University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1997

Development and investigation of a non-visual WWW browser.

Tarek. El-Haddad
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

El-Haddad, Tarek., "Development and investigation of a non-visual WWW browser." (1997). Electronic
Theses and Dissertations. 1696.

https://scholar.uwindsor.ca/etd/1696

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1696&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1696?utm_source=scholar.uwindsor.ca%2Fetd%2F1696&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
31377614700 800/521-0600

Development and Investigation
of a Non-Visual WWW Browser

By

Tarek ElI-Haddad

A Thesis
Submitted to the Faculty of Graduate Studies and Research
through the School of Computer Science
in Partial Fulfillment of the Requirements
for the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada
1997

© 1997 Tarek El-Haddad

ivl

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques
395, rue Wellington

Ottawa ON K1A ON4

Canada
Your fie Votre reférence

QOur fle Notre reférence

The author has granted a non- L’auteur a accordé une licence non

exclusive licence allowing the exclusive permettant a la

National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou

copies of this thesis in microform, vendre des copies de cette thése sous

paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propniété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimeés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-30940-1

Abstract

The World-Wide-Web (WWW). is a massive collection of information dispersed

over the Internet, that is primarily accessed using a graphical web browser such as
Netscape or Microsoft Explorer. However for many people and for many applications a

graphical web browser is useless and/or inappropriate.

In this thesis a prototype of a Non-Visual Web Browser was developed. this
developed browser uses speech recognition as input and a speech synthesizer as output
and its navigation method is based on document content rather than its layout. An
investigation of the developed browser was carried out and the findings from this
investigation were discussed. Other features such as auditory clues and spatial layout.

were also discussed as factors in the development of an ideal non-visual web browser.

v

To My Parents

Acknowledgments

I would like to express my deepest thanks. appreciation and respect to my
supervisor Dr. Richard Frost. His guidance and enthusiasm made this thesis a very
enjoyable endeavor for me. Many thanks to Dr. Tjandra and Dr. Mogyorody for their
valuable input and constructive comments of this thesis work. Also I would like to thank
Dr. Joan Morrissey for her continuous support throughout my university life and for
chairing my defense presentation.

[wish to thank Mr. Walid Mnaymneh for always being there when technical help
is needed. Also many thanks to the wonderful secretaries of the School of Computer
Science Mary. Margaret, and Josette for their help.

Last but not least I would like to thank the graduate students in the School of
Computer Science especially Robert Yang, Zeina Al-Janabi, Mazen Manfoukh and

Halima El-Katib.

VI

TABLE OF CONTENTS

ABSTRACT Iv
ACKNOWLEDGMENTS Vi
LIST OF FIGURES IX
1 INTRODUCTION 1
2 EXISTING NON-VISUAL BROWSERS 7
2.1 NON-VISUAL WWW BROWSERS BASED ON LAYOUTuuvuitiiemeieieietieecemnncsmeeeeccneesasmsssnmnrssseessnsissseessnnnnn 7
2L 1 SCrEER REAAErSooooeeeoeeneneeeeeeee ettt eveeeeeeeeseee s mm e eeee e e e e e ranemae e cnaeers e naes 7

2. L.2Braille DISPIAYS...................c.cccomiimimiiiieie et e 8

2.2 NON-VISUAL WWW BROWSERS BASED ON CONTENTcorrerrrerennmeresenencecsssosmmssssrsrasssssssssssssnssntsmasasnen 9

3 GUIDELINES FOR THE CONSTRUCTION OF WEB PAGES AND WEB BROWSERS............ 10
3.1 EXISTING GUIDELINES FOR THE CONSTRUCTION OF WEB PAGESevvvunieencemercnecienierineitrrrremeenaeneneuaaeanss 10
3.2 EXISTING GUIDELINES FOR THE CONSTRUCTION OF NON-VISUAL WEB BROWSERScccoimiimmiinninnns 18

4 INPUT/OUTPUT TECHNOLOGY FOR NON-VISUAL BROWSERS 21
4.1 SPEECH RECOGNITION TECHNOLOGY FOR INPUT cooeoveeimreiireieeeerenseeesnseesneeseeensesomcesseerssosssnmassssrsssssones 21
4.2 SYNTHESISED VOICE QUTPUT ..uuvvvriivmrenrtnseeereeeaesesntasessasessrrsnsesssessssssssssssssnssssessssssnsnsssssessnsessssnsnssosanses 24

5 DESIGN PRINCIPLES FOR THE CONSTRUCTION OF SPEECH-DRIVEN NON-VISUAL

WEB BROWSERS BASED ON CONTENT RATHER THAN LAYOUT 25
6 THE SPEECH-DRIVEN NON-VISUAL WEB BROWSER - NVWB 32
6.1 COMPONENTSOF NVWB ereereesetesaetre st e s e nn e aneeeansaens e sreatensaaans 32
6.2 THE INPUT COMMAND LANGUAGE AND OUTPUT FROM NVWB ...ttt cee e 35
6.3 INTERNAL REPRESENTATION OF HTML DOCUMENTS INNVWB ...ttt 46

VII

6.4 SAMPLE SESSION USING NV WB ..o et ee e e e e 54

7 SOME COMMENTS ON THE USE OF THE SYSTEM 64

8 ADDITIONAL DESIGN PRINCIPLES AND POSSIBLE FUTURE MODIFICATIONS TO NVWB67

9 OTHER TECHNIQUES THAT CAN BE USED IN NON-VISUAL WEB BROWSING.................. 68
9.1 NON-PROMPTED AUDITORY CLUES -....cucutevemereceeeeeeceeneeeeeeeeeeeeeeeeeenemeeeseesaseoes e es s ee e 69
9.2 CREATING A SPATIAL REPRESENTATION OF A WEB PAGE -.....ee.emeeeeeeeeeeeeeeeeeeeee oo 71
9.3 PSYCHOLOGICAL FACTORS RELATED TO NON-VISUAL WEB BROWSING......ceoeovemrremoeooeooeooo 73

9.4 INTEGRATING DIFFERENT APPROACHES IN ORDER TO CONSTRUCT AN IDEAL NON- VISUAL WEB

BROWSER ...ttt e e ee e ee et e s s s e ssa e s s eee s e seeseas s s ae st emeemenae e s e e e e e e e s s e e s s e 76
10 CONCLUDING COMMENTS 79
APPENDIX A - NVWB INPUT/OUTPUT 81
REFERENCES 104
VITA AUCTORIS 106

Vil

List of Figures

Figure 1. An illustration of the speech driven non-visual web browserccceeceeeeenne 33
Figure 2. A snap shot of the web page being BrOWSEd. ...ooemeeeereeeeeeecmceinnnree et 55
Figure 3. A Snap shot of the fill out form Web Page.......ccocuuvmrrrrmerirrasemsiincassnsemrissenaees 61
Figure 4. An illustration of the spatial environment of a web document............cccoceeeeenn. 72
Figure 5. A snap shot 0f @8 HTML fOIML w.ovrimiimieieiiiin e 101

1 Introduction

The World Wide Web consists of an enormous amount of interconnected data,
images. and other sources of knowledge that are held at millions of sites connected
through the Internet. This vast collection of knowledge is accessible through web
"browsers" which enable users to retrieve and display data from remote sites and to
follow hypertext links from one document to other documents possibly located at
different sites.

The majority of web browsers are based on a graphics interface. A mouse is used
to move a cursor over a graphics display of a web page. Hypertext links are activated
through mouse button clicks when the cursor is located over the representation of the
hypertext link. The representation can be text or a graphical image.

The majority of the web browsers are of no value to users who cannot see the
graphical representation of the web page. Such users require "non-visual” web browsers.
A number of non-visual browsers are available. Nearly all are based on screen-reader
technology. Users still navigate the page using the keyboard. However, instead of seeing
the web page, screen-reader software reads out portions of the page that are related to the
position of the cursor. The original layout of the web page is preserved and is accessible
to the user through the relationship between the cursor position and the output from the
screen-reader software.

Non-visual browsers that are based on the screen-reader paradigm are of value to
visually challenged users but they do have a number of shortcomings. In particular, users

have to invest a considerable amount of effort in gaining a feel for the physical layout of

the page before accessing the content of the document. In addition. browsing via screen-

reader output can be tedious if long paragraphs are read in entirety.

An ideal non-visual browser would provide a number of features to facilitate access

to the content of web pages:

1. "Non-prompted” auditory clues to the document content. For example. when a page is
being loaded into the browser. auditory output could indicate how "busy" the page is
in terms of the density of hypertext links. Other auditory output could indicate when a
list is being loaded, etc. The effect would be to give the user a feel for the content of

the page before browsing or navigation commands are issued.

2. Access to some spatial “layout™ of the page. This layout could be:

a) The physical layout defined by the original hypertext markup tags (i.e. the
layout that would be displayed by a conventional browser). This layout could
be accessed through screen-reader technology as discussed above.

Or

b) A "virtual” spatial layout that is generated from the content of the web page.
For example, a generic virtual layout could be used for all pages, in which all
hypertext links are collected in a list that is placed at, say, the top right-hand

corner of a virtual spatial layout of the page.

In eithér case. the effect would be to provide the user with a spatial context in which
to browse the page. The advantage of the first approach is that it would preserve the

original intended spatial layout of the page. The advantage of the second approach is
that the spatial layout of all pages would be the same. thereby simplifying navigation

"around" the page.

3. A "content-based" browsing facility. In addition to providing users with methods to
navigate around a page according to layout. an ideal non-visual browser would also
allow users to navigate according to the semantic content of the document. For
example. users would be able to ask for the title of a graphics image, for a list of

technical words in the page, for the number of hypertext links. etc.

4. An ideal non-visual browser should accept natural language spoken commands and
should respond with synthesized voice output. The browser should support a robust
user-friendly dialogue that can confirm user commands and respond in a timely

manner.

No browser has yet been built that contains all of the features above, and very little
work has been done to investigate the relationship between the features and their relative
value in creating a user-friendly robust non-visual browser. In this report, we describe the
design and implementation of a system NVWB that will contribute to the longer-term
goal of creating an ideal non-visual browser. NVWB is a "content-based" voice-in/voice-

out browser and is the first such browser to be built anywhere. NVWB is not an ideal

non-visual browser. It only supports content-based browsing and provides neither non-
prompted auditory clues nor spatial-layout browsing. The objective of the work is to
create a content-based browser that can be used by other researchers in the future to
investigate the advantages and shortcomings of content-based browsing and its

relationship to non-prompted auditory clues and representation of spatial layout.

NVWB is a complex package of software consisting of a number of components:

a) A network-interface module that allows users to connect to the Internet and to

download web pages.

b) An HTML-document parser. which accepts web pages as input, processes
them to extract useful information, and converts them into an appropriate form

for command-driven browsing.

c) A speech-recognition module that accepts user-independent continuous speech
commands and which provides a dialogue with the user confirming commends

and activating the browser.

d) A content-based browser that accepts commands from the speech-recognizer

and, processes those commands according to the web-page contents.

e)

An interface module that connects the above components together and which

directs output to the speech-synthesizer.

Various design decisions were made during the construction of NVWB:

a)

b)

d)

Some decisions involved choice of data structures and algorithms necessary to

provide "real-time" response to browser commends.

Some decisions involved the definition of an appropriate voice input
command language and finding the right trade-off between recognition

accuracy and expressiblity.

Some decisions involved the development of an appropriate input/output
dialogue and finding the right trade-off between robustness (e.g. confirming

all user input before acting on it) and naturalness.

Some decisions involved the extent to which the incoming web pages could be
assumed to conform to guidelines that facilitate non-visual web browsing.
Various bodies have proposed several guidelines, and an assumption of their

use can simplify the construction of a non-visual browser.

Although it was beyond the scope of this thesis work to undertake a thorough

investigation of the value of content-based non-visual browsing, it was possible to collect

some data from a number of trial sessions with NVWB involving several users. A brief
analysis of this data was carried out and an attempt was made to relate it to work that is

being carried out elsewhere on non-visual WWW browsing.

2 EXISTING NON-VISUAL BROWSERS
Before describing the non-visual web browser. NVWB. that we have built. we

describe some existing non-visual browsers.

2.1 Non-visual WWW browsers based on layout

Non-visual browsers that navigate through a document according to its visual
layout typically consist of a simple interface to an ASCII text-based browser (such as
LYNX, W3 or Cemn Line Mode Browser)[2] that sends the ASCII text in the web browser
to an output device. This output device can be a Braille output device (Braille display),
which converts text that is displayed on the screen into Braille characters on a touch-pad.
The user then feels what is on the screen.

Another mode of output can be through text-to-speech synthesisers. These
devices, working together with screen access software packages (screen readers). appear
to be the more common and economical approach.

Even though screen-reading software outputs the information, it is up to the user
to interpret command menus, text, and status displays, which are either spoken with a

synthesised voice or are displayed on the Braille display.

2.1.1 Screen Readers

Screen readers, or speech-access software packages, are used with speech-

synthesis hardware to convert standard computers into talking computers. The speech-

synthesis hardware makes the sounds. and the screen-reading software drives the
hardware and enables the user to use the synthesised speech with the text-based screen or
in our case with a text-based WWW browser. The whole purpose of the screen-reading
software is to enable the visually challenged user to operate the WWW browser
independently without any assistance from a sighted user. This is a significant challenge

for both the technology and the user alike.

2.1.2 Braille Displays

Braille is a technique for enabling visually challenged people to read and write.
Braille characters are simply a group of raised dots in a 2-column by 3-row array.
allowing for 64 different character combinations. The U.S. Braille standard is 6 dots,
however computer access created the need for 2 extra dots which are used for special
characters and to indicate the cursor.

Refreshable Braille displays are electronic devices that connect to the computer
by a serial cable. along with this device comes software that will produce Braille output
on the display, corresponding to the text displayed on the monitor. The refreshable Braille
display is located at the lower edge of the standard computer keyboard, these displays
usually come in 20, 40 or 80 Braille cells. Refreshable Braille displays lift small
retractable pins as needed to form Braille characters with one line being displayed at a
time, after a line is read, the user can "refresh" the display in order to read additional
lines. Refreshable Braille displays typically read one line of text at a time, these displays

generally include directional keys which allow the user to navigate through a document.

Braille displays work very much similar to screen readers, but instead of the text being
read out it is displayed as Braille characters. It also is an appropriate device for users who

are deaf as well as visually challenged.

2.2 Non-visual WWW browsers based on content

Non-visual browsers that navigate through a document according to its documents
content are more complex than those based on visual layout. The browser retrieves the
HTML text of the document and allows the user to navigate the document according to
the content of paragraphs. sentences. lists etc.. rather than with scrolling and interpreting
a structured screen display. Since the browser retrieves the HTML code. it is able to
directly interpret the content of the document by interpreting the HTML tags in it. For
example the browser can determine when a table starts or ends by searching for the
<TABLE> and </TABLE> 1ags.

Only one such browser exists commercially today, PwHebSpeak{4]. This browser
is designed specifically to interact with the information on Web pages with keyboard
input accepted from the user. PwWebSpeak recognises various HTML constructs and
automatically bypasses those constructs that have no relation to the information content
of the document. Output from PwWebSpeak is translated into speech output. It works
directly with three different synthesisers: SoftVoice. InfoVox 220 and Creative Labs Text
Assist. PwWebSpeak also supports a wide range of synthesisers through the Arkenstone
SSIL interface. The user controls PwWebSpeak through a combination of keystroke

input, with each key representing a different function.

3 GUIDELINES FOR THE CONSTRUCTION OF WEB PAGES AND
WEB BROWSERS

3.1 Existing guidelines for the construction of web pages

The structured nature of HTML provides tremendous power and flexibility in
presenting information in multiple formats (text, audio, video, graphic. etc.). However,
the features that make the WWW so popular and powerful present potential barriers for
users such as those who are visually challenged. One solution to this problem would be to
carefully design and code information in a way that would alleviate the access barriers.
Various HTML design guidelines that are being developed by a number of groups are
intended to make the web more accessible to all kinds of users. However, most of these
guidelines address problems that people who are using screen readers (or Braille displays)
encounter in using the web. Hardly any guidelines for users of non-visual content
browsers have been developed.

A document author could create a widely accessible document by creating one
that only has text and hypertext links (no images, sounds, tables, frames, JavaScript. etc.).
However, web page authors do not need to avoid all the aspects that make the web so
powerful. Some of the problems that non-visual browsers face are discussed below along

with some guidelines to soive them.

GIF and other Inline Graphics

Inline graphics in web documents cause an accessibility problem. A person using a non-

visual browser would be informed of the inline graphics, but would not know what the

image represents. This problem is particularly significant if the inline image is a text

anchor.

Example:

The psychoanalytical theory developed by Sigmund Freud

refers to the unconscious and the need to repress traumatic memories and taboo

desires.

In this example. the graphics anchor conveys no information about the image. The user of
a non-visual browser would not know what the image is. An easy solution to this problem
would be to use the ALT attribute in an image-reference anchor and include selection text

within the anchor.

Example of accessible code:

The psychoanalytical theory developed by

’ alt="picture of Sigmund Freud.”>

Sigmund Freud

refers to the unconscious and the need to repress traumatic memories and taboo

desires.

This example adds both the “alt” image expression and a text description within the

anchor making it more accessible by a user using a non-visual browser.

Text Layout

Text that is presented in a tabular fashion causes problems for people using screen
reading software because text is read row by row rather than by column. Since screen
reading software reads the words on the page to the user one line at a time, it would start
from the left margin and read straight across to the right margin. If there are two columns
of text. it will read the words in the left column and then continue to read the words in the

right column.

Example:

Canada contains great reserves Most of Canada’s inhabitants live in
of natural resources, notably the southern part of the country, and
timber, petroleum, natural gas, vast areas of the north are sparsely
metallic minerals, and fish. inhabited.

The above example would be read as:
Canada contains great reserves most of Canada's inhabitants live in of natural
resources, notably the southern part of the country, and timber, petroleum, natural gas,

vast areas of the north are sparsely metallic minerals, and fish. Inhabited.

A solution to this problem is to avoid arranging text in columns. or to provide a text only
version with text laid out in a single column. In some cases providing text in a single
column is not possible. such as in cases of budget information displayed in several tables.
No real solution has been provided to such a problem except to provide a contact number

or e-mail that someone could call to obtain help with the table.

Image Maps

Image maps hold a great deal of information. The user of a conventional browser views
an image map and clicks on part of the image that the user wants to link to. For a person
using a conventional browser an image map can simplify the layout of a document,

however for a person using a non-visual browser, an image map is impossible to access.

Example:
<Title>Map Of Canada </Title> <HI1>Click on the Province Below </HI>

 </4>

In this example, the entire page is lost for non-visual browser user. An alternative way to

handle this would be to present an option for a list of provinces. This would enable a user

of a non-visual browser to access all of the information in the image map.

13

Example of accessible code 1:

<Title>Map Of Canada </Title> <HI>Click on the Province Below or select from the
list of provinces </HI1>

[n this example the user is given the choice of an alternative page “provinces.htm " which

might look something like the following:

<Title> Provinces in Canada </Title>

<HI> Select from the list of provinces below </HI>

Ontario
 <A4 href="http://www.canada.gov/prov/quebec.htm”>Quebec.

Alberta.

This approach would resolve the problem that users of non-visual browsers face when
navigating a web page with image maps.

Another solution that has been suggested is to create a client-side image map using alt-
text for each of the links. Client-side image maps are similar to server-side image maps
except that the information regarding all of the links on the image are sent to the browser

along with the image map picture. I[f ALT-TEXT for the image map links is provided

14

with the URLs. then the browser can display the text associated with the links of the
image map. For the example above. the HTML code that would include a client-side

image map with ALT-TEXT could look like the following:

Example of accessible code 2:

<Title>Map Of Canada </Title> <HI1>Click on the Province Below </HI>

<IMG SRC="http://www.canada.gov/images/canada.gif” ALT="Image map of
Canadian provinces” USEMAP="mapl” BORDER=0>

<MAP NAME="mapl ">

<area coords="25,22,29,26” href<"prov/ontario.htm” alt="Ontario >

<area coords="25,22,29,26" href<="prov/quebec.htm” alt="Quebec >

<area coords="25,22,29,26" href="prov/alberta.htm” alt="Alberta’>

Lists

Lists are widely used in web pages. To a person who has visual access to a document it is
easy to interpret lists. However, a person using a non-visual browser often does not know
where a list begins or ends, or where an entry begins or ends. For people using screen
readers (or Braille displays), if an entry takes up two lines, it may appear to be two
separate items.

Example:

15

The types are:
Luxury Cars...
Sports cars...

Corvette...
Porsche...
Sedans...

[fa non.-.v.'isual browser does not inform the user when an item starts or ends it is up to the
user to figure it out. In the above example it may not be a problem for the user to figure
out when a new item starts. however in general for lists with items that cover many lines
it could be a problem. One solution would be to number the items in the list and state
how many items are in the upcoming list as follows:
The 3 types of cars are:

1. Luxury Cars...

2. Sports cars...

... Two sports cars are:
a. Corverte...
b. Porsche...

3. Sedans...

Using this approach, lists would become more accessible to a user using a non-visual

browser and the information in the list would be interpreted the way it was intended.

The example guidelines above are typical in that they are intended to make non-visual
browsers based on screen-reader technology more effective. However, there are still a
number of problems for these browsers that have not been addressed by any proposed

guidelines. For example:

16

Text that changes or moves:
Screen reading software may freeze if it encounters blinking or marquee text, or may

become confused if the screen reading software attempts to read the blinking text while it

is not appearing.

Frames:

It is easy to read frames in a document and to move from one to another when using a
regular browser. However. for a person using a non-visual browser frames can very
confusing. One easy solution would be to include a text-only version of the document for

web pages with complex frames.

Forms:
Forms include several types of components such as buttons. edit boxes, pop-up lists and
radio buttons. It is difficult for a non-visual browser user to edit and manipulate form

components.

JavaScript:

JavaScript typically helps make web pages more dynamic. It is mainly used to enhance
forms. and therefore it has similar set of problems to those encountered in forms. One
accessibility problem is the ability to have user action’s in one frame stimulating change
in another. No guidelines have been developed yet. However research is underway to

address these problems.

17

Java:

Since Java is a full-fledged programming language with several issues of its own. a
simple solution to make Java applets accessible through non-visual browsers is not
possible. If any guidelines were to be developed to make Java applets more accessible by
non-visual browsers. they would have to be implemented during the programming of the

applet itself.

3.2 Existing guidelines for the construction of non-visual web browsers

The guidelines discussed so far are intended for authors of web pages. We now
discuss guidelines that may be appropriate for people who are building non-visual web
browsers. It should be noted that most of the guidelines refer to non-visual web browsers

that are based on screen-reading technology. For Example:

¢ The user needs to know when a link has been crossed as a document is being read to
him/her. As the non-visual browser reads out a web document. it should be able, in

some manner, to inform the user when a hyper link has been crossed.

¢ Non-visual browsers should allow a user to navigate through a web document

according to its grammatical structure, such as by title, sentence, line, paragraph and

word. Since a document can typically be divided into separate grammatical

18

components. a user should be able to access a specific component. making it easier

for them to get a mental model of the document.

The browser should allow the user to search the whole document for a specific word.
Using a conventional visual web browser a user may quickly scan through a
document searching for a keyword. A user using a non-visual browser should be able

to do the same thing.

Because a user of a non-visual browser is unable to view the web document. and
therefore is unable to view hyper links in the document, the user should be able to

search and list all the hyper links in the document.

Tables, as discussed earlier, are a major obstacle for users of non-visual browsers.
The user should be able to read each cell of a table along with the row and column

title of that cell.

The browser should allow the user to fill out and navigate between forms on a web
document. Forms are a very important part in a web document, with a non-visual
browser the user is unable to view them and therefore unable to use them. A non-
visual browser should allow the user to fill out forms by allowing the user to navigate
between the different parts of the form such as buttons, edit boxes, pop-up lists and

radio buttons.

19

¢ The user should be able to navigate between screen windows such as the URL
location window and different frame windows. A typical web browser contains two
different windows. a URL location window and a main text window. A text window
may also contain more than one window (because of frames). A user should be able
10 navigate between these different windows using a non-visual browser just as a user

would do using a regular web browser.

¢ The browser should alert the user to a new font or change in font size. As a document
is being read out to the user, the user should be informed when a new font or change
in font size has occurred. this information may include a meaning that may help the
user better interpret the document. In particular, the browser should inform the user
when an existence of bold face. italics. etc. occurs. The use of italics and bold face is
to emphasise the importance of a specific word. with a non-visual browser the user
will have no way of knowing if a word is italicised or bolded unless the browser itself

informs the user.

It should be noted that the guidelines discussed above are merely proposed
guidelines. No investigation of their relative merits has yet been carried out. and not all
were followed in the construction of NVWB. Some were deliberately omitted as it was

felt that they would confuse the user rather than help. Others were omitted owing to lack

of time.

4 INPUT/OUTPUT TECHNOLOGY FOR NON-VISUAL BROWSERS

4.1 Speech recognition technology for input

When we think of human-computer interaction. we typically think of the keyboard
and the mouse. However the ideal natural computer interface should be through speech-in
and speech-out.

Being able to speak to your personal computer and have it recognise and
understand what you say would provide a comfortable and natural form of
communication. [t would reduce the amount of typing the user has to do, leaving his/her
hands free allowing the user to move away from the computer [6].

Speech recognition technology has actually been around since the 1980's, but until
recently it wasn't really an option for most PC users. The products were inaccurate and
hard to master. very expensive, and required specialised systems. Given these limitations,
speech recognition systems were used primarily by disabled workers and by medical and
manufacturing professionals who were willing to pay the high price that allowed them to
do their jobs [10]. Only recently has speech recognition advanced enough to become
widespread in use. Speech recognition offers real hope to those who cannot use a
traditional keyboard and mouse.

New speech recognition products are now available working under standard PCs
and Macs, making them easier to use with everyday applications. Improved recognition
algorithms and today's powerful CPUs and digital signal processors, have made voice

input faster and more accurate [13],[9].

21

Speech recognition applications are designed in different ways depending on a

number of factors:

Continuous versus discrete speech recognition.

Speech consisting of discrete words (short silences between the words) is much
easier for the technology to recognise than continuous speech because word boundaries
are difficult to find in continuous speech. Pronunciation of a word may sound different
when using continuous speech and some letters may be dropped. Error rates can be
reduced by requiring the user to pause between each word. however this type of
restriction places a burden on the user and reduces the speed with which information can

be input to the system.

Speaker-dependent versus speaker -independent speech recognition.

Many systems are speaker dependent, trained for use with each different operator.
The general public can use relatively few speech recognition systems. Speaker-dependent
systems have error rates roughly three to five times less than speaker-independent ones.
Speaker-dependent systems must also be trained to recognise the patterns and inflection
of each user.'s speech. This training can be tedious and time consuming and inappropriate

for certain types of applications.

Large versus small vocabulary

The size of the vocabulary of words to be recognised has considerable affect on

recognition accuracy. In addition large vocabularies are more likely to contain ambiguous

22

words than small vocabularies and therefore have even lower accuracy rates. Vocabulary

size also affects the amount of time it takes to search the speech-model database.

Grammar Constraint

The grammar of the recognition domain defines the allowable sequences of
words. A tightly constrained grammar is one in which the number of words that can
legally follow any given word is small. Systems that are tightly constrained are more
accurate than those that give the user more freedom because the system can limit the
effective vocabulary (and search space) to those words that can occur in the current input

context.

Natural Speech Input

This is the ultimate goal in speech recognition technology. To be able to talk to
vour computer in a natural manner and have the computer understand what the user
wants. then apply the commands or words (i.e. “create a new letter to Dr. Frost from
University of Windsor”). The computer would create a new letter to Dr. Frost and insert

the address of the University of Windsor.

Environment

Many recognition systems are capable of very low error rates as long as the
environmental conditions remain quiet and controlled. However, performance degrades
when noise is introduced or when conditions differ from the training session in user-

dependent systems. To compensate, the user may have to wear a head-mounted, noise-

23

limiting microphone (with the same response characteristics as the microphone used

during training for user-dependent systems).

4.2 Synthesised voice output

Speech-synthesis systems convert text to spoken output by automatically
generating synthetic speech. Speech synthesis is typically referred to as "Text-to-Speech”
conversion (TTS). this technology takes text as input and produces. as output, sounds that
resemble human speech.

Although speech synthesisers cannot imitate the human sound exactly. they can
read text files and output them in a dull but intelligible voice. Some systems also allow
the user to choose a voice from a pool of different voices. (child. male, female etc.). Since
a speech synthesiser can read out any text file. people with impaired vision find it to be a
very valuable device.

Most of the speech systems available are full text-to-speech systems for English.
These systems are able to produce high quality speech in both male and female voices.
These systems are phonetically driven. these do not contain a dictionary with word
descriptions or pre-recorded human “readings” of words. That is the system generates
voice output by analysing the structure and context of words. they also have good text-
analysis capabilities, which allow for good word pronunciation as well as name

pronunciation.

5 Design principles for the construction of speech-driven non-
visual web browsers based on content rather than layout

Some of the guidelines described earlier. in section 3.2. are applicable to the
construction of non-visual browsers based on content rather that layout, and can be

rephrased as design principles for this type of browser:

1. The non-visual browser should allow the user to navigate through a document
according to its grammatical structure e.g. word, sentence, or paragraph.
Therefore the browser should be able to recognise when a new word. sentence

or paragraph starts and where it ends.

(3]

The user should not have to read through the whole document to be able to
realise which links it contains. A sighted user would generally skim through a
document looking for a specific link without reading the whole document, a
visually impaired user should also be able to do something similar. On the
other hand the user should also be informed of a hypertext link as he/she
navigates through the document, this would allow the user to better
understand what the hypertext link corresponds to. There should also be a

method that allows the user to choose a hypertext link to follow.

3. The browser should be able to understand the structure of a form, and should

represent the form to the user in a manner in which the user would be able to

25

fill it out and submit it. The manner in which the form is to be represented
should allow the user to fill out different portions of the form. moving from
one part to another. checking the information typed so far. and correcting

errors as desired.

4. Similar to forms. a method in which a user can access a table in the document
also should be developed. The user should be able to read each cell of a table
along with the row and column of that cell. The browser should give the user a

comprehensive understanding of the table.

Other guidelines can be added which take into account the relationship between

physical structure and the semantic content of documents. For example:

Design Principle 5:

The input command language has to be sufficiently rich to allow the user to obtain
an “overview” of the document as well as having the ability to home in on specific
components. Since the only interface the user has is a speech interface, the commands
accepted by the browser must be rich enough to make it possible for the user to browse
any component of the document without constraint. That is, the user should be able to
move from one paragraph to another. request to read out a paragraph, sentence or word,
move to a list, form or link etc. Making the command grammar richer allows the user to

navigate through a document in an easier manner obtaining a better overview of the

26

document. it would also enable a user to navigate a document in the manner the user

prefers or feels more comfortable with.

Design Principle 6:

A method of informing the user of the existence of different objects such as
tables. lists. links. forms etc. should be developed. One idea would be to change the voice
of the speech synthesiser as hypertext links are read out. another would be to inform the
user of the existence of a table by stating “The following is a table”. However. when
developing such ideas. the fact that a user’s trail of thought can be disturbed must be
considered. As a user is listening to the web document being read out. hearing tones.
beeps. voice changes and messages for every object in the document can distract and
sometimes disturb the user. Therefore. conveying information about the document is

important, however keeping it simple and as clear as possible must be considered.

Additional design principles are necessary for those non-visual browsers that have

speech input and synthesised voice output. For example:

Design Principle 7:

The characteristics of the speech recogniser should be considered when
developing such a non-visual browser. The ultimate speech recogniser would be one that
recognises continuous, speaker-independent speech, has a large vocabulary and allows
natural speech input. However with such features, the accuracy of the speech recogniser

would be very low. To increase the recogniser’s accuracy some features such as large

27

grammar or natural speech input have to be removed. To develop a speech interface to a
non-visual browser. removing some features would only mean more constraints on the
user. Therefore the proper features should be chosen to allow a high level of accuracy. but
at the same time not to constrain the user too much. allowing the interface to be as user
friendly as possible. For the web-browsing application the speech interface is mainly a
command interface, that is an interface that accepts specific commands by the user and
executes the necessary action according to the command. Because of that, the grammar of
the speech recogniser can be constrained, containing only specific commands that the
non-visual browser will accept such as “read next sentence”, “go to next paragraph” or
“go to paragraph two” etc.. By using a small grammar we can also afford to use a
speaker-independent. continuous-speech system and still maintain high accuracy. With a
continuous-speech system, the user does not have to pause between each word in the
uttered command. making it more user friendly. With a speaker-independent system the
non-visual browser may be used by any user without any training required. making it

more accessible with less work in setting it up.

Design Principle 8:

Because the input language has to be sufficiently constrained in order to have high
recognition accuracy, this precludes use of “document-dependent” words or phrases,
such as “follow the link to University Of Windsor”, when user-independent, continuous-
speech recognition technology is being used. The above command would have to be re-

phrased as “follow link number three”. Consequently, the command language should

28

include commands. such as “list all links in the last paragraph”. which can be used to

remind the user of the link numbers associated with link text.

Design Principle 9:

To improve speech accuracy even more. the browser should be able to change the
working grammar “on the fly™ so that the user would be constrained even more to the
type of commands the user can ask. For example. if the user wants to reload the previous
document. the browser can ask to confirm the action by stating “Do you want to reload
the previous document?” the system at this point would then load in another grammar.
one that only accepts the words “yes” and “no”. At this point the user is expected to
respond with a yes or no answer, therefore there is no need to have a larger grammar with
words or phrases that the user would not be expected to utter. Once the user has
responded with a yes or no. the browser then reloads in the original larger grammar. This

approach can dramatically improve the accuracy of the speech recogniser considerably.

Other design principles derive from the assumption that content rather than layout

should underlay the navigational process:

Design Principle 10:

Owing to the fact that the browser is based on content. no commands should refer
to the visual layout of the document. For example, the user should not be able to ask to
move to the next “line” or ask about the size of the font, since these questions or

commands relate directly to the actual visual layout of the document. The only questions

29

or commands allowed should be ones that are related directly to the semantic content of

the document.

Design Principle 11:

Owing to the fact that the browser is based on content. output should ignore
layout HTML tags unless they convey meaning. In those cases where meaning is
conveyed by layout tags the output from the browser should be based on the “direct”
conveyance of meaning rather than reference to some visual clue. For example. text
which is enclosed by the bold font tag should not be output as “in bold font. an important
message follows™, but rather by a change in tone of the synthesised voice output. “An
important message follows!™ pronounced in a “commanding " voice.

However, these latter principles are based on assumptions that may not be
Justified. Perhaps physical layout. and font type. do serve as useful additional prompts to
understanding and creating a mental model of document content. However, as this work
is concerned with the construction of a “content-only™ browser. guidelines 10 & 11 are
have been followed in the construction of NVWB.

Other design principles depend on external factors. For example, if one can
assume that all of the documents to be browsed conform to a certain set of guidelines then
the browser can be specifically tailored to those documents. This simplifies design but
constrains use of the browser.

One of the major larger-term objectives of the project, of which the work

described in this report is a part, is to identify appropriate design principles through

30

investigation and modification of the speech-driven non-visual browser constructed

specifically for this purpose

31

6 The speech-driven non-visual web browser - NVWB

6.1 Components of NVWB

The principle components of our implementation of a non-visual user-independent

continuous-speech, browser based on document content. include a page processor. an SSI

speech recognizer (as an input device) and Dectalk (as an output device). The software

was built entirely using Visual Basic. mainly because of the fact that the s/w package

with the SSI speech recognizer contains tools for developing speech enabled applications

in Visual Basic.

SSI Speech
Recognizer

Content

based

command
processor

l

Speech
Synthesizer
Dectalk

Page
Processor

Network
interface
module

TCP/P

World
Wide
Web

Figure 1. An illustration of the speech driven non-visual web browser

Network Interface module
This component retrieves a web document from a specified web site. The network
interface makes an Internet connection using the TCP/IP protocol and retrieves from
the specified server the specified HTML document. Below are the steps the interface
module takes to retrieve a document.
1) The network interface retrieves the web server name from the given address and a
connection is established. For example if the user wants to retrieve a document

from hup:/‘'www.cs.uwindsor.ca'users’h'haddad’. the browser network interface would

connect to the server www.cs.uwindsor.ca.

2) The network interface issues a “get " command. which asks the web server to send
a specific file. In this example the get command would appear as “ger
/users/Whaddad/". At this point the server would respond by sending back the
requested file.

3) The network would keep on retrieving the requested document. storing it into a

string. Once the whole file has been retrieved the connection is closed.

The Page Processor

This component processes an HTML document gathering information about the
page. A data structure is created containing relevant information about the page’s
links, images, lists etc. At the same time the page processor also reconstructs the

document by removing HTML tags and adding some new tags and information to it.

33

The page processor does this by parsing through the whole document. As each
HTML tag is visited the page processor reconstructs the document according to the
tag. the processor does this by adding and removing text and tags from the document.
The page processor also retrieves and stores information in different tables for
different HTML constructs such as lists and links.

Because this is only a prototype of a NVWB. not all HTML constructs are
covered. mainly because of the fact that HTML is a versatile scripting language and

therefore it does not restrict the user to a rigid syntax.

Content based command processor

The content-based command processor accepts input from the SSI speech
recognizer processes the commands and sends the output to Dectalk. It uses the
document that the page processor reconstructed to respond to the user’s commands
and actions.
As a user utters a command, the command processor responds to the command by
gathering the necessary response from the newly constructed document and tables, or
taking a necessary action. This response is than sent to the speech synthesizer for

output.

The SSI speech recognizer
As the non-visual browser starts up, it initializes the SSI speech recognizer and
loads the syntax for the command language. Only commands in a specific command

language are accepted by the SSI speech recognizer and passed to the content-based

34

command processor. The speech recognizer used is one that accepts continuous
speech, is user independent and which has been tailored through the specification of a

small grammar.

e Dectalk
This component is the output device for the non-visual browser. All output from
the command processor is sent to Dectalk. which converts the text. Dectalk is
phonetically driven. that is it does not contain a dictionary for the pronunciation of
each word. instead the system generates voice output by analyzing the structure and

context of the word.

6.2 The Input command language and output from NVWB
The following is the initial grammar that the browser loads.

S -> title
|list{links |images |bolded objl |italicized ob3jl |headings}
| how many OBJECT | headings
| link { Numbersl | Numbersl Numbers}
| reed
| set mode
| forward
| backwards
| previous
| next

| go to { Numbersl | Numbersl Numbers}

| skip { Numbersl | Numbersl Numbers}

| spell

| enter location

| £i11 out form { Numbersl | Numbersl Numbers }

OBJECT ==links | lists | images | bolded words | italicized words

Objl== words | phrases

35

NUMBERS1 -> one_to_9
one to 9 ==12 3 456 789
NUMBERS -> 0_to_9

0Oto 9 ==01234567839

The following are examples of the commands in this grammar. together with the
corresponding output from the browser. For a more detailed description of the

input/output of the NVWB refer to appendix A.

Title

Requests from the browser the title of the document. The browser as a response
would return the following:

“The title of this page is, TITLE”

How many links

Requests from the browser the number of links found in the document. The
browser would respond with the number of links in the document. as follows:

“There are <NUMBER OF LINKS> Links."”

How many lists

Requests from the browser the number of lists found in the document. The
browser would respond with the number of lists in the document, as follows:

“There are <NUMBER OF LISTS> Lists.”

36

How many images

Requests from the browser the number of images found in the document. The
browser would respond with the number of images in the document. as follows:

“There are <NUMBER OF IMAGES> images.”

How many bolded phrases/words

Requests from the browser the number of bolded phrases tound in the document.
The browser would respond with the number of bolded phrases in the document. as

follows:

“There are <NUMBER OF BOLDED PHRASES> bolded phrases.

How many italicized phrase/words

Requests from the browser the number of italicized phrases found in the
document. The browser would respond with the number of italicized phrases in the
document, as follows:

“There are <NUMBER OF ITALICIZED PHRASES> italicized phrases.”

How many headings
Requests from the browser the number of headings found in the document. The

browser would respond with the number of headings in the document, as follows:

“There are <NUMBER OF HEADINGS> headings.”

37

Even though the above three commands are closely related to the visual layout of
the document. it should be noted that bolded and italicized words. as well as headings. do
convey some meaning to the user. Bolded and italicized words can be considered as the
important words in a document, and just as a sighted user can skim through a document
looking at headings or bolded and italicized words, a visually impaired person should be

also be able, in a similar manner. to obtain that information.

How many paragraphs

Requests from the browser the number of paragraphs found in the document. The
browser would respond with the number of paragraphs in the document. as follows:

“There are <NUMBER OF PARAGRAPHS> paragraphs.”

How many sentences
Requests from the browser the number of sentences found in the document. The

browser would respond with the number of sentences in the document, as follows:

“There are <NUMBER OF SENTENCES> sentences.”

List links
Requests a list of all the hypertext anchors in the document. As a response each

hypertext anchor in the document is preceding each text anchor a number is attached. The

38

user can use this number to reference that specific anchor, the response would be as
follows:
“There are <NUMBER OF LINKS (N)> Links in this page, They are:
1. <first hypertext anchor>
2. <second hypertext anchor>

N. <nth hypertext anchor>"

List images
Requests a list of all the images in the document. As a response each alternative

text of each image in the document is returned. The response would be as follows:

“There are <NUMBER OF IMAGES (N)> images in this page, They are:
1. <first image’s alt text>
2. <second image’s alt text>

N. <nth image'’s alt text>"

List italicized phrases/words

Requests a list of all the italicized phrases in the document. As a response each

italicized phrase in the document is returned. The response would be as follows:

39

“There are <NUMBER OF ITALICIZED PHRASES (N)> italicized phrases,
They are:
1. <first italicized phrase>
2. <second italicized phrase>

N. <nth italicized phrase>"

List bolded phrases/words
Requests a list of all the bolded phrases in the document. As a response each

bolded phrase in the document is. The response would be as follows:

“There are <NUMBER OF BOLDED PHRASES (N)> bolded phrases, They are:
1. <first bolded phrase>
2. <second bolded phrase>
N. <nth bolded phrase>"

List headings

Requests a list of all the headings in the document. As a response each heading in
the document is returned. The response would be as follows:
“There are <NUMBER OF HEADINGS (N)> headings, They are:

1. <first heading>

2. <second heading>

40

N. <nth heading>"

The next few commands (set mode, reed (note: not misspellesl, see later). next,
previous. go to (n), skip (n) and spell) all depend on what mode the browser is currently
set at. The browser can be set to word, sentence or paragraph mode. Word mode reads a
word at a time. sentence mode reads a sentence at a time, and paragraph mode reads a

paragraph at a time.

Set mode

Allows the user to choose the mode in which the browser would navigate through

the document. Once the user issues this command the following grammar is loaded in:
S -> paragraph
| sentence

| word

and the following message is output :
“Please specify what mode you would prefer, paragraph, sentence, or
word?"
At this point the user needs to respond with “word"”, “sentence” or “paragraph’.
The mode is then set to the choice that the user uttered. Once the user has made a choice
and the proper mode has been set the browser responds with:

“The mode has been set to <CHOSEN MODE> “

4]

Setting the mode to “word” would allow the user to clearly read out one word at a

time. and if the user at any point is unable to understand the word. he/she would be able

to spell it out.

Reed

This word is not misspelled. the reason for it being spelled this way is because the
speech recognizer recognizes the word reed better than it does the word read. This
command simply reads out text from the document according to the mode that is set.
word mode would read out the current word. sentence mode would read out the current

sentence and paragraph mode would read out the current paragraph.

Next
Works much like the Reed command with one difference. the browser moves to
the next block of text (depending on the mode set, word sentence or paragraph) and reads

that out.

Previous

Similar to the next command, but instead of reading the next block of text the

browser is at. the browser reads the previous block of text (word. sentence or paragraph).

42

Spell
This command works if the user is set to word mode. the browser simply responds

by spelling out the current word at which it is.

Backwards

Just like most other browsers this is an option for the user to go back to the
previous document that the user has already visited. as a result the previous document is

loaded into the browser.

Forward

Just like the backwards option this is an option for the user to go forward to the
next document that the user has already visited. as a result the next document is loaded

into the browser.

Enter Location

This command allows the user to type in a URL. As in any regular browser. the
user can type in a URL location of a document to be retrieved. As a result the browser
accepts keyboard input from the user. once the user presses return the document referred
to is retrieved by the browser. The browser reads out each letter as it is typed, thereby

enabling the user to confirm that the correct keys have been pressed. A possible

enhancement to NVWB would be to allow the user to “speak™ the URL one letter at a

time. rather than use a keyboard.

For the following commands the user is expected to utter a value between 1 to 99
following each command. However, to make the system more accurate. the user is
expected to spell out the number. That is if the user wants to enter the number 13. the user

would be required to spell it out “one three™.

Skip [1..99]

Informs the browser to skip a specified number of blocks (word. sentence or

paragraph) of text.

Go to [1..99]
Informs the browser to go to a specified block (word, sentence or paragraph) of

text in the document.

Link [1..99]
Informs the browser to link to a specific text anchor by simply referencing it
according to its numerical occurrence in the document. The browser would retrieve the

document that the specified hypertext link refers to.

Fill out form [1..99]

For a user to fill out a specific form in the document the following command has
to be issued. the number given represents which form to fill out. As a result the following
message is given:

“This form has <N> text boxes, would you like to edit a text box, clear text

boxes, submit the form, or exit form?”

Where <N> is the number of text boxes available to be filled out by the user. At this point

the following grammar is loaded:
s -> edit text box { Numbersl | Numbersl Numbers}
| submit (form)
| clear (text) (boxes)
| reset
| exit form
NUMBERS1 -> one_to_9
one_to_9 ==12345672839
NUMBERS -> 0_to_9

0_CO_9 == 012 3 456 78 9

At this point the user can issue only commands that are related to the form, below

Edit text box [1..99]

This option allows the user to fill out one of the available text boxes in the form
by specifying a number according to its occurrence in the form. The user is
expected to type in, using the keyboard, the input the user wants to be inserted in

this text box followed by the return key.

45

Clear/Reset

Clear or Reset simply clears all the input the user has entered into the text boxes

so far. just as a regular reset button would work on a typical visual browser.

Submit
Once the user utters this command, the browser would execute the specified

action by the form, sending as the input the input the user typed.

Exit form

This command simply exits the form the user is presently at and loads up the main

grammar.

Filling out forms allows a user to access search engines. this a very important part
of using the WWW, and users using NVWB should have access to all search engines just
as users using a visual browser do.

A more detailed discussion of the command language is given in the Appendix.

6.3 Internal representation of HTML documents in NVWB
As each web page is retrieved specific information that is considered relevant to
non-visual browsing is extracted and placed in a newly constructed page. In effect, tags

that were provided for visual layout are converted or discarded and additional tags are

46

added to indicate. for example, the number of elements in a list. Following is a discussion

of the information extracted and the information added to the web document.

Title of a Web Document

The title of a document can be found between the following tags <title>..... </itle>

as in the following example:

<title> This is an example of a title. </title>

The text between the two tags is considered to be the title of the document.
Therefore in a global variable called TITLE, the text between the title tags in the HTML
is stored, and the title tags as well as the text between them are removed from the newly
constructed page. When a user queries the browser about the title, the command processor

retrieves the title from the data structure and sends a response to Dectalk.

A header tag is expected to contain text that is considered to be a header. An
example of such a header tag would be:
<H1>A non-visual browser.</H1>
The value 1 in the above example represents the format of the header, the smaller
the value the larger the header appears on a visual web browser.
The following tag would replace this tag:

<HX> A non-visual browser.</HX>

47

where X is a counter numbering each header according to its occurrence in the document.
e.g. the first header would be replaced with <HI>, second with <H2> etc. As a sentence
is being read out by Dectalk. all headers in the sentence would be read out just as regular

text. a user should be able to distinguish a title from regular text by its content.

Bolded Phrases

A bolding tag is expected to contain text that is to be shown as bolded. An

example of such a header tag would be:
A non-visual browser.
The following tag would replace this tag:
<bX> A non-visual browser.</bX>

where X is a counter numbering each bolded phrase according to its occurrence in the
document, e.g. the first bolded phrase would be replaced with , second with <62>
etc. As a sentence is being read out by Dectalk, all bolded phrases in the sentence would

be read out just as regular text, a user would be able to retrieve all bolded phrases in the

document by listing them.

Italicized Phrases

An ialic tag is expected to contain text that is to be shown as italicized. An

example of such a header tag would be:

<i{>A non-visual browser.</i>

The following tag is replaced with this tag:

48

<iX> A non-visual browser.</IX>
where X is a counter numbering each italicized phrase according to its occurrence in the
document. e.g. the first italicized phrase would be replaced with <i/>, second with <i2>
etc. As a sentence is being read out by Dectalk. all italicized phrases in the sentence
would be read out just as regular text, a user would be able to retrieve all italicized
phrases in the document by listing them.

The reason for not informing the user of the presence of a heading. bolded phrase
or italicized phrase. was because of doing so. the user would be easily distracted from the
information being outputted by Dectalk. During the design of this browser, it was
discovered that informing the user of specific information while reading out text from the

document should be very minimal in order not to distract the user.

Forms

A form tag is expected to contain the description of a form to appear on the web
document. An example of such a form tag would be:

<form>

Please enter your name: <input type=text>

<p>

Please enter your email address: <input type = text>
<p>

<input type=submit>

<input type=reset>

</form>

The following tag replaces this tag:

<formX>
Please enter your name: <input type=text>

<p>

49

Please enter your email address: <input type = text>
<p>

<input typezsubmit>

<input type=reset>

</formX>
where X is a counter numbering each form according to its occurrence in the document.
As a sentence is being read out by Dectalk. all forms in the document would be read out

Just as regular text. however as the browser crosses over a text box a beep is sounded to

inform the user of the text box.

Images

An image tag is expected to contain the image’s path along with some alternative
text describing the image. An example of such an image tag is:

A simple tag would replace this tag:

<imageX>

where X is a counter numbering each image according to its occurrence in the document,
e.g. the first image would be replaced with <imagel>, second with <image2> etc. As for
both the image’s filename and alternative text, they are stored in a table corresponding to
the image’s X value. As Dectalk is reading out a sentence, each image in the sentence is
reialaced with its alternative text. Since the image's alternative text replaces the image
tag, the user won’t be able to distinguish between the regular text, and the alternative text.
As a solution to this, the method we used to inform the user was to change the voice of

the Dectalk when the alternative text is uttered. That is the voice may change from a

50

regular male voice to a kid’s voice as a hypertext link is read out. This approach while

informing the user of the alternative text. it does not disturb the user’s concentration.

Links

A link in an HTML document has a format similar to the following:

 link
description.......

Such a link is replaced in NVWB with a tag with the following format:

<linkW>......... link description.....</linkW>

where W is a counter numbering each link according to it's occurrence in the document.
As for the links URL., it is stored in a table corresponding to the link's W value.

When a sentence is being read out to the user, all links are uttered in a different voice, this
is for the user to distinguish regular text from a link. When a user links to a specific link
he/she would be required to state the W value of the link, e.g. to link to /ink4 the user
would utter “Link four”. The page processor at this point would ask the user if he/she
wanted to retrieve link “link description”, and if the response of the user was “yes " the

browser would then retrieve the URL location of /ink4 and would retrieve the document.

51

Lists

There are two kinds of lists handled by the page processor. ordered and unordered.
Even though the two types are different. they are both handled the same way by the page
processor. The HTML tags for ordered and unordered lists are <o/>...</of>.

respectively. A simple tag replaces both of these tags:

<listY>........ /listY>

where Y is a counter numbering each list (ordered or unordered) according to its
occurrence in the document. In both kinds of lists, the individual items are designated
with a tag, this tag is replaced by a tag <liZ> were Z is a variable numbering each
item according to its occurrence in between the list tags. Nested lists are also handled,

below is an example of an HTML code of a nested list and how the page processor would

m’odify it:
HTML Code Processed HTML Code
 <list1>
 item1 <li1> item1
 item2 <li2> item2
 <list2>
item1 <lia> item1
item2 <lib> item2
item3 <lic> item3
 </flist2>
 item3 <li3> item3
 <flist1>

52

From the above example it can be seen that characters instead of numbers identify items
in nested lists. When a list is read out to the user. before each item the item’s number (or
character) is first announced in a different voice. this is so that the user will be able to

recognize when a new item is visited and when a nested list is visited.

Sentence Tag
As the HTML document is being retrieved, the page processor breaks up the

document into sentences by inserting a sentence tag at the start of each new sentence. A
sentence tag <sW>, were W is a counter numbering each sentence according to its
occurrence in the document. is inserted in the following cases:

o [f the sentence is the first in the document.

o After a sentence that just ended with a period. and the period is not a decimal

point used in a number.

e Following a
 tag.

e Following a <p> tag.

e Following a table.

o Before a , or tag.

e Following a or tag.

Paragraph Tag

As the HTML document is being retrieved, the page processor breaks up the

document into paragraphs by inserting a paragraph tag at the start of each new block of

53

text. A paragraph tag <pW>, were W is a counter numbering each paragraph according to
it’s occurrence in the document. is inserted in the following cases:

o I[f the paragraph is the first in the document.

¢ After two line breaks. A line break is considered any tag that causes the

browser to break to the next line (including
. </table>, tags).

e Following a <p> tag.

6.4 Sample Session Using NVWB

When the non-visual browser is started, a default web document is retrieved. At
this point in time the user is able to issue commands, gathering information about the web
document. The non-visual browser does not display any part of the web document,
instead the way it works is by responding to commands issued by the user, giving the user
a comprehensive understanding of the document. The fundamental idea behind the design
of the browser is to imagine a friend holding a document, which you are not able to see.
The only thing your friend can do is to respond to questions about the document. Such
questions may be to ask about any titles or headings, read out a paragraph or sentence or
give a description of images or pictures. By asking your friend a series of questions you
would be able to have a very good understanding of what the document contains. This is
exactly how NVWB works. the only difference is that the user is constrained in the
questions he/she can ask, only questions from the command language are accepted. All
responses from the browser are sent to Dectalk and converted from text to speech. The

following is a sample session with NVWB, when the following web document is loaded:

54

Non-Visual Web Browsers

The world-wide-web (WWW), is a massive dispersed collection of information that is primarily accessed
through a graphical web browser, such as Netscape or Micrasoft Explorer. However, for many people
and for many spplicstions, a visual interface is useless and/or inappropriate.

One solution to this is to develop a browser whose navigation method is based on document content
rather than its layout. The components of this browser would be an SSI specch recognizer, Dectalk
speech synthesizer and a page processor written i Visual Basic 4.

Components :

* Page Processor - This component retricves a specified web page from a web site, and processes it
gathening information about the page. Properties:
o an mterface to the SS] speech recognizer.
o an interface to Dectalk speech synthesizer.
o mterprets HTML document into a relevant form.
¢ The SSI speech recognizer - This component accepts speech commands from the user and sends
a text interpretation of uttered command to the page process
* Dectalk - This component is the output device for the non-visual browser.

| Table Of Content | Get Info |

R I IR HWE

Figure 2. A snap shot of the web page being browsed.

The HTML code of this document would be:

<HTML>

<title>Non-Visual Web Browsers</Title>

<body>

<Hl>Non-Visual Web Browsers</Hl>

The world-wide-web (WWW), is a massive dispersed
collection of information that is primarily accessed
through a graphical web browser, such as
<i>Netscape</i> or <i>Microsoft Explorer</i>. However,
for many people and for many applications, a visual
interface is useless and/or inappropriate. <p>

One solution to this is to develop a browser whose
navigation method is based on document content rather
than ite layout. The components of this browser would
be an SSI speech
recognizer, Dectalk

55

speech synthesizer and a page processor written in
Visual Basic 4. <p>

Components

Page Processor - This component retrieves a
specified web page from a web site, and processes it
gathering information about the page.

Properties:

an interface to the <i>SSI speech recognizerc</i>.
an interface to <i>Dectalk speech synthesizer</i>.
interprets HTML document into a relevant form.

The SSI speech recognizer - This component
accepts speech commands from the user and sends a text
interpretation of uttered command to the page process
Dectalk - This component is the output
device for the non-visual browser.

<p><HR>| Table Of Content | Get Info |

</ font></body>

</HTML>

Once the page processor has processed the document. the web document would

look something like the following.

<pl><sl><H>Non-Visual Web Browsers</H>

<p2><82>The world-wide-web (WWW), is a massive
dispersed collection of information that is primarily
accessed through a graphical web browser, such as
<i>Netscape</i> or <i>Microsoft Explorer</i>.

<83> However, for many people and for many applications, a
visual interface is useless and/or inappropriate.

<p3><84> One solution to this is to develop a browser whose
navigation method is based on document content rather than
its layout.

<85> The components of this browser would be

an <linkl1>SSI speech recognizerc</linkl>, <link2>Dectalk
speech synthesizer</link2> and a page processor

written in Visual Basic 4.

56

<p4><s6>Components :

<listl>

<87><lil>Page Processor - This cocmponent retrieves a
specified web page from a web site, and processes it
gathering information about the page.

Properties:

<list2>

<s8><lia>an interface to the <i>SSI speech recognizerc</i>.
<s9><lib>an interface to <i>Dectalk speech synthesizer</i>.
<8l0><lic>interprets HTML document into a relevant form.
</list2>

<p5><811><1i2>The SSI speech recognizer -

This component accepts speech commands from the user and
sends a text interpretation of uttered command to the page
process

<812><li3>Dectalk - This component is the output
device for the non-visual browser.

</listl>

<p6><8l3>| <link3>Table Of Content</link3> | <link4>Get
Info</link4> |

The following is a sample of commands uttered by the user and the response from

the non-visual browser.

Title. The title of this page is, non-visual web browsers.
How many links? There are four links.

How many lists? There are two lists.

How many images? There are no images.

How many sentences? There are thirteen sentences.

57

How many paragraphs?

Reed.

Next.

Next.

Set mode.

Paragraph.

Reed.

Next.

Next.

There are six paragraphs.
Non-Visual Web Browsers.

The world-wide-web (WWW), is a massive dispersed
collection of information that is primarily accessed through a
graphical web browser, such as Netscape or Microsoft
Explorer.

However. for many people and for many applications, a
visual interface is useless and/or inappropriate.

Please specify what mode you would prefer, paragraph,
sentence, or word?

The mode has been set to paragraph.

The world-wide-web (WWW), is a massive dispersed
collection of information that is primarily accessed through a
graphical web browser, such as Netscape or Microsoft
Explorer. However, for many people and for many
applications, a visual interface is useless and/or

inappropriate.

One solution to this is to develop a browser whose
navigation method is based on document content rather

than its layout. The components of this browser would be an
SSI speech recognizer, Dectalk speech synthesizer and a
page processor written in Visual Basic 4.

Components :

1. Page Processor - This component retrieves a specified
web page from a web site, and processes it gathering
information about the page. Properties:

58

Next.

List Links.

List italicized phrases.

a. an interface to the SSI speech recognizer.
b. an interface to Dectalk speech synthesizer.
¢. Interprets HTML document into a relevant form.

2. The SSI speech recognizer - This component accepts
speech commands from the user and sends a text
interpretation of uttered command to the page process

3. Dectalk - This component is the output device for the non-
visual browser.

There are four links in this page, they are:
1. SSI speech recognizer.

2. Dectalk speech synthesizer.

3. Table Of Content.

4. Get Info.

There are four italicized phrases, they are:
1. Netscape.

2. Microsoft Explorer.

3. SSI Speech recognizer.

4. Dectalk speech synthesizer.

There are four bolded phrases, they are:
1. The World-Wide-Web (WWW).

List bolded phrases. 2. Page Processor.
3. The SSI speech recognizer.
4. Dectalk
Please specify what mode you would prefer, paragraph,
Set mode sentence, or word?
Sentence The mode has been set to sentence.
Go to 2 Do you want to go to sentence 2?
Yes At 2.

59

The world-wide-web (WWW), is a massive dispersed
collection of information that is primarily accessed through a

Reed graphical web browser, such as Netscape or Microsoft
Explorer.
Set mode Please specify what mode you would prefer, paragraph,

sentence, or word?

Word The mode has been set to word.

Skip 22 Do you want to skip twenty-two words?
Yes Skipped twenty-one.

Reed As

Next Netscape

Spell NETSCAPE

iink23 Do you want to link to twenty-three?

Hypertext link twenty-three does not exist, there are four

Yes links in this page.
Link 4 Do you want to Get Info?
Yes Linking to hypertext link 4.

For the last command uttered. the browser loads in the document called

Jorms.htm this file is as follows:

»+- Netscape - [Get Intormation about non visual browseis]

Please fill in the following form and the information will be emailed to you.

Please enter your name: [A

and Your email address:

4
a

Figure 3. A Snap shot of the fill out form web page.

<HTML>
<HEAD>
<TITLE>Get Information about non-visual browsers</TITLE>
</BBAD>
<BODY>
<P>
Please fill in the following form and the information will
be emailed to
you.
<FORM method="get® action="http://www.cs.uwindsor.ca/cgi-
bin/haddad/test.tcl">
Please enter your name:
<INPUT type="text" name="name">

and Your email address:
<INPUT type="text®" name="addr">
<P>

61

<INPUT TYPEssubmit>
<INPUT TYPE=reset>

<P>
<IMG ALIGN="Middle" SRCa"go pre-l.gif"

ALT="Previous Document®

WIDTH="40" HEIGHT="40">Previous
</FPORM>
</BODY></HTML>

Once the page processor has processed the document. the web document would

look something like the following.

<pl><sl>Please fill in the following form and the
information will be emailed to you.

<FORM1>

Please enter your name:

<INPUT typez”"text” namex="name” >

and Your email address:

<INPUT type=x”"text” name=~addr”>

<P>

<INPUT TYPE=submit>

<INPUT TYPE=resgset>

<P> .
<?FORM1>

<linkl><Imagel>Previous</linkl>

The browser at this point waits for the user to utter a command, below is a sample
session, giving examples of commands the user may ask along with the response from the

browser:

'L' T e Ak

I ey L D
i AL T T2 g 8 g

The title of this page is, Get Information about non-visual
Title browsers.

List Links There is one link, it is:
1. Previous document

62

Set mode

Sentence

Reed

Fill out form 1

Yes

Edit text box 1

Tarek Haddad
(user input from
keyboard)

Edit text box 2

Haddad@uwindsor.ca

(user input from
keyboard)
Submit
No

Link 1

No

Please specify what mode you would prefer, paragraph,
sentence or word?

The mode has been set to sentence.

Please fill in the following form and the information will be
emailed to you.

Do you want to fill out form 1?

This form has two text boxes, would you like to edit a text
box, clear textboxes. submit the form. or exit form?

<beep> Please enter your name

TAREKHADDAD. Input has been accepted.

<beep> And your email address

HADDAD@UWINDS OR Input has been accepted.

Do you want to submit this form?

Submit form command canceled.

Do you want to link to hypertext link 1?

Link command canceled.

63

7 SOME COMMENTS ON THE USE OF THE SYSTEM

Seven users have experimented with NVWB. All the users were computer science
students or faculty members. they were also all sighted users familiar with the WWW
however, none were familiar with the NVWB or any other tool used for non-visual
browsing of a web page. Each user was given the web page discussed in the example
usage section. which was designed to be universally accessible, and later each user was
asked to navigate through the document gathering as much information as they could.
Once they were done, each user was asked to explain what they thought the web
document contained and their responses were noted. The users were than given a web
page that was arbitrarily picked from the NASA web site, the users were then asked to
navigate through that document and were later asked what information they gathered
from that site. Below are some comments on the user of the NVWB:

® Most users easily identified hypertext links while navigating the document,

especially since they were also able to list them all out. One problem however
was that in some cases the document may contain many links, and for the user
to list all of the links could be very time consuming, and in some cases
annoying. Therefore some users suggested that giving the user the option of
listing a specific number of hypertext links, starting from one point and ending

at another, would be beneficial.

Most users found the system hard to control at the beginning since they were
still unfamiliar with both the command language as well as what response to
expect. However around 15-30 minutes later. once the users became familiar
with the system. they found the speech recognition to be very accurate and

became more familiar with the kinds of responses the system generates.

In some cases the users found the Dectalk speech synthesizer to be unclear and
with low volume. In response to that. the Dectalk was connected to amplified
speakers and the speech synthesizer was set to read at a slower pace (initially
at 180 words/min to 150 words/min). Afier these changes the users found

Dectalk to be much clearer.

Even though the images in the NASA web page did not have any alternative
text, the users did not appear to have lost any information with respect to the

topic discussed in the document.

In general the users were able to understand the speech synthesizer, however
in some cases specific phrases were read out in a different way than a person
would read it out. For example the phrase “World WAR II", which should be
read out as “World War 2" was read out by the speech synthesizer as “World
War 1 I". Other formats such as email addresses and initials such as SSI may
be read out in different ways. It would require the user in this case to interpret

the real meaning of the phrase, however in some cases the user became

65

confused and in some cases the user had to read out the phrase more than once

to interpret the real meaning of the phrase.

In general it was found that each user was able to obtain a good understanding of the
information that was on both web documents. Even though each user took a while to
become familiar with the NVWB, once they became familiar with it and with the
command language. their understanding of the information on the web document
improved. All the users were able to identify the topics in the web pages. in some cases
the users were also able to create a mental model of the document that was similar to the
actual layout of the document.

[t was also noticed that most users did not remember most of the links even
though they were read out in a different voice. however this did not affect their
navigation. and when they were interested in finding what hypertext links exist in the
document they listed them again. It seems that most users only listed hypertext links,
bolded/italicized phrases, headers and images only to gather a feeling of what kind of
information can be found in the document, and non of the users actually remembered the
listings. This demonstrates that all the user needs to have is a mental understanding of
what kind of information is in the document, whereas the actual format and layout of it is

irrelevant.

8 ADDITIONAL DESIGN PRINCIPLES AND POSSIBLE FUTURE
MODIFICATIONS TO NVWB

From the investigation that was carried out. we have noted a few design principles

and possible future modification that may improve NVWB.

I.

J

149

The text sent to the speech synthesizer should be formatted. The speech
synthesizer reads out some words in the manner they are spelled instead of in
the manner it suppose to be read. for example “World War I[" is read as
“World War I I instead of "World War 2" Itis necessary for the NVWB to
format those phrases into what they should sound like before it is sent to the
speech synthesizer. This. however. would require the NVWB to have some
semantic understanding of the document to be able to understand how a phrase
should be read out. For the time being this is very hard to accomplish.
tieretore the user would have to be lett with the burden of trving to make
sense of unformarted phrases.

Some new commands that would allow the user to output only a portion of a
l:st should be added. For example. instead of listing all the links in the

document the user should be able to sav “list links 12 until 20"

. Tae user should be given control over the pace of which the speech

synthesizer speaks. [t seems that at the start of the testing some users found it
to be fast. however with time. as they became familiar with it, the speed

stopped bothering them.

9 OTHER TECHNIQUES THAT CAN BE USED IN NON-VISUAL
WEB BROWSING

The primary objective of the thesis work described in this report was to construct
a content-based non-visual browser that could be used in a subsequent project 1o
investigate the relative merits of content-based browsing and its relationship to other
techniques used in non-visual browsing.

Although such an investigation is beyond the scope of this thesis work. it is
appropriate to briefly discuss other techniques that can be used in a non-visual interface
to the web.

Many of the techniques. other than content-based browsing. that can be used in a
non-visual interface to the web fall into two categories: 1) use of non-promptad auditen
clues. and 2) creation of a spatial representation of the web page. The relatiorship of
these techniques to the psychological aspects of creating a mental model of a web page is
being investigated by Frankie James as part of her doctoral studies ar Stanford Universin
[1].

[n this section we discuss the use of non-prompted auditory clues in helping t=e user gain
a "feel” for a web page. we then discuss how users can develop a "spatal reprasentaton”

of a web page. Finally. we summarise some of Frankie James" ideas.

68

9.1 Non-prompted auditory clues

As a sighted user loads up a web document. some information about the document
is provided. For example information on the size of the document is given by viewing the
handle of the scroll bar of the browser on the side. the smaller it is the larger the
document is, and the larger it is the smaller the document is. This does not inform the
user of the exact size of the document., however. it gives the user an idea of how big it is.
Another clue that the user gathers is if there are many images in the document or not.
Typically a browser would load up the text in the document first. and then move on to
load up the images. The longer it takes the browser to load up the images the more (or
larger) the images are. Once again, the user is not informed of exactly how many images
exist or how large they are, however the user would be able to gather some idea of the
richness of images in the document.

These clues however are not available for a visually impaired user. and therefore
some method should be adopted to inform the user of clues about the document. With
these clues a user would be able to gather an idea about specific characteristics in the
document once it has been loaded. Below are a number of suggestions on how auditory

clues can enhance a user’s mental understanding of a document:
e Once a document has been loaded a sound could be generated to represent the

size of the document to the user. The larger the document is the “bigger™ the

sound, the smaller the document the “smaller” the sound generated. This in

69

result would give a user the ability to recognize approximately how large the
document just loaded is.

® Once the document has been loaded. a noise of jingling bells could be
generated to represent the density of hypertext links in the document. the more
dense they are the more dense the jingling is. the less dense they are the less

dense the jingling is.

¢ Asadocument is being loaded a tick-tock sound could be generated
proportional to the transfer rate of the document. That is as the document is
being loaded, the faster the transfer time is the faster the tick-tock sound is. the

slower the transfer time is the slower the tick-tock sound is.

Other auditory clues could be provided such as generating sounds for the density
of images. lists, tables etc. However a balance between clarity and information should be

considered. If too many clues are generated this may confuse the user

When developing a non-visual browser, cognitive factors should always be
considered. The information a sighted user is able to gather by viewing or skimming
through a document, a visually impaired user is unable to acquire. A combination
between spatial organization and auditory clues would improve a user’s ability to

navigate and better interpret the document.

70

9.2 Creating a spatial representation of a web page

Visually impaired computer users. in practice. have been found to rely even more

heavily on the physical properties of objects than do sighted users [14]. Visually impaired

users were found to define a place for everything. order their diskettes, put recognisable

cues into documents. etc. A spatial understanding of a document can be done in two

different ways:

One approach would be by using the structured nature of the web document and
translating the structure of the document into meaningful earcons. That is, the user
using a pointing device (a mouse) can move around the web document. As the pointer
crosses specific objects in the web document (for example a table, image or block of
text), a specific sound is generated that informs the user of the existence of that object
at that location. By moving the mouse around the user would be able to interpret the
spatial organisation of the document, therefore retrieving the desired mental model of
the actual web document as a sighted user would view it. The advantage of this would
be that the user would be able to get an exact mental image of the actual web page.
The problem however would be that the user would have to distinguish between the
many different sounds that the browser would generate, and the interpretation of each
one. It is also more difficult for the user to build up the spatial representation of the

document since the user has no prior knowledge of what the document contains.

71

e Another approach is for the web browser to organise specific objects that are to be
found in every web document. such as bookmarks and hypertext links. in a spatial
environment [8]. That is the web browser generates. from the content of the web page.
a virtual spatial environment. one for example, were the hypertext links can be found
to the left of the user. and the list of bookmarks can be found to the right. Below is an

illustration of how this virtual environment might be presented.

List of Bookmaerks

Figure 4 An illustration of the spatial environment of a web document.

The advantage of this approach is that as a user loads up a new document, specific
objects can always be found at a known location in a virtual spatial environment, giving
the user knowledge of where some information can be retrieved about the document. The
disadvantage however is that the user would be unable to construct a mental model of the
actual document, and only a virtual spatial environment would be constructed, leaving it

up to the user to develop his/her own mental model of the document.

To pick the best approach for including a spatial environment in a web document
is difficult. each approach has its advantages and disadvantages. However. it is necessary
for a spatial environment to exist. one that would allow a visually impaired user to

navigate the document in a better manner.

9.3 Psychological Factors related to non-visual web browsing

When using a non-visual web browser, the pages are presented in audio output.
However presenting a document in audio format is not as simple as it sounds, and
underway is a study by a Doctoral student, Frankie James at Stanford University (mailto:

flames@cs.stanford.edu , http: ‘www.pcd.stanford ~fjames. frank ie.htm|). to develop a set of

guidelines for designing audio interfaces to HTML.

This study compared several different audio presentation styles on twenty-four
subjects (twelve blind and twelve sighted). The interfaces for this experiment marked
HTML structures with both non-speech sound effects and speaker changes. The interfaces
that were used in this experiment were based on four general formats:

* one speaker, few sound effects (OS/V)
* one speaker, many sound effects (OS/MS)
* multiple speakers, few sound effects (MS/V)

¢ multiple speakers, many sound effects MS/MS)

73

Sounds that seemed intuitively related to the structural element that they were
meant to represent were chosen. However in the case where there is no obvious sound. a
short abstract sound was used. For example. link points were marked with different
overlaid sounds indicating whether the link was pointing within the same document
(sound of footsteps). to another document (sound of phone ring). or a mailto link (sound
of doorbell). Also simple tones that varied in pitch was used to indicate heading level. As
for changes in sound. the analogy of a sports broadcast was used in which there is more

than one announcer. each having specific role and presenting only certain information.

The following are some of the findings that Frankie James developed from this

experiment:

Headings

The users had trouble distinguishing heading levels that were differentiated by
pitch even when two headings sounded in succession. Some users also said that the

explicit tag was too long or cluttered the presentation.

Link Points

The users found the interfaces that marked links with natural sounds (OS/MS and
MS/MS) were significantly more effective than those that used simple tones (OS/V and
MS/V). The users stated that they had difficulty discerning the extent of the link text in
the verbose protocols because the tone in the verbose protocols sounded either at the

beginning or the end of the link text.

74

Lists

Lists produced different results for the blind and sighted users. Blind users had
more correct answers when using OS/MS even though it was rated as both too loud and
too slow. Sighted users, however, had more correct answers using MS/V. MS/V both

separated list levels by speaker and marked list items with a short audio bullet.

Pauses

Pauses also generated different results with the blind and sighted users. The blind
users found the pauses to be to long and the presentation too slow. probably because they
were accustomed to using audio to retrieve information. Sighted users on the other hand

found the pauses too short and the presentation too fast.

Volume

The users were given full control over the volume, and most of them found that
OS/MS was significantly louder than the other interfaces. This could be because certain
sound effects were too loud in comparison with the rest of the interface and, thus,
distracting.

Even though the totals were not significant, ten users found one speaker with
minimal sound effects (OS/V) to be most effective. Second choice was multiple speakers
with minimal sound effects (MS/V) receiving five votes, whereas the two interfaces using

multiple sound effects each got three votes.

75

9.4 Integrating different approaches in order to construct an ideal non-
visual web browser

NVWB is a content-based browser. It does not use non-prompted auditory clues.
nor does it provide the user with a spatial representation of web pages. [t seems
reasonable that the capability of NVWB would be enhanced if these features were added.
However, it is not obvious how these features should be integrated with content-based
browsing. The small investigation of the use of NVWB has identified a number of areas
for improvement. which have already been discussed. However. this investigation has
not really helped determine how best to integrate auditory clues and/or spatial
representation into a content-based non-visual browser.

Although a detailed investigation of these issues is beyond the scope of this thesis
work. it is appropriate to make a few suggestions that may form the basis of a subsequent

study.

Suggestions for the design of an ideal non-visual browser:

1) Content-based browsing should form the "backbone" of the non-visual browser. Other
features should be regarded as augmenting content-based browsing. This suggestion
is based on the assumption that in most cases users are primarily interested in the
information stored in a web page rather than in the way that information is presented.
The presentation can help a user interpret the content of a page (e.g. putting text in
bold font indicates an emphasized importance of the content of that text). However, a

sophisticated content-based browser should be capable of carrying out the same

76

3)

4)

interpretation. Rather than telling the user that text is in bold font. the browser should

be able too indicate that the emboldened text is of particular importance.

The non-visual browser should be capable of providing the user with a feel for a web
page without any prompts from the user. When the page is being loaded. there should
be some method to let the user know what the title is, how big the page is. how many
links there are. etc. Ideally. the browser should be able to tell the user what the page
"is about”. This last feature would require that the browser be capable of interpreting
and summarizing the content of the web page. Techniques from text retrieval, natural

language processing and artificial intelligence would have to be used to provide this

capability.

The non-visual browser should provide a mechanism by which the user can get a feel
for the intended spatial layout of the page, as it would appear when presented by a
conventional browser. This could involve the use of a haptic device, which allows the
user to "feel" the structure of the page, for example the haptic device may exert
pressure on the user’s hand as the user crosses over the boarder of a window. Or it
could involve something similar to screen-reader technology, or alternatively it could

involve spoken output describing the layout of the page.

In addition to providing the user with a feel for the intended spatial layout of the page,
the browser should also provide the user with a generic spatial representation. That is,

the content of all pages should be organized in some generic way that can help the

77

user develop a mental model of the content of the page. For example. the generic
spatial model might be such that all hyper-links are "situated” at the top-right hand
corner of a virtual spatial layout. This suggestion is based on an assumption that may
be incorrect. that a spatial representation of a page can help users organize and
understand that material on a page. Various people have suggested this. however.

there is as this time no strong supporting evidence.

5) Itshould be possible to tum features on and off to cater for different users and
different applications. For example, the generic virtual spatial representation would
not be required (and would probably be confusing) if a representation of the intended
spatial layout were available. As another example, in some applications it may be
appropriate for the user to interact with the computer only through voice commands.
In this case, a haptic device would not be appropriate. neither would the use of

screen reading technology that was mouse-based.

The construction of an ideal non-visual web browser is a non-trivial task and will
involve the development and investigation of various combinations of features. A
number of projects that might ultimately result in an ideal browser are listed in the next

section.

78

10 CONCLUDING COMMENTS

A comprehensive survey of speech-recognition technology and its applications [5]
has been carried out in addition to a review of existing non-visual web browsers. It was
found that no ideal non-visual web browser has yet been constructed. In particular. little
work has been carried out on the development of speech-in/speech-out content-based
non-visual browsers. Consequently, it was decided to construct such a browser in order to
provide an environment for further investigation in future projects.

A non-visual web browser NVWB has been built. [t can handle most HTML
constructs with the exception of tables, frames and JavaScript. The browser runs in real
time providing users with fast response to browser commands. These commands are
issued in a sub-set of natural language through a user-independent continuous-speech
recognition interface. Output is provided through realistic voice output. The system runs
on a "standard" PC equipped with a speech card and a DECTALK speech synthesizer.

Design of NVWB took into consideration various guidelines that have been
suggested by various groups. Not all guidelines were followed as some proved to be
inappropriate in practice.

Although it was beyond the scope of the thesis work to conduct a comprehensive
investigation of the use of NVWB and the relative advantages/disadvantages of content-
based browsing, a small investigation of the use of NVWB was conducted. A number of
shortcomings were identified and proposed modification of the guidelines for

constructing non-visual browsers have been suggested.

79

The following future research projects are suggested as continuation of this

project:

1) A thorough investigation of the use of NVWB and content-based browsing should be
performed involving non-sighted users. A graduate Social Science. Communications
Studies or Psychology student might carry this out. A Psychology student would be able
to discover how a user can better perceive information represented to the user by using
different sounds, voices etc. A Communication Studies student would be able to study

how to better communicate information to the user to allow the user to better understand

the document.

2) Extension of NVWB to include non-prompted auditory clues and spatial

representation. A graduate Computer Science student might carry out this project.

3) An investigation of the relationship between content-based browsing, non-prompted
auditory clues, and spatial representation. This could be a combined project involving a
student from each of Computer Science and Communication Studies (or Psychology).
The extended NVWB could be modified so that it can function in various modes, with

features being turned on and off during the investigation.

4) The construction of a robust "ideal" non-visual web browser.

80

APPENDIX A

APPENDIX A - NVWB INPUT/OUTPUT

The following is the initial grammar that the browser loads up.

S -> title
|list{links |images |bolded objl |italicized obji | headings}
| how many OBJECT | headings
| link { Numbersl | Numbersl Numbers}
| reed
| set mode
| forward
| backwards
| previous
| next
| go to { Numbersl | Numbersl Numbers}
| skip { Numbersl | Numbersl Numbers}
| spell
| enter location
| £i1ll out form { Numbersl | Numbersl Numbers }

OBJECT ==links | lists | images | bolded words | italicized words
Objl== words | phrases

NUMBERS1 -> one_to_9

one_to 9 ==12345¢6 72829

NUMBERS -> 0_to_9

0Oto 9 ==0123456789

The following are examples of the commands in this grammar, together with the

corresponding output from the browser:

APPENDIX A

Title
This command requests from the browser the title of the document. The title is the text
that is found between the <title>...</title> tags in the HTML document. The browser as
a response would return the following:
“The title of this page is, TITLE”
In the case the document has no title the response would be:

“This page has no title.”

How many links

This command requests from the browser the number of links found in the document. A
link in an HTML document is the text that is found between the <A >.... . The
browser would respond with the number of links in the document. as follows:
“There are <NUMBER OF LINKS> Links.”
Or in the case were there is only one link the response would be:
“There is one Link.”
Or in the case were there are no links the response would be:

“There are no Links.”

How many lists

This command requests from the browser the number of lists found in the document. A
list in an HTML document is the text that is found between the ... tags.

The browser would respond with the number of lists in the document, as follows:

82

APPENDIX A

“There are <NUMBER OF LISTS> Lists.”
Or in the case were there is only one list the response would be:
“There is one List.”
Or in the case were there are no lists the response would be:

“There are no Lists.”

How many images
This command requests from the browser the number of images found in the document.
An image in an HTML document can be found in <IMG..> tag. The browser would
respond with the number of images in the document, as follows:
“There are <NUMBER OF IMAGES> images.”
Or in the case were there is only one image the response would be:
“There is one image.”
Or in the case were there are no images the response would be:

“There are no images.”

How many bolded phrases/words

This command requests from the browser the number of bolded phrases found in the
document. A bolded phrase in an HTML document is the text that is found between the
 ... tags. The browser would respond with the number of bolded phrases in the
document, as follows:

“There are <NUMBER OF BOLDED PHRASES> bol/ded phrases.”

83

APPENDIX A

Or in the case were there is only one bolded phrases. the response would be:
“There is one bolded phrase.”
Or in the case were there are no bolded phrases. the response would be:

“There are no bolded phrases.”

How many italicized phrase/words

This command requests from the browser the number of italicized phrases found in the
document. An italicized phrase in an HTML document is a phrase that is found between
the <i> ... </i> tags. The browser would respond with the number of italicized phrases in
the document, as follows:
“There are <NUMBER OF ITALICIZED PHRASES> italicized phrases.”
Or in the case were there is only one italicized phrase the response would be:
“There is one italicized phrase.”
Or in the case were there are no italicized phrases the response would be:

“There are no italicized phrases.”

How many headings

This command requests from the browser the number of headings found in the document.

A heading in an HTML document is a phrase that is found between the <Hx> ... </Hx>

tags, were X is a value representing the type of the heading. The browser would respond

with the number of headings in the document, as follows:

“There are <NUMBER OF HEADINGS> headings.”

APPENDIX A

Or in the case were there is only one heading the response would be:
“There is one heading.”
Or in the case were there are no headings the response would be:

“There are no headings.”

How many paragraphs

This command requests from the browser the number of paragraphs found in the
document. Text in an HTML document is considered a new paragraph based on a couple
of different situations (discussed in section 7.3). The browser would respond with the
number of paragraphs in the document, as follows:
“There are <NUMBER OF PARAGRAPHS> paragraphs.”
Or in the case were there is only one paragraph the response would be:
“There is one paragraph.”
Or in the case were there are no paragraphs the response would be:

“There are no paragraphs.”

How many sentences

This command requests from the browser the number of sentences found in the
document. Text in an HTML document is considered a new sentence based on a couple of
different situations (discussed in section 7.3). The browser would respond with the
number of sentences in the document, as follows:

“There are <NUMBER OF SENTENCES> sentences.”

85

APPENDIX A

Or in the case were there is only one sentence the response would be:
“There is one sentence.”
Or in the case were there are no sentences the response would be:

“There are no sentences.”

List links

This command requests a list of all the hypertext anchors in the document. As a response
each hypertext anchor in the document is returned (that is the text that is between the
<a..>... tags), preceding each text anchor a number is attached (this number is
uttered by Dectalk in a different voice then the rest of the text). The user can use this
number to reference that specific anchor.. the response would be as follows:
“There are <NUMBER OF LINKS (N)> Links in this page, They are:
3. <first hypertext anchor>
4. <second hypertext anchor>
0. <nth hypertext anchor>"
Or in the case were there is only one hypertext anchor in the document, the
response would be:
“There is one Links in this page, it is:
1. <first hypertext anchor>
Or in the case were there are no hypertext anchors in the document, the response

would be:

86

APPENDIX A

“There are no links in this page.”

List images
This command requests a list of all the images in the document. As a response each
alternative text of each image in the document is returned (that is the text that is found in
the alt attribute in the <img...> tag). The response would be as follows:
“There are <NUMBER OF IMAGES (N)> images in this page, They are:
3. <first image’'s alt text>
4. <second image's ait text>
O. <nth image’s alt text>"

Or in the case were there is only one image in the document, the response would

“There is one images in this page, it is:
1. <firstimage’s alt text>
Or in the case were there are no images in the document, the response would be:

“There are no images in this page.”

List italicized phrases/words

This command requests a list of all the italicized phrases in the document. As a response
each italicized phrase in the document is returned (that is the text that is found is between

the <I>...</I> tags). The response would be as follows:

87

APPENDIX A

“There are <NUMBER OF ITALICIZED PHRASES (N)> italicized phrases,
They are:
3. <first italicized phrase>
4. <second italicized phrase>
O. <nth italicized phrase>"
Or in the case were there is only one italicized phrase in the document, the
response would be:
“There is one italicized phrase, it is:
1. <first italicized phrase>
Or in the case were there are no italicized phrases in the document. the response
would be:

“There are no italicized phrases.”

List bolded phrases/words

This command requests a list of all the bolded phrases in the document. As a response

each bolded phrase in the document is returned (that is the text that is found is between

the ... tags). The response would be as follows:

“There are <NUMBER OF BOLDED PHRASES (N)> bolded phrases, They are:
3. <first bolded phrase>

4. <second bolded phrase>

APPENDIX A

0. <nth bolded phrase>"
Or in the case were there is only one bolded phrase in the document, the response
would be:
“There is one bolded phrase, it is:
1. <first bolded phrase>
Or in the case were there are no bolded phrases in the document, the response

would be:

“There are no bolded phrases.”

List headings

This command requests a list of all the headings in the document. As a response each
heading in the document is retumed (that is the text that is found is between the
<H>...</H> tags). The response would be as follows:
“There are <NUMBER OF HEADINGS (N)> headings, They are:
3. <first heading>
4. <second heading>
O. <nth heading>"

Or in the case were there is only one heading in the document, the response would

“There is one heading, it is:

1. <first heading>

89

APPENDIX A

Or in the case were there are no headings in the document. the response would be:

“There are no headings.”

The next few commands (set mode, reed. next, previous, go to (n). skip (n) and spell) all
depend on what mode the browser is currently set at. The browser can be set to either
word, sentence or paragraph mode. By default it is set to sentence at startup. Word mode
reads a word at a time, sentence mode reads a sentence at a time. and paragraph mode
reads a paragraph at a time. The boundaries. however. of word mode is the sentence the
browser is currently at, and therefore the user is not able to go through the whole

document with the mode set to word.

Set mode
This command allows the user to choose the mode in which the browser would move
navigate through the document. Once the user issues this command the following
grammar is loaded in:
S -> paragraph
| sentence

| word

and the following message is outputted :
“Please specify what mode you would prefer, paragraph, sentence, or

word?”

APPENDIX A

At this point the user is able to utter one of the following commands:
1. Paragraph
This command sets the mode of the document to paragraph. and the
paragraph of which the browser sets to is the one that contains the sentence the
user is currently at. That is, if the user was at sentence 3 and sentence 3 is in

paragraph 2 then the browser would set to paragraph 2.

2. Sentence

This command sets the mode of the document to sentence. If the previous
mode was paragraph then the browser sets the sentence to the first sentence in the
paragraph that the user was currently set at. That is, if the user was set at
paragraph 3, and sentence 7 is the first sentence in paragraph 3 then the browser
would set to senrence 7. Otherwise if the previous mode was word, then no

changes occur.

3. Word

This command sets the mode of the document to word. If the previous
mode was paragraph then the browser sets the sentence to the first sentence in the
paragraph that the user was currently set at and sets the word to the first word in
that sentence. Otherwise if the previous mode was sentence, then the browser

simple sets the word to the first word in the current sentence.

91

APPENDIX A

Once the user has made a choice and the proper mode has been set the browser responds
with:
“The mode has been set to <CHOSEN MODE> “

and the grammar for the main menu is reloaded.

Reed

This word is not misspelled. the reason for it being spelled that way is because the speech
recognizer recognizes the word reed better than it does the word read. This command
simply reads out text from the document. [f the mode were set to word, the word the
browser is currently pointing at would be read out. If the mode were set to sentence. the
whole sentence the browser is pointing at would be read out. If the mode is set to
paragraph, the whole paragraph that the browser is pointing at is read out. As the text is
being read out it at the same time is formatted (discussed in section PPP), this formatting
helps the user distinguish between different objects in the document, for example a

hypertext link, an image, a list etc..

Next

This command is much like the Reed command with one difference, the browser moves
to the next block of text and reads that out. For example if the mode was set to sentence
and the browser was currently at senfence 2, a Next command would issue the browser to
move to sentence 3 and read out sentence 3. The following is an explanation of what

occurs at each different mode:

APPENDIX A

Word

The boundaries for the mode word are the sentence that the browser is currently
at. If a user issues a Next command the response wouid simply be the next word
at which the browser is at. In the case were the user is at the last word in the
sentence and the Next command is issued, the following response is returned:

“You are currently at the last word in the sentence.”

Sentence

The boundaries for the mode sentence are the document. If a user issues a Next
command the response would simply be the next sentence at which the browser is
at. In the case were the user is at the last sentence in the document and the Next
command is issued, the following response is returned:

“You are currently at the last sentence in the document.”

Paragraph

The boundaries for the mode paragraph are the document. If a user issues a Next
command the response would simply be the next paragraph at which the browser
is. In the case were the user is at the last paragraph in the document and the Next
command is issued, the following response is returned:

“You are currently at the last paragraph in the document.”

93

APPENDIX A

Previous
This command is similar to the next command. but instead of reading th next block of
text the browser is at, the browser reads the previous block of text (word. sentence or
paragraph). The boundaries for the word mode is a sentence and in the case the user is at
the first word in the sentence when this command is issued, the following response is
returned:
“You are currently at the first word in the sentence.”

The boundaries for the mode sentence is the document, and in the case this command was
issued while the browser is at the first sentence in the document the following response is
returned:

“You are currently at the first sentence in the document.”
The boundaries for the mode paragraph is the document, and in the case this command
was issued while the browser is at the first paragraph in the document the following
response is returned:

“You are currently at the first paragraph in the document.”™

Spell
This command will not work if the user is currently at mode sentence or paragraph. the
user needs to be in mode word, at this point the browser simply responds with the

spelling of the word at which it is currently at. For example if the browser is currently at

APPENDIX A

the word “the” the response would be “TH E”. If the user was set to mode sentence or
paragraph the response would be:
“You are currently on mode sentence”

Or “You are currently on mode paragraph”

These next commands (skip, go to, back. forward, link (N). enter location, fill out form
(N)) all require the user to confirm the action to be taken. For example if a user utters the
command back the browser would ask the user: “Do you want to go back to the
previous document?” and at the same time the following grammar loads up:

8 -> yes | no

This grammar constrains the user to answering “yes” or “no™.

Backwards
Just like most other browsers this is an option for the user to go back to the previous
document that the user has already visited. Once the user utters this command the
browser confirms the action by asking:

“Do you want to go back to the previous document?”
At this point the user is expected to answer “yes™ or “no”, if the user responds with a
“no” then no change occurs, if the user responds with a “yes” then the previous
document is loaded into the browser, if however there is no previous document the
browser responds with the following message:

“This is the first document.”

95

APPENDIX A

Forward
Just like the back option this is an option for the user to go forward to the next document
that the user has already visited. Once the user utters this command the browser confirms
the action by asking:

“Do you want to go forward to the next document?”
At this point the user is expected to answer “yes™ or “no”, if the user responds with a
“no” then no change occurs, if the user responds with a “yes™ then the next document is
loaded into the browser, if however there is no document following the document the user
is at. the browser responds with the following message:

“This is the last document.”

Enter Location
For the user to type in a URL this would be the command to issue. As in any regular
browser, the user can type in a URL location of a document to be retrieved. Once the user
utters this command, the browser confirms the action by asking:

“Do you want to enter a U R L Location?”
If the user responds with a “no™, no change occurs. If the user however responds with a
“yes” the browser sets focus to a text area were the user is to tvpe in the new URL and
the following message is given:

“Type in your U R L Location then press return.”

APPENDIX A

As the user presses a key on the keyboard, the speech synthesizer utters each key, this is
to inform the user of what keys are being pressed in case a mistake occurs. In general
most visually impaired users are able to use the keyboard. therefore even though some
limited input is required by the user while using this browser. it should not effect the user
friendliness of the system. Once the user has typed in the URL the user is expected to

press return, at this point the document referred to is retrieved by the browser.

Skip [1..99]

This command informs the browser to skip a specified number of blocks (word. sentence
or paragraph) of text. When a user issues a “skip n” command, the browser first confirms
this action by asking:
“Do you want to skip N <BLOCK>s"

Were N is the number the user utters to skip, and <BLOCK?> is either sentence, word or
paragraph. If the user responds with a “no™, no change occurs. If the user responds with a
“yes” then according to the state the mode is set at a different action occurs.
If the mode is set to word, a “skip n” command would skip n number of words from the
word the browser is currently set at. If the number of words to skip points to a word out
of the sentence the browser is currently set at, the following message is resulted:

“There are only m words in this sentence.”

Were m represents the number of words in the sentence that the browser is currently set

at.

97

APPENDIX A

If the mode is set to sentence, a “skip a” command would skip m number of sentences
from the sentence the browser is currently set at. [f the number of sentences to skip points
to a sentence that exceeds the last sentence in the document. the following message is
resulted:

“There are only m sentences in this document.”

Were m represents the number of sentences in the document.

If the mode is set to paragraph. a “skip n” command would skip n number of paragraphs
from the paragraph the browser is currently set at. If the number of paragraphs to skip
points to a paragraph that exceeds the last paragraph in the document. the following
message is resulted:

“There are only m paragraphs in this document.”
Were m represents the number of paragraphs in the document.

Once the skip command has been executed the browser than reloads in the main

grammar.

Go to [1..99] .
This command informs the browser to go to a specified block (word, sentence or
paragraph) of text in the document. When a user issues a “go fo n” command, the
browser first confirms this action by asking:

“Do you want to go to <BLOCK> N”

98

APPENDIX A

Were N is the number the user utters to go to. and <BLOCK> is sentence. word or
paragraph. If the user responds with a “no™. no change occurs. If the user responds with a
“yes™ then according to the state the mode is set at. a different action occurs.
If the mode is set to word. a “go to n” command would g0 to word m in the sentence n
the browser is currently set at. If the number of word to g0 to points to a word out of the
sentence the browser is currently set at, the following message is resulted:
“There are only m words in this sentence."”

Were m represents the number of words in the sentence that the browser is currently set
at.
If the mode is set to sentence, a “go to n” command would g0 to sentence m in the
document. If the sentence to go to points to a sentence that exceeds the last sentence in
the document, the following message is resulted:

“There are only m sentences in this document.”
Were m represents the number of sentences in the document.
If the mode is set to paragraph. a “go to n” command would g0 to paragraph n in the
document. If the paragraph to go to points to a paragraph that exceeds the last paragraph
in the document, the following message is resulted:

“There are only m paragraphs in this document.”
Were m represents the number of paragraphs in the document.

Once the go to command has been executed the browser than reloads in the main

grammar.

APPENDIX A

Link [1..99]

This command informs the browser to link to a specific text anchor by simply referencing
it according to its occurrence in the document. For example the command “Link 37,
would force the browser to load up the HTML document referred to by the third text
anchor in the document. The document that the browser links to is the one referenced by
the specified text anchor in the <a..>... under the href attribute. When a user utters
this command. the browser asks the user to confirm the action by asking:

“Do you want to link to <N>?"

Where <N> is the specific text anchor to link to. If the user answers “no” then no change
occurs. If the user answers “yes”. The browser would retrieve the document from that
text anchor by looking up it's URL e.g. text anchor three would refer to the third text
anchor found in the document, the browser would lookup the URL of the anchor and

would retrieve the document.

Fill out form [1..99]

For a user to fill out a specific form in the document, the following command has to be
issued. The number given represents which form to fill out. For the sake of testing forms,
not all items that can be inserted into a form have been covered, only text boxes (were the
input attribute is defined as text) is considered. Once the user issues a fill out form
command a confirmation message is given:

“Do you want to fill out form <N>?"

100

APPENDIX A

[f the user responds “no” then no change occurs. However if the user responds “yes™ then

the following message is given:

“This form has <N> text boxes, would you like to edit a text box, clear text
boxes, submit the form, or exit form?”

Were <N> is the number of text boxes available to be filled out by the user. At this point

the following grammar is loaded:

s -> edit text box { Numbersl | Numbersl Numbers)}
| submit (form)
| clear (text) (boxes)
| reset
| exit form
NUMBERS1 -> one_to_9
one_to_ 9 ==12 3 4567839
NUMBERS -> 0_to_9
0O to 9 ==012 34567829

At this point the user can issue only commands that are related to the form, below is an
example of a form that may appear in a web document and a explanation of the

commands that may be used to access a form.

Please enter your name:

Please enter yor email addres: |

Figure 5. A snap shot of a HTML form.

101

APPENDIX A

Edit text box [1..99]

This option allows the user to fill out one of the available text boxes in the form.
The user specifies what text box is to be filled. for example in the case of the form
above a user may utter “edit text box 2”. the browser would than respond by
saying “Please enter your email address: " followed by a beep. At this
point the user is expected to type in. using the kevboard. the input the user wants
to be inserted in this text box followed by the return key. Once the user has
pressed the return key the browser responds with “Input has been accepted”

and the value of this text box would be stored as the input the user gave.

Clear/Reset

Clear or Reset simply clears all the input the user has entered into the text boxes
so far. that is if the user entered some text into text box 2, and the user
later issues a clear command, the value of text box 2 would be deleted. This is

similar to the reset button that is available in most formns which clears all the text

boxes.

Submit
For the sake of testing, the browser that was implemented is only able to submit
forms that are of type GET. Once the user utters this command, the browser

would build up a string containing the information in the text boxes in the

102

APPENDIX A

necessary format, e.g. for the example above the string generated could look

something like the following:
name=Tarek+Haddad&address=haddad@uwindsor.ca

This string would be attached to the action that is specified in the HTML
document with the “?" symbol separating the action part from the form input

part. The browsers than executes the action along with the attached input string. as

a response the server returns a new web document.

Exit form

This command simply exits the form the user is presently at and loads up the main grammar. No

other changes occur and all the text the user typed in the text boxes is lost.

103

REFERENCES

[1] Frankie James. “Presenting HTML Structure in Audio: User Satisfaction with Audio
Hypertext”. ICAD '96 Proceedings. November 1996, p.97-103.

(2] Mike Paciello. *“Making the Web Accessible for the Blind and Visually Impaired™.
http://www.webable.conv.

(3] Paul Fontaine. “Writing Accessible HTML Documents”, http: ‘www.webable.com., June
1995.

{4] Markku Hakkinen and John De Witt, “pwWebSpeak: User Interface Design of an
Accessible Web Browser™. http://www.prodworks.com/

[5] Tarek Haddad, “Speech Recognition Technology And Its Applications™,
http://www.cs.uwindsor.ca/users/h/haddad/510/

[6] Daniel Tyman, "What You Say Is What You Get!”, PCWorld January 1995.

[7] Michael Albers , “Auditory Cues for Browsing, Surfing, and Navigating”, ICAD '96
Proceedings, http://www.santafe.edu/~icad/ICAD96/proc96/.

[8] Kai, Crispien. Klaus Fellbaum, Anthony Savidis, and Constantine Stephanidis, “A 3-
D Auditory Environment for Hierarchical Navigation in Non-Visual Interaction”, ICAD
'96 Proceedings, http://www.santafe.edu/~icad/ICAD96/proc96/.

[9] "An Introduction To Speech Recognition”, Philips Speech Processing 1997,
http://muck2.piro.net: 100/.

[10] Richard D. Peacocke and Daryl H. Graf, "An Introduction to Speech and Speaker
Recognition ," [EEE August 1990, p26-50.

[11] Vanderheiden, G.C. “Design of HTML Pages to Promote Accessibility to Users with
Disabilities: Strategies for Today and Tomorrow. Version 6.0, http://www.webable.com/

[12] G. Vanderheiden, W. Chisholm and N. Ewers, “Making Screen Readers Work More
Effectively on the Web", hrp:/'www.webable.com'.

[13] Enrique Padilla, "Senior Technician on Voice Recognition Technology”,
http://www.voicerecognition.conv , January 1997.

104

[14] Dufresne. A.. Martial. O., Ramstein. C. and Mabilleau. P. “Sound. Space. and
Metaphor: Multimodal Access to Windows for Blind Users™. ICAD '96 Proceedings.

http://www.santafe edw~icad/ICAD96/proc96/.

105

NAME:
PLACE OF BIRTH
YEAR OF BIRTH

EDUCATION

VITA AUCTORIS

Tarek El-Haddad
Cairo. Egypt
1971

New English School. Kuwait
1976-1988

University of Kuwait, Kuwait
1988-1990

University of Windsor. Windsor. Ontanio
1992-1994 B.CS.

University of Windsor, Windsor, Ontario
1994-1997 M.Sc.

106

IMAGE EVALUATION
TEST TARGET (QA—3)

1.6

ter. NY 14609 USA

- h r.
hone: 716/482-0300

: 716/288-5989

1.4

150mm

.25

© 1993, Applied Image. Inc., All Rights Reserved

	Development and investigation of a non-visual WWW browser.
	Recommended Citation

	tmp.1363786207.pdf.6q3M1

