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Abstract

With the recent growth of telecommunication systems, fault management has received much
importance. As networks grow in size and complexity, the amount of disruption caused by a
network-related outage becomes more and more significant. Several techniques exist to ensure
that networks can continue to provide reliable service even in the presence of faults. The basic
principle of fault tolerance is redundancy beyond the minimum requirement for normal
operation. These spare resources help avoid faults. Since any redundancy introduced in the
system to make it fault-tolerant increases the system cost, it is very important to determine the
right type and extent of spare resources to maximize the reliability while maintaining a moderate
increase in cost. Intensive theoretical research work has been done on the notion of survival route
graphs based on graph theory. However, the present work is the first attempt to realize the

applicability of survival route graphs in fauit-tolerant optical networks.

In this thesis, we have proposed and simulated two fault-tolerant schemes using the De Bruijn
graph as a network physical topology where we treat some special nodes as spare resources. In
our first scheme, we have attempted to design an all-optical single-hop fault-tolerant network.
However, when we tested this scheme by randomly generating faults, it could not provide
alternate paths in the presence of faults in most cases. Our second scheme, a hybrid system of
single-hop and multihop system can successfully manage multiple faults almost in all cases.
However, the disadvantage of our second scheme is that our network is no longer an all-optical

network, and its throughput is lower because of electrical buffering at some intermediate points.
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Another disadvantage of this scheme is that the system can result in intolerable restoration delay
for some communications due to the high demand on certain links since there is no upper limit
on the number of communications through any edge. We have tried to distribute the
communications through different links as uniformly as possible to improve this delay. The
advantage of this approach is that we need to distribute the communications only once when any

edge happens to be faulty. The rate of success of our second scheme is statistically significant.
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Chapter 1

Introduction

1.1 Background

With the increasing dependence on telecommunications, our requirement for high speed
communication has increased dramatically. Today’s Internet and asynchronous transfer mode
(ATM) networks can not meet our bandwidth demands. Fiber optic technology has a potential to
satisfy our demands because of its huge bandwidth (nearly 50 terabit per second ), low signal
attenuation, low signal distortion, low power requirement, low matenal usage, small space
requirement, and low cost [33]. Optical fiber cable carries messages in the form of a fluctuating
beam of light - electromagnetic radiation in the visible and near-visible spectrum using glass

fiber as the medium.

Since the maximum rate at which an end-user can access the network is limited by the electronic
speed (few Gbps), to exploit the huge bandwidth of fiber optical communication network
architectures and protocols should be designed to introduce concurrency among multiple user
transmissions. This concurrency may be achieved according to their wavelength or frequency
(WDM), time slots (TDM), space (SDM), or code (CDM) [24]. At present, WDM is preferred
over other multiplexing technologies since all of the end-user equipment need to operate only at
the peak electronic processing speed where as in TDM and CDM, some part of an end user's
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network interface must operate at a rate higher than electronic speed.

Wavelength division multiplexing (WDM) provides the way to partition the optical bandwidth
into a large number of channels operating at different carrier frequencies on a single optical
fiber[17]. Multiple users, spread over a geographical area, can use the optical fiber
simultaneously using different wavelengths and leading to a dramatic increase in the total
capacity of the network. It is anticipated that the next generation of the Internet will employ

WDM-based optical backbones [33].

An optical WDM network requires optical switches. An optical switch can be either an opto-
electronic switch or an all-optic switch. In an opto-electrical network, there is an opto-electronic
conversion resulting in a low bit rate. In all optical networks, messages are transmitted and
processed entirely in the optical domain, ensuring a high bit transmission rate. The advantages of
all optical networks include transparency, reduced processing, and reduced management [15].
The next generation of optical network will use all-optic switches. However, an all-optic switch
has an important limitation of signal attenuation. Therefore, the number of switches should be as

small as possible.

There are several approaches to implement optical WDM networks: single-hop, multihop, and
wavelength routing [17]. In single-hop networks, messages are routed from the source to the
destination in one hop without being processed at intermediate points, that is, there is no electro-
optical conversion [30][33]. An all-optical network requires a significant amount of dynamic
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coordination between the source and the destination nodes [31][{39]. The tuning ranges of current
optical transceivers are limited, and their tuning times are also significantly long compared to the
duration of packet transmission. For these reasons, the total number of wavelengths used and the

maximum number of users are limited in single-hop networks.

In multi-hop networks, messages are routed from the source to the destination in several hops
and are processed at the intermediate points, that is, there are several electro-optical conversions
resulting in a low bit rate and therefore, these are not all-optical networks[31][33] [48]. The
average hop distance of this network should be kept as small as possible since the longer the hop
distance, the longer the time a message stays in the network. Thus more network resources are
consumed and the resulting throughput becomes smaller. Since high-speed networks do not
allow long processing time, the routing scheme should be very simple and packet buffering
should be minimized. In multi-hop networks, the wavelengths to which a node’s transmitters or
receivers are to be tuned are fixed and the transceiver tuning times do not play an important role
to determine the performance. Another advantage of a multihop network is the independence of

physical topology and logical topology.

A different approach to implement all-optical WDM networks is wavelength routing [17]
[40][41][42]. It is defined as the selective routing of optical signals according to their
wavelengths as they move from the source to the destination. Another advantage of this approach
is that we can reuse each wavelength on different paths as long as these paths do not coexist on
the same fiber to avoid interference. This is the fundamental requirement of the wavelength

3



routed optical network [33].

An optical network can be modeled as a directed graph where each node of the graph represents a
network node [2] [9] [12][19][20]. There is an edge from node X to node Y if station X can
directly transmit to station Y. A message may have to hop through several intermediate nodes
before reaching its destination. A node is equipped with a number of transmitters and receivers.
The transmitters and receivers can be tuned to operate at different wavelengths. If the transmitter
of a node is tuned to many wavelengths, the node can transmit using those wavelengths.
Similarly, if the receiver of a node is tuned to those wavelengths, the second node can receive
information from the first node. Since we can use a limited number of transmitters or receivers,

the number of nodes that a node can transmit to is also limited.

1.2 What is a fault-tolerant optical network?

Fault-tolerance in an optical network can be studied in terms of two system attributes: reliability
and survivability. Network reliability is the ability of a system to perform its function, the lower
the probability that a system will fail to perform its function, the more reliable it is. Network
survivability is the ability of a network to maintain an acceptable level of performance in the

presence of network failure by employing various restoration techniques [43].

The basic principle behind a fault-tolerant system is to provide the system with redundant



resources beyond the minimum requirements for normal operation. These spare resources help
avoid faults. Since any redundancy introduced in the system to make it fault-tolerant increases
the system cost, it is very important to determine the right type and extent of spare resources to
maximize the reliability while maintaining a moderate cost. Spare resources for every possible
scenario is not a feasible solution since it would be prohibitively expensive. Therefore, it is a
challenge for network planners and engineers to maintain a satisfactory level of survivability

with minimum cost.

Different users need different level of survivability depending on an application’s cost, service,
and performance requirements, optimizing some attributes at the expense of others. A single
network scheme may not be a satisfactory solution to all users. Therefore, the aim of a network
designer is to combine several restoration techniques to meet different demand requirements and

to realize a simple, efficient, fast, cost-effective fault-tolerant optical network.

Network restoration technique can be protection switching, rerouting, or self-healing. In
protection switching, the new route is known in advance depending on the equipment residing in
either the connecting or terminating points of the path and it is not controlled by the Operating

System / Network Management System (OS/NMS) [50]. Example includes APS and self-healing

ring [53].

In rerouting, the new route is generally not known in advance and it is established depending on
the network resources available at the point of failure. This is controlled by the Operating System
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/ Network Management System (OS/NMS) [50]. An example includes the centralized control

DCS network restoration [53].

In self-healing, the new route is not known in advance. The new route is established depending
on the network elements and resources available at that point of failure and is not controlled by
the Operating System / Network Management System (OS/NMS) [50]. Self-healing allows
reconfiguration of a network around failures quickly without disturbing the calls that are not
affected by the network failures [25]. It requires redundant facilities and intelligence in the
network. Some reconfiguration techniques do not require any spare resources and eliminate the
faulty component and run the system on the remaining resources with degraded performances.
They are useful where repair of failed components are not possible (e.g. unmanned spacecraft)

[37].

1.3 Motivation - Why do we need a fault-tolerant optical network?

With the increase of the network’s speed and flexibility, the possibility of faults in optical
network increases. Communication may fail due to cable cuts, hardware malfunctions, software
errors, natural disasters (e.g., floods, fires, etc.), and human error (e.g., improper maintenance).
Whenever there is a fault in the network, a number of routes will be unusable resulting in a loss
of service to users. This can be frustrating to researchers and other users, and can cause a

tremendous loss of revenue to operating companies. Since many of the causes of communication



failures are beyond the control of the network providers, it is very important to design an optical
network that are inherently fault-tolerant against events such as cable cuts, central office failures,

and hardware failures. The goal is to continue communication even in the presence of faults. A

fault-tolerant network provides alternate routes between a pair of nodes in case of fault. The

objective of setting a level of survivability is to ensure that network performance will not

degrade below a predetermined level.

1.4 Work done in the thesis

The main purpose of this thesis is to design a call rerouting mechanism which provides
restoration of network services in the case of link failures. Our focus is on the design of
optimized networks in which the rerouting scheme to avoid fault is as simple as possible. The
routing scheme is based on the notion of survival route graphs, derived from graph theory [5]. If
any node or edge in a normal route between a source and a destination fails, the normal route will
be unusable. To ensure reliable communication between the source and the destination, we have

to find an alternate route that does not have any faulty node or edge.

The basic idea of this fault-tolerant scheme is to provide the network with some special nodes :
concentrator, predecessor, and successor nodes, as spare resources. These spare resources will
be used only when any node or edge fails. The idea of concentrator node was introduced in [35].

A set of nodes that satisfy the following conditions are called concentrator nodes [45].



. There is no edge from one concentrator node to another concentrator node.

. No two concentrator nodes can have the same predecessor node.
. No two concentrator nodes can have the same successor node.
. The predecessor of one concentrator node can not be the successor of another.

A set of nodes that have edges to a particular concentrator node are called the predecessor nodes
of that concentrator node and if a concentrator node has edges to a set of nodes, that set of nodes
are called successor nodes of that concentrator node. If a normal route between a source and

destination fails, we have to look for

. a path from the given source to a predecessor node that does not have any faulty edge,

. a path from the predecessor node to a successor node through the concentrator node that
does not involve any faulty edge, and

. a path from the successor node to the given destination that does not have any faulty

edge.

If we are successful in finding the above three paths, we can replace the original light path from
the source to the destination by a composite lightpath consisting of lightpath segments from
source to predecessor node, predecessor to successor node through concentrator node, and

successor node to destination.

In our first scheme, the number of communication through the physical edge from a source (or
successor) to any predecessor (or destination) is limited to one. Once that edge has been already

8



used to take care of some faulty lightpath, it can not be used to handle another faulty path.

Therefore, our first scheme will fail to provide alternate path in most cases in the presence of

failures.

In our second scheme, more than one communication can use any link from a source node to any
predecessor node, any predecessor node of a given concentrator node to the successor node of
that concentrator node, and from any successor node to any destination node. Therefore, our
scheme is fault tolerant against any number of faults. However, the high demand on certain links
can cause an unbalanced network in which some edges and nodes are heavily loaded while others
remain under-loaded resulting in an intolerable restoration delay for some communications. To
minimize this queuing delay, we have tried to distribute the number of communications (load)
throughout the network as uniformly as possible by employing an adaptive rerouting algorithm
that introduces additional computational requirements. The advantage of our approach is that we
need to uniformly distribute the communications only once when any edge happens to be faulty.
We have coded all optimization algorithms in the 'C' programming language. Our scheme will be
very useful for networks and services that require higher level of survivability but can endure

delay due to rerouting.

1.5 Structure of the thesis

This paper is structured as follows.



In chapter 2, we have reviewed related literature for this thesis. We have described some
network topologies, different approaches to implement WDM networks, types of faults, several

fault-tolerant architectures, and survival route graphs.

In chapter 3, we have described our design of fault-tolerant WDM networks. We have discussed
the design topology, introduced the notion of deflector nodes (spare resources), the fault-tolerant
routing schemes proposed and simulated in this thesis and explained why our first scheme failed
in most cases. We have also given examples of alternate paths through the special nodes of the

network in the presence of failures using our second scheme.

In chapter 4, we have given simulation results with critical comments. We have provided the
maximum number of communications through different edges for different runs. Using
SYSTAT, we have plotted histograms for the distributions of maximum number of
communications through different edges and calculated the mean, median, variance, and standard

deviation for each case.

We have concluded with a critical summary and proposed possible future directions for the

further development in section 5.

In Appendix-A we have provided the C source code for our second fault-tolerant optical network,
in Appendix-B we have presented some of the results, in Appendix-C we have given glossary of
terms and abbreviations. It is followed by the bibliography.

10



Chapter 2

Review of related literature

2.1 Topology - physical and logical

The topology of a network defines how the nodes of a network are connected. A network is
defined by a physical topology and a logical connectivity graph among the nodes [40][42].
Physical topology ( e.g. Broadcast star or bus ) provides the physical connections between every
pairs of nodes in the network. Logical topology provides dedicated connections between certain

selected source-destination pairs using the underlying physical topology.

In a network, the stations (end-nodes) are interconnected by optical fibers via routers. Each fiber
can carry a number of signals modulated at different wavelengths. Each usable wavelength on a
given fiber is called a channel. This network supports lightpaths which are end-to-end circuit
switched communications traversing one or more fibers using one WDM channel per fiber
[33]{43]. The logical topology of a network is a graph where the node of the graph corresponds
to the end-node of the network and two nodes A and B are connected by a directed edge from A

to B if there is a lightpath from the end-node A to the end-node B.

The major factors to design the topology of a network are the reliability, fault-tolerance, the

11



message routing delay, the routing schemes. To design a good topology, fault tolerance should
be maximized while minimizing the message routing delay. However, fault-tolerance is always at
least one less than the minimum number of connections per node in case of bidirectional links
and by one less than the minimum of number of incoming and outgoing connections per node in
case of unidirectional links. A network will be optimally fault-tolerant when the fault tolerance
reaches this upper limit. A topology is said to be a regular topology if the number of connections
for each node is the same throughout the network. In regular topology, it is easy to implement

routing scheme because of its regular structure but it is not optimally fault-tolerant [31].

An interconnection network can be modeled as a directed or undirected graph G in which the
nodes represent processors and the edges represent communication links. G is a directed graph if
the communication link is unidirectional and it is undirected if the communication link is
bidirectional. A communication link is bidirectional if for any ordered pair (x, y), the route from
x to y and the route from y to x are assigned to the same path. Directed graph as a network model

has received attention as optical fiber is unidirectional.

2.2 Different approaches to implement WDM network

2.2.1 Single-hop Systems

In a single-hop system, a message is transmitted from a source node to a destination node in one

12



hop without being routed through different end-nodes of the network and is communicated in the
optical medium all along the way. Since it is infeasible to have separate transmitters and
receivers for different wavelengths at all nodes, it generally requires tunable transmitters and/or
tunable receivers to provide connection on demand [22]. There are two major problems to design
a good single-hop network: tuning time of transceiver and lack of efficient mechanism to
establish dynamic coordination between a pair of nodes that are wishing to communicate so that
at least one of the transmitters of the source node and one of the receivers of the destination node
are tuned to the same wavelength to confirm transmission [1] [31]. Many multiple access
schemes are proposed [30], however either they cannot satisfy the efficiency requirements, or
they solely depend on rapidly tunable transceivers [10]. A more realistic approach is described in

[22][23].

In a broadcast-select network, the inputs from all transmitting nodes are combined in a star
coupler and broadcast to all end-nodes. It can be implemented in different ways depending on the
tunability of lasers and the receivers: tunable laser and fixed receiver, fixed laser and tunable
receiver, fixed laser and fixed receiver, and tunable laser and tunable receiver [30]. If the input
lasers are made tuned to fixed wavelengths and the output receivers are tuned to fixed

wavelengths, the number of users will be limited but a control channel is not required.

If the input transmitters are made tunable but the output receivers are tuned to fixed wavelengths,
the broadcast-select architecture will support only point-to-point connection and it would not
support multi-cast (point-to-multipoint) connections. If the input transmitters are tuned to fixed

13



wavelength but the output receivers are made tunable, the broadcast-select architecture will

support multi cast connections [7].

If both the transmitters and receivers are made tunable, the number of wavelengths required may
be reduced but there may not be enough wavelengths available to support simultaneous N x N
connections resulting in network or switch blocking in the wavelength domain {7]. It is observed

that network with fixed lasers and tunable receivers are more useful than others [10].

However, the scalability of this network is limited to the number of supported wavelengths as it
does not support reuse of wavelengths. Due to physical constraints (e.g. crosstalk, filter
resolution, requirement of high-speed tunable filter), the number of resolvable wavelengths are
also limited [18], [8]. Another disadvantage is that the power from each transmitter is broadcast
to all receivers. Mostly it is wasted as many receivers are not using it. For these reasons, the use

of such network is limited to high-speed local and metropolitan area networks.

To compensate for the power losses due to splitting, amplifiers are required in this network.
However, the maximum power that it can supply is also limited. To minimize the number of
optical amplifiers, most of the studies have addressed the issue by adding the constraint that all
wavelengths, present at a particular point in a fiber, will be at the same power level. Ramamurthy
et al. in [38] have proposed a method that allows the different wavelengths on the same fiber to
be at different power levels. Though the method will increase the complexity but many networks,
specially smaller networks will be benefitted by requiring fewer amplifiers. Various experimental
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demonstrations and prototypes of single-hop WDM networks are LAMDANET, RAINBOW,

FOX, HYPASS, STAR-TRACK.

2.2.2 Multihop network

In a multi-hop system, the message from a source to a destination may have to hop through zero
or more intermediate nodes. In this system, the wavelength to which a node’s receiver and
transmitter will be tuned generally does not change and the tuning time is not as important as in
the case of a single-hop system [31][24]. An important property of the multihop scheme is the
relative independence between the logical topology and the physical topology [24]. In order to
have an efficient system, the logical topology should be chosen such that either the average hop
distance or the average packet delay or the maximum flow on any link must be minimal. Another

important issue is the simplicity of routing[34] .

An example of multi-hop system is shown where the physical topology is a star (Fig 1a) and the
logical topology is a 2 x 2 torus (Fig 1b). Topology of a network defines how the nodes of a
network are connected. Physical topology provides the physical connectivity patterns, whereas
the logical topology defines the ability to communicate from one end-node to another end-node
by a single lightpath. In Fig 1b, node 1 can send information to node 2 and 3 directly using
frequencies w1 and w2. For this reason, node 1 is logically connected to node 2 and node 3,

although they are not directly physically connected. However, if node 1 wants to send
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information to node 4, it has to multi-hop through either node 2 or node 3 since node 1 is not
directly logically connected to node 4. If node 1 communicates with node 4 via node 2, there
will be a wavelength conversion from w1 to @3 at node 2 and which is done electro-optically i.e
the signal is converted from optical domain to electrical domain and reconverted to optical

domain after wavelength conversion resulting in lower bit rate. This is the main disadvantage of

multi hop network.

Another disadvantage is that power is split to irrelevant destinations which does not support long
distance transmission. But using this network, we can reduce the number of required
wavelengths for communication. To overcome the power splitting problem, wavelength selective
devices can be used [21]. Another concemn is that load imbalance might be serious problem with
the increase of network size. However, in [14], the authors have shown that imbalance load on
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multihop network reduces throughput per user to a factor which is not very sensitive to the

network size.

Multi-hop systems can be of two types : irregular and regular [31]. In an irregular multi-hop
system, it is easy to address the optimal problem and it can be optimized for arbitrary loads, but
the problem is its routing complexity as it does not have regular structured node connectivity
pattern [31]. On the other hand, in regular multi-hop system, routing strategy is very simple due
to its regular structured connectivity but the problem is to achieve optimal condition and
generally it can be optimized for uniform loads due to its regular structure. Another disadvantage
of complete regular structure includes the number of nodes that it can support will be a discrete
set of integers, instead of an arbitrary integers. Regular multi-hop system has received more

attention because of its simple routing.

A number of different regular multi-hop architectures, having different operational features and
different performance characteristics, are possible : ShuffleNet, Manhattan Street Network
(Torus), Hypercube, and De Bruijn graph. We have employed the De Bruijn graph as a physical
topology for developing fault-tolerant optical network because of its small diameter and constant
distant paths which reduces the signal dynamics at the receiver and simplifies the receiver

implementation [29].
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A directed De Bruin graph has d*
nodes for some positive integers d
and k, each node has d directed
edges [31]. It can be considered as
the state transition diagram of a k
stage d-ary shift register. There is
a one-to-one correspondence
between all possible states of shift

register and the nodes of the De

Bruijn graph. There is an edge from node x to node y, if node x can reach node y by one shift.

The nodes of the graph can be numbered as 0 through d* - 1 and node i has arcs directed to node j

if j =id + (q mod d*) , where O < q <d. Using a d-radix representation, any number i can be

represented by ig1; 1;........ i,.; , where O < k <d and i, is the most significant digit, i, , is the least

significant digit.

An example of (2,3) De Bruijn graph is shown in fig. 2, where the graph is constructed out of 8

nodes, numbered as 0,1,2,3, ...... , 7. Using d-radix representation, the nodes are denoted by 000,

001, 010, 011, 100, 101, 110, 111. The problem to determine a route from any source s =s, s,

S,...S .; to any destination d = d,d, d;...d ., is explained in [28].
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The constant length path from any source s = s s, s,...5 ;_; to any destinationd =d, d, d;...d,
willbe : s48;85...8 4 8 8;..8, dg > $83...85,,dod |~ ... —-s, dd(d,.....d  ,d,y d,
ds...d , ., . For instance, the constant length path between the source node 001 and the destination

node 100 is given by: 001011 —110 —100. The constant length path is not the longest route.

To determine the shortest route between the same source and destination node, we have to
determine j such that, dy d,....d ;. = Sy Sij-i----S .1 - [f such a j exists, the route will be :
S0S1S2--S4qg 7?8 8.8 d; > 8858, ,d;dj, ... =Sy jSkja--Scadjdidi,....dyd
« 2d ;- The shortest path for the source node 001 and destination node 100 is given by : 001
—010 — 100. In this case ) exists and the value ofj is 1. If such a j does not exist, the first
intermediate node will be s; s,...s | dg, the second intermediate node will be s,...s . ; dy d, ,....,
the (k-1) " intermediate node will be s, dyd; ds...d ., and the shortest route and constant
length route will be the same. For instance, the shortest path and the constant length path from

source node 001 to destination node 000 will be 001- 010 - 100 - 000.

The diameter of the network is log, N, where N is the number of nodes in the network. It has an
inherent asymmetry in the structure due to the existence of self loops “000" and “111" which are
wasted as they carry no traffic [34]. Due to this asymmetry, even if the offered load in the
network is fully symmetric, the link loads can be unbalanced resulting in lower throughput.

However, for a given diameter, a De Bruijn graph supports more nodes than ShuffleNet [47].
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2.2.3 Wavelength Routed Network

Wavelength routed networks have been
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Fig. 3:An all-opticalwavelength-routed network
wavelength-selective elements at the
nodes of the network [8]. Such node (called wavelength router ) makes its routing decision based
on the input port and the wavelength of the signal passing through it [32]. Wavelength routing is
achieved by demultiplexing the different wavelengths from each input port and then

multiplexing signals at each output port. Sometimes switches are used between demultiplexers

and multiplexers.

For example, an N x N network is shown in fig. 3 [40][41]. Network consists of N tunable laser
sources , N (wavelength independent) receivers, and a WDM network that interconnects sources
and receivers. If a transmitter is tuned to a particular wavelength, the signal can be routed from
that end-node to another end-node of the network which has a receiver tuned to the same
wavelength. Such an end-to-end connection is called a light path. It is not generally feasible to

provide lightpaths between every pair of nodes due to the physical constraints such as limited
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number of wavelengths, limited number and tunability of optical transceivers and light wave

dispersions [11].

Since another light path can reuse the same wavelength in some other part of the network, at the
same time, N inputs can be interconnected to N outputs by using only N wavelengths instead of
N x N wavelengths as expected in broadcast-and-select network [6]. If node A wants to
communicate with node C using the wavelength channel A1 all along the way, there must be an
unassigned WDM channel for each edge in this communication. Similarly, if node C wishes to
communicate with node E using the same wavelength channel A1, there must be an unassigned
WDM channel for each edge involved in the communication. Therefore, two simultaneous
communications using the same WDM channel are possible as long as they do not coexist on the
same fiber. However, for the communication between node B and node D, we can not use the
same wavelength A1 since it involves edges that have been already used by other

communications.

A wavelength routed network is more scalable than a broadcast-and-select network due to this
spatial reuse of wavelengths. It reduces the calculation of optimal rerouting [26]. Another
advantage associated with this network is that the energy invested in a light path is not split to
irrelevant destinations which supports long distance transmission. Wavelength routing networks

can be designed in different ways depending on the components in use and design of the node.

Wavelength router can be nonreconfigurable [33] and reconfigurable [6](40]. In
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nonreconfigurable wavelength router, there is no switching between the demultiplexer and the
multiplexer and the routes for different signals arriving at any input port are fixed [6]. The
wavelengths on each incoming fiber are separated by grating demultiplexer and then the
wavelengths from various inputs are recombined to a single output by a multiplexer before it is
fed into an outgoing fiber. Different wavelengths from different input ports will be routed to
different output ports depending on a “routing matrix”. This matrix gives the internal

“connections” between the demultiplexers and the multiplexers.

In a reconfigurable wavelength router, there are optical switches between a demultiplexer and a
multiplexer and the routes for different signals arriving at any input port may be reconfigured to
adapt to changing traffic patterns [6]{33]. Such networks are more flexible than passive,
nonreconfigurable wavelength routed networks as they have more control over routes. In [3],
Banerjee and Mukherjee have presented an exact linear programming formulation to provide a
reconfigurable methodology based on constituent lightpaths. The solution to the reconfiguration
algorithm generates a virtual topology which minimizes the amount of reconfiguration that is

needed to adapt the virtual topology of the new traffic matrix.

A node in a wavelength routed network can be designed in three different ways: electro-optical
nodes, all-optical nodes, full-conversion all-optical nodes [15]. Electro-optical nodes convert the
signal from optical domain to electrical domain, do the switching in this domain, and reconvert
the optical signal at the outputs. This design supports wavelength conversion but does not
support transparency. All-optical node separates the wavelengths of incoming signal and sends
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them to different switches depending on their wavelengths and finally switches send them to the
output ports. This design does not support wavelength conversion and thus wavelength can not
be reused in the network. But the advantage is that this design is cost-effective as it does not
require expensive transceiver per channel per node [15](32]. Full-conversion all-optical nodes
can convert each wavelength from each input to any other wavelength. It is predicted that
wavelength routed networks will become a commercially viable solution in few years and very

gradually replace high-speed SONET networks [15].

2.3 Faults in optical network

There are mainly three types of faults : channel fault, link fault, and node fault [16].

2.3.1 Channel fault

A channel fault occurs when a single wavelength channel on a link between two nodes has failed
due to the failure of the laser or receiver for that wavelength channel, or due to cable
disconnections. This fault can be managed by routing the traffic to a spare channel on the same

physical link and bypassing the faulty channel.
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2.3.2 Link fault

A link fault occurs due to fiber cut or due to noise, jitter etc. (particularly those running over long
distance) and can be managed by using a bundle of protection fibers in addition to the working
fiber. The performance or survivability is limited by the number of links in each bundle. Another
way of solving this problem is by providing a “loopback” mechanism within each node on the

same working fiber.

2.3.3 Node fault

A node fault occurs due to power outages or catastrophic failure resulting in an entire WADM
node failure. It is complicated to handle since when this fault occurs, a part of the conversion
capability of the network as a whole is lost and leaves an open circuit and can result in deadlock
of all routing networks. One solution is to introduce redundancy in the internal connections of
the networks rather than in the connections of nodes. In the case of multiple failures, the solution
is a “firewall” that can prevent deadlock spreading in the network. This can be achieved by a

simple device that times out if a packet passing through it stay longer than a specified time.

2 .4 Fault-tolerant network architectures

Several fault-tolerant optical architectures are explored in recent few years: automatic protection
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switching (APS/DP), dual-homing, self-healing rings ( SHRs ), and dynamically path
rearrangeable mesh architecture. Some architectures e.g. APS and rings have already been
implemented in local exchange carrier (LEC) networks. The emerging technologies to implement
the above architectures are SONET, ATM, and passive optical technology (optical switching and
Wavelength Division Multiplexing(WDM)). This thesis is based on passive optical technology

(WDM).

Passive optical technology is a proposed concept for potentially reducing the cost of the
survivable network. It is in its infancy because the technology is not totally available. It may
restore service very quickly compared to SONET and ATM layer protection. There are several
techniques to implement fault-tolerant optical network in passive optical technology: Passive

Protected APS, Passive Protected Self-Healing Rings, Passive Protected DCS Mesh Networks.

2.4.1 Passive Protected APS

Conventional (SONET and ATM) 1:1 diversely protection technique is very expensive, since it
requires electronics equipments in addition to duplicate fiber facilities. To reduce the protection
cost, 1:1 optical diverse protection ( 1:1/ODP ) architecture was proposed in [49]. This
architecture employs optical switches for 1:1 fiber cable protection and maintains 1:N electronic
protection using a 1:N APS system. It is shown in [49] that the use of 1:1 ODP architecture can

reduce the protection cost of the traditional 1:1 DP architecture by about 70 percent. However,
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the survivability may be less in case of 1:1 ODP architecture, if multiple simultaneous

components fail. This type of passive protected APS systems is commercially available.

2.4.2 Passive Protected Self-Healing Rings

Conventional four-fiber bidirectional self-healing ring ( BSHR/4 ), despite its many advantages,
is relatively expensive compared with other SONET ring architectures as it requires duplicate
ADM s in each node. By using passive optical technology, the protection cost can be greatly
reduced, while retaining the other advantages of BSHR/4. In this architecture, one SONET ADM
is required for each working ring, while optical switches and optional optical amplifiers ( in case
of long protection ring) are needed for protection rings [53]. Optical switches basically eliminate
the use of duplicate ADMs. It acts as optical “add-drop” component at the two ends of the failed
facility while, in the intermediate ring nodes, it acts as optical “pass through” components.
Optical signal carried on the protection ring is added and dropped at two different optical
switches according to SONET ADMs on the working ring. The disadvantage of this type of

architecture is that it may be less survivable than the conventional four-fiber BSHR in case of

simultaneous multiple failures.

2.4.3 Passive Protected DCS Mesh Networks

Existing DCSs and cross-connect technology can not meet SONET two second restoration
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objective. It is reported in [51] that significant modifications of existing DCSs are required to
achieve the goal which include parallel DCS processing, parallel cross-connect architecture, and
ultra fast cross-connect technology. It is suggested in [52] that about 30 percent extra cost will be
added due to spare capacity. For these two reasons, this technology is not very useful in case of

fast restoration. Passive optical technology can provide a better solution.

One example of a passive protected DCS mesh network has been proposed in [52]. In this
network, a passive optical system is used as a protection system whose reconfiguration is
performed in the all-optical domain and is controlled by electronic network components. An
inexpensive special optical cross-connect system (OCS) at each node is the main component in
the passive protected DCS networks. It eliminates the cost associated with the modification
mentioned above. It is using a single restoration path approach, while conventional systems
(SONET and ATM) are using multiple restoration paths. Another advantage is that it has fast
optical switching time (few milliseconds). A new optical protection DCS self-healing

architecture that uses WDM technology at the ATM VP layer has been reported in [44].

2.5 Survival route graphs

The notion of survival route graphs is based on graph theory and standard terminologies are
defined in [4]. A routing p(x,y) provides a fixed path to each ordered pair of nodes in the

network [12]. A routing p(x,y) is said to be minimal if any route from x to y is assigned to one of
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the shortest paths from x to y. Any two nodes communicate with each other via the fixed route

Fig. 4: A network Fig. 5: Survival route graph

p(x,y) between them as long as no node or link in this route is faulty. If there happens to be a
faulty node or edge in this route, then they can no longer use this route for communications.
However, if there exists another node p such that the path from x to p and the path fromptoy
are both working, then it is possible to send information from x to y via p using the composite
path consisting of the path from x to p and then from p to y. This strategy is very useful to
recompute an alternate fault-free path [19]. It is very important to make sure that the number of
paths to be concatenated is small so that the delay in communication does not become too long.

Dolev et al. [12] have formalized this problem in the following way.

Dolev et al. [12] defined the survival route graph as a digraph that contains all the non-faulty
nodes of the original digraph with an edge from node x to node y if there is no faults on the path
p(x,y). For instance, let us consider a network where we consider minimal length routing (shown
in fig 4). If edge CD becomes faulty, then all routes passing through that edge will be unusable.
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Fig 5 shows the survival route graph where two nodes are connected if and only if the path
between them did not pass through the faulty edge CD. Now if station C wants to broadcast a
message to all stations, the message will reach A, B, G only and it will not reach D, E or F since
node C can send message only along the fixed routes. If G rebroadcast the message, station E and
F will get the message. If D wants to get the message, F or E has to rebroadcast the message. In
the worst case, the number of rebroadcast needed to reach the message to all stations is the

diameter of the survival graph.

The diameter of a survival route graphs gives the upper bound on the number of routes to be
required in any communication between two fault-free nodes. If diameter is high, it may cause
signal attenuation and network congestion. The fault-tolerance of this network is one less than
the node connectivity of the graph and the maximum message routing delay is equal to the

diameter of the graph.

[n general, which nodes and edges in a graph will become faulty is not known in advance. If we
calculate an upper bound d on the diameter of the survival route graph where there are f or fewer
faults (f fixed ), then a message should be rebroadcast d times to ensure that all stations get the
message. Dolev et al.[12] obtained several results on the diameter of this digraph and suggested
the networks where the associated survivable route graph has small diameter. It was shown that
for any (k+1) node connected graph G and routing p, the diameter of the survival route graph
R(G, p)/F is no greater than max(2k, 4), and for some special class of graphs (e.g. hypercubes),
there is a shortest path unidirectional routing p such that the diameter of R(G, p)/F is 2 and there
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is a shortest path bidirectional routing p such that the diameter of R(G, p)/F is 3. Such networks

are called fault-tolerant. They concluded with a list of interesting open problems.

The connection network is represented by a digraph G = (V, E) where V is the set of nodes and E
is the set of directed edges. Let k be the node connectivity and F < V u E be the set of faulty
components of the network where F, is the set of faulty nodes and F., is the set of faulty edges
such that F = F, u F.. Let t be the maximum number of faulty components so that |F| < t. Itis
assumed that t < k -1 so that the digraph is not disconnected when there is a fault. For any node

u € V, let P(u) and S(u) denote the set of predecessors and successors of u in digraph G where,

Puy={a |(a,u) e E} and S(u)={ a |( &, u) € E}.

A set of concentrator nodes of a digraph G is given by aset M = { m;, m, ..., m,} of its nodes if
for each m; € M, satisfies the following conditions C1 to C5 where X; < P(m;) and Y; ¢ S(m,)

X 1= 1Y,|=k. [45].

ClimeY;,1<i,j <p
C2meX;,1<i,j <sp
C3:Y,nY;=¢,i#jl <i,j sp
CaXnX;=¢,i*jl<i,j sp

C5:YinX;=¢,i#j,l <1,j <p
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2.6 Related work

Considerable studies have been done using the fixed routing between every pair of nodes [35],
[9][20][27]. If any node or edge fails, the route that passes through that node or edge become
unusable. However, communication between two nodes is still possible by sending a message

along a sequence of survival routes which do not have faulty node or edge.

Ramamoorthy and Ma [37] have discussed about the problems to find the optimally fault-tolerant
reconfiguration strategies without any repair in the failed modules and presented a stochastic
model and constructed a polynomial-time algorithm for finding optimal reconfiguration
strategies which can be very useful in case of long life systems and systems that are maintained

periodically (e.g. unmanned spacecraft).

Sengupta et al. {46], have presented a regular digraph topology of interconnections between the
nodes of a network which is optimally fault-tolerant and the message routing delay is very small
unless the number of faulty nodes reaches its optimal value. This topology is similar to the
topology proposed by Pradhan [36]. The difference is that it uses unidirectional links where as in
Pradhan [36], bidirectional links are used. The topology proposed in Pradhan [36] is not always

optimally fault-tolerant.

Broder et al. [9] have constructed an efficient fault-tolerant routing based on “product route
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graph” from two or more constituent “route graphs” and an upper bound of the diameter of the
associated survival route graph was calculated. In [35], an efficient routing is defined based on
the concept of concentrator nodes, a set of nodes having some specific properties. They defined
several routing functions through concentrator nodes and have shown that if the number of
concentrator nodes is enough then p can be defined such that the diameter of R(G, p)/F is not

greater than 4 where F denotes node and edge faults.

Manabe et al. [27] have shown the sufficient condition for which p could be defined such that the
diameter of R(G, p)/F will not exceed 6. In [19], it is shown that Kautz and De Bruijn digraphs
are good fault-tolerant networks as the diameter of their survival route graphs is two. They have

used a minimal length routing.

Sengupta and Elfe in [45] have used the ideas of concentrator nodes for digraphs and defined an
efficient routing for which the diameter of the survival route graph will not exceed 3. They have
also proved that for all digraph of n nodes if the maximum degree is not more than 0.6n'” then,

the concentrator nodes and therefore the routing will always exist.

Dowd [13] introduced a shared-channel, multihop system based on the binary hypercube
topology which improves performance and reduces complexity. In this network, each node has
p transmitters and p receivers and the total number of nodes. All of the logical links on a
common dimensional axis of the hyperbola share a unique wavelength. This network is highly
fault-tolerant and cost-effective. This approach provides more efficient resource allocation than
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employing a large number of point-to-point channels with large resources to support high traffic.

In [2], Bandyopadhyay and Sengupta have proposed two schemes for designing fault tolerant
WDM networks based on survival route graph and the idea of concentrator nodes introduced in
{35]. They have employed De Bruijn graph as a physical topology for both schemes. One scheme
uses full wavelength conversion while the other uses limited wavelength conversion. The
proposed schemes require wavelength conversions only at few nodes of the network, where the
fault-tolerant scheme proposed in [16] requires wavelength conversion at each node. Another
advantage of this scheme is it can be used in multi hop network with little modification. Gerstel

et al. [16] have used ring as a physical topology so their scheme can handle a single fault.
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Chapter 3

Design of fault-tolerant WDM network

3.1 Introduction

Our fault-tolerant schemes are basically fault avoidance schemes. A good fault avoidance can be
achieved by designing the system properly according to the probability of faults. Our focus is on
the design of optimized networks in which the rerouting scheme to avoid fault is as simple as
possible. In this fault-tolerant WDM network, all deflector nodes ( spare resources ) and end-
nodes are connected by using De Bruijn graph topology. We have proposed two schemes in this
thesis. We initially attempted the design of an all-optical network. However this scheme cannot
manage fault in most cases. Our second scheme is a hybrid network of single hop and multi hop
networks which can successfully manage faults in most cases. In the absence of fault, any two
nodes will communicate with each other using a single-hop scheme and there is no need of
electrical buffering (all-optical case). Whenever, there is any kind of fault in the network, two
nodes might not be able to communicate with each other in single-hop. In such cases, we require

multi-hops and then the network will no longer be an all-optical.

Both of our schemes are based on fixed routing using the notion of a survival route graphs. In a

network when a node or link fails, all of the routes that go through the failed components will
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become unusable and consequently certain pairs of nodes will be unable to communicate in their
normal routes. However, they can still communicate by sending the information along a
sequence of survival routes if the network is still connected. In graph model, a communication
from x to y is possible if there exists a route p(x, y) from x to y that does not involve any faulty
node or edge. However, in a wavelength routed optical network, a communication from x to y is
possible if there exists a route p(X, y) from x to y that does not involve any faulty node or edge
and there must be an end-to-end lightpath using a WDM channel for each edge in the route p(x,

y). In our schemes, we will show how we will create a new lightpath to replace a faulty lightpath.

In our schemes, we have used some special nodes (concentrator, predecessor, and successor
nodes) as spare resources. All end-nodes (not special nodes) are called ordinary nodes. A set of

nodes that satisfy the following conditions are called concentrator nodes [45].

. There is no edge from one concentrator node to another concentrator node.

. No two concentrator nodes can have the same predecessor node.

. No two concentrator nodes can have the same successor node.

. The predecessor of one concentrator node can not be the successor of another

concentrator node.

If a node has an edge to a concentrator node, then the node is called the predecessor node of that
concentrator node and if the concentrator node has an to a node, then the node is called the
successor node of that concentrator node. A concentrator node can have a fixed number of
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predecessor and successor nodes depending on the number of edges of the networks. All special

nodes are called deflector nodes. It will be clear later why we call them as deflector nodes.

It can be easily shown, if we choose ii----i as the i concentrator node in a network of d* nodes,
where d represents the number of edges, k represents the number of digits and k > 2, all
properties of a concentrator node are satisfied. In this case the predecessor nodes will be ji----i

for some j = i and the successor nodes will be ii----j for some j = i.

We have used a random number generator to simulate edge fault in randomly chosen edges in the
network to validate the fault tolerant mechanisms of the system and obtained statistics on

different parameters.

3.2 Scheme 1

We will discuss about our first scheme for optical networks where the physical topology for the
communication is a De Bruijn graph of N = d* nodes. To test our scheme, we have designed a
single hop wavelength routed network and used the idea of survival route graphs for fault

avoidance in wavelength routed networks.
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3.2.1 Network topology - De Bruijn graph

We have employed the De Bruijn graph architecture since in this architecture, for a given
concentrator node, all the node disjoint paths from the source to the predecessor nodes and all the
node disjoint paths from the successor nodes to the destination can be defined very easily.
Besides this, it inherently allows a number of alternative routes for communication and its
survival route graph has a very small diameter, the upper limit of the number of routes to be
traversed in any communication between two fault-free nodes, to avoid signal attenuation and
network blocking. In this scheme, all the paths for every source-destination pair are constant
length paths which reduces the signal dynamics at the receiver and simplifies the receiver

implementation [29].

3.2.2 Deflector nodes of the networks

In our scheme, optical networks consist of N = d* nodes, where d represents the number edges
and k represents the number of digits. Out of N, n nodes are end-nodes and the rest are deflector
nodes (special nodes). The number of deflector nodes depends on the network size i.e., number
of nodes (end-nodes) and links. End nodes are connected to optical routers and can be source or
destination. Deflector nodes contain only optical routers and are used to replace a faulty
lightpath. Deflector nodes can be predecessor nodes, concentrator nodes, or successor nodes. If

networks contain C concentrator nodes and for each concentrator node, there are d predecessor
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nodes and d successor nodes, the number of deflector nodes will be C * (2d + 1) and the number

of end-nodes will be N - C * (2d + 1).

In this scheme, the connectivity of a digraph G is k -1 and the number of concentrator node is k.
Since the maximum number of faulty edge can not exceed k -2, it is guaranteed that there must

be at least two concentrator nodes which are not faulty.

3.2.3 Routes for lightpath segments

To determine the routes for lightpath segments, we have to consider the following cases:

. If x is an end node and y is a deflector node, we have to define p(x,y) only if y is the
predecessor of some concentrator node c;. In this case, p(x,y) is the route which is node
disjoint from all other routes p(x,p) where p is any predecessor node of the same
concentrator nodec; p # y.

. If x and y both are deflector nodes, we have to define p(x,y) only if x is the predecessor
of a concentrator node m; and y is a successor of the same concentrator node. In this case,
p(x,y) is the route x —c, —Y.

. If x is a deflector node and y is an end-node, we have to define p(x,y) only if x is the
successor of some concentrator node c;. In this case, p(x,y) is the route which is node

disjoint from all other routes p(s,y) where s is any successor node of ¢;, s # y.
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3.2.4 Wavelength Allocation for lightpath segments

For the first and the third cases, for

each route p(x,y) we assign one

' e
75

P

lightpath segment per route to make
sure that no two lightpath segments

share the same wavelength if they share

X >< Y the same edge. In the second case, for
each route we assign as many li ath
Fig. 6: New route through P and S & y lightp
segments as possible depending on the
maximum number of wavelengths per
fiber and the wavelengths of lightpaths already assigned to the edges x — ¢, and ¢, — y due to

the existing lightpaths or lightpath segments. When there is no fault in the network, all

wavelengths in this route are marked as “unassigned”.

3.2.5 Creation of Lightpaths

To create the lightpaths, the steps are as follows:

Step i) We determine the lightpaths between every pair of ordinary nodes.
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Step ii) We determine lightpath segments

« from all ordinary nodes to all predecessor nodes.

« from the j" predecessor node of the concentrator node ii----i to the k™ successor node of the
same concentrator node for all j, k, and i where 0 < i, j, k <d.

« from all successor nodes to all ordinary nodes.

Step iii) We set the optical routers according to the lightpaths created in step i and the lightpath

segments created in step ii. However, the lightpath segment created in step ii will not be used as

long as there is no fault in the network.

In our first scheme, we create one lightpath segment for every (end node, deflector node) or
(deflector node, end node) combination in step 1i. For each (deflector node, deflector node)
combination, we create as many lightpath segments as permitted by the maximum number of

wavelengths per fiber{2].

If a node or an edge in a network becomes faulty, a number of lightpaths will be unusable. If
there are two unusable paths from x to yl and y2, we cannot use the same predecessor node for
the both communications (one from x to y1 and another from x to y2). Since there is one
lightpath segment from x to the predecessor node with a specific wavelength, x will use that
wavelength for all communication from x to y1. Therefore, once we select one predecessor node
for a communication from x to yl, we can not use the same predecessor node for the
communication from x to y2. This follows from the fact that a wavelength routed network does
not allow two simultaneous communications to share the same WDM channel. Similarly, we
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cannot use the same successor node for the communications from different sources (x1 and x2) to
the same destination node y. If an end node x(or y) is the source(or destination) of two unusable
lightpaths, we have to use a distinct node as the predecessor(or successor) node. However, our
scheme allows a number of lightpath segments from a predecessor node to a successor node
through a concentrator node. For a given source-destination pair, the number of lightpath

segments is three in case of faults.

3.2.6 Adaptive rerouting scheme

If the normal route between a pair of nodes X and Y becomes faulty (fig. 6), we have to find out

a successor node S and predecessor node P of some concentrator node C, which is not faulty such

that

. there is an unassigned fault-free lightpath segment from X to P with wavelength w1
. there is an unassigned lightpath segment from P to S with wavelength w2

. there is an unassigned fault-free lightpath segment from S to Y with wavelength w3.

It requires two wavelength conversions: one from w1 to w2 at P and another from w2 to w3 at S.
If we are successful in our search for to the above three paths, we can replace the faulty path

from X to Y by a composite lightpath consisting of three lightpath segments as follows:
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We will mark the above lightpath segments as “assigned”. If we are not successful, we have to
try with other predecessor nodes and successor nodes of all concentrator nodes until we can
replace the faulty path. If we can replace all the faulty paths in the network, we conclude that we
can handle the fault. If C > d -2, it is guaranteed that at least one concentrator node is fault-free.
Since all the lightpaths from X to all (d -1) predecessor nodes of a concentrator node are node-
disjoint paths and all the lightpaths from all (d -1) the successor nodes of a concentrator node to
Y are node-disjoint paths, it is always possible to find fault-free p(X,P) and p(S,Y) routes.
However, it might happen that all the lightpath segments to/from the deflector nodes have been
already assigned to replace another faulty path. In this situation, our method will fail to provide

an alternative lightpath for the faulty lightpath from X to Y.

3.2.7 Fault injection

A major problem in the development of fault-tolerant systems is the accurate determination of
the dependability of the system. Performance of a system can be evaluated by employing
benchmark programs. However, the degree of fault-tolerance and reliability of a system cannot

be evaluated in this way, since in general, we can not allow a system to run for many years to
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observe their behavior during faults. The generally acceptable solution to this problem is to inject
the effect of faults in a simulation model or a prototype implementation, and to observe the

behavior of the system under the injected faults. We have employed random number generator

to simulate edge fault in randomly chosen edges. If any faulty node is special or any faulty edge

is coming out from a special node, then all the lightpaths passing through that faulty node or

faulty edge will be deleted.

3.2.8 Why scheme 1 will fail in most cases

Let us consider a De Bruijn graph with 4 * nodes (64 nodes) where the concentrator nodes are
000, 111, 222, and 333. The predecessor nodes of 000 are 100, 200, and 300. The successor
nodes of 000 are 001, 002, and 003. Similarly, for other concentrator nodes, there are specific
predecessor nodes and successor nodes. For our simulation, let us pick one edge 021 —212 as
faulty edge. Now, we have to determine which source-destination pairs use this edge as an
intermediate edge. According to Ajmone Marshan [28], the edge 021 —212 appears in the

following lightpaths:

Source node Destination node
021 2%*
*02 12*
**0 ] 212

43



* can represent 0,1,2,0r 3.

Each of these source-destination pairs represent 4 x 4 values since * can have 4 different values.
Three different source-destination pairs represents 48 values. In general, in such cases, the three
pairs may not be 3 x16 = 48 values because the same node may appear twice. We have to attempt
to replace all these 48 lightpaths. If we succeed in doing that we have managed to handle the

faults, otherwise, we have failed to manage the faults.

As an example, let us consider one lightpath from the set source *02 and destination 12*. We can
get this by substituting any valid value for a *. One such source is 202 and the destination is 121.
To replace this faulty path, an alternate path is shown in fig 7. The normal path is 202 —021 —

212 — 121 which cannot be used since the edge 021 — 212 is faulty. In this diagram concentrator

node is 111 and its predecessor node is 211 and successor node is 113.

This alternate path is valid if

@ the path 202 —022 — 221 — 211 contains no faulty edge.

@ this lightpath has not been already used to take care of some other faulty lightpath since there
is only one such lightpath in the network.

® the path 113 —131 — 312 — 121 contains no faulty edge.

@ this lightpath has not been already used to take care of some other fauity lightpath since there

is only one such lightpath in the network.



® the path 211 —111 — 113 contains no faulty edge.

® the number of lightpath does not exceed a specific value.

If we succeed we will attempt to replace the next faulty lightpath, else we have to try the
predecessor-successor pair for 111. If we try and fail for all the pairs, we try the next
concentrator node 222. If we fail with all concentrator nodes, we will say that we could not

handle all faults.

If we use our scheme with De Bruijn graph, the number of non-faulty lightpaths from a given
node to all the predecessor nodes in the network is d(d -1) and the number of faulty lightpath is
d *-'. Since kd %! > d(d -1) except for trivial values of k, the number of non-faulty lightpaths is
always much less than the faulty lightpaths (48) since the number of communication from an
ordinary node (or successor node) to a predecessor node (or ordinary node) is always limited to

one. For this reason, in most cases our first scheme will fail to provide non-faulty alternate path.
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Concentrator

v
\
Predecessor 211> 111 > 113 Successor
« ¢ —A
|
221 131
A b
022 312

A <
202 > 021 > 212 - 121

Fig. 7: An alternate Path for source-destination (202, 121)

3.3 Scheme 2

Our first fault-avoidance scheme is a single-hop network (all-optical) and there is no need of
electrical buffering. However, our second approach is a hybrid system of single-hop and
multihop systems. In the absence of fault, any two nodes will communicate with each other in a
single-hop. Whenever, there is any kind of fault in the network, two nodes might not be able to
communicate with each other in single-hop. When it is not possibie to establish a lightpath
between two nodes, they must use a sequence of lightpaths through intermediate nodes to
communicate. At each intermediate node, the information coming in on a lightpath must be
converted to electrical form, switched electrically and then converted back to optical form and

ultimately reach their destinations by using different lightpaths. In other words, in the case of
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faults it might require multi-hopping and electrical buffering, and then the network will no longer
be an all-optical. The disadvantage of this type of network is its lower throughput. However,
since in this scheme, there is no restriction of the maximum number of lightpaths passing

through different edges, it can successfully manage multiple failures in most cases.

It will be clear if we give an example. Let us consider a De Bruijn graph of 16 ( 2 *) nodes
where the concentrator nodes are 1111 and 0000. The predecessor node of 1111 (0000 ) is 0111
(1000) and the successor node of 1111 (0000) is 1110 ( 0001). According to Ajmone
Marshan[28], the following source and destination pairs will use the randomly generated faulty

edge 0001 —0011 as an intermediate edge.

Source node Destination node
0001 | s
*000 11%*
' **00 011*
i ***0 0001

* represents O or 1.

As an example, let us consider one lightpath from the set source **00 and destination 011*. We
can get this by substituting any valid value for a *. One such source is 0100 and the destination is
0110. To replace this faulty path, an alternate path is shown in fig 8. The normal path is 0100
—1000 — 0001 — 0011 —0110 which cannot be used since the edge 0001 — 0011 is faulty.

Another such source is 1100 and the destination is 0110. To replace this faulty path, an alternate
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Concentrator

Predecessor 1000 > OSOO -» 0001 Successor

A y
0100 0010
A 3
0010 0101
A 4
1001 1011
A <

0100 - 1000 >0001> 0011> 0110

Fig. 8: An alternate Path for source-destination (0100, 0110)

path is shown in fig 9. The normal path is 1100 —1000 — 0001 — 0011 —0110 which cannot be
used since the edge 0001 — 0011 is faulty. Both alternate paths are simultaneously sharing the
same lightpath segment 0001 —0010 — 0101 — 1011 —0110. Our first scheme cannot handle
this situation since it does not allow two or more communications to concurrently use the same
lightpath segment. However, our second scheme can successfully provide alternate path in this
situation as it supports the fact that two or more communications can concurrently share the same

lightpath segment.
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Concentrator

v
Predecessor 1000 > OéOO > 000] Successor
47 4 "
/ <
0100 0010
1 <
0010 01\01
A <
1001 1011

A <

1100 > 1000 >»0001> 0011-> 0110

Fig. 9: An alternate Path for source-destination (1100, 0110)

3.3.1 Alternate paths using our second scheme

Whenever there is a faulty edge in the networks, some paths that involve this edge will become
unusable. Therefore alternate non-faulty paths are required in order to continue communications
in case of faults. In Tablel, alternate path passing through special nodes ( such as, predecessor,
concentrator, and successor nodes) for each affected path is provided. In this case, the size of the

network is 27 ( 3 *) and the faulty edges are 200 —~001 and 202 — 020.
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Table 1. Alternate paths passing through special nodes in a network of size 27 (3°) and faulty
edges 200 —»001 and 202 — 020.

Serial number of Source Predecessor Successor Destination
affected paths node node node node
1 6 8 25 3
2 15 8 25 3
3 6 9 1 5
4 15 9 2 5
5 20 9 1 3
6 20 17 24 6
7 20 18 1 7
8 20 22 12 5
9 6 17 25 19
10 15 17 25 19
11 6 22 14 20
12 15 22 12 20
13 11 4 12 6
14 5 4 12 6
15 _ 23 4 12 6
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3.3.2 Few cases when our second scheme will fail

If we can provide alternate path for each path that is affected by the fault, then only we can say
our scheme is successful. Each alternate path is a composite path of three paths: path from the
source to a predecessor, path from the predecessor to a successor, and path from the successor to
the destination. If one of them is faulty, the composite path can not be used as an alternate path to
replace the faulty path. In few cases, our second scheme will not be able to provide alternate path
for all communications that are affected. In Table2, we have shown a special case when our

second scheme will fail to provide alternate path for a particular set of faults in the network.

In this case, the network is a De Bruijn graph of 32 ( 2 3 ) nodes where the concentrator nodes are
11111 and 00000. The predecessor node of 11111 ( 00000) is 01111 ( 10000) and the successor
node of 11111 (00000) is 11110 ( 00001). According to Ajmone Marshan [28], the following
source and destination pairs will use the randomly generated faulty edge 00011 —+00111 as an

intermediate edge.

Source node Destination node
00011 | S
*0001 11%**
**000 111**
***00 Oo111*
O 00111

* represents O or 1.
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0(000000
16(10000) (. ) 1(00001)

8(01000) 28(11100)

Fig. 10: Invalid alternate pathl

A number of lightpaths will become unusable due to the fault, however, we have to replace a
subset of the lightpaths where source (or destination) is an ordinary node. Whenever our scheme
can not provide alternate path for a single faulty path it will report with an appropriate message
and it will not continue checking for alternate paths for the remaining fauity paths. In this
example, our scheme can successfully manage first nineteen faulty lightpaths, however, in the
following case where source is 8 (01000) and destination is 28 ( 11100) our scheme can not

provide alternate path. Let us investigate why it will fail to provide alternate path.
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15(01111) 31(11&“ 1) _30(11110)

8(01000) 28(11100)
Fig. 11: Invalid alternate path2

The probable alternate paths can be :

. 01000(8) —10000(16) ~00001(1) —11100(28) (shown in fig. 10).

. 01000(8) —»01111(15) =11110(30) »11100(28) (shown in fig. 11).

However, the first alternate path (shown in fig 10) will not be valid since the lightpath segment
from the successor node 1(00001) to the destination 28(11100) uses faulty edge. The second
alternate path ( shown in fig 11) will also be invalid since the lightpath segment from the source

8 (01000) to the predecessor node 15 (01111) uses faulty edge.

In this case, the number of concentrator node is two and for each concentrator node, there is only
one predecessor and one successor node. Therefore it is possible that a situation can occur when
there is no non-faulty lightpath segment from the source to the predecessor node or from the

successor node to destination node to provide an alternate path.
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Table 2. Alternate paths passing through special nodes in a network of size 32 (25) and faulty
edge 00011 —00111.

Serial number of  Source Predecessor Successor Destination
affected paths node node node node

1 3 15 30 24
2 3 15 30 20
3 3 15 30 28
4 3 15 30 18
5 3 15 30 26
6 3 15 30 22
7 3 15 30 17
8 3 15 30 25
9 3 15 30 21
10 3 15 30 29
11 3 15 30 19
12 3 15 30 27
13 3 15 30 23
14 17 15 30 24
15 17 15 30 28
16 17 15 30 26
17 17 15 30 25
18 17 15 30 29
19 17 15 30 27
20 8 WE CAN NOT FIND AN 28

ALTERNATE PATH




3.4 Evaluation of our second scheme

We have tested our scheme by randomly generating maximum number of faulty edges for a
particular network assuming the network is still connected. We have observed that in a network
where the number of edges is greater than two, our scheme can successfully provide alternate
path in case of faults. In thousand cases, we did not encounter a single miss. By performing chi-

square test we can determine the significance of success rate.

The formula for chi-square is:
chi-square (X?) = sum of [ (O-E)?/ E ]
where O = observed frequency

E = expected frequency

Here, null hypothesis is that there will be no difference in the preference for success and failure.

Thus, the observed and expected frequencies are as follows:

Observed frequency Expected frequency

Success 1000 500
failure 0 500

The calculated chi-square value, obtained from the above formula, is 1000. In order to determine

statistical significance of this chi-square value, we consulted a table for critical values. The
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chi-square critical value for significance at the 0.001 probability level is 10.828 for one degree of

freedom; therefore, the frequency with which success occurs was statistically significant.

However, our scheme can fail to provide alternate path in presence of failure when the number of
edges is two. In this case, the number of concentrator node is two and for each concentrator node,
there is only one predecessor and one successor node. Therefore it is possible that a situation can
occur when there is no non-faulty lightpath segment from the source to a predecessor node or

from a successor node to the destination node to provide an alternate path.
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3.5 Difference between scheme 1 and scheme 2.

System Single hop. Hybrid system of single hop
and multi hop.
Type All-optical. Not all-optical.
Electronic It does not need electronic It needs electronic buffering in
Buffering buffering. case of faults.
Throughput High. Low (in some cases).
Communication | The number of The number of communication
communication from from a given ordinary (or
ordinary (or successor) to successor) to given predecessor
predecessor (or ordinary) (or ordinary) node is not
node is limited tol. limited.
Bottlenecks - It can never cause It can cause bottlenecks- the
Uniform bottlenecks in the networks. | communications through
Distribution different edges are distributed
as uniformly as possible to
avoid it.
Success In very few cases, it will In most cases, it will provide
provide non-faulty alternate | non-faulty alternate paths.
| paths.
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Chapter 4

Results and Statistics
4.1 Results

4.1.1 Table3 : Distribution of lightpaths

In the absence of faults in a network, any two nodes will communicate directly (in a single hop).
However, when there is a fault in the network , they will communicate using 3 hops through the
special nodes ( predecessor, concentrator, and successor nodes). The number of affected paths
will be different depending on the location of the fault, the number of the faults and the size of
the network. Therefore, the number of communications passing through the different logical
edges (such as, source to predecessor edge, predecessor to successor edge, successor to
destination edge) are different for different runs. In Table3, we have divided this number into
three groups and shown how many logical edges are belonged to each group. In some cases, the
maximum number of communications (load) on edges are very high, however very few
communications have used these edges which indicates that very few communications will be
affected by this high load. Besides this, the assumption that each node is equally likely to
communicate with all others is not true in reality. It is unlikely that all nodes are concurrently

communicating with all other nodes.
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Table 3A: The distribution of communications through different logical edges in a network of

size 27 (3%) and two randomly generated faulty edges.

Run Load (number of Source to Predecessor to Successor to
communications) predecessor edge successor edge destination edge
1 1-2 15 8 9
3-4 0 1 1
5-11 0 0 0
2 1-2 6 0 0
3-4 0 2 2
5-11 0 0 0
3 1-2 11 6 5
3-4 0 1 1
5-11 0 0 0
4 1-2 7 6 7
3-4 0 0 0
5-11 0 0 0
) 1-2 7 7 7
3-4 0 0 0
5-11 0 0 0
6 1-2 13 2 8
3-4 0 2 1
5-11 0 1 0
7 1-2 4 3 3
3-4 0 0 0
5-11 0 0 0o
8 1-2 17 4 11
3-4 0 4 0
5-11 0 0 0
9 1-2 3 3 3
3-4 0 0 0
5-11 0 0 0
10 1-2 9 2 8
3-4 0 2 0
5-11 0 0 0
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Table 3B: The distribution of communications through different logical edges in a network of
size 81 (3*) and two randomly generated faulty edges.

Run Load (number of Source to Predecessor to Successor to
communications) predecessor edge  successor edge destination edge

1 1-5 104 2 61
6-15 5 7 4

16 - 40 0 3 1
2 1-5 92 5 62
6-15 2 5 3

16 - 40 0 2 1
3 1-5 103 0 68
6-15 5 10 4

16 - 40 0 2 1
4 1-5 67 4 59
6-15 5 6 0

16 - 40 0 2 1
5 1-5 78 2 76
6-15 3 8 3

16 - 40 0 2 0

6 1-5 107 2 75
6-15 5 5 5

16 - 40 0 5 1
7 1-5 104 4 44
6-15 0 6 4

16 - 40 0 2 0

8 1-5 106 1 73
6-15 6 7 4

16 - 40 0 4 1
9 1-5 92 5 39
6-15 0 4 5

16 - 40 0 3 1
10 1-5 122 4 64
6-15 3 4 4

16 - 40 0 4 1
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Table 3C: The distribution of communications through different logical edges in a network of

size 64 (4°) and two randomly generated faulty edges.

Run Load (number of Source to Predecessor to Successor to
communications) predecessor edge  successor edge destination edge

1 1-2 9 8 8
3-5 0 0 0
6-11 0 0 0
2 1-2 8 8 8
3-5 0 0 0
6-11 0 0 0
3 1-2 32 17 25
3-5 0 3 2
6-11 0 0 0
4 1-2 16 14 16
3-5 0 0 0
6-11 0 0 0
5 1-2 9 0 0
3-5 0 2 2
6-11 0 0 0
6 1-2 0 0 0
3-5 0 0 0
6-11 0 0 0
7 1-2 18 17 16
3-5 0 0 0
6-11 0 0 0
8 1-2 17 15 16
3-5 0 0 0
6-11 0 0 0
9 1-2 24 12 16
3-5 0 1 2
6-11 0 1 0
10 1-2 18 5 5
3-5 0 3 3
6-11 0 0 0
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Table 3D: The distribution of communications through different logical edges in a network of
size 625 (5*) and three randomly generated faulty edges.

Run Load (number of Source to Predecessor to Successor to
communications) predecessor edge  successor edge destination edge

1 1-5 833 19 562
6 -60 32 58 45

61 -120 0 3 0
2 1-5 746 6 590
6 - 60 46 71 41

61-120 0 3 0
3 1-5 749 31 416
6 -60 32 42 40

61-120 0 3 0
4 1-5 695 16 596
6-60 47 61 29

61-120 0 3 0
5 1-5 973 2 497
6 -60 48 74 60

61-120 0 4 0
6 1-5 722 11 482
6 -60 31 61 39

61 -120 0 4 0
7 1-5 981 0 635
6 - 60 48 76 67

61-120 0 4 0
8 1-5 945 12 629
6 -60 48 64 46

61-120 0 4 0
9 1-5 877 16 649
6 - 60 48 60 38

61-120 0 4 0
10 1-5 933 10 582
6 - 60 48 66 54

61 -120 0 4 0




4.1.2 Table 4 : Maximum number of communications through different

edges.

In Table 4, we have shown the maximum number of communications passing through each
logical edge for different runs. It can be useful to calculate the maximum delay we can expect.
The number of communications may be as high as one hundred in some cases. However, this the
worst case scenario in terms of queue length where we have assumed that each node is
concurrently communicating with other nodes. In an actual network, any node can concurrently
communicate only with a limited number of nodes and therefore the value of the maximum
number of communications through different edges would be much less than what we observed
in this thesis. Therefore in real life, the delay would be much less than what we can predict from

this thesis.

63



Table 4A: Maximum number of communications through different edges in a network of size 27

(3%) and two randomly generated faulty edges.

Maximum number of communications through

Run Source to predecessor  Predecessor to successor  Successor to destination
edge edge edge
1 2 3 3
2 1 3 3
3 2 4 3
4 1 2 1
5 1 1 1
6 2 7 4
7 1 2 2
8 2 4 4
9 1 1 1
10 2 5 3
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Table 4B: Maximum number of communications through different edges in a network of size 81

(3*) and two randomly generated faulty edges.

Number of communications through

Run Source to predecessor Predecessor to successor Successor to
edge edge destination edge
1 9 27 22
2 6 34 16
3 6 35 22
4 6 30 20
5 6 21 13
6 6 37 18
7 6 25 14
8 7 27 19
9 6 33 18
10 6 40 18
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Table 4C: Maximum number of communications through different edges in a network of size

125 (5°) and three randomly generated faulty edges.

Number of communications through

Run Source to predecessor Predecessor to successor Successor to destination
edge edge edge
1 1 14 8
2 2 13 6
3 1 7 6
4 2 11 5
5 1 12 6
6 2 11 6
7 2 8 6
8 1 14 8
9 1 9 9
10 ___2 7 6
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Table 4D: Maximum number of communications through different edges in a network of size

256 (4*) and two randomly generated faulty edges.

Number of communications through

Run Source to predecessor  Predecessor to successor  Successor to destination
edge edge edge
1 7 39 29
2 8 29 23
3 7 53 29
4 7 56 27
5 7 40 23
6 7 54 24
7 7 28 23
8 7 30 24
9 7 39 28
10 7 60 29
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4.2 SYSTAT

4.2.1 Organizing our data for analysis

The first task for analyzing data is to present the data in a form acceptable to SYSTAT for
processing. SYSTAT uses data organized in rows and columns. The rows are called cases, and
the columns are called variables. When data are arranged in rows and columns like this and is

stored in a file, it is called a ‘cases-by variables’ or ‘rectangular data file.’

SYSTAT accepts numerical and categorical data. The numbers stored in numeric variables can
have up to 15 digits. We can use a negative sign (-) for negative numbers. Categorical data stored
in character variables can have up tol2 characters and can include alphabets and other
symbols(e.g., $)&*/( ). If we include numbers within character values they will be treated as
characters. Also, upper and lower case character values are differentiated (e.g., JUNIOR is not

the same as junior).

We must assign a unique name for each variable. Variable names may contain up to eight
characters or numbers, and must begin with a letter. The names of character variables must end
with a dollar sign; the dollar sign does not count as one of the eight letters. Variable names,
unlike character values, are not case sensitive. Once we have entered a variable name, we may

change it, but we cannot change its type from character to numeric or vice versa. If we forget to
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put a $ sign at the end of a character variable name, we must type the correct name as a new

variable in a new column and later delete the incorrect variable.

When a numeric data is missing, we have to enter a period (.) to flag the position where the value
is missing. When a character data is missing enter a blank space surrounded by single or double
quotation marks. These quotation marks will not show up in the spread sheet. Note that

arithmetic involving missing values propagates missing values.

4.3 Statistics

4.3.1 Frequency Distributions and Histograms

Network size 81 (3 *), number of randomly generated faulty edges = 2.
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In general, a frequency distribution can represent the variable x over the entire population or over
a sample (subset) of the population. When the distribution represents the entire population, such
characteristics are called parameters. When the distribution represents a sample of the

population, such characteristics are called statistics.

A histogram is simply a bar graph of a frequency distribution. For each class, a rectangular bar is
drawn whose base is the class (on the horizontal axis) and whose height is the frequency (or

relative frequency).

Plotting the Data

We have plotted histograms of the distribution of the upper limit of the number of
communications through different edges (Figs. 12-14). Fig 12 shows a right skewed distribution
of the upper limit of the communications through the source to predecessor edge for one
thousand data points. It is observed that in almost 600 out of 1000 cases, the upper limit of the
number of communications is very close to 6. The distribution is unimodal having a single peak
at 6 so that the frequencies at first increase and then decrease. The mean of this distribution is
6.627 which is a good measure of central tendency for roughly symmetric distributions.
However, it can be misleading in skewed distribution as the mean can be greatly influenced by
the extreme scores [55]. Therefore, other measures of central tendency such as median may be

more informative. The median of the distribution is 6 which indicates that the one half of the
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scores occurred above this value and one half of the scores occurred below this value. Median is
less sensitive to the extreme scores. The variance of the data points is 3.493 which gives the
spread out of the distribution. The standard deviation is 1.869 which implies that the scores of
the distributions are not far from the mean. As the score in a distribution becomes more
heterogeneous, more “spread out” and different, the value of the standard deviation becomes

larger.

Fig. 13 shows the distribution of the upper limit of the number of communications through
predecessor to successor edge in one thousand cases. Except an outlier, the distribution is normal
where roughly two-third of the scores lie within a distance of one standard deviation of the mean,
95% lie within two standard deviations of the mean [54]. For a normal distribution, the

percentage of results that are expected with certain limits can be predicted.

Fig. 14 shows a left skewed distribution of the upper limit of the number of communications
through successor to destination edge in one thousand cases. The mean of this distribution is
17.828 and the standard deviation is 4.558 which shows that the scores of the distributions are

not far from the mean.
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4.3.2 Statistical analysis

Network size 81 (3 *), number of randomly generated faulty edges = 2.

Histogram 1 Histogram 2  Histogram 3

N of cases 1000 1000 1000

Minimum 0.000 0.000 0.000
Maximum 22.000 49.000 44.000
Range 22.000 49.000 44.000
Median 6.000 30.000 18.000
Mean 6.627 29.674 17.828
Standard Dev 1.869 7.535 4.558
Variance 3.493 56.783 20.777

Skewness 2.937 -0.162 -0.198
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Chapter 5

Critical summary and Future directions

5.1 Summary of new results

. Extensive theoretical work has been done on survival route graph. However, no one has
so far attempted to apply survival route graph in an optical network. This is the first
attempt to realize the applicability of survival route graph in fault-tolerant optical
networks.

. In this thesis, initially we have attempted to design a completely all-optical single hop
fault-tolerant network. The number of communications passing through the source to
predecessor and successor to destination edges is limited to one in our scheme. In this
situation, the number of affected lightpaths becomes greater than the number of
unaffected lightpaths. As a result, our first scheme was successful to provide non-faulty
lightpaths in a few cases.

. Then we have proposed another scheme which is a hybrid network of single hop and
multi hop. In this scheme, two nodes will communicate in a single hop (all-optical) in
absence of fault. Whenever, there is any kind of fault in the network, two nodes might not
be able to communicate with each other in single-hop, it might require multi-hopping and

then the network will no longer be an all-optical. This scheme will be capable of
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providing non-faulty alternate path in case of fault in most cases and in very few cases it
will fail since there is no restriction on load. It is fault-tolerant against multiple faults.
However, since this scheme is no longer all-optical, throughput will be lower.

Since there is no restriction on the number of communications (load) through logical
edges in this scheme, high demand on certain links can cause overloading, with particular
paths or nodes being heavily used while others remain under-utilized. Such a network is
said to be unbalanced and can cause intolerable restoration delay for some
communications. It can create bottlenecks in the network. Our adaptive rerouting
algorithm introduces additional computational requirements to distribute the load
uniformly throughout the network to improve this delay. However, the advantage of this
approach is that we need to uniformly distribute the communications only once when any
edge in the network happens to be faulty.

If we have some source destination pairs such that communication between them is
critically important, we can ensure that such a pair can always communicate with each
other even at the expense of disallowing communication between some other source
destination pairs. In the scheme outlined in this thesis, we are taking each source
destination pair that cannot communicate using their normal path due to faults and are
replacing each faulty path by a fault free path. In a situation where we fail to provide a
fault-free path for even a single faulty path, we have concluded that the scheme fails. In a
variation of this scheme, it is quite possible to modify the scheme so that certain source
destination pairs are guaranteed to be able to communicate even if some other source
destination pairs may no longer be allowed to communicate. This would involve
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assigning some priorities to different source destination pairs so that we can guarantee
that “important” source destination pairs can communicate at the risk of losing the ability
of some other “unimportant” source destination pairs.

We note that our scheme assumes that some external agent is monitoring the network at
intervals of time and that, each time the network has some new faults, our scheme is used
to determine alternative paths for each faulty path in the entire network. Every time the
scheme is used, we are allotting alternative paths for each faulty path in the network.
Therefore it is quite possible that the fault avoidance scheme used at a given point in time
may be completely reformulated to handle a new set of faults at a subsequent point in
time. The time interval at which such reformulation takes place depends on the network
manager who decides how frequently network testing will take place.

From different tables in the results section it is clear that when the number of faulty edges
is very high, the number of communications through different edges will also be high.
The communications that will use the same logical edge have to wait until the earlier
communications have already completed their journey through the logical edge. As the
number of communications increases, so does the queue length. In some cases, queue
length can reach up to one hundred.

In this thesis we have assumed that all nodes are equally likely to communicate with
other nodes. However, in real time it is very unlikely that a node is concurrently
communicating with all other nodes. Therefore in this thesis we have considered the

worst case scenario in terms of queue length.
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5.2 Conclusions

. Originally we planed to design an all-optical fault-tolerant network. We proposed that
scheme and wrote the code for that in C, however when we tested that scheme by
randomly generating faults, it failed in most cases.

. Our second scheme, hybrid system of single hop and multi hop system is fault-tolerant
against multiple failures and can manage faults in most cases.

. Since in this scheme there is no restriction on the number of communications (load)
through each logical edge, high demand on certain links can cause intolerable restoration
delay for some communications. To impreve this delay, we have added extra code in our
rerouting algorithm to distribute the load throughout the nctwork as uniformly as
possible.

. From different tables we observed that for some communications, the maximum number
of queue lengths can be very high. However, we should remember this number will be
much less in real network since there each node will concurrently communicate with a
limited number of nodes. Therefore we do not need to provide alternate paths for all
communications that are affected by the faults.

. However, not all networks and services will be benefitted from this approach. Our
scheme will be very useful for networks and services that require higher level of

survivability but can endure delay due to rerouting.
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5.3 Future directions

We have proposed two schemes : we have investigated our first scheme and it did not work out
the way we expected. We have proposed another scheme and did a preliminary study. We have
measured the queue length of an alternate path in case of faults. However, we could not estimate
the average communication time due to lack of time. One could construct a simulator and study

simulation.

In our scheme, we have assumed that each source node is equally likely to communicate with
each destination node. However, in reality, different source nodes have different probabilities of
communications with different destination nodes. Another limitation of our scheme is it does not
work for any number of nodes and it works only for integer multiple of nodes. One can design a

network that will work for any number of nodes.

Other important issues in rerouting, such as fault detection, fault diagnosis, and fault recovery,

are not addressed in this thesis. A system can not be fully fault-tolerant without fault detection,

fault diagnosis, and fault recovery.

78



Appendix A

C CODE FOR FAULT-TOLERANT OPTICAL NETWORK

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define NUM_NODES 27 /* This is d*k */

#define NUM_DIGITS 3 /* Thisisk */

#define NUM_EDGES 3 /* Thisisd */

#define NUM_BITS 4

#define NUM_FAULTY_EDGES 2 /* To be changed */
#define BIT MASK 15

static long table [32];
int first_time, Z =0, rprev =0;
int ordinary_to_pred_nodes_table[(NUM_NODES - NUM_EDGES*
(2*NUM_EDGES -1))*NUM_EDGES*(NUM_EDGES-1)][3],
succ_to_ordinary_nodes_table[(NUM_NODES - NUM_EDGES*
(2*NUM_EDGES -1))*NUM_EDGES*(NUM_EDGES-1)](3];

int pred_to_succ_nodes_table[NUM_EDGES*(NUM_EDGES-1)*(NUM_EDGES-1)][3],
faulty nodesINUM_FAULTY_EDGES],
faulty edges[NUM_FAULTY_EDGES],
ordinary_nodes[NUM_NODES - NUM_EDGES*(2*NUM_EDGES - 1)],
predecessor_nodes{NUM_EDGES*(NUM_EDGES-1)],
successor_nodes[NUM_EDGES*(NUM_EDGES-1)],
concentrator_nodesfNUM_EDGES};

/* This defines initial values in the network */
void initialise_network();
void update_single_path(int table[][3],

int size,

int source_node_number,

int destination_node_number);

unsigned long int suffix(unsigned long int node_id, int suffix_length,
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int num_digits_in_node id);

unsigned long int prefix(unsigned long int node_id, int prefix_length,
int num_digits_in_node_id);
unsigned long int convert_int_to_node_id( unsigned long int number,
int d);
void shift_stack_array(int stack_array[][20], int k);
void update_paths(int source_node_no,
int conc_node_no,
int pred_node_no,
int succ_node_no,
int destination_node_no);

unsigned long int convert_node_id_to_int(unsigned long int node _id,
int d, int mask);

int source_destination_are_ordinary(int source, int destination);
void determine_paths_passing_thru_faulty edge(int faulty_node_no,
int faulty _edge_no);

int identify predecessor _nodes(int digits[]);

int identify_concentrator_nodes(int digits(]);

int identify successor_nodes(int digits[]);

double randgen();

void init_rand_gen ();

void add_1(int stack_array[][20], int d, int 1);

int get_source_node_no(int stack_array[][20], int k);

int get_destination_node_no(int stack_array[][20], int k);

void process_if source_or_destination_is_special(int source,
int destination);

int look_up_path_table(int table[][3],
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int size,
int source_node_number,
int destination_node_number);

void delete_path(int table[][3], int size_of _table, int source,
int destination);

int available_pathl1( int source_node_no, int pred_node_no,
int conc_node_no);

int available_path2( int conc_node_no, int pred_node no,
int succ_node_no);

int available path3( int conc_node no,
int succ_node_no, int destination_node_no);

void find_alternate_path_for_faulty path(int source_node_no,
int destination_node_no);

int min_lightpath_no_in_path2(int pred_node);

/*
FUNCTION :identify_predecessor_nodes
PURPOSE : Checks whether the node is a predecessor or not.

PARAMETERS : digits[].
RETURN VALUE : If the node is a predecessor, the function will return 1, otherwise it
will return O.

int identify predecessor _nodes(int digits[])
{
inti, flag =1;
if (identify_concentrator_nodes(digits)) return O;
for (i = 1; i <NUM_DIGITS - 1; i++)
if (digits[i] != digits[i - 1]) flag = O;
return flag;

}

*/

/*
FUNCTION :identify_concentrator_nodes
PURPOSE : Checks whether the node is a concentrator or not.
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PARAMETERS : digits[].
RETURN VALUE : If the node is a concentrator, the function will return 1, otherwise it
will return 0.

*/

int identify concentrator_nodes(int digits[])
{
inti, flag=1;
for (1= 1; i < NUM_DIGITS; i++)
if (digits[i] !'= digits[i - 1]) flag = 0;
return flag;
}

/*
FUNCTION :identify_successor_nodes
PURPOSE : Checks whether the node is a successor or not.

PARAMETERS : digits[].
RETURN VALUE : If the node is a successor, the function will return 1, otherwise it
will return 0.

*/

int identify _successor_nodes(int digits(])
{
int 1, flag = 1;
if (identify _concentrator_nodes(digits)) return O;
for (i = 2; i < NUM_DIGITS; i++)
if (digits[i] '= digits[i - 1]) flag = O;
return flag;
}

/*
FUNCTION : determine_paths_passing_thru_faulty edge
PURPOSE : 1. Finds which paths will be affected by this faults.
2. It eliminates all duplicate source and destination pairs and then checks
whether the affected source-destination pairs are ordinary or special nodes.
3. If they are ordinary, then this function will call
“find_alternate_path_for_faulty path’ function to provide alternate patsh for
these affected ordinary paths.

PARAMETERS : faulty node no and faulty edge no.
RETURN VALUE : none.

*/
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void determine_paths_passing_thru_faulty_edge(int faulty node no,
int faulty edge no)
{
int mask = 15,k, j, 1, source , destination, unique_source_destination ;
unsigned int node_id;
int stack_array[2][20], source_destination _array[1458][2];

for(i=0; (i<1458) ; i++)

{
source_destination_array[k][0] = 0;
source_destination_array[k][1] = 0;
}
node_id = convert_int_to_node_id(faulty_node_no, NUM_EDGES);
j=0;
for (i = 0; i < NUM_DIGITS; i++)

{
stack_array[0]J[NUM_DIGITS -i-1]=0;
stack_array[1][NUM_DIGITS -i - 1] =node_id & mask;
node_id = node_id >> 4;
}
stack_array[0O][NUM_DIGITS] = 0;
stack_array[1][NUM_DIGITS] = faulty edge no;
for (1 = NUM_DIGITS + 1; i <2 * NUM_DIGITS; i++)
{
stack_array[0]{i ] =-1;
stack_array[l1][i ] =0;
}
stack_array[0](2 * NUM_DIGITS ] =-1;
stack_array[1][2 * NUM_DIGITS ] = 0;

for (i = 0; i < NUM_DIGITS; i++)
{
while (stack_array[1][2 * NUM_DIGITS] = 0)
{
source = get_source_node_no(stack_array, NUM_DIGITS);
destination = get_destination_node_no(stack_array, NUM_DIGITS);
unique_source_destination = 1;
for(k=0; (k<1458 && (unique_source_destination == 1)); k++)
if ((source_destination_array[k][0] = source) &&
(source_destination_array[k][1] = destination))
unique_source_destination = 0;
else unique_source_destination = 1;
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if ((source !'= destination) &&
(source_destination_are_ordinary(source, destination)) &&
(unique_source_destination))
{
printf("source = %d, destination = %d\n",
source, destination);
find _alternate_path_for_faulty path(source, destination);
/*printf("source = %d, destination = %d\n",
source, destination);*/
source_destination_array(j][0] =source;
source_destination_array(j][1] = destination;
j+
}
add_1(stack_array, NUM_EDGES, 0);
}
shift_stack array(stack_array, NUM_DIGITS);
}
}

void add_1(int stack_array[][20], int d, int 1)

{
§

if (stack_array[0][i] = 0)

{
add_1(stack array, d, i+1);
return;

h

if (stack_array[1][i] == d-1)

{
stack_array[1][i] =0;
add_1(stack_array, d, i+1);
return;

}

stack_array[1][i]++;

}

/*

FUNCTION : get_source_node_no.

PURPOSE : 1. Shifts(left) four digits of source_node_id and adds the value of
stack_array{1][i] fromi=0toi = k-1 in a loop to extract the
value of source_node_id. from the stack.

2. Finally converts the source_node_id into an integer.
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PARAMETERS : stack_array[][20] and NUM_DIGITS (k).
RETURN VALUE : source_node_no in terms of integer.

*/

int get_source_node_no(int stack_array[][20], int k)
{
unsigned int source_node_id = 0;
int 1=0;
for (1=0;1<k;1++)
source_node_id = (source_node_id << 4) |
(stack_array[1][i]);
return (convert_node id_to_int(source_node id,
NUM_EDGES, BIT_MASK ));
;

/*

FUNCTION : get_destination_node_no.

PURPOSE : 1. Shifts(left) four digits of destination_node_id and adds the value of
stack_array[1][i] fromi= ktoi = 2*k -1 in a loop to extract the
value of destination_node_id.from the stack.

2. Finally converts the destination_node _id into an integer.

PARAMETERS : stack_array[][20] and NUM_DIGITS (k).
RETURN VALUE : destination_node_no in terms of integer.

*/

int get_destination_node_no(int stack_array[][20], int k)
{
unsigned int destination_node_id = 0;
int i;
for (1 =k; i <2*K; it++)
destination_node_id = (destination_node_id << 4) |
(stack_array[1][i]);
return (convert_node_id_to_int(destination_node_id, NUM_EDGES,
BIT MASK));

}

/%=

FUNCTION : shift_stack_array
PURPOSE : 1. All values in stack_array[][20] are temporarily stored in temp_stack[][20].
2. Put -1 and 0 in the first column of stack_array[][0].
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3. Values of the temp_stack[][20] will be stored in stack_array[][20] from
its second column after giving a right shift.

4. To indicate the end, let us put -1 and 0 at stack_array[0][2*k] and
stack_array[1][2*k].

PARAMETERS : stack_array(}{20] and NUM_DIGITS (k).
RETURN VALUE : none.

*/

void shift_stack_array(int stack_array[][20], int k)
{
int temp_stack([2][20], i;
for(1=0;1<20;1++)
{
temp_stack([0][i1] = stack_array([O][i];
temp_stack([1][i] = stack_array[1][i];
}
stack_array[0][0] =-1;
stack_array{1]{0] = 0;
for(i=1;1<2*k;it++)
{
stack_array[O][i] = temp_stack[O][i - 1];
stack_array{1][1] = temp_stack[1][i - 1];
!

stack_array[0][2 * k] =-1;
stack array[1][2 * k] =0;
}

/*

FUNCTION : initialise_network()

PURPOSE : 1. Store all concentrator, predecessor, successor, and ordinary nodes in proper
arrays.

2. Store all ordinary nodes in the first and their corresponding predecessor nodes

in the second column of ordinary_to_pred_nodes_table[][2]. The third column
of the array is initialised to zero to ensure that the lightpaths from ordinary to
predecessor nodes are “unassigned”.

3. Store all predecessor nodes in the first and their corresponding successor nodes
in the second column of pred_to_succ_nodes_table[][2]. The third column of
the array is initialised to zero to ensure that the lightpaths from predecessor to
successor nodes are “unassigned”.

4. Store all successor nodes in the first and their corresponding ordinary nodes
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in the second column of succ_to_ordinary_nodes_table{][2]. The third column
of the array is initialised to zero to ensure that the lightpaths from successor to
ordinary nodes are “unassigned”.
PARAMETERS : none
RETURN VALUE : none

*/
void initialise_network()
{
int i, mask, j, k, num_concentrator_nodes = 0,
num_predecessor_nodes = 0,
num_successor_nodes = 0, num_ordinary_nodes = 0,
digits{NUM_DIGITS],
ordinary_to_pred_nodes_table_index =0,
succ_to_ordinary_nodes_table_index =0,
pred_to_succ_nodes_table_index = 0;

unsigned long int node_id, succ_node_id, pred_node _id;

for (i = 0; i < NUM_NODES; i++)
{

mask =15;

node_id = convert_int_to_node_id(i, NUM_EDGEYS);

/*printf("node_id = %u\n", node_id);*/

for (j = 0; j < NUM_DIGITS; j++)

{

digits[j] = node_id & mask;
node_id = node _id >> 4;

}

if (identify _concentrator_nodes(digits))
{

concentrator_nodes[num_concentrator_nodes] = i;

/* printf("concentrator_nodes{%d] = %d\n",
num_concentrator_nodes,
concentrator_nodes[num_concentrator_nodes]);*/

num_concentrator_nodes++;

}
else if (identify predecessor_nodes(digits))
{

predecessor_nodes[num_predecessor_nodes] = i;

num_predecessor_nodes++;
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}
else if (identify_successor_nodes(digits))

successor_nodes{num_successor_nodes] = i;
num_successor_nodes++;

}

else
{
ordinary nodes[num_ordinary nodes] =1;
num_ordinary_nodes++;

}

}

for (i =0; i< num_ordinary nodes; i++)
{
for (j =0; j < num_predecessor_nodes; j++)
{

ordinary to_pred_nodes_table
[ordinary_to_pred_nodes_table_index][0] =
ordinary nodesl[i};

/*printf("o_to_p[%d][0]=%d\n",
ordinary_to_pred_nodes_table_index,
ordinary _to_pred_nodes_table
[ordinary_to_pred_nodes_table_index][0]);*/

ordinary to_pred_nodes_table
[ordinary to_pred nodes_table_index][1] =
predecessor_nodes[j];
/*printf("o_to_p[%d][1]=%d\n",
ordinary to_pred_nodes_table_index,
ordinary_to_pred_nodes_table
[ordinary_to_pred_nodes_table_index][1]);*/

ordinary to_pred_nodes_table
[ordinary_to_pred_nodes_table_index]{2] = O;
ordinary to_pred_nodes_table_index++;

}

for (j = 0; j < num_successor_nodes; j++)

{
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succ_to_ordinary nodes_table
[succ_to_ordinary nodes_table_index][0] =
successor_nodes{j];

succ_to_ordinary_nodes_table
[succ_to_ordinary_nodes_table_index][1] =
ordinary nodes[i];

/*prntf("succ_to_o[%d][0]=%d\n",
succ_to_ordinary _nodes_table_index,
succ_to_ordinary nodes_table
[succ_to_ordinary_nodes_table_index]}[0]);*/

succ_to_ordinary_nodes_table
[succ_to_ordinary_nodes_table_index]{2] =0;
succ_to_ordinary nodes_table_index++;

for (i = 0; i < num_predecessor_nodes; i++)
for (j = 0; j < num_successor_nodes; j++)
{
pred_to_succ_nodes_table
[pred_to_succ_nodes_table_index][0] =
predecessor_nodes[i];
pred_node_id = convert_int_to_node_id
( predecessor_nodes[i], NUM_EDGES);
succ_node_id = convert_int_to_node_id
( successor_nodes[j], NUM_EDGES),
if (suffix(pred_node_id, NUM_DIGITS -1, NUM_DIGITS)=
prefix(succ_node_id,
NUM_DIGITS - 1, NUM_DIGITS))
{
pred_to_succ_nodes_table
[pred_to_succ_nodes_table_index][1] =
successor_nodes[j];

/*printf("p_to_s[%d]{0]=%d\n",
pred_to_succ_nodes_table_index,
pred_to_succ_nodes_table

[pred_to_succ_nodes_table_index][0]);

printf("p_to_s[%d][1]=%d\n",
pred_to_succ_nodes_table_index,
pred_to_succ_nodes_table
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[pred_to_succ_nodes_table index][1]);*/
pred_to_succ_nodes_table

[pred_to_succ_nodes_table_index][2] = 0;

pred_to_succ_nodes_table_index++;

}

P
FUNCTION : convert_int_to_node id.
PURPOSE : Convert the number from integer to node_id.
PARAMETERS : number and d (NUM_EDGES).
RETURN VALUE : node_id

unsigned long int convert_int_to_node_id( unsigned long int number,
int d)
{

unsigned long int result = 0;
int remainder[20];
int quotient, i = 0;
while (number != 0)
{
remainder{i] = number%:d,;
i++;

number /= d;
}
for (i =1i-1; i>=0; i--)
{
result <<= NUM_BITS;
result = result | remainder({i];

}

return result;

;

*/

/:k
FUNCTION : convert_node_id_to_int.
PURPOSE : Convert the node_id to an integer
PARAMETERS :node_id, d NUM_EDGES), and mask.
RETURN VALUE : number

*/
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unsigned long int convert_node_id_to_int(unsigned long int node _id,
int d, int mask)

{ int 1,
int digits[20], digit_no = 0;
unsigned long int result = 0;
while (node_id != 0)

{
digits[digit_no] = node_id & mask;
digit_no++;
node_id >>= NUM_BITS;

}

for (i = digit_no-1;1>=0;i--)
result = result * d + digits{i];
return result;

}

/*
FUNCTION : prefix
PURPOSE
1. If prefix_length is less than 1 or the num_digits_in_node_id, it will give an error
message.
2. Otherwise, it will return the digits of the node_id from the left most digit up to the
prefix_length.

PARAMETERS : node_id, prefix_length, and num_digits_in_node_id..
RETURN VALUE : the digits of the node_id from the left most digit up to the prefix_length.

*/

unsigned long int prefix(unsigned long int node_id, int prefix_length,
int num_digits_in_node id)
{
if ((prefix_length > num_digits_in_node_id) | (prefix_length < 1))
printf("prefix is being called with incorrect parameter %x; %d; %d\n",
node_id, prefix_length, num_digits_in_node_id);
return (node_id >> ((num_digits_in_node_id -
prefix_length)*NUM_BITS));
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/*
FUNCTION : suffix
PURPOSE : 1. Ifsuffix_length is less than 1 or the num_digits_in_node _id, it will give an error
message.
2. Otherwise, it will return the digits of the node_id from the right most digit up to
the suffix_length.
PARAMETERS : node_id, suffix_length, and num_digits_in_node_id..
RETURN VALUE : the digits of the node_id from the right most digit up to the suffix_length.

*/

unsigned long int suffix(unsigned long int node_id, int suffix_length,
int num_digits_in_node_id)
{
unsigned long int mask=0;
int i;
if ((suffix_length > num_digits_in_node_id) | (suffix_length < 1))
printf("suffix is being called with incorrect parameter\n");
for (i = 0; 1 < suffix_length; i++)
mask = (mask<<NUM_BITS) | BIT_MASK;
return (node_id & mask);

}

/*
FUNCTION :randgen
PURPOSE : Function to generate random numbers.
PARAMETERS :none
RETURN VALUE : A random integer value.

*/
double randgen ()

{
int i;

if ( first_time )
{
for(i=0;1<32; ++i)
{
table [i] = (321 * rprev + 123 ) % 100000;
rprev = table [i];
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first_time = 0;

}

i=(32*%Z)/100000;

Z = table [i];

table [i] = ( 321 * rprev + 123 ) % 100000,
rprev = table [i];

return (((double) Z)/ 100000);

/*
FUNCTION :init_rand_gen
PURPOSE : Discard a few random numbers generated by randgen()
(To ensure randomization).

PARAMETERS :none
RETURN VALUE : none

*/

void init_rand_gen ()
{

int j;

for =0; j <rand()% 100000; j++)
randgen ();
}

/*

FUNCTION : process_if_source_or_destination_is_special

PURPOSE :

1. If the source is a predecessor node and the destination is a successor node, it calls
delete_path. If the source matches with the first column and the destination matches with the
second column of the same row of the pred_to_succ_nodes_table[][3], the third column of
that row will be -1 to ensure that the lightpath between the predcessor and the successor node
is deleted.

2. If the source is an ordinary node and the destination is a predecessor node, it calls
delete_path. If the source matches with the first column and the destination matches with the
second column of the same row of the ordinary_to_pred_nodes_table[][3], the third column
of that row will be -1 to ensure that the lightpath between the ordinary and the predecessor
node is deleted.
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3. If the source is a successor node and the destination is an ordinary node, it calls delete_path.
If the source matches with the first column and the destination matches with the second
column of the same row of the succ_to_ordinary_nodes_table[][3], the third column of that
row will be -1 to ensure that the lightpath between the successor and the ordinary node is
deleted.

PARAMETERS : source and destination.
RETURN VALUE : none

*/

void process_if_source_or_destination_is_special(int source,
int destination)
{
unsigned int node _id_source, node_id_destination, mask = 15;
int j, digits_source[NUM_DIGITS]}, digits_destination[NUM_DIGITS];

node_id_source = convert_int_to_node_id(source, NUM_EDGES);
node_id_destination = convert_int_to_node_id(destination, NUM_EDGES);
for (j =0;j < NUM_DIGITS; j++)
{
digits_source[j] = node_id_source & mask;
digits_destination[j] = node_id_destination & mask;
node_id_source = node_id_source >> 4;
node_id_destination = node_id_destination >> 4;
f
if (identify predecessor_nodes(digits_source) &&
identify_successor_nodes(digits_destination))
delete_path(pred_to_succ_nodes_table,
NUM_EDGES*(NUM_EDGES-1)*(NUM_EDGES-1),
source,
destination);
else if (identify _predecessor_nodes(digits_destination))
delete_path(ordinary_to_pred_nodes_table,
(NUM_NODES - NUM_EDGES*(2*NUM_EDGES -1))
*NUM_EDGES*(NUM_EDGES-1),
source,
destination);
else if (identify successor_nodes(digits_source))
delete path(succ_to_ordinary_nodes_table,
(NUM_NODES - NUM_EDGES*(2*NUM_EDGES -1))
*NUM_EDGES*(NUM_EDGES-1),
source,
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destination);

}

P

FUNCTION :delete_path

PURPOSE : If the source matches with the first column and the destination matches with
the second column of the same row of the table[][3], the third column of this
row will be -1 to ensure that the lightpath beween the source and the destination

is deleted.

PARAMETERS : table[]{3], size_of_table, source, and destination.
RETURN VALUE : none
*/

void delete_path(int table[][3], int size_of _table, int source,
int destination)

{

int row_no;
for (row_no = 0; row_no < ssize_of_table; row_no++)

{

if (table[row_no][0] = source)
if (table[row_no][1] = destination)

{
table[row_no][2] =-1;
return;

}

/*
FUNCTION : generate_faulty edges
: 1. Randomly generates a number of faulty edges.

PURPOSE
2. Calls randgen() to generate a random number.

PARAMETERS :none.
RETURN VALUE :none

*/

void generate_faulty edges()
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{

int 1, faulty node_edge pair;

for (1= 0; 1 < NUM_FAULTY_EDGES ; i++)

{
faulty_node_edge_pair = NUM_NODES * NUM_EDGES * randgen();
faulty_nodes[i] = faulty _node_edge_ pair % NUM_NODES;
faulty_edges[i] = faulty node_edge_pair/ NUM_NODES;

b

}

int delete_paths_passing_thru_faulty edge(int d,
int k,
int faulty node_no,
int faulty_edge_no)

int mask = 15, 1, source, destination ;
unsigned int node_id;
int stack_array[2][20];

node_id = convert_int_to_node_id(faulty_node no, d);
for (1= 0; 1 <Kk; i++)
{
stack_array[O]l[k -i-1]=0;
stack_array[l][k - i - 1] =node_id & mask;
node_id = node_id >> 4;
b
stack_array[O}[k ] =O;
stack_array[1][k ] = faulty_edge_no;
for (1 =k+1; 1 <2*k; i++)
{
stack _array[O0][i ] =-1;
stack_array[1][i ] =0;
H
stack array[0][2*k ] =-1;
stack_array[1][2*k ] =0;

for (i=0; i <k; i++)
{
while (stack_array[1][2*k ] =0)
{
source = get_source_node_no(stack_array, k);
destination = get_destination_node_no(stack array, k);
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process_if_source_or_destination_is_special(source,
destination);
add_1(stack_array, d, 0),
}
shift_stack_array(stack_array, k);
H
!

/%

FUNCTION : find_altemate_path for faulty path.
PURPOSE : 1. Find whether the lightpath from the source to a predecessor node is minimum
or not.
2. Find a successor node for which the lightpath from the predecessor to the
successor is minimum and the number of lightpath from that successor to
destination is not deleted. If unsuccessful, repeat 1 & 2.
3. Update all the paths from source to predecessor, predecessor to successor, and
successor to destination.

PARAMETERS : source_node no and destination_node no
RETURN VALUE : none.

*/
void find_alternate_path_for_faulty path(int source_node _no,
int destination_node_no)
{
int i, j, no_lightpath, row_no, min_lightpath_pred_node = 0,
current_index, keep_looking_for_succ, row_index, found_succ,
index_for_pred_minimum, index_for_succ_minimum, min_lightpath_succ_node = 0, found =
0,
min = 9999, starting_row_no = -1, num_lightpath_pred_listftNUM_EDGES * (NUM_EDGES
- 1)]’
num_lightpath_succ_listfNUM_EDGES -1];
unsigned long int pred_node_id, succ_node_id, pred_node_no,
succ_node_no, conc_node_no;

for (row_no = 0; (row_no < ((NUM_NODES - NUM_EDGES*(2*NUM_EDGES -1))

* NUM_EDGES * NUM_EDGES-1))) &&
(found == 0)
; Tow_no++)

if (ordinary to pred_nodes_table{row_no][0] = source_node_no)

found = 1;
row_no--;
if (found = 0)
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{
printf ("WARNING! check ordinary to_pred _nodes_table;\n");

printf("entry not found!! %d and %d\n", source_node_no, destination_node_no);
exit(0);
!
for (1 =row_no; i <row_no + (NUM_EDGES * (NUM_EDGES - 1)); i++)
num_lightpath_pred_list[i - row_no] = ordinary_to_pred_nodes_table[i]{2];

found = 0;
while (found '=1)
{

for (current_index = 0, min = 9999;
current_index < NUM_EDGES * (NUM_EDGES - 1);
current_index++)
{
no_lightpath = num_lightpath_pred_list[current_index];
if ((no_lightpath !'=-1) && (min > no_lightpath))
{
min = no_lightpath;
index_for_pred_minimum = current_index;
}
}
if (min == 9999)
{
printf("WARNING!!! WHY CAN WE NOT FIND AN ALTERNATE PATH????\n");
exit(0);
h

min_lightpath_pred_node = ordinary_to_pred nodes_table
[index_for_pred_minimum + row_no][1];
printf("min_pred = %d\n", min_lightpath_pred node);
found_succ = 0;
for (row_index = 0; (row_index <
NUM_EDGES * (NUM_EDGES -1) * NUM_EDGES -1)) && (found_succ == 0)
; row_index++)
if (pred_to_succ_nodes_table[row_index}[0] = min_lightpath_pred node)
found_succ = 1;

row_index--;
for (i = row_index; i <row_index + (NUM_EDGES - 1); i++)

num_lightpath_succ_list[i - row_index] = pred_to_succ_nodes_table[i][2];
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keep_looking for_succ = 1;
while (keep_looking_for succ = 1)
{
for (current_index = 0, min = 9999; current_index < NUM_EDGES -1;
current_index++)
{
no_lightpath = num_lightpath_succ_list{current_index];
if ((no_lightpath !=-1) && (min > no_lightpath))
{
min = no_lightpath;
index_for_succ_minimum = current_index;
}
}
if (min < 9999)
{
min_lightpath_succ_node =
pred_to_succ_nodes_tablefindex_for_succ_minimum
+ row_index][1];
printf("min_succ = %d\n", min_lightpath_succ_node);
pred_node_id = convert_int_to_node_id(min_lightpath_pred node,
NUM_EDGES);
succ_node_id = convert_int_to_node_id(min_lightpath_succ_node,
NUM_EDGES);
pred_node_no = prefix(pred_node_id, 1, NUM_DIGITS);
succ_node_no = suffix(succ_node_id, 1, NUM_DIGITS);
conc_node_no = suffix(prefix(pred_node_id, 2, NUM_DIGITS), 1,
NUM_DIGITS);
if (look_up_path_table(succ_to_ordinary nodes_table,
(NUM_NODES - NUM_EDGES*(2*NUM_EDGES -1))
*NUM_EDGES*(NUM_EDGES-1),
min_lightpath_succ_node,
destination_node no) !=-1)

{

update paths(source_node_no,
conc_node_no,
pred_node_no,
succ_node no,
destination_node_no);

found = 1;

keep_looking_for_succ = 0;

}

else num_lightpath_succ_list[index_for succ_minimum] = 9999;
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}
else keep_looking_for_succ = 0;

}
if (found = 0) num_lightpath_pred_list[index_for_pred_minimum] = 9999;

}
}

/*
FUNCTION :update_paths.
PURPOSE : 1. Converts pred_node_no and succ_node_no into pred_node_number
and succ_node_number.
2. Calls update_single_path with ordinary_to_pred_nodes_table and updates the
path between the ordinary and predecessor nodes.
3. Calls update_single_path with pred_to_succ_nodes_table and updates the path
between the predecessor and the successor nodes.
4. Calls update_single_path with succ_to_ordinary_nodes_table and updates the
path between the successor and the ordinary nodes.

PARAMETERS : source_node_no, conc_node_no, pred_node_no, succ_node_no,
and destination_node _no
RETURN VALUE : none.

*/

void update_paths(int source_node_no,
int conc_node_no,
int pred_node_no,
int succ_node_no,
int destination_node_no)

unsigned int pred_node_id = 0, succ_node_id = 0;
int i, pred_node_number, succ_node_number;
pred_node_id = pred_node_no;
for (i=1;1<NUM_DIGITS; i++)
{
succ_node_id = succ_node_id << NUM_BITS | conc_node _no;
pred_node_id = pred_node_id << NUM_BITS | conc_node_no;
b
succ_node_id = succ_node_id << NUM_BITS | succ_node_no;
pred_node_number = convert_node_id_to_int(pred_node_id, NUM_EDGES,
BIT_MASK);
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succ_node_number = convert_node_id_to_int(succ_node_id, NUM_EDGES,
BIT_MASK),

/*printf("source_node_no = %d, destination_node_no = %d\n",
source_node no, destination_node no);*/

update_single_path(ordinary_to_pred_nodes_table,
(NUM_NODES - NUM_EDGES*(2*NUM_EDGES -1))
*NUM_EDGES*(NUM_EDGES-1),
source_node _no,
pred_node_number);
update_single_path(pred_to_succ_nodes_table,
NUM_EDGES*(NUM_EDGES-1)*(NUM_EDGES-1),
pred_node_number,
succ_node number);
update_single_path(succ_to_ordinary_nodes_table,
(NUM_NODES - NUM_EDGES*(2*NUM_EDGES -1))
*NUM_EDGES*(NUM_EDGES-1),
succ_node_number,
destination_node_no);

/*
FUNCTION :update_single path

PURPOSE : Ifthe source_node_number matches with the first column and the
destination_node_number matches with the second column of the same row of

the table[][3], the value of the third column of this row will be incremented by
1 to ensure that the number of lightpath between the source and the destination

is increased by 1.

PARAMETERS :table[][3], size_of_table, source_node_number, and destination_node number.

RETURN VALUE : none.

void update_single_path(int table[][3],
int size_of table,
int source_node_number,
int destination_node_number)
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int row_no;
for (row_no = 0; row_no < size_of_table; row_no++)

{
if (table[row_no][0] = source_node_ number)
if (table[row_no][1] = destination_node number)

{
table[row_no][2] ++;
return;
}
}
/* printf("num_of_lightpath = %d\n", table[row_no][2]);
")

printf("
printf("\n");*/

}
/*

FUNCTION :look_up_path_table
If the source_node_number matches with the first column and the

PURPOSE :
destination_node number matches with the second column of the same row of
the table[][3], the value of the third column of this row will be returned.

PARAMETERS :table[][3], size_of_table, source_node_number, and destination_node_number.
RETURN VALUE : returns the number of lightpaths for a specific source and destination.

*/

int look_up_path_table(int table[][3],
int size_of table,
int source_node number,
int destination_node_number)

{
int row_no;
for (row_no = 0; row_no < size_of_table; row_no++)

{

if (table[row_no][0] == source_node_number)
if (table[row_no][1] = destination_node_number)

return table{row_no][2];

}
}

/*
FUNCTION : source_destination_are_ordinary
PURPOSE : 1. It converts source and destination to source_id and destination_id and checks
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the digits of the source_id and destination_id to make sure whether they are any
special nodes or not.
2. If both the source and the destination are ordinary, it returns 1, otherwise
returns O.
PARAMETERS :source and destination
RETURN VALUE : returns 1 if source and destination both are ordinary, else returns 0.

*/

int source_destination_are_ordinary(int source, int destination)
{
unsigned int node_id_source, node_id_destination, mask = 15;
int j, digits_source{[NUM_DIGITS], digits_destination[NUM_DIGITS];

node_id_source = convert_int_to_node_id(source, NUM_EDGES);
node_id_destination = convert_int_to_node_id(destination, NUM_EDGES);
for (j = 0; j < NUM_DIGITS; j++)
{
digits_source[j] = node_id_source & mask;
digits_destination[j] = node_id_destination & mask;
node_id_source = node_id_source >> 4;
node_id_destination = node_id_destination >> 4;
}
if (identify_predecessor_nodes(digits_source)) return 0;
if (identify _successor_nodes(digits_source)) return 0;
if (identify concentrator_nodes(digits_source)) return 0;
if (identify_successor_nodes(digits_destination)) return 0;
if (identify predecessor_nodes(digits_destination)) return 0;
if (identify_concentrator_nodes(digits_destination)) return O;

return 1;
!
J

main(int argc, char *argv([])
{
int i, j, repeat, max_pred, max_pred_succ, max_succ,
num_lightpath_through_pred, num_lightpath_from_pred_to_succ,
num_lightpath_from_succ_to_ordinary, o_p_1_value,
o p_2_value,o_p_3_value,p_s_1_value, p_s_2 value, p_s_3_value,
s_o_1_value,s_o_2 value,s_o_3_value;
int result[ 1000][3];

1=0, max_succ =0;
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for(i = 0; i < atoi (argv[1]); i++)
init_rand_gen();

for ( repeat=0; repeat < 1000; repeat++)

{

1=0;

initialise_network();

generate faulty edges();

printf("faulty _edges[%d]=%d\n", i, faulty_edges[i]);
printf("faulty nodes[%d]=%d\n", i, faulty nodes[i]);
printf("faulty _edges[%d]=%d\n", i+1, faulty edges[i+1]);
printf("faulty_nodes[%d]=%d\n", i+1, faulty nodes[i+1]);

for(i=0; i <NUM_FAULTY_EDGES; i++)
{
delete_paths_passing_thru_faulty edge(NUM_EDGES,
NUM_DIGITS,
faulty nodesfi],
faulty edges[i]);
/*  for(=0;)<12;j++)
if (pred_to_succ_nodes_table[j][2] != 0)
printf(" i = %d, j = %d, p-s-value = %d\n",
pred_to_succ_nodes_table[j][0],
pred_to_succ_nodes_table[j]{1],
pred_to_succ_nodes_table[j]{2]);
for(j=0;j<72;j+%)
if (ordinary_to_pred_nodes_table[j][2] != 0)
printf(" i = %d, j = %d, o_p_value = %d\n",
ordinary_to_pred_nodes_table[j][0],
ordinary_to_pred_nodes_table[j][1],
ordinary_to_pred_nodes_table[j][2]);
for § = 0;j <72; j++)
if (succ_to_ordinary nodes_table{j](2] !=0)
printf(" i = %d, j = %d, o_p_value = %d\n",
succ_to_ordinary_nodes_table[j][0],
succ_to_ordinary_nodes_table[j][1],
succ_to_ordinary_nodes_table[j][2]); */
}
for(i = 0; (1 <NUM_FAULTY_EDGES); i++)
determine_paths_passing_thru_faulty edge(faulty nodes[i],
faulty _edges[i]);
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/*

To collect the maximum lightpath in ordinary_to_pred_nodes_table.

*/

max_pred =0;
for (i=0; i < (NUM_NODES - NUM_EDGES*
(2*NUM_EDGES -1))*NUM_EDGES*(NUM_EDGES-1) ; i++)

{

num_lightpath_through_pred = ordinary to_pred nodes_table[i][2];

if (num_lightpath_through_pred > max_pred)

max_pred = num_lightpath_through pred;

}
result[repeat][0] = max_pred;
printf("max_lightpath from ordinary to pred = %d\n", result[repeat][0]);

/*
To collect the maximum lightpath in pred_to_succ_nodes_table.

*/

max_pred_succ =0;

for (i=0; 1 < NUM_EDGES*(NUM_EDGES-1)*(NUM_EDGES-1) ; i++)

{
num_lightpath_from_pred_to_succ = pred_to_succ_nodes_table[i][2];
if (num_lightpath_from_pred_to_succ > max_pred_succ)

max_pred_succ = num_lightpath_from_pred_to_succ;

}

result{repeat][1] = max_pred_succ;

printf("max_lightpath from pred to succ is =%d\n", result[repeat][1]);

/*

To collect the maximum lightpath in succ_to_ord_nodes_table.

*/

max_succ = 0;
/*for (i=0;i< (NUM_NODES - NUM_EDGES*

(2*NUM_EDGES -1))*NUM_EDGES*(NUM_EDGES-1); i++)
printf("ordinary_to_succ= %d\n", succ_to_ordinary_nodes_table[i][2]);*/

for (i=0; i < (NUM_NODES - NUM_EDGES*
(2*NUM_EDGES -1))*NUM_EDGES*(NUM_EDGES-1); i++)

{
num_lightpath_from_succ_to_ordinary =
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succ_to_ordinary_nodes_table[i][2];
if (num_lightpath_from_succ_to_ordinary > max_succ)
max_succ = num_lightpath_from_succ_to_ordinary;

H

/*printf("max_succ = %d\n", max_succ);*/

result[repeat]{2] = max_succ;

printf("max_lightpath from succ to ordinary node is =%d\n",
result[repeat][2]);

/*
To find the number of light paths from ord to pred with different loads

*/
o p_l_value=0;
o_p 2 value=0;
o_p_3_value=0;
for (j =0; j <(NUM_NODES - NUM_EDGES*
(2*NUM_EDGES -1))*NUM_EDGES*(NUM_EDGES-1); j++)
{
if ((ordinary_to_pred nodes_table[j][2] >=1) &&
(ordinary_to_pred_nodes_table[j]{2] < 6))
o p_l value=o_p_1_value+1;
else if ((ordinary to_pred_nodes_table[j][2] >= 6) &&
(ordinary to_pred_nodes_table[j][2] < 61))
o p_2 value=o_p_2 value+1;
else if ((ordinary to_pred_nodes_table{j][2] >=61) &&
(ordinary to_pred_nodes_table[j][2] < 121))
o p_3 value=o_p_3_value+1;
}
printf("o_p_1_value =%d, o_p_2_value = %d, o_p_3_value = %d\n",
o_p_ 1 value,o_p_2_ value,o_p_3_value);
/*
To find the number of light paths from predecessor to successor nodes with different loads
*/

p_s_l_value =0;
p_s_2_value =0;
p_s_3_value =0;
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for (j = 0; j < NUM_EDGES*(NUM_EDGES-1)*(NUM_EDGES-1)); j++)

{
if ((pred_to_succ_nodes_table[j][2] >=1) &&
(pred_to_succ_nodes_table[j][2] < 6))
p_s_ 1 value=p_s 1 value+1;

else if ((pred_to_succ_nodes_table[j][2] >=6 ) &&
(pred_to_succ_nodes_table[j}[2] <61))
p_s 2 value=p_s 2 value+1;

else if ((pred_to_succ_nodes_table[j][2] >=61) &&
(pred_to_succ_nodes_table[j][2] < 121))
p_s 3 _value=p_s_3 value + 1;

}

printf("p_s_1_value =%d, p_s_2_value = %d, p_s_3_value = %d\n",
p_s_1_value,p_s_2_value, p_s_3_value);

/*
To find the number of light paths from succ to ord with diffrent loads

s_o_1_value =0;
s 0 2 value=0;
s_0_3 value=0;

for (j =0; j < (NUM_NODES - NUM_EDGES*
(2*NUM_EDGES -1))*NUM_EDGES*(NUM_EDGES-1); j++)
{
if ((succ_to_ordinary nodes_table[j][2] >=1) &&
(succ_to_ordinary_nodes_table[j][2] < 6))
s o_1_value= s_o_1_value + 1;
else if ((succ_to_ordinary_nodes_table{j][2] >=6) & &
(succ_to_ordinary_nodes_table[j]}[2] < 61))
s_o_2 value= s_o_2 value + 1;
else if ((succ_to_ordinary _nodes_table[j][2] >=61) &&
(succ_to_ordinary nodes_table[j][2] < 121))
s 0_3 value= s _o_3_value + 1;

}

printf("s_o_1_value = %d, s_o_2_value = %d, s_o_3_value = %d\n",
s o_1_value,s o_2_ value, s_o_3_value);
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Appendix B

The distributions of the upper limits of the number of communications through different logical
edges: source to predecessor edge (SP* edge), predecessor to successor edge (PS* edge) and
successor to destination edge (SD* edge) are shown in different diagrams.
Network size = 243 (3 3), number of randomly generated faulty edges = 2.
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Statistics:

SP* edge PS* edge SD* edge

N of cases 1000 1000 1000

Minimum 3.000 36.000 6.000
Maximum 77.000 187.000 149.000
Range 74.000 151.000 143.000
Median 20.000 123.000 67.000
Mean 20913 124.227 64.509
Standard Dev 3.643 22.669 12.758
Variance 13.271 513.899 162.759

Skewness 4.866 -0.009 0.138
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Appendix C

Glossary of terms and abbreviations

All-optical network: A type of network in which messages are transmitted and processed entirely
in the optical domain, ensuring a high bit transmission rate.

Asynchronous transfer mode(ATM): The proposed mode of operation of the emerging broadband
integrated services digital network. All information to be transmitted - voice, data, image, video -
is first fragmented into small, fixed-sized frames known as cells. These are switched and routed
using packet switching principles - also known as cell or fast - packet switching.

Bandwidth: The difference between the highest and lowest sinusoidal frequency signals that can
be transmitted across a transmission line or through a network. It is measured in hertz (Hz) and also
defines the maximum information-carrying capacity of the line or network.

Broadcast: A means of transmitting a message to all devices connected to a network. Normally, a
special address, the broadcast address, is reserved to enable all the devices to determine that the
message is a broadcast message.

Concentrator node: A set of nodes in a network that satisfy some specific conditions are called
concentrator nodes. These specific conditions are: there is no edge from one concentrator node to
another concentrator node, no two concentrator nodes can have the same predecessor node, no two
concentrator nodes can have the same successor node and the predecessor of one concentrator node
can not be the successor of another concentrator node.

Fauit-tolerant network: A type of network that provides alternate path in the presence of faults.
The basic principle behind a fault-tolerant system is to provide the system with redundant resources
beyond the minimum requirement for normal operation. These spare resources help avoid faults.
Fauit-tolerance in a network can be studied in terms of network reliability and survivability.

Frequency-division multiplexing (FDM): A technique to derive anumber of separate data channels
from a single transmission medium, such as a coaxial cable. Each data channel is assigned a portion

of the total available bandwidth.

Lightpaths: End-to-end circuit switched communications traversing one or more fibers and use one
WDM channel per fiber.

Logical topology: A graph where the node of the graph represents end-node of the network and two
nodes A and B are connected by a directed edge from A to B if there is a lightpath from the end-node
A to the end-node B.
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Multihop network: A type of network in which messages are routed from the source to the
destination node in several hops and are processed at the intermediate points, that is, there are several
electro-optical conversions resulting in a low bit transmission rate.

Network reliability: The ability of a network to perform its function, the lower the probability that
a network will fail to perform its function, the more reliable it is.

Network survivability: The ability of a network to maintain an acceptable level of performance in
the presence of network failure by employing various restoration techniques.

Optical fiber: A type of transmission medium over which data is transmitted in the form of light
waves or pulses. It is characterized by its potentially high bandwidth, and hence data-carrying
capacity, and its high immunity to interference from other electrical sources.

Physical topology: It provides the physical connections between every pairs of nodes in the
network. A network is defined by a physical and a logical topology.

Predecessor node: If a node in a network has an edge to a concentrator node, then the node is called
the predecessor node of that concentrator node. A concentrator node can have a fixed number of
predecessor nodes depending on the number of edges of the network.

Single-hop network: A type of network in which messages are routed from the source to the
destination node in one hop without being processed at intermediate points, that is, there is no
electro-optical conversion. It requires a significant amount of dynamic coordination between the
source and the destination nodes.

Special nodes (Deflector nodes): The nodes in a network those are not end-nodes are called special
nodes. Special nodes can not be a source or a destination node. They contain only optical routers and
are used only to replace a faulty lightpath.

Survivable route graph: A digraph that contains all the non-faulty nodes of the original digraph
with an edge from node x to node y if there is no faults on the path of the routing from x to y. The
notion of survivable route graphs is based on graph theory.

Successor node: If a concentrator node of a network has an edge to a node, then the node is called
the successor node of that concentrator node. A concentrator node can have a fixed number of

successor nodes depending on the number of edges of the network.

Topology: It defines how the nodes of a network are connected. It can be of two types: physical
topology and logical topology.

Wavelength-division multiplexing(WDM): It is one promising approach that can be used to
exploit the huge bandwidth of optical fiber. In this type of multiplexing, the optical transmission
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spectrum is divided into a number of nonoverlapping wavelength (frequency) bands, with each
wavelength supporting a single communication channel operating at peak electronic speed. Thus,
by allowing muitiple WDM channels to coexist on a single fiber, we can tap into the huge fiber
bandwidth.

Wavelength routed network: It is composed of some form of wavelength-selective elements at the
nodes of the network . Such node (called wavelength router) makes its routing decision based on the
input port and the wavelength of the signal passing through it. Wavelength routing is achieved by
demultiplexing the different wavelengths from each input port and then multiplexing signals at each
output port.
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