0,600,20/15,2]
Dual Column [100/15,H,M.M.-10/15,-H/10,-10/15.-M/10.0.0,0]

Iteration # 8:

Column Entering P7[D,1.0,0.20.0,0,0,20.0,0]
Basic Column 24 ,g s _E .Pl,PS.Pz.PS.S .P7.S ]
11'72"73' "4 9 11
RHS Column [2,0,10,10,10,0,0,0, 400, 10, 2}
Dual Column [M/Z,M,H.M.-MIZO,-M/lD,-H/ZO.—M/I0.0,-ISM/2+1OD,0]

Tteration # 9;
Column Entering 222[0.0.0,0.0.0.0.-150.0.0,1]

- = 1 .5 .2 6 7
Basic Column [211'52'222'54'P JP7,PE, P ,sg,P .511]

HHS Colymn (2,0,10/15,10,10,0,0, 10, 300, 10, 20/15]

Dual Column [M/Z.M,ZOO/lS,M,-M/ZO,-20/15,-M/20.-20/15.0,—15M/2+100.0]
ITteration # 10:

Column Entering P°[1,0,0,0,0,200,0,0,200,0, 1]

8 - 1 5 .2 .0 7
Basic Column (z .p vZ,,08,.,P ,P°,P%,P S, Pys ]
RHS Column [2,0,10/185, 10, 10,0, 0, 10, 300, 10, 20/15]
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Dual Column [800/3.1600/3.40/3,3,-80/3,-4/3.—80/3,—4/3,0,-3900.0]

Iteration # 11:

Column Entering P9[o,1.0,0,0.200,0,0.200,0.1]

g - 1 5 2 [ 7
Basic Column [211'P ,222.54,P ,P°,P°,P ,sg.P ,511]
RHS Column [2,0,10/15, 10, 10,0, 0, 10, 300, 10, 20/15]
Dual Column

[2000/15.4000/15,200/15,M,-200/15.-20/15.—200/15,—20/15.0,-1900.0]
Iteration # 12:

Column Entering  P'°[0,0,0,1,0,0,0,20,20,0,0]

9 10 .1 .5 .2 _§ i
Baslc Column [211'P ,222,P »P,P7,P°,P ,sg.P ’511]
RHS Column [2.0.2,10.10,0,0,10,100,10,0]
Dual Column

[2000/15.4000/15,200/15,400/15.-200/15,-20/15,-200/15.-20/15.0.—1900,0]

Iteration # 13:

Column Entering 212[0.0.0,0,0,~150.0,0,0,1,0]
7

10 .1 _§ _a ¢
Basic Column [211,212,222.P yP5,PY,PE,P .sg,P ,511]
RHS Column [2,0.2,10,10.0,0.10.100.10,0]
Dual Column

[100/15.200/15,200/15.400/15.-10/15,—20/15,—10/15.-20/15,0.0,0]

» -—

s, to S, corresponds to constraints (4.15), s, to Sq corresponds to
constraints (4.16), S, corresponds to constraint (4.17) and

%10’ §,,00rresponds to constraints (4.18).
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CHAPTER 5

CELL DESIGN WITH MACHINE RELOCATION CONSIDERATIONS

With the introduction of new parts and changed demands, new part
families and machine groups have to be identified in a Cellular
Manufacturing System. This may involve allocation of parts to existing
machine groups, relocation expense on existing machines or additional
investment on new machines. The redesign of cellular manufacturing

systems warrants the consideration of these practical issues,

5.1 Mathematical Formulations

In thls chapter, four mathema:ical models are developed to address

these problems. In order to derive maximum benefits from CMS it is
assumed that the cells are exclusive,i.e., no inter-cell movements of
parts are allowed. The flexibility available in considering alternate
process plans, alternate machines for performing the operations in the
process plan and using more than one plan in one or more cells to
produce the part is considered in the models developed. The first model
ls a large scale linear program. Parts are allocated to machine groups
witheut disrupting the exlsting configuvration. The two objectives which
could be considered in this situation are either minimizing the
operating cost or under utilization of machine groups. The second model
is a large scale mixed integer program. Part families and machine
groups are identified slmultaneously with an objuctive to minimize the
machline relocation cost and operating cost. The third model, in

additlon to simultaneously forming part families and machine groups,
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also determines the additional investment to be incurred on new
machines. The objective function minimizes the relocation, operating
and additional machine costs while assigning these new machines to one
of the machine groups. This niodel is alsn a large scale mixed integer
program. The fourth model considers only the invesi{zant on new machines
assuming relocation is not allowed due to loss in production and time.

A column generatlon scheme is developed for solving the first model
efflclently. For solving the second model which is a mixed integer
progrim, the relaxed linear problem is solved by column generation
scheme followed by a branch and bound on the inieger variables. At each
branched node a relaxed linear problem is solved by the bounded

variables procedure. The third and fourth models are solved similarly.

Model-5, 1:

The objective here is to assign parts to known machine groups. It Is
assumed that the plan identifled for a part in any machine group should
be fully processed in that group. The objectives could be:

1. Tor Imlze the total operating cost and

2. To m. .mize the under utilization of the machines in the machine
groups.

Accordingly, Model-5.1 is stated for the two objectives as LP1 and LP2

respectively.
(LP 1) Minimizing the operating cost:

Minimize L51 = kf. [ Ea {1kpq) C“(kp)] X(1kpg)

gkpl® me s
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subject to:

g; Xtkpg) = d v k (5.1)
k);l[ Z a__flkpg) tm(kp)] X(lkpg) = P vV g (5.2)
X(ikpg) = 0 v Lknsg

The objective function minimizes the total cost of plans selected for
all the parts. Constralints (5.1) guarantee that the demand for all
parts are met. Constraints (5.2) ensure the capaclty of each machine

type in a group is not violated.
(LP 2) Minimizing the under utilization:

Minimize L52 = [ d

mg oy
subject to:
qgl X(kpg) = d v k (5.3;
k);;1[ Z a__(lkpg) tms(kp)] X(ixpg} + 4= by v mg (5.4)
gkpl[ m); a_ (lkpg) cms(kp)] X(lkpg) = B ' (5.5)
X(ixpg) , qu z0 v LKk,p,gm
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The objective function minimizes the total under utilizatlion of machines
in all the groups. Constraints (5.3) assure the demand for parts is
met. Constraints (5.4) ensure the capacity of each machine type in a
group is not violated. Constraint (5.5) restrict the operating cost of

producing all parts to the budget.

It may so happen that a few parts cannot be fully processed within an
existing machine group. To derive maximum benefits from Group
Technology it is desirable to process a part completely within a machine
group. Two ways to achieve this could be:

1. to subcontract the parts which cannot be processed within a group;

2. to relocate the machines to form exclusive part families and machine
groups,

The first solutlon needs no further comment. Relocation of machines is
expensive and has to be done judiciously. For this purpose Model-5.2 isg

developed.
Model-5, 2;
Miniml = [ ]
n ze M52 n);q C z + Z MZ ams(lkpg) cm(kp) X(1kpg)

mig mig gkpl

subject to:

g);l X{lxpg) = d _ v k (5.6)

* Z: zmlq- 1 zmgl ]

v m, 8 (5.7)

u?;:l[ )B: a__(lkpg) tm(kp)] Xikpg) = bm[ Nng
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Z N + E 2 - Z 2 s Max v g (5.8)

B mg @l mig mf mgl g

; Zgg! - Z Zuiq s qu v mg (5.9)
Zgiq non-negative integer variables. (5.10)
Xtuxpg) = 0 v l1,k,p, 8

The objective function consists of two costs terms, relocation cost of
machines and operating cost which have to be minimized. If for any part
an operation in the plan selected cannot be performed within a group, a
very high cost is associated with that operation. This forces a few
machines to be relocated such that the relocztion costs are minimlzed
and the plans seiected can be fully processed within a cell. Constraints
(5.6) force the demand for parts to be met. Constraints (5.7) ensure
that all the machines required to process the part famllles identifled
are available in the machine groups identified. The maximum number of
machines that can be in a machine group are imposed by Constraints
(5.8). Constraints (5.9) ensure that the machines relocated to other
crlls do not exceed the number of machines of each type avallable in

that cell. Constraints (5.10) indicate the integer varlables.

The above model assumes that the capacity of avallable machines is
enough. However, if the exisiing capacity is exceeded we need to know if
this relocation should be accompanied or substituted by a higher degree

of investment in new machines. Model-5.3 is developed for this purpose,
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Model-5. 3:

Minimize MS3 = nz:q leq zmlq +qk)f:‘1[ m);.: a__(lkpg) c“(kp)] X(1xpg)

subjJect to:
q};;x X(lxpg) = dk ¥ k (5.11)

+);2 -):z + 2 ]

E [ Z a"(lkpq) t“(kp)] X(lkpg) = bm[ N

kpl g mlig 1 mgl mg
v mg (5.12)
EN +);Z —ZZ +EZ s Max v g (5.13)
m mg m mig mi gl @ mg g
; ZMl - gzmq = ng v mg (5.14)
Z . 2 non-negative integer variables. (5.15)
mig og
Xlxpg) =2 0 v lnknplg

The objective function includes the additional .ost term Cmg due to

investment on new machines of type m in group g. Zm are the additional

variables introduced in this model. It indicates the number of machines

of type m purchased and added to machine group g. This is added to
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Constraints (5.12) to ensure that if a machine type m is purchased and
added to group g, the additional capaclty is available for parts
allocated to the cell. Moreover, if an additlonal machine is added to a
machine group the group size should not exceed the 1imit. This is

ensured by Constraints (5.13).

If, however, the decision maker feels it is not desirable to relocate
machines and instead would like to add new machines to the machine
groups, a very high penalty can be attached to the relocation cost in
Model-5.3. However, Model-5.3 can be simplified and restated to address

this sitvation as follows:

Model-5, 4;

Minimize M54 = [ C Z + Z[ Xa (1kpg) € (kp)] X(1kpg)
ng ng wmg gkpl“ ms ms 153

subject to:
q);; X(kpg) = d v k (5.16)
kgl[ Z ana(lkpq)tms(kp)] Xikpg) = bm(Ng”zg) v @m,g (5.17)
; ng 5 Maxq v g (5.18)
2;9 are non-negative integer variables (5.19)
X(lxpg) = 0 Y Lk,p.g
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This model contains only qu integer variables and constraints (5.14)

are not required.

5.2 Solution Methodology
The column generation approach described in Chapter 4 is used to solve

the models developed.

Method of Solutlon for Model~5.1:

At any general iteration, let us define the simplex 1.:ltipliers
corresponding to (5.1) and (5.2) as nl; (k=1,....K) and

um(m=1, ..M;g=1,..G) respectively. Now the pricing scheme for
determining the entering varlable, if an. ,1s to look for any varlable
X(1kpg) such that the reduced cost ( E(lkpq) = Cllkpg) — Z{lkpg))

assoclated 1s negative.

m)s: a“ukpg) c“(up) < “k+ mg umg a“ukpq) t“(kp) Y k,p,g
or,
n); a . (1kpq) f c_(kp) + (—um) tm(kp) ] < LS vV k,psg
Defining, cc kp) = [ e p) + (-u )t (xp) ] (5.20)
o8 ng mng ma
we have
NZ amukpq) ccm(kp) < T v kK,p,g

Thus, for a fixed k,p,g the problem is to find the optimal assignment of
machines to operations. This can be easlily obtalned by selecting the
machine with minimum ce _(xp) for each operation. 1i.e,

Let mo= M%n cc“(kp) v s
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Optimal assignment is given by:

lifm=nm
8

a —3
a8 0 otherwise

Let 2° be the cost assoclated with this production plan. If 2%

then enter the following (K+MG) column into the basis:

[ ek 0.0 ' ( Ealstlu’ E azstza' § aHatHs)' 2 0 ]

for somevalue of g m values

where e is a unit K-vector with 1 at the k" place.

If for every (kpg) combination the optimal assignment 2° > LA ,check 1f
any of the slack or surplus variables can enter. If no slack or surplus

can enter the optimal solution is obtained. Thus, Model~5.1 has been

solved,

Algorithm-5, 1:

Step-0: Initlal basis will consist of all slack and artificial
variables.

Step-1: Choose a part k, process plan p, group g and the assignment cost
matrix as given in (5.20).

Step-2: Find the minimal cost asslignment such that
c'= mg 3,4 (1%p9) C_ (kp) < m for all w20 and u_=0.

£ c' > ukfor all (kpg) combination go to Step-5.

Step-3: Enter the new column and update the baslis.
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Step-4: Check for the surplus and slack variables to enter. If
T < 0 Intreduce surplus variable corresponding to part k.
ulnq > 0 Introduce slack corresponding to machine m in group g.

If any of them can enter go to Step-3 else go to Step-1.

Step-5: Stop.

Method of Solutlion for Modei~5,2:

Let us first conslider the relaxed linear problem where qu are not
restricted to integer values. At any general iteration, let us define
the simplex multipliers corresponding to {5.6),(5.7),(5.8) and (5.9) as
LS (k=1,2...... K).umg (m=1.2....M;g=1.2...G).vq (g=1,2,.G) and
wmq(m=1.2. ...M,g=1,2...G) respectively. Thus, for any variable X(ilkpg)

to enter the basis we have:

ng a“ukpg) cmu:p) < nk+ mg umg a“ukpq) t'“(kp) Y k,p,g
or,
‘_Z a_ tkpg) | c  (kp) + (-um) L e 1 <m v kp.g
Defining, cc (kp} = [c p) + (-u )t (up) ] (5.21)
3] mne ng mE
we have
n); a_ (kpg) CC_(kp) < W vV k,p.8

which is same as developed for Model-5.1. Since Xtikpg) do not appear in
constraints (5.8) and (5.9) the simplex multipliers A and wnqdo not
appear In the assignment costs calculated. The additional step in this
model is to check if any of the ng columns can enter. These columns

are explicitly known. At this stage a relaxed linear problem has been

79



solved. Branch and Bound on Z;lg variables will give us the optimal

solution.

Algorithm-5, 2;

Step-0 to 4: Follow Step~0 to Step-4 of Algorithm-5.1.

Step-5 : Check if any of the 2;19 column can enter. If yes, then go
to Step-3 , else go to Step-6.

Step-6 : If 2;19 values are integers then stop, else, branch and
bound on Z‘iq. Add the additional constraints and go to

Step-0.

Method of Seolution for Model-5.3 and Model-5. 4:

The only additional variables introduced in these models are 2;q. which
are Integers. These variables receive the same treatment es Zhlq
Algorithm-5.2 will solve these models as well.

5.3 Exarpies

In this section the column generation scheme is applied to a sample
problem. Let us assume we have two machine groups (g=2). Two types of
machines (m=2) with known capacity [big= bagz 200) are available in

these groups. Two machines of type 1 are in group 1 and twe machines of
type 2 are In group 2. Two part types (k=2) have to be produced in
elther of these machine groups. The demand for these parts are
predicted as d1= d2 = 10, Assume that only one process plan (P1= P2=1)
has been identified for each part. The production cost and time of the

plans for each part are given below:
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Y 1o 10 10 10]

k=1,p=1 , can = | L) =g 100
Moo 100 100 100

k=2,p=1 , @ = |0 10 Y2 =110 10 ]

The application of Algorithm-5.1 to this example problem is illustrated

ne:t,

The method is started with all artificial and slacks in the basis. The

initial basic variables column is [ EL.E yS_,5 ,5

2545, .56]. the R.H.S column

5
is [ 10,10,200,0,0,200 ] ancd the dual variables are [M,M,0,0,0,0 1.

l.e., n1= M.n2= M,u11= 0.u12= 0,u21= 0,u22= 0. We want to generate a
column for Introducing Into the basis. Since the dual variables umq= 0
for all m and g we have: ccm{kp) = cm(kp) for k = 1,2, For k = 1, the
optimal assignment is assigning machine type 2 to operation 1 and
machine type 1 .o operation 2 with a total cost = 15. Since 15 < M (a
large number) this column can enter the basis. The column for basis
entry = pl= (1,0,10,0,5,0]. The basis and inverse are updated using the
standard revised simplex rules. The new basic column is
[51,52.53,54.#.9.5], the R.H.S column is [10,10,200,0,0,200] and the
dual variables are [M,M,0,0,-M/5+3,0]. With this set of .ual variables,

find an entering column. Say for k=1,p=1 and g=1, the assignment costs

are:

10 10 10%0 10*0 10 10
(‘.‘cms (11)= + =
5 100 S*(H/5+3) 100* (M/5+3) H-5 204~200

The optimal assignment is obtained by assigning both the operations to
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machine type 1. The new column for basis entry is P2[1.0,20.0,0,0].

The column entering, basic column, PHS column and dual variables at each
iteration are given below:

Iteration # 1:

Column Entering P[1,0,10,0,5,0]

- = ]
lBasic Column [51'52’53'54'P ,55]
RHS Column (10, 10,200,0,0, 200]
Dual Column [M, M, 0,0, -M/5+3,0]

teration # 2:

Column Entering P%[1,0,20,0,0,0]

2 - 1
Basic Column (P ,52,53.54.P ,56]

RHS Column

Dual Column

{10,10,0,0,0,200]

(20,M,0,0,-1,0]

Iteration # 3:
Column Entering P°[1,0,0,10,0,5]
Basic Column [Pa.Ea.sa,Pa,Pl,ssl
RHS Column (10, 10,0, 0,0, 200}
Dual Column [20,M,0,-1/2,-1,0]
Iteration # 4:
Column Entering P*[0,1,0,0,20,01
Basic Column (p?,s,, P!, P?, P, s ]
RHS Column [10,10,0,0,0,200]
Dual Column [M/2, M, 1-M/40, 3/2-M/20, 1-M/20, 0}
Iteration # S:
Column Entering F°[0,1,0,0,0,20]
Basic Column (p?,p%, P4, P%, Pl 5 )

RHS Column (i0,10,0,0,0,0]
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Dual Column [10,20,1/2,1/2,0,0]
Iteration # 6;
Column Entering 53[0.0. 1,0,0,0]
Basic Column IPa,Ps.sa,Pa,Pi,ssl
RHS Column (10,10,0,0,0,0]

Dual Colunn [20,20,0,-1/2,-1,0]

No more new columns can be generated and , therefore, the present

solution is optimal. This 1llustrates the application of Model-5.1.

To 1llustrate the application of Model-5.2 which considers relocation

costs of machines consider another sample problem. Let us consider two

machine groups(g=2) having two machines of type 1 in Group 1 and two

machines of type 2 in Group 2 (m=2, N =N =2 N =N, =0). The

21
physical layout does not permit more than two machines in a group (

Max1= Ma.x2 = 2). The capacity of each machine type is b1= bzn 100. Two

parts have to be produced with the existing facility. The cost of

relocating mactines from one cell to other is say $50. l.e; C“2= C221 =

50. Suppose there is only one process plan for each part. The

production cost and time are given below:

10 100 . 10 100]

k=1,p=1, c 1 = t“(n) =
(100 10 100 10
10 1o'| 10 10]

k=2,p=1, c (21) = t (21 =
o 100 10_] = 100  10;
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The basic column and RHS column in the optimal solution are:
3 1 6 5 7
Baslic Column [2221.P .2112.P P ,P ,sT.P ,sg.slol

RHS Column {1,0,1,10,10,0,0,0,1, 11

We see that one machine of type 1 has moved to group 2 and one machine
of tvpe 2 has moved to group 1. Relocat!on expense of $100 is 1lncurred
due to thils transition. The details of each lteration are listed in

Table-5.1.

5.4 Summary

Steady ard predictable demand is desirable for parts produced in cells.
However, with time the part composition in these cells change. This may
involve consideration for reallocating parts to these cells, relocation
expense on exlsting machines or additional expense on new machines. A
number of situations might exist. For example, the declsion maker would
like to consider relocation of machines and purchase of new machines or
only purchase of new machines and no relocation of machines, etc..
Large scale linear and mixed integer programs were developed to address
these problems and reflect the attitude of the decicion maker.
Efficlent solution schemes have been presented. A few examples were

solved to 1llustrate the models and the solution methodology developed.
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TABLE 5.1: Computcational details for solving Model-5,2.

Tteration # 0:
Basic Column
RHS Column

Dual Column
Iteration # 1:
Column Entering
Baslc Column
RHS Column

Dual Column
Iteration # 2:
Column Entering
Basle Column
RHS Column

Dual Column
Iteration # 3:
Column Entering
Basic Column
RHS Column

Dual Column
lteration # 4:
Column Entering
Baslc Column
RHS Column

Dual Column

—

» -
[51'Sz'sa’54'55‘55'97'53'89'8101
[10,10, 200,0,0,200,0,0,2, 2]

[M,M,0,0,0,0,0,0,0,0]

P'[1,0,10,0,10,0,0,0,0, 0]

- = 1
[si,sz,sa,s‘.P +8_,8_,8

6 "7 '8 8y ]

8 9 0
(10,10, 200,0,0,220,0,0,2,2]

[M,M,0,0,-M/10+2,0,0,0,0,0)

P%11,0,110,0,0,0,0,0,0,0]

- = 2 1
[51‘52’P ,s4,P .56.37,58,59.5101
[sor/11,10,20/11,0,0,200,0,0,2,2]

[M,M, -M/110+1,0, -M/11+41,0,0,0,0, 01

P3(0,1,20,0,0,0,0,0,0,0]
- 3 2 1
[sl.P P .54.P '55'57'53'59'5101
[10,10,0,0,0,200,0,0, 2, 2]

[M,2M/11, -M/110+1,0,-M/11+1,0,0,0,0,0]

p%11,0,0,10,0,10,0,0,0, 0]

- 3.2 .4 1
[51'P P, PP ’55’57'55‘59'5101

f10,10,0,0,0,200,0,0,2,2]

[M,2M/11, -M/110+1, -M/10+42,-M/11+1,0,0, 0,0, 0)
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Iteration # 5:

Column Entering P5[1,0,0.0,0,110,0,0.0,0]
- 3.2 4 _1_5
Basic Varlables [51.P ,P“,P ,P,P .57.58,59.510]
RHS Column {90/11,10,0,0,0,20/11,0,0,2,2]
Dual Column [M,2M711, -M/110+1, -M/11+1, -M/11+1, -M/110+1, 0, 0, 0, 0]

Tteration # 6:

Entering Column 2112[0.0,100.-100.0,0,-1.1.1,0]

Baslc Column [gi.Pa.Zlia,P‘.Pl.Ps,57,58,59.510]

RHS Column [90/11,10,0,0,0,20/11,0,0,2,2]

Dual Column [M,20M/11-10,-M/1143/2,-M/11+1,-M/110+1/2,-M/110+1,0,0,0,0]
Iteration # 7:

Entering Column P®[0,1,10,0, 10,0,0,0,0, 0}

Basic Column [;1,P3,2 P‘,PG.P5.57.5 +S .5 1

112’ g' 9" 10

RHS Column [90/11,10,0,0,0,20/11,0,0,2,2]

Dual Column [M,ZOH/11—10,-M/11+3/2,-M/11+1.-M/11+3/2,-M/110+1.0.0.0.0]
Jteration # 8:

Entering Column P’[0,1.0,10,0,10,0,0,0, 0}

Basic Column [;1,P3.2

.P‘.PG.PS.ST.PT.S 8, ]

112 9" 10

RHS Column [90/11,10,0,0,0,20/11,0,0,2,2]
Dual Column [M,M,-M/20+1,~-M/11+1, -M/20+1, -M/110+1, 0, -45M/11-150, 0, 0]
Iteration # 9:

Entering Column 2221[0,0.0,0,-100.100.1.—1.0.1]

a 4 6 .5 7
Basic Column [2221,P 12, P L PP N ,59.510]
RHS Colunn [1,0,1,10,10,0,0,0,1,1]
Dual Column [110/9,110/9,7/18,-1/9,7/18.8/9.0,0.0,0]
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Iteration # 10:

Entering Column 56[0,0,0.0.0.1,0.0.0.0]
~ 4 .6 .5 7
Basic Column [2221'56'2112'P ,P ,P ,57.P ’59'5101
RHS Column {1,0,1,190,10,0,0,0,1,1]
Dual Column [110.110,-17/2.-9,-11/18.0,0,0,0.0]

Ei'gz corresponds to constraints (5.6), 5, to 8, correspends to

constralnts (5.7), S, Sy corresponds to constraints (5.8) and 5 By

corresponds to constraints (5.9).
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CHAPTER 6
SELECTION OF PARTS AND MACHINES FOR CELLULARIZATION

The parts selected to be manufactured 1n the cells have a great impact
on the utilization of cells. Also, which cell among the feasible cells
the part should be assigned to is critical because it prescribes the
overall balance of the M system. In thils chapter four mathematical
models are developed to address the 1ssues related to selection of parts
and machines for cellularization. Utilization is censidered Implicitly

in the models developed by maximizing the parts produced in the cells.

6.1 Mathematical Furmulations

It is assumed, that, a part can be produced through one or more process
plans. Each operation in a process plan can be performed on alternate
machines. Thus for each process plan we have a number of production
plans depending on the machines selected for each operation. This is a
very realistic assumption considering the fact that in a Flexible
Manufacturing System a machine is capable of performing a varlety of
operations. It 1s alsc assumed that the demand for a part could be
split and can be preduced in more than one cell. The plans 1den£ified
to produce the same part in different cells could be different but the
part should be completely processed in that cell. With these

assumptions the models are presented next.
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Model-6. 1:

It is agsumed that the number of machline groups, machine types and
capacity of each machine type in a group is known. The objective is ‘o
select a subset of parts to be produced in these machine groups. It is
desired to maximize the total demand of the parts produced in these

machine groups. The model is stated as follows:

Maximize L61 = z: X(1kpg)
gkp

subject to:
qp); X(ikpg) = d v k (6.1)
kpz: {);a“ukpq) t“(km] Xilkpg) = bw Y m.g (6.2}
qepT [ DE a__(lkpg) C“(kp)] X(lkpg) = B (6.3)
Xilkpg) =2 0 v l1,k,pg

The obJjective function maximizes the demand of parts produced in the
cells. Constraints (6.1) restrict the quantity of part produced to the
demand. Constraints (6.2) ensure the capacity of machine hours

avallable in each group is not violated. Constralnt (6.3) restricts the

operating cost to the budget.
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Model-6.2:

For developing this model, assume the number of cells to be formed is
known. Alsc, the maximum number of machines which could be placed in a
cell and the number of machines of each type avallable are known. The
objJective of this model is to identify the subset of parts demand to be
produced in cells and the machines to be selected for cellularization

simultanecusly. Accordingly,

Maximize M62 = ckp; X{1kpc)
subject ton:
cp; X(lkpe) = dk v k (6.4)
kp); [);a“uupc) t“(kp)] Xakpe) = b 2 vV mc (6.5)
ckp); [HE a__(lkpe) cmucp)] Xllkpe) = B (6.6)
Z 2Inc = Maxc v c (6.7)
Z 2Inc = NIn v n (6.8)
th non-negative integers (6.9)
X(lkpe = O v 1,k,p,c

Constraints (6.4) restrict the quantity of part produced to the demand.
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Constraints (6.5) ensure that all the machines and the capacity required
to process all the parts identified in a cell are avallable. Constraint
(6.6) restricts the operating cost to the budget., The maximum number of
machines that can be assigned to a cell are imposed by Constraints
(6.7). Constraints (6.8) ensure the machines assigned to the cells do
not exceed the avallable number of machines of each type. Constraints

(6.9) indicate the integer variables.

The two models developed might identify only a portion of the demand for
a part to be produced in cells. The rest of the demand for the part has
to be produced in the functional job shop. This situation is
advantageous 1if the declsion maker does not want to depend on the cells
for the only source of supply during implementation. However, if he
feels that the total demand for a part ldentified for cell productlion
should be completely produced in one or more cells, we present

Models~-6.3 and 6.4 corresponding to Models-6.1 and 6.2 respectively. The

models can be stated as follows:

Model-6. 3:

Maximize M63 = Z I or E X(1kpg}
k gkpl

subject to:
qu X(ikpg) = dek v k (6.10)
kp); [);a“uupq) t"(kp)] X(lkpg) = bnq v mg (6.11)
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); [ Za {lkpg) © (kp)] Xllkpg) = B
gkp me ma ms

I (6~1) varlables

k

X(1kpg) 2 O

gpde1"6.4:

Maximlze M64 =

subject to:

Rl
)

kpl

X(lkpe) = d 1

.

k k

[ Z a__{1kpc) tn.(kp)] X(lkpc) = bmzmc

k

or

ckp

; X(1kpe)

z: [ Za (lkpe) € (kp)] X(lkpc) = B
ckp ms ne me

2;; non-negative integer and I (0-1) variables

X(ikpe) = 0
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(6.12)
(6.13)
lL,k,p, g
k (6.14)
mc (6.15)
(6.16)
c (6.17)
m (6.18}
(6.19)
1L,k,p,c



The Ik(0-1) variables In Constraints (6.10) and (6.14) ensure that if a
part is selected then the total demand for that part 1s produced in the
cells. The other constraints of Models-6.3 and 6.4 correspond to

Models-6.1 and 6.2 respectively.
6.2 Solution Methodology
The column generation approach described in Chapter 4 is used to solve

the medels developed.

Method of Solution for Model-6.1:

At any general iteration, let us define the simplex multipliers
corresponding to (6.1), (6.2) and (6.3)as n (k=1,....K),
uhq(m=1,..M;g=1,..G] and v respectively. Now the priclng scheme for
determining the entering variable, if any, is to look for any varlable
X(1kpg) such that the reduced cost C(ikpg)-Z(ikpg) associated is

positive. Thus Clikpg) > Z(lkpg)

1> "k+ )': uqa“ukpq) tm (kp) + v m); a g (1kedd Cos (kp) v k,pg
or,

mg a (xpg) [(-v) c  (kp) + (-um) tms(kp)] > -1 Y knpg
Defining, cc__tep) = [(-v) c_ (kpl+ (-um) t__(kp) ] {(6.20)
we have:

mz a“(lkpq) Ccns(kp) > ﬂk-l v k, P:B

Thus, for a fixed k,p,g the problem is to find the optimal assignment of
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machines to operations. This can be easily obtalned by selecting the
machine with minimum Ccms(kp) for each operation. 1li.e.,
Let m = Min ce (xp) v s

a8 o ma

Optlmal assignment is given by:

{ 1ifm=n
8
a —4

os 0 otherwise

Any plan so identified whose value is greater than "k-1' Is a cand.date
column to enter the basis. The (K+MG+1) values defining the entering
column are ;

First K values {000 O i 9 0]

T value

t t
t21a 15’ E 228 25" s
R values for somevalue of g

Next MG values [0,0,0, (= Za t ),0,01
T Hs Ns

Last 1 value [T a ¢ ]

oe ms ms8
If for every (kpg) combination the optimal assignment is = nk—l, check
if any of the slack or surplus variables can enter. If no slack ar
surplus can enter the optimal solution is obtained. Thus, Model-6.1 has

been solved,

Algorlthm-6, 1:

Step-0: Initia) basis will consist of all slack varlables,
Step-1: Choose a part k, process rlan p, group g and the assignment cost
matrlx as given in (6.20).
Step-2: Find the minimal cost assignment such that
l--
C x a“ukpq) c“(kp) > nk 1 for all nka 0, uma 0 and vz 0.

If ¢! < nk—l for all (kpg) combination go to Step-5.
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Step-3: Enter the new column and update the basis. Go to Step-4,
Step-4: Check for the surplus and slack variables to enter. If
n:k < 0 Introduce slack corresponding to part k.
umg < O introduce slack corresponding to machine m in group g.
v < 0 introduce slack corresponding to budget constraint.

If any of them can enter go to Step-3 else go to Step-5.
Step-5: Stop.

Method of Solutlon for Model-6.2:

Let us first consider the relaxed linear problem where Zm are not
restricted to integer values. At any general lteration, let us define
the simplex multipliers corresponding to (6.4), (6.5), (6.6), (6.7) and
(B.é) as m (k=1,2...... K, um(m=1,2....H;c=1.2...C). Ve v, {e=1,2..0)
and wn (m=1,2....M) respectively. Thus, for any variable X(ikpe} to

enter the basis we have:

1>n+ Zu a (lkpe) £ p) + v ):a (lkpc) ¢ (kp) ¥ k,p,c
k m8 mc msm mE ms s mns
or,

m); a__(lkpg) [(-v) C“(kp) + (—umc) tm(kp)] > "u'l ¥ k,p,c
Defining, cc__(kp) = [(-v) C__ (kp)+ (-um} t“(kp) 1 (6.21)
we have:

n)-: am(lkpq) Ccm(kp) > nk-l v k,p,c

which 1s same as developed for Model-6.1. Since X(ikpc) do not appear in
constraints (6.7) and (6.8) the simplex multipliers \a'j and W do not

appear in the assignment costs calculated. The additional step in this
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model is to check if any of the ch column can enter. These columns are
explicitly known. At this stage the relaxed linear problem has been

solved. A branch and bound on ch will solve the model optimally.

Algorithm-6.2:

Step-0 to 4: Follow Step-0 to Step-4 of Algorithm-6.1.

Step-5 : Check if any of the ch column can enter. If yes, then go
to Step~3 , else go to Step-6.

Step-6 s If ch values are integers then stop, else branch and
bound on Z;C. Add the additional constralnts and go to

Step-0.

Method of Solutlon for Model-6.3 and Model-é6. 4:

The only additional variables introduced in Model-6.3 and Model—-6.4 are
Ik. It is suggested that Algorithm 6.1 and 6.2 be used to solve these

models respectively by treating Ik as continuous variables. In Step 0,
however, we will start with artificial and slack. An Implicit

enunmeration on Ik wlill solve the models optimally.

6.3 Examples

Let us assume we have two machines groups (g=2). Three types of
machines (m=3) with known capacity (blg=b2q=baq= 100) are available in
these groups. One machine of each type 1 and type 2 are in group 1. In
group 2 we have one of type 2 and type 3 each. We have to select the
subset of parts to be produced in these machine groups from four
different part types. The demand for these parts are d1= 10, d_= 40,

2
d3= 60 and d‘= 100. Let us assume only one process plan (P1=P2=P3=P4=

96



1) for each part type and the budget allocated B = § 300. The

production cost and time for each part are given below.

=1 a=2
=1 3 4
k=1, p=1, ¢ an =t 11 =
it ma m=2 6 7
s=1 g=2
. m=1 3 10
k=2,p=1, c (211 =t (21) =
o8 ne m=2 5 5
B=1 g=2
n=1 2 3
k=3, p=1, c“(:m = tmtal) =
=3 3 2
i=1l g=2
=2 6 5
k=4, p=1, ¢ (41) =t (a1) =
ne me =3 5 4

The method is started with all slack variables ip the basis. The
initial basic variables column is | sa’sa'sa'sq’ss'ss'57’98’59'510’511L
The slacks s, to s, corresponds to constraints (6.1), Sg to s

10
corresponds to constraints (6.2)and s, , corresponds to constraint (6.3).
The RHS column and dual variables are
[10.40.60,100,100,100,0,0,100,100.300] and {0,0,0,0,0,0,0,0,0,0,0)
respectively. Since the dual variables are all zero any plan selected
has an assignment cost < 1. Say, for k=1,g=1 assign both operations to
machine type 1. The column for basic entry is
P1[1,0.0.0.7,0,0.0,0,0,7]. The basis and Inverse are updated by the

simplex rules. The new basic column is

1
(?*,s_,s_,s ,s ,s ,s_,s ,5,s

2' 93792 84:8,,5,,8,,5.,8, .8, .1, the RHS column is

(10, 40, 60, 100, 30, 100, 0, 0, 100, 100, 230] and dual variables are

f{1,0,0,0,0,0,0,0,0,0,0]. With the new dual varlables find the
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assignment cost and select for each operation, the machine with lowest
cost. The column entering, basic column, RHS column and dual variables
at each iteration are given in Table 6.1. After iteration # 20, no more
new columns can be generated and, therefore, the present solution is
optimal. Thus, we have selected 20 units of part 3 , 10 units of part 2
to be produced in machine group 1 and 20 units of part 3 to be produced
in machlne group 2. The plans identify the machine assignment for each

operation In the process plan.

For 1llustrating an example for Model-6.2 we need additional information
on maximum number of machines in a cell and number of cells to be
formed. The number of machines avallable of each type is assumed to be
as glven before. Let not more than two machines be allowed in machine
group. l.e., Max1 = Max2= 2 and c=2, The detalls of each iteration are

listed in Table 6.2,

6.4 Summary

A number of companlies are switching to cellular manufacturing. The
selection of parts and machilnes is an important problem faced by them
during transition. Four mathematical models were developed to address
the 1lssues related to this situation. The objective of the models is to
maximize the production in cells, with restrictlon on cell size,
avallable machine time and budget. The presence of alternate process
plans has been incorporated in the models developed. Alternate
obJective of maximizing the total variety of parts produced in cells is
also presented. An efficlent solution scheme based on column generation

approach has been presented and illustrated with examples,
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TABLE 6.1: Computational details for solving Model-6.1.

Iteration # 1:

Column Entering P'[1,0,0,0,7,0,0,0,0,0,7]

1
Basic Column [p ’Sa’Ss'54'55‘56'57'53’89'510’511]
RHS Column [10,40,60.100.30,100,0,0,100,100,230]
Dual Column {1,0,0,0,0,0,0,0,0,0,0]

lteration # 2:

Column Entering P*0,1,0,0,13,0,0,0,0,0, 13]

1 2
Basic Column [p ,52,53.54,P ’56'57'58'59'510'511]
RHS Column [10,490/13,60,100.30/13,100.0.0,100.100.200]
Dual Column [6/13,0,0.0,1/13.0,0.0.0,0.0]

Iteration # 3:
Column Entering P°[1,0,0,0,0,13,0,0,0,0, 13]

Basic Column _ [P1,52,53.54,P2,P3,s 25,5 ,8

-
7 8 9 10 11
RHS Column [30/13,5670/169,60, 100, 1090/169, 100/13, 0, 0, 100, 100, 100]
Dual Column [6/13,0,0,0,1/13,7/169,0,0,0,0, 0]

lteration # 4:

Column Entering p*[0,1,0,0,0,10,0,0,0,0, 10)
1 2 _4
Baslic Column [P ,52.53,54.P P .57,53,89.810.511]
RHS Column [10.4680/169,60.100,390/169.10,0.0,100,100.100]
Dual Column [6/13,0,0.0.1/13,1/10.0,0.0,0,0]

Iteration # S:

Column Entering P°[0,1,0,0,3,5,0,0,0,0, 8]

1 5 4
Basic Column [P .52,53,54.P P ,57,88.59,810.811]
RHS Column [10,25,60,100,10,5,0,0.100,100,100]
Dual Column [—1/6,0,0,0,1/6,1/10,0,0,0,0.0]

Iteration # 6:
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Column Entering
Basic Column
RHS Column

Dual Column
Iteration # 7:
Column Entering
Basic Column
RHS Column

Dual Column
Iteration # 8:
Column Entering
Baslc Column
RHS Column

Dual Column
Iteration # 9:
Column Entering
Basic Column
RHS Column

Dual Column
Iteration # 10:
Column Entering
Baglc Column
RHS Column

Dual Column
Iteration # 11:
Column Entering

Basic Column

s1[1.0.0,0,0.0.0.0,0,0,01

1 5
s s ,5,5,5 ,s
p 2S5 85 4'P 181184289 9’ 10’ 11]

[40/7, 20, 60, 100, 20, 30/7,0, 0, 100, 100, 100])

(0,0,0,0,1/7,4/35,0,0,0,0,0]

P®10,0,0,1,0,0,0,0,6, 4, 10]

1 5 6
[P ,52.53.54.P ,8.,8 ]

1'5415518,,8 P

9’ 10"
f40/7, 20, 60, 90, 20, 30/7,0, 0, 40, 60, 10]

(o,0,0,0,3/70,1/70,0,0,0,0, 1/10]

?’[0,0,1,0,3,0,2,0,0,0,5]

1 5 T 6
[P ,52.53.54.P .si.P '53'39'510'P ]

[40/7, 20, 60, 90, 20, 30/7, 0, 0, 40, 60, 10]

(o0,90,0,0,3/70,1/70,13/70,0,0,0, 1/10]

r%10,0,1,0,5,0,0,0,0,0, 5]

B 5 7 6
(P .52.53.54.P '51'P .sa.sg.slo.P ]

(8, 20, 52, 90, 20, 10,, 0, 0, 40, 60, 10]

[o,0,0,0,1/10,-1/50,1/10,0,0,0, 1/10]

86[0,0,0.0.0,1,0,0,0.0,0]

[Pe.s - 5

2" 3 P

5 ¥
.54.P '51'P +SgaS. S,

[16, 100/3, 44, 250/3, 20/3, 10, 0, 0, 200/3, 100/3, 50/3]

[0,0,0,0,6/50,0,31/50,0, 1/30, 0, -6/50]

511[0,0,0,0,0,0,0.0,0,0.1]

8 7 6
[P 1S,15,:8,,8 ,51,P 1Sg1Sg S

4" 11 P

1

10’
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RHS Column (20, 40, 40, 250/3, 100/3, 10, 0, 0, 10C, 100/3, 50/3]
Dual Column (0,6,0,0,1/5,0,7/10,0,1/6,0,0]

Tteration # 12:

Column Entering P’[1,0,0,0,0,13,0,0,0,0, 13}

8 6
Basic Column P 1S, 8, 8’56’ 510’ ]

RHS Column (20, 40, 40, 250/3, 100/39, 290/39, 0, 0, 200/3, 100/3, 50/3]

.s,P’,s ,P",s P
4 1

Dual Column [0,0,0,0,8/65,0,81/130,0,1/26,0, 1/13]

Iteration # 13:

Column Entering P'°[0,1,0,0,0,10,0,0,0,0, 10]

Basic Column [PB|S ' S :341P10n51|P7s5 ¢ ]

2 2 P

s ,s
8'76"' 10"

RHS Column  [20, 110/3, 40, 250/3, 10/3, 10, 0, 0, 200/3, 100/3, 50/3]
Dual Column (0,90,0,0,1/10,0,6/10,0,0,0, 1/10]
Iteration & 14:

Column Entering p''[1,0,0,0,0,0,0,7,0,0,7]

Basic Column [Pa,s .33,54.P1°,51,P7,P11,s pé |

2 6'510'
RHS Column [20,110/3, 40, 250/3,10/3, 10, 0, 0, 200/3, 100/3, 50/3]
Dual Column (0,0,0,0,1/10,0,6/10,3/70,0,0, 1/101

lteration # 15:

Column Entering r'%10,1,0,0,0,0,0, 3,5, 0, 8]

8 10 T 12 ]
Baslice COlumn [P ,52,5 's"P ’SI’P DP ,56'510' ]

RHS Column  [20, 110/3, 40, 250/3, 10/3, 10, 0, 0, 200/3, 100/3, 50/3)

3 P

Dual Column fo,0,0,0,1/10,0,6/10, 3/45,0,0, 1/10)

Iteration # 16:

Column Entering r*310,0,1,0,0,0,0,0,0,5, 5]

8 13 7 12 6
Basic Column [P ,52.53.34,P .si.P P ’ss'szo'P 1
RHS Column [20.40,100/3,250/3,20/3,10.0.0.100,0.50/3]
Dual Column fo,0,0,0,0,0,1/2,-1/5,-1/6,0, 1/5]
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Iteration # 17:
Column Entering
Basic Column
RHS Column

Dual Column
Tteration # 18:
Column Entering
Basic Column
RHS Column

Dual Column
Iteration # 19:
Column Entering
Basic Column
RHS Column

Dual Column
Iteration # 20:
Column Entering
Baglc Column
RHS Column

Dual Column

89[0,0,0,0,0,0.0,0,1,0,0]

) 13 7 .12 6
[P ,52.53,54.P .31.P ,P .sﬁ,sg,P ]

f20, 40, 100/3, 250/3, 20/3, 10,0, 0, 100, 0, 50/3]

[0,0,0,0,1/6,0,2/3,11/45,0, 1/6, 1/30]

p%10,1,0,0,0,10,0,0,0,0, 10]

(P%,s_,s.,s P, s ,Pv.Piz,P14.s ,P% ]
2 3 4 1 9

[20, 30,0, 100, 20, 10, 0,0, 10, 100, 0]

{0,0,0,0,1/6,1/15,2/3,11/45,0,1/6, 1/30]

p*%[0,1,0,0,0,0,0,0, 10,0, 10]

8 13 T 12 14 15
[P +8,18,,8,,P »8,P, PP 18P ]

3
(20, 30, 20, 100, 20, 10,0, 0, 10, 100, 0]

(0,0,0,0,1/10,0,6/10,1/15,0, 1/10, 1/10]

P*¢[0,0,1,0,0,0,0,2,0,2,4]

8 13 7 .16 _14 15
[P ,52.33.54.P ,sl,P P ,P .sg,P ]
[20,30.20.100,20,10,0,0.10.100,0]

(0,0,0,0,1/10,0,6/10,1/5,0,1/10, 1/10]
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TABLE 6.2: Computational details for solving Model-6.2.
Iteration # 0;

+5.,8 ,8 ,8 ,5_,5 ,5,S

s ,sS
2"73'74' s g7 78" 9" 10" T 11

s s s s
12" 713" 714" 715" 1 ]

(10, 40, 60, 100,0,0,0,0,0,0,300,2,2,1,2, 1]

[51.5

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Iteration # 1:
P'10,0,1,0,2,0,2,0,0,0,4,0,0,0,0, 0]

1
[31’5 , S ,s4,P .S

2 3 +8_,8_,,8_,5

6 7'"78" "9 10’511'
[10,40.60.100,0,0,0,0,0,0,300,2.2.1.2.1]

»S, 28, _,5,_ |

s
512' 13" 714" 715" T16

(o,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0, 0]
Iteration # 2:
p?(0,0,1,0,0,0,5,0,0,0,5,0,0,0,0, 0]

1 2
Isl.s »8,,85,,P .8, ,P%, 5, ,85,,8

2754 S, _,8..,5 .,8. _,8 1]

8’79 10'511' 12" 713" 714" 715" V16
(10, 40, 60, 100,0,0,0,0,0,0,300,2,2,1,2,1]

(o,0,0,0,3/10,0,1s5,0,0,0,0,0,0,0,0,0]

Iteration # 3:
P%[0,1,0,0,0,10,0,0,0,0, 10, 0,0,0, 0, 0]

1 .3 .2
[51.5 + S ,s4,P ,P,P 18515,

S
2’73 '

S
10 11’812’513' 14’515'515 ]

[10, 40, 60, 100, 0,0, 0,0, 0,0, 300, 2,2,1, 2, 1]
[0,0,0,0,3/10,1/10,1/5,0,0,0,0,0, 0,0, 0, 0]
Iteration # 4:

P*[0,0,1,0,0,0,0,2,0,2, 4,0,0,0,0, 0]

1 .3 .2 .4
[51’52'93'5¢'P P7,P°,P",s .8

]

S S ]
9' 510" 511751255 16° 5

(10,40, 60, 100,0,0,0,0,0,0,300,2,2,1,2, 1]

s
5'T16

[0.0.0,0,3/10.1/10,1/5,1/2,0,0,0,0,0,0,0,0]

Iteration # 5:

P*10,0,1,0,0,0,0,0,0,5,5,0,0,0,0, 0]

103



-

s
' 5’716

1 .3 .2 .4 5
[51,52.53.54,P ,P°,P°,P ,sg.P .

(10, 40, 60, 100, 0,0,0,0,0,0,300,2,2,1,2,1]

1S,

s s s
117127 713' 714

(0,0,0,0,3/10, 1/10, 1/5,3/10,0, 1/5,0,0,0, 0,0, O]
Iteration # 6:
r®10,1,0,0,0,0,0,0,10,0, 10,0,0,0, 0, O]

8, 8 1

8
! 14" 715" %16

1 .3 .2 4 .6 .5
[51.52.53.34,P ,P°.P°,P,P,P 18,008,088, 18

(10, 40, 60, 100,0,0,0,0,0,0,300,2,2,1,2,1]
(0,0,0,0,3r10,1/10, 1/5,3/10, 1/10,1/5,0,0,0,0, 0, 0]

lteration # 7:

231[0,0.0.0,0.0,-100,0,0,0,0,1.0,0.0,1]

1 .3 .2 4 6 5
[51.5 ,53.54,P P ,P°,P ,P,P ‘511'512'513'514'515'231 1

(10, 40, 40, 100, 0,0, 20,0,0,0,200,1,2,1,2,1]

2

(0,0,0,0,3/10,1/10,1/5,3/10,1/10,1/5,0,0,0, 0, 0, 20]
Iteration # 8:
221[0.0.0,0.0,-100.0,0,0.0,0,1,0.0,1.0]

[s,,s

85,8, P, PP, P2, PY P8, P° s

275, Z. 1

L ARE S157%y

11° 521" 713" T4
[10.30,40,100,0,10,20.0.0.0,100.1,2,1,1.1]

(0,0,0,0,3/10,1/10, 1/5,3/10,1/10, 1/5,0, 10,0, 0, D, 10]
Iteration # 9:
211[0,0.0.0,—100,0,0.0,0,0.0.1.0,1.0.0]

1 .3 .2 .4 .6 _5
[51'5 »8,.8,P,P7,P°,P PP '511'221'513'211'515'231

[10,40.10,100,50,0,0,0.0.0,100.0,2,1.2.1]

]

2" 3

[0.0.0.0,3/10,1/10,1/5.3/10,1/10.1/5.0,10,0,20,0.10]
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Iteration # 10:

232[0,0,0,0,0,0,0,0,0,-100.0.0,1,0,0,1]

& o5

[51’52’53'94’P1'P3'232'P4’P P '511’221'813’211'515'331 ]
[10,40.10.100,50,0,0,0,0,0,100,0,2,1.2.1]
[0.0.0.0,3/10.1/10,1/5.3/10.1/10,1/5,0,10,0,10.0.20]
Iteration # 11:

222[0,0.0.0.0.0,0,0.~100.0.0.0,1,0,1.0]
[51’Sz'53'34'P1’P3'232'P4'P6'P5 '222’221'513’211'515'231 ]

(10, 30, 10, 100, 50,0,0,0,10,0,1,0,1, 1,1, 1]

[0.0,0.0,2/10,0,1/10.2/10,0,1/10.1/10,0,0,20,0,10]

s, to 8, corresponds to constralnts (6.4), s; to s, jCorresponds to

-

13

corresponds to constraints (6.7) and Sie to S8, Corresponds to

constraints (6.5), S, corresponds to constraint (6.6), s

constralnts (6.8)
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CHAPTER 7

CELL DESIGN WITH MATERIAL FANDLING AND REPLACFENT CONSIDERATIONS

The creatlon of independent cells, 1.e., cells where parts are
completely processed in the cell and no linkages with other cells in the
factory exist, 1s a common goal for cell formatlon. However, many times
it is not economical or practical to achieve cell independence,
especlally, when under-utilization, load imbalance and higher capital
Investment are the potential threats to introducing cellular
manufacturing. In fact, new technologies and faster deterioration rate
of certain machines in cells could render the previously allocated parts
to a cell undesirable. Thus there is a need to replace these machines
and substltute with new ones. These naw machines could be

technologically updated or the same.

7.1 Mathematical Formulations

In this chapter, four mathematical models are developed considering the
materlal handling cost and allowing for reniacement of machines in
cells. The first model addresses the design of new cells considering
the investment on machines, operating cost and material handling cost.
The objective 1s to group parts and machines such that all the above
costs are minimized. A trade off exists between these costs. With time
as new parts are introduced and part mix and volume of parts required
change there is a need to consider the allocation of parts to identify
natural part families. The second model is developed for this purpose.

The objective of this model is to minimize the material handling and
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operating costs. On a few occasions we would also like to relocate
machines to minimize material handling or add new machines to meet the
capaclity requirements. The third model addresses thls issue. In a
reassignment of this nature the material handling could Impose a severe
constraint. Moreover, with time as machines get older the operating
costs and times change, forcing a reassignment. The fourth model
includes the issue of replacement of machines in one or more cells by
new machines. The additional objective of this model 1s the selectlon
of proper replacement alternative. The column generation approach

discussed so far can also be extended to solve these models,

In Chapters 4 to 6 a productlon plan is defined to be an assignment of
machines to operations for a given (kp) or (kpc) cowbination. However,
to account for material handling between cells the production plan
definition should contain the information about not only the machine
type but also the group to which it belongs. Let a production plan be

designated by numbers a(lkpg) for 1 € L(kpg) so that

1 if In plan I machine m in group g’ is assigned
to operation s for {kpg) combination.

0 otherwise.

Also let us define the following before prosenting the models:
Operating Cost:
ac =

1
kpglg® [ o amg,(lkpq) C“(kp)] X(1kpg)
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Material handling cost:

MH = Z[Z cc_ (k) Za , (lkpg)] X(1kpg)
kpgl* g’ qq’ ms mg's

cc_ (k) -Cost of moving part k from group g te g'.

99’

Material handling movement:

My = ): [): d ):a . tmpq)] X(1kpg)
kpgl“ g' gg’ me mg's
dqq, - Distance between group g to g’.

Interest on Caplital:
=r Z W + [ D
m m m m
This is for one machine of each type. It can be extended to account

for more than one machine of each type.

The cost ccgq,(k) denotes the cost of moving part type k from cell g to
cell g' . It is assumed from a GT point of view that a part whenever it
visits a cell other than the parent cell it has been allocated to it is
always returned to the parent cell for storage. It is routed to other

cells whenever the required machine 1s free.
The models considering the material handling are given next.

Model-7.1:

The objective of thls model is to group parts such that the total cost
consisting of investment on machines, operating cost and material
handling cost is minimized. A trade off exists between these costs,

The complete model 1s stated as follows:
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(MIP-1)

Minimize M71 = E C 2 +0C+ M
mng w©g g

subject to:
gp); X(kpg) = d vV k (7.1)
k);l[ g); 3 g gl 1kPD tm(up)] X(kpg) = b an, vV mg' (7.2)
E ng 5 Maxq vV g (7.3)
ch non-negative integer variables (7.4)
X(ikpg) =2 0 v 1,k,p.g

The Constraints (7.1) guarantee that the lower bound on demand for all
parts is met. Constraints (7.2) ensure that the capacity of each
machine type selected 1s not violated. The maximum number of machines
which can be allocated to each group are restricted by Constraints

(7.3). Constraints (7.4} indicate the integer variables.

Model-7.2:

In any manufacturing system with time new parts are lntroduced and part
mix and volume of parts require change. In a situation like thls there
is a need to consider the allocation of parts to known machine groups to
identify natural part familles. This is a sequential approach to cell

design where the machine groups were determined first. The model
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presented here addresses this lssue. The objective of this model is to
minimize the material handling znd operating costs. The model 1is
presented next.

(MIP-2)

Minimize M72 = MH + OC

subjJect to:
v .
qgl Xtkpg) = du k (7.5)
’
s ); [Eang'stlkpg) tm(kp)] X(kpg) = bmg, v m,g' (7.6)

"Pﬂl[ TR nz amq’s“kp")] X(lkpg) = D (7.7)

Xllkpg) = 0 v l,k,p, g

Constraints (7.5) guarantee the demand for parts to be met. Constraints
(7.6) ensure that the capacity of each machine type in a group is not

violated. The upper limit on material handling capacity is imposed by

Constraint (7.7).

Model-7, 3:

On a number of occasions material handling capacity might pose a severe
constraint. One possible way to minimize the inter-cell movement 1is to
relocate machines. Moreover, material handling is a recurring expense
and it might be worth avoiding if the parts mix is expected to be stable
for the planning horizon. This model is developed to form part familles

and machine groups by trying to minimize the material handling cost and
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relocation expense in addition to operating cost and lnvestment on
addltional capacity. It is assumed that the capacity of current
material handling system is known.

(MIP-3)

MinimizeM73=EC Z +ECZ + 0C + MH
mig wmig mlg mg m mg

subject to:
qgl Xkpg) = dk v k (7.8)
kpl[ q; anq,nukpq)t“(kp)] X(ikpq)sbm[ng.*l-zl: qu.- ); 2“, Wt Zg.]
v mg' (7.9)
up);x[ )q:, g’ m); amq,'(llmq)] X(lxpg) s D (7.10)
Z N + Z 2 - Z Z + E 2 = Max v g (7.11)
2 mg mwml mig mf ogl m mg g
2%01 - z Zmlq 5 qu v m,g (7.12)
Z ., 2 non-negatlve integer variables, (7.13)
aig  mg
XQkpg) = 0 v Lk,p,g

Constraints (7.8) force the demand for parts to be met. Constraints
(7.9) ensure that all the machines required to process the parts are
avallable. An upper limit on material handling system is imposed by

Constraint (7.10). The maximum number of machines that can be in a
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machine group are imposed by Constraints (7.11). Constraints (7.12)
ensure that the machine relocated to other cells do not exceed the
number of machines of each type available in that cell. The integer

variables are indicated by Constralnts (7.13).

Model-~7. 4:

New technology and faster deterioration of certain machines could render
a previously desirable part assignment undesirable. There is need to
identlfy these machines and replace them with new or technologically
updated machines. The following model addresses this issue. For
developing this model it is assumed that J =1 to M denote the old
machine types and m’ = M'+1 to M identify the new machine types. Also
let m = 1 to M denote all machine types.

(MIP-4)

Minimize M74 = 0OC + MH +[ Jg ( qu =R _)D + z z D

lg J m'g m’g w

+r Z(N =R )W +r ,Zz u]
lg Jg Jg ) n'g m'g o

subject to :

qu X(lkpg) = d vV k (7.14)

kpl[ qz: 3y 2 g (1kPD) tj.(kp)] X(lkpg) = bJ(NJq,— R“,)
v J.g' (7.15)

kgl[ g5’ B gv 4 {1EPO) tn.’(kp)] XOxpg) = b,Z, vV w,g (7.16)

ql

l‘Wl[ Z.,dq Zaﬂq,n(lkpq)] X(xpg) s D (7.17)

¢’ ms
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E (qu- qu) + Z, ZIn = Max V g (7.18)

= N v

R,g i Jig  (7.19)

, 2m g non-negative integer variables (7.20)

Jg

The objective function of this model mlnimizes the loss in Interest on
capital, material handling and operating costs. Constralnts (7.14) to
(7.18) are similar to Constraints (7.8) to (7.11). Constraints {7.9) are
presented as two sets of constraints (7.15) and (7.16). Constraints
(7.19) ensure that the total number of machines removed from a group
does not exceed the available number of machines. The integer

restrictions are shown by Constraints (7.20).
7.2 Solution Methodology
The column generatlion approach described in Chapter 4 is used to solve

the models developed.

Method of Solution for Model-7.1:

At any general iteratlon, let us define the simplex multipliers
corresponding to (7.1) and (7.2) as n (k=1,....K) and
ung,(m=1,..M;g’=1...G) respectively. Now the pricing scheme for
determining the entering variable, 1f any, is to lock for any varlable
Xtxpg) such that the reduced cost ( Coikpg) = Clikpg) - Z(lkpg))

assoclated is negative.
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[ + Z a lkpg) cc__, (k)
auq ’{lkpq) cmstkp) g™ s mg,s( pg) 99’

< + t (x v k
nk umq a ﬂ(lkpq) mﬂt p) 1YY

L] mql

+ cc k} + (-u t (kp) <1
Zanq Lkeg) [ e tup) aq ( Iw,) e tkP ] .

Def ining,
cc , tp) = [ c p) +cc_ )+ (-u )t (p) ] (7.21)
oy s ms g9 mng me
we have
<
q,mg amg.stlkpq) Ccnq’s(kp) T ¥ k,p.g

Thus, for a fixed k,p,g conslder the following assignment problem of
assigning machines to operations.

Defline 0-1 variables a as
mg's

a =

ag’s

1 if machine m in group g’ 1s assigned to perform
operation s v m,s

0 otherwise

Let ccnq,.(kp) = cost of assigning machine m in group g’ to perform
operatlion s.
The problem is:

Minimize 2 = [ cc
sl m

g’ q,‘(kp) arug's
subject to:
Z a , =1 v s
ng mng's
— »
anq.- =0or1 v m,s,g

The optimal solution to this problem can be obtained by the following

simple procedure:
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let m = Min ce | (kp) v s
8 og mg's

Optimal assignment is given by:

{ l1ifm=m
a2
a =

ng's 0 otherwise

Let 2° be the cost assoclated with this production plan. If 2%< LA
then enter the following (K+MG+G) column into the basis:
The K+MG+G wvalues are:

[ e . ee , eee ]

where,

e, is a unit K-vector with 1 at the kP place.

€€ T [C Eaiq’stls '

)I ]

§ azq'stan ’ § aHg'ntHs

eeeg 15 a vector with G '0’ values.

If for every (kpg) combination the optimal assignment 2° > n , check 1f
any of the slack or surplus variables can enter. If no slack or surplus
can enter the optimal solution is obtained. Thus, Model-6.1 has been

solved. Branch and Bound on ng gives an optimal solution to the model.

Algorithm-7.1:

Step-0: Initlal basis will consist of all slack and artificlal
variables.

Step-1: Choose a part k, process plan p, group g and the assignment cost
matrix as given in (7.21).

Step-2: Find the minimal cost assignment such that
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Le,

g ct> nkfor all (kpg) combination go to Step-5.

Cl= (lkpg) ccC {(kp} < for all w20 and u =0.
g’ 8 mg's k k mg

n g’
Step~3: Enter the new column and update the basis.
Step-4: Check for the surplus and slack variables to enter. If
n < 0 1introduce surplus variable corresponding to part k.
uhq > 0 lintroduce slack corresponding to machine m in group g.
If any of them can enter go to Step-3 else go to Step-5.
Step-5: Check if any qu column can enter. If, yes then go to Step-3
else go to Step-6.

Step-6: If 2;0 values are Iintegers then stop else branch and bound on

qu. Add the additional constraints and go to Step-1.

Method of Solution for Model-7.2 and Model-7.3:

The assignment cost for the entering column for this model is

1

cc , p) =[c wp) +cc ) +(-u )t kp) + (~v) d
mg's 13 gg g L g
and the entering column should satisfy the condition:
q,uz: aug,nukpq) ccnq,a(kp) < LS vV k,pg
LA ung,and v are simplex multlipliers corresponding to Constraints
(7.5) to (7.7) in Model-7.2 and (7.8) to (7.10) in Model-7.3
respectively. The number of column values entering in Model-7.2 and 7.3

is (K+MG+1) and (K+MG+1+G+MG) respectively.

Method of Solution for Model-7.4:

The asslignment cost ccnq,.um) for the entering coiumn for this model is
= + - - -

E(c“tup) cc“,mJ +{ Lljg.)tjs(kp) +( Un,g,)tn,s(kp) + (-v) dgg,l
and the entering column should satisfy the condition:

q,_z: a..q"(lkpq) Ccnq.s(kp) < L% YV k,p.g
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nk . ujq,, um,g,and v are simplex multipliers corresponding to

Constraints (7.14), (7.15), (7.16) and (7.17) respectively. The number

of column values entering is (KM’ G+(M-M’ )G+1+G+MG).

7.3 Example

For the purpose of exposition of the column generation scheme, let us
conslder Model-7.1. The objective of this model is to identify part
families and machine groups such the total cost of investment, operating
and materlal handling 1s minimized. Assume that we have to form two
cells (G=2). The available floor space restricts the maximum number of
machines to four and two in the two cells respectively
(1.e.,Max1=4.Max2=2). We have six parts to be manufactured on four
avallable machine types. The demand for the parts is : d1=d3=d5= 20,
d2=d4=d5= 10. The cost of assigning a machine to a cell is known. This
cost can be different for a particular machine type to different cells,
based on factors such as equipping the cell with foundation, accessories
etc. Let us assume the following costs: C11=812=C42=200. C21=C31=
C22=250. C41=C42=350. The Inter-cell movement cost for each part type
are: cc M = ce @ = 3, CC g0 () = ce o 8 = cc .8 = 2,

cC (8 = 1 for all g # g'. Within a cell the material handling cost

1s taken to be zero. The production cost and time data for all parts
are given in the Table-7.1. This problem has 16 constraints and 8
integer variables. The number of explicit columns in the model is 28
columns corresponding to the plans and 8 columns corresponding to the
machine variables. All these columns need not be explicitly listed,
instead they are obtained by solving assignment problems. The

procedure of generating the columns for this problem is explalned next.
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The method is started with all artificial and slacks in the basis. The

Initial basic variables column is

s ,S8
L 1’72

hand side column is [20, 10,20, 10,20,10,0,0,0,0,0,0,0,0,4,2], and the

15,+8,18.,5.,8.,5,5 ,5 ,S

s s s s the right
4' 55256 570552591 5,52 51105150545 14’ 715" 16 1, g

dual variables are [M,M,M,M,M,M,0,0,0,0,0,0,0,0,0,0]. M in this context
is a very large number. We can take any part, say k=1,p=1,g=1 and find

JLEER which is glven by:

the assignment cost cc;q

cc_ , {11) s=1 s=
ng's
g'=1 n=1 3 7
m=3 6 2
g'=2 m=] 6 10
m= 9 S

For each operation, we pick up the machine with minimum cost. In this
case Wwe pick machine 1 in cell 1 for operation 1 and machine 3 in cell 1
for operation 2 (material handling cost of 3 was included for operations
performed in cell 2, because it was assumed that the part ls allocated
to cell 1). Thus we have a plan with a cost of 5. This plan does not
require any material handling because both operations are performed in
cell 1. Since this cost is less than M (a large value) 1t qualifies to
enter the basis. The plan column entering the basis is p!
(1,0,0,0,0,0,3,0,2,0,0,0,0,0,0,0]. The basis and the inverse are
updated by the usual simplex rules. The column entering , basic column,
RHS column and dual variables for the complete probliem are given in

Table-7, 2.
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The optimal solution to the sample problem identifies that we require
two machines of each type 1 and 3 in cell 1 and one each of type 2 and 4
in cell 2. Parts 1,3 and 5 are assigned to cell 1, while parts 2,4 and
6 are assigned to cell 2. The assignment of operations to machlnes in
the plan selected are shown in Table-7.3. The numbers in the table
indicate the operation time for an operation on the machine selected.
Since the number of machines of each type selected are already integers,

we dld not have to branch and bound on integer variables.

7.4 Summary

Materlal handling device is a part of automated manufacturing systems.
Thls could pose a severe constraint to assignment of machining parts.
For example, 1f the workload exce=ds the capaclty of the transfer
system, congestions and high in-process inventory are likely to occur.
Therefore there 1s a need to consider the cost and restrictlon imposed
by these systems .n the design of cells. Also, certailn machines
deteriorate faster than others. These machines should be replaced for
better performance. Mathematical models were developed to address these
issues. The solutlion methodology developed in Chapter 4 was extended to
these models for efficient solution. An illustrative example was solved

to demonstrate the solutlon scheme.
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TABLE 7.1: Production cost and time data for parts.

Cc  (kp)=t (kp) m=1 m=2 m=3 m=
me ma
k=1 s=1 3 6
s=2 7 2
k= s=1 8 3
s5=2 2 5
k= g=1 2
=2 9 5
5=3 3
k=4 s=1 6 10
s=2 4 8
5=3 8 5
=5 s= 5 7
s= 7 1
=6 s=1 4 1
s=2 2 9

* a blank space indicates that the operation cannot be performed
on the machine 1.e. an infinite cost is assoclated with it.
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TABLE 7.2: Comnutational details for solving Model-7.1.

Iteration #

&

—_— -

[“1'52’53’54'55’55’57’sa’59’510'511’512’513'514'515’315 ]
(20, 10, 20,10,20,10,0,0,0,0,0,0,0,0,4,2]
(M,M,M,M,M,,0,0,0,0,0,0,0,0,0,0]

Iteration # 1:

1

1 . as
p* [1,0,0,0,0,0,3,0,2,0,0,0,0,0,0,0] (5,0 ]

- = = = = = 4 2
s ,5 ,5,S s ,% ,% ,5 ,8 ,8 ,S .S
[ 1" 7273’ 4’55'55’P 15918515100 5117512512 14’715' 16 ]

[20.10,20.10,20,10,0,0.0,0.0,0,0,0,4,2]3
[M, M, M, M, M, M, -M/3+5/3,0,0,0,0,0,0,0,0,0)*

lteration # 2:

2

F® [1,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0] [8,0]

- = = = = = 2
[s,,8_,5.,s8 ,5_,8 ,Pl.s ,P,8. _,s8 ., ,s ., ,S _,8 ]
1'72'"73' 74’75’ %6 8 10" 711" 712" 713" 714" 715" "1

(20, 10, 20, 10, 20, 10,0,0,0,0,0,0,0,0, 4, 2]
[M,M, M, M, M, M, -M/4+1, 0, -M/8+1,0,0,0,0,0,0,0]

Iteration # 3:

3

p* I1,0,0,0,0,0,0,0,0,0,3,0,2,0,0,0] [5,6]

- - - = = == 1 2 3
(s,,s_,s_,s,,s_..s_,P,s_,P° s ,P',s

s s
1’ 2°7a" 4" %56 1814518 ]

12° 713" 714" 718" T16
[20,10,20,10,20,10,0,0,0,0,0,0,0,0,4,2]

M, M, M, M, M, M, -M/2+1, 0, -M/8+1,0,-M/3+11/3,0,0,0,0, 0]

Iteration # 4:

4

P" 1,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0] [8,6]

- T T = - =1 2 3 4
8,8 ,%.,8 P, s
( 1’ 72'"3’ ‘,ss,ss,P ’Sa'P T 12’P 1514515516 ]

(20, 10, 20, 10, 20, 10,0,0,0,0,0,0,0,0, 4, 2]

{M,M,M,M,M, M, -M/74+1, 0, -M/8+1, 0, -M/4+5/2, 0, -M/8+7/4,0,0, 0]

121



Iteration # 5:
P° [1,0,0,0,0,0,0,0,2,0,3,0,0,0,0,0] [S,3]

,P‘,s1 .5 ,5 1

- = = = 3 5 3
P, s
1851848 'Ss’P 1Sgr b s 10'P + S 4’718’ 16

[51'52 3’745 12
(20,10, 20, 10, 20, 10,0,0,0,0,0,0,0,0, 4, 2]

(M,M,M,M,M, M, -M/4+3/2, 0, -M/8+1/4, 0, -M/4+5/2,0, -M/8+7/4,0,0, D)
Tteration # 6:

p® {0,1,0,0,0,0,0,0,0,0,0,2,0,3,0,0] [S5,0]
[Ei’ga'ga'ga'gs’gs'Pl'Sa'Ps’Sxo'Pa’PG’PG’Su'515'515 ]
[20, 10,20, 10,20,10,0,0,0,0,0,0,0,0, 4, 2]

(M, M, M, M, M, M, -M/4+3/2, 0, -M/8+1/4, 0, -M/4+5/2, -M/2+5/2, -M/8+7/4,0, 0, 0]
lteration # 7:

P’ [0,1,0,0,0,0,0,0,0,0,0,0,0,8,0,0] [8,0]

- - = 1 s 3 .6 4 _7
2.sa,s‘.ss.sﬁ.P »Sgs P '510’P P L,P,P S, g18, ]

[51'5
[20, 10,20, 10, 20,10, 0,0,0,0,0,0,0,0, 4, 2]

[M, M, M, M, M, M, -M/4+3/2, 0, -M/8+1/4, 0, -M/4+5/2, -SM/16+1, ~M/8+T/4, ~M/8
+1,0,0]

lteration # 8:

P [0,1,0,0,0,0,0,2,0,3,0,0,0,0,0,0] [5,5]

- T T = = = 1 8.5
[51'5 +5_,8 ,8 'Ss'P ,P,P,s

3 6 .4 7
2'73'"7¢' s o’P P, PP 131508 ]

1 16

[20, 10, 20, 10, 20, 10,0,0,0,0,0,0,0,0, 4, 2]
[M, M, M, M, M, M, -M/4+3/2, -M/2+11/2, -M/8+1/4, 0, -M/4+5/2, -SM/16+1, -M/8+
7/4,-M/8+1,0, 0]
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Iteration # 9:
?® [0,1,0,0,0,0,0,0,0,8,0,0,0,0,0,0] {8,6]

[EI,E ,S.,5.,8 ,Es,Pi,P",PS.Pg.Pa.Pﬁ.P‘,P".s1

s
2'73'"74’ "8 ’1]

5 6

[20,10,20,10,20,10,0,0,0,0,0,0,0,0,4,2]
[M,M.M.M.H,M.-M/4+3/2,-5M/16+23/8,—M/8+1/4.-M/8+7/4,-M/4+5/2,—5M/1
6+1,-M/8+7/4,-M/8+1,0,0]

Iteration # 10:

pt%(0,1,0,0,0,0,0,0,0,5,0,0,0,3,0,0] [8,3]

{El.E S ,8.,8.,8 ,P*.PB,PS,P‘°.P3,P"’,P‘,P’,s1

S
2'73'"%4' 75" "6 'Sy )

5 16

{20, 10, 20, 10, 20, 10,0, 0,0,0,0,0,0,0, 4, 2]

[M, M, M, M, M, M, -M/4+3/2, -5M/16+31/10, -M/3+1/4, -M/B+8/5, -M/4+5/2, -5H/1
6+1, -M/8+7/4, -M/8+1,0,0]

Iteration # 11:

p'lio,1,0,0,0,0,0, ,0,0,0,0,0,3,0,0] [5,3]

(S ,5.,5 .,58.,8 ,EG,P‘,P“,PS.P“‘,Pa.P‘.P‘,P’,s1

s
1’"2'73"'74" s 18y |

5" 16
{20, 10, 20, 10, 20, 10,0,0,0,0,0,0,0,0,4,2]

[H.M.M.M,M,M,-M/4+3/2,—5M/16+5/2,-M/8+1/4.-H/8+8/5,-M/4+5/2.-SM/I
6+1, -M/8+7/4, -M/8+1,0,0]

Iteration # 12:

211[0.0.0.0,0,0.-100,0.0,0,0,0,0,0,1,0]
IBS

ol

- - = -~ .1 L11
[51.52.53. . +Sg P % Y

{20, 10, 20, 10, 20, 10,0,0,0,0,0,0,0,0,4,2]

10 .3 .6 4 ~7
P,P,P,P,P,5 8, ]

[M.M.M.M.H.M.—2,—5M/16+5/2,-M/2+11/2.-M/8+8/5,-M/4+5/2,-5M/16+1.

-M/8+7/4, -M/8+1,0,0]
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Iteration # 13:

231[0,0,0.0.0,0,0,0,-100.0,0,0,0.0.1,0]

[231,52,3

[2/5,10, 20, 10, 20, 10, 20,0, 3/5,0,0,0,0,0, 3, 2]

s ]

- = =1 .11 10 .3 6 4 .7
5 ,S ’Ss'P P .211,P ,P",P ,P",P .315. 16

3' 74’75
[16,M.M,M.M,M,-2,-5M/16+5/2.~5/2.-M/8+8/5,-3/2,—5M/16+1,—1/4,
-M/8+1,0,0]

Iteration # 14:

2%2[0,0.0,0,0,0,0,0,0,0,0,—100,0,0,0.1]

[zaz'sz's 11’

[2s5,10, 20, 10, 20, 10, 20,0, 3/5,0,0,0,0,0, 3, 2]

»S, ]

- - = 1 .11
s ,s .56,P P, 2 15' 546

10 3 6 4
3’ 4 5 P !P IP IP ’zza's

[16,M,M,M, M, M, -2, -1, -5/2,1/5,-3/2,-5/2,-1/4, -M/8+10/3, 0, 0]
Iteration # 185:

510[0,0,0,0.0,0,0.0,0,1,0,0,0,0,0,0]

(2 ,s.,s ,§ ,8

- 1 11 3 .6 4
31' 2159305, S'SS’P P2, .,8, ,P7,P + P '222’5 S ]

11" 10 15" 16

[2/5, 10, 20, 10, 20, 10, 20,0,3/5,0,0,0,0,0, 3, 2]
[16,M,M.M.M.H,-2,-1.-5/2,0,-3/2,-5/2,-1/4,-M/8+10/3.0.0]
Iteratlon # 16:

2‘2[0. on ov 0- 0- 0» 0, 0- 0: 0; 0: 0: oo -1509 0- 1]
- - = = 1 11
31,2‘2,53,5‘,55.56,P P .Z“,s1

(2/5,1/8, 20,10, 20, 10, 20,0, 3/5,0,0, 10, 0, 1/5, 3, 8/5]

(2 -

3 .6 4
o'P PP '222'515 16

[16,14.M.H.M.M.—2,-1,-5/2.0,-3/2,-5/2,-1/4,-4/3,0,0]

Iteration # 17:
P'?[0,0,0,0,1,0,0,0,0,0,0,0,9,0,0,0] [9, 4]

s ,8

[z 42’53' 4' s

- 1 .11 3 .6 .12
2 'Ss’P P02 510,P P ,P ,Zaz,s .S ]

31’ 'S 15’16

[2/5.1/5.20.10.20,10.20,0,3/5.0,0,10,0.1/5.3,8/5]

[16.14,M.M.H,M,-2,-1,-5/2.0,2M/27-71/27,-5/2,-M/9+13/9,-4/3,0,0]
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Iteration # 18:
s ,l0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]

- - = = _1 .11 6 .12
[231'242’53'54’55'56’P P ’211'810'511’P P ’222'515’515 ]
[2/5.1/5,20.10,20,10,20,0.3/5,0,0,10.0,1/5,3,8/5]
[16.14.M,M,M,M,-2,-1,-5/2,0L0,~5/2,-M/9+13/9,-4/3,0.0]

Iteration # 19:

p*[0,0,0,0,1,0,0,0,1,0,5,0,0,0, 0,01 [6, 2]

2. ,Z ,s .E,E,ES,P‘,P“Z s, P3PPI 2 5 5

31’ 742' "3 74’ g *11' %10 22" 715" T16
[2/5,1/5,20,10,20,10,20,0.3/5.0,0,10.0,1/5,3,8/5]

[16.14.M,M.H.M,-2,-1,-5/2,0.-H/5+21/10,-5/2.-M/9+13/9.-4/3.0.0]

Iteration # 20:
p**10,0,0,0,1,0,5,0,1,0,0,0,0,0,0,0] [6, 0]

- = 14 = _1 _11 13 .6 _12
[231'242’53'54’P 'Ss'P P ’211'510'P PP '222'515'516 ]

(35,15, 20, 10, 20, 10, 20,0, 8/5,0, 0, 10,0, 1/5, 9/5, 8/5]
[16.14,H.M.37/2,H,-2,*1,~5/2,0,-8/5,—5/2,-11/18.—4/3,0,0]

lteration # 21:

p**10,0,0,0,1,0,0,0,1,0,0,0,8,0,0,0] (3, 2]

- 4 - 1 .11
S .54,P1 .ss,P P2 .,8

(2 ' '
a2' "3 11

Z P3P, P52 s ,s 1]

10’ 22’ 715" 16
[3/5.1/5,20,10,20,10,20,0,8/5.0,0,10.0.1/5,9/5,8/5]

31’

[16,14.M,M.37/2.M.-2,—1,-5/2,0.-8/5.-5/2.—5/8,-4/3,0.0]
Iteration # 22;

P*°[0,0,0,0,0,1,0,2,0,0,0,0,0,1, 0,013, 2]

= 14 = _1 .16
31’242'93’54'P ’Ss'P P '211'510’ 2’515’515 ]

[3/5,1/5, 20, 10, 20, 10, 20,0, 8/5, 0,0, 10,0, 1/5, 9/5, 8/5]

[z 1="3,1=5.P‘5,z2

[16,14,H.M.37/2.H,—2,~M/2+19/6.-5/2.0,-8/5,-5/2,~5/8,-4/3,0,0]
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Iteration # 23:

p*’(0,0,0,0,0,1,0,0,0,0,0,2,0,1,0,0][3, 0]

= = _14 _17 .1 .16 13 .6 .15 ,
31'242'53'84'P P, PP ’211'510’P PP ’222'515'515 }

[3/5, 4/15, 20, 10, 20, 10, 20,0, 8/5,0,0, 10,0, 2/5, 9/5, 4/3]}

(2

[16,14,M,M, 37/2,28/3, -2, -3/2, -5/2, 0, -8/5, ~5/2, -5/8, -4/3, 0, 0]
Iteration # 24:
P'®10,0,1,0,0,0,2,0,0,3,0,0,5,0,0,01 {10, 2]

13 6 18
11 10'P PP 'zaa's
[3/5, 4/15, 20, 10, 20, 10, 20, 0, 8/5, 0, 0, 10, 0, 2/5, 9/5, 4/3]

[z ,2 ,53.34,P“,P17,P‘,P‘°,z .S

5
31’42 ]

15’ "16

[16,14,M,M,37/2,28/3,-2,~3/2,-5/2,0,-8/5, -5/2, -M/5+16/5, -4/3, 0, 0]
Iteration # 25:

P*[0,0,1,0,0,0,2,0,5,3,0,0,0,0,0,0] [10, 0]

= 14 17 .1 .16 19 _13 _6 _18
42,53.54,13 B2, PP '211’P BT ,P,P ’222’815'515 ]

(35, 4415, 20, 10, 20, 10, 20, 0, 8/5,0, 0, 10,0, 2/5, 9/5, 4/3]

(z_.2

31’

[16,14,M.M,37/2,28/3,-2,-3/2.-5/2,—M/3+53/6,-8/5,-S/2.~M/5+16/5,-4/3.0,0]
Iteration # 26:

P*°10,0,1,0,0,0,2,0,5,0,0,0,0,3,0,0] [10, 2]

20 —

(2 2 P ,E4,P14,P17,P1,P16,2 P19’P13’P6’P18'z ,s._,8 ]

11’ 22'715"' 716
[8/5,2/3,20,10,20.10,20,0.2,0,0,10,0.2/5,2/5.14/15]

31" 42’

[16,14.65/2,M,37/2,28/3,-2.-3/2,-5/2,-2,-8/5,-5/2,-33/10,-4/3.0,0]

Iteration # 27:

P*(0,0,0,1,0,0,0,6, 4,0,0,0,0,5, 0, 0] [15, 2]

20

[z ,2 ,P ,;‘.Pi‘,P17.P1.P31,Z P, P13, P5P% 2 5 .5 ]

42’ 11’ 22'715' 18
[8/5.2/3.20,10.20,10,20.0,2,0.0.10.0,2/5,2/5.14/15]

31"’

[16,14.65/2,M.37/2.28/3.-2,-M/6+101/18,-5/2.-2,-8/5.—5/2,-33/10,-4/3,0,0]
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Iteration # 28:

?*[0,0,0,1,0,0,0,0,4,0,0,6,0,5,0,0] [15, 1]

20 22

p%o,p 14

2. ..z

, ’PIT'Pllpai.z PIS'P13'P6’P18’2 P ]
31° 42

11’ 22'7158' 16
(2,1,20,10,20,10,20,0,2,0,0,10,0,1,0,0]

P

[16,14.65/2,143/3.37/2,28/3.—2.—5/2,-5/2.-2,-8/5,—5/2,-33/10.—4/3,0.0]
Iteration # 29:

7*[0,0,1,0,0,0,0,0,5,0,2,0,0,3,0,0} [10, 2]

20 22

pP% p 12

(2...2

912400 ,P17,P1,P21,Z P19.P23.P6'P18'2 .S

11’ 22
[2,1,20,10.20,10.20,0,2,0.0,10,0.1.0.0]

P s 1]

15" 16

[16,14.65/2,143/3,37/2,28/3,-2,-5/2.—5/2.-2,-2,-5/2.-33/10.-4/3.0,D]

Column Entering

Basic Column

RHS Column

Dual Column

operatlion cost

o material handling or inter-cell cost

L I - A R VI

;1 to 5; corresponds to constralnts (7.1), 5, to Sia corresponds to

constraints (7.2) and s ,s corresponds to constralnts (7.3).
15 16
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TABLE 7.3: Assignment of operations to machines in the optimal plans

gelected.

t B(Iq:v)

m=1

g=1

m=2 m=3 m=4

g=2
m=1 m=2 m=3 m=4

k=1

=1
5=2

3

2

=2

=1
g=

k=3

s:
g=2
s=3

=4

sS=
g=
gS=

=6

s=
8=
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CHAPTER 8

COMPUTATIONAL EXPERIENCE

The models developed in this research are large scale linear or mixed
integer programs. For the efficient and optimal solution of the linear
and relaxed mlxed integer programs a column generation based solution
methodology was developed. A branch and bound scheme on the integer
variables leads to an optimal solutlion for the mixed integer prograns.
Each node in the branch and bound tree represents a solution to an
augmented continuous problem with additional constraints on the integer
variables. These additional constraints are easily incorporated wilthout

increasing the size of the problem by the bounded varlables procedure,.

The -irount of computation involved in finding a solution depends on two
principal factors: the number of minimizations and the amount of
computatlon Involved in each minimization. The number of minimlzatlons
is strongly dependent upon the branching and the number of integer
variables. This is not unique for a given problem since at any stage we
are at liberty to form the next constraint using any non-integral
variable. This has large effect on the computer time and the need for
limiting it is apparent. The latter depends on the particular type of

problem and the sub-algorithm used. This will be discussed next.

The sub-algorithm used in thls research involves solving a large scale
linear program (with lower or upper bounds on integer variables) by an
efficlent column generation scheme. The method of generating the column

( i.e.,the plans ) in the models developed in this research are by

129



solving simple assignment problems. Only the assignment cost
calculations are different in each case. The other columns, namely the
slack, surplus and the integer variable columns are explicitly known in
each model. The performance of the sub-algorithm will thus be similar
for the models developed. The aim of this computational study is
therefore to take Model-4.1 which is a mixed integer program and study

its behavior for a few sample test problems.

The algorithm is given in chapter 4 (Algorithm-4.1). In this algorithm
it 1s suggested that the first Improving column be chosen and introduced
into the basis. This is almost identical with the situation encountered
in integer programming. In integer programming, a dual simplex method
is used and there is a vast array of unwritten inequalities in the
problem. No maximizations over the unwritten inequaliiies (rows) 1s
possible. Since the dual method is used, rows play the same role that
columns do in a primal method. For many types of Iinteger programming
problems, there 1s a problenm sensitivity unknown in ordinary linear
programming. Some problems run easlly, others drone on and on.
Experiments reported in Gilmore and Gomory (1963) suggest that the
pecullarities of integer programming are not special to it but they are
to be expected In large linear programming problems where there is no
effective method of choosing among the multitude of rows in the dual

simplex or among columns in the primal simplex.
With the pecullarities discussed, our interest here is in the number of
pivot operations (iterations) performed in solving a linear program and

the number of problems to be solved for an integer solution. The
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iteration count includes iterations in which the tableau lis updated in
the normal manner and also cases when a bounded variable goes from its

lower to 1ts upper bound or vice-versa.

The order in which the nodes are selected affects the computations. If
this algorithm is used in hand computation, then it is sensible to
prcceed, at each stage, from the lowest cost terminal node which has
been reached. This will minimize the searching of unlikely (i.e., high
cost) sub-trees. One can use this nodal sclution as a starting point
for the optimization 1f the sub-algorithm pernits 1t, since this is
likely to be near to the next solution, and should require less
computation than if we started at an arbitrary point. However, such a
procedure is impracticable for implementation since the recording of the
required information for each node involves an excessive amount of
storage. Moreover, the sub-algorithm does not permlt this
implementation for the columns are known only implicitly. For the
purpose of limplementation the nodes are selected in the order in which
they were created (first created first selected). To limit on the
complete enumeratlon the maximum number of nodes created were restricted
to 63 nodes. Thus, in case an optimal solution is not obtained, the

corresponding node must be at a depth of 6 or more in the branch and

bound tree.

8.1 Generation of Data Sets
The algorithm was coded in FORTRAN 77 and run on IBM 4381. The main
paramete: s for computational results were considered to be:

1. Number of products K 10,20, 50
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2. Number of machine types M 2,3

3. Number of operatlons per part N0O and 3,5

4. Number of process plans per part NPP 1,2

These parameters determine the number of variables in the problem. It
1s assumed that each machine type can perform all operations. For the
test problem with K= 20, M=3, NOO=5 and NPP=1, the minimum number of
expllecit columns is given By:

NDOM 3

*K*NPP =5 *20*1=2500

However, all these columns need not be generated. The column generation
scheme 1s used to generate the new columns as needed. The size of the
basls for this test problem is 24 X 24. The number of Integer varlables
are dependent on the number of types of machines. Since these are not
more than 10 to 15 types, we have a problem of manageuble size for the

branch and bound scheme,

The IBM random number generator subroutine called RAND was used to
generate the ¢ (xp), t (kp), C and d values for the test problems
ns 1] m k

from uniform distribution. The range considered for each parameter are:

1. Machine avallabllity time (bn) 1000

2. Cost of machine type m (Cn) between 100 to 200
3. Processing time on machines (tm!ﬂp)) between 5 to 15

4. Operating cost on machines (Cn'&p)J between 5 to 15

5. Avallable budget (B) 10*NOO*K1*150

6. Demand for part type k (dk) between 100 to 200

The machlne availabllity time was assumed as 1000 time units. The
avallable budget was set by taking the product of mean of operating

cost, mean of demand, the number of part types and the number of
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operations per part. The results on the test problems are given next.

8.2 Results

To see the performance of the algorithm, the statistles collected is the
number of plvot operations performed, number of nodes created, number of
asslgnment problems solved and time for execution. The execution times
are however dependent on the computer, lcad on the computer and
efficlency of coding and by no means reflect the true efficlency of the
algorithm. The number of pivot operations and the number of assignment
problems solved reflects the performance of the algorithm better. A
representative example of the computatlonal results for ten part types,
two types of machines, three operations on each part and one process
plan for each part (l.e. k=10, m=2 , s=3, p=1 ) ls shown in Table 8.1.
The resnlis on the test problems are shown in Table 8.2. The averages
reported are over the number of minimizations performed for obtalining an
integer optimal solution. In cases where the branching was stopped due
to stopping criterla of a maximum of 63 nodes, the best integer
solution, if found, 1s reported and the average is over the number of
actual minlmizatlons performed. An efficient implementation of this
approach could be using a commercial code for solving linear/mixed
integer programs and replacing the subroutine for checking the enter ing
column with the sub-problem posed in this research., The limitation of

applicablllity can then be mapped to the commerclal code selected.

8.3 Precision in Computation
In the algorithms, discussed in this research, for calculating the pivot

ratios it is necessary to check whether there exists a non-zero entry in
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a row of the current tableau. For this we have to look at each entry in
that row and decide whether it ls zero or not. This task is easy while
'solving a small problem by hand using integer arithmetic, However, to
solve a large problem, we have to implement the algorithm by writing a
computer program for it. Digital computers are finite precision
machines, and usually any fraction encountered in the computation is
converted Into decimal form and rounded off to a fixed number of
significant digits. This introduces a small round-off error at this
stage, and as computations contlnue, these errors accumulate in every
entry of the current tableau. If an entry in the current tableau is
nonzero, but has a very small absolute value, it is very hard to decide
whether that entry would have been zero or a nonzero number of small
absolute value if all computations are performed exactly. Also, because
of its finite precision feature, computers cannot distinguish between
2ero and a number whose absolute value is less than the machines
preclsion limit. For this reason, algorithms that require checking to
determine whether an entry in the current tableau is zero or nonzero
could be very hard to carry out correctly. Normally, a control
parameter known as the tolerance is specified, and any entry in the
current tableau whose absclute value is less than the tolerance is
treated as being equal to zero. Because of this, when solving large
problems, the final answer produced by the computer may not be the true
answer to the problem; it may only be approximately correct to within
the limits of precision that we achieve (Murty 1983). The tolerance set
for this purpose was .000001. Also, to avold cumulation of these errors
the basls was reinverted periodically after every 20 iterations.

Nevertheless, it 1s impossible to eliminate rovndoff errors. These
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roundoff are even more sericus in the method of integer forms, where 1t
is essential to identify integers. On a computer, a real number r 1s
called integer, if min (1-fr.fr) < e, vhere e 1s speclifled by the
program and fr is the fractional part of r. The value of e was set to
.03. Failing to recognize an lnteger could cause unnecessary lteratlons

and even loss of optimal solutlon.

8.4 Summary

A representative mixed integer program (Algorithm 4.1) was coded in
FORTRAN 77 and run on IBM 4381. A few test problems were randomly
generated and statistics on number of nodes, number of plans generated,
number of plvot operations, number of assignment problems solved and
time for execution were collected. The preclsion in computation and

1imitation of applicability of the algorithm were brlefly discussed.
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TABLE 8.1: Branch and ound tree for a test problem

les

21=27.9
22=3. 96

3872. 42+

21 = 28 Z] =527

2 3
21=28 21=27
22=3.89 22=4.52
3872.82 3873.09
Z2 = 4 22 = 3 2225/\2254
4 5 [ 7
Z21=28 21=29. 49 21=26.29 No
22=4 22=3 22=5 Solution
[ 3892,00 3878.48 3880.99
INTEGER
21 = 30 21 =29 21 = 27 Z1 s 26
8 9 10 11
21=30 No Z1=27 21=26
22=2.71 Solution 22=5 22=5,22
3883.84 3961.00 3887. 85
INTEGER
22 =3 22 s 2 22 = 6 22 =5
12 13 14 15
Z1=3 21=2 21=24.96 No
22=30 =31.37 22=6 Solution
3936. 00 3908. 47 3912.33
INTEGER
+ Objective value

+ Node number



TABLE 8,2: Computational Results

P k m s NON OAN NPS' NP Nass®  NapPt TIME
1 10 2 3 15 4 342 356 162.3 4.75 133.1
S 11 4 37.8 39.5 167 4.42 397.6
3 3 44 22 73.6 77.2 281.2 3.82 847.1
5 25 8 104.7 107.6 372.3  3.56 1230
20 2 3 11 10 61.5 63.1 S01.3 8.15 1636.6
5 11 11 123.1 124.7 716.4  5.82 3334.5
3 3 63 56 189.8 198 1093.5 5.76 5640, 4"
5 63 28 239.6 246.7 1266.2 5.28 7231.5
2 16 2 3 19 11 52.6 54.7 370.7 17.0S 513.7
5 15 12 83.2 84.7 S60.1  6.73 890. 6
3 3 21 18 109.4 112.9 659.8  6.03 1311.6
5 7 7 144.3 148.9 8%4.1 6.2 1824
20 2 3 3 2 89 91 1286.1 14.45 2486 .
5 3 3 116.3 119 1554.3  13.36  3177,3
3 3 56 33 210.4 215.9 2209.4 10.5 6377°
5 55 45 461.1 469.4 4000.9 8.68 14032. 8
50 3 5 7 6 792.6 813.9 15296.1 19.3 108458. 8

The following symbois are used in the table:

NAPP
TIME
.

process
part
machine

plan

operation
Number of Nodes or Number of Minimizations
solution obtalned at this node

number of plans selected to enter basis

Optimal
Average
Average
Average
Average
Average

number of pivot operatlons performed
number of assignment problems solved

number of assignment problems solved per plan selected
time for execution in milliseconds
The averages reported are for each minimization
The problems stopped due to stopping criteria
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CHAPTER 9

CONCLUSIONS

The contributions of the research to the "Design of Cellular
Manufacturing Systems" are Summarized in this chapter. The limitations

of the work and directions for future research are also glven.

9.1 Contributions of the Research

In cellular manufacturing, parts with design and manufacturing
similarities are grouped into part families and the assoclated machine
8roups are formed such that one or more part families can be fully
Processed within a single cell. The identification of pPart famillies and
machine groups in the design of cellular manufacturing systems ig
commonly referred to as “cell formation“. 1In thils research a number of
issues has been identified which should be consldered in cell formation
for the successful adoption of the cellular manufacturing systems., A
number of mathematical formulations has been developed to help identify
part famllies and machine groups for the design of CM systems. The
inputs required for solving all the models and the outputs generated
from them are glven in Appendix A.2. A representation of the framework
for cell design without inter-cell movements and with inter-cell
movepents is given in Appendices A.3 and A.4 respectively. The
contributions of the research to design of cellular manufacturing

systems are given below:

1) The influence of alternate process plans on resource utilization was

138



2)

3)

discussed. Three mathematical models were developed to illustrate

that the simultaneous grouping model will always provide results at

least as good as the sequential model,

The creation of cells using new and often automated machlnes under
the following conditions were considered:
1)  Identify machine groups such that all the parts in a family
are processed within the group.
11) Form the desired number of cells by assigning one or more
known part famllies and machines, to cells,
1i1) Simultaneously determine the part families and machine groups.
Four mathematical models were developed to address these issues and
presented in chapter 4. Model 4.1 assigns machines to parts. The
assignment of machines to known part families was consldered in Model
4.2. Model 4.3 identifles part familles and machine groups
simultaneously. Forming cells by permitting one or more part families

in a cell was considered in Model 4.4,

The 1ssues related to redesign of cells such as relocating machines,
change in part mix, etc. while identifying part families and machine
groups were addressed. The following situations in the redesign of
cells were considered:
1) Allocatlon of parts to known machlne groups.
i1) Allocation of parts to known machine groups allowing for
relocation of machines between cells to form mutually

independent cells.

111) If sufficient capacity is not avallable, then determine if
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4)

relocation be accompanied or substituted by a higher degree of

Investment.
Four mathematical models were developed for this purpose and
presented in chapter 5. Model 5.1 allocates parts to known machine
groups without disrupting the existing configuration. Model 5.2
ldentifies part families and machine groups simultaneously
consldering machine relocation. In additlon to simultaneously
forming part famllies and machine groups, Model 5.3 also determines
the additional investment to be incurred on new machines. Model 5.4
consliders only additional investment on new machines assuming

relocation 1s not allowed due to loss in production and time.

The issues related to determination of part and machlne spectra for
cellular manufacturing were addressed. The problems considered in
this context are:
1) Selection of a subset of parts to be produced on known machine
groups.
i1) Simultaneously identifying the subset of machines and parts to
form the required number of cells.
Four mathematical models were developed for this purpose and
presented in chapter 6. Model 6.1 selects the portion of parts
demand to be produced on known machine groups. Model 6.2 identifies
the portion of parts demand to be produced in cells and the machines
to be selected for cellularization slmultaneously. Models 6.1 and
6.2 may identify only a portion of the demand to be produced in
cells. This situation is advantageous if the decision maker does not

want to depend on the cell as the only source of supply during
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5)

6)

7}

8)

9)

implementation. However, 1f one feels that the total demand for a
part ldentified for cell production should be completely produced 1n

one or more cells, Models 6.3 and 6.4 are presented for this purpose.

Issues such as material handling and replacement of old machlnes by
new or technologically updated machines were considered. For this
purpose four mathematical models were developed and presented in

chapter 7,

A number of obJectives such as minimizatlion of investment, operating
cost, machine relocation cost, material handling cost and

maximizatlion of output were considered.

Physical limitations such as upper bound on cell size, machine
capacity and material handling capacity in the cell deslgn process

were explicitly modeled.

Efficient sclution schemes based on the column generatlon approach

for the linear and relaxed mixed integer programs, were developed.

A number of illustrative examples was solved. Computational
experience on test problems giving statistics on number of nodes,
number of plans generated, number of pivot operations, number of

assignment problems solved and time for execution was also reported.

In summary, the cell formation problem addressed in this research, in

addition, to identifying part families and machine groups specifles the
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plans selected for each part, quantity to bé produced through the plans
selected, machine type to perform each operation in the plans, total
number of machines required, machines to be relocated, machines to be
replaced and parts and machines selected for cellularization considering

demand, time, material handling, resource constraints, etc..

9.2 Limitations of the Res;arch

The limitations of the research reported are:

1) The demand for parts in the glven time horizon 1s assumed to be
deterministic. The cost and time of operations are also assumed to
be constant.

2) A number of other factors such as fixtures avallable, tool magazine.
capaclty on machines, tool life, number of tools avallable, etc.
influence the cell formation. These aspects have been ignored.

3) Different strategies for generating the columns for basls entry and

node selection criteria for branch and bound have not been examined.

9.3 Directions for Future Research

1. Other factors such as number of fixtures avallable, tool magazine
capacity on machines, tool life, number of tools available etc. may
be considered for cell design.

2. The framework for cell design provided may be extended to
multi-period sltuations.

3. Simulation models can be developed to evaluate the performance of
cells developed by mathematical programming in this thesis.

4. A number of manufacturing companies have repetitive manufacturing

(¢losed Job shop) where sequence dependence need to be considered
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in cell design.

5. Another area of Interest could be cell layouts. Flow line cells seem
to have several advantages over job shop cells. The interesting
lssue here 1s: How to achlieve flow line cells and to what extent
should this be done ?

6. The consideration of uncertainities in the product mix, demand,

availability of machines, etc., In cell design will be an interesting

regearch area.
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APPENDIX A.1i
The Column Generation Procedure

In the simplex algorithm using canonical tableaux, many computatlions are
performed at every pivot step. Every time a pivot is performed, it is
carried out on every column of the tableau. This can be very ilme
consuming. On the other hand, in the revised simplex method, in any
step, we only need the data contained in the present basic columns and
then we need a subroutine to check the dual feasibility of the present
dual basic solution. This makes it possible for us to solve large scale
linear programming problem by the simplex algorithm without having the
data 1n the model expllcitly in hand at any time. Suppose the linear
program (LP) in the standard form is
Minimize z(x) = cx
subject to Ax = b (1)

xz0
where b 2 0 and A is of order m * n.
The subroutine for checking the dual feasibility takes as input the
present dual vector, w and should be able to determine whether " = A.J s
cJ " holds for all j (in which case the present prlmalAFasic Feasible
Solution 1s optimal), or produce a non basic column (..:7..) in (1) that
vlolates dual feasiblllity, that 1s it satisfies n A‘J > cj. This column
vector is all that we need to move to the next basic vector (essentially
the variable corresponding to this column vector is treated as the

entering varlable, and the basis change is carried out by the revised
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simplex format) and the whole process is repeated starting with the new
basic vector. It 1s not necessary to know what procedure the subroutine
employs to check dual feasibility; 1n the sense the subroutlne for
checking dual feaslibility can be treated as a black box for executing
the revised simplex algorithm on (1). In some applications, the proulem
of checking the dual feasibility of a given vector can itself be posed
as an auxiliary problem and the subroutine for checking dual feasibility
may be an algorithm for solving this auxiliary problem. In this
procedure, we only maintain the present set of basic columns in the
original linear programming model; the entering c~lumns are generated
one by one as they are needed, using the subroutine for checking dual
feasibility. Hence, this procedure is known as column generation

procedure (Murty 1983).
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APPENDIX A.2

INPUTS AND OUTPUTS FOR ALL THE MATHEMATICAL MODELS

Inputs required:

1. Number of part types

2. Demand for parts

3. Process plans for each part type

4, Number of machine types

5. Cost of each machine type

6. Capacity on each machine type

7. Cost and time of operations

8. Operating budget

9, Known part families

10. Number of cells to be formed

11, Maximum number of machines ln a cell/group
12, Cost of assigning a machine to a cell/group
13. Known machine groups

14, Cost of relocating a machine

15. Cost of moving a part between groups

16, Distance between machine groups

17. Capacity of material handling equipment
18, Cost of capital

19, Book value of each machine type

20, Depreciation value of each machine type

Outputs obtained:

Plans selected for each part type

Number of units to be produced through the plans selected
Machine type to perform each operation

Total number of machines of each type

Total number of machines of each type in a cell/group
Part types in each cell

Machines to be relocated

Total number of inter-cell movements

Machines to be replaced

VRN LN
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APPENDIX A.3

CELL DESIGN WITHOUT INTER-CELL MOVEMENTS

ldentify Investment 1-8 +
one cell {Model-4.1) (1-4) »
ldentify Investment 1-8,10,11
New PF/MG (Model-4. 3) (1-6)
machlines together
assign Investment 1-9
machines (Model-4,2) (1-5)
part
families
are known
group part Investment 1-11
families & (Model-4.4) (1~6)
machines

PF-Part family

MG-Machine group

+ Inputs (see Appendix A.2)
® Qutputs
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APPENDIX A.3

CELL DESIGN WITHOUT INTER-CELL MOVEFENTS

Operating —1-4,6-8,13 +
cost (1-3,6) w»
(Model-5.1)
___machine ____ allocate
groups parts
are known under- _ _1-4,6-8,13
utilization (1-3,6)
{Model-5.1)
relocation & 1-4,6-8,11
Machline operating 13,14
relocatlion costs (1-3,5-7)
(Model-5. 2)
relocatlon, 1-8,11-14
identify operating (1-7)
PF/MG costs and
together investment
(Mcdel-5. 3)
operatling 1-8,11-13
cost and (1-6)
investment
(Model~5, )

PF-Part family
MG-Machine group

+ Inputs (see Appendix A.2)
& Qutputs
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Selection
of parts &
machines

APPENDIX A.3

CELL DESIGN WITHOUT INTER-CELL MOVEMENTS

___machine allocate
groups parts
are known

identify
PF/MG
together

PF-Part family

MG-Machine

group

+ Inputs (see Appendix A.2)

# Outputs

154

number of
units of
production

{Model-6,1;

number of
part types
(Model-6.3)

number of
units of
preductlon
(Model-6.2)

number of
part types
(Model-6.4)

1-4,6-8,14
(1-3,6) »

—_—1-4,6-8,14
(1-3,6)

1-4,6-8,10
11,13
(1-3,5,6)

—1-4,6-8,10
11,13
(1-3,5,6)



APPENDIX A.4

CELL DESIGN WITH INTER-CELL MOVEMENTS

investment, 1-8,10-12,15 +
z::hines ;gi;éify operating ——(1-6,8) »
together & material
handling
costs
(Model-7.1)
___machine allocate operating _ _ 1-4,6-8,13
groups parts & material 15-17
Machine are known handling (1-3,6,3)
relocation costs
(Model-7.2)
identify relocatlon, 1-8,10-17
PF/MG operating, (1-8)
together material
handling
costs and
investment
(Mcdel-7.3)
Machine identify operating, ___ 1~8,10-20
replacement PF/MG material (1-9)
together handling

costs & loss
of interest
on capital
(Model-7.4)

PF-Part family
MG-Machine group

+ Inputs (see Appendix A.2)
# OQutputs
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