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ABSTRACT

In the process of designing a digital filter, the coefficients of the transfer function
are normally evaluated with a high degree of accuracy. To implement the designed
filter in hardware, finite word length registers have to be utilized. This may bring
about truncation of the filter coefficients to the limited word length registers
cmployed. which in turn may aflfect the total response of the digital filter. To

remedy this, filters are designed with the finite word length coefficients.

In this thesis a review of existing techniques for the design of integer cocfficients 1-D
FIR filters is presented. Where possible extension of these techniques to 2-D are also
presented. In this thesis two design methods for 1-D and 2-D FIR flilter with integer
cocfficients based on the suboptimal approach of discretization and reoptimization
techniques are presented. These two approaches are somewhat modified versions of
the well known branch and bound optimization technique. This thesis also presents
a technique for the design of 1-D and 2-D FIR filters with integer coefficients using
Mixed integer linear programming. Delta modulation is also employed for a new
filter structure for 1-D FIR filter with its coefficients being -1, 0, and +1. McClallan
transformation is used for designing a class of 2-D FIR filters with integer

cocfTicients and a suitable realization structure.



In this thesis. we also present a comparison of various techniques we have proposed
in terms of complexity of the design issue. as well as the computationat burden for

cach iteration.
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CHAPTER ONE

INTRODUCTION

1.1. INTRODUCTION

Digital signal processing, a ficld which has it roots in the 17th and [Sth centurics, has
become an important tool in a multitude of diverse ficlds of science and technology. The
techniques and applications of this field are as old as"Newton and Gauss” and as new as
digital computers and integrated circuits. Each year, as integrated circuits have become
faster, cheaper and more compact, it has become more possible 1o find feasible solutions

to problems of ever-increasing complexity.

Simply stated, a signal is any medium for conveying information and digital signal
processing is concerned with the representation of signals by sequences of numbers or
symbols, the processing of these sequences, and extraction of that information contained
in these sequences. The purpose of such processing may be to estimate characteristic
parameters of a signal or to transform a signal into a form which is in some sense more

desirable,

In one dimension the most useful applications of signal processing are in speech
communication, either to enhance the intelligibility or to reduce the noisc, data
communication, biomedical engineering acoustic, sonar, radar, seismology, nuclear

science, and many others. Signal processing problems are not isolated to one dimensional



signals. Many picture processing applications require the use of two dimensional signal
processing techniques. This is the case in x-ray cnhancement and analysis of aerial
photographs for detection of forest fires or ¢rop damage, the analysis of satellite weather

photos, and enhancement of Television Transmissions from Lunar and deep-space probes.

1.2. DIGITAL FILTERING

A major subdivision of Digital Signal Processing is digital filtering. A digital filter in 1-
D or 2-D is a computational process or an algorithm by which a 1-D or 2-D digital signal
or scquence of numbers (acting as input) is transformed into a 1-D or 2-D sequence
according to some desired specification. It may involve amplifying or attenuating a range

of frequency components, rejecting or isolating one specific frequency component, etc.

Digital filters are characterized in terms of difference equations. Two types of digital

filters can be identified: non-recursive and recursive filters.

1.2.1. NONRECURSIVE SYSTEM

In the case of a digital nonrecursive system, the output sequence is defined as the
weighted sum of the input sequence over a number of preceding samples. Thus in one
dimension, the output y(n) written as a function of the input x(n) is given by

N
y(n)=Y a(i}x(n-i) (I-1)

i=0

where a(i) is a weighting factor on the various inputs, and N is the order of the filter.

2



In two dimensions this becomes

MON

y(m,n) =Y Y a(i,jy~x(m i, n j) (-2

tal} yad

Nonrecursive filter is also called FIR filter because the impulse response is of finite

duration.

1.2.2. RECURSIVE SYSTEM

In this case the present output is not only a function of the present and past value of the
input, but also depends on the past value of the output. This condition can be written

as

Y(n)=z'a(i)>c(n—i) ~Sb(i}y(n-i) (1-3)
. iw) il
and in case of 2-D
MN A, N,
y(m,n)=3} % a(i,j)x(m-i,n-5)-Y, ¥ b(i,j)ym-i,n-5)
is0 je0 iel)  folhiejrr0)
(1-4)

A recursive filter is also called TIR (Infinite Impulse Response) because the impulsc

response is of infinite duration.

1.2.3. COMPARISON BETWEEN FIR AND IIR FILTER
The choice between an FIR filter and an IIR filter is the first question in the filter design
process which has to be answered. The answer depends upon the relative weight of the

advantages and disadvantages of each type of filter. In recursive filters the poles of the



transter function can be placed anywhere inside the unit circle. This degree of treedom
permits us to meet the specification with the low order filter whereas, in the case of FIR
filters, all the poles arce fixed at the origin. This restriction would force the designer to
use a higher order filter compared to the IR filter in order to satisfv the same

specifications.

A FIR filter has a finite number of nonzero samiples and hence the impulse responses are
always absolutely summable. Thus FIR filters are always stable whereas the stability
condition in 1R filters is onc of the most important issucs in designing a filter. Finally,
onc of the important advantages of FIR filters over [IR filters is it is able to provide

exact lincar phase.

Stability and lincar phase arc two important characteristics of the FIR filter which
account for the great advantage that FIR filters over IR filiers in one and two

dimensions,

1.3. CHARACTERISTICS OF 1-D AND 2-D FIR FILTERS

1.3.1. CHARACTERISTICS OF 1-D FIR FILTER
The transfer function of a causal FIR filter is as follows.

N-1
H(z)=Y h(i)z™ (1-5)

where N is the order of the filter. The frequency response is given by



N-1

H{e™) =Y h(i)e™ (-6

[y

For a constant phase and group delay the following condition has 10 be satisfied

h(i)=h(N-1-1) for  0<i<N (1-7

Then the frequency response for an odd filter is presented as follows:

N-1
—_

is]

1.3.2. CHARACTERISTICS OF THE 2-D FIR FILTER

The z transform of a causal 2-D FIR filter is as follows:

Npel M-

H(z,,2,) =Y. Y h(i,j)zz’ (1-9)

i) jalb

To reduce the number of coefficients which have to be determined, the following
symmetries can be considered.

2) Quadrantal Symmetry [1]

In this kind of symmetry, the following equality in the frequency and spatial domain are

established.

|H (e, &) | =|H(e, &) | =|H(e™, e7) | =|H(e™ e™) | (1-10)



h(n,,n)=h(n1,N,-1-n,)=h(N,-1-n,,n.}=h(N,-1-n,,N.-1-n,) (1-1])

The frequency response corresponding to these conditions is as follows:

Nl N
-

H(e™,e™) =Y a(i,j)cos(wl)cos(wj)
1a{) =0

s

(1-12)

S

Equation (1-10) demonstrates the reduction of the number of grid points for error
function evaluation roughly by half (compared to central symmetry) and equation (1-11)
shows the reduction of the number of variables from (N,)(Na+1)/2 to (N, + 1)}(N,+1)/4,
b) Octagonal Symmetry [1]

For the quadrantal symmetric 2-D filter to be octagonal symmetric 2-D filier the

following equality in the frequency responses is established.

|5 (e, &™) | =|H(e™, ™) | (1-13)

and for its spatial response we have

h(n,,n,)=h(n,n) (1-14)

The number of grid points for error function evaluation is roughly reduced by half
compared to quadrantal symmetry. The number of variables which have to be
determined is reduced from (N° + N)/2 to (N+1)(N+3)/8.

The frequency response in eight folded symmetry is defined by:



N-1
—

H(e™,e™) =Y a(n,n)cos(wn)cos(w.n) -

(1-13)

4z

a(n,m) {cos(wn) Cos (w,m) + cos{wm) cos(uwn) )

ne mal)

1.4. COEFFICIENT QUANTIZATION ERROR

The coefficients of the transfer function are evaluated with a high degree of accuriacy,
In hardware implementation of any designed filter this coetfficient has to be presented in
a limited word length. To reduce the length of the coetlicients to the desired one. we
truncate the coefficients. If the quantization step is coarse, the filter may actually fail to
meet the desired specifications. Coefficients-quantization error introduces perturbations
in the zeros of the transfer function of FIR filter, which causes crror in the frequency
response. In the study of arithmetic errors, we shall be concerned with the sensitivitics

of digital filter networks to variations ir e multiplier constants. In the network
o

characterized by

H(z)=F(a,,8y,+++,2) (1-16)

where a,, a ,. ... are multiplier constants or the coefficients of the filter and H(z) is the

transfer function of the filter, the sensitivities are defined by

Ai(z)
da;

(1-17)

5,(2) =

In the study of arithmetic errors, the sensitivity analysis plays an important role. To



reduce the quantization cerror, we can design a filter with tinite word length in such a
way that the prescribed specifications are satisfied. To achieve this goal, various
lechniques have been presented in the literature. In this study, we explore those
techniques, modify them, introduce a new technique and finally extend these techniques

for designing 2-D FIR filters.

1-5 DESIGN TECHNIQUES FOR 1-D FIR FILTERS

The impulse responsc of a FIR filter can be obtained from the frequency response
through the inverse Fourier transformation. The impulse response obtained is of infinite
duration. The most straightforward approach to FIR filter design is to trencate these
infinite-duration impulse response sequences. This truncation eliminates the components
of the impulse response beyond certain points in n, and n, directions. This truncation
unfortunately introduces an unwanted oscillation in the passband and stopband of the

filters known as Gibbs'oscillations.

Instead of simply truncating the infinite Fourier series, the technique of windowing seeks
to reduce the Gibbs phenomenon by muitiplying the coefficients of the Fourier series by
a smooth time-limited window. Among the more popular windows are the Kaiser
window [7], the Hamming window [9], the Hann window [9], and the Dolph-Chebyshev
window [10]-[13]. One of the attributes of windowing is that it is an analytical
technique, whereas most other FIR design techniques are iterative in nature.

Windowing techniques generally enjoys a short design time but the results are not

necessary optimal. The application of the Kaiser window in case of sharp transition band



results usually in filters not meeting the specifications. Ahmadi IS] proposed a modificd

technique based on the Kaiser window to improve the above short comings.

A second FIR design technique (the frequency sampling method ) was originally
proposed by Gold and Jordan [14] and further developed by Rabiner ot al. [15). In this
technique, the desired frequency responses are specified at equally spaced frequencics,
and solved for the unit sample response h(nj of the FIR filter from these cqually spaced
frequency specifications. It is also desirable to optimize the frequency specification in
the transition band of the filter. This problem can be shown to be a lincar programming

problem with very few independent variables, but a large number of constraints.

Hermann [16] was the first to develop a method for designing optimal (in a Chebyshev
sense) FIR filters. By assuming that the frequency response of the optimal low-pass filter
was equiripple in both the passband and the stopband, and by fixing the number of
ripples in each band, Herrmann was able to writc down a set of nonlinear cquations
which completely described the filter. He then proceeded to solve these equations
directly, using a steepest descent method. The length of filters designed in this manner

was limited to about 40.

The interpolating technique proposed by Hofstetter et al. [17], [18] offers a more
efficient algorithm based on the Remez exchange algorithm capable of designing higher

order filters.



Parks and McClellan [19] formulated the lowpass approximation of the desired response
on two disjoint intervals, the passband and the stopband with a transition band left
unspecified.  Necessary and sufficient condition tor the best Chebyshev approximation
were obtamned from the classical alternation theorem, and the Remez exchange algorithm
was demonstrated to be an effective tool for the computation of these optimal filters.
Subscquently, this formulation was extended to include all types of lincar phase FIR

filters [22].

Rabiner [20]. [21] showed that linear programming offers an alternative method for
computing the best Chebyshev approximation.  Although lincar programming is very
flexible and can be used to approximate a wide variety of desired filter shapes, it is

comparatively slow and hence the length of the filters it can design is limited.

1-6 DESIGN TECHNIQUES FOR 2-D FIR FILTERS

Huang [23] proposed an extension of windowing technique in 1-D FIR filter design to
2-D FIR filter design. Perhaps the simplest technique with the shortest design time is the
windowing technique, but it gives suboptimal results. There is an improved method for
the design of 2-D FIR filters with a circular and rectangular cut-off boundary using the
Kaiser technique presented by Ahmadi [24]. This method utilizes the well-known Fourier
series method in conjunction with the Kaiser window. A nonlinear programming is
employed to obtain the parameter «.. The result shows that the proposed method requires
a filter with a lower order than direct use of the Kaiser window. It is restricted only to

the design of lowpass circular or rectangular cut-off boundary FIR digital filter.

10



Using the lincar programming technique, both frequency sampling and optimal (in the
sense of Chebysher approximation) 2-D filters have been successtully designed by Hu
and Rabinar [25]. Computational considerations have limited the filter impulse response
durations by 25 x 25 in the frequency sampling case and to 9 x 9 in the optimal design

case. This method also requires an extremely long design time.

The Remez exchange algorithm is extended for the design of 2-D FIR filter
approximating circularly symmetrical low-pass specification according 1o a weighted
Chebyshev error norm. Since the approximating function does not necessarily satisty the
Haar condition, the optimal solution is not necessarily unigue and a straightforward
extension of the 1-D exchange method may fail to converge. It is shown by Kamp and
Thiran [26] how the algorithm has to be complemented with a perturbation technigue in

order to force convergence under all circur-~tances.

One of the most popular techniques for designing a 2-D FIR filter is the McClellan
transformation which was first developed by McClellan {27]. then gencralized by
Mersercau et al. [28] for the higher order of transformation equation and elliptical cut-
off boundary. This method is based on the transformation of the 1-D FIR filter to 2-D
FIR filter by means of variable transformation. Design process in this technique splits
into two steps. First, the transformation parameters have to be determined 28], 129],
[30]. Second, the coefficients for the 1-D FIR prototypc have to be obtained by one of
the design techniques of 1-D FIR filter. This technique enjoys a short design time. The

efficient implementation exists in [31]. Also, this technique can not be used to
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approximate closely all magnitude functions. The result of this technique is not aptimal

. L. N
1 the minimax sense.

John H. Lodge and M. Fahmy proposed an iterative optimization technique, based on the
method of parallel tangents (PARTAN) [32] coupled with an efficient line scarching
technique for designing a 2-D FIR filter, The technique developed from the observation
that in a 2 parameter optimization problem the minimum point ofien lics along the lines
that join the zigzags of the stecpest descent path. PARTAN attempts to improve the
convergence by adding an extra line search for each iteration. The gradient vector has
to be calculated for every iteration. Optimization starts by finding an initial
approximation using one of the available windowing techniques. The 1, norm is employed
to approximate a prescribed magnitude. Larger values of p can be used to put more
emphasis on reducing the maximum error. The design time and computational complexity

incrcase very slowly as the filter size gets larger.

The Weighted Least Square ( WLS) Design technique was proposed by V. Algazi et al.
[33). This technique draws attention to a formal relation of the WLS to the Chebyshev
approximations and exploits this relation to develop efficient algorithms modifying
Lawson’s algorithm [34] for the design of minimax filters in one and two dimensions.
In 1-D, the algorithm converges exactly to the Chebyshev (and equiripple) approximation
and it provides an alternative to the Remez exchange algorithm. The extension to 2-D is
straightforward and the implementation quite efficient because of the simplicity of the

WLS design technique. However, the algorithm lacks the proof of convergence for
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optimal solution to the minimax design [35].

A new technique for the design of 2-D FIR and 1R filiers is due to Lampropoulos and
Fahmi [36]. The problem is formulated for FIR and 1R filters in such a way that the
performance index is a convex function of the optimization vector. The design technique
is based on Newton's method. Each iteration consists of N casily computed steps where
N is the number of parameters to be optimized. The proposed method enjoys a very high
rate of convergence and short design time compared with the most efficient techniques
now available [36]. The number of operations per iteration for the proposcd technique
is less than the other methods of the same family (Newton's method). It is highly
insensitive to the increase in the dimensionality of the optimization vector and because
of that it can be used for designing very high order digital filters. It can be used also to

design 2-D filters with the coefficients having a desired finite wordlength.

1.7. THESIS ORGANIZATION

The thesis is divided into five chapters. The second chapter consists of a brief
introduction on implementation problems with infinite precision coefticients and a survey
on possible design techniques for a I-D FIR filter with integer coefficients. Three
techniques are chosen for further investigation and modification. A new technique bascd
on discretization and reoptimization is introduced. Each design technique is cxplained
fully, and a2 number of examples at the end of each section are provided and the results

of these examples are used for a comparative study.
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Chapter three starts with the survey on the 2-D design technique with integer
coefticients, and it is followed by a direct extension of the discretization & reoptimization
(type 1&2) from [-D 1o 2-1D in filters with circular symmetry . The problems with direct
extension are discussed and the necessity of having a more practical technique is
considered, The McClellan transformation is considered as an alternative. The
characteristics of this transformation and design steps for the original McClellan
transformation are discussed. The original McClellan transformation with the circular
cut-off boundary is considered for this design technique. The transformation parameters,
t. are fixed to 1/2 for circular symmetry. By considering this fact. no multiplicrs arc

required for the tmplementation,

Chapter four investigates the possible realization technique for 1-D and 2-D FIR filters.
The implementation of the 1-D prototype filter employed in the McClellan transformation

and the 2-D designed filter using this technique are explained.

The final Chapter concludes the thesis by stating the results derived in the previous
chapters. The flowchart of the design technique one, discretization and reoptimization
(type 1), is provided in appendix A. In appendix B, the flowchart of design technique 2.
discretization and reoptimization type(2) is provided. Appendix C shows the lincar and

mixed integer programming procedure.
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CHAPTER TWO
DESIGN OF THE 1-D FIR FILTER WITH

INTEGER COEFFICIENTS

2.1. INTRODUCTION

The implementation of digital filters is achicved by storing sequence values and
coefficients in a binarv format with finitc-word-length register. The finite -word-length
constraint is manifested in a variety of ways. The cocfficients of a digital ftlter designed
by one of the techniques explained in chapter | are obtained with high accuracy. When
these coefficients are quantized, the frequency response of the resulting digital filter may
fail to meet the prescribed specifications. Therefore. it is often desirable to design filters
with coefficients requiring fewer bits. To achieve this goal several techniques have been

presented in the literature, some of which will be briefly explained in this section,

One of the simplest ways to design a filter with integer coefficients is by rounding the
infinite precision coefficients which satisfy the prescribed specification. Although in some
cases the resulting response is satisfactory, there is abundant evidence [371, [38] [39] that
the performance of a rounded solution can be quite inferior to the optimal one. Another
possible method can be achieved by letting the coefficients select the best rounding

solution for themselves. The most direct method of solving is to design an infinite
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precision coefficients prototype and then consider rounding cach coefticient value either
up or down. This simplc mcthod will produce a discrete solution which s an immediate
neighbour to the continuous solution. If a simple search is performed through all the
possible cases of rounding the continuous-solution coefficient values either up or down
for a problem with 128 coefficicnts, a total of 2'** filter frequency responses will have

o be computed,

In addition, the possibility that none of these immediate neighbours of the continuous
solution is able to meet 2 given specification exists. Thus any procedure of practical
interest must evaiuate a very much smaller

fraction of the possible discrete coefficient filter. At the same time, the ~.oroach must
have a good chance of detecting a feasible (not necessarily the optimum) discrete
solution, even if all the feasible discrete solution are located at a considerable distance
from the infinite precision solution. To achieve these desires several techniques have
been suggested to reduce the fraction of possible discrete coefficients filter and at the

same time, coefficients are allowed to be optimized for obtaining a feasible solution.

The branch and bound techrique for nonlinear discrete optimization due to Dakin [40]
has been utilized by Charalambous and Best [41]. The proposed technique is used for the
design of the recursive filter with finite word length coefficients. The technique can be
employed for a FIR filter by removing some constraints for establishing the stability
condition. The algorithm of Best and Ritter [42], [43] is used in this technique which

finds the minimum of a nonlinear function subject to linear constraints. The technique
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starts with solving the problem for the infinite precision coefticient and then by the
branching technique., new non-overlapping bounds for the coefficients (i) are applied 1o
the problem. If the continuous solution for the coefficients (i) is x, where

X, < x, <x° (2-1

where x;” and x;* are integer neighbours, the new constraint will be

X, > x5 (2-2)
The new feasible solution by considering new constraints is provided. This Process is
implemented for all branching elements and the best solution is then selected from among
all the feasible discrete solutions. This technique needed the enormous computations such
that they can be applied only to the design of filters of small orders. There is no

guarantee for obtaining the optimal solution.

Another technique for designing a IIR filter based on discretization and reoptimization
was suggested by Jing and Fam [44]. The infinite precision cocfficients are obtained at
the first step of design and after that the most sensitive coefficicnt is rounded up and
down to its neighbours. A nonlinear optimization algorithm is cmployed for cach of this
integer’s neighbours to find the new sets for the rest of the variable and the values of the
error function in these two cases. The minimum value for error function allows us to fix
the most sensitive coefficients to its corresponding integer value. This process continues
until the value for all the coefficients, becomes integer. Compared 1o previous techniques,
this technique is much faster but still there is no guarantee for optimal solution. This

technique will be fully explained in the following sections.
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Mixed integer lincar programming is another option which is suggested by Lawrence and
Salazar [37] to design a lincar phasc FIR filter, This mixed integer programming allows
the unknown cocfficients to take on integer values while the stop-band and the pass-band
ripples arc allowed to be non-integer. The branch and bound algorithm [45] has been
used in this technique. The formulation of the problem will be discussed in the following
section. They also showed how to use zero-one integer formulation to design FIR fiiter.
Zcro-one intcger programming is a special case of the integer linear programming
probiem. The decision variables for zero-one programming are restricted to two values.
0 or 1. The decision variables are the actual binary bits of the filter coefficients and can
be presented as follows:

H=1
= >4 2-3
h=Y" n 2 )

g0

where B is the number of specified bits for representing the coefficients and h;, 1s the
decision variable for this formulation. Another kind of formulation can be done for the
filters with powers of two coefficients. In this formulation, the filter coefficients are
constrained to be zero or powers of two by adding the following constraint

B-1l
Y b, =1 (2-4)

qe0

The computation time and storage requirements were considerably reduced by using zero-
one integer programming with constraint on the binary bits [37]. Although mixed integer

programming has a better chance of getting a optimal solution compared to other
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techniques [41], [44]. the computation cost increases exponentiatly with filter length; this

fact restricts the highest possibie order for the applying filter 1o 40,

FIR digital filters with discrete coefficient values sclected from the power-of-two
cocfficient space are designed using the methods of integer programming by Lim and
Parker [46]. In this technique coefficient values are expressed as a sum or difference of
two power-of-two, which allows for a simple multiplicrless implementation. Lincar
programming and quadratic programming algorithms arc employed for minimizing a
lincar objective function (minimax error) or (weighted least square error) subject to linear
constraints, respectively. Coupling these mathematical programming packages with a
suitable branch and bound algorithm, the depth-first branch and bound search approach
is the base concept of this approach. This technique can guarantee global optimality in
the minimax sense. Unfortunately, the very high cost in computation and time limits its

application to the design of linear phase FIR fiiters with N < 40.

Another efficient method in least mean square criteria is proposed by Lim and Parker
[47]. In this technique an efficient optimization routine is incorporated into a tree scarch
algorithm and a suitable branching policy is employed to optimize the rcmaining
unquantized coefficients of a FIR linear phase filter when one or more of the cocfficients

takes on discrete value. The design procedure is as follows [47]. The tree structure for

the case where L=3 is displayed in Figure (2-1).

Step 1: Design a filter with infinite precision coefficients.
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Step 2: Select a coefficient and fix it at L different discrete values in the vicinity of the
continuous solution.

Step 3: Employ the optimization routine to optimize the remaining unquantized
coctticients for L problems.

Step 4: Are all coefficients discrete? If yes, stop. If not, go to step 5.

Step 5: Select a second coefficient and fix it at L different discrete values.

Step 6: Employ the optimization routine to optimize the remaining unquantized
coefficients for L* problems.

Step 7: Select the best L problem and retum to step 4.

The least squares criterion algorithm is suitable for designing FIR filters with N < 90

if the discrete coefficient grid is the power of two [48]. However some skilful operations

to approximate the minimax criteria using the LMS criteria are necessary. Even then

good filter characteristics are not ensured [48].

Bateman and Bedeliu [49) proposed the technique based on the delta modulation concept.
The basic idea behind this approach is to convert the filter coefficients into a sequence
by a delta modulation like scheme where instead of allowing only the values -1 and +1
the value zero is also allowed. As in delta modulation, over-sampling is required to keep
the error at an acceptable level. This corresponds to interpolating the original impulse
defined factor. Unfortunately, a characteristic of this structure is the very high sampling
rate with the consequence that the number of taps is very large. In the following section
several algorithms for the design of integer coefficients 1-D FIR filters will be explained

and modified.
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2.2. DISCRETIZATION AND REOPTIMIZATION (TYPE 1)

In this section, we introduce 2 technique to design a 1-D FIR filter with integer
coefficients using nonlinear programming. The approach starts with an optimal design
with infinite precision coefficients which will be called the Infinite Precision Coefficients

design or IPC design throughout this chapter. The details of the proposed technigue are

as follows.
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The whole process ~onsists of an N times optimization process where N is the number
of cocflicients which has to be optimized through this optimization process. In cach
itcration the number of variables is reduced by one. Obviously, the total number of
variables is cqual to N-i where i is the iteration number. This technique for finding a
fixed variable in cach iteration is based on rounding up and down all the coefficients
successively and scarching for the one with the least effect on the cost function. Now,
that specific variable can be fixed to its integer value and reoptimization can be done for

the remaining variables.

In this approach, the least square error is the approximation criterion and nonlinear

programming is the tool for solving this problem.

2.2.1. DESIGN STEPS

In this technique, the number of specified bits for representing the coefficients is the first
data which has to be provided by the user. If the infinite precision coefficients of the

designed filter are b ;, where i=(N-1)/2 , N is the order of filter, if

-1g b, s+1 (2-5)

then b ; can be shown by the following form

=G (2-6)

i B-1

where B is the number of the bits including the sign bit and a, is the integer coefficients
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for the prescribed filter. Equation 2-6 shows that for obtaining the nteger coefficients
the prescribed magnitude response has to be scaled by 2 "' but for arbitrary
specification, other than equation (2-5), a scaling factor could be used in order to recover
the desired range.

Various steps of the algorithm are as follows:

1) Find the infinite precision coefficients for the designed filter by nonlincar

programming and the following least square error:

Nt

E=Y [H{@)- X a() cos(w,)]’ (2-7)
u'rﬂ i=l}

where a(i) is the coefficients of the designed filter, j is the number of frequency points
for evaluation of the error function and @ € [0, =]

2) Set i=0

3) Seta (i) = a * (i) where a * (i) is the round up value for a(i) and find the value of
error function, equation (2-5); the resulting value can be shown by E * (i)

4) Seta (i) = a~ (i) where a ~ (i) is the round down value for a(i) and find the value of
error function, equation (2-5); the resulting value can be shown by E - (i)

3) Find E (i) = min{ E * (i), E * (i)} and save the value

6) Set a (i) to its initial value and state i=i+1

7) Repeat steps 3-6 untili > N-1/2

8) Fix the value of the corresponding coefficient to the minimum error function

calculated within steps 3-7toa * (i) ora - (i)
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Y) Go to step 1 and do the optimization routine to find a new set of values for the rest

of the ¢lements of vector A

A= (a(l),a(2),....,a* () ora  (i),....a(N-1/2)) (2-8)
The ith clement of the vector A, a(i), has been fixed in step 8

10) repeat steps 1-9 until all components of the vector A convert to integer value.

In Appendix A, the flowchart of this algorithm is shown. In the following section several

cxamples have been provided to illustrate the versatility of the design technique.

2.2.2. EXAMPLES

Example 1 : Design a low pass [-D FIR filter with the order of 19, B=8, and the

following specification:

1 Ozswzl
| Hel®) |=

0 25wsn

Table 2-1 shows the infinite precision coefficients for example 1 using nonlinear
programming. Table 2-2 shows the integer coefficients for designed filter using this
technique and Table 2-3 shows the characteristics of design technique for example 1.

Figures 2-2 and 2-3 show the magnitude response of IPC design and proposed technique

1, respectively.
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a@ = 4968E+00
a(l) = .6223E+00

a(2) = .6199E-02

a@d) = - I71IE+00 | a(6) = .2975E-02 | M

-.254E-01

Il

a(4) = - 311E-02 N

a(3) = .6906E-01 ad) = - I47E-02

=, 5939E-02

Table 2-1: The infinite precision coefficients for example | using no

nlinear programming

a(0) = 63
a(l) =79
a2) =0

T
a3) = -21 ad) =0
aH) =0 a(7) = -2
a@d) = 8§ a8y =0

a =0

Table 2-2: The integer cocfficients for example 1 using technique |

DESIGN TYPE | #R.TIME(SEC) | M.M.P M.M.S

IPC DESIGN

1.0015 .0014

D&R (TYPE 1)

150

9961 0126

Table 2-3: Characteristic of two design techniques in example |

Example 2 : Design a high pass I-D FIR filter with the order of 19, B=8. and the

following specification:

I Hi(ejo) |=

240<Tw

0zw=xl5
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Figure (2-2) : The magnitude response for example 1 with infinite precision coefficients
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Table 2-4 shows the infinite precision coefficients for example 2 using nonlincar

programming. Table 2-5 shows the integer coefficients for designed filter using this
technique and Table 2-6 shows the characteristics of design technique for example 2.

Figures 2-4 and 2-5 show thc magnitude response of IPC. design and technique 1,

respectively.

a(0) =.4279E+00 | a(3) =.1469E+00 | a(6) = .6409E-01 | a(9) =.9953E-02

a(l) =-.612E+00 | a(4) = -.100E+00 | a(7) = -.194E-03

a(2) =.1313E+00 | a(5) = -.389E-01 a(8) = -.289E-01

Table 2-4 The infinite precision coefficients for example 2 using nonlinear programming

a(0) = 54 a3) = 18 a(6) = 8 a9) =1
a(l) = -78 a@d) = -13 a(M =0
a2) = 17 a(d) = -4 a(g) = -3

Table 2-5: The integer coefficients for example 2 using technique 1

DESIGN TYPE | #R.TIME(SEC.) | M.M.p M.M.S
IPC DESIGN | 5 1.0207 .0i55
D&R (TYPEL) | 60 1.0087 0164

Table 2-6: Characteristics of two design techniques in example 2
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Figure (2-4) : The magnitude response for example 2 with infinite precision coetticients

Y



MmocC—1—~zZO0O>» X

! 2 3
FREQUEINCY

Figure (2-5) : The magnitude response for exarnple 2 using Tech.1



Example 3 : Design a band pass 1-D FIR filter with the order of 19, B=%. and the

following specifications:

(1 15sw<?2
|H..(e"“’) | =3
0 Oswsl
{ 25swsTm

Table 2-7 shows the infinite precision coefficients for cxample 3 using nonlinear
programming. Table 2-§ shows the integer coefticients of the designed filter using this
technique and Table 2-9 shows the characteristics of the design technique for example
3. Figure 2-6 and 2-7 show the magnitude response of IPC design and technique |

respectively.

———— e e
a(0) =.3359E+00 | a(3) =.1869E+00 | a(6) = .7687E-02 | a(9) =.5828E-01

a(l) = .104E+00 | a(4) =.1825E+00 | a(?) = -.559E-0!

a(2) = .504E+00 | a(5) = -.723E-01 a(8) = -.210E-01

Table 2-7 The infinite precision coefficients for example 3 using nonlinear programming

a(0) = 42 a(3) = 23 a6) =0 a9 =7
a(l) = -13 a(4) = 23 a(7) = -7
a(2) = -64 as) = -9 ag) = -2

Table 2-8: The integer coefficients for example 3 using technique |

)
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DESIGN TYPE | #R. TIME(SEC) [ M.M.P M.M.S
IPC DESIGN 10 1.0128 0254
D&R (TYPED) 140 99218 0298

Table 2-9: Characteristics of two design techniques in example 3

Example 4 : Design a stop band 1-D FIR filter with the order of 19, B=8, and the

following specifications:

[0

| H.'(eju) | =5

Table 2-10 shows the infinite precision coefficients for example 4 using nonlincar

programming. Table 2-11 shows the integer coefficients of the designed filter using this

15swsg2

Oswsl
25swsTw

technique and Table 2-12 shows the characteristics of the design technique for example

4. Figures 2-8 and 2-9 show the magnitude response of IPC design and technique 1,

respectively.

a(0) =.6632E+00
a(l) =.1035E+00

a(2) =.5066E+00

—

a(3) = -.183E+00
a(4) = -.184E+00

a(5) = .7137E-01

a(6) = -.793E-02
a(7) = .5578E-01

a(8) = .2310E-01

a(9) =-.585E-01

Table 2-10: The infinite precision coefficients for example 4 using nonlinear

programming
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a(0) = 84 a(3) = -23 a(6) = -1 o) = -7
a(l) = 13 a4) = -23 ah) = 7

a(2) = 65 ad) =9 a®) = 2

Table 2-11: The integer coefficients for example 4 using technmique 1

DESIGN TYPE | #R. TIME(SEC.) | M.M.P M.A.S
{PC. DESIGN 10 1.0257 D134
D&R (TYPEI) 70 1.0202 0197

Table 2-12: Characteristics of two design techniques in cxample 4

Example 5 : Design a low pass 1-D FIR filter with the order of 49. B=8. and the

following specification:

1 0sw=<03
[H,'(eju) [=

0 06cwsx

Table 2-13 shows the infinite precision coefficients for example 4 using nonlincar
programming. Table 2-14 shows the integer coefficients of the designed filter using this
technique and Table 2-15 shows the characteristics of the design technique for example

5. Figures 2-10 and 2-11 show the magnitude response of IPC design and technique 1

respectively.
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a0} = [1317E+00

a(l) 2733E+00

a(2) = 2445E+00
a(3) = 2009E+00
al4) = [ 1485E+00
as) = 9378E-01

a(6) = S4131E-Q1

a(?) = .1997E-02
a(8) = -.268E-01

a(9) = - 422E-01
a(10)= -.454E-01
a(11)= -.393E-01
a(12)= -275E-0t

a(l3)= - 137E-01

a(ld) = - 137E-02
a(15) = 7842E-02
a(16) = .1279E-01
a(17y = [1374E-01
a(18) = .1166E-01
a(19y = .7889E-02

2(20) = .3873E-02

a(21)= 4880E-G3
a(22)= - 163E-02
423)= - 2ME-02

W23 = - 227E-02

Table 2-13: The infinite precision coefticients for example 5 using nonlinear

programming
a0y = IS=
al) = 34
a(2) = 31
a3) =25
a4) = 18
aid) =11
a) =5

a(?) =0

a(8) = -3
a@) = -5
a(10)y= -5
a(ll)= -4
a(l2)= -3
a(13)= -1

a(l4) = 0
a(l5) =1
a(l6) = 1
a(l7y =1
a(18) =1
a(i9) =0
a0) =0

a)=20
a(2)= 0
a(23)=0
alyh)= 0

T — e ——— er—— e e—————— e
e e e ———— e —— e ————————

Table 2-14: The integer coefficients for example 5 using technique 1
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DESIGN TYPE | #R. TIME(SEC) | M.ALP MoALS
[PC. DESIGN 40 1.0007 0015
D&R (TYPE!D) 650 98099 0163

Table 2-15: Characteristic of two design techniques in example §

2.3. DISCRETIZATION AND REOPTIMIZATION (TYPE 2

One of the problems in discretization & reoptimization {type D) appears when one of the
very last remaining coefficients which has to be determined is also the most sensitive
coefficient. In this case any small change in the value of this cocfticient can drastically
affect the total response of the filter in such a way that the desired specification tails to
be met. To prevent this. the most sensitive coefficient can be determined among all the
remaining coef{icients at each iteration, The response degradation may be greatly reduced

by readjusting other remaining coefficients.

In this section, we employ the technique proposed by Zhonozgi J ing and T.Fam [44] to
design a FIR filter with integer coefficients. Similar to technique one, nonlincar

programming will be utilized. The design steps for this technique are as follows,

N-1

- .
E=Y [H{e™-T al) cos(w,/)]’ (3-3)
W(W :'-0
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2.3.1. DESIGN STEPS
In this technique, the number of specified bits for representing the coefficients is (B)
which includes the sign bit. If the infinite precision coefficients of the designed filter are

b ,, where i=(N-1)/2 , N is the order of filter, if

-15 b, s+1 3-1

then b | can be shown by the following form

pre

where a; is the integer coefficients for the prescribed filter, Similar to technique 1, it is
obvious that the proper scaling in the prescribed magnitude response in order to recover
the desired has to be applied. The design steps with the required explanation at cach step
are as follows:

1) Set k=0

2) Find the infinite precision coefficients for n=(N-1/2); N is the order of the filter. The

lcast square error for this formulation is as follows:

N-1
E=Y [H{e™)- ¥ a, cos(w,N]? (3-3)
,,‘,ﬂ i=0

Where H(e®) is the ideal frequency response and a, are the coefficients of designed
filter. The j is the number of frequency points for evaluation of the error function and

€0, 7



4) Find the most sensitive cocfficients among (M) coetficients. Based on equation (1-17)
and the definition of a derivative, the new form can be written in the form of equalion

(3-4) .

HOO X e XX = HOX X v AL
HX XX X))

S, (=1

HO X0 X X)) = H X X -AY LY

. (3-4)
HX Xy X0 X)

+]

where A x; is the variation for x; and equal to one. Equation (3-4) will be calculated for
all the coefficients and finally the assumed coefficient a, with the maximum sensitivity
will be chosen.

5) Set 3, = a; * where a; * is the rounding up value for a, and solve the following

optimization problem

E =E(a ., (3-5)
where £ * is the value of error function and A, * is the vector with n-1 remaining
variables which are determined in the optimization process.

5) Set 3, = a; ~ where 2, " is the rounding down value for a, and solve the following

optimization problem:
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E =E(a .A,.) (3-6)

where E s the value of error function and A, ~ is the vector with n-1 remaining
variables which are determined in the optimization process.

6) Find E = min{E* , E'} and fix the vector A (coefficient vector) to (3,*.A,,*) or (&
+Aw1) 1) Repeat steps 3-6 until all components of the vector A=(a,, a,.....a,) convert 1o

integer value.

The flowchart of this algorithm is provided in the Appendix B. In the following section

several examples have been provided to illustrate the versatility of the design technique.

2.3.2. EXAMPLES

Example 1 : Design a low pass 1-D FIR filter with the order of 19, B=8, and the

following specifications.

1 Oswsgl
| H(e!) | =

0 25wsT

Table 2-16 shows the integer coefficients of the designed filter using this technique and

Table 2-17 shows the characteristics of the design technique for example 1. Figure 2-12
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rigure (2-12) : The magnitude response for example 1 using ech.2
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shows the magnitude response of the designed filter using technique 2.

af0) = 64
a(l) = 80
a) =0

a(®) =0
ah =-3
a8y =0

a(9) = 1

Table 2-16: The integer coefficients for example 1 using technique 2

DESIGN TYPE | # R. TIME(sec.) | M.M.P M.M.S
D& RTYPE2 | 330 1.0078 ‘ .00781

Table 2-17: Characteristics of technique in example 1

Exampie 2 : Design a high pass 1-D FIR filter with the order of 19, B=8, and the

following specifications.

| H(e") |=

Table 2-18 shows the integer coefficients of the designed filter using this technique and
Table 2-19 shows the characteristics of the design technique for example 2. Figure 2-13

shows the magnitude response of the design technique 2.

2wz

Osw<ls
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Figure (2-13) :The magnitude response for example 2 using Tech.2
- -

47



a(0) = 535
aly = -79
a2y =17

a3y =19

ad) = -13

n

3(5) = -

ae) =8
a7y =10
ag) = -4

a9y = |

Table 2-18: The integer coefficients for example 2 using technique 2

DESIGN TYPE

#R.TIME(S)

M.M.P.

M.M.S.

D& RTYPE2

160

1.0156

01599

Table 2-19 : Characteristics of design technique in example 2

Example 3 : Design a band pass 1-D FIR filter with the order of 19, B=8, and the

tollowing specifications:

1 15cw<2
|Hi(eju) | =
0 Oswsl
| 25swsm
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Figure (2-14) :The magnitude response for example 3 using Tech.2
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Table 2-20 shows the integer cocfficients of the designed filter using this technique and
Table 2-21 shows the characieristics of the design technique for example 3. Figure 2-14

shows the magnitude response of the design technique.

a(0) = 43 a(3) = 23 a6y = 1 a9 =7
a(l) = -13 ad) = 23 a7y = -7
a(2) = -65 a(s) = -9 a®) = -3

Table 2-20: The integer coefficients for example 3 using technique 2

DESIGN TYPE | #R.TIME(S) M.M.P M.M.S

D & R type 2 400 1.0120 .0281

Table 2-21: Characteristics of design technique in example 3

Example 4 : Design a stop band 1-D FIR filter with the order of 19. B=8. and the

following specifications:

0 15sws2
| H (/) | =4
1 Oswsl
A5<wen

Table 2-22 shows the integer coefficients of the designed filter using this technique and
Table 2-23 shows the characteristics of the design technique for example 4. Figure 2-15

shows the magnitude response of design technique.
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Figure (2-15):The magnitude response for example 4 using Tech.2

51



a(0y = 85 a(3) = -23 a(6y = -1 a@) = -7
a(l) = 13 a(4) = 24 af) = 7
a(2) = 65 a9 =9 a(®) = 3

Table 2-22: The integer coefficients for example 4 using technique 2

DESIGN TYPE | #R.TIME(SEC) | M.M.P M.AS

D&RTYPE2 | 120 1.0281 0207

Table 2-23: Characteristics of two design techniques in example 4

Example 5 : Design a low pass 1-D FIR filter with the order of 49, B=8, and the

following specifications:

1 0<ws<0.3

| H{e™) |=

0 06swsx

Table 2-24 shows the integer coefficients of the designed filter using this technique and
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Figure (2-16):The magnitude response for example 5 using Tech.2



Table 2-25 shows the characleristics of the design technique for example 3. Figure 2-16

shows the magnitude response of the design technique.

a(® = 18 a7y =0 alldh)y =40 alh=10
afl) = 35 a(s) = -3 a(ld =1 a)=0
a2) = 31 ad)= -5 a(le) = 2 a(23)=0
a(3) = 26 a(l0)= -6 a(lh)y =2 aRy)=0
ad) = 19 a(ll)= -5 a(18) = 1
as) = 12 a(12)= -3 a(l9) = 1
a(6) =5 a(l3)= -2 a(20) =0

Table 2-24: The integer coefficients for example 5 using technique 2

DESIGN TYPE { #R. TIME(Sec) | M.M.P M.A.S
D & R TYPE2 2280 1.0007 .0170

Table 2-25: Characteristics of design technique in example 5

2.4. MIXED INTEGER LINEAR PROGRAMMING

The techniques discussed in the previous section do not guarantee an optimal solution.
To obtain an optimal solution, in this section. we employ the technique proposed by
V.B.Lawrence and A.C.Salazar [37] to design a FIR filter with integer coefficients. In
contrast to previous techniques linear programming wili be utilized. A brief explanation

of lincar programming is provided in Appendix C. Formulation of the problem and

54



several examples will be provided in this section.

There are two avaiiable programs for solving mixed linear integer programming which
are used in this section and there both employ the branch and bound echnique. The Nt
one is known as Mint algorithm and second one is a commercial package named LINDO,
The latter one is utilized in most of the examples but there are some examples which are
solved by the former program. Comparison of these two technigues will be provided

the end of this chapter,

2.4.1. LINEAR PROGRAMMING FORMULATION

We now sct up the filter design problem in such a way that it can be solved by lincar
programming. An optimum set of coefficients that gives the best approximation of H(¢™)
to a desired magnitude function G(e **) in the minimax scnse will be the solution to our

problem. The error in the approximation is defined by

E(e™) = G(e™) -H(e™) (+-1)

The desired magnitude function G(e ™} is a real valued function. which for our purposes
will be defined only at a discrete set of frequencies ( w ) where k=1, 2..... K. The

frequency response of the designed filter will be

N-1
-

He™) =a,+2Y a,cos(w,)

in]

(4-2)
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where N s the order of the filter.
For clarity of illustration, the linear programming problem is formulated for a band-pass

filter that best approximates the desired magnitude characteristics formulated, as follows

Gle)=1 Sfor the pass band region woSw S w
' (4-3)
=7

G(e™)=0 or the stop band regions 0w, <w w,o=w
by A X A

1 L K

where the passband and stopband frequency regions are (wy, -w,,) and (0 -w,;).(w,. ),
respectively. From the above-mentioned characteristics, the following constraints for this

design can be written as follows

1-8,<H(e"™) < 1+§, Jor the pass band region  w, S w Sw
- (4-4)
H(e™™ =3, Jor the stop band regions  0<w, <w, wEw ST
where 6,. 6, are ripples in the passband and stopband regions, respectively.
The lincar programming problem is to minimize
f(al $6‘_3) =CX (4-5)

where C={c, .¢,. 0.0, ..., 0) with [(N-1)/2]+3 elements and ¢,, ¢, are weights for
8. 5,

subject to

56



AX < B (-t
C=X=<F?F -
where Nois an [(N-1)/21+3 vector whose third o [(N-1).2]+ 3 clements are the filter

coeflicients. The first and the second elements are the passhand and stophand nipples,

X< 1 (4-¥)

The matrix A is a 2K by {[{N-1)/2]+3} constraint matrix whose elements are cither -1,
0.+1. or x[2cosw, i}. where i varies from 1 to [(N-1)/2]. B is a 2K vector whose
clements are either -1, 0. or +1. A and B are [(N-1)/2+3] vectors that specity the upper

and lower bounds on the vector X.

2.4.2. FORMULATION OF MIXED INTEGER LINEAR

PROGRAMMING

The decision variables, a;. obtained by the above formulation are the infinitely precise
coefticients. When these variables are quantized to a fixed number of bits, the resulting
solution is no longer optimal. To obtain an optimal solution. the eftects of coefficients
Quantization should be included in the formulation of the problem. Equation (4-4) can

be written as
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o
...,_

i , 22 a cos(wi) < %1 for W =w, = w,
-1

(4-9)

htNYal

2 ﬁ . y ] *
8,04, £23 acos(w N <0 for 0=wSw, W, <w s

In formulating a mixed integer programming problem, if the symbol B represents the

number of bits including the sign bit then the following equation can be written:

a.-= ! (4'!0)

where a; is the intcger solution to the problem and b is the number of necessary bits
to represent the integer part of biggest infinite precision cocfficients.
By substituting equation (4-10) into equation (4-9) and scaling the inequality by 2*™ the

final result will be

a\-l

-5, +a,+ "’Z a,;cos(wiy S 2281 for w,<w<w,
isl
4-11)
N-172
-8,+a,£2Y acos(w ) <0  for O0<w<w,  w <ws=7
iel ' N
(
@56, sa,
B,<8,<B,
where 3 (4-12)
2B-blgg 2871
N-1
i=0 1, I e
|
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Ditferent values for o, .a, . 3, and 3, in the following examples have been examined.,
The results show that in most of the cases to prevent an unbounded or a nonfeasible
solution. values for these parameters should be greater than one, Although there s no
limitation on the upper bound of these parameters. an unnecessarily high upper bound
for these parameters enlarges the feasible region and increases computation cost withow

any further improvement in the final result.

2.4.3. EXAMPLES

Example I: Design a low pass 1-D FIR filter with the order of 19, B=8. and the

following specifications:

| Hie™) |=

0 2cwsw

Table 2-26 shows the integer coefficients for example 1 using mixed tnteger lincar
programming. Table 2-27 shows the characteristics of the design technique for example

1. Figure 2-17 shows the magnitude response of the design technique.

2(0) = 58 a(3) = -15 a6y = 3 a9) = -2
a(l) = 77 ad) = -6 a(7) = 3
a(2) = 10 a(5) = 0 a8 =0

Table 2-26: The integer coefficients for example 1 using technique 3
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Figure (2-17) :The magnitude response for example 1 using linear programming
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DESIGN TYPE

#R TIME(SEC.)

ALALP

MUALS

LINEAR.PROG.

40

Lol

t

I

Nt b

Table 2-27: Characieristics of design techniques 3 in example |

Example 2 :

following specifications:

| Hie™*) |=
0

2w

Oswsls

Design a high pass 1-D FIR filter with the order of 19, B=8. and the

Table 2-28 shows the integer coefficients of the designed filter using this technigue and

Table 2-29 shows the characteristics of the design technique for example 2, Figure 2-18

shows the magnitude response of the design technique 3.

a(0) = 57 a(3) = 23
a(l) = -80 a(4) = -11
a2) = 12 a(d) = -9

ab) = 11
aMh =6
a(8) = -6

il
'
"

a(9)

Table 2-28: The integer coefficients for example 2 using technique 3

DESIGN TECH.

#R TIME(SEC.)

M.M.P

M.M.S

LINEAR PROG.

60

1.0312

.0644

Table 2-29: Characteristics of the design technigue in example 2
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Figure (2-18) :The magnitude response for example 2 using linear programming
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Example 3 : Destgn a band pass 1-D FIR filter with the order of 19, B=8§, and the

following specifications:

1 15swsg2
;H‘(eiu)|=l
0 D<swxl
25<wsn

Table 2-30 shows the integer coefficients of the designed filter using this technique and

Table 2-31 shows the characteristics of the design technique for example 3. Figure 2-19

shows the magnitude response of the design filter.

a0) = 44 a(3) = 22 a(6) = 2 a(9) = 8
a(l) = -12 a(d) = 22 a(7) = -8
a2) = -68 as) = -6 a(8) = -4

Table 2-30: The integer coefficients for example 3 using technique 3

DESIGN TECH. R. TIME(SEC.) M.M.P. M.M.S.

LINEAR PROG. 100 1.0156 .0546

Table 2-31: Characteristics of the design technique in exampie 3



Example 4: Design a stop band I-D FIR filter with the order of 19, B=3%. and the

following specifications:

(0 15swx2
|H,(e"u) | =5
1 Oswxl
25<w<Tn

Table 2-32 shows the integer coefficicnts of the designed filter using this technique and
Table 2-33 shows the characteristics of the design technique for example 4. Figure 2-20

shows the magnitude response of the designed filter.

a(0) = 85 a(3) = -22 a6) = -1 a(9) = §
a(l) = 12 a(d) = -25 a(?) = 7
a(2) = 66 a(5) = 8 a®) = 4

Table 2-32: The integer coefficients for example 4 using technique 3

DESIGN TECH. R. TIME(SEC.) M.M.P. M.M.S.

LINEAR PROG. 100 1.0390 .0168

Table 2-33: Characteristics of the design technique in example 4
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Figure (2-20) :The magnitude response for example 4 using linear programming (example &)
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2.5. DELTA MODULATION

In this section, we implement the technique proposed by Mark R. Bateman [4+9] to design
FIR filters with the coefficients equal to 0, -1, and 1. The basic idea behimd this
approach is 1o convert the filier coefficients into a sequence of =1, +1 and 0 by dedta

modulation-like scheme.

A delta modulator encodes an analogue input signal into binary pulses which are
conveyed to the terminal cquipment for transmission, These pulses are also locally
decoded back into an analogue waveform by an integrator in the feedback loop and
subtracted from the input signal to form an error which is quantized in one of two
possible levels depending on its polarity. The output of the quantizer is sampled
periodically to produce the output binary pulse. Figure (2-21) displays a hinear delta
modulation system. Figure (2-22) displays lincar delta modulator waveforms when

encoder is correctly tracking the input signal.

The structure of the design is based on the idea of delta modulation and consists of o
transversal filter with tap coeflicients restricted to -1. 0. 1. and cascaded with an
accumulator. As in delta modulation the sampling rate must he sufticiently high to obtain
acceptable performance with the consequence that useful transversal filters are v ~y long

(many taps).

In this approach the assumed delta modulator applies to the filter impulse response

to yield a filter with only the coefficients 0, -1, +1. As in delta modulation over-
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sampling is required to keep the error at an acceptable level, it corresponds to
interpolating the original impulse response h(n) by a facior k to get a new sequence

(h.(n)). The frequency response corresponding to h(n) and h,(n) is as follows:

H(w)=Y h(n)er" (5-1)

ns0

H(w)=Y" h(m)e7 (5-2)

n=0

The block diagram for the filter structure is shown in Figure (2-23).

Cuantizer
Anatogue Sampter 4ty _Decoder
input +5 *s L
— l -—o/o—r-u- = ==—rdIntegrator
Al =S|T seconas)] Digital Analogue
output output
Integrator ¢

Local decoder
Figure (2-21) Delta modulator and decoder.

it

Figure(2-22) linear d.m. waveforms when encoder is correctly tracking the input signal
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Figure (2-23): The block diagram for the filter structure.

Let r(n) be the sequence consisting of the +1, -1, and 0. we desired the running swm of

the sequence r(n) to be a good approximation to the sequence h,(n)

E=Y hm-aY rm)®

(5-3)
a=0 el

E, is within a prescribed tolerance. 4, is the scaling factor corresponding to the stepsize
in delta modulation.

2.5.1. DESIGN STEPS

1) Specify a interpolation factor, K.

2) Determine the upper bound for the A, by

A<

=

(5-4)
where

v=0.43616(h+a)/b?+a? (5-5)
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a and b are passband and stopband edges respectively.

3) Determine the order of the filter by

=1

r !
N=2 k [ (5-6)
(h~a) rA‘J

hy (n) is truncated at + N and delta modulated with the step size A,. Therefore the

resulting order for this filter is 2N.

4) Obtain h, by any one of the optimization routines, and the tfollowing least square error

L)

L 4 s
wht 5'7
e=3 | H=3 b (8-7)

where H, is the ideal specifications of the interpolated filter.

5) Sct the high estimate for A, as follows

A =max | h(my-hn-1] . : (5-8)

6) State r(n)=0. for0 < n < 2N.

7) Evaluate E, in cquation (5-3). Set E = E,.

8) Seti=0.

N Ifr@) = 1 go to step(17) . otherwise increment r(i) by a uni-.
10) Setj = i+1.

I1) Find a value for (j) in such away that r(j) = -1.
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12) Decrement r(j) by one and evaluate new B,
IHIE < E set E = E . and go 1o step (25) otherwise resel ri) toos tormer value.
14) Find a value for (k) in such away that K > jand rik) = -1,
15) Decrement r(k) by one and evaluate 1.
IO TE, < E set E = E_ . and 20 10 step (25) otherwise reset rik) to its former value
and go to step 17.
17y 1f r(1) = -1 go to step(23) . otherwise decrement r{i) by 1 unit.
I18) Set] = t+1.
19} Find a value for (1) in such away that () = 1.
20) Increment r(1) by one and evaluate new E,.
ADIE < E setE = E | and go 1o sicp (25) otherwise reset rtl) o its tormer value,
22) Find a value for (m) ilj such a way that m > [and r(m) = 1.
23) Increment r(m) by one and cvaluate E,.
24) ITE, < E set E = E, . and 2o 10 step (25 ) otherwise reset r(k) to its former value
and go to step 23.
25)Ifi < 2N .seti =i+ [, and 20 10 siep (9).
26} Repeat steps 8 - 25 until no more changes in the sequence (i) are made.
27) Set
—_—=0 (3-9)
and find the new value for A,

kg

Y I3 wpy | him)

A;;=MU pet) _ (5-]0)
v n
> Y np)

nal} pai}
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28) Repeat steps 6-27 until no more improvements in the value of E, and no more

changes in the sequence r(n} are made.
29) Perturb the value of A slightly and repeat steps (6-28)
unil E, reaches to the prespecitied minimum error.

30) Decimate the resulting output by following equation

k-1
Hw) =3 Y A (@)
k m.-(l
where
e w +2mm,
k
and

v
H()=3,(1-¢2)7 Y rimye 2=

n=l)

2.5.2. EXAMPLES

(5-11)

EXAMPLE 1: Design a low pass FIR filier with k = 7 and the following characteristics

[ [ 0<w=<l

H{er) =
10 2 w=sT

v=0.43616(2+1)y2?+1? =2.9258

IA
A



The maximum value for A,

A = 0.03971

7 T

J\’ =

()
[
12

- : 00- l
— - )X 7wX . _\9
(7 7) /

2N =64
The characteristics of this design technique are shown in table (2-34). The magnitide

response of this filter is displayed in Figure (2-24).

DESIGN TECH. # R TIME (SEC) | M.ALD, MUALS

DELTA MODULATION | 60 11037 844

1

Table 2-34: The characteristics of the example 1 using Delta modulation technigue

EXAMPLE 2: Design a low pass FIR filter with k = 3 and the following characieristics

1 0=w=<03

£

H(e™) =

(=)
o
o
A
£
A
|

v=0.43616(0.6+0.3)/0.6*+0.3% =0.2633

AkS%
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Figure (2-24) : The magnitude response for example 1 with the cocfficients +1, 0, -1
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Figure (2-25) : The magnitude response with the coefficients +1, 0, -1 ,example 2
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The maximum value for 3,

3, = 0.02928

|'\r=2 3 1:36

96 _ %3) X 7% 0.02925

Y
D

IN =72
The characteristics of this design technique show in table (2-36). The magnitude response

of this filter is displayed in Figure (2-25).

DESIGN TECH. # R TIME (SEC) | M.M.P. M.M.S
DELTA MODULATION | 360 1.0948 05721

Table 2-35: The characteristics of the example 2 using Delta modulation technigue
g q

DESIGN TECH. R. TIME (SE_C.) M.M.P M.M.S
I.P.C 5 1.0015 .0014
D & R(TYPE 1) 150 99613 .0121
D & R(TYPE 2) 330 1.0078 + 0078
MiXED INTEGER PROG | 400 (60) 1.0119 .0158
DELTA MODULATION 60 1.1037 .0844

Table 2-36: The comparison table for example |
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DESIGN TECH, # R, TIME (SEC)H | MALD MUMLS
I.P.C 5 1.0207 ANSS
D& R(TYPE ) 60 1.0087 AOloed
D & R(TYPE 2) 160 1.0136 LS9
MIXED INTEGER 400 (60)! 1.0312 0644
PROG.
Table 2-37: The comparison table for example 2

DESIGN TECH. _I_r‘:‘ R. TIME (SEC.) | M.M.P M.M.S
ILP.C 10 1.012¢ 0254
D & R (TYPE 1) 140 99218 0298
D & R (TYPE 2) 400 1.0132 .0281
MIXED INTEGER 500 (100) 1.0156 0546
PROG.

Table 2-38: The comparison table for example 3
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DESIGN TECH. # R. TIME (SEC.) | M.MLP M.M.S
[.p.C 10 1.0257 0134
D & R(TYPE 1) 70 1.0202 .0197
D&R(TYPE?2) 120 1.0281 .0207
MIXED INTEGER 400 (100) 1.0390 0168
PROG.
Table 2-39: The comparison table for example 4

DESIGN TECH. N # R. TIME (SEC.) | M.M.P M.M.S
I.P.C 20 1.0007 .0001
D & R (TYPE 1) 500 .98099 0165
D & R (TYPE 2) 1500 1.0078 .0170
DELTA MODULATION 180 1.0948 0572

e e eee— ——————————————— ——————.. |}

Table 2-40: The comparison table for example S
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2.6. SUMMARY

In this chapter the following subjects have been investigated:

1) The importance of the coefficient quantization error and its effect on the behaviour of
the filter has been determined. To reduce this error several techniques for designing a
FIR filter with integer cocfficients have been presented, some of which were categorized

and explored in the introduction of this chapter,

2) Four tcchniques have been considered for in-depth consideration.

2-1) Discretization and reoptimization (type 1):

A simple design approach is presented in which the whoie process consists of an N times
optimization process where N is the number of coefficients which has to be determined.
At each iteration the least effective coefficient on error function is fixed to integer value
and the remaining coefficients are determined through the optimization process.

2-2) Discretization and reoptimization (type 2)

A simple design approach is implemented in which the whole process consists of a 2N
times optimization process in which N is the number of coefficients which has to be
determined. At each iteration the most sensitive coefficient is discretized to integer values
and the remaining coefficients are determined through the optimization process for two
cases. The remaining coefficients are fixed to the set of values corresponding to
minimum objective function. This process will apply until all the coefficients are
converted to an integer values.

2-3) Mixed integer linear programming

The formulation of the problem for linear and integer programming has been cxplained.
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Two packages named LINDO and MINT algorithm have been used for this technique.
The comparison between these two packages and characteristics of this technique will be

explained in chapter 5.

2-4) Delta modulation like filter

An attractive filter structure based on the delta modulation concept has been explained.
The application of the design technique has been investigated by applying a few
examples. The over-sampling factor” K" and the step size™ A" play an important part

in this technique.

To compare these techniques, Tables (2-36,37,38,40) display the characteristics of these
techniques. The location of zeros in Z domain is one of the important investigations in
filter design. By considering this fact, the zeros of the first two examples are displayed
in Figures (2-26) and (2-27). The coefficients obtained by these techniques are different

but the location of zeros for most of the coefficients are almost the same.
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CHAPTER THREE
DESIGN OF THE 2-D FIR FILTER WITH

INTEGER COEFFICIENTS

3.1. INTRODUCTION

During the past few years various design methods have been proposed for two
dimensional finite impulse response digital filters; we have described some of those
techniques in chapter one. The main advantages of such filters are inherent stability and
being able 10 provide exact linear phase. This latter property is particularly important in

many image processing applications.

Many reports in the literature concern the analysis of error resulting from finite word
length in the 1-D or 2-D case. However, examples of design of 2-D Digital filters with
integer coefficients are very rare, even though, in theory, most of the methods currently
used in the 1-D case could be employed for the 2-D case. Some of the design techniques

for 2-D FIR filters with integer coefficients are as follows.

An algorithm was presented by Siohan and Benslimane [51]. This algorithm associates

linear programming and branch and bound technique. In the presented method the infinite
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precision design problem is solved before rounding the optimal continuous coetficients.
Based on these infinite precision values, the discretization problem and the tree search
strategies are used to obtain a set of integer coefficients for the design problem, The
efficiency of the technique is limited for the design of 2-D FIR filters with different
specifications and sizes, up t0 9 x 9 in the case of ¢ircularly symmetric and up o 13 x

13 for diamond-shaped filters.

The second design technique was presented by Pei and Jaw [S2]. This technique involves
mapping of mulitiplierless 1-D FIR fiiters into 2-D filters by a change of variabies. The
proposed techniques by Lim and Parker [46]. [47] have been used to design a 1-D
multiplierless FIR filter and then the original McClellan transformation has been used for

transforming the variables from 1-D to 2-D.

In this chapter, we present the extension of some of the techniques to 2-D filter design
criteria. In this thesis several techniques are presented for the design of 2-D FIR filter
with integer coefficients . These techniques are generally based on the extension of
Discretization and Reoptimization (type 1&2) to 2-D FIR filters. Although the results
confirm that these extensions are mathematically and practically possible, a great deal
of computation and memory are required to implement these techniques. A third
approach is also presented in this thesis which is based on the usc of the McClellan
transformation. This technique presents a computational cfficient algorithm which is casy

to implement and yields satisfactory results.
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3.2. DISCRETIZATION AND REOPTIMIZATION

(TYPE 1) IN 2-D FIR FILTER

in this section, we introduce a technique to design 2-D FIR filters with octagonal
symmetry and with integer cocfficients using discretization and reoptimization (type 1).
The approach starts with an optimal design with infinite precision cocfficients. The
structure of the design technique for 1-D has been explained in chapter 2 and for the sake
of brevity has been excluded in this chapter; however, the design steps for the 2-D case

will be presented as folivvs,

In this technique, the number of specified bits for representing the coefficients is the first
data which has to be provided by the user. If the infinite precision coefficients of the

designed filter are b ;, where i=(N-1)/2 , N is the order of filter, if

-1s b, s+1 G-

then b ; can be shown by the following form

b=—— (3-2)

where B is the number of the bits including the sign bit and g, is the integer coefficients
for the prescribed filter. Equation 3-2 shows that for obtaining the integer coefficients
the prescribed magnitude response has to be scaled by 2 ™, but for arbitrary

specification, other than equation (3-1), a scaling factor could be used in order to recover
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the desired range. Various steps of the algorithm are as follows.

1) Find the infinite precision coefficients for the designed filter by nonlincar
programming and the following least square error.

Equation (3-3) presents the error criterion for this design

U+ .
E:Eu Zn I-(|H,.[ - E}: 2;) a(n,.n,) cos(w, n,) cos(w, 1) |

where H; ts the specification of the desire filter and N is the order of the filter. Where
a(i,)) is the coefficients of the designed filter.

2) Set 1=0.

3) Set j=0.

4) Seta (i,j) = a ¥ (i.}) where a ™ (i.j) is the round up valuc for a(i.j) and find the value
of error function, equation (3-3); the resulting value can be shown by 12 * (ij).

5) Set a (i,j) = a " (i,j) where a ~ (i,j) is the round down value for a(i.j) and find the
value of error function, equation (3-3); the resulting value can be shown by E - (i.)).
6) Find E (i,j) = min{ E * (i.j), E " (1,})} and save the value.

7) Set a (i,j) to its initial value and state j=j+1.

8) Repeat steps 4-7 until j > N-1/2.

9) Seti=i+1.

10) Repeat steps 3-9 until i > N-1/ 2.

11) Fix the value of the corresponding coefficient to the minimum error function

calculated within steps 3-10toa * (i,j) or a * (i,j).
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12) Go to step | and do the optimization routine to find a new set of values for the rest
of the coctlicients.

13) Repeat steps 1-12 until all coefticients convert to integer value.

In the following section an example of 2-D FIR filter with circular symmetry will be

considered to illustrate the application of the design technique.

EXAMPLE I: Design a 2-D FIR lowpass filter with the order 11 X 11 and the following

specifications using discretization & reoptimization (type 1):

o
IA
£,

+
£
[N}
IA

o
N
A
'E}
+
'gld
IA
2)

Based on the characteristics of octagonal symmetry the number of coefficients in the
optimization process is reduced from 66 to 21. Table (3-1) shows the characteristics of
this design technique, Table (3-2) presents the integer coefficients obtained by
discretization and reoptimization (Type 1). The frequency response of this filter is

displayed in Figure (3-1).

DESIGN TYPE # R TIME(SEC.) ‘ M.M.P. M.M.S.
D & R(TYPE 1) 420 | 1.0230 .0566

Table (3-1): Characteristics of the design technique (type 1} in example 1

87



MAGN T

b

[

in

Figure (3-1) : The magnitude response of a 2-D FIR filter with integer coefficients
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at0.0;= 22 ! a3 .= -6 ad =2
al.y= 32 a(3.2)y= -9 a3.0)=0
a(l.ly= 44 a(3d.3)= -5 ai.)=20
a2.0)= 10 a(4,0)= -1 a(3.2)=

a2.h=9 a(4,1)= -2 a3.3)=

a(2.2)= -7 a(4.2)= -2 a(3. =1
ai3,0)= -1 a(¢.3)=0 a(5,5=0

Table 3-": The integer coefticients for example 1 using type 1

3.3. DISCRETIZATION AND REOPTIMIZATION

(TYPE 2) IN 2-D FIR FILTER

In this section, we employ the discretization and reoptimization (type 2) technique to
design a 2-D FIR filter with integer coefficients and octagonal symmetry. Similar to
technique one, nonlinear programming will be utilized. The design steps for this

technique are as follows.

In this technique. the number of specified bits for representing the coefficients is (B)
which includes the sign bit. Similar to technique 1, it is obvious that the proper scaling
in the prescribed magnitude response in order to recover the desired range has to be

applied. The design steps with the required explanation at each step are as foliows:
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1) Set M = the total number of coctticients which has to be determined. We have 1o
mention that the problem is a two dimensional problem but for the simplicity of
presenting the steps, the notations arc shown in one dimension, For example the value
M represents the tota! number of coetficients in two dimensions,

2) Sct k=0.

3) Find the infinite precision coefficients for the designed filier by nonlincar
programming and the following least square error. Equation (3-4) presents the crror

criterion for this design:

Ld "’l fz-l f::—t (?l—-‘)
E=ED Eﬂ (1H;] -] 2“ Zﬂ a(n,.n,) cos(w, 1,) cosle, )| )

where H; is the ideal frequency response and a;, are the cocfficients of designed hilter,

4) Set M:ﬁ;_l-k.

3) Find the most sensitive coefficients among (M) coefficients. Based on equation (1-17)
and the definition of a derivative, the new form can be written in the form of cquation

(3-3).

H(X;, Xy peos Xy X} - H(x X, X AKX,
H(X| X5 oo Xy ninX,)

5.@=|

Hx Xy e s Xy oo X)) —HX X0 X - AKX

+ | . (3-5)

H(X,\ Xy oo Xy ee0 X,)

90



where A x, is the variation for x, and equal to one. Equation (3-3) will be calculated for
all the coefficients and finally the assumed coefficient a, with the maximum sensitivity
will be chosen.

* is the rounding up value for a, and solve the following

6) Scta, = a, * where a

i

optinidzation problem:

E* =E(a, . A.,) (3-6)

where E * is the value of error function and Ay, ~ is the vecior with M-1 remaining
variables which are determined in the optimizaiion process.
7) Set a; = a, ~ where g " is the rounding down value for a; and solve the following

optimization problem:

E=E(a;,Ay.) (-7

where E ° is the value of the error function and A,,, " is the vector with M-1 remaining
variables which are determined in the optimization process.
8) Find E = min{E" , E’} and fix the vector A 10 (3;*,Ay,") or (@, A\

9) Repeat steps 4-8 until all components of the vector A convert to integer value.

In the following section several examples have been provided to iilustrate the application

of the design technique.
EXAMPLE 2: Design a 2-D FIR lowpass filter with the order 11 X 11 and the

following specifications using discretization & reoptimization (type 1)
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! 0<ywi+ws <1

H. =+

Il d
0 2= \fwirer E7
|

Based on the characteristics of octagonal symmetry the number of coetficients in the
optimization process is reduced from 66 to 21. Table (3-3) presents the integer
coefficients obtained by discretization and reoptimization (Type 2). Table (3-4) shows the
characteristics of this design technique. The frequency response of this filter is displaved

in Figure (3-2).

a(0.0)= 23 a(3.1)= -7 B ad.4)= 3
a(l.0)= 33 -1 a@B3.2)=-10 as.m=1
a(l,)=45 a(3.3)=-5 ad.l)=1
a2,0= 10 a4.,0)= -1 a(3.2)=1
a2,)=9 a4, )= -3 ais.3)=2
a(2,2)= -7 a(4,2)= -2 ald.4)=12
a(3,0)= -2 a(4,3)=1 a(5,.5=10

Table (3-3): the integer coefficients for example 1 using type 2

DESIGN TYPE # R TIME(SEC.) M.M.P. M.M.P.

D& R (TYPE2) | 720 1.0385 .0337

Table (3-4): Characteristics of the design technique (type 2) in example |

92



MAGN! TUDE

Figure (3-2) : The magnitude response of 2 2-D FIR filter with integer coefficients



3.4. McCLELLAN TRANSFORMATION

A transformation for the design of 2-D FIR filters was tirst developed by James H.
McClellan [27], then generalized by Mersereau and Mecklenbrauker 28], The coneept
concerns itself with the transformation of a 1-D zero-pliase FIR filter 10 2-1 zero-phase
FIR fiiter by substitution of variables. It can be applied to [-D filters of add length and

in one special case also to a filter of cven length,

For a I-D FIR filter of length 2M+1 to be zero-phase, its impulsce response, h(n) must
have Hermitian symmetry coefficients. Thus if h(n) is real. it must be also cven, The

frequency response H{e * ) can thus be expressed in the form

hY

H(e™)=h(0)+y_ h(m[e?" + ¢"] (3-8)
nal
M
H(e*)=h(0)+Y_ h(m[cos(wm] (3-9)
nel

Equation (3-9) can be written in the following form

M
H(e)=Y" bn) [ cos(@)]" (3-10)

nnl

The McClellan transformation transforms a point in @ axis to a contour in the {u, w,)

plane by the following transformation

! 1
cos(w) =3 3 t(k,D)cos(w, k) cos(w, /) : (3-11)

ko) e

94



where t(k,1) are called the transformation parameters. By substitution of equation (3-11)

into cquation (3-10):

M 1 1 -
IS .y =Y bn) | 3wk cos(wk) cos(ewyf) (3-12)
sl La0 [al)

Application of the recurrence formula for Chebyshev polynomials cnables this later
relation to be expressed in the form of a 2-D zero-phase FIR filier. The resulting 2-D

filter is of size 2M+1) X 2M+1).

It follows implicitly from equation (3-11) that points in the frequency response of the 1-D
filter are mapped to contours in the (w, w,) plane. Furthermore, the shape of these
contours is determined only by the parameters t. On the other hand, the variation of the

frequency response from contour to contour is controlled by the coefficients b(n).

By looking at equation (3-9) one can see that the design procedure for this technique can
be split into two parts.

A) Design of the transformation parameters, t, such that the contours (w=constant)
produced by the transformation of the equation (3-11) in the (w, w,) plane have some
desired shape. Our desired shape in this technique is a circular contour.

B) Design of the 1-D zero-phase prototype filter with the characteristic of the equation
(3-10).

We have already explained some of the techniques to design a 1-D FIR filter in chapter
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one. In the following sections two approaches for determination of the transformation

coefficients will be discussed.

3.4.1. FORMULATION OF THE PROBLEM USING NONLINEAR
PROGRAMMING

The original McClellan transformation ¢an be shown as follows:

cos{w) = Flw, . w,) =(0.0) +7(1,0)cos(w,} +1(0, 1) cos(w,) +7(1.1)cos(w,) cos{w,)

(3-13)
As a working example, the design of a 2-D low-pass filter whose passband is in the

shape of a circle is considered. The contour in the frequency plane to which the pass-

band edge of the 1-D filter should map is then described by the relation

W, rw, = R (3-14)

where R is the passband edge frequency of the 1-D prototype filter. For the
transformation of a 1-D low-pass filter to a 2-D low-pass filier, 1-D origin will be

mapped to the 2-D origin. This gives the constraint equation

7(0,0) +£(1,0) + (0, 1) +1(1,1) =1 (3-15)

We are able to reduce the number of independent variabies from 4 1o 3 by employing
eéuation (3-12). To find values for these free variables the following equation should be
solved for w, in terms of w and w, and the free mapping parameters.

cos(w) = F(w, , wy) (3-16)

We can solve equations (3-14) and (3-11) for w,
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@, =y R -w) (3-17)

cos(w) -7(0,0)-1(1,0)cos(w,) (3-18)
1(0.1} +1(1,) cos(w, )

w, =G{w,w,, 1) =arccos [

An error function at the cut-off frequency can be defined as:

E(w)) = Glww,,0) - R - (3-19)

where w, is the cut-off frequency of the prototype. The parameters, t, ¢an then be chosen
to minimize some function of E(w,) such as least square crror. Since the error function
is a nonlincar function of unknown parameters, nonlinear optimization routines must be

used for the minimization.

3.4.2. FORMULATION OF THE PROBLEM USING LINEAR
PROGRAMMING

If the mapping were exact, then as the circular contour was traversed the value of

F( w, . w» ) would be constant. This would result for @ = w, in
cos(w, ) =7(0,0) +1(1,0)cos (w,) +1(0,1)cos (Y R*-w,?)

+[1-1(0,0)-£(1,0)-1(1,0)] cos () cos(y R? ~c} )
(3-20)

If the mapping is not exact, the equality in equation (3-20) will only be approximated and

the error function will be defined by
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E (w)=cos(w) - (0,00 -r(1.0)cos(w,) - (0. l)co.x‘(\-"h‘-' ~a)

-[1-00.0)-r(1.0)-1(1.0)]cos (w ) cos(y R - w'; )

(3-21)
This crror function is now a lincar function of t(0,0), 0. D, ®{1.0), and thus lincar

programming optimization routines can be used to minimize the function,

NOTE : As a practical matter, a transformation will only be uscful if the coeflicients

of the mapping t(l,k) satisty the relation

| £(0,0) +7(1.0)cos(w,) +1(0,1)cos(e,) +7(1.1)cos(w,)cos(w,) | < 1 (3-.22
The preceding constraint can be incorporated directly as part of its input specification in
linear programming formulation. In nonlinear programming formulation, it is possible
to design the transformation parameters without regard to this constraint and then

perform a simple linear scaling on the final parameters so that (3-22) is satisfied. The

contour defined by F( w, , w, ) will not be changed by using

F!(wl’ml)‘:clp(w]vwg)-cg (3'23)

as a transformation for any ¢, and nonzero c,. By choosing

2
¢, =
F__-F
max min (3_24)
C,=¢F -1

98



where IF.. denotes the maximum value of F( w, . @, ) and F,,, denotes its minimum
value. The condition (3-22) is now satisfied by this scaling. The shape of the contours
is unchanged, but the 1-D frequency w which is associated with each contour is changed.
In particular, if F( @, , w, ) was originally associated with the value w, F* (w; . w2 )

defined by (3-23) will be associated with the value w” where

w’=cos™ (¢, cos(w) -¢,) (3-25)

3.5. DESIGN OF 2-D FIR FILTER WITH INTEGER

COEFFICIENTS USING McCLELLAN TRANSFORMATION

Based on the mentioned design steps in previous sections, we should maintain the same
procedure for our design. That means, firstly, we have to obtain the transformation
parameter by satisfying the circular cut-off boundary, and secondly the coefficients for

the 1-D prototype filter should be determined.

3.5.1. TRANSFORMATION PARAMETERS FOR THE CIRCULAR
SYMMETRY

Based on the original McClellan transformation, the following value for transformation
parameters for the circular cutoff boundary are suggested:

1(1,0) = 1(0,1) = t(1,1) = -1(0,0) =0.5 (3-26)
Since the multiplication by 1/2 can be performed by shifting operation, no multipliers are

required for implementation of this step.
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3.5.2. DESIGN OF 1-D PROTOTYPE FILTERS WITH INTEGER
COEFFICIENTS

For the sccond step. a 1-D FIR filter with the frequency response formed in equation (3-
10) has to be designed. Since the design procedure can entirely be fulfilied in 1-D
domain, the fellowing approaches which have been explained in chapter 2 can be utilized
for this design process.

1) Discretization and reoptimization (type 1) combined with nonlincar programming
2) Discretization and reoptimization (type 2) combined with nonlincar programming

3) Mixed integer linear programming

3.6. EXAMPLES

EXAMPLES 1: Design a 2-D FIR low pass filter with the order 19x19 and the following

specifications using three mentioned techniques.

2 )
1 0=yfwy+w; =1

H(™, &) =4

L 0 25‘/m?+m§ <7

The specifications for the 1-D prototype are as follows:
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H(e) =)

0 2SwsTr

Tables (3-5).(3-6), and (3-7) show the integer coefficients for the three design techniques.

Figure (3-3)-(3-8) show thc magnitude responses of the design techniques for example

]

b(0) = 43 b(3) = -18 b(6) = -34 b(%) = 53
b(l) = 123 b(4) = -56 b(7) =0
b(2) =72 b(5) = -93 b(8) = 39

Table 3-5: Integer coefficients for example 1 using D & R (type 1)

b(0) = 44 b3) = -19 b(6) = -35 b(9) = 54
b(l) = 124 b(4) = -57 b(7) = 0
b2) = 72 b(5) = -94 b(8) = 40

Table 3-6: Integer coefficients for example 1 using D & R (type 2)

b(0) = 10 b(3) = -68 b(6) = 63 b(9) = -3
b(l) = 44 b(4) = -66 b(7) = -12
b(2) = 31 b(d) = -55 b(8) = -22

Table 3-7: Integer coefficients for example 1 using Mixed Integer Prog.
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Figure (3-3): The magnitude response for 1-D prototype in example 1 using D&R (typel)
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Figure (3-4): The magnitude response for 2-D FIR filter in example 1 using D&R (tvpel)
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Figure (3-5): The magnitude response for 1-D prototype in example 1 using D&R (type2)
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Figure (3-6): The magnitude response for 2-D FIR filter in example 1 using D&R (type2)
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Figure (3-7): The magnitude response for 1-D prototype in example 1 using LINDO
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Figure (3-8): The magnitude response for 2-D FIR filter in example 1 using LINDO
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Table 3-8 shows the characteristics of the three design techniques.

DESIGN TECHNIQUE | #R TIME (SEC.) | M.M.P, MUALS,
D& R (TYPE 1) 173 I-D | L0170 02604
2-D | 1.O171 08082
D & R (TYPE 2) 420 I-D | 1.0233 02223
2-D | 1.0234 08624
MIXED INTZGER (LP) | 240 I-D | 1.0001 01861
2-D | 1.0011 .00688

Table 3-8: The characteristics of the design techniques for example |

EXAMPLES 2: Design a 2-D FIR highpass filter with the order 19x19 and the following

specifications using three mentioned techniques:

0 OS\/w'}’-wg <1.5

H(d™, e =

LU )

S
I 2<wjtw, €7

.

The specifications for the 1-D prctotype are as follows:

108



H(er)y =
0

Tables (3-9), (3-10), and (3-11) show the integer coefficients for the three design

12
A
£
IA
=}

0<w=l.5

techniques.
b(0) = 11 b(3) = 60 b(6) = -22 b(9) = -11
b(l) = -71 bi4) = -119 b(7) =1
b(2) = 103 b(s) = -12 b(8) = 61

Table 3-9: Integer coefficients for example 2 using D & R (type 1)

b(0) = 11 b(3) = 61 b(6) = -23 b(9) = -12
b(l) = -72 b4) = -120 b(7) = 2
b(2) = 103 b(5) = -12 b(8) = 62

Table 3-10: Integer coefficients for example 2 using D & R (type 2)

b(0) = 1 b3) =0 b(6) = 65 b(9) = 26
b(l) = -10 b(4) = -62 b(7) = -61
b(2) = 24 b(5) = 41 b(8) = -24

Table 3-11: Integer coefficients for example 2 using Mixed integer prog.
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Figure (3-9): The magnitude response for 1-D prototype in example 2 using D&R (typel)
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Figure (3-10): The magnitude response for 2-D FIR filter in example 2 using D&R (typel)
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Figure (3-12): The magnitude response for 2-D FIR filter in example 2 using D&R (type2)
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Table 3-12 shows the characteristics of the three design techniques, Figures (3-9) 1o (3

14) present the magnitude responses of the 2-D and prototype 1-D filier.

DESIGN TECHNIQUE | #R TIME (SEC.) | M.M.P. MOMLS,
D & R (TYPE 1) 100 1-D | 1.0468 07434
2-D | 1.0469 09593
D & R (TYPE 2) 200 1-D | 1.0312 07234
2-D | 1.0312 .09472
MIXED INTEGER (LP) { 720 1-D | 1.0614 02626
2-D ] 1.0616 .04588

Table 3-12: The characteristics of the design techniques for example 2

EXAMPLES 3: Design a 2-D FIR band-pass filter with the order 39x39 and the

following specifications using Discretization & Reoptimization (type 1&2).

0 0=yuw

—r
[N )

<03 ,

—

=T

[ER )

) 1.3 <yw| +w

H(™ &)=

1 0.7 <fwr+ws <0.9

The specifications for the 1-D prototype are as follows:
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Tables (3-13), and (3-14) show the integer cocfficients for the two design techniques.

0.7=w=0.9

o
IA
£

IA
o

IA

b(0) = -1 b(6) = -38 b(12) = -1 b(18) = 31
b(ly= 0 b(7) = -66 b(13) = 1 b(19) = 12
b(2) = 42 b(8) = -38 b(14) = 15

b3) = N2 b(%) = -19 b(15) = 14

b(4) = 12 b(10) = -9 b(16) = -12

b(5) = -54 b(il) = 19 b(17) = 2

Table 3-13; Integer coefficients for the example 3 using D & R (type 1)

b@©@) = -1 b(6) = -3? b(12) = -1 1 b(18) = 32
b(l)y= 0 b(7) = -67 b(13) =2 b(19) = 12
b(2) = 43 b(8) = -38 b(14) = 15
b(3) =92 b(9) = -20 b(15) = 14
b(4) = 13 b(10) = -10 b(16) = -13
b(5) = -54 b(ll) = 19 b(17) =3

I — —

Table 3-14: Integer coefficients for the example 3 using D & R (type 2)

-

Table 3-15 shows the characteristics of the three design techniques. Figure (3-15)-(3-18)
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Figure (3-15): The magnitude response for 1-D prototype in example 3 using D&R (typel)
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Figure (3-16): The magnitude response for 2-D FIR filter in example 3 using D&R (typel)
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Figure (3-17): The magnitude response for 1-D prototype in example 3 using D&R(type2)
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Figure (3-18):The magnitude response for 2-D FIR filter in example 3 using D&R (type2)
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display the magnitude responses for example 3 using these techniques., Figures (3-17) and

(3-19) and (3-20) display thce contour plot of the magnitude response of this example

using these two lechniques. For further investigation, the position of zeros can be found

by solving the transfer function of the filter. To achieve this an Nth order polynomial has

to be solved. Figure 3-19 shows the positions of thesc zeros for example 1 using

mentioned techniques.

DESIGN TECHNE_?;TFIME (MIN.) M.I\:P. M.M.S. g
D & R (TYPE 1) 10 1-D | 1.0192 06254

2-D | 1.0230 .12303
D & R (TYPE 2) 20 1-D | 1.0337 .05264

2-D | 1.0377 12551

Table 3-15: The characteristic of design techniques in example 3

3.7. SUMMARY

In this chapter we have investigated the design of a 2-D FIR filter with integer

coefficients. To achieve our goal, some of the techniques in the literature have been

investigated. The direct extension of Discretization & Reoptimization (type 1&2) has

been examined for 2-D FIR filter with octagonal symmetry. Although the number of

coefficients and function evaluation is substantially reduced, the memory requirement and

computation burden are two troublesome points in this design.
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As an alternative approach the McClellan transformation has been considered, In this
technique a 1-D FIR filter is transformed to a 2-D FIR filter by means of the McClellan
transformation. This design technique splits the process into two steps, firstly (he
transformation paramcters are obtained by lincar or nonlinear programming formulation.
sccondly the coefficients of the 1-D prototype filter are determined by any technique in
1-D FIR filter design. We showed that by choosing the proper values for transformation
parameters no multipliers are required in this part. To determine the integer coefficients
for the 1-D prototype filter Discretization & Rcoptimization (type 1&2) and Mixed

integer linear programming have been used.

Several examples demonstrate the versatility of this design technique. The magnitude

responses and the zero mapping for example 1 have been included in this chapier.
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CHAPTER FOUR
REALIZATION STRUCTURE FOR 1 AND 2-D FIR

FILTERS

4.1. INTRODUCTION

One of the steps in designing a filter is a realization of that filter. The realization is a
process which converts the transfer function into a filter network. There are various
structures for the realization of any FIR filter. To choose a best possible structure for the
desired filter specifications the computational complexity, and the required memory of
that structure have to be carefully considered, and also the effect of finite-word-length

in the response of the structure has to be carefully evaluated.

In this chapter, some of the realization structures for 1 and 2-D FIR filter will be
reviewed. A specific realization is required to realize the technique presented in chapter
3 to design a 2-D FIR filter with integer coefficients. By considering this fact, the direct

form structure for realization of the design technique will be implemented.

4.1.1. REALIZATION FORM FOR 1-D FIR FILTER

In this section three methods for implementing an FIR system will be briefly reviewed.

The first technique is the simplest structure called direct form. A second structure is the
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cascade form realization. The third structure is the frequency sampling realization.,
Finally, a lattice structure will be reviewed.

a) Direct form

The direct form realization follows from the nonrecursive difference equation or

equivalently by the convolution summation.

M=

yy=Y" h()x(n-i) (4-1)

il

This structure requires M-1 memory location, and has the complexity of M multiplication
and M-1 addition per output point. Figure (4-1) shows the direct form structure for FIR
filter. By considering required symmetry in impulse response of the system for lincar
phase condition, Figure (4-2) shows the direct form realization of lincar-phase FIR
system. This structure is usually avoided for high order filters because of its high

coefficients sensitivity. It also exhibits very low A-D round-off noise.

xinm}

! ~t ™ .es 2t b

1 A(0) f A1) M2 ¥ A3} t b -2) ki -1)

Figure (4-1) : Direct form structure for FIR filters
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Figure (4-2): Direct form realization for linear-phase FIR filters

b) Cascade-form realization
The cascade realization follows by representing transfer function in terms of

multiplication of a group of second-order FIR system. It can be shown that

X
H) =G H@ (4-2)
kel

where
H(2)=1+b,2" +b,2* wherek=1,2,- K (4-3)

129



and K is the integer part of( +1)/2. The gain parameter G may be equally distributed
among the K filter sections, such that G=G,, G,. .... G; . Figure (4-3) shows the
cascade form realization along with the basic second order section. By imposing the

symmetry condition for linear-phase FIR filter, the second order factors will be as

follows:

-

l+vaztez? (4-4)

and thus will require only one muitiplication. The cascade and direct torm require the

same number of numerical operations.

x(n}=x,{n) » )=

—_—] H@

»yin)= Yp. im) s Vp(ni® yin)

Hy() e Hetd) e
x3(n) xy{n) Xgin)

x‘(ﬂ)

Mnr=x, ()

Figure (4-3) : Cascade realization of an FIR filter
¢) Frequency-sampling structure [5]

The frequency-sampling realization is an alternative structure for an FIR filler in which
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the parameters that characterized the filter are the desired frequency response instead of
the impulse response h(n). The desired frequency response at a sct of equally spaced

frequencics, namely

wk=%(k+a) (4-5)

where k=0, 1. ....(M-1)/2 M odd
k=0, 1, .... (M/2)-1 M even
a=0o0r1/2

The value of the frequency response H(w) at frequencies e, is simply

5 M-=1 =j2n{ksaln
H(kcr ) =H(%(k +a) =Y h(me M (4-6)
nu0

It is a simpler mater to invert to (4-6) and express h(n) in terms of the frequency

response

1 M-1 21:(1:-:)%
h(n) = 74-,.2_.; H(k+ea)e @-7)

where n=0,1,..., M-1
Now if we substitute (4-7) in Z-transform H(z), interchanging the order of two

summation and performing the summation over the index n we obtain

N-1

_ a1 12L(3)
HiZ)=(1-z%) =y —— 2 4-
(2)=Q1 )M_0 oW : (4-8)
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Wi = @@rt® (4-9)

Bk =HWD = |Bk) | & (4-10)

The quantities H(k) are called frequency samples. Equation (4-8) suggested that an FIR
system can be realized as a cascade of a simple FIR system with an IIR system as shown
r. Figure (4-4). The frequency sampling realization of FIR is computationally more

efficient than the direct form realization.

(D
Hed
2= p
of Tt
) f‘>
N/ Hlsat N
!
AN
1
() J.)
1l Hlva) N
xin) M A
:-l
#1902+ ol
P . .
e d
erdord
I g ) L\
1M -1 o e
rl
AT R ERY

Figure (4-4) : Frequency-sampling realization of FIR filter.
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d) Lattice realization [5]

Lattice filters arc extensively used in digital speech processing and in the implementation
of adaptive filters, It is desirable to view the FIR filiers as lincar predictors. The input
data sequence x(n-1), x(n-2).....,x(n-m) is used 0 predict the value of the signal x(n).

henee we may express the linearly predicted value of x(n) as

xm)=-3" e (R)x(n-K) (4-11)
kul

where {-a,(k)} represent the predication coefficients. The outpur sequence y(n) may be

cxpressed as

yy=x(ny-x(n) =x(m) +Y_ o, (k) x(1-k) (4-12)

kal

Thus the FIR filter output given by (4-12) may be interpreted as the error between the
true signal value x(n) and the predicted value x’(n). Suppose that we have a filter for

which m=1. Clearly, the output of such a filter is

y(ny=x(n} +a,(Dx(n-1) (4-13)

It we select K, = o, (1), the parameter K, in the lattice is called a reflection coefficient.
By cascading two lattice stages, it is possible to obtain the output for m=2. By
continuing this process, one can easily demonstrate by induction the equivalence between
an mth-order direct-form FIR filter and an m-order stage lattice filter. The lattice filter

is generally described by the following set of order-recursive equations:

133



So(ny=g (n) =x(n} 4-14)
Lm=f (m-K g  (n-1) m=1,2,....M-1 (4-13)

g.M=K fm-Un)~g__ (n-1) m=1.2,....M-1 (4-16)

Then the output of the (M-1) stage filter corresponds to the output of an (M-1) order
filter, that is

Y(n)= f,, (n) (3-17)
Figure (4-5) illustrates an {M-1) stage lattice filter in block diagram along with a typical

stage that shows the computations specified by (4-15) and (4-16).

fo(ﬂ) fl(ﬂ) f:(ﬂ) f”-'.'(ﬂ) fu_‘(")’y(ﬂ)
) | First Second (M =1
Stage Stage Stage
2o(n) £, (n) £240)  ga () PR Y
{a)
fn-l(’n (:\ fn {n)

xn-l(") o=l

Figure (4-5): (M-1)-stage lattice ftlter
4.1.2. REALIZATION STRUCTURE FOR 2-D FIR FILTERS

Since 2-D FIR filters usually can not be factored, the realization structure for 2-D FIR

filter is not as uncomplicated as for a 1-D FIR filter. It might seem unusual to classify

134



the cascade structure as a specialized implementation but because of the formulation of
a 2-D filter a possible method to implement a 2-D FIR filter is a direct form realization
which is quite similar to I-D structure. Consider a factorable 2-D FIR frequency

response which can be written as

H(w, ,w,) = Flw, , 0,) Glw, . w,) (4-13)

If f(n,.n,) is an (MxM) points array and g(n,.ny) is an [(N-M-+Dx(N-M+1}] points
array, then h(n,.n,) will have an (NxN)-points region of support. To implement h(n,,n,)
as a direct convolution requires N° multiplication per output sample, whereas to
implement the filter in the cascade form implied by (4-8) requires only M* + (N-M+ 1)?
multiplications. To design a filter that is to be realized as a cascade, the frequency

response must first be expressed in factored form:

L M N o
Hiz, =] T3 o) 272" (4-19)
kel ieQ jaD

If two FIR filters with impulse responses h,(n,,n,) and ha(n,,n,) are connected in parallel,

they are equivalent to a single filter with the impulse response

h(ny ) =hy(ny,my) + hony o) (4-20)
The frequency response for this kind of implementation must be expressed as follows:

3
H(z,,2) =Y H(z,,2) (4-21)

inl
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A

M
where H(z,.2,) :Z 2 ) RN +-21)

&0 4t

4.2. THE IMPLEMENTATION OF THE DESIGN

TECHNIQUE

It can be recalled that the frequency response of a 2-D FIR zero-phase is as follows:

H(™ &™) = E b(m) [F(w, . w)]" (4-22)

nall

where N 1s the order of the filter and F(w, . w,) is defined by

1 1

Flo,w)=3 Y r(k,1)cos(wk)cos(w,/) (4-23)

kel a0

Although the impulse response of this filter is extended in (2N+1) X (2N +1) points,
it can be noticed from equations (4-22) and (4-23) that the entire 2N+1) X (2N+1)
point filter can be completely specified by {(2X2) + (N+1)} frce parameters. It can be
simply noted that the first term in the number of free parameters, (2 X2), is derived from
equation (4-23) and the second term , (N + 1), is derived from cquation (4-22). Now,
it is reasonable to expect that there exist specific realizations for these filters which have
an implementation complexity proportional to N rather than to N 2. To understand better

this 2-D structure we first consider a related 1-D zero-phase filter of length 2N+1 and
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the following frequency response:

H{e") = Z biny[cos(w)]" (4-24)

I h, (m) represents the impulse response  of a linear shift-invariant system which has

frequency response:

H, (¢°) = cos(w) (4-25)

The frequency response for (cos « ) ® will be obtained by n times cascading of the system

mentioned in cquation (4-25). A tapped cascade of such systems with tap coefficients b(n}

thus has the frequency response depicted in equation (4-24).

The system hy(l) corresponds to a non-causal FIR filter with an impulse response length
of three;

3] —
Sy
n
+

: (4-26)
h( l)=

| 0

otherwise

The transform function corresponding to this system is:
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e lga, - -
Hf(\-)"'i'k*’-« ‘) (4'21‘.

Since this system is a non-causal system, it is not a realizable system. To fix this
problem all impulse responses in the negative side have to be shifted to the right side of
the axis. This action in the time domain corresponds to multiplication of the transfer

function by Z ™92 | where N is the order of the filter. The overall network is

diagrammed in Figure (4-6).

x(n) . -3 .
n " " ] z-‘o ] L"J
‘—’2 2 2 2
b{0) b(1} b{2) b(N-2) b{N-1) b{N)
- - Y(n,

Figure (4-6): The overall network for the designed filter
It is known that a linear shift-invariant subnetwork can be replaced by another lincar

shift-invariant subnetwork. To implement the McClellan transformation a 1-D subnetwork
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h, (1) is replaced by @ 2-D subnetwork which has impulse response hy(m.n) and the

following frequency response.

1 t
![-’.((r’u: ,(""'?) = F((:Jl. w:) =z 2 "( [\’1) COS(C\)lk )COS ((.d._,_!) (4'28)

t=Q s}

The Z transform corresponding to this system is

- - 4zt
5 Y +1(1.0)¢( '2

I+

il I

Yy+r(1.1)

(2,437 )(3,42)

1(2,.2)=1(0,0) + 7(0.1)(

(4-29)

The filter hy (m,n) is a zero-phase 2 X 2 point non-causal FIR filter. When the general
form of the transfer function for a (2 x 2) noncausal FIR filter compares with the transfer
function in cquation (4-29), one can see that the relation between hy (m.n) and
transformation parameters, t, is as follows:

_ 1 {mi,|nl) i
h,(m,n) 25 (2-50 (4-30)

where &, is the Kronecker deltaand -1 < m , n < +1.
To implement a transformed design, the prototype 1-D zero-phase filter b, (1) has to be
first realized then the transformation must be physically implemented by replacing the

operators by transformation filter, h; (m,n). Figure (4-7) shows the direct transformed

implementation.
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Figure (4-7) : The direct transform implementation

The tap coefficients in the filter implementation are the b(n)"s given by the 1-D prototype
filter. The subnetwork h{m,n) depends upon the specific transformation which is being
used. In the case of a 2-D FIR filter with nearly circular symmetry, to change the cutoff

frequency of the filter, the oniy change will be in the tap coefficients, b(n).

Other structures can also be considered for realization of these techniques. For example,
the coefficients of airect form FIR filters can be converted to lattice coetticients. Suppose
that we are given the FIR coefficients for the direct form realization or, equivalently, the
polynomial A, (z) and we wish to determine the corresponding lattice filter parameters
{K.}. For the M-stage lattice K, = ar,(m). K, is obtained from the polynomial A_(z) for
m=M-1,M-2,...,1. Consequently, we need to compute the polynomial A () starting

from m = M-1 and stepping down successively to m=1.
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4.3. SUMMARY

In this chapter we have recalled some of the techniques for realization of the one and two
dimensional FIR filters. The McClellan transformation as a most popular technique can
overcome the design difficulties in 2-D FIR filter design, It was also shown that filter
design by this method also possesses efficient implementations which can partially

overcome the difticulty with tmplementation.

We have shown that the implementation complexity of this design technique is
proportional to N rather than N2, The impulse responses of the transformation equation
have been calculated in terms of the transformation parameters. Thus direct transformed
implecmentation could be realized. We also considered all possibie realization techniques

such as lattice structure for implementing this design technique.
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CHAPTER FIVE

SUMMARY AND CONCLUSION

SUMMARY AND CONCLUSION

In this thesis the following subjects have been investigated.

1) The importance of coefficicnt quantization error and its effect on the behaviour of the filter
has been shown. To reduce this error several techniques for designing a FIR filter with integer
coefficients have been presented in the literature some of which were categorized and explored
in the introduction to chapter one.

The first design technique, which is the combination of the branch and bound technique and
nonlinear programming, shows its limited ability to handle high order filters, and there is no
guarantee for obtaining an optimal minimum. The second design technique does not guarantee
the optimal solution but it can handle higher order filters. Mixed integer lincar programming is
also found to be very attractive for providing optimal results but the computational complexity

limits the design for the filter with the order up to forty.

The next design technique is the power of two cocfficients which require no multiplier in the
structure. Linear or nonlinear programming is employed in this technique, the result of the

design based on the type of program, linear or nonlinear, can be optimal or non-optimal. The
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computational cost limits a filter design order up to ninety.

The last design technique builds based on delta modulation concept. A structure consists of a
transversal filter with tap coefficients restricted to -1, 0, +1, which is cascaded with an
accumulator. As in delta modulation the sampling rate must be sufficiently high to obtain
acceptable performance; as a result the useful transversal filters in this structure have a very high

order.

2) Four techniques have been considered for in-depth consideration,

2-1) Discretization and Reoptimization (type 1):

A simple design approach is presented in which the whole process consists of an N times
optimization process in which N is the number of coefficients which has to be determined. Al
gach iteration the least effective coefficient on error function is fixed to integer value and the
remaining cocfficients are determined by the optimization process. This technique has been
applied to design several filters. The following are the major characteristics of this technique:
a) The approximate running time is less than the other methods except delta modulation
technique;

b) The method is capable of handling high order filters;

¢) A feasible solution is guaranteed but local optimum may result; and

d) The method is sensitive to initial value in optimization process.

2-2) Discretization and reoptimization (type 2)

A simple design approach is implemented in which the whole process consists of a 2N times
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optimization process where N is the number of coefticients which need to be determined. At
cach iteration the most sensitive coefficient is discretized to integer values and the remaining
cocfficients are determined through the optimization process for two cases. The remaining
coefficients are fixed to the set of values corresponding to minimum objective function. This
process will apply until all the coefficients convert to integer value. This technique has been
applicd to design several filters, The following are the major characteristics of this technique:
a) The approximate running time is twice as long as type 13

b) The method is capable of handling high order filters:

c) A teastble solution is guaranteed but local optimum may result:

d) The method is sensitive to initial value in optimization process: and

¢) The method shows better response compared to type 1 in the least square error criteria.

2-3) Mixed integer linear programming
The formulation of the problem for linear and integer programming has been explained. Two
packages named LINDO and another one known as MINT have been used for this technique.

The following are the major characteristics of this technique and the comparison between these

two packages.

a) The process of setting up the problem is more difficult in the LINDO in contrast to the

MINT.
b) The approximate running time is much faster in the LINDO.

¢) The LINDO has less sensitivity to the values of the frequency grid points. The integer lincar
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programming approach for designing filters is very sensitive to the number and the value of the
frequency grid points.

d) The LINDO is quite flexible to the upper bounds valucs for the coetficients, but the upper
bounds in the MINT have a certain limit which depends on the number of variables.

¢) The number of required iterations in the LINDO can be adjusted by the user where the MINT
algorithm is terminated when the optimality is established.

) No optimal solution for these examples has been established The mentioned time in
comparison tables implies for 15000 itcrations,

2) This technique is not very suitable for the filters with order higher than forty.

2-4) Delta modulation like filter

An attractive filter structure based on the delta modulation concept has been explained. The
application of the design technique has been investigated by applying few examples. The
oversampling factor "K" and the step size "A," play an important part in this technique. The
accuracy of the design can be increased by increasing the value of K. Designing a high order
filter with a very narrow passband and very sharp transition bound is the price for obtaining

higher accuracy.

Tables (2-36.37.38,40) display the characteristics of these techniques compared to other
techniques. The location of zeros in Z domain is one of the important investigations in filter
design. Although the coefficients obtained by these techniques are different, most of the zeros

are closely bunched together.

145



In chapter three, we have investigated the design of a 2-D FIR filter with integer coetlicients.
To achicve our goal, some of the techniques in the literature have been investigated. The direct
extension of Discretization & Reoptimization (type 1&2) has been examined for 2-1 FIR filier.
Although the use of actagonal symmetry substantially reduces the number of coelticicnts which
has to be determined and function evaluation, the memaory reguirement and computation burden
arc two inconvenient points in this design technique. It is worth mentioning that these technigties

can design filters with a higher order than the one reported in [S1].

As an alternative approach the McClellan transformation has been considered. In this technigue
a 1-D FIR filter is transformed to a 2-D FIR filter by means of the McClellan transformation,
This design technique splits the process into two steps, firstly the transformation parameters are
obtained by lincar or nonlincar programming formulation, secondly the cocfficients of the 1-D
protetype filter are determined by any design technique in 1-D FIR filter. We showed that by
selecting the proper values for transformation parameters no multipliers are required in this part,
To determinge the integer coefficients for the 1-D prototype filter Discretization & Reoptimizittion
(type 1&2) and Mixed integer lincar programming have been used. Several examples
demonstrate the versatility of this design technique. Although the coefficients obtained by these

techniques are different, most of the zeros are closely bunched together.

In chapter four, we have recalled some of the techniques for realization of onc and two
dimensional FIR filters. The direct and cascade form, frequency sampling structure, and lattice

structure in 1-D and direct, cascade, and parallel form have been explained. The McClellan
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transformation as a most popular technique can overcome the design difficuities in 2-D FIR filter
design, It was also shown that filter design by this method also possesses eftficient

implementations which can partially overcome the difficulty with implementation.

We have shown that the implementation complexity of this design technique is proportional to
N rather than N°. The impulse responses of the transformation equation have been calculated in
terms of the transformaiicn parameters. Thus direct wransformed implementation could be
realized. We also considered other possible realization techniques such as lattice structure for

implementing this design technique.
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APPENDIX A
THE FLOW-CHART FOR DISCRETIZATION AND

REOPTIMIZATION (TYPE 1)
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APPENDIX B
THE FLOW-CHART FOR DISCRETIZATION AND

REOPTIMIZATION (TYPE 2)
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APPENDIX C
NONLINEAR, LINEAR, AND MIXED INTEGER

PROGRAMMING
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C.1. NONLINEAR PROGRAMMING

A key assumption of lincar programming is that all its functions (objective function and
constraint functions) are linear. Although this assumption essentiatly holds for numerous
practical problems, it frequently fails to be used for some problems. It is sometimes
possible to retormulate non-linearitics into a lincar programming format, Nevertheless,

it is often nceessary to deal directly with nonlincar programming problems.

In one general form, the nonlincar programming problem is 1o fnd N =(x X ) s
as 1o
Maximize F(X)

subject o

a2(Xysh for =120 (C-D

and

X=0 (C-2)

where F(X) and the G, (X) are given functions of the n decision variables. No algorithm
is available that will solve every specific problem fitting this format. However, by
making various assumptions about these functions, substantial progress has been made
for some important special cases of this problem. In our study, the rapidly convergent

descent method for minimization by Fletcher and Poweli has been used.
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C.2. LINEAR PROGRAMNMING

Historically, the initial mathematical statement of the general problem in lincar
programming along with the simplex method were first developed and applied in 1947
by George B. Dantzig, Marshal Wood, and their associates of the U.S. Department of
the U.S. Air Force. Since then, lincar programming has become an important tool of
modern theoretical and applied mathematics. This remarkable growth can be traced (o

the pioneering efforts of many individuals and research organizations.

A lincar programming problem differs from the general variety in that a mathematical
model or description of the problem can be stated using relationships which arc called
straight-linc or linear. The general mathematical model of the lincar programming
problem can be stated as follow

Minimize the objective function

€y X +Cy X+ 48, X+ +C, X, (C-3)

subject to the conditions

@) Xy +p X+ 4By Xy =@y X <by (C-4)

Qg X) +lan Xy +ore+ B, X7+, X, =Dy

-----------------------------

8 p1 Xy ¥4 ppXp +oe A, Xovera, X, =bm
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and

where 1 <1 =n and | =) < mand a; are all constants. The ¢, are called cost
cocttictents. The form of equations {C-4) and (C-5) are not always the same for difTerent
problems. For example instead of equality constraints we may have inequality constraints
of both types and instead of having positive variables in equation (C-3) we may have
unconstraint variables. In first cese, slack variables can be used and in the second case

any unconstraint variable can be defined as a difference of two positive variables.

The linear integer programming problem may be stated as follows

Minimize the objective function

CX (C-6)
Subject to
AX=b (C-7)
X=0 (C-8)
X integer

If some elements of the vector X are allowed to be real then the program will be called
Mixed integer linear programming. A natural method to solve this problem is to ignore
the last condition” X integer " and solve the problem as a linear program. At optimality,
if all of the variables have integer value, then we have the optimal solution to the original

integer program. Otherwise two techniques are used for obtaining the integer solution
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C.2.1 CUTTING PLANE TECIHNIQUE: The cutting-planc technique for
solving integer LP problems is simply a technique that squeezes down on the set of all
feasible solutions of the corresponding non-integer LP problem by sequentially
introducing additional constraints (cuts) without cutting-off any feasible integer solution.
The dual simplex is applied to re-optimize the new linear programming until an optimal

integer solution of the integer programming problem is reached.

C.2.2. BRANCH AND BOUND TECHNIQUE: A classic paper by A.H. Land

and A.G. Doig using a branch and bound principle appeared in 1960. The method is
clegant in its simplicity: it requires the use of the simplex method, and ezan solve both
all-intcger and mixed-integer problems. The branch and bound technique involves a well
structured  systematic search of the space of all fcasible solutions of constrained

optimization problems that has 2 finite number of feasible solutions.
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