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- ABSTRACT
This”mork is'an investigatimn'into the use ghe number theoretic
téchniqués for implementing digital signaleroceSSing algm}ithms.J

In particular, Fesm&ue coding priﬁéipleg are applied to fadt digital
convoliition via the.Number Theoretic Transform (NTT) and to digmtal
filtering via recursive digital filters s - a

The initial study of implementing the NTT using the residue number
system CRNS) leads to the idea of implementing the transform over a
direct sum of several extension fields: or rings, mith the RNS architec—
tures of ROM'aQans_om microprocessor arrays.l New results and theo;ems
are obtained for transform parameters that have a sim;le form which

allows a reduction in the number of binary operations and allowing

efficient implementation. These results are verified by computer pro-

grams. . -

The application of the RNS for second order recursive digital filter
séctions is alSO'investigated. Some of the design problems associated
with read-only-memory implementation of second order séctions, which can
be ‘used as building blocks for higher order recursive filters are con—
sidered along.with a study of quantization error and limit éyc%jdbehavior.

A new scheme for translation of the residue coded output into a.

binary representation is also developed in this thesis,
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N INTRODUCTION - .
During the last two decades there has been an increasing interest in
the pracgical-applicationé of number Eh?orétic techniques, including the

theory of the residue number s&stem (RNS), for impleméntation of digital
R . B ;

o ~

signal processing elements. ——

The theoretical foundations of the residue arithmetic were developed

A L3
L

in the eighteenth and nineteenﬁ? century by Euler, Fermat and Gauss,
although many results have been familiar to earlier mathematicians, eg.,
the so—called Chinese Remainder Theorem was first reported by the Chinese

mathematician Sun-Tsu in the first century:A.D. Héwever, the application

of number theory is of failrly recent origin.

Recent adyah&és in high density memory technolog&-ah?_microprocessor
Lo .

hardware have'étimulated a modern revival of studies on the use of resi- -
due’ number techniques as épplied to the implementation of digital

arithmetic processors.

i

ﬁjThe first'published report on the modern work in residue arithmetic,
in the context of electronic computers, was that &f M.Valach and A.Svoboda
in Czechoélovakia,[l]. They also designed and constructed the first gen-—
eral purpose computer, EPOS, based on the RNS conéépts. The work of Szabo
and Tanaka[2] is an important reference on the applicgtions of the RNS

principles’-to computer'technology, though the investigations into the use

-

of this number system for general purpose computers have not yielded many

practical results. .

L

The difficulties assoclated with implementing operations such as
division, scaling, sign determination and magnitude comparison over-=

ﬁhadowéd the advantages of very fast binary operations of addition and

1



t=.

. multiplication . - . :

More recently, various invesuigators-havelconsldered the appllca-

on~of digital signal

L3N . - . ' ) .
tion of residue number systems torthe_rmplement
processing structures that have an abundance of easy KNS operations,

additron, subtraction and multiplicatlon; and relatively few scaling -

' operations, (required to prevent overflow].

Many algorirhms in the digitai siénal‘processing environment fall -
Into this category and some of them have already been expleored. In
particular Jenkins and Leon [3] investigated RNS technigues for non-
recursive digital filters, Jul;ien (4] and Jenkins [5] considered
tne different re;lizations of recursive digital f}iters using ROM

arrays, with.emphasis placed on obtainfng efficient scaling algorithms."

s
' N al's
-Soderstrand [6] studied Residue Number System 1ossless discrete:

integrator (LDI) ladder structures. Also Fast Fourier Transform imple—
mentation using RNS principles have been considered {71. - Multiple'
microprocessor implementations of various digital signal processing
algorithms [8, 9, 10, 11] have also been ' studied.

The conclusion that emerges from these works is that Residue Number
System is becoming an attracttve and useful tool for the implementation
of digital signal procesSprs. -

1.1 Objettives and Qutline of the Research Work

The principal oojective of this research 13 to explore the applica-
tion of residue number techntques- to the construction of digital signal
processing Hardware. The motivation.for this work is b&ség¥upon'
recently pubiished results, showing the attractiveness oé using residue

number techniques to obtain very high speed digital arithmetic process-—

ing Rardware.



As a starting point, we explore, the basic hardware principles
invalved iﬁ‘pefforming anithmet#o‘ooerations in the RNS,. and in inter-

¥

facing RNS hardware with conventional binary systenms. Following -this,

the work exploses, more directly, the app1£oation of these‘hgrdsare _'Q
p';.'inciples to digital sign?f 'I;rocess"ing qunct:torrs.. ] - |

The scopekof this work.hag, of necessity, Been iimited to a funda-
msntal sub—class of digttal signal‘processingffuocgions: namely, digital
filteri;g. The work described in this thesis addresses both fiﬁite
impulse response (FIR] and infinite impulse response (IIR) digioal fil-
ters. Reports are slready avaltlable in tﬁe literaturenfor restdue num-
ber system hardwafe,realizations of doth types of f#lter, and' so owur
”objectivos~aré to expand upon'and augment the published fdeas.

In the case of fintte impulse response filters, we have found that
_ algorithms which employ indirect filtering, via transforms, to be most
interesting when implemented using resfdue number system ideas. The.
scope of this work has been such that our engire efforts in investigating
- finite impulso response filter realizations have been involved.in tsans—
form techniques. The specific class of algorithms used have Been
referred to, in'the literature, ss a Number Theoretic Transforms, for
which thé transform is defined gqver a finfte field (b; ring) rather than
the field of complex numbers over which the commonly used transforms
are defined. Digital filtering, by means of finite field transfosms,
requires no scaling, so it can take advsntage—of the strong features of
resldue coding.

The motivation behind tﬁis work is to develop algorithms that will

.provide a degree of flexibflity in the implementation of Number Theoretic

Transforms using RNS architectures of ROM arrays and microprocessor



arrays. New theorems and results, based on concepts from'abscfact
algebra and number theory, are presented that allow selection of trans--

form parameters for implementation of NTTs over a direct sum of Galois

Fields of order miz' Under certain conditions the transfoérm parameters -

can have a simple form which allows a more efficient implementation

than that of the general form.

The objectives of our wprk in infinite impulse response (recursive)
- filters, ara tosgenerate means. of identifying the most suitable struc-

tures for RNS implementation, The proposed structures should be attrac-

tive for adaptive filtering'?nd have low spnsitivity to quantization

ew - L] "”'_'. . ¥ .

-.‘ v ] .. :':1‘ 2
‘ L , .

noise.

To this end we have examined different structures (already consid-

-«

ered in the literature) for sensitivity to both quantization noise’ and
limit cycle effects. The result of this work show that it is possible
to achieve low sensitivity without compromising the speed of the real-

ization.
- o ,
Since, in general, digital recursive filters implemented with any

fixed-point arithmetic are subject to automonous limit cycles: we will -
also examine the limit cycle phenomena in the proposed RNS based struc-

tures.

-

A critical review of existing materia%/pn the topics conéidered in
this thesis, will be presented at the beginning of the éppropfiate
chapter. The review is presented in this manner because of the Hiverée
nature of the different topics studied; namely, recursive filter
quantization effects and high-speed comwvolution (FIR filtering) using

Number Theoretic Transforms.



a“ 'd

1.2 Thesis Organization . - *

Chapter 2 provides prérequisite material for the work which follows.
In parti;ular a conc%se review of some of the fundamentals on finite
ring and field‘;tructures 13 presented ana éﬁe mathematical concepts

of residue arithmetic.are introduced,

This chaptér t; included as a Packground reference for definitions,
nomenclature and.potatipns used ‘throughout the}text.

Chapter 3yéovers the implementation aspects|of residuelérithmetic
including techniques for performing the aritthmetic al&hg with methods
for interfacigg'RNS based system with binary based systems.

In Chapter.4,-a1gorithms for RNS h#sed implementation of Fast Number
'Tﬁeoretic Tf;nsforms are dewgloped. These transforms, Raving the cyclic
convolution p?operty, are useful for error=free FIR digital filter imple—‘
mentation. Many ramifications of thé application of RNé techniqueslfor
the *mplementation of NITs are described in this chapter.

In Chapter 5, the application‘BT’?Esidue ;oding to second order
recursive digital filte; sections Is Investigated. An analysis of
quantization error accumulation in the proposed pécﬁrsive residue
structures is presented along with an investigation of the existence
of limit cycles. v

Chapter 6 summarizes the results of this‘research.



CHAPTER 2
FINITE RINGS AND PIELDS, THE RESTDUE NUMBER: SYSTEM ALGEBRA

2.1 Introduction | . 3

This section intrﬁguces the concept of residue algebra-and presents
a dbrief review of the Background material on the;riﬁg and fileld structure,
as a foundation for work in the succeeding chapters. ‘

A list of notational definirtons -used throughout\the\tégi ts given
in the AppenQ{T A. The Regidue Number System (RNS] is an integer number
system and is based on a theory of congruences, a part.of a branch of
mathematics calléa “Theorx of Numbers", The word "numbers” fn this
copnection is usually understood to mean integers Q, #1, £2, ,..

In chapter &4, the residue number system will be used for coding
the integer; of a more general kind, 11&& the residue classes of
Gaussian or quadra;ic iﬁteéers. " For this purpose, wé will briefly fntro-
duce the structures of ekfension rings and fields, a branch af abstract
algebra. |
2.2 Rings and Fields

As a starting point, It would seem approprlate tptformally dafine
the notion of a fiﬁé and field, _ .
Definttion 1: If R is a nonempty set on widch there are defined binary
operaéions of addition and multiplicatton, ‘such that the followiﬁg
postulates (i] -~ (VI) hold, we -say that R is a ring,
(1) comnutative law of addition a + b =b'+ a
(11) aséociative lawvs (@ + B +c=2a+ (@ + ]

(TII) distributivelaws a + (B +cJ =a * B +a +¢

(IV) existence of an element denoted by the symbol 0 of R such that



a+0=a for every a € R
(V) , existence of additive inverses, For each a ¢ R, there
extsts x € R such that a'+% = 0"

(VI] closure

\

whera it 1s understood that &, b, ¢ are arbitrary elemen;s of R.

A ringxin which multiplication is a commutative operation is
called a commutative ring. A ring'with fdentity is a ring In which

there exists. an identity element for the operation of multiplication,

a*s1=1243m=3 for all a € R.

.

The ring of integers is a well known example of a commutative ring

with fdentity. In abstract albebra, elements of a ring are not necess-

arfly the Integers, even not necegsarily numbers, ag, they can be
polynomtals,

Given'a ring R with dentity 1, an element a e R is said to be
invertibie, or to be a unit, whenever a possesses an_inverse with

regpect to multiplication. The multiplicattve inverse, a—l, ts an

1

element such that a™* « a = 1, The set of all invertible elements of a

~

ring is a group with respect to-the operation of multiplication and is
called a "multiplicative group”.
Deftnition 2: If R is a ring and 0 # a e R, then a is%called a

divisor of zero if there exists some b # 0 in R such that ab = 0.

’

Definition 3: An integral domain s a commutative ring with identity
which has no divisors of zero.

Definition 4: A ring, ¥, is satd to Be a field provided that the set

F-{0} ts a commutative group under multiplicatioen,
Viewed otherwise: a field is a commutative ring with identity in which

each non-zero element possesses an inverse under multiplication., It

’
H



s

N

follows [69] “that -every field is an integrai domain. Thé rings (figlds)
’ with a finite number of elements_are called finite rings (fields).

A ring of integers modulo m, dcnotéd here as Zp, is an example of a

finite ring.

In every finiée field with p elements,, the nonzero elements fprm

.a multiplicative ‘roup. This multiplicative groép of order p—lgis cy-
clic, ie, it contains an-element o whose powers.exhauét the entire group.
Tﬁis element 1s called a generator or a primitive root of unity and the
period or.order of a is p-1. The order of any element x in the mulﬁi—
plica;ive group is the 1ea§t'positive integer t such that xt = 1,
x? #1,1¢ él< t. The order t is a divisor of p~l and x is called

a primitive t-th root of unity.

. _ PR
For every element x of the set F - {0} the mapping defined by

x = gT , T e {0, 1;'..., p-2} | (2.1)

[
+ 1is the isomorphism of the additive group of integers wiéh addition
mod;lo p-1 and the multiplicative group of the ?ield F.
" The integer T is called the indéx of x relative to the base aq,
denoted'ind; .
2.2.1 The fing of residue classes
In ordér to déscribe the system, the notion of congruence should be
“introduced. The basic theorem, known as the "Division Algorithm' will
be established first.
Division Algorithm: }
‘ For given integers a and b, b not zero, there exists two

unique integers, gq and r, such that

a=bq+r ‘ 0<r<b (2.2)



-

" It is clear that q is the integer value ofsythe quotient-E

b
[ i

quantity r is the least positive (iﬁieger) remainder of the division

The

of abyhbd and is designated as the residue of a modulo b, or |a{b. We

- will say that' b divideé a (written b|a) if there exist an integer k

such that a = b * k.

.

.Definition 5: Two integersy c and d are said to be congruent modulo m,

' Wt b
. a3 ]

‘written Tl
¢ = d (mod m) if and only if‘ m|(c—d)

Since m|0; ¢ 2 ¢ (mod m) by d;}inition.

Another alternative definition of congruence can be.étated as follows:

Two integers ¢ and d 'are congruent modulo m if and only if they

»

leave the same remainder when divided by m, Iclm = [d]m.

~

Definitipﬁ 6: A set of integers coftaining exactly those integers which
are coﬁgruent, mo&ulo g, to a fixed integer is called a residué'class,
modulo m. : » . )

The re;;;:; classes Cmod_EQ.form a commutative ring with idégtity
with respect to the modulo m addition and multiplicatiom, traditionally
knowvn as the r;ng of integers modulo m or qhe residue ring ;nd dengted
Zm. The ring of residue classes.(mod m) contains exactly m distinct

elements. The ring of residue classes (mod m) 1s a field if and only if

m Is a prime number, because multiplicative inverses, denoted aTL (mod m)

or

«1 "
;: m’ exist for eacH nonzero a EZm. Thus the nonzero classes of

Zm form a cyclie multiplicative group of order m-1, {1, 2, aans m—l},
with multiplication module m, isomorphic to the additive group

{0, 1, ..., m-2} with addition modulo m-1.

~



" addition, for a = 3, is giﬁen in the table below:

. - . . . :._ _‘tlo

Example:

For modulo 7- multiplication, which is the binary operation in a
muitiﬁlicativc cyclic group of order 6, there exists two generators,

namely 3 and 5. The mapping of modulo 7 multiplication onto modulo 6
3 LI

i

X ind3 x

o wn W=
w b B~ = N O

eg., the multiplication [3 x 5/

1 is mapped into the addition
|1+ slg = 0. '

~

If m is composite,.zm is not a field. The multiplicative inverseé do
not exist for those non-zero elements a e Zm for which ged (a, m) # 1.
The Euler's totient function, denoted.$(m), and obtained from (2.3) is a

widely used number theoretic function®and is defined as the.number of

‘. positive integers less than m and relatively-prime to it. It follows

\ .

. . A .
1 1 ] . 1 :
¢ (m) =m[ 1——51—-][ 1-,51-'--.-. [ 1_,_;;] | . (2.3

—

that the number of invertible elemggts\sﬁﬁzm is equal to ¢(m).

s

: . . » e e e
where m has prime power factorization m=m . my 2 . m L,

The Euler-Fermat Theorem states that if ¢ is an integer, m is a posi-
tive integer and (¢, m) = 1, then c¢(m) = 1 (mod m).
The important consequence of this theorem is that there is an upper limit

on the order of any element a ¢ Z,. Specifically, the order t is a

divisor of ¢(m). '
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2.2.2 Galois Fields
For any prime m and any positive -integer n, there exists a finite
' S ' v
field with m% elements. This (essentially unique)} E%Fld is commonly de-

I

e symbol GF(m") and is called a Galois field in honor of‘the

noted by

French gathematician Evariste Galoils. Since any finite field with m"

element$ is a simple algebraic extension of the field Zm, a brief review

of the basic concepts about the extensions of a given field will be

presented.

Let F be a field. Then ény,fi 1d K containing F is an extension of

|

F. TIf A 1s algebraic ayer F,-ie, 1f is a root of some irreducible

polynomial £(x) eF[x] sugh that £(3) =0,
/

—

en the extension field aris-
ing from a field F by the adjunction of a root A is calledia simple
algebraic extension, denoted F(kf.

Each element of F(A) can be uniquely represented as a polynomial
“ag +a; A+ ceey Ap] ln_l, aie F. This unique representation closeiy
resembles the representation of a vector in terms of the .vectors of a

basis "1, A, ...,'ln—l".

The vector space concepts are sometimes applied
to the exteqsioﬁ fields, and F(A} is considered as a vector space of
dimgnsion n over F.

The field of complex numbers is an example of an extension of the
field of real &;mbers;'it 1s generated by adjeining a root j = Y21 of the
'irredgéiple polynomial x2 + 1. ‘

If £(x) is an irreducible polynomial of degree n over Zm, m prime,
then the Galois Field with m® elements, GFCmn) 1s usually defined ([46],
[41]) as the gquotient field Zm[x] / (£(x)), ;e, the field of residue

classes of polynomials of Zm[x] reduced modulo (f(x)). 411 fields contain—.

ing m° elements are lsomorphic to each other. In particular, Zm[x]/(f(x))
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is isomorphic to the simple algebraic extension Zm(l), where XA 1is a
- ‘¢ I . - .

root of £(x) = 0.

2.3 The Residue Number System -;ﬁ

The way of coding numbers by.forming a direct sum of several residue

classrings (not necesarily fields) is known as the residue number system

(RNS) . - L

The representation of an integer in the residue number system takes

the form of an’L-tuple o Co
© X = (g, X1y sees Xp_p) ' | (2.4)

of the least positive residues with respect.to the set of modull

+

(mg, MLy se-y mL-l)' v
The residues are formally writtem x, =| lei. The residue representation

of a number is unique. The converse of this statement is true only if we

- consider the numbers within the range of the number system., Precisely,.

if all the my are relatively prime it can be shown [2] that there is a
L-1

unique representation for each number in the range 0 ¢ X < | |- m, = M.
i=0

The binary operations under which the system is closed; viz., addition or

multiplication between two variables represented in the RNS, can be per-
R .

formed by independent operations on the respective digits, ie,
z =X Y implies 2z, = lxi E] yil m 2.5)
where []] e+, *)
A signed integer system can be developed by attaching a positive

sign to numbers X in the range 0, 1, ..., % -1 for Meven or 0, 1, ...,

s - _ \
E%l for M odd, and a negative sign to the number (-X) in the range %—,

- M+ .
+1, ..., M-1 or Yo s e M-1 respectively. The additive inverse,

o=

s
L
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in modulo complement foym, ts givgn: E_?—"M_-.- X and for each residue:

Xy =Wy —xi,' so that Ii{ +'§[M = 0.

The interesting feature of tHe RNS™ is that the intermediate over-
! . o :
flows of an arithmetic computation can bBe ignored and we obtain the
correct answer if the final résult #s within the range of the number
sygtem,

‘ . : Coa

An example of RNS computation is given below:
/'\ . . 1) - - . )
Example: ) S IR

Choose the moduli set {3,4}, The RNS coding of the numbers (with

the dynamic range [+6, 5]) fs shown fn Table 2.1,

x |l | -Ixl, "
~6)| o0 2 e
-5] 1 3
~4 2 0
-3| a 1
-2 1 1 2
~11 2 3

ol o 0
I 1
2| 2 2
il 0 3
4| 1 0
51 2 1

_TABRLE 2.1 A residue mumber system for m, = 3 and m, =4

An example of a computation is illustrated bdelow:
2x53-6=4
(2,21 % (2,17 +(0,2) = (1,2) + (0,2) = (1,0)

Multiplicative inverses exist for each nonzero residue diglt using



-

modulus 3 and only for the residue digits 1 and 3 for the modulus 4.

For example I I& = 3. It can be seen from Table 2.l that the_sign of a

Y

~number is not'eﬁplicitly shown not are the relative magnitudes of two
numbers. | |
2.4 Summary
| 'This introductory section is a cdncise review of the fundamenéal
number theoretic and‘abstréct-algebra concepts related.fo the digital
signal processing a]..go.fithmsr develqp\ad In ;:his thesis a.nd-r 7ca;n be used
as a background reference for-definitions, nomenclature and n;tations
used throughout thé.text. |

The notions of finite rings and finite (Galois) fields and the
cbncept é%ﬂﬁéimitive roots have been introduced. This is prerequiéite
knowledée fér tbg developmené of algorithﬁs for the compﬁtation of
finite digitai convolpfi?n using transform techLiques.

The ﬁroblem of the.existence of multiplicative inverses has been
diééussed? and Euler's totient function has been defined. Tﬁe idea of"
congruence has been presented as a foundation of the mathematical con-
cept of the residue number system. The basiq properties of. ﬁhe'residue
number system have been desecribed and the independence of binary

operations on the residue digits has been emphasized.

~F



 CHAPTER 3 >N

RESIDGE NUMBER SYSTEM IMPLEMENTATION AND INTERFACE WITH
i

CONVENTIQNAL BINARY STRUCTURES
3.1 TImplementation of Arithmetic Operations in the RNS
The unique advantage of the residue number system is that the

binary operations of addition (subtraction) or multiplication on the

respective residues can be performed independently and in parallel.
Addition and subtraction have no inter-digit carries or bo?rOWS and
multiplication does not need the generation of‘parfiai products, hence
fast épe%ating speeds can be obtained. |

Another important aspect of, the RN§ is its adaptability to look-up

table ifplementation. In the binary number system, the table look-up

\

approach is not feasible because of the enormous storage required for’
useful bit lengths. For a wordlength of B biés, 22B entries would be.

required in the table; however, in the RNS with a comparable range, ié,

‘1, .
B - s ‘ . .
| m, » 27, each modulus, m,, requires m.? entries in the *table, hence
i i i
i=1

L
a total of 2 m

2 entries is needed. We obtain the obvious result
i=1 ) :

i

L L
} m2<« T T [ m? for reasonable values of L and {m.}.
=1 *  g=1 1 ' | *

There have been several basic approaches to the design of medulo

L3

arithmetic hardware. They £all into three main groups:

'

- 1) direct logical implementation of the Boolean function

s

related to the operation
~

2) storing all possible outcomes of the operation

(look-up table)

. 15 &
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3) storing.software adlgorithms In a general purposeAcomputer..

© (Mixtures of the above have been sometimes implemented [11], [48])

-The first approach has been widely discussed [2], [12], [13], - °
mainly for the implementation of addition, because the ouly practical’
1ﬁplémentatioﬁs of multiplication are by means of stored multtplica=-

. . . v ot L}
tion tables or stored index tables, However, except for the case where

[y

B ‘ : S
~-m = 27 the Boolean functions become unweildy, and in most cases no

-

obvious decompbsition exisps‘for'thoée:switching functions. The first

&

€ w - L . . ’
approach also includes the modification of conventional arithmetic
units [2], [3]. In a fixed point twn's complement system; adder over-

ke

f13w~results in the true sum Being reduced mod ZB. For the one's

- 1

. !
complement system, the reduction ts mad CszII since the end-around

carry is added back onto the'least~signific§nt bit. This can be

. generallzed to ény modulus, h, by ad&ing back a generalized end?around

carry [ é-ZBim, wﬁe%e‘ZB;is the sméllest poﬁer‘of 2 such that ZB >m,[3].

t’\

However, 1if m”diverges ffcm.ZB, comp;icated lqgic'éircuitrf s required
for‘detecting:forbidden‘gombiﬁationS“and performing the necessary
corrections, Due to recent’advqﬁces,iu ﬁiéhfdensi;y memory technology

. . L _
ROM array and computer implementations, discussed in the next two

sections, have become an Increasingly attractive replétemenf‘for logie
circuitry,
3.1.1 Look-~up table implementation

As memory prices contfnug to decrease, table look-up operations

‘become more and_mdre attractive, Also, the lock-up table approach

-

offers the best solution for high speed realization, This ts partic-

ularl? advantageous n multiplication, which becomes as simple and fast

ag.addition, In earlier reports of residue number system implementa —
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tions [2], such look-up tables were realized with magnetic core matrices,

Y
+

which were expensive and slow,

With current advances in semiconductor high density-memory systems,

o+

the look-up table approach is a_mucﬁ'hore viable option with large dyﬁam%
ié ranges being acéommaahged.in.duité smal} péckage counts, and with
neminal amdunts of supply Eéwer req;ired. ;Howe§ér, restrictions have

to ﬁe placed on the'size‘of the ﬁgximum m?dﬁlus in a' system. ‘For a

‘given modulus m. < 32, the: binary 6perations can be carried out by
. : ' .,

stdring the mod m, truth table .in 5k Bit read only memory (ROM). «Thus,

i

commexcially available 8k bit single pégkages;cén be used. Modull

. m, < 16 can be implemented in lk ROMS.' For example, Figure

3.1 illustra;es-a residue muitiﬁliér for .the modulus 31, followed by

3

a residue adder to implement the function |a-x 5[31 +!c x d[31|-A .
_ _ . 131

Since each residue can be represented by.a maximum of 5 bits, the total
of the 2 inputs t6 each look-up table is 10 bits and the output is
taken from 5 of the 8 output bits. One of the advantages of structures.
using ROM arrays is the posgibiiity of easf\pipelining'for ﬁigh speeq
throughput [11]. This is aléo illustrated in Figure 3.1. .The Ouéput of
each ROM is stored in a latch and becomes a part of the address for the

next ROM, The only control function required is a latch pulse. Tor
évery 1a£ch pulée new Input is accepted and a new outpuf result is
generated. The throughput rate ;f the array is equal to:the inverse oﬁ‘
the ROM access time plus latch settling time, If we use currently
available 8k PROMs, such as the' 63-RA @83 Shottky PROM [14]{ incorporating
edge triggéred D registérs, thé throughﬁut.raté is in éxcess‘of 14 MHz.
/\'/

if some of the operands are fixed. The constant can bé premultiplied or

The look-up table approacﬁ can provide great savings for hardware
‘ .

A2 s
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added, and a result ‘stored along with hhe.binary operation being
implementgd.- If we restrict the modulus for a;ma%imum size df 32, then
the folloding moduli, given ‘in deééendiﬁg order, are relatively prime
(to preserve'thé nonredundant structure of the BNSi and can provide a

maximum dynamic range of 1.03 x 24T.

| o] o sl el o] 8| 9]

i 3 [ |
mi‘ 32| 31’ 29| 27! 25 23| 19. 17{ 13l 11‘ 7

]

For 1arger‘ﬁoduli, the packgge count required for‘eachtnodulus increases -
rapidly; hoﬁéver, an efficient implementation using a‘submodular-
approach has been proposed recenﬁly [11].

We can compute addition using ROM arrays for a composite modulus N

uy vy > Im, . Calculations are performed in z“i and Z,,, and the result

i i
is reconstructed, with overfloﬁ correction, Multiplication for a prime
modulus can be performed using‘addition of indices fi1].
3.1.2 Microprocessor implementation

The residue structure can also take advantage of récent advances
in ﬁicroprocéssor hardware. Two techniques - ROM array and microproceséor
array implementatipn-offer trade offs between the cost and the speed of
operation. Again ;igh precision implementation can be obtained from
arrays of small word size microprocessors operating with residuve arith-
metic instead of slower double precision or multibyte arithmetic required
for useful digital signal processing applications.

Instead of storing all possfble outcomes of the residue operation,
we can consider the use of single chip microprocessors to stere compléte
algorithms within each modulus. Addition and subtraction {mod mi) are

N .
easily programmed in machine language, Using 8 bit microprocessors, we

Y



o BA—————— — e ——— -

-y

-

/j, o 20
can compute modulo m, addition for ms £ 256; to compute the additilon,
modulo mi, we simgly add the generalized end around cérfy, ie, 28 - m, s
to the result of addition, 1if overflow is detected.

As an example, a subroutine for addition mod 251 of numbers in the

f
-y

accummulator and register B for Intel ‘8085 system is‘as follows:

Mnemonic No. of cycles -
'ADD B )
JC FIRST | ° 10
) CPI.251 7 .
JC NEXT 10 )
FIRST,ADIL 5 7
NEXT, 38

L1
~3 .

For the modulus m < 127 the program can be simplified as follows:

Mnenomic | No. of cycles
=
ADD B 4
&, CPI 127 7
JCMEXT | . 10 .
suT 127 | . _7 ’
NEXT, - 28

-

It is also possible to use a mixture of binary addition dnd leok-up table
storage, for m < ;27. For implementation of multiplication module a
prime we can use the isomorphism between thé multiplicative group, with
multiplication med m, and the additi;eagroup of indices, with addition
mod Qi—l.

The implementatipnn of the residue number system addition and multi—

plication using an array of microprocessors has been discussed in [11]

and 1llustrated with the examples of microprocessor routines for 4
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single chip 8 bit microcomputer from the Intel 8048 éeries.
3.2 Techniques for Binary‘td Residue and Residue to Btnary Conversion
In order to fnterface digftal structures using the residue number

system to conventional digital systems it s required to have available

efficient {gsidue input and output converters,
For sth ROM array énd'miégoproceséor an;;y implementations, the
conversifn is best handled in a coder and decoder based on the concepts
discussed in next two sections. A new, efficientf scheme for franslaQ
% tion of the residue coded output into a binary representation, is oné
of the contributions of this research [15], and is discussed in section
3.2.2. A residue to analog translation technique has been discussed in
[16].
3.2.1 Binary to residue encoder
The binary to residue parallel encoder fof 1, modull can eagily be
tmplemented with L ROMS. The £-th residue of a number X is obtatned from
B+l

J b, 2
50

x =

. (3.1)

mg s

where Cb;, b1’ Ceey bB—ll are the F bits of the binary representation
of X. | |

.. Assuming that we have available ROMg with ZB addressable locations,
then the conversion Ean take place In ome look—up cycie. Thus, for
example, if we wish to convert a 10 Bit number into the residue form,

- then for ﬁi < 256; L 8k ROMs (organized as lk x 8 bits).can be useﬁ.
For thg ROM array implementaﬁion, when we allow one of the moduli to be

an even number the storage can be reduced. For example, as shown in

Figure 3.2, for two modull in the range m, < 15 and m, £ 31, m; even,
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only ‘one 8k ROM is required for conyersion of a 10 bit number into a

residue form.

-

—_ ) ————— 5 bi d \ output
e —— 1024 x 8 ______} 5 t mod m, outp
ROM - o
— } 4 bit mod m, output

R e

Figure 3,2 Binary to fesidug converter with restric;ibn for my to be even

In general, for m, even, ve can directly use (bypass the tablé} one
or more least significant bits as a consequence of the following. Let
2V denote the smallest power of 2 such that 2V » m .

_ o B-~1 3
The residue of a number X = ] b, 2° , b

3 E:{O,l}, is generated
j=a

h

according to
B-1

SR R N,

Let (cv, eees C1, tp) denote the binary representation ofﬁ|x|m .
1

If my = 2"-2, then |ZJ|2v é =2°, s e{0, 1, ..., w-1}. The value of s

can be determined from:

s = |j|v +8, 8=1[ %-] , for s € v-1; k

’ S&-1)
otherwise s is obtained iteratively, s(I)-= Is(r"l)lv T T

- (-1
with S(O) = Ijlv +g8. The iteration is complete when s(r) =5 ).



It is clear that s = 0 is possible only for J = 0. Therefore ¢, = b

and we only have to store the function ]

B-1 j '
2 b ] 2—1 .
j=1 ml j ml - 3
lv 3 t !
If my =2 - 4, then \2| =2 3 te{0, 1,...., v-1}.
) v
27 -4
P,
The value of t can be defermined from
t = |j l + 28 for ts vo-1 H

v

otherwise t is obtained iteratively; t =‘1 t ‘v + 28, -e:[ E—gl.

In this case, t = O only for j =0 and t = 1 only for j = 1. Thekgfore

Cq = b0 and e = b1 and we only need to store

* Thus, for example, only one 8k ROM is necessary.for conversion of a

\

10 bit number into the residues modulo m; = 28 and my =“31.



For large vﬁlnes of B, 1f the storage ts required to be reduced,

the dbinary representation can be split into a summation of ‘smaller binary
representations, eg.,

B/2-1 B-1
x, = S o, 23] 4T b, 2d

(3.2)
L j=0 3 mi j=Bf2 J ' i

m, |
1 : s
i %

Ty

Tn éhts case the coding obefation generally requires 3L ROMs and i_look-
up cycles. If high throughput rate is not a primary con?ern, the binary
to residue encoder presented by Jenkinsl[S] can be built. The data bits
are processed serially; but the storage is reduced. |
3.2.2 Residue to binary degoder
The conversion of resitdue digits (xo, ""'vall ihto a weighted

Binary representation is more difficult than the encoding into the res—
idue form. ’

In [3]'Jenkins presents a methdd of translating the residue samples

fnto a natural integer that is based on the Chinese Remainder Theorem:

L—%ﬂ xi
X=1 me —_ (3.3)
i=Q o, mi M

A~y L-1
where m, = o M= | my X e [0,M)

Loy 1=Q
and :; ts the multiplicatlve inverse of l&ilm .
m i
T m,

Hardware implementation of the decoder based on this theorem and



- next section.-
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.the bic slice technique of Peled and Liu [17] generally will require L

‘ shift registérs, ZL ROM storage locations-and a modulo M adderwshiftern

network. L look-up tables are also required for multiplication of xq

by the parameters In the decoder scheme discussed in [3] for

mit' | |
an FIR filter fealizatidn,'these parameters are premultiplied by filter .
coefficlents, and the results store& as a modified filter fumction.

If the filter coefficients are to be changed dynamicaliy, as
required-tﬁ adaptive‘filtering or.multiplexing échemes, L extra 1ook-‘
up tablés are required for decoding. The modulo M adder shifter. canm
be‘desighed using techniques presented in [3]; however, 1t requires

‘ . .
logic cirecuitry for detecting the forbldden states and performing' the

 necessary correction.

N

The problems associated with the modulo M adder can be avoided 1f
an alternate technique for decoding is used. TPis 1s discussed in the
3,2.2.1 A mixed radix decoding technique

The decoding technique developed here and puﬁlished in {15] is
based on the mixed radix conversion., Any number X in the range ﬁO,M)

can be uniquely représented [2] tn a spectal mixed-~radix form:

LEl
X = a, p (3.4)
120 T4
i-1
where P, &1, Py = ;L:QI M5

the fai} are mixed radix digits with the range 0 g < m, and the {pi}

21
are the mixed-radix wefghts,
The mixed-radix digits can be easlily generated from the residue

digits, as shown later In this section. Therefore, the decoded output
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is obtained from (3.4).
The multiplication in equation (3.4] can be eliminated by applying
the bdit slice technique of Paled and Liu [17], as =n [3].

Stnce, each mixed radix digit can be represented By
a . . 3.5

.equatiqn (3.4] can be written with the order-of summation interchanged:
B=1 L-1
x= § 2 agy Py (3.6)
=0 i=0
The fnner summation requires ZL storage locatlons, as in [3], nowever
savings are obtained through a shorter wordlength, Memory contents for
stored outputwfunctions are given in Table 3.1 for the same set aof
moduli as #n [3], t.e., {19,23,29,31}..

Table 3.2, [3], shows the memory contents if the decoder implemen-
tation is based on the Chinese Remainder Theorem. In this case the
stored function constst of all linear combinations (mod M) of the ﬁirs.

t Tt can be geen tha;,‘for a mixed radix decoding technique, a ma;iguﬁ
of 14 dits are required with an averége of 1b bits, -gompared to a-ggxiﬁum
of 16 bits and an average of 15 dits for the Chinese Remainder Théorem
implementation.

In general, the linear combinaticns of pi‘s always have shorter

™~
wordlengths than the linear combinations of mi's.



27

as} a,j ayj agi | Inner Summation _\
a 6 g © 0
0 @ a 1 |.py=1"
a Q 1 0 Py = 19
0 0 1 1 py+p=20
0 1 0 0| p,=437
a1 a 1 P, + Py = 438
a 1 1 0 P, + py = 456
0 1 1 1 P, t oy + Pg = 457
1 o0 o0 o py = 12673 -
1 o0 @ 1 Py + Py = 12674
1 0 1 a. ps + py = 12692
1 Q 1 1 Ps +_p1 +‘p0 = 12693
1 1 0 0| py+p,=13110 X
1 .1 a 1 53 + py + pg = 131117
1 1 1 Q| pytp, +'p1 = 13129
i 1 i 1 Pyt P, + Py +py = 13130

TABLE 3,1 Memory contents for decader bhased on a mi:;ed radix
conversion technique for the modult set (19,23, 29 ,31)

Address

Memory Contents

4
A
A

HHHH =R -OO0O0O0O 0000
HiERBROoOooOoOOHRREREHEHOOOO
MHOORPRHOORREODOHEROO
_moHOHOHOFEDODHOROR O

-

oMU LWHOLWLWEREWE DD Q
LWL O WNHIORPILWYSO O

e

o

Do NLWAWLOINU~O O
wOVMNLUULYNONNEWLOE - O
OHwOrFrOLUOENOH NG

TABLE 3.2 Memory contents for decoder based on a Chinese Remainder
Theory and the modult set (19,23,29,31) [3] -
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The hardvare reallization of (3.6) is shown in flgure 3 3. At each,

:? shift a new vector{agj, 321, a i, dgj} addresses the ROMb with the

-

most 51gn1ficant bits leading.

The mixed radix dlglts can- be found [4] from:

4g = Xq
a, - IA(i)
i m, . x
. i
. i N if . mi my )
with ACO) = xi;'O <k ﬁ i-1 and therefore 1 € £ < L-1
or equivalently from:
i§1
.a. = T,ci:iax-‘) + T(i:j:a-)
i . it 420 J my
i-1 | 1 (3.8)
T(i,l,xi) =Xy | M (™ (.
k=Q i |
i-1 1
T -: st = - s =
(1,3 aJ) a, k|=_| =
- J mi mi

Figure 3.4 shows the residue to mixed radix’ conversion array for L = 4,

In general, the number of ROMs required for this conversion is:

N=(L-1) - 1L/2 - _ ' (3.9)
: -k
The functions stored in the look-up tables in figure 3.4 are:
1
T 1
T2 = j(xp — aq) * | = .
(x2 al e |ma|mg
T3 = ('1;2“'-"5. ) - | =
! Wy Mz my
: : 1
Té = j(x - o | ==
¢ 3 au) g (M3 My

LY
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“SHIFT aoj ?
a'o L | . T .
) REGISTER
a SHIFT a,
1 ——e , —J-| .
REGISTER L ROM . SHIFT
- 4 . F—»{ ADDER
- 27 loc _ . | REGISTER
SHIFT F | ‘
a2_——— a ¢
REGISTER 21
i
SHIFT
a
3= a
REGISTER . 31 :
Figure 3.3 Mixed-radix to binary decoder
[
a, =X
0" "o -
x T1 a, .
1 - .
s 1 1
- i T
» 2
" T2 T3 2
2 »
Lo S —
| T4 T6 T6 > 3
Xy —— S - ' 3

Fiqure 3.4 Residue  to mixed radix conversion array for L'= 4
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= l(_l'l‘A...aJ] . |\===

- l —

o

.g-fhe operation of the decodbf'qan be‘illqstrated by a simple numerical

exémple.

An Ewamgle
L1 '

I Choose the modu11 (B 5, 7 3) Slnce M= | m, = 840 the range
i=0 .

o

of numbers that can be unlquely represented In this RNS-is [—420 419]

Let X = 127 = (7 2;1 1) be.a number that is to be translated. For the

. r . T -

-mixed radix conversioﬁ, the multiplicétive_inverses

===‘ are pre-
m., m

: , h|
- computed as follows: ¢ ‘ T
My 1Ty 1 2 mz 3 mo W2
o . i .
m1 m3 m, |m, i

The mixed radiﬁidigits,_obtained from the array in Fig.3.4 would be as

follows: ' v
el
f6=7=111
a1=0=000
az = 3=01'1
az=0=000



The function that must he

-
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stored in ROM‘Cfigure 4) is given beiowﬁ

: a3) agi azd aad

. ﬂgmory Contents

")

]

0

-

g

g

o

¢

1

- g
o1

0-.

+ P

Y

+ P

+p0
+ p1

+ p2 + Pl + po

40

41
48
9
280

281

288

289

320

‘321

328

329

The retrieved contents will be the sequence 1, 41, 41, which

+9 shifted and added to give the desired result:

(2x1+41) x 2+ 41 =127

L

A similar approach to the design of residue decoders discussed in this

section and published in [15], has been developed independently‘by

Jenkins [16] for translation from residue into the ahalog form.
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3.3 Summary - s
~ This éection covered the tmplem:ntation aspehts of. the Residue

Number System arithmetic. Hardware fmplementations were descrided in

-

terms of read only memory (ROM] arrays and microprocessor structures,

Techniques for Binary to resfdue and residue to binary conversion

have Deen discussed. A novel scheme for a residue to binary decoder

based on.the mixed ra&ix conversion has been introduced,
L b,



‘_ CHAPTER 4
FINiTExIﬂ?ULSE-RESPOﬁSE DIGITAL FILTERING USING
.FAST NUMBER THEORETIC TRANSFORMS
4.1. Introduction

Finite impulse response (FIR) digital filters produce anloutput.

: wp
based on a wgighted sum of present aqﬁ past inputs. Thié type of filter
is inherently stable; however, the large number of add;tigns and multi-
plications réquired for direct implemeﬁtation_of FiR filters limits the
speed and efficiency.

Jenkins [3] presented a techniqﬁe for direct implementation of FIR
filters, using the Residue Number System as a way to iﬁcreaée computa=
tional speed. Indirect'filtering using the Discrete Fouriler Transform,
with an FFT type algorithm, prov;des, in manyﬁcases,‘an improvement in
computational efficiency; however, thig technique introduces lafge
quantization-errﬁrs that can cause degeneration in the filfer Tespouse.

Recently it has been established that transforms which can be used
to indirectly compute convolution, and so may be useful for digital
filtering, can be generalized to rings other than the coﬁpiex numbers.
Generalized DFTs defined over finite algebraic systems (see Chap;er 2)
_.are named Number Theoretic Transforms (NTTS): The 'NTIT has the same form
as the DFT with the exception that it is compufed over a finité ring or
field rather than over the field of complex numbers:.

Wf = Nil Wt-aft

=0

As with the DET the 'generator' a is an NtR root of unity. . For the case

-

of NTT; this root is defingd in the finite field 'or ring.

13 P
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Because the NTIT has the same structure as ;he DFT, we may use
standarQaFFT type\algorithﬁs providing N is highly composite (eg. a power
of 2), to compute the transform efficiently. Because of the 'exact'
"nature of the computations,. NITs eliminate .any round-off error due to
internal multiplications aﬁd truncation of irrational coefficients,

Eha; plague the DFT. ‘

Within usef;l finite algebraic systems, various types of finite

rings and fields that support NITs have beenxézaaied in the literature,

Al -

and the results will be reviewed in section 4.1.4.

Initial reported work on the implémentation of NTTs considered
finite fields over which the opeﬁatibns of addition and multiplication
ére computed modulo a prime. By choosing pFimes which aliow easy binary
implementation of modulo add;tion and multiplication, toéether with a
simple binary forﬁ for the generator, the computation of the transform
can be done easily with standard binary hardware and with an effective
elimination of general multiplication. Such an approach produces severe
}imitations on the possible order, N, of the trarsform (dlways 1e;s than
the theoretically allowed value}, ana there is an inherent coupling of
the order with the dynamic range. In order to remove these limitations,
it i$ essential that ;:\have more choice over possible moduli and gener-
ators by removing restrictive hardware considéfations.

This can be achieved if we consider RNS architectures of ROM or
microproéessor arrays. Using the residue number system rather than con-
ventional binary arithﬁetic, the moduli and generators can be selected
freely to maximize the transform length. Also such an approach al}ows
more flexiBility in the choice of the dynamic range, by computing

transform in parallel modulo several primes, m., 80 that dynamic range

PR

LAy
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is M = T_T-mi.

.
N However, if the NIT is defined in the residue class rings (direct
sum of several finite fields of 1ntegers modulo mi, GF(m ) (see Chapter
2), as discussed 1n;sectio;\2mi :5, the main problem is that for the .
small component modulil requlred for efficient ﬁNS implemgntatioh the
.compatible transform length is impractically small. In order to recon-
cile this conflict, we can compute parallel tramnsforms in several ex-
tension fields, GF(miﬁ). Thisywork considers mainly NITs defined over
several Galois Fields of second degree, GF(WiZ)’ since we claim that
this degree of extension offé;s the best trade off between the effic-
jency of implementation (number of arithmetic operatiQns required) and
attainable power of éwq transform length, N. ’
For comparative“gurposes, some aspects of implementing KITs in_
extension flelds of higher degree than 2 are considered in section 4.5.
In the following section an in-depth study is undertaken to deter-
mine all possible Galois Fields GF(miz) which allow:
i) favorable transform length, such as powers of 2
ii) efficient RNS implementations; viz. transform parameters
and irreducible polynomials are determined so that the
number of biﬁéry operations rquired for multiplication
of field elements is minimized.
The guidelines for selecting transform parameters are provided for two
distinct RﬁS'implementations, one using arrays of ROMs and other using

arrays of microprocessors.

Two particular applications of NITs are discussed separately.

i) convolption of two successive blocks of real data when

» 2

—
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o

GF(Piz) 14 a field of Einite quadratic integers.'

ii) con;oluﬁion of two complex—valuéd sequences ovef a

finite field of Gaussian integers;
.:4.1.12 Fast convolution

The computation Yof finite digital convélution

' P-1 . | ‘ . o
y(s) = ] h(s=t) w(t) ' | (4.1)
t=0 ;

symbqligélly denoted

y(s) = h(s) x w(s)

has extensive applicétions-in_digital processing of signals, eg. in

implementation of finite %mpulse respouse (FIR) filters, computation of
auto and cross cof;elatiqn, polynomial mu}tiplication.- With the growing
number.of épplications, efficient implementation of digital cénvolution
is a matter of increasiné importance.

Digital convolution can be implemented either diréctly, in the time
domaiq, or with transforms, T, that have tﬁe cyclic convolution property
(CCP). The cyclic convolution property can be stated as:

Tlh(s) @ wls)] = Tlh(s)] + Tlw(s)]

. s =20, ..., N-1
This imﬁlias that the N-point convelution can be‘obtained by an inverse
transformation of the pointwise product of two vectors‘in the transforﬁ
domain.

y'(s) = T {tln(s)] - Tlw(s) ]} (4.2)
TheqEonvolutionimpleﬁented by (4.2) 1s called circular (or cyclice)

convolution:
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.

yi(s) = h(s) @ w(s) = zl h(ls~t| ) . w(t) O (4.3)
t=0 - : o

The results of finite and circular convolution, y and y', are equal iﬁ
zeros are appended to w(s) and h(sj to, prevent folding or aliasing (18],
S0 thét transform length is at least equal -to K+P-l; K and P are dura-
tions of {w(s)} and {(h(s)} respectively. Loung input sequences filtered
by an FIR filtef whose kernel is relatively short can be divided into
blocks and conventional oveélaﬁ;add‘or overlap-save techniques [18] can
bé used to compute the output signal fFom the results of circular com-
volutions. |

The tgchnique.of c&nvolving twé finite duration sequences, using
transform techniques, has been called fast cénvolution, as opﬁosed to
the direct evaluation of equation 4.1, which 1s callea'direct convolu~
‘tidn. -

The term fast is used, because the transform can be évaiuated
rapidly.and efficiently by the Fast Fourier Transform (FFT)-aigorithm,
first introduced by Cooley and Tukey [19]. Many versions of the FFT
algorithm have been described in detail ([18] [20] and references).
The FFT algorithm is independent of the ring or field over which the
transform is defined [21], although it has been first introduced for tﬁe
field of complex numbers. ' The efficiency of computation depends on the
degree of compositness of the sequence length N; the transform is
simplest to compute when N is highly factorlzable,eg. N = 2B for a
radix~2 algorithm.

4.1,2 Number Theoretic Transform

Number Theoretic Transforms (NTT's) were discovered independently

T Because of the periodicity, the index is evaluated moduld N
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by a number of researchers around 1970-1971 ([il] -[23]) as-a generaliza-

tion of the standard Discrete “Fourier Transform (DFT) with respect to

the' ring over which the transfprm is defined. The underlying algebraic

structure for a large class of NITs is a finite ring or field and the

basis for generalization is the CCP.

The general form of transformation which maps circular convolution

of length N sequences, over ring R +, into a term-by-term product is

Al

given by
N-1 £t . :
T2ow(E)y = ') w(e) o £f=0,1, ..., N-1 ° 4.4)
t=0
vhere o is a primitive NP root of unity in R.
The inverse transform has the form:

N-1

Tl W(t) = ! 1 W(E) o ft t=0,1, ..., N-1 (4.5)
£=0 | ' :
with the resitictipn that N-1 belongs to the ring. Over the infinite
T
~j2n/y
complex field, the DFT with a = e is the only transform having

§

the cyclic convolution property. The complex field can JSupport trans-
forms of any lengtﬁ. If o, w(t) and W(f) are elements of a finite alge-
braic system, a wide choice of possible Number Theoretic Transforms
exists depending upon the chgice of the finite field or ring, the trans-
form length and the root of unmity. Unlike the DFT, NITs are used only
to‘compute convolutions, since the transform domain does not have aﬁyknown_
practical value. Moreover, the transformed ‘sequence W(f) depends on
the choice of a, which of course is fixgd throughout. An important .

advantage of NTT élgorithms is that the indirect conputation of convol-

term "ring" means a commutative ring with identity
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ution 1ls exact. Thaﬁ is, after the quéntization of the ipput data and
the filter coefficients, no additional quantization noise is‘introduced
into the ?iltering_process. Since the DFT involves ifrationai coeffic-
" ients (sines and cosines) théreby-making'exact computation impdésible on
a Qigital processor, the NTT\EaY be of great value when the sequences
must be'conv01Ved exactly. |

~

in finite afithmétic we are dealing with ihteéers. When working
with digitals signals Qe can assume without any loss’of geﬁeralit& that
data'from ﬁhé A/D converter are t?eated as i?teggr numbers.

Care must be.taken, hbwever, that the final result does not over-
.flow. The maﬁimum output must be known and bounded by M; this analysis
is aided in most digital filte;ing applications By a priori knowledge of
thé impulse respounse, Dynamickrange_constraints wilil be d;scuSSéd in
section 4.3. | |

Unlike the DFT, NTTs do not allow arbitrary transform lengths.
Thelr maximum attainéble transforﬁ length, N, depends upon the choice of
the ring, or fiéld. This is discussed in the next section.

4,1,3 Conditions for Existence of NITs

Niéholson {21] has presented the algebraic theory of the general-
ized transform with a DFT structure in commutative rings R with identity
and without zero divisors (ie, an integral domain). Fcllowing Nicholson,
we say that necessary and sufficient conditions for R to support a
generaiized DFT of length N are:

1) that o is a primitive root of unity.in R , le,

o = 1, od # 1: Joal, (.., ﬁ~l. |
If we denote by §® a multiplicative. (cyclic) group of

R, & 1s any generator of R(D of order N,



140

[

2) th;t the multiplicative inverse ' of N, N“I, belongs to R.
The conditions'for‘NTTs to exist oyér Galois Fields GF(m“),_discussed
by Pollard[22], are contained in the above, since a finite field is
neosjéarily an integ;al_domain. Cyclic group.of GF(mn).has ordef mﬁ—l,

.

80 transform length can be any*divisqr of m"~1. The transform in a
finite field of'intgg ers fodulo m, m primé, is a sPeEialhcase of the
above,‘aﬁd its length is a factor of m-1. More general results for the
existence of NTTs over finlte ,commutative fings are presented in [26]

Let R be a finite commutative ring with identity. Then R decomposes

uniquely as a direct sum of local rings +. Ry,

R:m@....@RL , | (4.6)

'Under this décomposition, an element r ¢ R has L—tdple representatioﬁ
aFr1, ey rL). R stports 2 generalized DFT of length N if and onl; if
1) each Ry contains a primitive NP root of unlty ai
2) n°t exists in R.
A primitive Nth root of unity in Ri is any generator of a multiplicative
group of ordéf N. If I; is the maximal ideal of R;, then Ri/Ii is a
bfinite (Galeis) field of mini elements [46].. Thus for any finite ring
‘R a necessary and sufficient condition can be é;rived, that R supports a
length N generalized DFT if and only if Nléég-(mini -1, i =f1, A
The same criteria have recently been obtained [67] for direct sum of
Galois rings‘to support a generalized DFT.
4.1.4 State of the art review

Recently, various authors have propoéed the use of Number Theoretic

Transforms over different finite fields, or rings, for error free and

kY

+A local ring is a commutative ring with identity which as a unique
maximal ideal I (any elemént a ¢TI is invertible in local ring)
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fast, efficient-computation of cyclic’ convolution. = The theoretieal
framework of transforms using number‘thebretic and algebraie_properties .

of data has been provided for any'integral domain [21], any finite field
L o _ : o
\ ‘

-

[22]and any finite ring [26]
Practical considerations dictate a selection of ring/fields that

support transforms.whoseiiarameters lead to.efficient implementation of -

modular arithmetic, either in hardware or software Host'of the reported

work on Number Theoretic Transforms_has supposed that the. hardware will '
be implemented using the binary number system. In the conventional
binary arithmetic, residue reduction is particularly easy when the ..

modulus is of the form ZKtl. The choice ZK does not admit useful transf .

forms since N=1., Also in order to simplify multipllcations in the

~binary. number system, “the cyclic group generator a is chosen as a power

" of 2. When this constraint has to be fulfilled, the transform length is - .

usually not a maximnm,'theoreticaliy allowed length in a given field.
In addition, the transform length N should be'nrghly'composite so
that a high speed convolntion algorithm.exists. A\considerabie effort
has been made to provide rings and fields which allow for adequate
dynamic range’and satisfy the aboyerconstraints,'so that.the conflicts

hidden in these'conatraints are alleviated. In particular, Rader [28]

‘proposed transforms defined in the -ring of integers modulo Mgrsenne

numbers, M = ﬁp—l,o prime. fhese transforms are referrea to as
Mersenne Number Transforms (MNT).‘:in the ring of integers, modulo a
Mersenne number, 2-1s a p—th root.of unity and -2 1is a 2p—th root of
unity. Thus the disadvantage of tnis‘"mnltiplication—free" MNT is that
it precludes the use of‘an FFT;type algorithm since the order of the

transform is not a power.of 2 and not even highly COmPOSite.- Rader [28]
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and Aggarwal and Burrus[za] proposed to compute the NTT with a modulus

of the form of the tth Fermat number, F, =.2b
@

fl b= 2 , referred to as
the-Fermat Number Transform (FNT) . Fermat numbers up to ¥, af% primes.

“-In. [24] it has been shown that an FNT with o = 2 allows a traneform .

2*! and an FNT with o = 22577 (227 - 1) (known as vZ,

2. (mod' t)) allows N = 2t+2. Thus-an FFT type algorithm can

Il

length N

1}

sincé of

be usedL; The hardware 1mp1ementation of a 64 point FNT is described in

[27]. o S L | -

However, the mein'disadventége of the MNT and the FNT is the rigi&
relatlonshlp between the dynamic range and attainable transform length
For example, with a'32 bit Word machine using Fg = 2°2 + 1 N = 64 for

= 2 and N = 128 for a JE_'. nThere is also a limixed choice‘of“

.
possible wordlengths. This point is especially 51gn1ficant when a FNT

-‘

_1s used and may results in a mismatch of wordlength dand dynamic range

5 e

numbers [45, p.58], so this approach‘is of 'limited interest because of

requlred for the partlcular convolution, because of the large spac1ng
between Fermat Numbers

Aggarwal & Burrus [24] have also considered the case of an NTT
with modulus_Z- + 1 with b # 2 . However, these moduli are never prlme
small transform lengths {(section 4.1, 3).

In [29] [30] Nussbaumer 1ntroduced pseudo—Fermat and pseudo;
Mersenne number transforms. A pseudo—MNT is deflned modulo an 1nteger
M _(2P 1) /q, p composite and q some factor of 2p - 1, and pseudo-FNT
is defined modulo an integer M2 =(2 +1) /s, b # 2% and s some factor of

2b + 1. Because 2P -1 and 2b + 1, defined as above are not prime, the

corresponding transform would have a short lemgth. Thus, if 2b + 1 and

2P _ 1 contain small factors, these can be divided out in the pseudo-—
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Mersenne or pseudo—Fermat‘Auﬁbers'to yield a longer transforﬁ léﬁéth;
Tﬁe'arithpétiﬁ implementation of the above transfofms can be performed
.using arithmetic modulec 2P-1 or 2b+l, followed by a final reduction
modulo H1 or M;.

Next in order of ari;hmetic complexity, uéing the cbnventidnallk

binary system are the moduli of the form 2" = o™

+ 1, An NIT over-a
field built with this type of prime has been briefly discussed in [31]
and [32j.

Tﬁe method of computing convolgtions in the residue class riﬁéé/
fields has been extended to a more general setting that inciudes so-
called complex—v&lued transforms.’ Structurai prOpertiés of complex-
residue rings;are discussed in [34] and t35]. Implementation considera—
tions,'associated with these ;éTplex Numbgr TQeoretié'Transforms, have
been considered for speclal t&pes of moduli, such a§ Mersenne primes
[28], [35], [36], t37], and Fermat numbers [38]. Im somé césééla ées—
triction ﬁas beén made to considerjogly complex residue fields or con-
structions such as a direct sum of ﬁhese fields [36]._

Other rings have also been considered for the. construction of NTTs,
such as the ring of Eisenstein integers [26] and the generalizaﬁion of
complex resiéue rinés known as finite algebraic rings of quadra;ic
integers [39]; algorithms have alsec been qbtained for thg implémépta—_
‘tion of arithmetic modulo Fermat numbers. y
4.1.5 N;E in the residue ¢lass rings _ }"

Initial approaches to the implementation of Number Theoretic
Transforms for convelution of real data concentrated on transformers
defined over a ring of integeré modulo M. The NTT in,the residue class.
ring is 1lkustrated by the transform pair;

-

L

&z f '



_ N-1 o o
CX(E) = ) x(t) ot | L0 < f 2 N
t=0 M . - S
L i - @.7)
N-1 —tf : : : S -
x(e) = | NN T xep) ot 0t &Nl
\§=0 : M B
oheée' oN ;‘l; X, X, v € . _ N

.

The modulus M should be large enough to prevent overflow, since the com-

_ponents of c1rcular~convolution are required to remain in the interval

-
Y

- %- y < —2 ; - . -; fo:-M‘even S .
M—2~5y'_<_~—2~ i "'foruodq' .

Instead of usiﬁg d single 1arge,ﬁodu1us transform,. the transform can

be computed modulo several distinct primes {mi}; and. the resuit, modulo

"

M, reconstructed according to the Chinese Remainder Theorem. This pro-
e e
. T - a

cedure is equivalent to defining the NIT in the residue number system.
. In the RNS, the mapping &: S(X) = (7, vuuy X;,) represents- the isomor~
phism of Zy onto ‘the direct sum of rings Z' e

YIS

my

i ?

where mlel, ceey W ®L are the distinct prime power factors of M. This

Vworks because the binary operation [] €G+, ) is preserved under the o
mapping 8: . \
8 (X [] )= Gy e xp) O Gy oeens vp) = 800 O8G0

The'idea of.a _composite NIT, where traﬂsforms are computed in residue

class rlngs Z ey and the result modulo Mis obtalned in’ the final
my

stage, has already been. suggested [25], [33], [40]. Y
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Aggarwal and Burrus have derived necessary and sufficient counditions
for N to be a possible transform length in ZM’ viz. that
- ‘J } . .
N|ged (m,-1, ..., mp-1).

The same transform length can be obtained if we restrict the Galois rings,

szm ei}, to be Galois fields, {zm }. with this restriction, the imple—
1 .

i . .

nentation becomes very efficient. - . s
Jenkins [40] extended the results of Aggarawal ‘and Burrus,so that

N divides win(m, -1, ..., mLQl), by allowing different transform lengths,

i mi—l. Since the-original block:

length is N, (Ni-N) zeros must be appended to the transformed sequences

Ni’ moduld each p{ime, such that N

modulo m, . This approach leads to additionai.flexibility by allowing
the choice of more prime moduli at ghe expense of the'inéfficiency of
padding the component transforms with zeros.

. However, even w;{.t:h this relaxation for the NTT defined in the resi-

due class rings of integers, the power of two transform length is

severely limited. The solution to this problem is found 'by computing

the transform in extension fields, as discussed in section 4.2.

4.2. Transforms Over a'Direct Sum of Galois Fields of m,’ Elements

i

v

In_[22] Pollard has shown that transforms of . the form (4.4, 4.5),

defined over the Galois fields of min elements, GF(min) where m, is a

prime, possess the CPP. The transform length W divides min-l and o is

a generator of an N element cyclic, multiplicative, subgroup in GF(min).
To éonstruct-GF(min) we need to determine an irreducible polynomial of

dégree n over the base field Zm. A pdlynomial of degree n of the form

n
f(x) = z ai.x
i1=0 -

1 £ Z [x] with a, € Z and a # 0 is defined to be
m o i m n

i
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irreducible [41] if it cannot be expressed as a product of two poly-

nomials of positive degree over Z
Ty

Th
® quotient field zmi[x] / (f(x)) is the required Galois field

with m" elements. Up.to isomorphism, the field GF(m ) depends only
on the degree of polynomial and not. on its pagticular form [41].
Moreover, suppose that A is a root of f(x) X E-GF(mi }, hence we have

the isomorphism Z i(l) | Zmi[x] ( (£¢x))"

Addition and multipiication‘in GF(min) is defined as polynomial
addition and mul;iplicatiou,.followed by polynomial residue reduction
modulo f(x); The elements of'Gf(min) cau be written as polynomials of
degree n-1 withlcoefficients inhGF(mi) or as n-tuples of digits, each
restricted to GF(ﬁij. Hereafter polynomial notation will be used, to.

2 oo : v

avoid confusion with L—tuple representation 6f elements of direct sum
1

of fields or rings.

In the following sections, attention will be restricted to the

" Galois fieids of second degree, ie, to the case n = 2. The definition

of the NTIT over GF(miz) (from Pollard [22]) is:
N-1
Tor(m,2)* Uy (D) = L ou () o £=0, ..., N-1 (4.8)
i : t=0
‘ 11 2
, where N divides mi 1; Ui(f)’ ui(t) a, € GF(mi )
and oy is a generator of an N element multiplicative cyclic
subgroup in GF(miz).
Hence, transforms def}ned in GF(miz) allow greatly increased sampie

lengths over those defined in GF(mi); the maximum ledgth is larger than

the square of the maximum attainable length in the field of integers

_modulo m, . Moreover, radix 2 .transform lengths are reasonably large, a
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- faet of great cnn&enience when implémenti&g a fast transform algorithm,
The inverse traﬁsform is \\_ ) &

i N-1 ’

fzo U (f) * o«

-1

T -ft

fu () = Nt (4.9

GF(miz)

~ Since N is a non-zero element of GF(H&%), the multiplicative inverse,

A

N 7, exists in GF(m.2). -To demonstratée the invertibility of T 24,
_ i GF (m; “)

ie, that (4.8) implies (4.9), and the convolution property of T 24
_ GF(mi )

observe first that if, and only if, @ is a root of order N, we have the

following: xd \

el -1=0 | (4.10)

which can be factored as;

- N_l . o \ b R
(@I-1) 5 o«f =0 - (4711)
T £=0 »

N
Therefore
N-1 £3
I od =Nif 320 (mod W)
£=0 :
'N;i fj t (4.12)
o - = (0, otherwise
=0

since for j # 0, .1 ¢ 0.
Substituting (4.8) into (4.9) and using (4.12) yields:

N-1 N-1 N-1 N-1
Nt ) o Fe ) u(v) o vt youv) §

£=0 v=0 v=0 £=0

af(v—t)

n

Nl uce) - W= ue).

The proof of E%e convolution proi;ify is a simple deduction from (4.12)!
. _ A

L
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© N-1 of . " ‘j
Let U(f) = ) wu(t) o,
. t=0
. . L
D 5 | c -
H(f) = § h(x) o
- v=0 .
Y(£) = U(E) - HEE) R
. . ‘“;. _.l N-1
Then, by (4.9), the inverse transform of Y(f) is y(s) = N E u(f)
: - £=0
N-1 N-1 N-1 . *
CHE) TS = T T T u(e) vy oEOETSL
SRE £=0 t=0 v=0 ~
3 M=l L N-1 +
N ] u(®) *h(s-t) - N="7 u(t) h(s-t). "
=0 t=0 ‘

From section 3.1 it is clear that the residue arithmetic can be
efficiently implemented if we use relatively small integers for each

modulus,aand generate the required dynamic -range by comﬁining a

_sufficient number of moduli. Thus computing the transform i a finite

ring_which is a direct sum of several Galois fields of second degre{,

L

7. @GF(H'IL-Z) T (4.13)
L

GF(miz), i=1, ..

R = GF (ml"-)

increases the dyngfmic rahge to [ | m, . The conditions for the transform

length, N, have to be restated as follows. Since for each i, oy must
be a primitive NtR root of unity in GF(miz), N|ged (miz—l), i=1,...,L.
The above is the special case of general conditions for the existence

1
of NITs in the direct sum of local rings [26], and is a result of the

requirement that equétions similar to (4.11) and (4.f2) still hold for

T note that multiplication and additlon is modulo N, hence this is the
cyclic convolution property.

—



o e ﬁ, namely that

N-1 £y

V] oad =N 1fF § 20 (mod W)
£=0 - -

) (4.14)
N-1 £

z g =0 otherwise .
£=0 .
Since o has the representation (@, ..., aL), ai £ GF(miz), conditions

specified by (4;14) are possible only if each o, is an NtR root of

i

upity; therefore if N divides each miz-l. Once we choose the moduli my
gﬁat allow a suitable transform length, N, we are left with two probléms
to be solved, in ﬁrder that the RNS }mplementation of the NTT be effic-
.ient; namely .
i} we wish to construct the Galois field, GF(miz), in such a
way that the multiplication and addition of field elements
+ will require the smallest possible ﬁumber of operations.
i1) we would like to search for the generator of an N—élement‘
cyelic subgroup in GF(m££), @, that has the simplest form
possible, so that the number of operations required for
‘mnltiplications by powers of o is minimized.
‘The complexity of multiplication of field elements is determined by the
structure of the irreducible ﬁolynomial f(x). Let f(x) = px® + ax + 5
(p,aq,se GF(mi?)) be an irreducible polynomial of degree 2 over GF(mi).
Then, the extension field in'which the given polynomial has a root,

denoted by A, may be described by:
GF(m,*) = {a+bA | a, b e 6Fm)} (4.15)
Addition in GF(miz) 1s component wise, with the coefficilents reduced

modulo m,, whilst multiplication has to be followed by the polynomial

residue reduction to eliminate A%, It can be readily verified that the .



number of binafy operations required to perform the multiplication of
field elements is minimized if we can find an irreduﬁible polynomial
£(x) which is monic and has the binomial form, ie; f(x) = x* +ls; for
notational convenienge, we can write the desired igfeducible poly-
nomial as f(x) = x% - r. The above statement can be illu;trated by
means of the example.

Example: Suppose that for some prime, m, the ifreducible polynomial of
degree 2 has the form £(x) = x? + x"+ 1. Letfﬁ be a root ofaf(x) = 0.

This polynomial is irreducible for example for_ﬁ = 5. Then,

Zg(w) = GF(52) = {a + bw | a, b e Z}

The field of the‘'‘form {a + bw} with w a root of w? + w+1=01is
sometimes referred to fas ﬁﬁe field of Einstein integers. The elements

of GF(SZ) are:

0. 1,2, 3, 4 0] 20, 30, bu, 14w, 24w, 3+u, &+a,
14+ 2w, 2+ 2w, 3420, 4+ 20, 1+ 3w, 2+ 3w, 3+ 3w, &+ 3w,
1+ b, 2 + 4w, 3 + 4w, & + 4w,

Addition is component wise. For multiplication we perform the usﬁal
multiplication of polynomialg, yielding

| (a + bw)(a' + b'w) = aa' + wlab’ + a'b) + w? Lb'

Néw, to satisfy the field axions (field is ciosed under multiplication)
we have to perform residue reduction modulo w? + w + 1 (polynomial
division) and restore the coefficients so that they are elements of'Zg.
~ Hence the multiplication is defiped as:

(a +bw)(a' + b'w) = |aa’ - bb'lm + ml ab' + a'b - bb' o

Multiplication of field elements requires 5 binary multiplications. and
3 biﬁary additions. This is obviously not a very efficient operation.
To illustrate the more efficient approach, let the irreducible poly-

nomial of degree 2 have the form



. sl
f(x) =x2—r; r E‘Zmi . (4.16)

" Then the extension field, in which the given polynomial has a root,

may be déscribed by N

GF(m,?) = {a +_Ab | a, b'e Z

r

A% - =_0}

mi’

]

where A
iNow, addition and multiplication are defined by:
(a+DbA) + (a' +b"A) = la + a'lm + v+ b‘l A (4.17)
: ‘ i

. mi‘
(a + bff - (a"¥xb5$7’/

+ 1abf + a'bl A (4.18)
'mi . mi
It is interesting to.observe that the residue reduction mod (A% - 1) is

laa' + rhbh'

+

particularly simple since A% = r. The number of binary operat;ons in
the mﬁltiplicétion of field elements is now reduced to 4 multiplications
and 2 additions. There is also one multiplication by a constant, T,

but in the RNS implementation, using ROMs, this does not require separate

hardware.

The multiplicative inverse can easily be verified to be:

9

- 1
(a + bA)"!

)

(a -~ bA) -

2 2
a b m; [my

= | a-* c|m +] -b-ec

i m

A 4.19)
i ‘

where ¢ denotes'gae multiplicé%ive inverse of |a2 - rbzim
. : i

<

For the polynomial of degree 2 to be.irreducible it is sufficient that
f(x) has no root in GF{m;). This statement alsc holds for degree 3;

however, it does not rx€main valid for-degree 4 and higher.

Therefore € have to establish the conditions under which the

congruence

x2 = ¢ (hpod my) ‘ ' (4.20) .
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is net solvable,

It is known [42, p.113] that theKth-term congruence
x* S r (mod mi) - : (4,21) -
is solvabie if and only if ind r is‘é multiple of the ged (n, ¢(mil).
If the congruence (4.21) has.solutions, then r is.sald to bé{an n-th
power-resi%Eg, otherwise r 1s said to’be an n—th power nonfre§idue. In
particular, for n = 2 the residues og non—residues are éaid to be
quadratic; for n = 3, cubic, for n = 4, biquadratic. Conéruences of
second degree have either two solutions or none [42, p. 92] depending
on whether v is a quadratic residue or a quadratic non-residue, modulo
m.

Hence, the.neceséary and sufficient condition for non-solvability
of the congruence (4.20) is that ind r is not a multiple of 2 (since we
assume that w, is an odd prime).

The following two sections will provide the techniques required
for searching for suitable values of the quadratic non-residue r for
different types qgcprimes. _It will be shown, that under ceftain con-
ditions, the generégor Q of the multiplicative group of GF(miZ) can
have a simplified'form;‘for other cases it is always éoésiﬁle to
choose r = -1, which is the most convenient valuelfor general imple-
mentation. If r = -1, GF(miz) is isomorphic to the residue class of
complex, so-called Gaussian integers. We now present a new proof
using indices that this holds only for primes of the form mi = 4E+3.

" We wish to find a modulus m, such that the fileld GF(mi) contains no

square root of -1, 1le, ' .

.

* x? 2 -1 (mod m, ) ‘ (4.22)

has no solutiom.
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Let T be the index of x, and ¢ be the index of -1.

Then o +
2t = U(mod(mi—l)) 3 (4.23)
A solution will only exist for 0 divisible by 2, since |27%|
_ ‘ Coimy

does not exist. Conversely, the congruence has no solution (—1 is a
quadratic non-residue) for the index of -1 odd. in order to 'find the
index of -1, we use the‘congruence-._(—l)2 = 1 (mod mi). The index of 1
is ﬁi—l, hence the index of -1, ¢, is given by 26 = miul {mod (mirl)).
It foliows that the congruence (4.22) has no solution if

m, -1 | |

5 is odd; ie, if the modulus m is in the form m, = 4 E + 3,

i

o=

Conversely, if 0 is even, ie, m, = 4 £ + 1, we find 2- values of 'index T
which are inc&ngruent mo?ulé (mi—l). Corresponding to these values we
find two values of v-1; A1 and \,, which are incongruent modﬁlo m, with
l2¢= m - A1. It f;llows that wheﬂ”mi = 1 (mod &), /:T-may be considered
as a meimber of GF(mi) and hence we cannot constru;t Galois field of

sedond degree using pdlyhomi&i,x? - 1. Tor example if m =5, ¥-1 1is

coﬁgruent modulo 5 to 2 and 3.

Having establisééd the-best sfrucﬁure of thé irfeducible poly-
nomial, we are left with the problem of finding suitable transform
factors in GF(miz), ﬁamely the pair N and a. The éigorithm for finding '
the generator o of the_multiglicétive subgroup of order N in GF(miz) ié

developed in two following sections. General statements about trans-

form parameters of the convenilent form are presented; the primes'of the

form & E+1and 4 £E + 3 are considered separately. Clearly all primes

except the prime 2, which obviously has no‘va%ue for implementation of

NIT, are congruent modulo 4 either to 1 or 3..
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._4.2{1 Searching for transform facéors in_GF(ﬁiz) for;primes of the form
45+ 3.
N1t has béen shown that.foq primes of the form 4 £ + 3, r = -1
(mod mi) ig quadratic non-residue. Transforms in GF(miz) can be_used"
to compute cqnvplutions §n complex data or convolutions on two blocks: -

A - *
of real data. TJransforms over GF(miz) for arbitrary quadratic non- \\\\

resjdue r, r # -1, can only be used to compute convolutions on two e

™.
blost of real data. o | \\T\
‘ : . .
ThelimPlementation of a transfarm is simplest when the transform : o
. length is a power of 2. Let N = 2B be the order‘'of generator <, in
Gp(miz), such that B is the largest possible integer given that ‘;".§

.N|(mi{-1).

The prime, m

=468 + 3, cgn be represented as:

mo=q-2P-1 . _ (4.24)
where p is any positive integer and (q, 2) = l.
The following theorem gives the maximum value for B.

Theorem 4.1:

Given a base field Zmi and an irreducible polynomial, x® - r over

GF(mi) [x], the extension field, Zmi( YT), has a cyclic subgroup of -

-~

~

ordef N = ZB. The maximm value of B is p + 1.

Proof.

The order of a cyclic subgroup has to divide m,? =~ 1

- i ) ~
Therefore N KqZZZP —-q 2P+1). Since q is odd,N[l{J2p+l where ¢ 1s odd. —

Hence we can always find an N = 2B where the maximum valueof B is p + 1.

’

For example, the primie 47 can be represented as 3 « 2% - 1. From the

above theorem we can immediately determins that the maximum power of 2

transform length in GF(47%) isl2‘5 = 32. We will show that the generator
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\ = _ ;

of ofder ZB‘ﬁés‘to.have the“geﬁeral polynomial form, ie, & =7y + vVr S

ot

with v, 8 # 0 for Max [B] =p + 1.

-

If B = 0, ¢ has maximum multiplicative order m -1 < 2p+l. hence

i ]
. . q ' p+l + . . zp.
B # 0. Leta=vy + /; g = (¢ + /T d)have order 2 .  Then (thfa)q =
-1, since aN/Z = -~1. The above can be written as B
(et VE ) (e + /7 )92 -1 o o (4.25)
. . . m-l e
If we employ the'ibinomial theorem' and the property r 7~ ==l [a2],
hence ¥ = - /T, equation (4.25) can be written as:

-

(c.+ T d)(é - {E'd) = -1 or ¢? = rd? = ]
'If we want c = 0, rd? = 1 has to have a soluﬁion;’ie,_ind(r‘lj h;s-té
be a multiple of 2. ‘éince iPd(r'l) = Wi'lfind,F; £ﬁen ind r alsdfhag
to be almultiple-of 2; a contradictidn- Iﬁ fé;lqﬁs that c # 0, 50
Y # 0. ‘ |

The next problem is to choose the quadrafié nonresidue ;,'subject
to the conditioﬁ (ind r, 2) =1 (tabiés.of,iﬁdides can bg found in
many books on Number theory, ég;, ip [42]}. ¥or RNS implementation,
using ROM arrays, the choice'for‘the value of r is not important, since
there‘is no -extra hardware required for Ehe multiplication by a con~
stant; instead of storing the function b - b'iin (4.18), we store r<b*b'.
However, for microprocessor'implementation, it is more efficient to
chogse as r a number with a minimai binary weight. Since, for primes
congruent to 3(mod 4}, -1 is élwayg a Quadratic non—rgsidu;, the msst
suitable chojice is r = —1_(ﬁod~mi). A comﬁuter:program has been
written for searching for eléments,'of_brder N in GFCmiz), of the

form:

+ The binomial theorem as applied to elements of GF(miz) i3 presented
in Appendix B.
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a=¥+/Te v, BeoEmy T wa2e
The eearch can be faciiitateﬁ by neting that K
i).’ﬁ%;need ﬁo evalﬁate only N/2 powersséf o, because \ ‘
N/Z -1 (mod m )

-

11) the'search can be stopped when we find an element a’

whose order N' is a multiple of N; ie, 1If N' = uN,:then
- ) . ;e
a = (C'.’.')]-J .

Theré are-¢(N)'pos§ible elements o= Y + /?'8 e:GF(miz) of-order N for -

each value of a quadratric non—reeidue r. This is an obvious exteﬂsigp
of the following well known result for integers (eg. [43, p.73]). 1If

a 1is an element-of order D; then a° has order D 1if and only if (g D)

Although this theorem is dedicated to primitive D-th roots in
GF(mi), the same proof readily holds and the same result is obtained
when we consider eleﬁenes of GF(miz).

in particular, there are zp possible values of generator o=y + /:T‘g
g GF(mizj of order N = ?P+1. |
Example: Let m, = 7 =23 -1, The maximum radix 2 transfor? length
over GF(?é) is N.= 2p+l = 16, Let r = =1 (mod 7); then one of the
possible generators of the cyclic subgroup of qrdef 16 in GF(7%) is
a = 2+/-1 3. All elements‘oflthis cyclic subgroup are 1iste§ below:

o =2 ¥v<T 3

aZ =2 ¥/=15

e’ s 3+ /T 2

et = 0+ /-1 6

cut‘|5 =3+/-15

o

a® =5 +/21 5
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@’ =2+/T4 - ' D .
a® =6+/-T0 | |
o =5+ /T 4 A . :

o' =5+ /T2 = \
R S .
C a2 a0+ /T e

a'd =4 +/T2
al® = 2% V=T 2 .

Y325 /1 3 -

2
1]

g =1 N _ _ . .

‘Among the elements listed above there are exactly 8 possible generators

13 15

11 y O 7, In-the example

of ordet 16, ndmely a, o, a,.a7, o, o'!, o

*

1l

above, 1t can be noticed that a’ =« This 1s a general property

. of any element in'GF(mif) = {i'f /?'bg %2 - = 0}:' that'(a‘ﬁ-/¥'b)mi=
.a =/T b. This,result is proved in Appendix B. ‘

4.2.2 Searching for transform factors in GF(miz) for primes of the
e
form 4 £ + 1.
.= 2% 41,
L odd. The largest possible radix 2 transform 1engfh in GF(m 2y 1s

N = 2k+l. For primes of this form, we find the remarkable property.

We can represent m, = 4 £+ 1, £ any.integer, as m

that the generator of order 2%+ s can have the simple form, o= /?; ‘

where x?

- r 18 an dirreducible binomial ip GF(mi Y. This propérty
" 1s.obtained. from the follﬁwing theo;em;

Tﬂeorem 4.2

Let m, = £2k + 1, (4, 2) = i, be an odd ériﬁe numbéfr. Thén:.

s

¥ an asterisk in superscript fowm implies a conjugate operation




&

. then X

. i) N
11)
iidi)
1
Proof:‘
- i) N
ii)
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.If g is d generator for the multipllcatlve group GF(m ) - ok

2 -g is an irreducible polynomial in GF(m ) [x]

‘k+l

If g is as-in (i),'then V—-has multipllcative;?;der~i2 " in n

GF(m 2) where GF(m 2) = {a + b /r' b s_GA(m;)

We can find a generator /_' of a cyclic sﬁbgrqpp of order

2F+l in.GF(mi ), where r = gpﬂ with (p, 2)'='l aﬁdfxz*f t;"

' an irreduciblé polymomial in GF(m;) [«].

0 o ‘ BT ‘s S
suppose x*-g is reducible. Then, there exists d ¢ GF(miz)
‘ 2 R . ’ ‘ mi—l ' )

such that d°=g.. From Fermat's_theorem'[ABJ d - =1

_ mi—.-l ) - omg-l o K - . -
= d? 2‘ ="g . 2 a - 1; This is nbf tﬁe case for.

Y

‘an odd prime, hence x*. -~ g is irreducible

k+1

k .o ,:' - ' ;
G/E)lz = gjz'2 = 1, ' We now have to prove that goktl is .
' the smallest order of Yg. Suppose (/—) =1 for some 1 & s <
225" then if 2[s , so that*L’=.2v, 1€v < 225, we have

_(¢§)2v'= gv= 1 which is impossible C1f 2{3, then is- butA-

1i1) From.(ii) [JE}EZ

s=vn+y, 0K y< n, n = zzk, and so g gs~vn =g (g’)

= 1. Therefore y = 0 and g = vq. ,Because m,-1l = 22 is

i

even then k > .0. Hence 2|n and so 2|s, a contradiction.

kel ' ' S
5,1, therefdre'[fgjl ‘has order 2k+1h

. Since & 1s odd, [/E']Qi‘GF(mi)'and so there exists an

irreducible polynomial x* - gl. .We alSé know [43] that

for some p,such that [p, Zkf;].= i, (/E-)pg has order 2k+l.
It is clear (from the prime facto; decomposition of 2k+1)
pl

that we.only need to show (p,2) =-1. We now set r ='g
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Since pi is odd x2 -t is an 1rreducible polynomial in
v
GF (m ) [x]

'Example' Let the’ prime from the progreSSion 4. & + 1 be mi = 97 = 3.2°

-~

%cli Maximum radix 27 transform length over GF(97° ) is N 3 2% = 64.

From the tables of- primitive roots (eg ‘[42]) it can be found ‘that for °

“‘\

_prime 97, g:= Su .

'
kS

‘Adcording*to the Theorem 4, 2 J_'will generate cyclic subgroup
lofhorder'l92, and the generator of the multiplicative order 64 is
: - given oy c‘= Yt = (/g),p;where (p; 2). .Arbitrarily we can choose
.=‘/§§=ior p =-l or'a = ¥T§'for p.= 27. .Tables of indices are-help-
' ful;‘since'ue are searching for an element 'r' subject to tne con—
3‘straint indsr =3 +'p. As an illustration of this example, powers of
/—_'are listed in Table 4 1
-1t is evident that the number of binary operations required for
multiplication of an arbitrary element in- GF(m 2), u=a+b V?; by
the powers of generator ¢ with:a simple form obtained according to
;the Theorem 4.2, © = {?; is now significantly reduced.
| Multiplication by even power of o, ley by aJ T, requires only
two binary multiplications. Multiplication by ‘odd. powers o = BJ?f
requires two binary multiplications and eme multiplication by a fixed
operand T. This brings the potential for significant savings in’ the

implementation of the transform.



TABLE 4.1. Elements o’ = n+68v19 Geﬁerated By

o = Y19 Over GF(97%)

[ S

n 8
¢ 1 3 1
2 19 - 0
3 0 19
4 70 0
5 0 70
6 - 69 0
7 0. 69
8 50 0
9 0 50
10 77 0
11 0 77.
12 8. 0
13 9 8
14 55 0
15 -0 55
16 75 0
17 + 0 75"
18 67 0
- 19 0 67 .
20 12 0
21 Q 12
22 34 0
23 0 34
24 64 0
25 0 64
.26 52 0
27 0 52
28 18 0
29 0 18
30 51 0
31 0 51
32 96 0
33 0 96
34 78 0
35 0 78
36 27 0
37 - 0 27
38 28 0
39 0 28
40 47 0
41 0 47
42 20 0
43 0 20
44 89 0
45 .0 89
46 42 0
47 0 42
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3 B 8 '
48 22 "0

49 0. 22

50 30 0

si- 0 30

52 . 85 0

53 0 85

54 "63 0

55 _ 0 63

56 33 0 .
57 0o 33

58 45 0

59 ’ ~ 0 45

60 79 0

61 0 79 4

) 62 46 0
63 J 0 4
64" , 1 0

4.3 Design Procedures for NTT Comvolution Filter for Real Data
.4.3.1 The General Form for an NTT Convolution Filter Over.GF(miz).

‘Let u, = a, + v¥r, b, be an arbitrary element in GF (m,?) s W, a
. i i i 1 v 1

i
prime, and N = 2B be the raddx 2 transform length over'GF(miz), where

g E 3(mod 4) and Max [B] =k + 1 for m =1

(mod 4). Let {w(t)} be the input sequence that is to be comvolved with

Max {B] =p+ 1 for m

the impulse response {h(t)}. Circular convolution can be implemented
in blocks of length N by computing the transform ‘bf N samples of {w(t)}
‘and {h(t)},multiplying the tééﬁsforms and taking the.inverse transform.
Sinﬁe we are using the NTT over GFﬁmi') for convolution of real seﬁuenh
ces, two‘succeséive bchks.of theAinput sequence can be transformed
simplténeously via the same NIT by setting:

uy(e) = w;r(t) + qw(t + N) | (4.27)

. which can be written in the residue.form as

u, (t) = lw(t)|mi +,J;I wgt + N) ny
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‘
L

- +

- where'ui(t) £ GF(miz), The result of the circular convolution associ-

- ated, with the elements {1,’V§;}, will yield the circular convolution of

two successive blocks of {Jw(t)lmi} ‘wlth-{lh(t)lmi}_ :

. ) - N-1. . f . ' ‘
v+ v am |, - L sl - udlelpl,
Nl - | -
={ 7, h(l‘s—th) '.{w(||t|N)'+v/;w___(lt|N+N)} ‘mi‘ o (6.28)

. ' t=0

The convolution filter, using an NTT over GF(miz), is illustrated in

v

figure 4.1.

. \ . ‘
EP compute the convolution unambiguously, the components of the
ycircular convolution sum in é-single Galois field'GF(mi ), are réquired

to have an upper bound ms ie, signed numbers should remain in the

N
mi—l mi~1

interval - 5 L y< 2 . The absolute upper'bound on the input

_ {
data and the impulse response is

\ m,~1

. max !ﬁ] * max Ihl S .;N‘ g

This bound on the dynamic range is pessimistic for many practical

applications and if, the dmpulse response is known, and fixed, it is

o m, -1 | ' ' f )

max |w| & ) 3/

2 ] In(o|
£=0

enough to Qave

] -
If the input sequence consists of a set of positive numbers the above

can be simply restated as

m,—1
max w £ E:Ti—u——“— .
LGN

t=0
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ui(t) =
lw(e) + /F; W(EHN) | omtpp—]
mil
[n(e) | ogp—roi]
m:L -

U(f)

-1 2
G‘E'(m:L )
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y(s) + q.y(sﬂ\lj )
e :

Figure 4.1.. Convo¥ution filter over QFGmiz) for convolution of real data:

)
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4.3.2 A Computer Simulation of Convolution in GF(mifz

The proposed convolution filter using NTT over GF(miz) has been
simulated by comﬁhter and the program 35 given in Appendix C.

The NTIT algorithms, consisting only of addition; subtraction and
hultiplicafion of elemenés in GF(miz), defined in ééction 4.2, can be
easily simulated by using integer'arithmetic\followed by:a residue
reduction. The Fortran statement -

IA = MOD (IA, M) _ '\ .

is used to compute the residue |IA]M.

\.
As an example of the operation of the program, two rectangdlar
pulse trains were convolved with the igﬁulse response defined by

0 0 <tg 31 .
ht) = . (4.30)
1 32 € £t < 64

" i

Hﬁe prime, 97, was chosen as thévmodulus. As previously.determined'in
section 4.2.2, th; maximum power of 2 transform length is N = 64 and one
- of the possible values for the generator o is {Tg. Thé upperhbound on
the input function cam be computed from 4.29,.max w = 3. Arbitrarily we
-

have chosen w = 1 in order to illustrate the convolution process as
[}

simﬁly as possible. TFigure 4.2 shows the input sequence, impulse
response, their transforms and the result of the convolution. Dotted
lines indicate the dynamic rangelconstraints. Overlapping by 32 points
and adding y(s) witp y(s+N) hi11 give the reéult of eonvolution, ;(s),

of two blocks of the input sequence with h(t) given by (4.30):

v(s), | 0 < s< 32
' ;(s) =4 y(8) + y(s#+N=32), 32 < s < 63
< s < 96

y(s+N-32), 63
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. The values of the transfor-tﬁs of the input sequence, U.(f), and the
iﬁpulse‘response, H(f), are shown iﬁ Table'4.2.. As an illdstratioﬁ

‘that transform domain sequences depend oﬁ the choice of - the genefapor

®, Table 4.3 lists the values of the transforms U'(t) and H'(f) of thé"

same irput and the impulse response as above, but ob;ained with

another generator; o' = v28 (see Section 4.2.2). The result of the

convolution is identical in both ‘cases.

P U(F) = A+VEB | H(F) = C +VT D
A B o D
) 32 32 32 0
1 13 11 B4 54
2 0 0 0 0
-3 62 12 20 89 .
4 0 0 0 0
- 5 58 81 23 58
6 0 0 0
"7 45 96 Qig\\ 78
8 0 ' 0 0 ™ 0
9 '20 28 50 - 75
10 0 0 0 0
11 27 - 40 3 . 37
12 0 0 0 - 0
13 6 46 59 84
14 N 0 0 0 0
15 69 - 10 66 41
16 0 0 0 0
17 32 - 70 29 41 .
18 0 0 b 0 . -
19 80 23 36 - 84
20 0 0 0 0
21 19 . 32 92 |- 37
22 0 0 0 é 0
23 15 "23 45 75 .
24 0 0 0 0
25 7 58 77 78
26 0 0 0 0
27 10° 33 - 72 58
28 0 0 0 0
29 20 67 75 89
30 0 0 0 0|
31 0 .95 41 54
32 0 - 0 0 0
~ 1 33 95 0 54 43
-1 34 0 , 0 0 0




35 75 28 20 8
36 0o 0- 0 0
37 85 62 23 39
38 o .0 V 0
39 88 37 18 T 19 |-
" 40 0 0 .0 - o|
41 80 72 50 22
2] o 0 0o - 0
3y 76 63 3 60,
44 0 0 0 0
45 15 72 59 13
46 0 0 0 0
4711 63 25 | 66 56
48 0 0 0 0
49 26 85 | 29 56
50 0 0 | 0 0
s1{ 89 49 36 13
52 Q 0 0 0
53| 68 55 92 & 60
54 "0 0 0 0
551 75 67 45 22
56 0 0 0 §§f 0
s7{ so 36 77 19
58 0 o | o 0
59 37 1w | 72 39
60 o 0 0 0
61| 33 83 75 8
62 Q 0 0 0
| 63 82 84 41 43

TABLE 4.2, Transform Sequences for m, = 97, N = 64

and o = /19 (Fig. 4.2)



c U(E) = A + /TR H'(E) = C' +/T D
A' B c D'
0 32 32 32 0
1 74 72 36 36
2 0 - ‘0 0 ' 0
3 14 77 22
4 0 . Y0, .0
3 B . 78" 41 37
6 0 -0 0 . .0
7 40 . 34 23 11
8 0 0 o 0
9 b4 1. 3 95
10 0 0 0 0
11 36 5 29 13
12 0 0 0 0
13 18 96 45 - 51
14 0 0 0 ‘ 0
15 76 30 75 52
16 0 0 0 0
17 21 72 20 52
18 o 0 0 0
19 23 4 50 . 51
20 0 C 0 . 0 0
21 73 Y 66 73
22 0 0 0 0
23 | 36 90 92 95
24 0 0 0 0
25 89 83 72 11
26 0 | 0 0 0
27 23 91 54 37
28 0 0 0 0
29 52— 40 18 22
30 | o0 0 0 0
31 " 95 59 36
32 0 0 0

68 -



33 .36 61
34 0 0 .0 0
35 43 55 77 75
36 0 0 0 0
37 72 41 60
38 0 o 0 0
3g 5 12 23 86
4Q o 0 0 0
41 59 5
42 0 0 0 .0
43 22 53 29 o2
&4 0 0 0 0
45 72 91 45 46
46 o 0 R 0
47 74 23 75 45
48 0 0 0 0
49 19 " 65 20 45
50 0 0 0 0
51 77 96 50 46
52 0 0 0 0
53 59 90 66 24
,y 0 0 0
55 51 94 92
56 0 "0 0
57 55 61 72 86
58 0 0 0 0
. 59 85 - 17 54 60
60 0 0 0 0
61 81 93 18 75 7
62 0 0 0 0
63 21 23 59 . 61
TABLE 4.3. Transform sequences for m, = 97, N = 64

.rf/\

and o = V28

i
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4.3.3. NTT convolution over direct sum of GF(miz).

-

Computing the convo lution over a finfte ring isomorphic to a

2

direct sum of L Galois Fields, increases the allowable dynamfc range

for the convolution sum to M = | L The condtition y < M is assured
i=1 - - .

if the upper bound on the absolute value of the real input data is

- max lT"Il s ML

TT- , M odd .
2 h(t) o . |
+20 _ B | (4.31)
or max |W| < ——Eiﬁ?—————- » M even o -
2} h(t) '
t=0 .

To implement the NIT over a ring R

™ R =GF (m, ?) @ .. @ GF(mLZ)" (4.32)

we find a moduli set,'{né}, that can provide the same order of trans—

1

form, N = ZB, for each m, . Then we have the mapping
T(E) + Yr Wit + N)) = (W (t) + V1 W (eN), ..., W (e) + VrL wL'(t+N))

N

i

where Wi‘denotes the residue of W modulo m, . Hence, the procedﬁre for
implementing the convolution filter over direct sum of L Galois Fields ’
is as follows:

i) form L modulo m, sequences of two successive blocks of

1
input signal

11) iﬁplement L parallel filter structures as show& in Fig.4.1,
Compute overlap-add, or overlap-save, on the results of
the convolution sums

1i11) recover the results of the convolution sum using one of the

methods discussed in Chapter 3. °
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To provide sufffctent dynamic range, ¥ = | | m
_ o - =1
transform length, it #iy De.necesdary to combine moduli of the form

, for a required °
b )

"4E + 1 and 4E + 3. For p-rimes'o‘f'h the. fpm_z,._'m = 48 + 1-,"we wish to N

i
have N = 2k+1 because gent;.rator @, of order 2&1,- ‘hlg-s- 'the\'simgﬂe form. ‘
For r.:':i' 45 + 3 transform length can Be chosen as AR any‘diVisor
of_2p+]f withou'i: any Iinfluen'ce on the hardware requ:trement.s..' Tabieg bt

and 4,5 list all prime numbérs requiring up to 8 b;'.té for their replié-; R '1
sentatior: in thé arithmgtic progression 45 + 1 and é;'g' f+ 3 respectively,

together with the factorization of miz-l, maximum power of 2 length N i

in GF(miz) and GF(mi) for comparison.

e &
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| M%ximﬁm '
Radix\ 2 Léngth

J-_Represgn— Factorizaﬁion‘ Maxémugf

"1 o ;:;j:u of my*~1 Ra(iiri:x GF(i:g§Fh in GF(m,)

5|1 22+1 3 .27 4
13| 3 | 323 v 7 3 28 4
17! 4 241 3225 32 16
29 | 8 70241 | go 5 -3 «23 i
371 .9 p9-'2’-+1 19 + 3%2.27 4
41110 5+2341°- 7+ 5 « 3 2% 16 8
53 113 | 13-2%+1 13 + 3727 8 4
61| 15 15+224+1 31e 5 « 3 23 8 4
73118 | 9-2%41 32437 2" 16 8
89 | 22 11-23+1 11s - 5 « 32428 16 8
97 |24 3+2%+1 N 7R3 28 64 32
101 {25 | 25+2%+1 | 17- 52 3 .23 8 4
109 §27 | 92241 11+ 5 = 33.2° 8. 4
113 [28 702441 113 « 3 25 32 16
137 | 34 17-2%°+1 23+ 17 + 3 2% 16 8
149 {37 | 37+2%41 37- 5%. 3 «2° 4

| 157 |39 | 39.2%+1 79+ 13 « 3 »2° 4 )

173 |43 [ 432241 43+ 29 « 3 +2° 4
181 {45 7| 45+2%241 [13+ 7. 5 . 3%.23 4
193 |48 3+2841 © 97 + 3 .27 128 64
197 |49 | 492241 11+ 7%« 32427 8 4
229 |57 57+22+1 123+19¢ 5 + 3 27 8 4
233 (58 | 29+2%+1 29+ 13 + 32.2% 16 8
261 {60 | 15-2"+1 11% 57+ 3 2% 32 16

. : .- EH), .
TABLE 4,4, Table of primes m, = 4 + 1 less than 257

Ed
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of primes m, = 48 + 3 less than 257

Represen— Factorizaﬁion Maximum Maximum
tation 2 Radix 2 A Raddix 2
D ,of my Length Length ‘
my 3 q2 -1 tn GF(m,?) in GF(m,)"

3 0 Ptam) 2.3 e 8 2
1 2% -1 3 2" 16 2
11 2 3.2% -1 5.3 .28 2
19 4 5022 -1 543%.2° 2
23 5 3-2% -1 1.3 .2° 16 2
31 | 7 25 -1 5-3 *2° 64 2
43 | 10 ] 11+2% -1 11+, 7+3 +2° 8 2
47 | 1) 3.2t a1 2343 +2° 32 2
59 | 14 | 15:2% 1| © 29+ 5.3 «2° 8 2
67 | 16 | 17-22 -1 17°11+3 *2° 8 2

71 | 17 | ge2% -1 7+ 5032 2" 16 2
79 | 19 | 52" -1 13+ 5.3 +2° 32 2
83\ 20 | 21+2% -1 41 703 23 8 ~2
103 | 25 | 13-2% -1 17-13+3 «2° 16 2
107 | 26 | 2722 1 05303742 8 2
127 | 31 2’_;i 7.3242° 256 2
131 | 32 | 3322 2113 11« 5.3 -2° 8 2.
139 | 3& | 35+2% <1[23 ¢ 7. 5.3 +2° . 2
151 | 37 | 19+2® -1 19+ 5%3 «2* 16 . 2
163 |40 | 41.2% -1 413" +2° 8 L2
167 | *41 | 21+2% -1 87+.7+3 »2" 16 2
179 | 44 | 4522 <1 89+ 54322 8 2
191 | 47 | 3e2% -1 19+-5+3 +2 128 2
199 | 49 | 25027 1| T, 11. 3?2t 16 T
211 | 52 | 5322 «1[53 7..5.3 2 8 7o
223 55 7425 -1 37+ 743 2% 64 2
227 | 56-{ 57+2% -1 113+19 3 «2° 8 2
239 | 59. ] 15+2% 1|17« 7+ 5.3 «2° 32 2
251 | 62 | §3+22 <1| 745372 8 2,

TABLE 4.5, Table
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7 Table 4.6 shows the dyﬁamic range associlated with the moduli
{mi}'vhich‘allbw apprectable fadix 2 transform length over GF(miz) and
are suitable for RNS implementation. using either arrays of ROMs or

arrays of microprocessors.

my 17 31 47 97 127 191 193

.

logz m; | 4.08 {4.95 |5.55 | 6.59 |6.98 |7.57 [7.59

ABLE 4.6. Effective wordlength in bits fo;'primes suitable for
RNS implementatidw T e

o‘?

The moduli-.mi are chosen in such a way that for théjROM impleﬁen—

"tation the ratio of the possible length for package count is maximized

- and for the microprocessor implementation, the transform length is

maximized. The selection of transform parameters for those two RNS
structures is discussed in the two following 'sections.

4.3.4. ROM array implementation considerations. Hardware features

* El

and selection of transform‘parameters
The RNS operations can be implemented By look-up tables stéred in
ROMs, as discussed iIn Chaptef 3. This approach is particularly suited
to the implementétion of the dasic comﬁutational eIgment in the, NTT
proces;or fof the convolution filter of Fig&&e 4.1, Moreover, hardware
savings can be obtalned in the invérse transform unit I’l, structurally
identieal to T. AICanentional binary implementatton requirés separate

N

hardware for multiplication by the multiplicative inverse In

’mi'
the look-up table approach, the contents of the ROMs used for multiplying

two transforms, or the contents of ROMs in the final conversion stage, can
be premultiplied by this fixed operand.. The fast NTT algorithm (FNTT) is

identical teo the FFT algorithm of which many forms have been described in

- 27
s . " _j ——
the\%}ierature(' For the FNTT, the twiddle factors Wn, W=e N , are
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replaced by the powers of generator ai

The organizatlon of an NTT processor (sequential, cascade,
parallel or array structurel is usually~dictated by performance aﬁd
cost requirements [66]. For each of these structures, RNS imble@énta-
tion. using ROM arrays is particularly advantégeous because of the :
inherent simplicity in pipelining Ehe.artay (sée sectio; 3.1;1L. if'
the transform processor can be impleméntéa as an array pIocessor, then

a mixed radix algorithm can be used; this results in vefy high speeds

.and large lengths such as large factors of m 2 -1 glven in‘Ehe Tables

1
4.4 and 4.5. However at this point in time, the cost of this approach

severely limits its application.

For sequential or parallel realizations, we require the,same cal-

culation at each stage,- hence we imS&ement a single radix algorithm.

v

1f ﬁhe ;réﬂsfprm length 1s a po&er of 2, N = 2B then for a minimum
hardware sequential realizationm, radix 2 i; chosen. The basic computa-
tional unit (BCU)  is a radix 2 butterfly.

For a radix 2 decimation in txme (DIT) algorithm the flow chart
of the butterfly.is shown in Figure 4.3, where n + Yr 8 denotes the
n'th power of generator o = B + Yr ¥ and n depends on how many steps Of.
the FNTT algorithm have been executed, The radix 2 DIT butter%&y
repeatedly performs the comput?tion

A+EB=a+/;._b+'(a'+/;,b')‘ m + Yr 8)

C+vrD

il

a4+ /T b~ (a' +/T b} (n+ /T o) (4.33)
with addition and multiplication on elements in GF(miz) as defined in ;;3 ,
éﬁuation (4.17) and (4.18). Hence, the usual complex arithmetic is now

replaced by finite field, arithmetic. When a radix 2 decimination-in-

frédﬁéﬂcy‘(DIF) is implemented, the only structural difference between

N
(]
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the DIT and DIF butterfly fs whether the multiplication by o™ ts before
or after the 2 point transform, s
Figure 4,4 tllustrates the array of look-up tables stbring the

results of addition and multipliﬁatioﬁ modulo m, for a radix 2 DIT BCU,

2
when the modulus fs of the form 4f +3. In this case a = 8 + Y=1 v,

"hence its power has the form n +/=1 9. The number of looR-up-tables in

" BCU (not counting the stored tables for o] ts 10 for one modulus,

It has\ﬁeén shown fn section 4.2.2, that for moduli of the éprm
. 4E +1, the generator o has simple form, o = vr, HeﬂfEE:EEfngIéipli-

cation by even power of a requires qnly 2 general multiplicatfons and

by odd poéerg of ¢ 2 general multiplications and one multiplication by
a constant r.. The BCU arrays for eveﬁ and odd powers of o are 1llus-

trated in Figure 4,5 and 4.6 respectively. The lookvup,geble réguireF

ment is 6-in Both cases. It is evident that the hardware implementation

of an NTT in GF(miz), m

3 " 48 + 1, is almogt as efficient as in GFGmi),

whereas the attainable ~transform length s increased significantly.

A conservative data throughput of the BCU is fqPr real samples per

T

70 nseé; (see section 3.1.1) th?s assumes that the pipeline 1s always

full. For ﬁ1»< 32 the leook-up table has max%pum glze 1024 x 5 bits

énd can be stored at one commercially available 8k ROM, For larger m,
required for practical NTTs, effiecfent implementation of multiplication
‘and addition using submodular approach has Been devéloped by Jullien[11],
as referred to in section 3.1.1. '

- ‘The technigque has beeﬁ described in detail tn [11] and also in‘[44].
Table 4.7 shows tﬁg package count required for multiplication or additiqn

(not counting the stored tables for a} for several prime modull. If

addition follows multiplicatton, then savings can be made In the number
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of tables so that the tdatal package count is less than twice the packaée .

count obtained from Table 4,7,

~
h -k
‘hModulu& - . Sub-Modul® | ROM Size |Package Count
11, 13 direct 256 x & 1
17, 19, 23, 29, 31 dtrect | 1026 x8 | 0
37, 41, 43, 47 15, 7 ,Qx s | 1
64 x & | 1 .
256 x 4} 1
¢ ?
128 x 8 1
53, 59, 61, 6371 | 15, 14 128 x 8 1 g
73, 79, 83,489 256 x 4 | 2
97, 101;' 103 256 x 8 1
107 — 229 31, 15 256 x 8 | . 1
. 1 25-6 x 1- ?
- 1024 x 8 i
256 x &4 | 1
B \ Siﬁ # 8 1
- >

.

. qTAﬁLE 4,7, PacRage count for multiplication or additfon

using submodular approéch

T
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Figure 4.3. Radix-2 DIT Butterfly (BCU)
Y
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: \ -
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mi -
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Figure 4.4, BCU Array for Primes m, = 4E + 3
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Figure 4.5. BCU Array for Primes m, = 4E + 1

and even powers of o

2 \ @dai A
i
a C
D

8

Figure 4.6. BCU Array for primes m, = 4 + 1

_and odd powers of

79
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e , \

Dynamic N :

range Length - Generators oy in GF(miz),rESpectively
Modpli m ==l I o | N )
i=1
17,31, 47 2148 32 jay =5, ap= 2+/-1 11,a3= 2+/-1 18
31,97,127 {278°3% 1 64" len =25 + /1.5, 02 = VIT, | as= 74/7T 29
TABLE 4.8, Examples of transform parameters for ROM

array implementation

Of course, there are a number of other chofces, for example

1

generates a dynamic range of 27.72 bits

i) M = 31 x 97 x 127 x 191 provides N = 64 and

$113 M = 127 x 191 x 193 provides N = 128 and generates

a dynamic range of 22,15 bits.

generates a dynamic range df 26,12 bits

M =17 x 31 x 47 x 79 x 113 provides N = 32 and

As an fllustration of the ROM requirements for a typical Implemen~

taticn,-consider the second example from Table 4.8, fe, the implementa-

tion of the transform over a riné‘isomorphic to the direct sum_

GF(312) - @ QF(97%) @ GF(127°]. For.m = 31 only 10 ROMs are

required for one BCU, each 1024 x 8, hardwired in the configuration

showm in Figure 4.4.

For m, = 97, a complete 1ookvnp table array,

s
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™

tmplementing tﬁe structure of Figure 4,5, s shown ifi'Figure 4,7, The |
adders are fmplemented in a subvmodular fashion, in which case ﬁhe f
results of the prévious muleiplication can be obtatned direcily in the
submodular system, Tﬂé ROM count (pot counting the stored tables for n)
is 4 ROMs of size 256 «x 4 4 ROMs of size 128 x 8 and 10 ROMs, 256 x 8.
As a third parallel BCU, there s a butterfly array for modulus
m, = 127, Using the same approach as aBove, for implementation of the
structure of Figure 4.4, and package count given in Table 4.7, we obtain

the following ROM count for the BCU in GF(127°%3:

ROM size 256 x 1 1256 x 4 | 256 x8 | 512 x8 | 1024 x 8

gl Package 4 10 4 10 10
count . .

",

/

"4.3.5 Selection of transform parameters for paréllei micro?rocessdf
implementafion

~ For applications requiriﬁg o&ly moderate spedd but error fred com—
putation'of convoiution, arrays of microprocessors, operating in
parailel, can be used fo Implement circular convolution on two Blocks
of real data using the NTT over dtrect sum of GFCmizl. Both lodﬁ—up
tables and algorithmg arertored in the paralled microprocesso£4gystems.
Separate microprocessors can be used to compuée results In each modulus
and the results can bBe combBined usigg mixed radix conversioun. A vartlety
oﬁ cost versus speed trade-offs can be obtatned using differeﬁt micro-
‘processor systems noeg., Shottky-Bipolar bit sliced systemrwould provide
a high.speed implementation and the Intel 8048 system would pro&ide a

low speed, low cost implementation.

An efficient implementation of addition and-multiplihation, ﬁodulo?

. - . ' f//a

/
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a prime, m;, has been deéc’ﬁi&ed by .PuJ_.ln‘:en [11], together with an
: example of a rad®x 2 routine for a single chip 8 h:tt mic:roprocessor
from the Intel 8048 serie&. |
h Here, a selection of tranéform parameters for such an implemen¥ -
‘tatfon is giveﬁ. If we use three 8 bit" proceaso 2 operating In parallel,
then the moduli 127, 1Q1 and 193 provide a dynamic range of 22,15 hits
and a radix 2-transform length of 128 points.“Since we use an NIT over
_ a direct sum of GFCﬁiZI, 2 blocks of real'dag§ are Eréﬁsformed within
.‘.one N?T. B . |
The moduli 127‘and 191 have the form 4§ + 3, so a1 = §§ + /<12
and gz = 66 + ¥-1 6 are suitable generators of orde; 128 in the GF&IZ?E)
and GF(1912) respectively. For the modulﬁs 193, the generato£ can be
equal to 0'+ YT tf we choose for example r=125o0or r = 158, //
4.4 NTT Convolution Filter For Complex Data
In many applications such as radar,'sonar'or communicattont the
sequences to be coﬁvolved copsi;t of complex quantities. The convolu-
tion of complex-valued sequences can De pérﬁgrﬁeq ﬁaturglly with NTTs
defined in comﬁlex'residue rings. The ERNS impleqentation of such NTTs,.
presented here and published #n [44] offers greater fléﬁibility for the
" convolution with similar efficiency'of computatlon compared to the con-
ventional binary implementations. )
The numbers of the form A + iB, 3 = /=T, A and B integers, are
often called Ga;ssian integers. Hence, we wil] consider the'résidue

class of Gaussian integers, te, the complex residue ring CGmi) composed

of the set:
C(mi)ln {a + ib [.a, be CF(mi)}

| 2 | ¥
witere ] Is a root of %~ + 1. : E

&
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. 4 -
If'j V__-(j e C(m 1) does ndt belong to the field GF(m l, e,

x% + 1 is irreduc1b1e in GF(m, ) [x], then the complex residue ring,
{

CCm ), is composed of m'2 distinet élements, and. the multipllcative group

M i'

of tnvertible elements is of ‘order mlzvl. Hence C(m ) is isomorphic

to the Galots Field CF(miz).

this holds only for primes m = 4F + 3, For primes 46 + 1, -1 is a

It has been shown in section 4,2  that

quadratic residue, and x? + 1 has two solutions, A1 and A, , such that

Aq ﬁ_mi - A1. It follows that when m, = 1 (qu 4), ' may be considered

as a member of GF(mi]. The maximum order of any eleﬁept in the multi-

plicative group of the complex ring CCmi) is my

the transform is the same as in the real residue field modulo my. This

- 1; die, the lehgth of .

' is, for example, the case with Fermat Number Transforms, The generator

o of arder Ni’ where Ni is a divisor of w, -1, can be a real number,

o E QFfmi), or a complex number, o = {B'+ jy: B, Y € GF(mi)}. There ,

are ¢(Ni) real elements and ¢(Ni) complex elements of order Ni in they

¢ e

ring C(mi).
The results can be summarized as follows:

A complex number theoretic transform with the dynamic range

M= l%l'mi, mi prime, can be implemented in the residue number system

if the transform length N is a divi;oﬁ of.tﬁe ged of the nuébers Ni,‘ )

i=1, ..., L ‘ §

where N, m® -1, m =4 +73 ‘
u'i‘= m, -1, m =4+ 1 | SN (4.38)

FY

The above is equivalent to implementing the transform over a complex

ring Gy, which is isomorphic to a direct. sum of rings

*x:c}?*&‘cml@c%@..'.@cmi.' . .' X
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If m; = 45 + 3, the ring Cp, #s fsomorpiuic ta the Galois Field GF(mizl.

»

If mt, = 48 + 1, the r:tng Cmi is tsgomorphic ta Ef_xgdirect:smg, GFCmiL @
GF(hil. Since? for this case, é can ;e chosen to be real, one possihle
implementation of the;tranéfﬁrm is_to separately transform the réal
and iméginary parts in two Gaiots.Ffelds (chmiz. The other approaéh
is to use the mapping [34]
Yr0Ca+ §B) = (a +Ab, a - AD)

where A denotes one of the square ;oots of -1. L

fhﬂ\Here, the former approach will be considered, because in ROM arrays
the.real and Imaginary part can easily be handled separafely; impléﬁen—‘
tation of the(Qapping P énd solving for a and b at the output would
require extra hardware. The components of the complex circular convolu-
.tion of sequences w(t) - W&(t) + ﬁ Wi(t) and h(t) = hr(t) = h%(t) +

3 hi(t), obtainéd fromi - |
@ =y ) 1y, = L deely - wdely

: 4.35)
- hyUsmel = wdelp) +( n_s-elp) = w (el

+ hi(ls—t[N) . W";(l't‘N}):l

‘are required to have:an upper bound M. Hence, the absolute'upper bound

on W and-h is:

maxlwr] . max]hrl + max!Wi| . maxihil < g%% ' (4.36)
max]Wi] . maxlhi| + max]Wi‘ . max[hrl Ed E%% {437

4.4.1. ROM array -implementation constderations

-
-

As in section 4.3.4, we will consider a structﬁre‘of a radix-2 DIT
butterfly. For primes 4f + 3 generator o is complex, ¢ = B + j¥, hence

the array'of look-up tables required for the radix-2 complex calculation
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ur
=

is thé same as shown in Figure 4,4, where a; a' and b, bd' now denote

- real and imaginary parts respectively. For primes m, = 4 + 1, the

generator is real, and the real and imaginary parts can be handled

separately, as discussed in section 4,4. Hence, the number of look-up

tables is 6 for one modulus tf two Identical arrays are constructed.

As an example.of ghe ROM requirements for a typical implementation,
consider a 32 point complex transform in the ring |

CO31 x 47 x 97) = GF(31%) @ GF(472) @ GF(97) @ GF(97)
For mij= 31 only 10 ROMs are required, each 1024 x 8, For =y = 47 eacg |
multiplier will require the ROMs(Shown in Table 4,77, the adders will

~
®

each require Ehe following ROMs,
64 x 4, 256 x 4, 128, x 8
and the residue look-up for the input {a + ij will réquife two
64 x S‘ﬁOHs.
| For m, = 9% two arrays can bé constructedt)gach requiring two 128
x 8 ROMs, tﬁb 256 x 4 ROMs and five 256 x 8 Rbﬁs. The-Fotal ROM count

for this implementation, and two others, s shown in Tahkle 4,9. The:

generator leok-up tadles are not included in the package count.

"9.

TThe real and imaginary parts, a' and B*, need only be passed-once
through the index look-up.
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\ ‘ - : il .ROMs required-
: Dynamfc Range M Transform Length.| for .cowplex transform
. N ! Size Péékage Count
31 x 47 x 97 = 277209 32 C 64 x 10
" 256 x 14
64 x : 4
. . 128 x 14
- 256 x 10
- ) 1024 x 10
31 x 47 % 79 x 97 & 2257 22 . | esx 10
' - | | 256 x 34
) 64 x 6
128 x 18
T 256 x 30
1024 x 10
31 x 127 = 2%1+9% 64 256 x 4
| 256 x 10
256 x 4
1 512 x 10
1024 x 20

=\

TABLE 4.9. Package count for some possible choices of moduli

4

for a complex radix 2 computational unit

3



4.4,2 Parallel mieroprocessors implemenﬁanion consideratfons

For applications requiring only moderate speed but error free
'computation of congolution, two mlcroprocessors operating in parallel
 can be used to implementlcircular convolution using an NIT deflned inw
a complex restdue ring. |

This tdea has already been discussed in [40] but since the NTT
was defined In real residne ring, the transform length vas limtted to

1

a maximum value:of mi—ll If we choose the modull in the form 4% + 3,

and we use an 8 bit processor, such as the Intel 8085 for Motorola QBOO,

arithmetic modulo the primes m, = 239 and m = 251 can be canried out
in a straightforward manner, - h 7

The dynamic range is 15.87 dbits and the length of oonvolutton can
be increased significantly for a complex generator a. The maxlmum
sequence length for m 239 ts N = 57120 m 25 43e5.7- 17 and the max—
imum sequence length for.m; = 251 &5 Np = 63000 = 23°32 53°7 When the
radices {2 3,5 7} are used," the transform length is N = 840 = 23'3 *57
for complex input samples. Such an NIT would be useful for convolving
data with short duration impulse responses. The number of elenents of
“order 840 in GF(2392] and GF(251%) s ¢(840] = 197,

A computef program has been written- for searching forlelements of
order N. o1 = C34 + 41} and-qz = (42 + j5) are suitable generators of
order 840 In the GF(239%) and GF(251%) respectively. The multiplica—
tions (mod mi) of two integers can be replaced oy additions (mod(mi—l))
and index table look-up operations, If we choose generators such that
some of their powers have unity for ;eal or imaginary parts, then we
can reduce the computation time a 1ittle. The full prectsion final

result of the convolution can be obtained from:

3

g,
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4 . ¢
y =m *ata e i
vhere a = ly[ml
a2 = Hmi—:l Lmz ) Hy‘mz N al‘mztmz (4,38)

For my = 239 and m, = 251, ]‘“Tlimz = 230, so that the output y can be

t
. i
obtained from '

L

y = 239 230 @2—y1)1251+y1

If:the precision at the output can be reduced to 8 Bits, the scaled

output, yg» can be computed from

‘Ysz ’?ET = 1 230 -« (y2 -*_YﬂI 251 + 7,

The error of scaling 1s bounded by {1 - i—}, ie, is less than one
. 1 )
quantization level. This latter case yields a much smaller computaticn
time than the former, because the result can be computed using index
table look-ups. %
4.5 Transforms over Galois fields of higher degree
. When the degree n of Galols field GF(mp) increases, the transform .
.8
length, a divisor of mn—l, tnecreases significantly. However, the number

of operations required for the multiplication of two field élemants

grows very rapidly and may overshadow the advantages of larger attain- -

_able length. "Even if there exists the possibilitj of finding a genera-

tor with a simple form, there is sqili a general multiplication in the
transform domain to be performed. Addition of fileld elements is com—
ponentwise, hence the number of binary additions 1s proportional to n.
To minimize the num%er of binary operattons required for gemeral multi-

plication of two elements 1In GF(m"), we will consider the simplest forw

v
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of the irreducible polynomial Sf degtge n, ie, a*monic binomtdl x"r.
In this-casé general multiplication requi:res-n2 binary multipli-

catfons, n(n-1) Binary addttions and n = [Eng-multiplications by a.

-

constant r.

‘Consider the case™ = 4,. Asesume thaq-x“vr ts frreducible, *
Hence, the multig}ication of two eléﬁents in GF@"), where x*-r has a
root, A\, is as follows: \ -

(a +Ab + A% + A3d) @ -+ AB' + A%c* + A%’y = - “.
]aa"+ rhd' + rect +,rdbf‘m_+ Aabt + ba ; redt + rdc"|m +

Aile:c“ + bb* +.ca’ + rdd"] + A¥adt +bgt + b + da‘|

"

Hence, a total of 16 binar; ‘ﬁi;iplications, 12 binary additions and 6
multiplications by a constaq; r is required It is clqgr, from the

factorization of m®-1 that radix-2 transform lengths in GF(n*) are in-

.

-

creased twice over those in GF (m?) .
However, 1if thg‘in;reased transform length is of primary importance,
the search for computationally simple’ Galois fields of higher degree is
worth attempt,
&.é Summary
Techniques have been developed for indirect filtering of real and

»e

complex data, using‘fast Numbei Theoretic Transforms. Transforms have
been defined over a direct sum offﬁllois flelds, Z (:) GF(m %) and it
has been demonstrated that such NTTs provide greatly increased power of

2 transform length over those defined over - E» (:) GF(m ). If sequences
i:

to be convolved are real, the transform length is further increased by a

factor of 2 (in general by-a factor equal to the degree of extensiom).
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We have restricted the ring modulus, M, to‘have,a prime power

-

factorization where the power is unity. This restriction does not limit'_

the transform length and fepresents.thé most efficient factorization as
far as implementation is concerned, We are therefore restricting the

ring to be isomorphic.to a direct sumlof Galois fields rather than the

r

more general isomoréhism to a direct sum of Galois rings.

Within each Galois field, the most efficient implementation is
obtained when the irreducible polyn;miél (which is used to build the
extension field) has the form of the ménic binomial, f£(x] = x°-r.

The result has been obtained, and pédved, that for
primes‘of the form 4& + 1.the generator of the multiplic;tiéé group of
order N = ZB,.where B s the maximum poﬁer of two trapsf;rm length in
GF(miz), can have the simple form, o = 0 + Vr, Techniques for finding

o

such generators have been provided. This result allows hardware imple-

‘mentations of an -NTT over GF(miz) which are as efficient as those over

- .

GF(mi); the transformrlength, however, is increased significantly. The

" selection of transform parameters has been provided for two distinct

RNS implementaticns, are using arrays of ROMs and the other using arrays
of microprecessors (or similar computational elements). Initial results

obtained for transforms defined over a direct sum of Galois fields of

L
degreé higher than 2, z (::) GF(min), indicate that the number of
i=] ‘

'

binary operations, required for general multiplféation in the transferm
domain, increase rapidly with the degree, whereas the power of 2 length
is only doubled for each successive even value of n. However, If the

increased transform length is of primary importance, a study could be

undertaken to determine simple foxrms for generator o. Perhaps consider- '
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ing radix 4 implementations, ie, searching for a ple form generator

of power of 4 arder, will lead #n some wﬁyﬁto improving the efficiency.

+ This problem was nét addressed In this reseg?ch work, and indicates a

definite area for future research.
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CHAPTER 5 |
READ-ONLY-MEMORY IMPLEMENTATIONS OF RNS CODED ﬁECURSIVE
| DIGITAL FILTERS _ ' -
5.1. Introduction
Recent applications of RNS structures have concentrated, in thé
main,.on digiral signal processing functions. As one of the building
bloéks for linear digital processing, the recursive digital filter ﬁas
re;;ived some attention from workers in the field. Julliet [4] has

discussed applications of residue coding to the implementation of a

recursive filter second order canonic section, which is one of the

. basic building blocks for anylone dimensional recursive filter.

Jenkiné [5] has proposed hardware‘architectures combining residue
'

number concepts and combinatorial techniques. Combinatorial digital

filter architectures [17] eliminate gemeral multiplication through the
use of precomputed partial sumé'stored in ROMs. Residue combinational
structures, consisting of several short wordlength subfilters operating
in parallel [5] péovide the capability for efficient, high-speed and
high—prgciéion implementation of recursive filters.

Soderstrand [50] has applied RNS techniques to the implementation
of second order digital fllters based on a lossless discrete integra-
tion (LDI) ladder structure, originally introduced by Brutenm [51].

The need for scaling is avoided by storing complete looktup tables for °
multiplication by fractions. The RNS-LDI filter has been shown to
offer substantial cost savings and speed‘advantages over the currently

available structures ba

nary arithmetic. However, the stored

table implementatigh of multiplication by a fraction excludes a

93
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straighéforward application of RNS-LDI filters for adaptive filtering

or multiplexing schemes, where thexfilter coefficients are to be changed.
' dynamically This aréhiéeeture is also.not attractive for standard RNS
1nteger multiplication because twice as many scaling arrays are required
compared to the previbusly discussed forms..

4

-The combinational algorithm, residue coded ox not is not feasible
for adaptive filters because it is based on storing_brecomputed partial
‘sums. For a second order section, 32 linear combinﬁtions'of coefficients
would have to be computed and stored each time the coefficients were
updated, every combination requiring 4 additions. This procedure
p;ohibitively slows dawn the ﬁiltering'process.

| For the cases where the filter should handle adaptively varying

~

coefficients, the structures,with general multiplication should be

considered. In this case, scaling is necessary to keep the-data within

the limited dynamic range. .

The Re51due Number System p;ovides the potential for high-speed,
efficient implementatlon if the structures used as basis for RNS 1mple-
mentation have an abunﬁance addition and multiplication operationms, and
as few as possible scaling operations. Moreover, since in the gésidue
number system, addition, subtraction and multiplication are performed
with extended precision and the only errors occur during the scaling
process, such structures will also exhibit low sensitivity to quantiza-

. tion noise. Therefore, we will consider direct and cénonic formé of
_recursive filter second qrder sections, which-require the computation of
five multiplications and four additioms and can be implemented with only

one scaling process. We will present an analysis of quantization noise

and limit cycle effects in the proposed RNS implementationé.
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5.2.\Recursive-Digital Filters

A recursive filter is characterized by a difference equatioﬁ of
the form:

M N ' o

y(n) = ) ay u(n-1) - 3 by y(n-i) C - (5.1)-

1=0 =1
where {u(m)} is thg input séquéﬁce, {y(n)} the output sequence and {ai},
{bi} are the fillter coefficients.‘

Since recursive filters incbrporate\fee@back to modify the oufpnt
with weighted samples of previous outputs, they can generate an infinite
impulse response with the requirément of only a finite number of
computations per outﬁut sample. Therefore, recursive filters are
_usually more economidal in terms of computatiqn time and meﬁofy than
nonrecursive filters in producing similar magnitudewfrequgncy.resﬁonse'

u

characteristics.

: -
* For hardware realizations, it is convenlent to consider the

z—domain transfef function of the digital filter ﬁ(z), glven [18] by:

4

(5.2)

where bo gil'hnd z_l:is the unit delay'oﬁerator.

A digital filter transfer function can often beﬂrealized in a
variety of ways. Nolse and inaccuracies caused by the quantization
of digital filter parameters are Very dependent on the precise digital
filter structure. ‘

It has dbeen long‘recognized 53], [54], [15]) that direct imple-

mentation of (5.2) 1s usually to be avoided because the accuracy
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"requirements on the coefficients {ai} and‘{bi} are often sevére, since ~

-small errors in the coefficients (due to rounding) result in uﬁacceﬁtable_;

!

large errors.in pole positions. ‘In most instanées_it proves desirable

to realize a g;ven network by means of either cascadé or parallel combin-

ations of "second order séctions.beeause thése realizations are the least

sensitiﬁe to the adverse effects associated with‘finite register 1engtﬁ.
The cascade form corresponds to a fnctorizégioﬁ of the numerator

and denominator polynomials of (5.2)-50 that H(z) is expressed as a

product .of second order sections:

. N .
1 g’
H(z) = a_ ]J “i@ SRS

where N1 is theAinteger part of (N+1) /2.

If the transfer function-.of the filter is written as a partial
fraction expansion of first and second order terms,

: . Ny ‘
H(2) = ¢ + L H (2) : (5.4)
i=1

where ¢ = aﬁ/b » the entire filter may be visualized as a parallel
N - :

connection of the simpler filters Hi(z).
The individual second order sections
Lo + L1277} 4 1,272

H (z) = . ) (5.5)
1 + Ky z71 + K272 ‘

~where {Li}, {Ki} are real coefficients (L, 1s not required for parallel
form) are usually realized using one of thé following forms:

i) direct form 1, shown in Fig.5.3, implementing the difference

equation:



e H1€z).

HZ(Z)'

Fig.5.1 Cascade form

3

u(n)

Fig.5.2 Parallel form

- .y(n)-

97 .
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» y(n)

] %% Fig.5.3 Block.diagrgm'téﬁresentation of direct
i form 1 second order section of a digital
" filter '

&

y{(n)

Fing.a Block diagram representation of canonical
form second order section :

Q
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y(n) = Lgu(n) + Lyu(m-1) + Lo u(n421

-~ Ky@-1) = K, yGe2) * - 4 (5.6)
i1) direct form 2, also called canonic form, stiownn in Fig 5.4,
implementing the pair of difference equations _ B P
. . &

y(n) = Low(n) + Llw(n—l) + sz(n—Z)

w(n).= u(n)m— Klw(n—l) - ng(n—?) ) | 5.7

where &(n) is intetnal‘to the filter{
alternative second order section realizations, such as coupled.
form [18] or specific nonminimal realization proposed in [65], require,
ubatantially more computations than direct or canonic forms and are
thenefore used‘only when the quantization of parameters is ; prob&em.
The‘implementation of a second order section in direct or ca onic
form wouldﬂrequire four adders, five multipliers_and the numberzoz
delay units shown in Fig.5.3 and 5.4.
| Since digital filtet arilthmetic is-carriEALout witgffinite word-
length reptesentation,_the output of the digital filter deviates fnon
the desiréd characteristics. A great deal of study ([53-57]) has been
devoted to the effects‘of quantization error in recurs;ve digital .
filters and error accumulation for different filter topologies using
conventional binary arithmetic (fixed or'floating point); ‘In this
chapter; quantization effects assoclated with the RNS implementation,
will be‘discnseed.
5.3. RNS éoded Recureive Filters
Sinoe the ﬁNS’is an- integer number system, fractional filter
coefficients must'be tonverted to integers by mdltiplying by an appro-
priate conversi@n factor, p, and rounding the result to the nearest

PN L ST
! L'H;‘-' “‘;T;\/" - .
integer, Let the superscript denotelan Integer value, henge:

o



o

each secod

\Q; : ' . ‘ 400
= [L - ]RO ) .
‘ | | . C5.8)

Ky = [k p]RO

where [-] o -Tepresents the closest integer value function.

Scaling is necessary to keep the data within the limited dynamic

© range. Dynamic range requirements are discussed in later sections

Figure 5.5 - 5.8 illustrate cascade and parallel‘;ealizations of a

sixth order recursive filter, where second Stfer sections are implemented
Y
in the direct form 1 or #n canoriic form;

u(n)’ and ly(n)'

depote [the residues modulo mi of the input and output respectively
It can ﬂ% seen from the figures that we have to scale only once in

section. An immediate observation can be made that

the RNS implementation with*one noise injection source, due to Scaling

-

in.each 'second order section, can provide better quantization error
signal to noise ratio than the conventional binary implementations,
where the weordlength reduction is usually performed after ever} multi-
plication;. The error introduced by residue scaling is discussed in the
following sections,. ' - ]-
5;3.L. Quantization error sources

When a recursive filter is implemented using tne RNS, three forms
of quantization error are present: ’ .

i) ‘\errors due to quantizing the input signal in the

, A/D converter
11) coefficient rounding: error
111) error generated by ‘the scaling operation.

In order to determine the effects of quantization errors on filter per-

formance, it is first necessary to establish the error models.
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ot

Fig.3.53 Cascade realizacion of sixth order recursive residue filter.
Second order sections implemented in direct form |

-

’

).,

Fig.5.6 Parallel implementation of sixth order tecursive l

residus filter. Second order mections {mplemented
in direcr form 1

101
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Fig.5.7 Cascade reallzatian‘nf sixch order recuraive residue filcer. |
Second order sections implemented in canonic form ®

Iu’(n) |.“‘i

.

Fig.5.8 Parallel realizatiom of sixth order recursive residue filter.
Second order sections implemented in canonic form

102
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i} A/D qﬁan;ization noise

A quaﬂtization error is inherent iﬁ any A/D coﬁéersioﬁ process.
The exact input éamples are rounded to the nearest quantization level,
S0 that the quantized-input to the filter can be expressed as

u(n) + eq, u{n) is the exact sample and eQ is a quantizd%ion error

'bounded by Q/2 < e < Qf2 , Q—converter step-size

Assume that the dynamic range of the A/D converter is 2 bits.
In the RNS we are dealing with fntegers, therefore the converter
qgantizétion step size, Q, 15 equal to 1.

Usually, it is assumed that the errors are equiprobable in the

_ range (-0.5, 0.5}, with thts aééumption the mean and varilance of the

converter quaﬁtization error’ can be shown to be,
Ele | = 0 . .
[eg] |

N
»

. ) | i
2., =25 _1 :
ofeq =17 " 17 | , (5.9

The usual approach for‘treating the effect of input quantization'
in digital filtgrs ([55], [58]) is based on the a;sumption that the
following statistical model holds, i.e. | |

- thg‘error sequéﬁce ié uncorrelated with the input sequence

- the random variables of the error éroces; are uncorrelated

- the probabillity distribution of_thé error, is pniform over the

quantization error range.

Experimentél results[57] support the validity of these assumptions

'for signals with a reasonably large amplitude variance and wlde spectral

bandwidth. The steadflstate cutput component due to {EQ} has zero

mean and its variénce is computed [58] ‘from
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s2oe, =0 “ lerj ue) uE) H iz -"(5.10)
| lz[=1 | 3

‘The contour integral can be evaluated analytically (a tedious task.for

high order filters) or, if the filter coefficients are given numerically;

it can be evaluated by computer program or tables [60].
For the RNS implementation, the output variaonce . of the converter

quantization error is

. . . 4 _ :

2 = l_'—'_ ‘ -1 l ) C

g °€q 7 12 273 | B H(z) H(z™) [z] dz ) . _'(5.1D)
z —l g

Te compare the effects of input Quantization errar in the RNS and con-

-
PR

ventional fixed point implementations, the relative signal to noise

2

ratio, can be determined. If we assume the input signal to be

o“0e,. .
v
~ Q .

-

a uniformly distributed, zero mean sequéence, then the mean square valuoe

of the input is

ZZB
= .12
“w T 1z G ).
In the conventional fixed point implementation of a filter, the input is
usually scaled such that |u(n)] £ 1, For a B bit quantizer (we assume

the B bits of the A/D converter include the sign bit) the quantization

step 1is 2-B+1. Hence
-2B
2 = _2.—# 1 i ’
g er : 3 7n1 Iz]=1 H(z)‘?Fz )'[z} dz {(5%13)

The mean square value of the input is

o 2 = % (5.14)
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Hence, the output signal to noise ratio due to Input quantization is the
same in the RNS and conventional fmplementation.
1i) Effect of coefficient inaccuracy

- The error associated with the truncation and integer conversion

%

of filter coefficients is defined as— : | //
_ =1, +p-1, 1=0,1,2.
aLI 1 .Ai - . - (5.'15)
. EKI=K1'P"‘K1 .i=1,2 -

Usingza round—off procedﬁre toe determine the integer representation of’
coefficients (eq.5.8), the errors {eLI} and {eKI} are uniformly

distributed, zero mean sequences, with variance g2_ = The effects

I 12 ° N

of coefficientlerror o; the fiiter characteristic have received exten-

sive treatment in the literature [55], [18], [59] and they will not be
. - \ ’

discussed here. |

i11) Error due to SCaling -

-
* \

The effects gf RNS séaling on the performance of second order
recursive sections is dis&ussed in the following sectioné.
5.3.2.‘Scali£g in the RNS

In qrder to keep data within a given dynamic range, scaling will
have to be performed. The fundamental problems with the scaling opera-
tion 1n the RNS are that, unlike addition and multiplication, the
number system is not closed under the scaling oﬁerating and that the
residue digits do not convey any immédiate information about the magni-
tude of the ﬁumber.

Scaling in the residue number system is most easily.implemented

when the scaling factor is a product of seme of the moduli.
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Several techniques are availahle .far scaling within the RNS, The
: Ec}lowing discueeiqn briefly_octlines these techniques. A complete
:discussion with algorithms'can be fouqd'in the literature [4],[5].
if‘i) " Exact Division Scaling - ¢
This technique uses multiplicative inverses to perform division

The complete algorithm for scaling by the first S moduli in the RNS

. L " .
with the range M = | m, has been given by Jullien in [4].

i=1 * .
The output from this scaling procedure is .
X - |x| | |
X D
W [D:[ 5 _ (5.18)
. S .
where X is the input and D is a scale factor, D= | m - The result is
i=1 ' -~

meaningful only if the number X ts exact multiple of D. If we chogse a
divisor that is equal to one of the moduli, eg. D = ml, then |X|

directly avallable from the first residue and

* ¥l

RYESN

. _ - ~
If S > 1 we do not have direct access to lX\D, rather we use an

—

. | .

iterative scaling process [4]:

(k+1) - (k)
.‘¢ Imi || LA |

(5+1)

1 .
;: "mi (5.18)

with o) = x, 4 =W and $_= 168 for 1 sk < S; k< 1sgL.
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-~

- This technique wiil only generate residues for m, T - I I |
. - . .

or

(for 1 g i < §,(@, ﬁ‘) = and so we cannot determine
- i D mi

lWIm Y. If we wish to continue calculations in the RNS after such a
i .

scaling algorithm as in the case’of recursive Eiltering, we have to

reconstruct the first S residues of the scaled number. “This is

- referred to as base extension [2] and employs a partial conversion to a h
‘mixed radix weignted magnitnde representation. f‘

This scaling algorithm yields a rounded dowm (truncated) estimate.
lThe algorithm can generate a zero mean error by the addition of [-ﬂ to
the input [2]. The number of tables and look-up cycles requiredkfor
the scaling array can be obtained from the following

No. of Tables = (L-1)(S + %D - S;' .

_ No. of look-up cycies‘= L (5.19)
The program simulating 'Exacc Division' scaling is given in Appencix C.
{1) Metric Vector Estimate Scaling '

This algorithm uses the notion of scaled metric vector estimates.

Assoclated with each residue X, in the L tuple 1s a metric vector [1]

Vi“"i'mi"

(5.20)

kY

-

where m, = EE and the magnitude of the unit metric vector is given by
1

mi mi
" We can rewrite the Chinese Remainder Theorem (section 3) in terms

-

of a summation of metric wvectors:
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. =
" An estimate of W can be found by summing the nearest-integer values

of the metric vector scaled by D. - | . . ' : .

T |22
L J=stl ! .mil_mi'. y
e~ |5 ] - bl
. ‘k i‘=1l B i | Illk

A

for s+l < k < L. (5.21)

This procedure is folloped by the base extension algorithm, as in the
exact division case.

The ROM implementatian of tﬁis scaling algorithm has been quered :
in depth in[4]. Also it has been shown that the upper bound on the

error due to the metric vector estimate scaling i ]e[ < 8/2 and so is -

larger 'than for the exact division algorithm. If thi number of moduli
for scaling, §, is fixed-a priori, the efficiency of realtgation of the
estimate technique is either equal 'to or greater than the exact,division

4

technique. The latter, however, is more efficient if flex1billty in

A

S is required. .
ii1) Speclalized Residue Systees for Efficient Scaling.

3enk{ns [5], [49] identified four special classes of residue
systems in which‘the scaling algorithm,;given by equation-(5.22), is

simple to implement with minimal quantization error

L xi"
w'= |}, - | = (5.22)
1=1 * m, |m, |M
i1 D
"1‘1 .
‘where D = | | m,, n, Ts an integer —-for S <1<l and n, is replaced
i=1 R § \ D i

~ .
m
by [—;i+%:| for.1 s 1 < S.

Equation (5.22), as with the scaled metric vector summation,
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,

- represents the scéled vq;sidn of_ﬁhe Chinese Remaind;r Theorém.> Af&hough,
in general for § > 1 the upper.Bouqd on the error is lérge inmthis case,)
.;ﬁ/;;;;gious cho%ﬁe of mnduli [5] leads tq-ﬁinimal guantizatién error.;)/K
accummulation.. These classes of residue systems -have moduli, scale -
factors and quantization'erréré as Ebllowg: o
¢

Class I | : _ ‘5( .

mp = m, mp = m-1; D = m-l; - Q - 1/(m-1)) s € s 0

Class IT ' S L
m =2 o, =2 =2 0de g @ - 1/29
Class I1I

-

m = m-l, mp = m, my = mw+l; D = (m-1) (w+i); - [ e 1]5 e S[ (m-i-].]

Class-IV

K k k-1 k k-1
m =2, my=2-1, my = -1; D =25

E &+ “{" =1

In case of scaling by two moduli (Class III and IV) the upper bounds on

_ 1);“

-

the quantization error are-larggr.than the upper bounds for the exact
division algorithm, derived in the following section.

The upﬁer bomnds on thé quantizatioﬁ error and the efficiency of
implementation qf scaling expressed dy equations (5.22) and (5.21) are
comparable for small number of moduli in the RNS system.

5.3.3. Quantization error analysis for second order recursive section
and exact division scaling.

Here, the most general case will be cons%dered where the relatively

prime moduli {mi}, are chosen ‘to provide the required dynamic range



- . ) 110

M= [ |~ﬂ » The.exact division scaling algorithmf%ill be considered for

RNS 1mp1ementation ofla second order recursive section either in direct
form 1 (Fig.5. 9) or in canonic form (Fig.5. 10)

The diffeﬁgﬁce equations for direct and canonic forms respectively
iﬁ‘are given by equetioqs (5.23) and (5.24). r

y () =[% (Lo u(l) +Iq utr-1) + Ly uCa-2) -~ K1 y(a-1) - Ko y(n—-Z)ﬂ

o B} ‘ (5.23)
y() = Lo w(n) + L1 win-1) + L2 w(n-—Z}
win) = uln) + [; (- Kq wgn—l) - Kz w(n—Zé] (5.24)
or: . - | . ‘
1 - . - ' Q-
win) = [:E'(U'(ﬂ) - X1 W(p-l) - Ko w(neZD:]

where D is the scaling factor, D = 1 | m, 5 and n'(n) is the normalized o
j__

input for scaling placed as shown in Fig. 5. lOb.
Let the dynamic range of Input data and iilter coefficients be
‘< 2 and £ 2C respectively. The scaling factor can be chosen as p
(the coefficient integer norﬁalizatidn factor, p, has been defined inl
_equation (5.8)), to ‘that scaling does not change the overall filter \
- function. Usually the coefficients are in the range (*2 +2), hence

b~ 2072 1 desirable.

The minimum requirement for RNS dynamic range is M = 3 - oB¥C

for canonic realization and M= 5 - 2B+C for direct form 1 realization.
Increasing M will increase the signal to noise ratio, however it will
increase cost.

In standard fixed point vealizations of digital filfers, the

quantization errors associated with the realization of multipliers are
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u(n) h;' D—@
L,

-1 - _
Z Lo
Fig.5.9 .RNS implementation of direct form 1 second order

section

Lo
u(n) N () y{n)
. — Ty o
scaling R g
-K3 ] In
1 ' '
—d >—
- 2=l . .
K, - I 1,
Pl L ™~
Y P
(a)
scaling Ao'
u' (n) n ] l[\}_ »7 (n)
rAR Iy
™~
17
z7 .
Lo
[~
1~
(b)

F1g.5.1Q RNS implementation of second order canonic section

@) luty| < 257F \
=,

Cbl input normalized to [u GQT < 2 « D

-
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usually modelled as random unifoyml? distributed procésses, uncorrelatéd
.witﬁ the input. . This model, based on the fundamental work by Bennet )
'[5?], has been shown to give very reliadle results [55], [54], [56]
when the filter is driven By a non-zero input signal.
In the case of the RNS implementation the Sinary operations of
_ multiplication and additfon are perforﬁed in an extended precision. The
ouly errors occur during the scaliég pProcess. “
We will perforﬁ.a nolse analysis_based‘upon the same assumptions,
e, : “ |
1) fhe scaling nofse probability density fun;tion‘is uﬁiformly
di§tributed“ |
ii) the scaling noise is uncorrelated ﬁith the input
11i} the scalingnoise is uncorrel;ted from sample to sample,

For the case of round-off scaling, thé mean of the error is zero and the

maximm bound on the error canm be obtained as follows:

. ’“'[%ﬂx xe @~ xeiBl
®s T D D | D D =

- +
7 D

D - |nl, 1}“‘[%]‘1; <_ D-1 , D-1 D-1 '
N

D-1
Hence—D—ie. S Thm

The assumed .scaling noise probability density function is shown in

Fig.5.1la. The error due to round-down scaling [ %-] can easily be

" gshown to 0 £ e ¢« bl .
s D

Tn both cases the variance of the scaling noilse can be shown to be:

1 [ p-1 12 :
2 m = 2= :
s 12[ D ] €5.26)

@
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P
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‘D

"E‘ D-I s
.
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.~ .bhl Dl ®s 0 -1 s
- 72D 2D D
< (@) 3 (b)

Fig.5.11 Scaling noise probability density functions for RNS round-off

(a) and round-down (b) scaling

= ud) P(z)
0—-—-’— -~ \r-
e | 1
—e—a] A
2 R(z)
\.
u(n) P(2)
.—.—.—p—-——— ~
R{z)
e, (™ P(2)
R(z) )

Fig.5.12 Contribution of error due to Scaling for RNS second order
section realized in direct form 1 (a) and canonic form
®) Bz) = ip + 1y 271 + 15 27%; R(2) = p +' Ry 270 + Ry 277
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The scaling error contribution in the second order section realized in
direct fom 1 and canonic form 1s shown in F:l:g S 12,

The output noise wvariatce can be obtained from:

2 : o 1 -iD—l Q ) Pg?_ml [ ’ (
o - 5.27)
o AR Lzl rareh BT O
1 (pa1} 1 1
g2 = — [;} . — : - . [_I dz (5.28)
osg 12 (D 2n] R(z) « RGz"H'Y®

fz}=1
for canonic and direct forms respectively.
. \

The integral can be evaluated using algorithms presentefi in [60].

‘ In particular, for the second order section, i J

’
' 02 fr.1 2
1 gzl sz 2 1 . (LO ] (Ll ] Lz
m N -+ -+ X (5.29)
: |Z|= R(z) R(z ) KDU Kgl 0
wheére P(z) = Ly + Ly £} + L, z72
R(z) = Ky + Ky z7! + K, 272
e - KoKy - KKy
! Ko
KoLy - LoKy
Ll =
‘ Ko
©(Kg)? - (Kp)?
Kol =
%o
L Rolo — L2Kp
o Kg
;
2
®12- & 1)?
1 =
0 1
Ko
Ro'Le! - L1lKg b
Lg =
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It is obvious fromlthe above that either cis or. uﬁs is the smaller
. \ . 2 . .

_depending on the particular-values of filter coefficients,

Consider the qscond order canonic section:. Using the same approach
as in.section 5.3.1, the theoretical signal to noise ratio for the RNS

implementation can be.shown to be

hY

2

. R .
: . o _ou_ _ .2B | D ¢~
(5/N) pys = 5.7 2 [D—l] | _ (5.30)

whereas, for the conventional implementation

26w - nenlY «

1
_ 3 .
(s/N}, = = -8 R

1 -1y (1 2
9 " T3 " '2—“_'-5' @H(z) + H(z 1.)[;](12 + 3 = —

where J denotes ‘the closed contour integral. (5.31)
Figure 5.13 shows the plot of [S/N}RNS given by equation (5.30) versus
scaling factor D.

Since D i:p_= 2 , for practical dynamic range of filter coeffic-

2B

ients, ZC, [S/N)RNS g=2 and the relative signal to noise ratio for

RNS and conventional implementation for canonic form is

(/N} s _27+3 | (5.32)
(s/8], J ) )

The relative signal to noise ratio for direct form 1l realization is

given by

(s/x) RNS _

SR 5 - o (5.33)

C

showing that RNS implementation is far superior to the conventional
fixed point implemgntation when the error due to internal arithmetic is

a criterion of performance.
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‘ Fig.5.13 Plot of signal to noise ratio versus scaling factor

4
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\
Experimental simulations of estimated medn-squared output noise to

signal ratio have ;hown that the theoretical va%?e is very
pessimistic,
As an examéle, consider a second order lowpass Butterworth filter

" ,whose transfer function is. given by:

(5.34)
1 + 1.5610 z~! + 0.6414 z72 )

Assume an RNS implementation with C = 9 bits. ' Hence:

~ ~

Ly = 256, Ly = 513, L, = 256, K; = 400, K, = 164.

Assume the input signal to be uniformly distributed with zero megn and

B = 8 bits. The theoretical value for the signal to noise ratio

is in this case 66572. ’
The eﬁperimental ratlo of estimated mean-squared output signal for
a pseudo-random input to the mean-squared output ﬁoise due to residue
’ sca;ing is 94966 over a period of ‘1000 éamplés. C (_

The theoretical wvalue of the sigpal to noise ratio for the
- 3

conventional binary implementation is 17904, since for the transfer

ﬁﬁnction given by ‘equation (5.34)1 the integral in the équatibn (5.31)

evaluates to 1.807.

The relatlive signal to noise ratio defined by (5.32) is therefore
. e \
3.718, showing that the perfotmance of the RNS realization is also

.Superior to the conventional realizatlon for the canonic form second

order section.

5.4. Limit cycles in the RNS implementation of second onFer recursive

section

J
In section 5.3.3 the error due to scaling has been modelled as a
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random pProcess, uncorrelated with the érocessed signal, This assumption
leads to accurate results for most appligétions with high signal level
and sufficiently wide spectral contents.

Howéver, if tFe'input to the filter is constant, eg, zeroy
quantization nonlinearities in-digital filters implemented with fixed-
point arithmetic give rise to small amplitude 1imit cyclé‘oscillézions;
ie, thé output of a filter §emains periodic and non-zerc after the input
has been set to zero. Recently, specific structures have been'derived
[65] that are free of limit cycles; They also can be used as é_basis
for RNS.design, however, they reqniré’more nmultiplications than the
standard direct -form 1 and canonic forms. A recent review af li@it cycles
in digital filters, with_an extensive bibliography, has been provided by
Claasen et al [56]. : |

The problem of the stability of RNS coded second order sections is
different from most of the previously reported work, because the quanti-
zation is performed Ance per iteration rather £han after each multiplica-
tion. Fig.5.14 shows the model of a zero input second order section

-

with two poles and no zeros. The nature of the nonlinearities due to

i

round*offuand'round—dOWn RNS scaling are shown in Fig.5.15. The output,

y{n) is described by

|:— Ky y(a-1) - K, y(n-2)
P

y(n) (5.35)

and »

y{(n)

-K; y(n-1) -~ Kp y(n-2) + [:—g—:l _
: (5.36)

P

for round-down and round-off scaling respectively, where it is assumed

that D = p.
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Fig.5.14 Second order segtion model for zero input limit cycles,
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Fig.5.15 Scalér characteristic (a) round-off 1 (b} round-down
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As is well known [64], khg area éf absolute stability of the 1iéear
filter 1s given by ]K2| < 1 and [Kil <1+ Ky, This is the triangle inw
the tKl, K,) plane, shown in Fig,5.16. In the RNS implementqtion, the

. filter coefficients are converted Iinto integers, ’
121=[K1‘P] , {Cz"[Kz‘}?]

In the rest qf thisléection, 1limit cycles of period ome and twe will
be examined and necessary and sufficient conditions for the existence of
such limit éycles will Be presented,

(A) Round-off scaling

i) Limit ecycles of pericd one.
In this case‘we havé
ym) = F

-I”(]_'F—kz'F'}‘% ’ . . .
> = F (5.37)

where we assume p even for simplicity

-K " F-K *F+5

=F + ¢ : - (5.38)
P '

whereOgesP;—l<1

From the above we have
F(&l + iz +p)-p/2=-p ¢ - _ ' (5.39)
therefore B , ’
"?p<F(1A<1 +I~<z+p)_—p/250
or .

3 .Y ~
-5 P <FE& + Ky + p) ¢ pf2 : ~  (5.40)

-

F is an integer, hence limit cycles of period 1 exist only if the

values of K; and K, satisfy - ' N
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Fig.5.16 Stability diagram for filter of Fig.5.14
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1

"%‘P«: Ky + Ko 5—%. i : ' L (5.41)
. . |

L

or, since iﬁsidé the t;i;ngle of stébility ﬁa +'i2 ? -p

-p < il + ﬁz < - p/2 ] . | (5.42)
Crdss—hatched_regicn in Fig.S.i? indicates the absence of zero input
limit cycles 6f period 1. 1In particula%, fr;m-(S.ﬁo); limit cycles of
cbn§tént amplitude .- |
Fe=i1 caﬁ only exist if ﬁ; + &2 s;p/2

2 if X5 +IA(2$—§%

o
Il
i+

rry
]
i+

JIif Ky + K < - %—p etc.

The maximum amplitude of constant value limit cycles is given by

F < #-%Q—T— ; ’ ) (5.43)
p+ K +K '
1i} Limit cycles of period two
In this case we have
y(@) = F, _
y(ntl) = Fz . : (5.44)
Fl’ FZ integers.

From (5.36)

T_F, + K, ~F, + K, +p/2] :
11 2 2 - F (5.45)
_ P . R 2
——F-i—F-ﬁ+p/2'
2 1 1 2 - F (5.46)
L. P _ 1
or:
~F  *K ~F, s K, +p/2=p Fy+p-e (5.47)
-_— -ﬂ ...06 _= - - L] E_—_l_
Bl P ST SR p/2 = p Fo+p o g) 0< €1, €2 5 <1

Assume, first that F2 = —F., hence:

1’
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——Kl
*
Fig.5.17 Stability diagram for recursive residue filter.
"Necessary and sufficient conditions for existence
of dc limit cycles for round-off scaling
)
) F=(+1,-1) ~
F=(+2,-2)
D by ’
~
= K
- 1
P P
-p

Fig.5.18 Necesaary and sufficient conditions for existence of _
limit cycles of period 2 and Fl = F2 for round-off scaling
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/

1 2

A ~ ¢ .
Fl. . Kl - Fl . KZ +'p{2 =p - Fl,+ P e _ (5_\.48)_
and we obtain the inequality 2
- pf2 < Fl(K1 - K2 - p) < pf2” . . : " (5.49)
Therefore limit cycles of'period'Z, Fl = —Fé, can-exist only ‘if. '
. . pPl2 <K, -K <ﬂ3/2 p ) . (5.50)

or, since inside the triangle of staBility,.ﬁi - Kz <{ p, then
In particular, limit cycles with amplitude

F =i;,F =+ 1 exist for Kl-K2>p/2

1 2
= + T o= 4 A_A
Fp=%2,F,=%2 efist for X; - K, >3plh
p/2 :
F1,2 max = K. - K '_ ' . x (5'51)
' 1" %2 7F
) - {
Consider now F2 # -Fl and let G.= —Fl - F2 .
From (5.47) we get
H

G-K1+(l3-1<2+p=:_G-p+p(€1+e:‘2 , - (5.52)
which can be rewritten as PO

0 < G(K| + K, +p)+p<2p

_ : e \ : |

or ——F—<G< = n . (5.53)

Kl -+ K2 +p Kl + K2 +p
Therefore a necessary condition for the existence of limit cycles of

. <

period 2, for G = *1, is that

-—p,<_K1+K2+p<p
or .

-2p < K, + Kz <0 » (5.54)

1
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-

2
Subatituting these values into (5,47) a sufficient condition for

Considef G =1 and FI a -1 go that F., = Q.

" the existence of the limit cycle (-1, 0) is thae

Y

/2 s R <pj2 — -
3 -~ N ~ : - ’ '
-3p< KZ < - pf2 _ . (5.55)

Combining results of (5.54) and (5.55), the necessary and sufficient
conditions for the existence of the limit cycle (—1,:0) are illustrated

in Fig.5.19.

I~

Similar analyses can be carried out_for other values of El and FZ'

No limit cycles of périod 2‘and Fl # ﬂFz have been observed to occur

for [ﬁ2| < p/2.

(B) Rouqd—dqwn.Scaling.

The only difference in ;he analyéig of the occurence of limit
cycles Is that the add£t£on ;f one half of the scale factor is omitted..
i) Limit cycles of perfgﬁf;. |

-

In this case we H;ve, from (5,35):

-~ - -
[—KI-F—KZ-F i

F _ - . 5.56
. ) ' C )
or .
-~ ~ F L
—K -F— - L .
1 Kz =F+eg 0 g<l"
P
Therefore we obtain ' . -
-p <F(K +K,+p) 20 (5.57)

Since insgide the triangle of stability K+ K2 + p > 0 observation can
be made. that in this case the limit cyqieé/;f period one will have =~

negative magnitude, with

L
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Fig.5.19 Limit cycles of period two and round~off scaling |
Horizontally hiatched regiom indicates necessary
N condition for existence of limit cycles of period two.

'Verticqgly matched region indicates sufficient conditions
for existence of limit cycle (-1, 0)
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~ From (5.57) we obtain that, in particular,

P
p + K1.+ K

'  for"F = -]

‘-.':._0L1+K2+p}> '—Ap-.
of Kl + K + p p' __
and Kl +_K2I<'O _ _“l L ' N | ‘ : (5.59)
for F = =2

. R+, < -B/20 . (5.60).
for F = -3 . ’ v | . \
tRy<-2p - (5.61)
The regions in ghe (il, Kzl_piane where limit cycies éf constant
magnitude, F, exist are shown in Fig.5.20.
ii) Limit cycles of period two | - ' \:

Assume‘first Fl = *Fz

then

A ) \ ——_\“ .
F, * /R, = F; * K, ='pF, + 'pé S | (5.62)

and using the Inequality 0.2 € <;l
0=« F1C1c1 - K, - p) < p . | (5.63)
Limit cfcles of period two and Fl = ﬁFz can exist only if

p < Kl —\Kz < 2p (5.64)

~

Inequality (5.64) specifies the coefficients Ki» Ky outside the
triaggle of stability; therefore, dy contradiction, there can be no

limit eycles of period two with equal magnitude and opposite sign.
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Fig.5.20 Necessary and sufficient conditions for existence of

dc limit cycles for round down scaling X !
%2
P
N
~ A
Y
™
N
\\ -
& K
P > P 1
N /s
\ 1,
TN )
1V
A%
- -p

Fig.5.21 Limit cycles of period 2 and round down scaling.
Horizontally hatched area indicates necessary condition
for existence of 1limit cycles of period 2. Vertically

hatched area indicates sufficient conditions for exist-
ence of limit cycle (-1, 0).
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For 1?27!'—1? let G = -F, - F

1 1 2
In this case we have . "
L . ' .
_Fl . Kl - FZ . 2 = sz:{- pet ' . . (5.65)
- F2 -.Kl - F1 . K2 = pF1 + peg 0<ey, €ex<1

and
0§G(K1+K2+p)<21‘:h .
Since Kl + K2 + p > 0, therefore G can také on only positive values.

The necessary condition for existence of linit cycles of period 2 is,

for G =1

Kl + K2 < p . (5.66)
and, for G = 2

Kl +~K2 < 0 : . (5.67)

In partitular for G = 1, where Fl = -1, F, = 0, a sufficient and

2
necessary condition is
_0£K1<p' . ‘ |
-psK,¢ 0 | : : ‘ (5.68)
Combined equations (5.68) and (5.66) are illustrated in Fig.5.2l1,
Similar analyses foggother values of Fl and FZ lead to the conclusion
that no limit cycles of period two will occur for K2 > 0.
iii) Longer -period cycles
Limit cycles of period three and longer are due to "effective"
pole pairs [61] on the ﬁnit cirecle. It has been demonstrated[Gl], [62]
that for roundoff quantization these limit cycles can occur for
|K2| >0.5, irrespective of whether one or two quantizers are used.

The exact analyses of long perilod 1imit cycles were beyond the scope

of this research work. Computer simulations of second order recursive:
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sections with a set of 100 randomly chosen initial conditions have con—~ -
firmed the absence of long period limft cycles for' K, < 0.5 &, < p/2)

using round-off scaling. In the case of round-down scaling, no limit

‘},cyéles of 'period'loﬁger than two have been found for K2 <. 0.7

®, < 0.7 p).

The foLlowing.ekamples 1llustrate theloccurrence of limit cycles in
the RNS implementation of a second order section. Most of the cycles
have only aﬁpeargﬁ if the ﬁ;lter was stgrted with initial conditiogg‘

pertaining to that cycle. Only same of the DC limit cycles have been

reached from randomly chosen initial conditionms.

. Filter | RNS Filter - LIMIT €YCLES IN RNS FILTER
Coafficients | Coefficlents for ' '
C = 9 bits Round—down scaling Round-off scaling
K, =-~1.8437 fcl = 230 DC ifmit cycles  DC limit cycles
y with magnitude with magnitude
K, = 0.9375 Ry = 120 -1 +1
-2 | +2
-3 .+ 3
iy -1
-5 -2
-6 -3
-7
Ry = 1.8437 fcl = " 230 Limit cycle of Limit cycle of
period 7 period 2
K, = 0.9375 K, = 120 (3, -3, 2, -1, (3, -3)
_.]_’ 2’ —3)

TABLE 5.1. Examples of limit cycles in RNS
securgive digital filters.
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5.5 ROM ortented RNS based second order section

One important feature of using ROM arrays for building signal

processing structures is the ease with which the array can be pipelined.

-

: _ . 3 L
Consider a modulil set for‘%he-RNS with a dynamic range M = | [ m
. : i=1

16 < m, < 32, The secohd order RNS coded recursive filter will consist
of L parallel subfilters, operating in each mbdulus. Thé block 'diagram
of a canonic realization second order subfilter is shown in Fig. 5.22.
The package. count reqﬁired for the RNS coded recursive filter is ‘
1L x 9 ROMs plus the package count required for the scaling array
(gquation-5.19),.not counting stored tahles for the filter coefficients.
Since the fExact Division' scalipg requires L Eytles, thé throughput

rate of the second order section 1s given by

I S ) - ' :
t | (@L+3) T ‘ , (5.69)

£
where T is the memory access time, or in the éase of the pipelined
structure, the memory accesé time plus latch settling time (section 5).
In the pipelined structure, the data can be accepted at a rate equal to
the inverse of T, conser@ativelzﬁﬁgﬂexéess of 14 MHz. Therefore, we can
considér, for exampie, the paréllel configuration of L + 3 second order
sections, implemented with one multiplexed [18] second order sectiom.
The filter coefficilents are changed each clock pulse‘to correspond to
the appropriate section in tﬁg parallel configuration. Alternatiyé&y,
the mulgiplexed second order section cén operate upon L + 3 inputs
simultaneously, ie, the input samples from L + 3 sources are interleaved
sample by sample ardd fed (serially) into the filter. The tomﬁiﬁation

of these two types of multiplexins 1s also possible. If the filter

coefficients are allowed to be fixed, the package count of the RNS

»
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Ind)I
m&

( |1 ]mi '
a;‘_ - I-‘_l m,
[ ) . 1
. mg | -
1024 x 8 1024 x 8
'
1]
1
L + 2 [—» |.|m' ~,I+|mi
i
cyeles 1024 x 8 1024 x 8
*  delay T
11 +3 ‘ .
cycles I-Lzlmi
-delay

A A

. N ( ) .p. .
lu 1 |ml ‘ﬂ-lmi
1024 x8 | .
S
RAPY i
Dl Scaling I_ﬁ'
|v|m, =+ Array my
[v|m, -
' i R L 4 . .
by e | 1< He L
1024 x 8 1024 x 8
Y
| %ol
\.\ ' ¥
) ‘ .lmi -~
1024 xj
/

(’/Eycles

delay

L2 /m

1024 x 8

Flg.5.22 ROM impiementation of canonic realization second order

~subfilter for m

< 32 and variable filter coefficients
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second order section is reduced to 4 x L look—up tables plus the package
count for the scaling array. The throughput rate is increased to

1 .

£ = T | (5.70)

In this case, the secomrd type of multiplexing mentioned above can be
app ieh. | SN )
. Assume that the’ dynamit range of input data and fllter coefficients”
is 210 and 212 respectively.” One possiﬁae chotce for M is, M= 32 x 31

x 29 x 19 x 17, which provides a dynamic range of ~ 23.2 bits. With
the scallng factor equal to the produce of two moduli, D = 17 x le;
1.2~-‘2C_2; the package count for the 'Ekact Division' scaling array is
l&BDMs (equation. 5.19). The total- package count ;t the RNSffilter is

9 x'L %14 59ROMs, not counting Stored tables ‘of filter coefficients.

The wordrate of such a five modull‘kecond order section is equal to

o 1.8 Miz., . ' T
.. \ .

“"

When ‘the second order section is multiplexed to generéte the
parallel configuration of second order sections, the throughput rate is
14 MHz, the package count is reduced to 49 ROMs (since £2 is not required
for the parallel form). ‘

If the filter coefficients are allowed to be fixed, the total
package count of a 5 moduli second order section is 34 ROMs and the
wordrate is in excess of 2 MHz. Such a section could be multiplexed
between seven signals, having a bandwidth of 1 MHz each.

A variety of cost versus speed options exist, and all of the options

provide a viable state-of-the art solution to recursive filtering.
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5.6 Summary l// .

© This section has covered aspects of RNS implementation of i;%inite
“
impulse regponse (recursive] filters suitable for handling\hdaptively
'varyinéﬁcoefficients. An a;alyéis”of'the quantization error gséoéiated
with scaling in the proposed realizatioﬁ of second ordér'séctions has
been pggsented.
The counditions for existence of limit cycles "in residue co@ed

recursive sections‘have been derived‘for certain cases. . Theoretical
expressions for predigting rélative error duelto scaling, and bounds

on existence of zero-input limit cycles at the output of second order

sections were verified using simulation techniques. .



CHAPTER 6
CONCLUSIONS

The objective of the research work described in this dissertation
was to develop techniques and algorithms for implementing digital
filters using Residue Number System principles. Both finite impulse
response and infinite impulse response Crecursivei filtering algorithme
have been investigated.

The major results, conclusions and contributions may be summarized
as follows.
6.1. Finite Impulse Response Digital Filtering via Number Theoretic

Transforms |

Techniques have beee developed for RNS bdased implementation of
Number Theoretlc Transforms, as a way of fast,.error-free, ;ndirect
filtering of real and complex data. By eerforming ariehmetic in‘the
‘RNS and not usin%bpieary arithmetie elegents we are free to choese the
moduli {mi} and generators {ei} to @eximize transform length, restricted

only by algebraic considerations.

-
o

Defining Number Theoretic Traesforms over Galois Fields of second
degree, GF(miz), rather than over simple finite field of integers,
GF(mi), leads to geeatly increased power of 2 transform length, allowing
application of fast algorithms. In thé case of filtering real data,
two sequences may be simultaneously convolved with the same impulse
response. |

« Computing Transforms over a ring which 1s isomorphic to_a direct

sun of L Galois Fields, Z (*) cFm 2), e, using L parallel NITs
151
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Ll -

: - L )
provides dynamic range M = | l m where M 1s greater than the upper
T \i=1 L .

bound on the convolution sum,
" Within each Galois Field, GF(mi?), the ﬁost efficient implementa-
tion is obtained when the irreducible polynomial (which 1s used to build °

the extension field) has the form of the monic binomial.

" The result has-beén obfained, and proved, that for
primes of the form 4 4+ 1 the geﬁeraéér'of thé cyclic group,.ai, which
has maximal power of 2 order, can have a simplified form which éllon
a signifiéant'reduction in the number of binary operations. Techniques
for obtaining such generétors have been provided{  This resulﬁ\allows

' .
hardware implementations of NITs over GF(ﬁiz) which are as efficient as
those over GF(mi); the transform length, however, is increased signifi-
cantly.

A selection of transform parameters has been provided for hardwafelf-
implementation of Number Theoretic Transform filters for real da;a, when
the component fields are isomorphic to the finite quadratic intégérs;
and for complex data, when the component fields or rings agé isomorphic
to ;he residué classes of Gaussian integers,

6.2. Infinite Impulse Response Digit#l Filtering

Some of the design problems associated with a ROM implementation of
Residue Number SysEFm coded secopd order sections, which can be used as
a building block for ény order, one dimensional recursive filtefs, have
been considered. -

Based on the requirement that the filter should hagﬁle varying

coefficients, as required in multiplexing schemes or adaptive filtéring,

and also that for efficient realizdtion the gumber of scaling operations

.

.
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shouldibe minimiéed, we have found that thg canonic and direct form 1
second order sections are the most viable choice. These forms require -

the computation of five multiplications and four additions with only

one scaling process.

-

Anglysis_of the quantization error associated with 'Exact Division'
scaling has been'prese:z:a In the case of scaling by two or more-
moduli, this scaling technique has.the best error perforﬁance (smallest
bounds bn the‘scaling.error). The signal to noilse ratio of the proposed
RNS implementation has been shown to be always higher than the signai 
to noise-ratio of conventional binary implementations.

An analysis of zero-iﬁput'limit cycles (autonomous oscilllations)
in Residue Number System second order section realizations has been
presented. Regions on the éoefficient space ﬁhich allow-limit cycles
of period 1 (de) and peridd 2 have been determined and the bounds on
their magnitude have been derived.
6.3. Interface of Residue Number System Structures With Conventional

Binary Hardwére

A comprehensive review of interfaqe techniques.have been presented
and a new scheme for translation of resi&ue coded number Iinto a bilnary
form, based on a mixed r#dix conversion and bit slice technique, hag

been Introduced.
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APBENDIX A
LIST OF SYMBOLS
a|® adivides bt

(a,B] or gcd (a,Bb) greatest common divisor of the elements a and b

a = b‘(hod m) Integer a’ Is congruent to Integer b modulo m
a ‘multiplicative inverse of a
*%' mﬁltiplicative inverse of a modulo m
m )

CGm)f; {a + /=1 1 [ a, b e GFGmI} ‘finite fiéld‘of Gaussian Integers

F[x] set of polynomtals in the element x |

F(A) the extension field obtained by adjoihtng A to field F.

GFGﬁnI Galois Field with m" elements

GF(@“)V—'{O} muitiplicgtive group oflGFGﬁnI

GF@?] = {a+ /b | a, dbeGF@)} finite fleld of quadratic fntegers

T ideal | o

H(zi transfer function (2 transform of the-impulse response )

ind a .index of a | |

indaa ~ index of a, relative to @, & a generator of the multiplicative
group

L number of modulil

m i~th modulus

M  product of modult m,

r quadratic nonresidue

TGF(hZI Number Theoretic Transform over GFGmZI

Zm ring of integers modulo m
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the residue of x madulo mi

| g

¢$@) Euler's pht funectton . . .

o generator of the:»mult:hpli;;:atfve group i

A root of an frreducidle polynomial £(x]

a? varfance | - | . E'

E @ Ry direct sum of rings

{ai}‘ set consisting of. the e'l.s:rr;u?.nt:s‘-"ai

[ -1 Integer part of the term enclosed Y K
[ - ]Ro‘ the closest integer to the term enclosed
{E } binomial coefficients

‘h(s) *# u(s} convolution

h(s)_ ® u(s) ¢yclic (eircular) convelution
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APPENDIX B
 APPLICATION OF. THE BINOMIAL THEOREM TO ELEMENTS OF THE GALOIS

FIELD GF(m’)

Let a and b be two elements of the'ning'R."If m is any positive

integér, we have the binpmia1 expansion:

..

(a'{"b)m: am -{-{m} amﬂl b +..'. B [;‘:] am‘-‘k bk+ res

1
. n m-1 m T B '
: + [ m—l_} ab + b . | - . {18)
m - o '
where [ X } ='ml~ . =-m(mw1) oo (m=ktl)
o ¥ k! (m-k)! \ k! o
is the usuéi'binomial coefficient. ¢

" Binomial coefficients [ 2-] » 0'€ k € m, are always integers '

;(e.g., [451, Th.73).

If m ié'élﬁiime, then all the binomial coefficients in the expaﬁ—
siop 1B are divisible by m, because from tﬁe definition of a primé no
term in the denominator divides m in the numerator., '

-Equivaleﬁtly; we Ean-say that [ E ] , k = 1,-:.., m;l, is congru-

“ent to zero (mod m).

-~

Hénce 1B becomesﬁ
GG+ = @™+ bm) mod m {28)

If 2 and b are integers, from Fermat's theorem [47] it follows that for

'prime m.

(a+B)™ = (a +b) mod m | . B

Let u = a + /?ib'e GF(mz), vhere a, b € GF(m).
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. N\ .
Hence., from eq.ZB and 38

LY

Ga+fbl =ca+/'“‘tr1modm i . : @B}

Since r has to Be a quadrat:ic non~residue for a + f B e GFGn 1,
hence [42]
r Z <l mod m (5B)
m—1

sothatffm=r; Yt = rmodm. I

Thus, 4B becomes:

_Ca-l*/t.:b)_miav-ff‘bmod_ni.
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APRENDIX C
SIMULATION DETAILS

*y

“  The digital filtering algorithms described in this_thesis were
simulated on an IBM./ 3031 coepurer. :Liseangs of four‘prograﬁs are
given here.

The first program simulates indifeer filtering 0£ real or complex
data, via Number Theoretlc Transform defined over Galols Field GF(m 2y.
The value of the generator o of order N, required for the NTT, can be
-obtained from the secoﬁd program for primes 4& + 3; generator a for primes
4E "4 ircan be determined from fheorem A.Z'CCﬁapter 4).

Program 3 simuletes secoed order recursive canonic section ieeor—
perating "Exact Division" scaling.

Program 4 was writtem to simelate the Residue Number System

‘ Arithmetic "Exact Divisionﬂ,scaling;



00000000 NON0TN000

e

Rv***mm+$$+$kkPFUbRﬂn‘lhkkkks?k#?ﬁkhﬂk
itk R KR ek sl e R e A S S L A S L SR
THI3 FROGRAM COMPUTES COHTOLUTI&
USING NUMBER THEORETIC TRAMSFORM

‘OVER GFLOIS FIELD OF SECOMD GEGREE
ks kk#-«-k-k.k-k-«.k:«-:k'—k'-k'k'ofuk'k*‘i't'M'K*'*‘**‘“*:“***:R

SUBROUTINE REQUIRED - NTT
-P--*‘-k-k**:k-‘-k'k‘#'-k'k'k'k:«k'k'k'k«'«:k‘k*'&ukﬂce*k'*‘-‘“*******
MO -MODULUS -~

N —TRANSFORM LENTH .

M -NUMEER OF STAGES{HN=32tkM)

IR ~RUADRATIC NOMRESIDUE

IPETR ~"RERL” FART OF GCNERATOR HL.PHF‘

IGAMA ~7 IMRAGIMNARY " FART OF GEMERATOR ALPHA

1AL, I¥1 ~“RERL” AND “IMAGINARY” PARTS OF FIRST SEQUENCE
TX2, IY2 —“REAL* AND ~IMAGINFRY® PARTS OF

Ateleieiohsoiohet ioiorkiekkorokaeioRiei o riekio R ek

INTEGER IXL1{128), IYL{128), IX2{128), IY2¢128), ITRYL

RERD, IR, MO, N, M

READ, IBETA, 1GAMA .
READ, {IX4{Id, I=L, N>
RERD, (IYA{ID, I=4, N>
READ, (IX2{I3, I=1, N>

‘REﬂD;(IEE(I):I=i}N>

~— N

"NB—IGPNR"‘"-'"',"" TTormmo e T

CALL NTTLINL, 1YL, NA, NBh M, N, IR, MOY'

CALL NTTCIXZ, I¥Z NA, NB, M, 1, TR, MOY™
MULTIPLYING TWO TRANSFORMS

DO 38 I=1. N

ITRCID= IAL(I}*I¥7\I)+IR*I?1(I)*IV?(I)
ITRID=MODCITRCIY, MOD "
ITICID=TRAL IoxIV2( I24TRZCIIIYACID
ITICID=MODCITICIY, MO)

COMPUTING MULTIPLICATIVE INVERSE OF ALPHA

© NA=IBETR

NB=IGRMA

NH=N-1. .

DG S8 J=2, NN
IR=NF#IBETA+IRWNE+IGAMA
IB=NF«IGRMA+NB+IBETA
IAR=MODC IR, MO

IFCIA LT 83 IR=IA+MO
I18=MOD< IB, MO

IFCIB. LT. B> IB=IB+MO

NA=1IA

NB=IB

COMFUTING MULTIPLICATIVE INVERSE OF M
IWY=3

INV=THY+L

IFCMODCINVN, MO, NE. 4> GO TO 35
DO 46 I=1, M -
ITR{ID=MODC TTR I D% INY, MOD
ITICI=MODCITI CID TNV, MO
COMPUTING INYERSE TRANSFORM

CARLL NTTCITR, ITI, NA, NB, M, M. IR, MOD

SECOND SEQUENCE

s ITICL28>



00

c

LO S8 IsL M T s

b1} PRINT;I;IHi(I};I?i(ID:IWQ(ID;I?QCI}_

FRINT 55

S5 FORMATCS ) Ty CONVOLUTION

0O 8@ I=1 N

8@ PRINT, ITRCI> ITICIO »

=t

15

STOR
END

" SUDROUTINE NTTY Iw:IV:Nﬂ;NB;M;NJIR;NON\
I e e e S R

TH15 SUBROUTINE COMPUTES RRDI«—” DIT NTT
INTEGER Ik{iZ2 o);I?kl“S\
NY2=NA2

JMA=HN-L

J=1 :

SCREMBLING QF IHNPUT DATAH

Do 7T I=1,HML

IFCIL GE. J3 GO T0 S5

IT IRCT>
ACID=IHCID

IX(I)=IT

IT=IYT2. .

IYCId=IVCID

IVCIS=IT

K=Ny2

IFCK. G Jo0 GO 7O 7

=J-K

K=K/2

GO TO & .
=J+K7 T
NAL=NA -
NB1=NB .
PERFORMING RADIN-Z NTT
DO 20 L=1.M

LE=2%%|_

LEA=LEA/2

NLE=N/LE

IVI=0

IUR=1

IWiR=1

IWI=8

DO 45 LI=1, NLE
IRR=NAL4IWR+IRANEBL*IWI
IRI=NALATIWI+NBL14#IWR
TWR=MODC(IRR, MOD
IWI=MODCIRI, MO,

NA=IUR

NB=IUI

DO 28 J=1, LEL

DO 468 I=J, N, LE

IP=T+LEL

ITi= I“’IP)#NH+IP*IY\IP)BNB
ITL=MODCITL, MO
ITZ2=IYIPY>*NR+IXK(IP>#NEB
ITL=MODCITL, MOS
IFCITZ LT. 82 ITZ2=ITZ2+MO
IH(IP)—Ir I»-1IT1 .
IPCIPM=IY I N-IT2
ITH=14{IFx
IK(IP}=NDD(IIHJMD?

Y
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IFCIRCIPY, LT. 82 IKLIPI=ISCIPY+MO
IIv=IY(IPY

1Y IPO=MODSIIY, MO
IFCIWCIPY. LT, 8> IY<IPX=IY{IP>+MO
IHCIN=TRCIN+ITL ‘
TIR=INLID

1T H=MODC T IN, MO
IYCIN=IYCIs+IT2

II¥=IY{L _

IF ¢IKCID. LT. 8 IN{ID=IW{Id>+MO.
1Y IH>=MODCITY, MOY :
TFCIYCIN LT. 8 IW<Is=Iv{I>+MD
TU=SIWMRAIUR+ IRHIWI«IUT
II=IWR+IUI+IWI#IUR

TUR=MCD TU, MOD N
IUI=MODS I I, MO

HA=IUR

- NB=IUl

RETURN

EMD
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hskctciohcrskcindckskior PROGIRAM “'-fc«-k-ﬁ-k;-d-mu-«:«-k-k-m«
PROGRAM FOR FINGING CDMF‘LE.A PRIMITIVE ROOT OF UNITY ALFHA

o000 00n

(L

W

[

Y]

It{ THE GALOIS FIELD

* bt R R R R R R R R R R TR b h‘k*«h-’k
NA -REAL PART OF ALPHA-

NB -~IMAGINARY PART OF RLPHA

N -ORDER QOF ALPHA

MO--MODULUS _
:«-«:«-«*:u*:k:«*:nyuk:mh:«:mm*au«wmm«=m«=h$=«=«=+&
COMPLEX %) W, ', 2, CMPLX

READCS, 13 M MO .
FORMATCZIZ - : .
MI=MO--1

CB=g.
DO ¥ M=1,MI

A=0.
=B+1

‘DO ¥ J=1,MI

A=A+1
W=CMPLK <A, B)
W=CMPLX CF. B
DO 3 I=1, N
REPEAN
AA=REAL (W>
B=AIMAGW>
K=INTLARAY . '
L=INTEBBY 77 70T T T
KK=MOD <K, MOD
LL=MOD L, MO

I1=I+1 ‘ o e

IFCKK. LT: @D kK"'KK+MD
IFCLL. LT. 8> LL=LL+MO

IF< L. EQ. 82, AND. (KK E&. (MO- .1.))) GO TO

C=KK
D=LL
W=CMPLX{C, D)
CONTINUE
IFCII. EGL NA2)> GO TO 18
IFCII.EQ N> GO TO 3
CONTINUE
RR=A
A=k 2~Brce

=2uHR+B .
NA=INTLA> )
NB=INT (B>
HA=MOD {NfA, MOD
NB=MOD{NB, MO>
IFCHA. LT. 8 NR=NA+MO -
IFCNB. LT. 82 HB=NB+MO
GO TO 14
NA=INTCRD
NB=INTIEY
PRIMT 12, NFl, MB
FORMARTL " ., "GENERATOR ALPHA, 7, 13, 5K

3

-1



00

15

:kau«-.«:#:u:«:«mzu:«*w:«:«:&um:«mms«:«:mu*:d-::«:u:u-«:«
GENERATING FOWERS OF ALPHA

PRINT 43

FORMATCT 7, R 7 PCiNER " TR
Z=CMPLK (R, BY

w=CMPLX (A, B

NT=h-1

0O 15 I=1, NI

Z=vwz

E=REAL(Z’

F=RIMAGCZ)

ME=INT(E>

NF=TNT<F>
NEM=MOD < HE., MO
MEM=MODCHF, MOY .
IFCNFM. LT, 93 NFM=NFM+NO

-IFCHNEM. LT, 85 NEM=NEM+MQO

IT=I+1

FRINT. II, NEM, NFM
EE=NEM °

FF=NFM
Z=CMFLX{EE, FF>
CONTINUE

STOR

END

TRERL ., TR, “IMAGINARY "2
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\.
Cdestik R HGRCRHGRRHRP RO GRAM  SikkiirsieRiio ik

THIS FROGRAM SIMULATES THE RESIDUR CODED
SECOND ORDER CRANONIC SECTION

AND ALS0 COMPUTES RELATIVE MCAN SQURRE ERROR
DUE TO “EXACT DIVISION © SCRLING

AL, AR, BB, BB2 ~FILTER COEFFICIENTS

 AFARLKTHek =~ D +RAZKT e -2

H{E) mmmim o m m e e -—
1+BBLkTehok { =L ) +BB2HTebsh { =2

D -SCALE FACTOR
P _~INTEGER NORMALIZATION FACTOR FOR FILTER' COEFFICIENTS
FRCT -MAXIMUM RBSOLUTE WALUE OF COEFFICIENTS
E -NUMBER OF BITS TQ REFRESENT INFUT
C ~NUMBER OF EBITS TO REPRESENT FILTER COEFFICIENTS
K1, X2 —INTIAL CONDITIONSCNIN-1> AND W{N- 223
S —INPUT WITH THE RANGE(—1, +1) :
X —INFUT WITH THC RANGE (~{2uek(B~13), +{24atlB=1>2)
5YR -RELATIVE MEAN-SQUARE ERROR
N — NUMBER OF SAMPLES
I -WUMBER OF DIFFERENT SETS OF FILTER GOEFFICIENTS
SO HCRCA SO A S S R R R e S e
DOUBLE PRECISION ARL{20), AR2¢20>, BB1(20), BB2(20>
INTEGER X
DOUDLE FRECISION HOLI, HOLS, HOLD
DOUBLE PRECISION X1(28), X2{20)
DOUBLE PRECISION X3{20), X4<26>

"DOUBLE PRECISION A1{2083; A2{26)5,; BL{20>, Ba{28> IR

DOUBLE PRECISION YY<{18Q0>, YYS{180BH, EXA8695, SUM
DIMENSION IAL<20>, IR2{2G>, IB1(28>, IB2(26>

- DOUBLE PRECISION Y. YS

FRCT=2

RERD(S, 45 II,N.B.C
FORMAT (LI

READ, <AALLI>, I=1, 11D

.RERD, (AR2CI), I=4, II>

RERD, (X1<Id, I=4, II>
READ, {X2<¢I>, I=1, 11>

READ, ¢(BBL<1>, I=t, IIP

READ, (BB2CI>, I=1, IID

P=2. DG {C-1. D> /FACT

DO 166 I=1,II ‘
TALCID=RALC I >+P+DSIGNLB. 508, ARLCID Y
IA2CI>=AR2{ I >«P+DSIGNL 8. SD@, ARZCIND
IB1<I>=BB4{I)#«P+DSIGNLS. 5D, BBL{I>)D
IB2{I>=BB2{I>+P+DSIGNC(B. S5DG, BB2¢I)>>
PRINT, IRL{AD, TARCLY, IBLCL), IB2¢AD
ALCL>=IRL(LD

R2{LI=STR2CL)

BACLI=IBLC 4D

B2{1r=IB2(1)> ,
FHNOM=P4{ 224k {C~12 >

1X=356141 "

DO S J=1, N



el

c

doo

Oco

—

DCFINE INPUT SEQUENCE
CALL RANDUC TN, T 'YFL

- TR=1Y

. D=2 (rFL~-@, 3>

w=a, DOk (B-1, (@35

CALL CANONCAL, AZ, B, B2, Wi, 82, W, 7, I, Py
CALL CﬂNOS(Hi;HE;Bi;BZ;Hi;NEgKa?S;I;P}

PHYS(Tr=aYS

AR ARy

CONTINUE .

sUM=0

Y=g ‘

DO 28 KJI=L, N
E(KJ)=\“7"~:‘S(KJ)—‘7"# CRJI D duon2
Sh=RSY+HYYS (KT D a2
SUM=SUMYECKT D
SYR=SUMSSY
CONTINUE

STOR

END

SUBROUTINE CANGN (AL, A2, Bl, B2, X3, Xd» X, ¥, 1, PO

AR AR A R RSO A R R ek )

THIS SUBROUTINE IMPLEMENTS SECOND ORDER CANONIC SECTION
USING DOUBLE PRECISION FLOATING POINT ARI THMETIC

INTEGER X

- DOUBLE PRECISION ¥

DOUBLE PRECISION AL1<{208),R2¢28), B128), B2{28), X1{28), X2(26)>

DOUBLE PRECISION X3<(28), X4(28>
DOUBLE PRECISION HOLI. HOLS, HOLD
D=p _ , A

HOL I=-B1{ I D#X3C I -B2C I D wK4CID
HOLS=HOLI-D .
HOLD=X+H0LS -
Y=HOLD#P+AL (I D#KI I X +R2C T D4t (I
K4CID=KILIY :
X3¢ I2=HOLD

_RETURN

" END

SUBROUTIMNE CANGCS{RL, A2, Bi, B2, X1

P L ST TLERIN VLY SEYYY PEY PEN PLY PN VRN REY Y DIV PR PRC TP TP S0t b b b e 2 de e

2 %2, %X, ¥S, 1, P>

Lt and Lt ) L el ol at Vb LB o o )

THIS SUBROUTINE SIMULATES THE RESIDUC CODED SECOND ORDER
CANONIC SECTION WITH “EXACT DIYISION’ ROUNDOFE SCALING

INTEGER X B
DOUBLE PRECISION vS

DOUBLE PRECISION RA1(283,A2{26>, B1(20), B2<205,; K1iC283,

DOUBLE FPRECISION HOLI.HOLS, HOLD
D=p ‘ S
K=K

HOLI=-B1 (ID#XL{IDX-B2CID#K2¢ I D+
HOLS=HOL I D+DSIGNC@. SDG. HOL 1>
HOLS=IDINT(HOLS> :
THOL=HOLS

HOLD=IHOL _

THOL=IHOL~1
PS=HOLDAP+AL S T 3 (I D +AZ I d%K2C T D
R2CID=K1CID

X1<I>=HOLD

RETURN

END
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..THIb PROGRHN IMPLENENT; RESLDUE NUNBER SYSTEM 1

“EXRCT .DIVISION ~ SCALINMNG ' '
BY THE PRODUCT OF FIRST “Ni~” MOCULI IMN ’N’NODULI RNS SYSTEM
ALGORITHM FOR “EMACT DIVISION’ SCALING IS_GIVEM IN REF{4
N -NUMBER OF .MODULI : _ -
N4 -NUMBER OF MODULI FOR aCHLING R ‘ .
MCIn ~MODULI ‘ ‘
%<Id -RESIDUES MODULO MXI» OF MUMBER TO BE SCALED
Y(I» -RESIDUES MODULG M{ID> OF SCALED NUMBER
INTEGCR P;NaF’UN;:UN;M\lG):\(lG,aTI\lB\ TICAAY, FOLa ), ¥OLd), RCLED
INTEGCR b : . :
READCS, 143 M. Ny
TFORMATC2IZR N B
RERD, {MCTID, I=1, N
READ, <KX{I13, I=1, D o
PRINT 1 ) :
FORMATY” 4, “CALCULATION OF Ta(I, IDTLLI, ID.F{Ix>"D
Mi=2 '
DO 38 I=MLN
F{id=Kd{1D
IF\I N.L) SSJ 55: (S
L=I-1
SUM=6
DO 22 J=1,L
gk - ;
DO 28 K=J.L - 4 oL
COMPUTING NULTIPLICHTIVE IHVER:E OF MCK> MODULO MCID
MULTIN=MIOK D #ee CMCID =2 MO T D MO Db (MY T 3 =20 ML I DD
P=MULTIN#P : . 4
CONTINUE T - -
=—P4F{T> ' : .
IFCWD 10, 40, 48
W=M< IO+ -
IFWY 108, 48, 48 -
TICI>=MOD MW, MCIDD
PRINT .3, I, L TI(I
FORMATC? 7y 1=, 13, 3K, 7 J=", I3, 3K, "TLLI, Ja=7, 14> -
SUM=SUM+TICT D
CONTINUE ‘ € .
P=1 : -
DO 2S5 K—i,L
MULTIN=N&K)**(N&I)-;)—H(I)*xN\K)**\M\I)—QDXM\I>>
P=MULTIN«*P . ) _
CONTINUE & . - o : ’
WaPu (T
IFCWY 58, 68. 68
W=MC T 2+W
IFLWD 53, 58, 66
TICI>=MODCW, MCIDD
FSUM=SUMSTICID
FCID=FSUM-MOT o (FSUMAMOTI D)
PRINT 4, I, TILID
FORMATC” 7, “1=, I3, 11K, "T4CI, I3=", 4D~



U

()

L
v

)
ul

"PRINT S, I.F(Is

Li=I-1 o

- 151
FORMATC " 7. 7 T=7, I3, 24k, "FI3=" 140

50 TO 38 o -

L=HL

PRINT 2 - R
FORMATC” 7, “CALCULATION OF T2YI, 1D, T20IL, J, WCId

SUM=8 ' o

DO 32 J=l. L , ) —

p=1’ o, ‘ o ‘ -
B0 33 K=J,L - - .
MULTIH—N\K)*#\NxIb—L)—N\I)«\ka\hh\N\I\—93 AMCL5D
P=MULTIN&P =~

CONTINUE

W==PwF (T2
IE(WY. 35, 45,45 .

WM 2+ : . >

IFLWDT 35, 45, 45

TICI>=MODCW, MIDD

PRINT 7. I, J, TI(I> . '

FORMATL T 7, ¢ "’aI«ag«:’J=’JI;J¢«;’T4\I:J)—';14)

" SUM=SSUMATICT)

CONTINUE

=4
DO 356 K=1i,L
NULTIN=N\K)**\N(I)—2) M\I)#\N\K)**\M\I)—¢)/N\I))
P=MULT I NP
CONT ITNUE

.N=P*K<I>.._-.-q__...__.‘.... ..__-.._‘..':__P_“':-_._..;_... Ce et . . S . o o .o

IFLWD 86, 298, 58 ¥
W=MCID+M . . -

IFCWY £0. 98, 28

TICI>=MODCW, MLIDD

FRINT S, I, TICID

FORMATL Y 7, 7I=7, I3, 41K, “T2{(1, I>=", 142

FSUM=SUM+TICID :

P IO=FSUM-MO I D% (FSUM/MIID2

PRINT 3, I,'w(I>

FORMATC ’:’I=’:IJJLLAJ’V(I)3 414)
R{A>=Y (HA+LO :
IFCI-NL-22 ABJLGGJLBB o

L=I-N1-1 - L2

PRINT 12@ ‘ ' ' -
FORMRT ’CHLCULHTION OF T3CIL I3, T2C(I, 0, ROI-NLD"D

SUM=8

DO 185 J=1.,L
P=1

L2=J+N1

DO 4168 K=L2.L4
MULTIN=MCK ek CMET D =23 =M I D (MEKD e (ML T 3 =-20 /MIID S
P=MULTIN+P . .

CONTINUE ‘

Wm—PwR (T2

IFCWXIAS, 125, 125

WM I+l

TFCWNLAS, 425, 125

TJ\J)#NOD\NJM\I)}



£ PRINT 127, 1, 1, TILI>

127 FORMATC S 7, ~I=7, I3, 3K, 7J=", I3, 3K, “T3LI, Jo=", 14
SUM=SUM+TJ\J> - ' -
105 COMTINUE
CP=L
L3I=NL+1

DO 1326 Kal3, L ' . .
MU TIN=MOKD “-“\NKI l—ED—N\IJ*kl‘hk\-&#k[“lkI)—Q’.‘\fN\I).i .
P—NULTIH*P . L
L WEPw I o N
138 CONTINUE S o
_ O IFQMY 130, 140, 148 ot
130 W=M{Ia+W
IFCHY 138, 148, 148 =
143 TICID=MODCW, MCIDD .
PRINT lSS;I,TI\I) .
455 FORMRTL 7, 7 I=", I3, 44K, “T3{I, I2=", 14>
FSUM=SUM+TICID :
N3=T-Ni
RENII=FSUM- M(I)*(FSUM!N(I))
PRINT 1“BJI;R\N;)
178 FORMAT < . ’I=*,14,11x,'R\I—N¢>—-,I4>
. IF(I"'N) _sB: .‘5881 50648
' 38@ PRINT. 202 ‘ -
262 FORMARTCY “, “CALCULATION OF T4<{I,JawId>’>
DO 298 12=1.Ni
SUM=0_ ’
J=1
—HN=R(J.)
TICI>=MOD{W, MCIZ2OD
_ PRINT 281, 12, J, TILJI>.
261 FORMAT ¢~ 7, 2I=7, I3, 3% 7J=7, 13, 3K "T4{1,.13=", 14>
h L3=N--N1-1 ‘ :
L4=N1+1
IFCL3. LT. 2> GO TO 225
DO 216 J=2.13
P=1
L5=J+Ni-1
DO 226 K=L4, L5
P=M{K>*P
226 CONTINUE
‘ W=P#R{J> , ~
. IF(W> 230, 248, 248
238 W=MCI2>+W
IF(WS 238, 2409, 248
248 TJICID=MODCW, MLI22D
' PRINT 258, 12, J, TILID
‘258 FORMAT <7 7, 7I1=7, I3, 3%, 7J=", I3, 3%, "TILL, Jo=", 14D
T SUM=SUMETICI D § )
218 CONTINUE :
225 J=N-N1
Ls=H-1
P=d
DO 268 K=L4, L&
P=MCK P



8

I

.‘l

)

8]

1.
W

O

D=0
IFCRCTD. GE CMSND 233 D=L
N=P¥\RuJ)—D*MkH)>
CONTINUE o ‘
IFCW) 279, 286, 260
W= I20 -+
IFCWY 2708, 288, 286 o , . .
TJ'J*;MOD<N,M<&9>\ o o N
PRINT S,I_JJ,TJ\J) : _ - _
FORMAT S I= »IJ:;H{’J=’:IJJSRJ‘T4(I;N-N13=’JI#>
Fan :UN+TJ\1)+TJ\J‘ o g -
\IZ)—F:UN =M I 20 FSUMASMC T an
FRINT @28, 12, 'W{I12) o
FORMRT <~ 7, '1--,1¢,11n,’”<1>~‘,14~
CONT IRUE .
CONTINUE
sTOP . _ o
END o~
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