University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2001

Developing component-based Web transaction systems with
Servlet/JSP and CORBA.

Nan. Zhang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Zhang, Nan., "Developing component-based Web transaction systems with Servlet/JSP and CORBA."
(2001). Electronic Theses and Dissertations. 1691.
https://scholar.uwindsor.ca/etd/1691

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1691?utm_source=scholar.uwindsor.ca%2Fetd%2F1691&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print tleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest information and Leaming
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

®

UMI

DEVELOPING COMPONENT-BASED WEB
TRANSACTION SYSTEMS WITH SEERVLET/JSP
AND COBRA

Nan Zhang

A Thesis
Submitted to the Faculty of Graduate Studies and Research
through the School of Computer Science
in Partial Fulfillment of the Requirements for
the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2000

© 2000 Nan Zhang

i+l

Your Sle Votre réldrence

Our e Notre réMeence

L’auteur a accordé une licence non
exclusive permettant a la

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et .
Bibliographic Services services bibliographiques
385 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
The author has granted a non-
exclusive licence allowing the
National Library of Canada to

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-62309-2

Canadi

Abstract

Web has evolved from a network of basically static information display to a mechanism
for interactive Web application. Currently, web creates for enhancing business proccsses,
reducing costs and increasing profits. With component-based computing and MVC
design pattern, web application could be developed easily, less expensively, deployed

flexibly across platform, adapted to new technology quickly.

Rapid delivery of business-critical information over the Internet and Corporate intranets
requires a transaction-processing solution that integrates the functionality of multiple
objects, provides these objects with access to multiple data sources, and ensures data
integrity, scalability, and security across every business transaction. Moreover, certain
runtime services should developed to support Web applications. The ability to easily
locate application components, access and execute them securely, and ensure their
availability are critical factors to deploying Web applications in Internet, intranet, and

¢xtranet environments.

To meet increasing need, we develop a viable approach for web transaction systems
based on the component-based system development in this thesis work. This approach
adopts the distributed, component-based development principle and is based on MVC
design pattern. This approach offers the flexibility, scalability, and reliability necessary to
support the constant evolution of business processes in the e-business world. And a
prototype, which based on our infrastructure design, is also developed to validate the

feasibility and effectiveness of the proposed approach.

Keywords: Component-based Web Transaction Systems (CWTS), Component-based System Development
(CBD), Integrated Transaction Service (ITS), Object Transaction Service (OTS), Model/View/Controiler
(MVC) design pattern, Web application, Java Servlet, Java Server Page (JSP), JavaBeans component,
Unified Modeling Language (UML)

il

To My Parents and My Family

iv

Acknowledgements

[would like to acknowledge foremost the constructive guidance of my supervisor, Dr.
Tjandra. Without his patience, knowledge and encouragement, this thesis could not have

been completed.

I wish to thank the members of my committee, Dr. Kaloni, external reader from
Department of Mathematics and Statistics, Dr. Bandyopadhyay, internal reader, and Dr.
Aggarwal, chair of the committee, from Department of Computer Science, for their

valuable comments, suggestions and clarification of a few points in the thesis.

Also, I would like to thank my parents. In particular, I am greatly indebted to my father
for his love, encouragement, and support in my life. Without his contribution for taking
care of my daughter during the period of my graduate studies, it would be impossible for

me to have completed my graduate study program.

Finally, [am grateful to Dr. Zongchun Qiao, my husband, and Katherine Qiao, our

daughter, whose support and understanding was also vital to the completion of my thesis.

Figure 3.1
Figure 3.2
Figure 4.1
Figure 4.2
Figure 4.3
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6

List of Figures

OMA Reference Model

CORBA Architecture with its Essential Elements
Simple Distributed Transaction

Nested Distributed Transaction

Object Transaction Service Entities

the homepage of Java Bookstore

System Architecture

Functional Modules for the Prototype

Shopping Scenario Use Case Diagram
Transaction Scenario Class Diagram

Transaction Scenario Interaction Diagram

25
28
33
34
37
47
49
52
61
62
63

vi

Table of Contents

Abstract
Dedication
Acknowledgements
List of Figures

| Introduction
1.1 Motivations and Objectives
1.2 Thesis Structure

2 Background: Distributed System, Component-Based System Development,
Multitier Architecture, and Web Application
2.1 Distributed Systems
2.2 Component-Based System Development
2.2.1 Component-Based System Development
2.2.2 Component Models
2.2.3 JavaBeans Component Model
2.3 Multitier Architecture
24 Web Application
2.4.1 Web Application Architecture
2.4.2 Web Client Models
2.4.3 Traditional Approaches
2.4.4 ServlevJSP Technologies

3 OMA and CORBA
3.1 Object Management Architecture
3.2 OMA Reference Model
3.3 Overview of CORBA

iil

iv

vi

10
10
12
13
13
16
16
17
18
19

3.3.1 Essential Components of CORBA
3.3.2 CORBA Naming Service

4 Distributed Transaction Management
4.1 Concept of Transaction
4.2 Distributed Transactions
4.2.1 Classification of Distributed Transaction
4.2.2 Distributed Transaction Protocols
4.3 Distributed Transaction Management Standards
4.3.1 Microsoft Transaction Server
4.3.2 X/Open Distributed Transaction Processing (DTP) Model
4.3.3 OMG Object Transaction Service
4.3.4 Java Transaction Service
4.3.5 VisiBroker Integrated Transaction Service (ITS)
4.3.5.1 VisiBroker Integrated Transaction Service Specification:
IDL Interfaccs
4.3.5.2 Models for Transactions
43.5.2.1 Model for Basic Transactions
4.3.5.2.2 Model for Transaction with Resource Objects
4.3.5.3 The Advantages of VisiBroker’s ITS

5 System Design and Implementation
5.1 Requirements Analysis
5.2 System Design Goals and Considerations
5.3 System Architecture
5.3.1 A Typical Web Site
5.3.2 System Model - Distributed Multitier Component-Based Model
5.3.3 The Architecture of the Prototype
5.3.4 MVC Architecture
5.34.1 MVC Design Pattern
5.3.42 The View

26
28

31
31
33
33
34
35
35
36
36
38
39

39
40
40
4]
43

4s
45
46
47
47
48
50
52
53
54

5.3.4.3 The Model
5.3.44 The Controller
5.4 System Functionality
5.4.1 Shopping Scenario
5.4.2 Transaction Scenario
5.5 System Modeling with UML
5.5.1 Shopping Scenario Modeling
3.5.2 Transaction Scenario Modeling
5.6 The Contracts among Transaction Components - IDL Interface
5.6.1 The IDL for ITS Transaction Service Standard
5.6.2 The IDL for ITS Transaction Service Extensions
5.6.3 The IDL for the Prototype
5.7 Detailed Transaction Implementation of Prototype
5.8 Development Environment
5.8.1 Platform
5.8.2 Development Tools
5.9 The Operation of the System

6 Conclusions and Future Works
6.1 Conclusions
6.2 Future Works
Appendix A: List of Packages and Files in the System

Bibliography

Vita Auctoris

55
56
57
57
58
60
61
61

68
69
70
3
3
74
15

78

78

79

81

83

87

1 Introduction

In this thesis, we are primarily concerned with the discussion of the development of
ensuring integrated transaction for Web applications in the distributed environment. The
infrastructure design presented here is based on the principles of distributed, multitier
architecture, and component-based approach, and the use of open standards and multi-
platform technologies, and MVC design patten. As a prototype, a sample on-line
bookstore is developed with the help of UML modeling, to demonstrate the feasibility

and effectiveness of our approach.

In the remainder of this introductory chapter, we first address the motivations and
objectives of this thesis in Section 1.1. The overall organizations of this thesis are then

outlined in Section 1.2.

1.1 Motivations and Objectives

Few technologies have revolutionized business more than the advent of the Internet. In its
short history, the Internet began as a giant unidirectional medium, or a giant URL-based
file server, for publishing and broadcasting static electronic documents. Since the mid of
1990°s, companies all over the world have been quickly realizing that the Internet’s true
value is not in people’s ability to browser the Web, but rather, in the new opportunities it
creates for enhancing business processes, reducing costs and increasing profits. As a
result, the Web has evolved from a network of basically static information display to a

mechanism for interactive Web applications.

On the other hand, facing growing pressure to delivery broad-reaching application
functionality quickly and cost-effectively, the software industry are turning to distributed
object computing as the adaptive software architecture on which to build applications that
meet these challenging business requirements. With object-oriented computing,
organizations can develop applications faster and less expensively by reusing software

components; adapt to new technology quickly while integrating existing system; deploy

applications flexibly across platform; and simplify maintenance by isolating volatile code
in frequently changed objects. The explosion of the Internet has fueled this shift to
distributed objects. Internet business opportunities require a new breed of information
technology solutions that are suited to this new, rapidly expanding Web computing
world.

Facing increasingly sophisticated web applications require changes in development
technology. What is need is an industry-wide solution for creating pages with dynamic-
generated content. This solution should address the limitations of current alternatives by:
e Working on any web or application server

e Separating the application logic from the appearance of the page

¢ Allowing fast development and testing

¢ Simplifying the process of developing interactive web applications

The Servlet/JSP technology was designed to fit the above industry need. Java Servlet/JSP
is more efficient, easier to use, more powerful, more portable, safer, and cheaper than
traditional CGI and many alternative CGI-like technologies. Microsoft’s Active Server
Pages™ (ASP) technology makes it easier to create dynamic content on a web page, but
only works with Microsoft IIS or Personal Web Server. Another early solution to this
problem was the CGI-BIN technology. With traditional CGI, a new process is started for
each HTTP request. The overhead of starting the process can dominate the execution
time. With Servlet/JSP, the Java Virtual Machine stays running and handles each request
using a lightweight Java thread, not a heavyweight operating system process. This is the
major motivation why we adopt the Java Serviet/JSP technology to build our component-
based web transaction systems infrastructure.

As a growing number of web applications are deployed over the Internet, the need arises
to coordinate application objects into Internet transactions. Web applications typically
require flexible access to multiple data sources, such as inventory, customer, or shipping
data, while maintaining data integrity across these data sources to ensure a consistent
state. Such applications create the need for a software solution that coordinates their

activities, ensuring consistence, isolation, and durability [Subr99]. Traditional approach

to manage atomic transaction is TP (Transaction Processing) Monitor technology. The
X/Open DTP model is well established in the industry for 25 years [TPMT97]. Most of
the commercial databases such as Oracle, Sybase implement XA interface of TP
technology to perform business logic computations and database updates. But the X/Open
DTP model has not efficiently addressed the interoperability issues across different TP
domain and its implementation code is usually written in a lower-level language (such as
COBOL) [TPMT97). Facing with today’s complexity of business need in distributed
environment, integrate more powerful distributed transaction processing service is
important. To achieve this goal, Web applications require an object-based transaction
service that enables the following

® Coordination of multiple component into a single transaction.

¢ Multiple components to access a single data source or multiple data sources.

¢ Data integrity across multiple data sources.

o Security of business over the Internet or corporate Intranets.

In order to remain competitive, many companies have the need to combine the flexibility
and reuse of object technology with the application services that now define customer
service: performance, reliability, transaction integrity, and security. Such that, one of our
thesis objective is combining standards-based solution for this problem, which integrate
OMG Object Transaction Service technology into our web system design and provides
more enhancement over traditional transaction management.

Moreover, Web application is not simply defined as an e-commerce transaction. It is
about using technology to redefine old business models in order to maximize customer
value [WAPM99]. With the relentless evolution of Web technology, non-Web
application models and organizational structures will face increasing pressure. In order to
compete, some might even survive, in this new economic era; a company must be able to
react quickly to challenges by constantly innovating their processes to stay in step with
new technologies and ahead of competition. To be successful in the e-business world,

companies thus need to create an e-business infrastructure, which is a set of tools that

enables e-business. The infrastructure thus must be designed to meet the following key

criteria:

o Flexibility: for rapidly evolving Web application models through the addition of new
application functionality and the integration of systems and applications with
customers, business partners and suppliers.

® Scalability: for accommodating unpredictable fluctuations in custom demand and user
workload.

¢ Reliability: for ensuring secure, continuous operation and availability of the Web

applications to end-users.

Unfortunately, although a lot of Web applications are available today, many of them may
not met the infrastructure design criteria and/or supported the transactions as we have
described above. Driven by the motivations to address these two needs, in this thesis, we
are primarily concerned with the discussion for developing component-based web
transaction systems in the distributed environment. The proposed approach is based on
the principles of distributed, multitier architecture, component-based system development
[Brown98a, 98b] with the use of open standards, multi-platform technologies, and MVC
design pattern [GHIV95) as well. As a prototype of the framework discussed here, a
sample on-line bookstore is developed, with the help of UML modeling, to demonstrate
the feasibility and effectiveness of our approach. The major benefits of the proposed
approach may include the following:

o Simplify application development and deployment.

¢ Support heterogeneous client and server platforms.

o Deliver a secure, scalable, reliable, and manageable environment.

Accordingly, the primary objectives of this thesis may thus be summarized as follows:

¢ To propose an approach for the development of component-based web transaction
systems in the distributed environment. This approach offers the flexibility,
scalability, and reliability necessary to support the constant evolution of business

processes in the e-business world.

¢ To develop a prototype based on our infrastructure design to validate the feasibility
and effectiveness of the proposed approach. This prototype is expected to be adapted
to a wide range of e-commerce application with only some modifications and

extensions.

It is worth emphasizing that these objectives achieved in this thesis lies in the fact that
our framework is designed based on the principles of distributed, multitier architecture,
component-based development approach with the use of open standards, industry
standard component models (CORBA [Siegel96] and JavaBeans [Sun97j]), multi-
platform technologies (JSP/Serviet technologies [SS$99], and Java programming language
[JLS97)), together with the help of MVC design pattern [GHJV95] and UML modeling
[BRJ99]. These principles and technologies will be introduced and discussed in the rest
of the chapters.

1.2 Thesis Structures

We conclude this introductory chapter with an outline of the remainder chapters as
follows. In Chapter 2, we provide an overview of the background information to this
thesis. In particular, the characteristics and advantages of distributed computing, multitier
architecture, and component-based development approach as well, are discussed. They
are the principles and guidelines for the system architecture design of our Web
application. The Web application with its architecture, Web client models, and traditional
approaches are then introduced. JavaBeans, one of the component model adopted in this
thesis, and JSP/Servlet technologies are also briefly introduced in this chapter since they
will be chosen for our Web client tier design. An overview of CORBA technology,
another component model adopted for our infrastructure of Web application, is provided
in Chapter 3. After an introduction of the general concepts and characteristics of
distribute transaction management, in Chapter 4, we present an overview of available
transaction services with focus on OTS, one of implementation of CORBA Transaction
Service, employed for the transaction management in our infrastructure. The system
design and implementation of our prototype, together with MVC design pattern and UML

modeling, are detailed in Chapter 5. The conclusion and future works are summarized in
Chapter 6.

2 Background: Distributed System, Component-Based System
Development, Multitier Architecture, and Web Application

In this chapter, we introduce some background information related to this thesis. We first
provide an introduction to the characteristics and advantages of distributed system,
component-based system development approach, and multitier architecture. These are the
principles and guidelines for the system architecture design of our Web application. The
Web application’s architecture, Web client models, and traditional approaches with its
disadvantages are then introduced and discussed. JavaBeans and JSP/Servlet technologies
are also briefly introduced in this chapter since these three technologies, following the

MVC architecture, will be chosen for our Web client tier design, which is detailed in
Chapter 5.

2.1 Distributed Systems

A distributed system consists of a collection of autonomous computers linked by a
computer network and equipped with distributed system software [Cou96]. Distributed
system software enables computers to coordinate their activities and to share the
resources of the system-hardware, software and data. Users of a well-designed distributed
system should perceive a single, integrated computing facility even though it may be
implemented by many computers in different locations.

The development of distributed systems followed the emergence of high-speed local area
computer networks at the beginning of the 1970s. More recently, the availability of high-
performance personal computers, workstation and server computers has resulted in a
major shift towards distributed systems and away from centralized and multi-user
computers. This trend has been accelerated by the development of distributed system
software, designed to support the development of distributed application. For an in-depth
introduction of knowledge of distributed system, we refer to the excellent book by
Goulouris et. al. [Cou96]. In the following, however, for the purpose of completeness, we

provide a summary of six key characteristics that are primarily for the usefulness of
distributed system.

Resource sharing: Resources (that may extend the range from hardware components
such as disks and printers to software-defined entities such as files, windows,
database and other data objects) in a distributed system are physically encapsulated
with one of the computers and can only be accessed from other computers by
communication. For effective sharing each resource must be managed by a program,
called resource manager, that offers a communication interface enabling the resource
to be accessed, manipulated and updated reliably and consistently.

Openness: The openness of a computer system is the characteristic that determines
whether the system can be extended in various ways. The openness of distributed
systems is determined primarily by the degree to which new resource-sharing services
can be added without disruption to or duplication of existing service. Open distributed
systems are based on the provision of a uniform inter-process communication
mechanism and published interfaces for access to shard resources. Open distributed
systems can be constructed from heterogeneous hardware and software, possibly from
different vendors.

Concurrency: Concurrency and parallel execution arise naturally in distributed
systems from the separate activities of users, the independence of resources and the
location of server processes in separate computers. The separation of these activity
enables processing to proceed in parallel in separate computers, and accordingly
results in the high performance benefit of distributed systems. However, concurrent
accesses and updates to shared resources must be synchronized to ensure they do not
conflict with each other, and to keep shared resource in a consistent state.

Scalability: Scalability is defined as that the system and application software should
not change when the scale of the system increases. Scalability has been a dominant
concern in distributed system design during the last decade, and its importance
continues due to the size and complexity of computer networks growing. Current
available techniques including replicated data, caching and deployment of multiple
servers, have been successfully in coping with large-scale applications.

o Fault tolerance: Computer systems sometimes may fail due to the fault occurring in
the hardware or software. As a result, this failure may lead to the running program to
produce incorrect results, or terminates without the completion of the intended
computation. Fault tolerance can be addressed more efficiently in distributed systems
than in more centralized system architectures. Hardware redundancy (the use of
redundant components) and software recovery (the design of programs to recover
from faults) are two approaches widely used for the design of fault-tolerant computer
system. Hardware redundancy can be exploited to ensure that essential tasks are re-
allocated to another computer when one fails. Software recovery involves the design
of software so hat the state of permanent can be recovered or “rolled back” when a
fault is detected.

o Transparency: Transparency is defined as the concealment from the user and the
application programmer of the separation of components in a distributed system, so
that the system is perceived as a whole rather than as a collection of independent
components. The implications of transparency are a major influence on the design of
the software system. Based on the functionality, transparencies may further be
classified into eight forms as, transparency of access, location, concurrency,
replication, failure, migration, performance, and scaling. These provide a useful
summary of the motivation and goals for distributed systems. It is worth noting that
among them, access transparency-enables local and remote information objects to be
accessed using identical operations, and local transparency-enables information
objects to be accessed without knowledge of their location are two most important
transparencies. They are sometimes referred to together as network transparency.

It is worth emphasizing that a distributed system may offer substantial benefits
summarized by the above six characteristics, to their users. Nevertheless, these benefits
cannot be achieved automatically without a careful design of system components.
Distributed systems have become the norm for the organization of computing facilities.
They can be used to implement general-purpose interactive computing systems, and

support a wide range of commercial and industrial application of computers. They are

increasingly being used as the basis for new applications where communication is a basic
requirement.

2.2 Component-Based System Development

In this section, we first present an overview of the concept and advantages ot component-
based system development approach. The concepts of component and component models

are then discussed. Finally, JavaBeans, one of the popular component models, is briefly
introduced.

2.2.1 Component-Based Development

Recently, there has been renewed interest in the notion of software development through
the planned integration of pre-existing software components. This is most often called
component-based development (CBD) [Barn98, Brown96, Brown98a]. CBD is an
approach to application development that moves away from tradition, custom
development to assembly from pre-built, pre-tested software components, which inter-

operate with each other in a distributed, networked environment [Stuart98].

Conceptually, CBD unifies concepts from a number of software domains, such as object-
oriented programming, software architecture, and distributed computing. CBD
emphasizes the outsourcing of pieces of the application system, and focuses on the
controlled assembly of those pieces through well-defined interfaces. Consequently, the
application development process has been re-engineered such that the software
construction is achieved through a component selection, evaluation, and assembly
process. The components are acquired from a diverse set of sources, and used together
with locally developed software to construct a complete application [Brown96).

Although the concept of designing and implementing software systems as set of

components is nothing new, the renaissance in the component-based approach recently

are driven by a number of factors and technology advances including:

10

e The development of the World Wide Web (WWW) and the Internet have increased
understanding and awareness of distribute computing. The WWW encourages users
to consider systems to be loosely coordinated service that reside “somewhere in
hyperspace”. In accessing information it becomes unimportant to know where the
information physically resides, what underlying engines are being used to query and
analyze the data, and so on.

o Both the use of object-oriented software design techniques and languages, and the
move from mainframe-based systems toward client/server computing, lead
developers to consider applications systems not as monolithic, but rather as separable,
interacting components.

o The economic reality that large-scale software development must take greater
advantage of existing commercial off-the-shelf (COTS) software, reducing the
amount of new code that is required for each application system.

e The materiality and widespread acceptance of several standard component models

that make CBD approach a reality.

One of the promises of component technology is a world in which customized business
solutions can be assembled from a set of off-the-shelf business objects. The proposition is
that independent software vendors produce specialized components for various business
problems or requirements. Enterprise simply select the appropriate components that best
match their business needs and assemble them into a working solution. Thus far, there is
a fairly rich supply of off-the-shelf, third-party, client-side development components. For
the moment, the market for server-side components is still very young. As more and more
organizations adopt the server component architecture, the market is likely to mature
rapidly. Application software companies are already beginning to implement applications
using server components. For example, some e-commerce vendors are beginning to
supply individual applications, such as a shopping cart and a credit validation server, as

customizable components.

The ultimate goal for component-based system is to achieve plug-and-play assembly. In

other words, developers should be able to purchase 2 component, install it, and intcgrate

11

it into their system with minimal or no effort. A component model makes this goal
possible by standardizing the contracts (interface) by which components interact with
each other and their runtime environment. These standard interfaces enable a high level
of integration and interoperability. They also enable faster application development and

allow the use of visual component assembly tools.

2.2.2 Component Models

A component [BDH98, BBC98] is a reusable software building block: a pre-built piece of
encapsulated application code that can be combined with other components and with
handwritten code to rapidly produce a custom application. A component model [Lyon20]
defines the basic architecture of a component, specifying the structure of its interfaces
and the mechanism by which it interacts with its container (which provides an application
context for one or more components and provides management and control services for
the components), and with other components. Thus, the component model provides
guidelines to create and implement components that can work together to form a large
application. Accordingly, in order to qualify as a component, the application code must
provide a standard interface, whose structure of the interface is defined by the component
model that enables other parts of the application to invoke its functions and to access and
manipulate the data within the component. Application developers can combine

components from different developers or different vendors to construct an application.

Currently, there are three most popular and dominant component models [Szyp98a,
Szyp98b], namely, Microsuii’s (Distributed) Component Object Model (DCOM/COM)
[COM] [Micro97, Box98, Micro98w]; Sun’s JavaBeans [Sun97j] and Enterprise
JavaBeans (EJB) [SunE]; and the Object’s Management Group’s CORBA [OMG95]. The
COM/DCOM is incorporated directly in the Windows operating system. JavaBeans and
EJB {SunE] are the component model, and server-side component model for the Java
technology [Sun97j], respectively. CORBA is an industry de facto standard that provides
an object-based middle-ware spanning over heterogeneous platforms and different

programming ianguages. A detaii strategic and architecturai comparison about these

12

component models may be found in the review papers by Szyperski [Szyp98a], and Plasil
and Stal [PS98].

In this thesis, two component models, namely, JavaBeans and CORBA, will be chosen
for our infrastructure design. We will introduce CORBA with its naming service, and
CORBA transaction services in the next two chapters. In the following, we provide a
brief overview of JavaBeans technology, which plays an important role for our Web

client tier design and implementation in Chapter 5.

2.2.3 JavaBeans Component Model

JavaBeans is the component model for Java technology. The JavaBeans component
model [Sun97j] defines a standard mechanism to develop portable, reusable Java
technology components in which there may have features such as events, event
registration, properties, and introspection. A JavaBeans component (a bean) actually is a
specialized Java class that follows a set of simple naming and design conventions

outlined by the JavaBeans Specification [Sun97;].

The JavaBeans component model is commonly regarded as a component model for
client-side. Although JavaBeans are widely used for GUI programming that allow
developers to visually manipulate components in a IDE builder tool, they can be used
equally as an appropriate component model for building server-side programming. In
fact, JavaBeans technology will be employed in the implementation of a JSP/Serviet

component-based framework for our Web client tier design in Chapter 5.

2.3 Multitier Architecture

The traditional client/server systems have been commonly used to exploit the processing
power of workstations to provide more user-friendly and responsive systems. In a
traditional client/server application, the client application can contain any or all of the

presentation logic (the graphicai user interface), application navigation, the business iogic

13

(algorithm and business rules), and data manipulation logic (database access). The server
is generally a (distributed) database management system, which is actually not a part of
the application itself. The traditional client/server architecture is thus also known as a
two-tier architecture, and this kind of application is called thick-client application.
Originaliy, the client/server application promised improved scalability and functionality.
Unfortunately, the complexity of delivering enterprise information system services
directly to every user and the administrative problems caused by installing and
maintaining business logic on every user machine have proved to be major limitations

[Lin99]. However, these two-tier limitations may be avoided with the use of multitier

architecture.

In a multitier architecture, the application is partitioned and deployed onto three or more
interacting tiers, each providing unique functionality to the application. The front-end
client usually contains only presentation logic, which may include some very simple
control and plausibility check logic. The business logic and data access logic is spread
over one or more separate components running on one or more application servers. These
business application components, in turn, access enterprise data on backend systems,

usually called data servers. This kind of application is also commonly termed as thin-

client application,

Although multitier architecture has been around for nearly a decade, relatively few
organizations have put them to use. Until recently, most organizations did not feel the
pressures that required multitier architecture. The impetus of Web-based computing is
driving a growing interest in the use of multitier architecture approach, since Web
business applications require thin-client application architecture to support massive
scalability and to support browser-based clients. Multitier architecture provides a number
of significant advantages over traditional client/server architecture. Those advantages
may be summarized as follows:
o Increased Scalability and Performance: Moving the business and data
manipulation logic to servers allows an application to take advantage of the power of

multithreaded and multiprocessing systems. Server components can pool and share

14

scarce resources, such as processes, threads, database connections, and network
sessions. As system demands increase, highly active components can be replicated
and distributed across multiple systems. Although modern client/server systems can
easily support hundreds of concurrent users, their scalability has limits. Multitier
systems can be built with essentially no scalability limits. If the design is efficient,
more or bigger servers can be added to the environment to boost performance and to
support additional users. Multitier system can thus scale to support hundreds or
millions of concurrent users.

Increased Reliability: A multitier environment can also support many levels of
redundancy. Through replication and distribution, a multitier architecture eliminates
any bottlenecks or single points of failure. The multitier approach supports high
reliability and consistent system availability to support critical business operations.
Increased Manageability: A thin-client application is easier to manage than thick-
client applications. Very little code is actually deployed on the client systems. Most
of the application logic is deployed, managed, and maintained on the servers. Fixes,
upgrades, new versions, and extensions can all be administered through a centralized
management environment.

Increased Flexibility: The multitier applications architecture supports extremely
flexible application systems. The majority of the application logic is implemented in
small modular components. The actual business logic in the components is
encapsulated behind an abstract, well-defined interface. The code within an individual
component can be modified without requiring a change to the interface. Therefore, a
component can be changed without impacting on the other components within the
application. Multitier applications can thus easily adapt to reflect changing business
requirements.

Reusability and Integration: By the nature of its interface, a component is a
reusable software building block. Each component performs a specific set of
functions that are published and accessible to any other application through the
interface. A particular business function can be implemented once and then reused in
another application that requires the function. If an organization maintains a

comprehensive library of components, application development becomes a matter of

15

assembling the proper components into a configuration that performs the required
application functions.

¢ Multi-Client Support: Any number of clients can access the same server component
through its interface. A single multitier application system can support a variety of
client devices, including traditional desktop workstations, Web clients, or more

esoteric clients, such as information appliances and personal data assistants.

2.4 Web Application

In this section, we introduce and discuss the Web application architecture, Web client
models. After the traditional approaches to the Web applications and their disadvantages
are addressed, we present an overview of Servlet and JSP technologies, which, together
with the use of JavaBeans technology and MVC design pattern, offer several advantages

over the traditional approaches.

2.4.1 Web Application Architecture

Web applications are applications that leverage Web clients, such as Web browsers, Web
servers, Infrastructure services, and standard Internet protocols. They also typically
leverage existing applications and data from external non-Web applications, data and
services. It is important to note that Web server and external services are logical tiers
capable of running on the same physical machine, or maybe spread across multiple
physical machines. Web application is often interchangeable with the term, such as e-
business, or e-commerce in the different sector of industry. Applications that can make
use of Web clients have several advantages over traditional client/server based
applications. One of the major advantages is that it seems to be almost no limit to the
possible uses for Web clients in diverse applications. Another major advantage is that it
greatly simplifies application deployment and management since to update an
application, a developer only needs to change server-side programs instead of thousands
of client-installed applications. Modern Web application architecture usually consists of

four iiers:

16

¢ Client tier: manages Web pages.
e Web tier: manages computer-human interaction.
¢ Business tier: hosts the business logic packaged as components.

e Data tier: host the back-end databases.

The client tier simply consists of a Web browser. The approaches, along with the
technologies employed in this thesis, to the business tier and data tier, will be discussed
in next three chapters. In the following, we will focus on the issues related to the

development of Web tier.

2.4.2 Web Client Models

Web clients may be classified as application clients, or HTML clients [IAFE99].

An application client interacts with a Web server using HTTP or [IOP. The UI (User

Interface) to be displayed on the client is generated by part of the Web application that

executes on the client. In response to a request from the client, server returns data. This

data is interpreted by the client and displayed. The application client mode! is used

primarily in Intranet environments and has the following advantages:

o The programming model is familiar to Web application developers with a traditional
client/server background.

¢ Applications can be made more like standard windowed application.

¢ The burden of generating the user interface is distributed to each client, reducing the
computational load on the Web server.

The major disadvantage of the application client model is that the client code, which is

usual a Java applet as it is now well known and accepted as the best choice, is that it

tends to be large and require more time to download and initialize. Although Java JAR

technology [Tuto98] may increase performance to some extent, the downloading speedy

may still pose an issue to the front-end users. With the advent and use of Java plug-in

technology [Plugin], the performance may be improved greatly. Nevertheless, the Java

plug-in technology may not be supported on some platforms. For example, up to now, the

17

Java 2 plug-in technology is still not available for IBM AIX, and Windows 2000
platforms. Deployment may thus be restricted since greater client capability and

resources, and maintenance as well, are required.

An HTML client interacts with a Web server which using HTTP. The Ul to be displayed

on the client is generated by part of the Web application that executes on the Web server,

which responds to every request from the client with a new HTML page. The new page

may be static or dynamically generated [:TML page that may contain Java applets,

JavaScript, etc. The HTML client model is the most common model used in the Internet

today and has several advantages:

¢ Any browser has the potential to run a Web application that is based upon HTTP and
HTML.

¢ The client part of the Web application is small and downloads quickly.

¢ The server is able to tailor the HTML returned to the client based on upon client or
user attributes.

The major disadvantage of the HTML model is the difficulty of creating highly

interactive user interfaces. However, the clever use of small applets providing rich Ul

elements can overcome this shortcoming. On the other hand, highly interactive user

interfaces is not usually required in most cases for Internet application. For this reason,

the HTML client model will be adopted in this thesis. In the next two sections, after an

overview of the traditional approaches, JSPs/Servlet technologies are introduced, as they,

together with JavaBeans technology, will be used for our Web tier design and

implementation since they can bring great advantages over the traditional approaches.
2.4.3 Traditional Approaches

An early solution to the challenge in creating interactive Web applications was through
the use of CGI (Common Gateway Interface) programming. CGI programs run on a Web
server, acting as a middle layer between a request from a Web browser or other HTTP
(Hypertext Transfer Protocol) client, and databases or applications on the Web server

[Holz99). If the application is set up appropriately, it can retrieve data from a database

18

server and return the data to the Web browser through the HTTP-CGI mechanism.
Applications written to work with CGI are often written in a scripting language, such as
the Practical Extraction and Reporting Language (PERL) [Holz99] or a UNIX shell script
[Rose94].

With traditional CGI, however, it has significant performance and scalability problems
since each new CGI request launches a new process on the server. Even if the CGI
program itself may be relatively short, the overhead of starting the process may still
dominate the execution time. If too many multiple users access the program concurrently,
these processes may consume all of the Web server’s available resources and the
performance thus slows to a grind. To this end, individual Web server vendors have tried
to provide solutions to give access to their own server internals. For example, Microsoft’s
Internet Service API (ISAPI) and Active Server Pages (ASP), and Netscape’s Server
APIs (NSAPI). These solutions enabled speedy improvement, they were, however, not

good enough as they were web-server specific, and thus were incompatible.

2.4.4 Serviet/JSP Technologies

Servelets [SS99] are protocol and platform independent server-side software component,
written in Java [Hall20]. They run inside a Java enabled Web server. Servlets are loaded
and executed within the Java Virtual Machine (JVM) of the Web server, in much the
same way that Java applets are loaded and executed within the JVM of Web client. Since
servlets run inside the servers, they do not need a graphical user interface. In this sense,

servlets are faceless objects.

Servlets more closely resemble CGI scripts or programs than applets in terms of
functionality. As in CGI programs, servlets can response to user events from an HTML
request, and then dynamically construct an HTML response that is sent back to the client.
Servlets implement a common request/response paradigm for the handling of the message
between the client and the server. The Java Servelt API defines a standard interface for

the handling of these request and response message between the client and server.

19

Serviets are powerful tools for implementing complex application. Written in Java,
servelts have access to the full set of Java API’s, such as JDBC [Tuto98] for accessing

enterprise databases.

HTTP is a “stateless” protocol. There is no build-in support for maintaining contextual
information. Servlets provide an outstanding technical solution: the HupSession API,
which is a high-level interface built on top of cookies or URL-rewriting. Using sessions
in servlets involves looking up the session object associated with the current request,
creating a new session object when necessary, looking up information associated with a
session, storing information in a session, and discarding completed or abandoned
sessions. Finally, if you return any URLSs to the clients that references your site and URL-
rewriting is being used, you need to attach the session information to the URLs. Using
HupSession makes it easy for the developer to maintain and access session information
within a serviet. It associates an HTTP client with an HTTP session, and it persists over
multiple connections by the same use. For example, Java bookstore uses session tracking

to keep track of the books being ordered by a user.

As mentioned above, Servlets are similar to CGI in that can produce dynamic Web

content. Servlets, however, have the following advantages over traditional CGI programs:

¢ Portability and platform independence: Servlets are written in Java, making them
portable across platforms and across different Web servers, because the Java Servlet
API defines a standard interface between a Servlet and a Web server.

¢ Persistence and performance: A Servelt is loaded once by a Web server, and invoked
for each client request. This means that the Servlet can maintain system resources,
like a database connection, between requests. Servlets don’t incur the overhead of
instantiating a new Servlet with each request. CGI processes typically must be loaded
with each invocation.

e Java based: Because Servlets are written in Java, they inherit all the benefits of the

Java language, including a strong typed system, object-orientation, and modularity, to

name a few.

20

JavaServer Pages (JSPs) are similar to HTML files, but provide the ability to display
dynamic content within Web pages [Hall20]. Using JSP technology, web page developers
use HTML or XML tags to design and format the result page. They use JSP tags or
scriptlets to generate the dynamic content on the page (the content that changes according
to the request). The logic that generates the content is encapsulated in tags and JavaBeans
components and tied together in scriptlets, all of which are executed on the server side.
This makes it very easy to dynamically generate some HTML on a page, while statically
composing other content with an HTML editor. JSP Bean tags provide an alternative,
component-centric approach to dynamic page and web application design. JSP
technology was developed to separate the development of dynamic Web page content
from static HTML page design. The result of this separation means that the page design
can change without the needed to alter the underlying dynamic content of the page. This
is useful in the development life-cycle because the Web page design do not have to know
how to create the dynamic content, but simply have to know where to place the dynamic

content within the page.

To facilitate embedding of dynamic content, JSPs use a number of tags that enable the
page designer to insert the properties of JavaBean object and script elements into a JSP
file. JSP is made operable by having their contents (HTML tags, JSP tags and scripts)
translated into a Serviet by the Web server. This process is responsible for translating
both the dynamic and static elements declared within the JSP file into Java Serviet code
that delivers the translated contents through the Web server output stream to the browser.
The Servlet produced as a result of the above process, which performs only once when
the JSP page is called at the first time, remains in server memory, until the Web server is
stopped, the Servlet is manually unloaded, or a change is made to the underlying file,
causing recompilation. Consequently, subsequent calls to the page have very fast
response times. Some of the advantages of using JSP technology over other methods of
dynamic content creation are summarized as follows:
*® Separation of dynamic and static content: This allows for the separation of application
logic and Web page design, reducing the complexity of Web site development and

making the site easier to maintain.

21

¢ Platform independence: Because JSP technology is Java-based and platform
independent. JSP can run on any nearly any Web application server. JSP can be
developed on any platform and viewed by any browser because the output of
compiled JSP page is HTML.

¢ Component reuse: Using JavaBeans, JSP leverage the inherent reusability offered by
the JavaBeans technology. This enables developers to share components with other
developers or their client community, which can speed up Web site development.

e Scripting and tags: JSP support both embedded JavaScript and tags. JavaScript is
typically used to add page-level functionality to the JSP. Tags provide an easy way to

embed and modify JavaBean properties and to specify other directives and actions.

Because JSPs are server-side technology, the processing of both the static and dynamic
elements of the page occurs in the server. The architecture of JSP/Serviet-enabled Web
site is often referred to as thin-client because most of the business logic is executed on the
server. As such, JSP/Servlet technologies are becoming a key component in a highly

scalable architecture for Web applications.

Since JSPs are compiled into Servlets, theoretically developers could write Servlets to
support their Web applications. However, JSP technology was designed to simplify the
process of creating pages by separating presentation from business logic, due to a built-in
facility for calling JavaBeans component. In fact, JavaBeans components, JSPs and
Serviets could be combined together following the well-known MVC design pattern
[GHIV95] to provide an attractive alternative to other types of dynamic Web
programming that offers platform independence, enhanced performance, separation of
logic from display, easy of administration, extensibility, and most importantly, ease to
use. MVC design pattern with JavaBeans, JSPs and Serviets will be addressed in more

detail in Chapter S.

2

3 OMA and CORBA

In this chapter, we provide an overview of Object Management Architecture (OMA) with
its reference model, and Common Object Request Broker Architecture (CORBA) with its
essential components, and CORBA Naming Service. CORBA technology :- an industry
de facto standard that provides an object-based middle-ware spanning over heterogeneous
platforms and different programming languages, and is adopted in this thesis for system
infrastructure design to address the issues of business tier.

3.1 Object Management Architecture

As enterprise applications usually require information among a diversity of sources, such
as, in-house, brought-in, supplier, customer, etc. Those applications become increasingly
difficult and complex, and thus should be built using a methodology that supports
modular production of software; encourages reuse of code; allows useful integration
across lines of developers, operating systems and hardware; and enhances long-range
maintenance of that code. The Object Management Group (OMG) proposed Object
Management Architecture (OMA) based on which to develop integrated software system
[OMG97]. It has the ability to grow in functionality through the extension of existing
components and addition of new components to the system. This results in faster
application development, easier maintenance, reduced program complexity, and reusable

components. It provides transparency over heterogeneous networks.

The OMA provides the conceptual infrastructure upon which supporting specifications
are based. OMG is populating the OMA with detailed specifications for each component
and interface category in the Reference Model. The OMA Reference Model [OMG97] is
an architectural framework for the standardization of interfaces to infrastructure and
services that applications can use [Siegel96]. Adopted specifications include the CORBA,
CORBAservices, and CORBA facilities.

3.2 OMA Reference Model

The Reference Model, as depicted in Figure 3.1, identifies and characterizes the

components, interfaces, and protocols that compose the OMA. This includes the Object

Request Broker (ORB) component that enables clients and objects to communicate in a

distributed environment, and four categories of object interfaces, which are briefly

described as follows:

Object Request Broker (ORB) is situated at the conceptual center of the Reference
Model. It acts as a message bus between objects, which may be located on any
machine in a network, implemented in any programming language, and executed on
any hardware or operating system platform.

Object Services component standardizes the life cycle management of objects.
Functions are provided to create objects, to control access to objects, to keep track of
relocated objects anc. to consistently maintain the relationship between groups of
objects. The published services include Naming, Transaction, Events, Life Cycle,
Externalization and Licensing, etc.

Common Facilities are interfaces for horizontal end-user-oriented facilities
applicable to most application domains. It provides a set of generic application
functions that can be configured to the requirements of a specific configuration.
Examples are printing facilities, database facilities, and electronic mail facilities.
Domain Interfaces arc application domain-specific interfaces for application domains
such as Finance, Healthcare, Manufacturing, Telecom, Electronic commerce, and
Transportation.

Application Interfaces are interfaces developed specifically for a given application,
which is part of the architecture, represents those application objects performing
specific tasks for users.

24

I e L YT

Application Interfaces | | Domain Interfaces Common Facilities

&

OOO

Object Services

O CORBA Object . Legacy Application Wrapper

Figure 3.1 OMA Reference Model

We note that the Objects and Legacy Application Wrappers are represented as different
shapes in the figure, to highlight the capability of CORBA in incorporating legacy code.

The applications need only support or use OMG-compliant interfaces to participate in the
OMA. In OMA, interfaces are specified in OMA Interface Definition Language (IDL)
[Siegel96]. The OMA IDL provides a standardized way to define the interfaces to
CORBA objects. The IDL definition is the contract between the implementor of an object
and the client. IDL is a strongly typed declarative language that is programming
language-independent. Almost all-major programming languages have their mapping to
CORBA IDL. They include C, C++, Smalltalk, COBOL and Java [Siege96].

3.3 Overview of CORBA

25

The Object Request Broker component of the Object Management Architecture is the
communication heart of the standard. This is referred to commercially as CORBA
(Common Object Request Broker Architecture) [OMG95). CORBA specifications
include a language to define objects, a protocol for exchanging information and a
protocol for passing objects over the distributed systems. It provides a platform, location
and an implementation-language-neutral architecture for the development of distributed
applications. As a result, currently CORBA has become one of the most commonly used
architectures for the development of distributed Web-enabled applications.

CORBA uses an object-oriented approach for creating software components that can be
reused and shared among applications. Each object encapsulates the details of its inner
workings and presents a well-defined interface, which reduces application complexity.
The cost of developing applications is also reduced, because once an object is

implemented and tested, it can be used over and over again.

CORBA fits the component-based and Internet-based approaches to building and using
software. It defines a way to divide application logic over objects distributed over the
network. CORBA also defines a way for these objects to communicate with one another
and to use each other’s services. It also manages how objects identify themselves, find
others, learn about network events, handle object-to-object transactions, and maintain the
object security.

3.3.1Essential Components of CORBA

CORBA is an Object Request Broker framework designed to manage objects from

heterogeneous worlds. Figure 3.2 illustrates the primary components in the CORBA

architecture. A brief summary of these components is as follows:

o Object Implementation — This defines operations that implement a CORBA IDL
interface. Object Implementation can be written in a variety of languages including C,
C++, Java, Smalltalk, and Ada [Siegel96].

26

Client — This is the program entity that invokes an operation on an object
implementation. Accessing the services of a remote object should be transparent to
the caller.

Object Request Broker (ORB) — The ORB provides a mechanism for transparently
communicating client requests to target object implementations. The ORB simplifies
distributed programming by decoupling the client from the details of the method
invocations.

ORB Interface - This interface provides various helper functions such as converting
object references to strings and vice versa, and creating argument lists for requests
made through the dynamic invocation interface.

CORBA IDL stubs and skeletons — CORBA IDL stubs and skeletons serve as the
“glue” between the client and server applications, respectively, and the ORB. The
stub and skeleton code combine with the ORB to implement location transparency.
Dynamic Invocation Interface (DII) — This interface allows a client to directly
access the underlying request mechanisms provided by an ORB. Applications use the
DII to dynamically issue requests to objects without requiring IDL interface-specific
stubs to be linked in. The DII also allows clients to make non-blocking deferred
synchronous and oneway calls.

Dynamic Skeleton Interface (DSI) - This is the server side’s analogue to the client
side’s DII. The DSI allows an ORB to deliver requests to an object implementation,
that does not have compile-time knowledge of the type of the object it is
implementing.

Object Adapter - This assists the ORB with delivering requests to the object and with
activating the object. The object adapter associates object implementations with the
ORB. Currently CORBA defines the Basic Object Adapter (BOA) and the Portable
Object Adapter (POA). Their purpose is to generate and interpret object references,
and to activate and deactivate object implementations.

GIOP/IIOP - The General Inter-ORB Protocol (GIOP) defines a linear format for the
transmission of CORBA requests and replies without requiring a particular network
transport protocol. The Internet Inter-ORB Protocol (IIOP), which applies to TCP/IP
networks, is a specialization of GIOP. The IIOP lets a client make a request to one

27

ORB and have the request relayed through a different ORB to the server object. [IOP
leaves you free to choose different ORB’s for different parts of your application, and

it lets anything that implement IIOP act as a CORBA server or client.

In args
o) >

operation()
out args + return value

Obiect Impl.

ORB -
Interface .

ORB CORE

Interface IDL
Repository Compiler

Implementation
Repository

Standard Language Mapping

- ORB-Specific Interface D Standard Protocol

Figure 3.2 CORBA Architecture with its Essential Elements

3.3.2CORBA Naming Service

In addition to the interoperability offered by the ORB, CORBA also defines a set of

system-level services that complement and augment the functionality of the ORB. These

28

are called CORBAservices, and there are currently standard IDL interfaces defined for
over fifteen CORBAservices. These include services for life cycle management,
persistence, naming, transactions, queries, events, named properties, concurrency control,
licensing and security. In the following, we present a brief overview of CORBA Naming
Service. Another most important CORBAservice, CORBA Transaction Service, which is
adopted in our system infrastructure, along with comparison with other available

transaction management technologies, however, will be detailed in the next chapter.

CORBA Naming Service is one of OMG’s common object services. The Naming Service
provides the capability for CORBA objects to find other CORBA objects using an easily
distinguished naming convention. The Naming Service also enables us to associate a
logical name with an object at runtime, which provides more flexibility in configuring
your distributed object system.

The Naming Service provides the ability to bind a name to an object relative to a naming
context. A naming context is an object that contains a set of name bindings in which each
name is unique. To resolve a name is to determine the object associated with the name in
a given context. Through the use of a very general model and in dealing with names in
their structural form, Naming Service implementations can be application specific or be
based on a variety of naming systems currently available on system platforms. The
principal task of the Naming Service is to keep track of the namespace, which is the
collection of object names bound to a Naming Service. The namespace may contain a
hierarchy of bindings. The binding is the logical association of the object reference to its
symbolic name.

A client obtains a reference to the Naming service by calling the
resolve_initial_references() method of the ORB. Once the initial context of the Naming
Service is resolved, it calls the resolve() method on the NamingContext to obtain a
reference to the desired object. The whole task of name resolution is transparent to the

client.

29

CORBA Naming Service is defined in the CosNaming Module which consists of two

interfaces are as follows:

e The NamingContext interface contains operations for managing and manipulating
object names and naming contexts, such as, bind(), rebind(), unbind(), bind_context(),
new_context(), bind_new_context(), resolve(), etc.

o The Bindinglterator interface enables clients to navigate through a set of bindings

found in a naming context.

In summary, CORBA Naming Service can be used to assign names logically to objects in
a naming context and to find these objects easily, based on their compound names. The
location services can be configured at runtime and can be helpful in locating objects in
complex distributed systems.

30

4 Distributed Transaction Management

Transaction management is one of the most crucial requirements for enterprise
application development [Subr99] [Jim93). Most of the large enterprise applications in
the domains of finance, banking and electronic commerce rely on transaction processing
for delivering their business functionality [GN96). Given the complexity of today’s
business requirements, transaction processing occupies one of the most complex
segments of enterprise level distributed applications to build, deploy and maintain. In
this chapter, we present an introduction to the concepts involved in distributed transaction
management. Several available Transaction Services, in particular, VisiBroker’s
Integrated Transaction Service (ITS), one of concrete implementation of CORBA
Transaction Service, adopted in this thesis for our system infrastructure design, are also
discussed.

4.1 Concept of Transaction

Enterprise applications often require concurrent access to distributed data shared amongst
multiple components, to perform operations on data. A fransaction is also a unit of
consistency, i.e., executed from a coherent database state; the transaction drives the
database to another coherent state. A transaction ends either by a commit (the
transaction's effects become permanent in the database), or by an abort (the effects are
cancelled) [Cou96).

Applications should maintain integrity of data under the following circumstances:
distributed access to a single resource of data, and access to distributed resources from a
single application component. In such cases, it may be required that a group of operations
on (distributed) resources be treated as one unit of work. In a unit of work, all the
participating operations should either succeed or fail and recover together. This problem
is more complicated when

¢ A unit of work is implemented across a group of distributed components operating on

data from multiple resources, and/or

3

o The participating operations are executed sequentially or in parallel threads requiring
coordination and/or synchronization.

In either case, it is required that success or failure of a unit of work be maintained by the
application. In case of a failure, all the resources should bring back the state of the data to

the previous state (i.e., the state prior to the commencement of the unit of work).

The concept of a transaction, and a transaction manager (or a transaction processing

service) simplifies construction of such enterprise level distributed applications while

maintaining integrity of data in a unit of work. By definition, a transaction is a unit of
work done by multiple distributed components on shared data, ensuring the following
properties [Little98):

¢ Atomicity: A transaction should be done or undone completely and unambiguously.
In the event of a failure of any operation, effects of all operations that make up the
transaction should be undone, and data should be rolled back to its previous state.

¢ Consistency: A transaction should preserve all the invariant properties (such as
integrity constraints) defined on the data. On completion of a successful transaction,
the data should be in a consistent state. In other words, a transaciion should transform
the system from one consistent state to another consistent state. For example, in the
case of relational databases, a consistent transaction should preserve all the integrity
constraints defined on the data.

o Isolation: Each transaction should appear to execute independently of other
transactions that may be executing concurrently in the same environment. The effect
of executing a set of transactions serially should be the same as that of running them
concurrently.
¢ During the course of a transaction, intermediate (possibly inconsistent) state of the

data should not be exposed to all other transactions.
¢ Two concurrent transactions should not be able to operate on the same data.
o Durability: When a transaction commits, its effects cannot be cancelled by the
execution of an uncommitted transaction.

32

These properties called as ACID properties, guarantee that a transaction is never
incomplete, the data is never inconsistent, concurrent transaction are independent, and the

effects of a transaction are persistent.

4.2 Distributed Transactions

A Distributed Transaction is a client transaction that invokes operations in several
different servers [Cou96]. A client transaction may involve one or multiple servers.
Transaction activities spread into multiple servers either directly by requests made by a

client or indirectly via requests made by servers.

4.2.1 Classification of Distributed Transactions

Distributed transactions can be structured in two different ways: as simple distributed

transactions and as nested distributed transactions [Cou96].

e Simple distributed transactions - A client makes requests to more than one server, but
each server carries out the client’s requests without invoking operations in other

SETVers.

Client

|

1\
o/ ielmy

Figure 4.1 Simple Distributed Transaction

5

Figure 4.1 shows transaction T is a simple distributed transaction that invokes operations
in servers X, Y and Z. A simple (not-nested) client transaction completes each of its

kX]

requests before going on to the next one. Therefore each transaction accesses servers’
data items sequentially.

¢ Nested distributed transactions - A client makes requests to more than one server, in
some cases an operation in a server may invoke an operation in another server and in
general the latter may invoke further operations in yet more servers and so forth. In

this situation, each client transaction is structured as a set on nested transaction.

Client

Figure 4.2 Nested Distributed Transaction

Figure 4.2 shows a client’s transaction T at server Z invoking operations in servers X and
Y, which form nested transactions T1 and T2. The nested transaction T1 invokes
operations in server M, which form further nested transaction T11. In general, a
transaction consists of a hierarchy of nested transactions. Nested transactions at the same

level may run concurrently with one another.

4.2.2 Distributed Transaction Protocols

When a distributed transaction comes to an end, the atomicity property of transactions
requires that either all of the servers involved commit the transaction or all of them abort

34

the transaction. To archive this, one of the servers takes on a coordinator role, which is

responsible for aborting or committing transaction and adding other servers. The manner

in which the coordinator archives this depends on the protocol chosen. There are two

atomic commit protocols:

One-phase atomic commit protocol — The coordinator communicate the commit or
abort request to all of the servers in the transaction and to keep on repeating the
request until all of them had acknowledged that they had carried it out.

As in the case when the client requests a commit, simple one-phase atomic
commitment protocol does not allow a server to make a unilateral decision to abort a
transaction. The client may not know when a server has failed and restarted during
the progress of a distributed transaction — such a server will need to abort the

transaction. So the simple one-phase atomic commitment protocol is inadequate.

Two-phase atomic commit protocol - In the first phase, each server has voted to
commit a transaction, it is not allowed to abort it. In the second phase, if any one
server votes to abort, the decision must be to abort the transaction,; if all the servers
vote to commit, the decision must be to commit the transaction.

The two-phase commit protocol is designed to allow any server to abort its part of a
transaction. Due to atomicity, if one part of a transaction is aborted, then the whole
transaction must also aborted.

4.3 Distributed Transaction Management Standards

In this section, we present an overview of several available transaction services with
focus on VisiBroker’s Integrated Transaction Service (ITS), involved in the distributed
transaction management.

4.3.1 Microsoft Transaction Server

35

Microsoft Transaction Server (MTS) is a component-based transaction server for
components based on the Microsoft’s Component Object Model (COM). The MTS
programming model provides interfaces for building transactional COM components,
while the MTS runtime environment provides a means to deploy and manage these
components and manage transactions. Using the MTS, work done by multiple COM

components can be composed into a single transaction.

But MTS is only supported on Windows 95 and NT platform, it is not platform
independent and is not based on open specifications.

4.3.2X/Open Distributed Transaction Processing (DTP) Model

In the distributed transaction management domain, X/Open Distributed Transaction
Processing (DTP) model, proposed by the Open Group, is the most widely adopted model
for building transactional applications. This model is a standard among most of the

commercial vendors in transaction processing, databases domain, and message queuing.

This model defines four components: application programs, resource managers, a
transaction manager, communication resource manager (facilitate interoperability
between different transaction managers in different transaction processing domains). This
model also specifies functional interfaces between application programs and the
transaction manager (known as the TX interface), and between the transaction manager
and the resource managers (the X4 interface). With products complying with these
interfaces, one can implement transactions with the two-phase commit and recovery

protocol to preserve atomicity of transactions.

4.3.30MG Object Transaction Service

Object Transaction Service (OTS) is another distributed transaction processing model
specified by the Object Management Group (OMG) [OMG95]. This specification extends
the CORBA model and defines a set of interfaces to perform transaction processing

36

across multiple distributed CORBA objects. The OTS model is based on the X/Open
DTP model [Little99] with the following enhancements:
o The OTS model replaces the functional XA and TX interfaces with CORBA IDL

interfaces.

o The various objects in this model communicate via CORBA method calls over IIOP.

However, the OTS is interoperable with X/Open DTP model. An application using
transactional objects could use the TX interface with the transaction manager for
transaction demarcation.

The OTS architecture consists of the following components: Transaction Client,
Transactional Object, Recoverable Object, Transactional Server, Recoverable Server,
and Resource Object, which described in Figure 4.3. The Transaction Service defines
interfaces that allow multiple, distributed objects to cooperate to provide atomicity. These
interfaces enable the objects to either commit all changes together or to rollback all
changes together, even in the presence of (noncatastrophic) failure. No requirements are
placed on the objects other than those defined by the Transaction Service interfaces.
Objects supporting transactional behavior must have interfaces derived from the
TransactionalObject interface.

Transactional Server Recoverable Server
Transactional Recoverable @
Obiect Obiect
registers
may forcﬁl resource, participates
rollback may forc in transaction
v rollback completion {

Transaction
Transaction Service

Figure 4.3: Object Transaction Service Entities

37

In addition to the usual transactional semantics, the CORBA OTS provides application
objects to synchronize transient state and data stored in persistent storage.

The OTS provides interfaces that allow multiple distributed objects to cooperate in a
transaction such that all objects commit or abort their changes together. As an
improvement to the X/Open reference model, the OTS is fully compatible with X/Open
compliant software. Thus the distributed transaction processing reference standard has
been upgraded to an object-oriented model, promoting software component reuse, and
interprocess communication mechanisms have been cleanly defined, facilitating a

common standard for vendor interoperability.
4.3.4Java Transaction Service

Java™ Transaction Service (JTS) [JTS99] specifies the implementation of a Transaction
Manager which supports the Java™ Transaction API (JTA) 1.0 Specification at the high-
level and implements the Java mapping of the OMG Object Transaction Service (OTS)
1.1 Specification [OTS97] at the low-level. JTS uses the standard CORBA ORB/TS
interfaces and Internet Inter-ORB Protocol (IIOP) for transaction context propagation
between JTS Transaction Managers.

A JTS Transaction Manager provides transaction services to the parties involved in
distributed transactions: the application server, the resource manager, the standalone
transactional application, and the Communication Resource Manager (CRM). The
packages org.omg.CosTransactions and org.omg.CosTSPortability define the Java
mapping of the OMG’s Transaction Service (OTS) 1.1 interfaces using the standard

IDL/Java programming language mapping.

Although the Java Transaction Service (JTS) [JTS99] is a Java implementation of the
OMG OTS 1.1 specification, the Java Transaction API (JTA) 1.0 retains the simplicity of
the XA and TX functionai interfaces of the X/Open DTP model [Littic98].

38

In the Java transaction model, the Java application components can conduct transactional
operations on JTA compliant resources via the JTS. The JTS acts as a layer over the OTS.
The applications can therefore initiate global transactions to include other OTS
transaction managers, or participate in global transactions initiated by other OTS
compliant transaction managers.

4.3.5VisiBroker Integrated Transaction Service (ITS)

VisiBroker’s Integrated Transaction Service (ITS) is INPRISE’s implementation of the
CORBA Transaction Service [VITS99). Implemented on top of Inprise’s VisiBroker
ORB, ITS combines the functionality of several services — including a transaction service
that is compliant with CORBA's Transaction Service version 1.1 specification, database
and legacy system - into one, integrated architecture. It provides reliable, high-
performance transactional integrity and enables distributed applications to handle the
various difficulties of transaction completion over the Internet and Intranets [VITS99].
Implementation language independence provided by ITS offers more flexibility than JTS,
which can only be implemented by Java language.

43.5.1 VisiBroker Integrated Transaction Service Specification: IDL Interfaces

VisiBroker ITS defines IDL interfaces that allow multiple distributed objects to
participate in a transaction, and enable a distributed application to handle transaction
completion over the Internet and Intranets. The interfaces of the two primary components
in Integrated Transaction Service have been defined with IDL in the modules of
CosTransactions and VISTransactions. The following IDL code segments are part of
these specifications. This will be served as a starting point for the implementation
discussion in the following sections. Interfaces in the VISTransactions module inherit
from and extend the CosTransactions interfaces.

39

module CosTransactions

{
exception Unavailable {};
interface Control
{
Terminator get_terminator() raises(Unavailable);
Coordinator get_coordinator(Jraises(Unavailable);
K
}
module VISTransactions
{
interface Current : CosTransactions::Current
{
void begin_with_name (in string userTransactionName)
raises(CosTransactions::SubtransactionsUnavailable);
b
}

4.3.5.2 Models for Transaction

The ITS Transaction Service works with objects at the ORB level to coordinate and
manage a transaction’s commit or rollback. The ORB enables the ITS Transaction
Service to propagate the tramsaction context to each object participating in the
transaction. This section we will describe the Models for ITS transaction completion.
The Model for transaction completion with Resource objects expands on the model for

basic transactions when transactions with Resource and Recoverable Server.

4.3.5.2.1 Model for Basic Transactions

The ITS Transaction Service interacts with an application when the transaction originator

begins the transaction, as transactional information is propagated to transactional objects,

and finally, coordinates the transaction’s completion (commit or rollback) across multiple

objects.

Beginning the transaction

First when the transaction originator registers with the ITS Transaction Service its
desire to begin a transaction. The ITS Transaction Service answers this request by
returning a transaction context to the transaction originator. The transaction context is
then associated with the originator’s thread of control that was issued by the
VisiBroker ORB.

Issuing requests to transactional objects

As the transaction originator issues requests to transaction objects, each of these
requests is also associated with the transaction context. The ITS Transaction Service
propagates the transaction context to all objects participating in the transaction via
ORB.

Completing a transaction

If a commit is requested and all participating Resources agree to commit, then the
changes are committed. If any participant votes for rollback, then the transaction is
rollback. The ITS Transaction Service will rollback the transaction when the timeout
period expires.

4.3.5.2.2 Model for Transaction with Resource Objects

This kind of model expands on the basic model to show the objects that necessary when

transactions involve data. If a transactional application only involves one Resource, the

ITS Transaction Service initiates a one-phase commit process, and if a transactional

application involves more than one Resource, the ITS Transaction Service initiates a two-

phase commit process. We explain the process of two-phase commit in the following

section.

41

Resource object is registered for the transaction

Resource objects must be registered for all recoverable data involved in the
transaction. The transactional object registers the Resource with the transaction’s
Coordinator for the recoverable data.

Transaction originator initiates transaction completion

The transaction originator notifies the Terminator that it wishes to complete the
transaction, which initiates the two-phase commit process with the ITS Transaction
Service.

Terminator tells Resource object to prepare

Once the Terminator receives notice that the transaction originator wishes to commit
the transaction, the Terminator contacts all Resource objects participating in the
transaction, and notifies them they must prepare to commit the transaction.

Resource objects return a vote to the terminator

When Resource objects are told to prepare, they respond to the Terminator with a
vote (VoteCommit or VoteRollback or VoteReadOnly). If the Resource returns
VoteRollback or VoteReadOnly, it will not be contacted again by the ITS Transaction
Service, and can safely destroy itself.

Terminator decides whether to commit or rollback

Based on the votes received by the Resource objects, the Terminator determines
whether the transaction will be committed or rolled back. If the transaction decision
was to rollback, the Terminator invokes rollback() on all Resources. If the decision is
to commit, the Terminator invokes commit() on all Resources, and the two-phase
commit process is finished.

Resource objects vote to commit the transaction

When a Resource object commits a transaction, it makes any data changed by the
transaction visible to all readers of the data - the data stored by the recoverable object
is changed according to the outcome of the transaction. Also, the Resource object
stores other information in case of failure. Lastly, once the transaction has been
committed, all objects associated with the transaction are removed (i.e. the
Coordinator, Terminator, and Recovery Coordinator).

42

To conclude this section, we provide a brief summary of the steps for one-phase commit,
two-phase commit, and rollback as follows:

¢ One-phase commit
¢ Resource objects are registered for the transaction
¢ Transaction originator initiates transaction completion
e Terminator tells Resource objects to prepare
¢ Resource objects return a vote to the Terminator
¢ The Terminator decides whether to commit or rollback
¢ The Terminator tells Resource objects to commit or rollback

¢ Two-phase commit

Resource objects are registered for the transaction

¢ Transaction originator initiates transaction completion

¢ Terminator tells Resource objects to commit one phase

e Resource objects return a vote to the Terminator

o The Terminator decides whether to commit or rollback

o The Terminator tells Resource objects to commit or rollback
¢ Rollback

¢ Resource objects are registered for the transaction

¢ Transaction originator initiates transaction completion

¢ Terminator tells Resource objects to rollback

4.3.5.3 The Advantages of VisiBroker’s ITS

VisiBroker ITS manages the completion of transactions using a one-phase or two-phase

commit protocol. In addition to the transaction management features of CORBA's

Transaction Service, VisiBroker ITS has numerous import features:

o Transaction service built from the ground up with modern technology, tightly
integrated with standard backbone for the emerging Web infrastructure

o Built specifically for transactions in a distributed environment

o Truly distributed architecture that does not require a transaction service on each node

43

¢ Flexibility to deploy transaction service on the appropriate number of servers to meet
system requirements

o Fully scalable with load balancing, connection management, and multithreading from
the underlying ORB

e Complete Java solution-supports both Java server objects and Java clients

e Compliance with CORBA and other OMG standards

¢ Interoperable with other CORBA-compliant software, ORBs, and CORBA
Transaction Services

e Easy to install and configure

The power and flexibility offered by the VisiBroker ITS solution is based on its
distributed architecture. Unlike other transactional solutions, VisiBroker ITS was
designed to support dynamic objects in a distributed environment. The ITS Transaction
Service and the corresponding transaction logs are not required on every server but can
be dynamically discovered by the VisiBroker ORB.

VisiBroker ORB, VisiBroker ITS simplifies the complexity of distributed transactions by
providing an essential set of services-including an implementation of the CORBA
Transaction Service, recovery and logging services, integration with databases and legacy

systems, and administration facilities-within a single, integrated architecture.

S System design and Implementation

In this chapter, we provide an in-depth description of a prototype development for a
distributed, multitier, Web-based transaction system architecture design and
implementation. We review and illustrate the entire process through developing a sample
Web-based transaction system — an online bookstore. The sample application system
architecture design is based on the principles discussed in the earlier chapters, and
implemented by the use of two component models, CORBA and JavaBeans, together
with the platform-independent technologies, such as, JSPs/Serviets, JDBC, and Java
programming language. The MVC design pattern and UML modeling are also employed

in our system design.
5.1 Requirements Analysis

Our Web transaction system is designed for multitier applications, and offers a lot of
flexibility in choosing how to distribute application functionality across the tiers. As a
web-enabled application, the client tier provided by the browser, the Web tier and
database tier, which holds persistent application data, are provided by the server. The
requirement of our Component-based Web Transaction Systems (CWTS) running
environment is listed as following:
¢ Client Side

Any machine which installed Web browser
¢ Server Side

Hardware:

e A PC with Pentium II CPU or equivalent, 96 megabytes RAM minimum, the

operating system is Windows NT 4.0 Service Pack 6.

¢ A 28.8kbps modem or LAN network card connected to Internet.

Software:

e Java l.1.x platform runtime.

e VisiBroker ITS 1.1 (including VisiBroker 3.3 for Java).

45

e JavaServer™ Web Development Kit 1.0.1.

o Oracle8I, Database Manage System.
5.2 System Design Goals and Considerations

The issue to be addressed in the development of the overall system architecture is object
decomposition. While these requirements apply to object-oriented design in general, they
become even more important for multitier enterprise applications. The framework must
enables:

e Reuse of software designs and code

e Identification of responsibility of each object. The division into objects must ensure
that the responsibilities of each object — what the object represents and what must it
accomplish — are easily and unambiguously identified.

o Separate of stable code from more volatile code — All parts of an enterprise
application are not equally stable. The parts that deal with presentation and user
interface change more often. The business rules and database schemas employed in
the application have a much lower propensity to change.

¢ Divide development effect along skill lines — The decomposition should result in a set

of objects that can be assigned to various subteams based on their particular skills.

As a growing number of sophisticated services are provided over the Internet, the need
arise to coordinate the activity of multiple objects into transactions to ensure consistency,
isolation, and durability. Facing with the practical limits of two-tier computing and static
three-tier environments, distributed-object architectures require a transaction-process
solution that not only delivers the features of tradition TP (Transaction Processing)
Monitors, but also meets the challenges of today’s heterogeneous computing
environments. So our additional objectives are:

¢ Support for industry-endorsed standards, such as CORBA, Java, and [IOP

¢ High performance and scalability in distributed computing environments

e Support for object-oriented application

46

¢ Reliable, fast, transaction-safe access to multiple data sources
e Support for multiple platforms and programming languages

e Security and administration for distributed environments

5.3 System Architecture

The discussion tumns to the architecture of the prototype: the partitioning of functionality
into modules, the assignment of functionality to tiers, and object decomposition within
tiers. And also goes to build and deploy robust distributed object to participate in
coordinated transactions, and enables a distributed application to handle the various

impediments to transaction completion over the Internet and intranets.

5.3.1 A Typical Web Site

In a Web browser, the user enters a URL, that points to a page on the package delivery
company’s Web server. The Web server receives the user request and uses HTTP to
return a Web page to the client’s browser. The following figure shows a typical web site

of a sample on-line e-commerce.

® 1hetnch deae, lis thus skuse voms woll sl surie
b, whon vt g theeeeals e page please texl rea oo b
e tne

Browse Our bouk Cataguries

Compnter Buoke
Chulbruns Hohe

NS Mrchitectine

a
Spurts Books

Chech o e Inbermanen Ploase press e hutfon iSRS s ket - |

Cupprighe © JO0

QT T T T T R R e T T T R T Y b e T TR TR

Figure 5.1: the homepage of Java Bookstore

47

5.3.2 System Model - Distributed, Mulititered, Component-Based Model

As explained in the previous chapters, Multitier Distributed Component-based Model

provides more advantage over traditional client-server model (Thick Client).

Our approach system adopts a multitier distributed application model. The whole
application system is divided into components based on functionality. Various parts of an
application can run on different devices. Different components are installed to make up
an integrated system. The system architecture defines a client tier, a web tier, business
tier and database server tier. The client tier supports a variety of client types, both
outside and inside of corporate firewalls. The Web tier is made up of JavaBeans,
Servlets/JSPs generating dynamic HTML pages. The business tier handles business logic,
such as accessing database with CORBA and JDBC.

e A Web browser runs as a front-end to the application in the Client Tier and
downloads static/dynamic HTML pages generated by Servlets/JSPs from web server.

e Web Tier is made up of Servlets/JSPs that generate dynamic HTML pages, and
JavaBeans used in JSP for dispatching the user input to Business tier for processing
separation of presentation and business logic.

o CORBA objects process distributed transaction logic via VisiBroker ITS in Business
Tier.

e CORBA object access Database Server Tier, which Oracle8I Database Server reside
in, through Oracle JDBC driver.

48

Web Tier
Web Server (JSP & Servlet Engine)

+ - Preseatatio
T &<Views>>

Client Tier

| JavaBean
| Component
Web &

Browser Request , | Servlets orJSPs :

Web Ao
Browser

* . Clientrequestsare
- Intercepted-here
<<Controller>>

Database Server CORBA Obj“‘j
Tier Business Tier\< <Model% >
JDBC Driver VisiBroker Integrated ORB
P & Transaction Service

Figure5.2: System Architecture

Figure5.2 shows: front-end components (Servlets and JSPs) accept a request, and then
forward the information to other JSP file. The presentation component (JSP page)
processes the request and returns the response directly to the user. The front-end

components (Servlet file and JSPs) act as the controller and are in charge of the request

49

processing and the creation of any JavaBeans or objects used by the presentation
component (JSP page) the view. There is no processing logic within the presentation JSPs
themselves; they are simply responsible for retrieving any objects or beans that may have
been previously created by the JSPs, and extracting the dynamic content for insertion

within static templates.

The Web tier is responsible for almost all of the application functionality. It must take
care of dynamic content generation and presentation and handling of user requests. It
must implement core application functionality such as order processing and enforce
business rules defined by the application. The web tier only used as a front end for

receiving client Web requests and for presenting HTML responses to the client.

In the Business tier, the ITS Transaction Service interacts with an application when the
transaction originator begins the transaction, as transactional information is propagated to
transactional objects, and finally, coordinates the transaction’s completion (commit or

rollback) across multiple objects.

The JDBC DirectConnect driver from VisiBroker ITS enables ITS transactional

applications to use Oracle JDBC driver for database connectivity with Oracle database in

database Server tier.

3.3.3 The Architecture of the Prototype

Partitioning the application into logical modules is the first step in subdividing the overall
problem, The next step is to begin the process of object-oriented design of the
application, identifying units of business logic, data, and presentation logic and modeling

each of them as a software object.

This section describes the architecture of the Java BookStore application; exploring the
partitioning of functionality into modules, the assignment of functionality to tiers, and

object decomposition within the tiers. Dividing the application into modules based on
50

similar or related functionality reduces the dependency between modules, allowing them

to be developed independently. The sample application demonstrates an approach that

started out simple and small, but kept the option of growth open.

The functional modules could be identified as the following modules and their

corresponding responsibilities:

Customer Account module — The application tracks user account information saves
user account information to a database so that it spans sessions.

Product Catalog module — The application allows the user to search for products or
services and be able to display details of individual books.

Order processing module — The application performs order processing. Order
processing occurs when the user performs the checkout process and buys the items in
the shopping cart.

Customer Order module — The application performs the customer order process and
save into the database in order for later retrieve.

Inventory module — The application maintains information on the number of each
type of book in stock

Messaging module — The application sends confirmation messages.

Control module — The application allows users to browse the book catalog and add
selected items to a shopping cart. At any time, the user can modify items in the
shopping cart, add new items, or remove items already placed in the cart.

Transaction Processing module - The application coordinate several database table
updated in a single atomic operation and ensure the data integrity in distributed
transaction environment.

Data Processing module — The application retrieve, update item quantity in Oracle
database with ITS JDBC DirectConnect driver and Oracle JDBC driver.

Figure 5.3 shows the interrelationship of the modules in the application.

51

/Shopping Cart N

Per User
Per Session
LA [tem
| | Shipping
U & J
ser
‘ Control s

Browser Product R

Chul\out B = Details |8
Retrieve

[] Customer

Customer
Account

Nammg Servnce ?

VisiBroker Integrated ORB & Transaction Service

Figure 5.3: Functional Modules for the Prototype

§5.3.4 MVC Architecture

Because our system primarily focuses on large scale, complex applications, so we need

framework during development. To provide robust and scalable software, our system has

52

based its solution design around some universally accepted design techniques. Our viable
template is based on the MVC design pattern and distributed component-based
technologies. And a real application example (prototype) is developed to verify this
template. We give a brief overview of MVC design pattern and then describe how our

system follows the MVC design pattern.
5.3.4.1 MVC Design Pattern

The Model/View/Controller (MVC) architecture is a well-known design for GUI objects

that dates back to the SmallTalk language [KP88]. Before MVC user interface designs

tended to lump these objects together. MVC [GHJV95] decouples them to increase

flexibility and reusability. MVC consists of three kinds of objects: a Model, a View and a

Controller.

¢ The Model - the elements of logic that actually process the application business logic.
For example, the logic that does a database update to add an item to a user’s shopping
cart.

o The View - the elements of logic that construct the static and dynamic HTML pages
sent to user, thus determining the presentation form and style of the results of the

interaction.

¢ The Controller - the elements of logic that defines the way the user interface reacts to

user input.

By making the view completely independent of the controller and model, front-end
clients can easily be substituted. Also, keeping controller and model code out of the view,
persons who not understand this code cannot change things they should not change.
Keeping the controller and model separate lets you change the controller without
interfering with the model and change the model without interfering with the controller.
The MVC framework supports the use of different program components, with well-
defined interfaces between them, for each of the different types of logic. The major

benefits of using MVC design pattern is that we can split our application into three fairly

53

distinct sections, each requiring different skills, allows us to better manage our

development cycle and team.

This thesis design follows the MVC design pattern: The JSPs (and static HTML pages)
provides the view, some servlets and JSPs are the controller and the JavaBeans, CORBA

Objects acts as the role of the model.

534.2 The View

The view component of the sample application is responsible for generating the static and
dynamic HTML pages that will be returned to the client. In our sample application, the
implementation of the view is contained completely in the Web tier and three kinds of

component work together to implement the view: JSP pages, custom JSP actions, and

JavaBean components.

JSP pages are used for dynamic generation of HTML responses. Custom JSP actions
make it easier for JSP pages to use JavaBeans components, which is the contract between
JSP pages and the model. The JSP pages rely on these JavaBeans and CORBA objects to
read model data to be rendered to HTML, while elsewhere in the system, the model and

controller coordinate to keep the JavaBeans components up to date.

The user interface for the shopping interaction consists of a set of screens, which are the
total content delivered to the browser when the user requests an application URL. The
following list identifies what model information it presents:

e Main_Screen

This is the home page of the application. It displays a list of all book categories in the

catalog. The customer can click on any category to browse through a master view of

products that belong in that category.

e Category_Screen

54

This screen displays a view of all books that belong to this particular category. The
customer can click on the name of any book on display to see the book detail and also
add to his shopping cart.

e Book_Detail_Screen

This screen display detailed information about a particular book item. It also provides an
AddtoCart button. Clicking this button adds the book currently being shown to the
shopping cart and displays the resulting shopping cart.

e Cart_Screen

This screen displays the contents of the customer’s shopping cart. For each item in the
shopping cart, it includes a brief description of the item and its quantity. The customer
can change the quantity of each item and remove the items in the whole shopping cart. It
also has a checkout button. Clicking the checkout button initiates the process of placing
an order.

e Provide_[nformation_Screen

This screen displays a form to let the customer fills. The BookStore will ship the ordered
books to this customer according to the information and in the meantime send the
confirmation email. Customer could places the order by clicking the continue button.

¢ Receipt_Screen

This screen displays the receipt after an order has been confirmed and committed. It
shows a unique order identifier so that the customer can track the order later on. It also
shows shipping and billing information.

o Retrieve_Order_Screen

This screen displays the form allowing the customer provide order information to check

his order information.

5.3.4.3 The Model

The business logic part of an interaction is isolated from the details of Web technology in
our system. And system also can store state in the Web tier using the state maintenance

capabilities of serviets and JSP, which include the HttpSession and ServietContext objects

55

as well as JavaBeans components. The business logic is wrapped with JavaBeans, which
can be serialized and sent via a protocol (IIOP, HTTP, etc.) to a remote server to be

executed and then sent back. This allows for very efficient communication.

The business logic part is the piece of code ultimately responsible for satisfying client
requests. The business logic in our system address a wide range of potential requirements
which include ensuring transactional integrity of application components, maintaining
and accessing application data in a consistent state, and integrating new application
components with existing applications. The business logic in our system provides query
and update access to Database using SQL and JDBC interfaces. This includes initiating
CORBA objects updating the database using flat-transaction with VisiBroker Integrated

Transaction Service (ITS).

5.3.4.4 The Controller

The thesis framework supports the development of interaction controller logic using
either Java Servlets or Java ServerPages (JSP) technology. Both of these implementation
mechanisms have significant advantages over using CGI-BIN or Web server plugins.
First of all, Servlets and JSPs execute in process in the context of the Java Virtual
Machine thus providing all the benefits and facilities of the Java runtime. Secondly, by
their very nature, Web applications written to the Java programming model are portable

across a wide range of platforms. Applications can easily be migrated without recompile.

The Servlets and JSP pages, which act as Controller in the sample application, are
responsible for coordinating the model and view. Those pages accept user gestures from
the view, translate them into business events based on the behavior of the application, and
process these events. The processing of an event involves invoking methods of the model
to cause the desired state changes. Finally, the controller selects the screen shown in
response to the request that was processed. The controller coordinates both the view and
the data.

56

5.4 System Functionality

Our system models a typical Web transaction — an online Bookstore to verify our
approach. The system interface is presented to its customers through a Web site and a

customer interacts with the system using a Web browser.

Like a typical e-commerce site, the Bookstore presents the customer with a catalog of
books. The customer selects items of interest and places them in a shopping cart. When
the customer has selected the desired items and indicates readiness to buy what is in the
shopping cart, the system displays a bill of sale: a list of selected items, a quantity for
each item, the price of each item, and the total cost. The customer can revise or cancel the
order. When the customer ready to accept the order, the customer provides personal

information, a credit card number to cover the costs and supplies a shipping address.

5.4.1 Shopping Scenario

The shopping scenario describes a user’s view of interactions with the system. It allows

shoppers to buy items online.

The primary function of the shopping interaction is to provide an interface where
customers can browse through and purchase items. This shopping interaction starts with
the customer’s visit to the application system home page and ends when the customer

orders from the site:

(1) A customer connects to the system, by pointing the browser to the URL for the

system’s home page. This allows the customer to browse through the catalog.

(2) The customer browses through the catalog. The customer can select a category to
see a list of all the books in that category. For example, the customer can select the
category Children’s Books to view all children’s books that the Java Bookstore

selis.
57

3)

4)

)

(6)

(7)

The customer selects a particular book in the list. Then, the system displays
detailed information about the selected book. The description of the book is shown

along with pricing information.

The customer decides to purchase a particular book and clicks Add to Cart button
to add the item to the shopping cart. As the customer may continue shopping,
adding more items to the shopping cart. As the customer browses through the
catalog, the system remembers all the items placed in the cart. The system can
recall the shopping cart at any time during the interaction to review or revise the

contents of the cart.

A checkout button is presented along with the shopping cart. The system present a
summary of all items that would be ordered along with their costs. The customer

can choose to order the items in the shopping cart at any time.

When customer asks to checkout, the system will present a form for the customer
entering his billing information, including name, password, shipping address, email

address, and credit card number.

After the customer finish the form, he confirms the order and application system
accepts the order for delivery. A receipt including a unique order number and other

order details is presented to the customer.

Although this scenario presents the system from a single customer’s point of view, our

Bookstore system needs to simultaneously support a large number of shoppers.

5.4.2 Transaction Scenario

58

Atomic transactions are a well-known technique for guaranteeing application consistency
in the presence of failures. With the advent of Java and CORBA technology, it is possible

to ensure consistency, reliability, and integrity of distributed transaction system.

The scenario for the prototype involves a Bookstore that has several data information
tables. The sample application’s persistent data is stored in five databases: Catalog,
Customerdccount, CustomerOrder, STOCK, TempOrder database table. The Catalog
database holds information about books in this Bookstore. The CustomerAccount
database holds information about customer information. The CustomerOrder database
holds information about every customer order information. The STOCK database holds

information about quantity of each book.

After the customer confirms the order and application system, System controller must
access three database tables — CustomerAccount, CustomerOrder, STOCK table. The
sample application uses VisiBroker ITS (Integrated Transaction Services) to accurately
reduce the inventory of ordered products from STOCK (database) table and add a new
order entry to the order (CustomerOrder database) table, and in the meantime add this
customer information into CustomerAccount database table in an atomic operation.

(1) Beginning the transaction - The transaction originator (doTransit program)
registers with the ITS Transaction Service its desire to begin a transaction. ITS
Transaction Service answers this request by returning a transaction context to the
transaction originator.

(2) Issuing requests to transactional objects (Stockltem objects and StockStorage
objects) — The ITS Transaction Service propagates the transaction context to all
objects participating in the transaction.

(3) Completing a transaction — A transaction can be completed in the following ways:
¢ If a commit is requested and all participating Resources agree to commit, the

changes are committed. If any participant votes for rollback, then the
transaction is rolled back.
o If completion is not requested by the application, the [TS Transaction Service

will rollback the transaction when the timeout period expires.
59

Our system ensures atomic transaction, recovery and logging, integration with databases
and legacy systems in Web-based distributed transaction environment with VisiBroker

ITS (Integrated Transaction Services).
5.5 System Modeling with UML

Modeling is a central part of all the activities that lead up to the deployment of good
software. We build models to communicate the desired structure and behavior of our
system; to visualize and control the system’s architecture; to better understand the system

we are building, often exposing opportunities for simplification and reuse; to manage risk
[BRJ99].

The UML is a well-defined and widely accepted response to that need. The Unified
Modeling Language (UML) is the industry-standard visual modeling language for
specifying, visualizing, constructing, and documenting the artifacts of software systems,

as well as for business modeling and other non-software systems [BRJ99] [DW98].

We explore the UML modeling technique to describe system development.

60

5.5.1 Shopping Scenario Modeling

Enter URL
Provide HomePage '
/ Retrieve BookCatalog
/ \
/
/ / O\
7Select Catalog Show Catalog
/ pdate Stock
Q \\N }} l /
N \J /
Customer \Se!ect Book Show BookDetalls

‘. \ /—\// /\\ m/ /\ Add OrderEntry
\ \\‘\ N4 //IBrowser\ N /)cntroller\\ / ’ }i

\\\ \jheckC}ut’ // '\ \ﬁw ShODPI“/Cﬂ“ / \ O DataBase Sener

/
\\ /\ Add Customer
\ \ ,/ \
| ; \
Entei\Customerlnformaﬁon \.iShowR iot
-/ /
] / !
O O Retrieve Orderinformation

Enter OrderNo Show Orderinformation

Figure 5.4 Shopping Scenario Use Case Diagram

3.5.2 Transaction Scenario Modeling

Figure 5.5: Transaction Scenario Class Diagram

61

BOA CosTransactions:: TransactionalObject
Current
$BOA _init()
Sbegin() ‘pbj_is_ready(storage) ﬂ
Scommit() Simpi_is_ready(store) StockStorage
$roliback() \ ;
®roliback_only() ORB 1 Squantity() Stockitem
Qget_status() \ ®add()
:sget_cor;trol() Sinit() Sdeduct() Squantity()
o—spen 0 T \ Sinsert() $add()
esume() 1 \ Sbind(orb, bankname) $deduct()
Quntitied() Sinsert()
1 $StockStorage(args(0], orb)
b
1
] 1
doTransit ! StockStorageServer
StoreServer ®table : String
& : ORB &ord : ORB &orb : ORB
8o Curen O e | 2%
&pstore : Store) ®storage : StockStorage| | @pstorage : StockStorage
&bookStockitem : Stockitem .
i &store : Store 1
&orderStockitem : Stockitem ! | ®stockstorageserver()
&custOrderStockitem : Stackitem Sbind() Squantity()
init) :obj_is_ready() 1 :pdate()
. impl_is_ready() dd()
:ggjig() Sdeduct()
gat_orderStockitem() \ 1 :‘;‘::330
Qget_bookStockltem() Sini
Qget_customerOrderStock() 1 ni)
Squanti QBOA_init()
N Sebiis.ready(|
®add 0 ain()
:l:sert()
ommit() 1 1
roilback() \ 1
1.* | Stockitemimpl
Storelmp! Qstgra“gig] ?r:?ckStorage
&stockitem : Stockitem 1.*
Store &orderStockitem : Stockitem 9Stockitemimpi()
&customerOrderStock : Stockitem SmarkForRoliback()
$get_bookStockitem() &storage : StockStorage Squantity()
Sget_orderStockitem() [~ &bBookid : String deduct()
Qget_customerOrderStock() . %add()
Storelmpl() Winsert
Qget_bookStockitemy() 0
Qget_orderStockitem()
:get_customerOrderStock()
ind(orb, args{0])

File: C:temp\UMLfile\Bookstoret.mdl 12:27:00 PM Saturday, January 06, 2001 Class Diagram: Logical View / Main Page 1

doTranst ° Store ' slore:Store | | :StockStorage | | stockBem: | | storage:Stock | | current:
Server -+ imol Server ! Seckltem | ' Stemge | | Curent
| i
' StockStorage(args(0], orb) ! t
I : > i
b i L |
o bind{ort, bankname) ; ‘
.- | | i
o,
T B - x }
. . i i L
Slorelmpl(‘slure_name.storage) : ' !
—_———— i ! i i
, = ! | : [
- i ! i i
- bind(orb, args(C})) _)
> : i
— ! : v
— . begin() | ‘
get_bookStockitem (bookid)’ : o
- | 1
L : ‘ ' ;
;. get_orderStackRem (bookid)) ‘ .
— ; i | i
vo‘ l B i
get_customerQrderStlock() . ; i
B)
- quantity() quantity(bookld, table) '
o K >
- deduct(amount) | ‘ X
— >+ deduct(bookld, amount) i
! o Tl i
il - ,
! [! .
‘ ! T ‘ i
—_ add{(amount) add(bookld, amount)
: N | i
‘ - > ;
‘ 2 o .
i i i |
v . 1
nseriforderNo, loginName, password. count. content, table) ' 1 '
: [insery() ! |
- > >- ,
t = ‘
b] ¢
- quantity() : bookid | !
>, Guantity(bockid.fable) i
, I l_*—>|—t |
; j ! e |
i | H I
‘, I L (mayinvake Irauback_only) |
e [i i 0
‘: I
u t

[commit = true | comm it()

{commit= fallse jroliback()

Figure 5.6: Transaction Scenario Interaction Diagram

Y Y

63

5.6 The Contracts among Transaction Components — IDL Interface

OMG IDL provides the basis of agreement about what can be requested of an object
implementation via the ORB. However, IDL is not just a guide to clients of objects. IDL
compilers use interface definitions to create the means by which a client can invoke a
local function and invocation on an object on another machine across network. The code
generated for the client to use is stub code, and the code generated for the object

implementation is called skeleton code.

OMG IDL is a declarative language for defining the interfaces of CORBA object. It is
also language-independent. As IDL interface acts as a contract between developers of
objects and the eventual users of their interfaces, it can also be used as a design tool for

partitioning an application or system into components.
5.6.1 The IDL for ITS Transaction Service Standard

The CosTransactions module is in the Transaction Service IDL that conforms to the final
OMG Transaction Service version 1.1. The interfaces in the CosTransactions module
have been defined by OMG at its CORBA Service specification [OMG96]. Any object

participating in the transaction must inherit from CosTransactions:: TransactionalObject.

module CosTransactions

{
exception HeuristicRollback {};
exception HeuristicCommit {};
exception HeuristicMixed {};
exception HeuristicHazard {};
exception SubtransactionsUnavailable {};
exception NotSubtransaction {};
exception Inactive {};

exception NotPrepared {};

exception NoTransaction {};
exception InvalidControl {};
exception Unavailable {};

exception SynchronizationUnavailable {};

// Current transaction
/finterface Current : CORBA::ORB::Current
interface Current
{
void begin() raises(SubtransactionsUnavailable);
void commit(in boolean report_heuristics)
raises(NoTransaction, HeuristicMixed, HeuristicHazard);
void rollback() raises(NoTransaction);
void rollback_only() raises(NoTransaction);
Status get_status();
string get_transaction_name();
void set_timeout(in unsigned long seconds);
Control get_control();
Control suspend();
void resume(in Control which) raises(InvalidControl);

'

interface TransactionFactory

{
Control create(in unsigned long time_out);
Control recreate(in PropagationContext ctx);
H
interface Control
{

Terminator get_terminator() raises(Unavailable);
Coordinator get_coordinator() raises(Unavailable);

S

65

interface Terminator

{

K

void commit(in boolean report_heuristics)
raises(HeuristicMixed, HeuristicHazard);
void rollback();

interface Coordinator

{

Status get_status();

Status get_parent_status();

Status get_top_level_status();

boolean is_same_transaction(in Coordinator tc);

boolean is_related_transaction(in Coordinator tc);

boolean is_ancestor_transaction(in Coordinator tc);

boolean is_descendant_transaction(in Coordinator tc);

boolean is_top_level_transaction();

unsigned long hash_transaction();

unsigned long hash_top_level_tran();

RecoveryCoordinator register_resource(in Resource r) raises(Inactive);

void register_synchronization (in Synchronization sync)
raises(Inactive, SynchronizationUnavailable);

void register_subtran_aware(in SubtransactionAwareResource r)
raises(Inactive, NotSubtransaction);

void rollback_only() raises(Inactive);

string get_transaction_name();

Control create_subtransaction() raises(SubtransactionsUnavailable, Inactive);

PropagationContext get_txcontext () raises(Unavailable);

66

interface RecoveryCoordinator

{

Status replay_completion(in Resource r) raises(NotPrepared);

interface Resource
d
Vote prepare() raises(HeuristicMixed, HeuristicHazard);
void rollback() raises(HeuristicCommit, HeuristicMixed, HeuristicHazard);
void commit() raises(NotPrepared, HeuristicRollback, HeuristicMixed,
HeuristicHazard);
void commit_one_phase() raises(HeuristicHazard);

void forget();

interface TransactionalObject{ };

interface Synchronization : TransactionalObject

{

void before_completion();

void after_completion(in Status status);

interface SubtransactionAwareResource : Resource
{
void commit_subtransaction(in Coordinator parent);

void rollback_subtransaction();

67

5.6.2 The IDL for ITS Transaction Service Extensions

The VISTransactions module is in the ITS extensions to the standard. These interfaces
have been defined by OMG at its CORBA Service specification [OMG96].

module VISTransactions

{

interface Current : CosTransactions::Current
{
voidbegin_with_name(in string userTransactionName)

raises(CosTransactions::SubtransactionsUnavailable);

CosTransactions::RecoveryCoordinator
register_resource(in CosTransactions::Resource r)

raises(CosTransactions::Inactive);

void register_synchronization(in CosTransactions::Synchronization s)
raises(CosTransactions::NoTransaction, CosTransactions::Inactive,

CosTransactions::SynchronizationUnavailable, CosTransactions::Unavailable);

CosTransactions::otid_t get_otid()

raises(CosTransactions::NoTransaction, CosTransactions::Unavailable);

CosTransactions::PropagationContext get_txcontext()

raises(CosTransactions::Unavailable, CosTransactions::NoTransaction);

attribute string ots_name;
attribute string ots_host;
attribute string ots_factory;

68

interface TransactionFactory : CosTransactions::TransactionFactory

{

CosTransactions::Control create_with_name(in unsigned long time_out,

in string userDefTxName);

unsigned long up_since();

5.6.3 The IDL for the Prototype

/I myBookStock.idl
#include "CosTransactions.idl"

#pragma prefix "visigenic.com"

module myBookStore {

interface Stockltem : CosTransactions:: TransactionalObject {

long quantity();

void add(in long amount);

void deduct(in long amount);

void insert(in string orderNo, in string loginName, in string password,

in long count, in string content, in string table);

b

exception NoSuchStockltem {

string bookld;
1

69

exception NoSuchCustomerOrder { };

interface Store {

Stockltem get_bookStocklItem(in string bookld) raises(NoSuchStocklitem);
Stockltem get_orderStockItem(in string bookld) raises(NoSuchStockItem);
Stockltem get_customerOrderStock() raises(NoSuchCustomerOrder);

b

interface StockStorage : CosTransactions:: TransactionalObject {

long quantity(in string bookld, in string table) raises(NoSuchStocklItem);
void add(in string bookld, in long amount) raises(NoSuchStockltem);
void deduct(in string bookld, in long amount) raises(NoSuchStockltem);
void insert(in string orderNo, in string loginName, in string password,

in long count, in string content, in string table)raises(NoSuchCustomerOrder

string bookId(in string bookId);
b

5.7 Detailed Transaction Implementation of Prototype

The scenario for the prototype involves a Book Store that has several data information
table. After customer commit an order, the STOCK table must be updated, a new order
entry must be added to the CustomerOrder table, and this customer information must be

added to the CustomerAccount table during a transaction.

(i) Implement the transaction originator (client program)
70

The file named doTransit.java contains the implementation of the Java client program
that is also the transaction originator. The doTransit program gathers the information

from JSP page and performs a single ITS-managed transaction. The doTransit program

performs these tasks:

¢ Initializes the ORB with the System Properties

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, props);

e Binds to the Store object

e Begins a transaction

//Start an ITS-managed transaction

Current current;

{
org.omg.CORBA.Object initRef =

orb.resolve_initial_references("TransactionCurrent");

current = CurrentHelper.narrow(initRef');

}
// Begin the transaction

current.begin();

o Obtains a reference to the transactional (Stockltem) objects

Stockltem bookStockltem = store.get_bookStockItem(bookld);
StockItem orderStockltem = store.get_orderStockItem(bookId);

Stockltem custOrderStockltem = store.get_customerOrderStock();

¢ Invokes the deduct(), add() and insert() methods on the Stockltem objects

bookStockItem.deduct(quantity);
orderStockitem.add(quantity);

n

custOrderStockltem.insert(orderNo, loginName, password, count, content,
"CustomerOrder");

Commits or rolls back the transaction — Once a transaction has begun, it must be
committed or rolled back to complete the transaction. If an originator of an ITS-
managed transaction does not complete the transaction, the ITS Transaction Service

will rollback the transaction after a timeout period.

boolean commit = false;

try {

commit = true;

}

finally
{

/I Commit or rollback the transaction
if(commit)
{
System.out.printin("*** Committing transaction ***");

current.commit(false);

else

System.out.printin("*** Rolling back transaction ***");

current.rotlback();

7

(2) Implement the StoreServer program: Initialize the ORB and BOA, obtains a
StockStorage object and create a Store object with it, register the Store object with the

BOA, and enters a loop prepare to receive client requests.

(3) Implement the Store: Instantiate and return a transactional object (Stockltem) upon

request.

(4) Implement a transactional object (Stockltem object): Handle requests to view

quantity, deduct and add quantity of items.

(5) Implement the StockStorage object: Access and update persistent data as requested

by business (StockItem) objects in database tables.

(6) Implement the StockStorageServer: Initialize the ORB and BOA, instantiate a
StockStorageServer object, and register it with the BOA. Access the Oracle database
using the ITS JDBC DirectConnect driver and Oracle JDBC driver. Implement data

access from a transactional object (StockStorageServer)
5.8 Development Environment

5.8.1 Platform

The implementation of the Internet Transaction System is primarily carried out on a
Windows NT server 4.0. This machine has Intel Pentium III processor at 733MHz and
128MB RAM at 133MHz speed and 10.2GB Hard Drive. Since the implementation

language is Java, the platform is not really an issue here due to the fact of Java’s WORA

(Write Once Run Anywhere).

A Windows NT server 4.0 turns out to be the right choice for this implementation
because of the following: the easy of use, availability of software and hardware, cost, and

sophistication of operation system modei.
73

5.8.2 Development Tools

As stated previously, the implementation language will be the Java language primarily
due to its highly portability and Java is a pure Object Oriented Language (OOL), which is
believed to be the most suitable language for component-based development [Brown98].
As a simple, object-oriented, network-savvy, interpreted, robust, secure, architecture
neutral, portable, high-performance language, Java also supports concurrent
programming and automatic garbage collection. Its rich portable APIs and many free

available tools make it an ideal tool for our system development.

The middleware or distributed infrastructure will be CORBA. This is due to the following

facts:
e CORBA is onc of middleware standard and component infrastructure for distributed
objects endorsed by 800+ companies.

e CORBA provides interoperability across programming languages and operating

system.
o CORBA is suitable for heterogeneous environment [Meta98].
e CORBA provide location transparency and legacy integration

¢ CORBA has a growing set of services and facilities available.

The most widely accepted standard for distributed transaction is the Object Transaction
Service (OTS) from the OMG [OMGY6]. VisiBroker ITS is compliant with CORBA
Object Transaction Service (OTS) specification and the Java Transaction Service (JTS)
specification. VisiBroker ITS integrate with popular databases and mainframes, and
provides seamless access to multiple data sources, supporting both XA and non-XA

environments.

As the official reference implementation of the servlet 2.1 and JSP 1.0 specifications, the

JavaServer™ Web Development Kit 1.0.1 (JSWDK) has been chosen as web server for

14

testing servlets and JSP pages before they deployed to a full Web server that supports
these technologies. It provides a development environment for Web-based HTML

applications. It is free and reliable.

In the following, we will list an array of development tools that have been used in the
system development. Core Java, Serviet/JSP, VisiBroker Integrated ORB and Transaction
Service/CORBA are the major tools used at certain part of the development.

e JDKI.1.8: Because the VisiBroker ITS in not compatible with the latest Java Version
for Java 2 platform. Java Development Kit (JDK) 1.1.x is required.

o VisiBroker Integrated Transaction Service 1.1. The VisiBroker ITS product and the
VisiBroker Java Developer (ORB) must be installed.

o Web Server: Java Server Web Development Kit (jswdk1.0.1) is installed in the NT as
a small stand-alone web server to handle HTTP request and response.

e DBMS: Oracle8I Enterprise edition has been installed in this NT to serve as a
database server. Various information or data can be stored to and retrieved from this
database. We can leverage its built-in SQL support, concurrency control, security etc.

e JDBC: Database access is through JDBC. In this work JDBC is used to access
Oracle8I database through CORBA middleware or Java Servlet/JSP in connection
with Web Server.

5.9 The operation of the system

In order to run the sample application — on-line BookStore on the system, first we must
start services that must be presented in this Internet transaction system. Then we follow
the sequence of steps described in this section to run the sample application.

Oracle database instance Dell and JavaServer™ Web Development Kit 1.0.1 (JSWDK),

VisiBroker Transaction service, Smart Agent are running as daemon processes to enable

transactions across the network.

75

Before start the such Web server, The JSWDK Server should be configured, we must
designate parameters like the port on which it listens, the directories in which it looks for
HTML files, and so forth.

Server side:

The system should be running under JDK1.1.8 or JDK 1.1.x environment.

To start Coordinator:

WinNT .\Servlets>java myBookServlet. TransitServer

To start the Smart Agent (osagent)

Before we attempt to run web-based transactional applications, we must first start the
Smart Agent on at least one host in our local network
WinNT .\myBookStorel TS>osagent -C

To start the VisiBroker ITS Transaction Service:

We must start an instance of the ITS Transaction service to enable transactions across
the network.
WinNT .\myBookStorel TS>ots

To start StockStorageServer program and access the Oracle database via Oracle OCI

driver:

WinNT .\myBookStorelTS>vbj -DORACLE="" StockStorageServer MyStore

scott tiger
or run BATCH file:
WinNT .\myBookStorel TS>runStockStorageS .bat

To start StoreServer program:

76

WinNT ..\myBookStore TS>vbj -
DORBservices=com.visigenic.services.Cos Transactions
StoreServer MyStore
or run BATCH file:
WinNT .\myBookStorel TS>runStoreServer .bat

To start JavaServer™ Web Development Kit 1.0.1 (JSWDK1.0.1)
Open the jswdk-1.0 directory with Windows Explorer and double-click on

startserverl 18.bat

(To stop the server, double-click on the stopserver!i8.bat file for graceful shutdown

instead of simply killing the server process.)

Client side:
Open a Web browser, and enter following URL:
http://localhost:8080/path/myBookStore.html

77

6 Conclusions and Future Works

This chapter draws the conclusions and addresses the necessary extension of this thesis
work.

6.1 Conclusions

In this thesis work, we have presented a methodology design for integrating the object-
based transaction service within the Web application system design based on component-
based technology to ensure the transaction integrity and data consistency. It is an
extremely useful fault-tolerance technique, especially when multiple, remote,
transactional resources are involved. Our modeling approach also enables the assembly of
applications from reusable components that reside on the multiple tiers. This thesis work
has provided an integrated environment that simplifies the development, deployment, and
management of multi-tier distributed applications. To illustrate the functionality,
interrelationship, and roles of different components and different tiers in our system, a
sample prototype — Java bookstore running on such system is detailed presented to
demonstrate the feasibility and effectiveness of our design approach and the overall
system characteristics and functionality.

The major contribution of this thesis is:

o Combine the flexibility and reuse of object technology with the application services
that now define customer service: performance, reliability, transaction integrity, and
security.

e CWTS delivers the reliability and performance but in a completely new, standards-
compliant way to satisfy the need for transaction control among distributed, objects-
based Web applications.

o Provide an approach that has the ability to rapidly integrate, assemble the reusable
component and easy to change as both the technology and application needs evolve.

78

e The System design with MVC design pattern, which separating the business logic
from the user interface provides greater flexibility and better management during
system development and maintenance.

e By adopting Internet standards and distributed computing technologies, it makes easy

to deploy e-business application on our CWTS system, which ensure portability
across a diverse server environment.

Overall, The CWTS framework simplifies web application development and deployment;
supports heterogeneous client and server platforms; leverages existing skills and assets;

delivers a scalable, reliable, and manageable environment.

6.2 Future Works

We remark that two other important issues, which have not be addressed in this thesis
because of the limitations of available time and resources. These two issues are briefly

outlined below, and are worth our further investigation in the future.

e Although our system modeling offer transactional guarantees to applications, these
guarantee only limited to resources used at Web servers, and between servers; clients
(browsers) are not included. First of our future investigations is that we should extend
the transaction integrity to the Web browser and incorporate an OTS implementation
into it, along with the necessary persistence and concurrency control services.
Application specific transactional objects could then be constructed and downloaded
into the browser on demand. These objects would then be able to participate directly
in the application’s transactions. Application can therefore obtain end-to-end

transactional integrity, guaranteeing consistency in the presence of failures and
concurrent accesses.

o As enterprise requires security guarantee that provide privacy, integrity, and
authentication in Web application system. For example, if we would like to prevent

79

some information such as credit card number, financial data got unauthorized access,
personal IDs and passwords can not provide enough security. So in the second of our
future investigations is that we should integrate SSL (Secure Socket Layer protocol)
technology into our environment to create a secure, authenticated and encrypted
communication channel between Web server and browser, and between different
servers. SSL is the industry-standard protocol, which provides encryption to prevent a
sniffer from deciphering confidential information in web-based communications
[GSI]. Such that our site can communicate securely with any customer who uses
Netscape Navigator, or Microsoft Internet Explorer and can offer secure transactions

to our online customer.

80

Appendix A: List of Packages and Files in the system

We list here with the all source files for this system. With JSWDK,
install_dir\webpages\WEB-INF\servlets is the standard location for servlet classes. While
install_dir\webpages\jsp is the standard location for JSP files and
install_dir\webpages\path is the standard location for HTML files.

All Serviet and JSP auxiliary Java files and Servlet files are residing in the directory:
C:\jswdk101\webpages\WEB-INF\servlets\myBookServiet
BookBean.java, BookStore.java, Cashier.java, Customer.java,
CustomerAccount.java, Email.java, Order.java, OrderClient.java, OrderInfo.java,
ShoppingCart.java, ShoppingCartltem.java, TransitServer.java, TransitClient.java,

Transit.java, CTempOrder.java, doTransit.java, CatalogServlet.java

The ITS Java files and IDL files for Integrated Transaction are in the directory:
F:\nan\its_example\myBookStore
CreateStockTable.java, CreateTempOrderTable.java, CreateStockTable,
CreateTempOrderTable, OrderVector.java
CosTransactions.idl, myBookStore.idl

StockltemImpl.java, Storelmpl.java, StockStorageServer.java, StoreServer.java

JSP Files and auxiliary image files are in the directory:

C:\jswdk101\webpages\jsp\myBookStore

JSP Files:
ArtPage.jsp, Children.jsp, Computer.jsp, Sport.jsp, BookDetail.jsp, CheckOrder.jsp,
CheckOut.jsp, ErrorLog.jsp, Loginjsp, OrderInformation.jsp, Receipt.jsp,
ShowCart.jsp

Image Files:
bookstoreback.jpeg, cart-3.gif, continue-orange.gif, credit-cards-welcome-visa.gif,

I-library1.gif, mbox.gif, newkidsbooks.jpeg

81

HTML file and auxiliary image files are in the directory:
C:\jswdk101\webpages\path
HTML file:

myBookStore.html

Image Files:
inshop3.jpeg, back.gif, javalogo.gif

82

Bibliography:

[BBC98]

[BDH98]

[BRJ99]

[Box98]

[Brown96]

Balbir Bamn, Alan W. Brown and John Cheesman, “Methods and Tools for
Component based Development”, IEEE 1998

Manfred Broy, Anton Deimel, Juergen Henn, etc., “What characterizes a
(software) component?”, Software — Concepts & Tools (1998) 19: 49-56
Grady Booch, James Rumbaugh, Ivar Jacobson, “The Unified Modeling
language User Guide”, Addison Wesley, 1999.

Box, D., “Essential COM, Object Technology Series”, Addison-Wesley,
Reading, MA, 1998

A.W. Brown, “Component-Based Software Engineering”, IEEE Computer
Soc. Press, Los Alamitos CA, (1996)

[Brown98a] Alan Brown, “From Component Infrastructure to Component-Based

Development”, 1998
http://www.sei.cmu.edu/cbs/icse98/index.html

[Brown98b] Alan Brown, “Tool Support for Enterprise-Scale CBD - Determining your

[Cou96]

[DouU99]
[DW98]

[Eck95]

(FM95]

[GHIV95)

organization’s future competitiveness”, Component Strategies, Sept. 1998
George Coulouris, Jean Dollimore, Tim Kindberg, “Distributed Systems
Concepts and Design”, second edition

Desmond D’Souza, “Components in a Nutshell”, JOOP, Feb. 1999.
D’Souza, D. and A. Wills., “Objects, Components, and Frameworks with
UML"”, Addison — Wesley, Reading, MA, 1998

Eckerson, Wayne W., “Three Tier Client/Server Architecture: Archiving
Scalability, Performance, and Efficiency in Slient Server Applications”,
Open Information Systems 10, 1 (January 1995): 3(20)

J.S. Fritzinger and M. Mueller, Sun Microsystems, “Java Security”
http://www.javasoft.com/security/whitepager.ps

Erich Gamma, Richard Helm, Ralph Jognson, John Vlissides, “Design
Patterns, Elements of Reusable Object-Oriented Software”, Addison-
Wesley, 1995

83

[GN96)

[GSI]

[Hali20]

[Holz99]

[IAFE99]

[Jim93]

[JLS97]

[JTS99]

[KP88]

[Lin99]

[Little97]

[Little98]

[Little99]

[Lyon20]

A. Garthwaite and S. Nettles, “Transactions for Java”, MS-CIS-96-17,
University of Pennsylvania, 1996

“Guide To Securing Intranet and Extranet Servers”
http://www.verisign.com/rsc/gd/ent/secure-ext/intro.html

Marty Hall, “Core Servlets and JavaServer Pages”, Prentice Hall PTR, May,
2000

Steven Holzner, “Perl Core Language Little Black Book”, The Coriolis
Group, 1999.

“IBM Application Framework for e-business: Structuring e-business
applications”

http://www-4.ibm.com/software/developer/library/structure/

Gray, Jim, and Reuter, Andreas, “Transaction Processing: Concepts and
Techniques”, Morgan Kaufmann, 1993

James Gosling, bill Joy, Guy Steele, “The Java™ Language Specification”,
Sun Microsystems, Inc., 1997

Java Transaction Service Specification 1.0, December 1999
http://java.sun.com/products/jta/index.html

Glenn E. Krasner and Stephen T. Pope, A cookbook for using the model-
view-controller user interface paradigm in SmallTalk-80, Journal of Object-
Oriented Programming, 1(3): 26-49, August/September, 1988

Peter van der Linden, “Not Just Java”, Sun Microsystems, Software &
Networking

M.C. Little and S. K. Shrivastava, “Distributed Transactions in Java”,
Proceedings of the 7" International Workshop on High Performance
Transaction Systems, September 1997, pp. 151-155

M.C. Little and S. K. Shrivastava, “Java Transactions for the Internet”,
Distributed Systems Engineering, 5 (4), December 1998, pp. 156-167

M.C. Little and S. K. Shrivastava, “Using the OTS to support web
transactions”

David Lyons, “Creating a JSP JavaBeans framework™, Java Developers
Journal, February, 2000

84

[Meta98]

[Micro97]

[Micro98w]
[COM]

[OMG9S]

[OMGY6]

[OMG97]

[OTS97)

[ORA96]
[Plugin]

[PS98]

[Rose94]

[Siegel96]
[SS99]

[Stuart98]

Meta Group Consulting, “CORBA vs. DCOM: Solution for the Enterprise”
March (1998)

http://www.sun.com/whitepapers/CORBA-vs DCOM.pdf

The Component Object Model Specification, 1997.
http://www.microsoft.com/com

Microsoft White Paper: Windows DCOM Architecture, 1998

the Microsoft COM and DCOM site

http://www.microsoft.com/som/

Object Management Group: “The Common Object Request Broker:
Architecture and Specification”

http://www.omg.org (1995)

CORBAservice: Common Object Services Specification, December 1996.
http://www.omg.org

OMG white paper, “A Discussion of the Object Management architecture”,
1997

http://www.omg.org/whitepaper

Object Transaction Service 1.1 Specification, December 1997
ftp://www.omg.org/pub/docs/formal/97-12-17.pdf

“Java in a Nutshell”, O’Reilly and Associates, Inc., 1996.

Java™ Plug-in Product,

http://java.sun.com/products/plugin/index.html

Frantisek Plasil, Michael Stal, “An architectural view of distributed objects
and components in CORBA, Java RMI and COM/DCOM”, Software -
Concepts & Tools (1998) 19: 14-28

Bill Rosenblatt, “Learning the Korn Shell”, O’Reilly & Associates, Inc. Jan.
1994

Jon Siegel: “CORBA Fundamentals and Programming”

Jams Duncan Davidson, Danny Coward, “Java™ Servlet Specification,
v2.2”, Final Release, Sun Microsystems, December, 1999

John Stuart, “Component-based development”, Enterprise Middleware, Jan.
1998

85

[Subr99]

[Sun97j]

[SunE]

[Szyp98a]

[Szyp98b]

[TPMT97]

[Tuto98]

[VITS99]

[Vogel98]

A.V.B. Subrahmanyam, “Nuts and Bolts of Transaction Processing”
http://www.subrahmanyam.com/articles/transactions/NutsAndBoltsOfTP.ht
ml

Sun Microsystems: JavaBeans Specification 1.0, 1997
http://splash.javasoft.com/beans/-beans.100A.pdf

Sun Enterprise JavaBeans site

http://java.xun.com/products/ejb/index.html

Clemens Szyperski, “Emerging components software technologies — a
strategic comparison”, Software-Concepts & Tools, (1998) 19: 2-10
Clemens Szyperski, “Component Software: Beyond Object-Oriented
Programming”, ACM Press Books, Addison-Wesley. Harlow, UK, 1998
Software Technology Review, “Transaction Processing Monitor
Technology”, January 1997,
http://www.sei.cmu.edw/str/descriptions/tpmt.html

Mary Campione, Kathy Walrath, “Java Tutorial Books”, Second Edition,
1998, http://java.sun.com/docs/books/tutorial/book.html#2e

INPRISE white paper, “VisiBroker Integrated Transaction Service:
Managing Transaction in a Distributed Environment”
http://www.borland.com/visibroker/papers/managingits/

Andreas Vogel and Keith Duddy: “Java™ Programming with CORBA”

86

Name:

Place of Birth:

Year of Birth:

Education:

Vita Auctoris

Nan Zhang

Shanghai, P.R.China

1967

Shanghai Second Medical University &
Shanghai University of Science and Technology,
Shanghai, China

1985-1991 B.Sc.

A Joint Program in Biomedical Engineering

University of Windsor, Windsor,
Ontario, Canada
1998-2000 M.Sc. in Computer Science

87

	Developing component-based Web transaction systems with Servlet/JSP and CORBA.
	Recommended Citation

	tmp.1363786207.pdf.6thWF

