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Abstract

In this thesis two genetic algorithm methods are developed which may be applied to
perform real-time, on-line control of the shunt capacitors and voltage regulators that are
placed on a distribution system for the purpose of reducing distribution losses, while
maintaining all bus voltages within £5% of their nominal rated values. The first genetic
algorithm method employs a penalty based fitness function, while the second genetic
algorithm method employs a fuzzy logic based fitness function. Both methods are tested on
a 30 bus distribution system under varying load conditions and the results obtained are
compared with the global optimal solution which is obtained by performing an exhaustive
search of the solution space using the penalty based fitness function as its objective function.
The results of the penalty based method are quite close to those of the global optimal
solutions for the load levels studied. The results of the fuzzy based method while not as good
as those of the penalty based method are quite promising, and deserves further study. Both
genetic algorithm methods were capable of arriving at a solution in less than 3 minutes and

30 seconds, and hence, would be suitable for real-time, on-line applications.
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Chapter 1

Introduction

1.1 Background

The quality of service of a power system depends in part, on the correct voltage level
being consistently available to the customer. In order to assure this, compensation is often
needed on the distribution system.

Compensation may be performed for various reasons and by various methods.
Choosing the most appropriate type and level of compensation necessary is important, as
overcompensation can be as harmful to the system as under compensation. Once the
appropriate type of compensation has been determined, a method of controlling the

compensators under the varying load conditions of the system must be formulated.



1.2  Thesis Scope and Objectives

The objective for this thesis was to develop a fast technique for controlling the shunt
capacitors and voltage regulators which are placed on a distribution system for the purpose
of reducing the distribution losses, while maintaining the bus voltages within +5% of their
nominal rated values. In order for the method developed to be useful in a practical
distribution system an accurate model for the load, one taking the dynamic nature of the
system into account, was required. In addition, for any method to be applicable in practice
requires that it be capable of consistently arriving at a high quality solution in a time of less
than five minutes. To accomplish this task, it was felt that artificial intelligence techniques
such as genetic algorithms and fuzzy logic were ideally suited.

Successful accomplishment of the objective of this thesis required considerable
preparation and preliminary work to be performed. First, in order to properly formulate the
problem, a thorough investigation of the previous research in the area was carried out, and
the associated issues of system protection, load flow techniques and system planning were
also examined. As well, a thorough review of the theory of voltage and reactive power
control, including compensation techniques was performed. Once the problem was properly
formulated, a study of artificial intelligence techniques in general was performed, and their
previous application to functions of distribution system automation was studied in great detail.
Next, a review of several programming platforms was conducted, resulting in the selection
of Visual C++ Version 4.5. The Gauss-Seidel load flow technique was implemented in VC++
and validated, and a realistic model for load variations was developed and implemented in

VC++. Finally a genetic algorithm for controlling the compensators placed on a test



distribution system for the purpose of loss reduction, under the constraints of bus voltage
limits was developed and implemented in VC++, and experimentation was carried out to
demonstrate its validity.
1.3  Thesis Organization

Chapter 1 states the objective and serves as an introduction to this thesis. Chapter 2
presents the theory necessary to understand and meet the objective. It breaks the overall
voltage and reactive power control problem into two subproblems: the placement problem
and the control problem. In Chapter 3, the advancements made in the formulation of these
subproblems and the modeling of the system was considered, along with a review of the
methods developed by other researchers for solving these two subproblems using ‘modern’
techniques. Chapter 4, presents the system model and problem formulation adopted in this
thesis and describes the solution methodology in detail. Chapter 5 presents and discusses the
results obtained when this methodology was applied to a test distribution system. Finally,

Chapter 6 provides concluding remarks and recommendations for future work.



Chapter 2

Voltage and Reactive Power Control

2.1 Introduction

In the past century, human civilizations have grown more and more dependant on
electric power as a part of their daily lives. Since the early days of electricity, when it was
used primarily for lighting purposes, a diverse range of applications have been developed.
Electricity is used to light and heat homes, store personal records, to perform financial
transactions, and perhaps in the not so distant future, even to power automobiles for general
use. It is not surprising therefore, that consumers of electricity should demand a high degree
of reliability and efticiency from their suppliers of electric power. Ensuring the reliability and
efficiency of the electric power system is the primary goal of performing voltage and reactive
power control in an electric power distribution system.

Voltage and reactive power control can be broken down into two main components,



namely:

a) Power Factor Correction, and

b) Voltage Regulation.
The first of these two components, power factor correction, deals with the efficiency with
which electric power is distributed. The more efficient the distribution of electric power, the
cheaper it is for both the supplier and the consumer. Power factor correction is one of the
primary methods of reducing the power losses of electric power in the distribution system.
The second component of voltage and reactive power control, voltage regulation, is
performed in order to enhance the quality of service of the distribution system. That is,
voltage regulation serves to improve the reliability of the system. The two components of
voltage and reactive power control are described in greater detail below.
2.2  Power Factor Correction

Power factor correction is the practice of generating reactive power where it is
consumed, rather than supplying it from a remote power station. The result of this is that the
apparent power supplied to the load from the supply system, and hence, the total current
supplied to the load, is reduced. This reduction in current corresponds to a reduction in the
I’R losses in the distribution lines, and hence, to an overall improvement in the efficiency of
the distribution system. In addition to improving the efficiency, the reduction of distribution
losses frees up system capacity, which may permit capital expenditures for system upgrades
to be deferred.

In general, the onus for power factor correction is on the customer or end-user [2].

Typically, residential and commercial loads do not require much reactive power, and hence,



these types of loads generally do not require a power factor correction. Industrial loads,
however, typically consume a considerable amount of inductive reactive power, and hence,
they often require power factor correction. Furthermore, supply tariffs for industrial
customers almost always penalizes low power factor loads. In Ontario for example, power-
factors less than 0.9 incur a penalty [6]; it is therefore usually in the best financial interest of
the industrial customers to perform power factor correction.
2.2.1 Compensation Theory for Power Factor Correction

Consider the single-phase system shown in Figure 2.1(a), having a load of admittance
Y, = G, + jB, which is supplied from a voltage V. When V is taken to be the reference

phasor, the resulting load current, I, is given by:

I, = VY, = WG, +jB)) = VG, +jVB, = I, +Jjl, 2.1)

Hence, it is apparent that the load current consists of a real component, I, which is in phase
with V, and a reactive component, Iy, which is in phase quadrature with V. The phasor
diagram for an inductive load, which is the most common case, is given in Figure 2. 1(b). In
this case, the reactive current, I, is negative and the load current, I, is said to be lagging
the voltage, V. The angle between the voltage and the load current is ¢, .

For the system shown in Figure 2.1(a), the apparent power, S, supplied to the load

is given by:

S, =VI, =V?G, -jV’B, =P, +Q, 2.2)

Hence, it is clear that the apparent power has a real component, P;, and a reactive



component, Q;. The real power, or active power as it is sometimes referred to, is the power
which is capable of being converted into useful forms of energy such as heat, light and
mechanical work. The reactive power, however, is incapable of doing useful work; none the
less, its existence is an inherent requirement of the load. Consider for example an induction
motor, ix: this case, the active power corresponds to the output power of the motor shaft plus
all electrical and mechanical losses, such as those due to heating and air resistance, the
reactive power on the other hand, represents the magnetizing power, which although it is not
converted into useful energy, it is fundamental to the operation of the motor. The relationship
between the real, reactive and apparent powers is shown in Figure 2.1(c). By convention, B,
is negative and Q, is positive for inductive loads.

For the system shown in Figure 2.1(a), the current, L, supplied by the power system
is equal to the current consumed by the load, i.e. Is =I;. Furthermore, from Figure 2.1(b)
it is clear that the current supplied by the power system is larger than that which is necessary

to supply only the real power required by the load by the factor:

’ 1
= @3)
cosd,

In addition, from Figure 2.1(c) the ratio of the active power to the apparent power is given
by:

P
cos §, =—= 2.9)

St



Supply I V
s | :
> * Y___ = a
oo I I, I =1,
(b)
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@ = ¢, <
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Figure 2.1 (a) through (e¢). Power factor correction. (a) Uncompensated system and
corresponding phasor (b) and power (c) diagrams. (d) Compensated system and (e)
corresponding phasor diagram.
Hence, the quantity, cos ¢;, is commonly referred to as the power factor, as it represents the
fraction of the apparent power which can be converted into useful forms of energy.
As a result of the reactive power required by the load being supplied from the supply
bus, the Joule losses in the distribution cables are increased from that when only the real
power required by the load is supplied from the supply bus by the factor 1/cos® ¢,.
Consequently, it is desirable to keep the power factor near to unity. For poor power factor

loads, cos ¢, < 0.95, compensation is generally employed in order to improve the power



factor. Compensation for this purpose is known as power factor correction. Power factor
correction is performed by locally generating the reactive power required by the load, instead
of supplying it through the distribution lines from the power system. In this way, the losses
are reduced, and the entire distribution system operates more efficiently.

The method of power factor correction just outlined may be accomplished by
connecting a compensator having a purely reactive admittance, Y. = -jB,, in parallel with the
load, as is shown in Figure 2.1(d). As a result of this compensation, the current supplied by

the power system becomes:

I;=I/ =1, +I.= WG, +jB) + (- jB) =VG, =1, 2.5

where L is the current drawn by the compensator and I, ' is the total current drawn by the
load-compensator combination. In addition, the apparent power Sq supplied by the power

system is:

Sg=VI; =VIWNG, -jB,) + V(jB)] =V’G, =P, (2.6)

Note that the real and reactive power consumed by the compensator are respectively P. =0
and Q.= V?B, =-Q , and keep in mind that by convention Q is positive for inductive loads.
From Equation 2.5 it is apparent that the supply current of the compensated system is now
in phase with V, and has the lowest possible magnitude which is capable of completely
supplying only the active power requirement of the load. The phasor diagram for the
compensated system is given in Figure 2.1(e).

For total compensation it is clear from Figure 2.1(c) that the reactive power rating of



the compensator is related to the rated power of the load by:

Q, =P tand, 2.7

and to the rated apparent power by:
0 = SL‘/ 1 - cos’d, (2.8)

The compensator rating per unit apparent power and per unit real power for complete
compensation for various power factors are shown in Table 2.1. It is also possible to partially
compensate the load. The degree of compensation which is required for a particular system
depends on an economic trade-off between the capital cost of the compensator, which is
proportional to its rating, and the cost of the power and energy losses over a period of time
associated with supplying the reactive power required by the load through the distribution
system. This trade-off has been considered extensively by many researchers and will be
discussed further in Section 2.5. Consider for example, an uncompensated load having a
power factor of 0.90, from Table 2.1 it is clear that in order to completely correct the power
factor of this load a compensator with a rating of 0.436 per unit apparent power is required,
while to correct the power factor to be no worse than 0.95 would only require a compensator
with a rating of 0.124 per unit apparent power; this would translate into a considerable

savings in the cost of the compensator employed.
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Power Factor | Q,/S; | Q./P, | 1/cos® ¢,

10 0 0 1.00
0.95 0.312 | 0.329 1.11
0.90 0.436 { 0.484 1.23
0.85 0.527 | 0.620 1.38
0.80 0.600 | 0.750 1.56
0.70 0.714 | 1.020 204
0.60 0.800 | 1.333 2.78

Table 2.1. Rated reactive power of the compensator required for full compensation per unit
rated apparent power of the load and power unit real power of the ioad for various power
factors, and the corresponding factor by which the losses are increased.

Supply Bus Load Bus
E Z Vv
|
i_ﬁ—ﬁ ‘ /////’_'! AV,
‘ S ' I 7 N :;” =
Transmission Line i t < (b I < X
Y. =G, +jBy | ! L
S. =P +jQ
|
@) ; ®)
L
E \"
f ZS | IL.
| i L. — i
s
"
Y, =G, +)B,
SL=P,+;Q ! Sc—JQc »
L
Load Compensator

© )
Figure 2.2 (a) through (d). Voltage Regulation. (a) Uncompensated system and (b)
corresponding phasor diagram. (c) Compensated system and (d) corresponding phasor
diagram.
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2.3 Voltage Regulation

In the previous section it was shown that the reactive power requirements of the load
significantly affects the amount of supply current flowing through the distribution lines, and
hence, the distribution losses. In this section it will be shown how this current also causes the
variation, or regulation, of the voltage at the supply bus. In addition, the sensitivity of the
supply bus voltage to the reactive power consumed at the load bus will be considered, and
the theory of reactive power control for the purpose of voltage regulation will be considered.

The suppliers of electric power are required by statute to maintain the voltage of the
system to be within +3% and +6% of the nominal rated value at each load point on the system
for urban and rural customers respectively [2,3]. However, it will be shown that as a result
of the impedance of the distribution lines which supply the current from the supply bus to the
load bus, that there will be a voltage drop across this distribution line. Consequently, as the
current increases in magnitude, so too does the voltage drop. It will be further shown that
the voltage magnitude of the supply bus, relative to that of the load bus, can be controlled by
employing a purely reactive compensator at the load bus.
2.3.1 Compensation Theory for Voitage Regulation

Voltage regulation is defined as being the proportional change in supply voltage
magnitude associated with a defined change in load current [2]. By considering the single-
phase distribution system shown in Figure 2.2(a), having a supply voltage E and a load

voltage V, it is clear from the definition that the voltage regulation of this system is given by:

B - _B-V
1q V

2.9)

12



where V is taken as the reference phasor.
The voltage change, AE, caused by the current, I, flowing through the distribution

line having an impedance Z is shown in the phasor diagram of Figure 2.2(b), and is given by:

AE=E-V=2ZJ (2.10)

From Equation 2.2 and the knowledge that Z; = Rs + jX;, and I5 = I, Equation 2.10
becomes:

Thus, it is clear that the voltage change has a component AV, which is in phase with V and
a component AV which is in phase quadrature with V. Furthermore, from Equation 2.11
it is evident that both the magnitude and phase of the supply voltage, relative to the load
voltage, depend on both the real and the reactive power consumed by the load.

By adding a purely reactive compensator, i.e. S. = Q, in parallel with the load it is
possible to make the voltage regulation zero, that is, to make |E| = |V|. This is accomplished,
by replacing the reactive power Q, with the sum Q,’' = Q; + Q, and choosing Q.. in such a
way that the phasor AE is rotated until [E| = |V|. The phasor diagram for the compensated

system is shown in Figure 2.2(c). It is evident from Equations 2.10 and 2.11 that:

/ _ /
B+ LVXSQL12+[XSP ‘VRSQ‘F 2.12)

Hence, the required value of Q. =Q; ' - Q, can be found by solving this equation for Q,' with
|E{ = V. The algebraic solution for Q. is given in Section A of the Appendix. The important

result here, however, is that no matter what the value of P, , there is always a solution for Q..
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As a consequence, it can be concluded that a purely reactive compensator is capable of
eliminating supply voltage variations caused by changes in the real and reactive power of the
load. It should be pointed out that only the magnitude of the voltage is being controlied, its
phase varies continuously with the load current.
2.4 Relationship Between Power Factor Correction and Voltage Regulation

Having shown that it is possible to use a purely reactive compensator either to reduce
the reactive power supplied to the load by the power system to zero, or to reduce the voitage
regulation to zero, it is important to determine the interrelation between these two processes.
First, consider the case of a distribution system which is being compensated in such a way that
the power factor of the load is unity. That being the case, Q, in Equation 2.11 can be

replaced with the sum Q,' = Q, +Q. = 0. Hence the voltage change phasor, AE, becomes

RP, X, P
ag-2L ; £ E=RX - @.13)

which is clearly not under the control of the compensator. Therefore, it can be said that a
purely reactive compensator cannot maintain both constant voltage and unity power-factor
at the same time. Despite this, however, compensating for power factor does in general result
in a reduction in the voltage regulation of the system.

Consider now, the case where the distribution system is being compensated in such
a way that the voltage regulation is zero. In this case the current supplied by the distribution

system to the load is given by Equation 2.6 as:

14



PL —j(QL + Qc)

Ig=1 = > @2-14)
and its magnitude is given by:
- J P+ (%2*‘ Oc¥ 2.19)
In contrast, the magnitude of the current without compensation is give by:
I = P_}:&f (2.16)

VZ

Hence, it is clear that compensating the distribution system for the purpose of voltage
regulation will result in a reduction of supply current, and hence, in a reduction of distribution
losses, provided that |Q.| < |2Q,| and that Q. and Q; be opposite in sign; otherwise,
compensation will result in an increase in distribution losses. In fact, since the impedance of
the distribution line is constant, it should be clear that whenever this condition is satisfied, that
there will be both a reduction in losses and a reduction in voltage regulation, regardless of the
purpose for which the compensation is being performed.
2.5  Factors to Consider

In developing the concepts of power factor correction and voltage regulation above,
several simplifications were made; the distribution system was represented as a simple two

bus system, the load was assumed to be constant with respect to time, and independent of

15



voltage. Real distribution systems, however, may contain hundreds of busses. In this case,
compensation at one bus will effect the level of compensation required at another bus. In
addition, in order for a compensation scheme to be practical it must be economical. Hence,
not every bus will require compensation. Typically this means that the system is compensated
in such a way that the net power and energy losses are reduced while satisfying the constraint
that the voltage at each bus be within +6% of it nominal rated value as required by statute [2].
As a consequence, it is necessary to first determine which buses require compensation and
which buses do not. This step is known as the placement problem. The placement problem
not only requires a determination of where the compensators are to be placed, but also
requires the type (fixed, switchable, or continuously variable) and rating of the compensators
be determined. The placement problem has been considered extensively by many researchers.
A good review of the more prominent techniques has been presented by Ng [4].

The practice of installing shunt capacitors in the distribution system is primarily of
economic benefit, however, it does have the added advantage of improving the voltage profile
of the system. Despite this, however, the cost of using shunt capacitors solely for the purpose
of voltage regulation is often prohibitive. In this case it is often desirable to increase the
voltage using a booster transformer. A booster transformer increases the voltage at an
intermediate point along the distribution line rather than at the substation as with tap-changing
transformers. The m-equivalent model of a typical booster transformer is given in Figure 2.3
[36,59]. Booster transformers give an in phase boost in the voltage just like the main tap-
changing transformer at the substation. The booster transformer, however, has the advantage

that its rating is only about 10% of that of a main transformer, as its rating is the product of
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the current and the injected volitage [2]. As with shunt capacitors, the number of booster
transformers to install their locations, and tap settings must be determined. This constitutes
another optimization problem which is closely coupled with the capacitor optimization
problem [4]. The voltage booster transformers are also often referred to as voltage
regulators, and from here on the two terms shall be used interchangeably.

A typical distribution system consists
v, (Y V.=t

of a combination of residential, commercial,

and industrial loads. Each of these types of (1-1)¥

L+l

tt-1)¥Y, ..,

loads varies independently both with respect

|
|

to time and position. As a consequence, it is

Figure 2.3. m-equivalent model of a voltage
necessary to develop a scheme to control the booster transformer [36,59].
compensators on the distribution system under varying load conditions so that the level of
compensation is always optimized. This is referred to as the control problem, and is the focus
of this thesis. The control problem consists of determining the optimal settings of the
compensators for any set of load conditions, and hence, for any instant in time. As a
consequence, the control scheme must be fast in order to be useful in practice. In the next
chapter both the placement and the control problems will be considered in greater detail, and
several ‘modern’ techniques developed by other researchers for solving these problems will
be discussed.
2.6 Summary

The two principle objectives of voltage and reactive power control, namely power-

factor correction and voltage regulation have been presented. It has been shown that a purely
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reactive compensator is capable of fulfilling either of these objectives. It has also been shown,
however, that the purely reactive compensator cannot maintain both constant voltage and
unity power-factor at the same time. However, it was shown that regardless of the reason
for the compensation, that both the losses and the regulation will be reduced provided that
|Qcl < [2Q.| and that Q- and Q, be opposite in sign.

While the concepts of voltage and reactive power control presented here were
developed based on a simple two bus system, they are readily adapted to more realistic multi-
bus systems. In addition, in most of the previous publications it was assumed that the
characteristics of the load were constant. In general, however, this is not the case, as the load
is a dynamic quantity. As a consequence, a compensation error occurs, and typically requires
that the level of compensation provided by the compensators placed on the distribution
system be capable of being varied over time. It is important therefore, to be able to quickly
determine the correct level of compensation for any load conditions, and hence, for any
instant in time. This process, known as the control problem, is quite complicated and has
been studied by many researchers. The control problem is the focus of this thesis and will be

considered further in the next chapter.
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Chapter 3

Review of Previous Research

3.1 Introduction

As was mentioned in the previous chapter, the voltage and reactive power control
problem consists of two subproblems: the placement problem and the control problem. The
placement problem involves planning, and consists of determining the optimal location, size,
type and number of compensators that are required for a distribution system, taking into
account the cost of the compensators, the savings from energy and power loss reduction, as
well as the bus voltage constraints. The control problem, in contrast, is an operational one,
it involves determining the optimal compensator settings under varying load conditions, such
that the power losses of the system are reduced, and the constraints of voltage are met. Both
the placement and the control problems require that an accurate model of the load be used

in order to arrive at meaningful solutions. The placement problem is a means of improving

19



the performance of the distribution system and can be performed off-line. In contrast, the
control problem, must be performed on-line in order to be able to control the system in real-
time; consequently, one requirement of any algorithm which performs the control problem is
that it be fast.

In this chapter various methods for solving the placement and the control that have
been proposed by other researchers will be discussed. In section 2, early research into both
the placement and the control problems will be addressed, with particular attention being paid
to the improvements made over the years in system modeling and problem formulation. In
section 3, the ‘modern’ techniques for solving the placement and the control problems will
be considered. The ‘modern’ techniques considered include those based on:

a) Fuzzy Logic and Fuzzy Sets,

b) Artificial Neural Networks;

c) Expert Systems, and

d) Genetic Algorithms.

3.2 Early Voltage and Reactive Power Control Research

The placement and control problems are very similar in nature, and the material
available on the placement problem is much more abundant; in fact, many of the algorithms
which were developed for the control problem are simply adaptations of those used for the
placement problem. It is important, therefore, to have a thorough understanding of the
placement problem before considering the control problem.

3.2.1 The Placement Problem

Perhaps the most important property of any method involving the determination of
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the optimal placement or control of compensators on a distribution system is the model which
is employed to represent the distribution system. In the early research into the optimal
capacitor allocation problem by researchers such as Schmill [47], Neagle and Samson [48],
Cook [49], Chang [50-52] and Bae [53], the distribution feeder was represented either as a
uniform feeder having uniformly distributed loads, or as a uniform feeder having uniformly
distributed loads along the feeder and a concentrated load at the end of the feeder. The
assumption of a uniform feeder with uniformly distributed loads does not take into account
the following features of a practical distribution feeder:

a) Lateral branches,

b) Loads are not uniformly distributed, and

c) The conductors of the feeder sections are of varying length and varying cross-

sectional area, and hence, each section of the line has a different impedance.
During 1980's, the model for the system became more realistic. In [55], Grainger and Lee
developed a model which could represent a feeder having non-uniformly distributed loads.
Then Salama and Chikhani, [64], presented a method for performing the capacitor placement
problem which was not only capable of representing non-uniform load distributions, but could
also represent a feeder having lateral branches.

Grainger et al, [59,60,61], and Salama et al., [71,72], have incorporated the problem
of placing booster transformers on the system into their solution methodology for the
capacitor placement problem. Both researchers accomplished this by decoupling their
optimization methods into separate capacitor and booster transformer problems, and then

solving the problem iteratively. However, as mentioned in Chapter 2, there is a voltage
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coupling between these two problems.

The improvements in system models were accompanied by improvements in
commercially available computers. This development facilitated the solution of the more
complex problem representation. As well, it made possible the development of fast
techniques that were suitable for on-line application, and hence, for application to the control
problem.

3.2.2 The Control Problem

In the early research into controlling the compensators on a distribution system only
fixed compensators were considered. As the system models improved, researchers were able
to consider switched compensators as well. Most of the research was consisted of dividing
the load into discrete load levels of fixed duration, then solving the placement problem for
each load level. Based on the results, a switching schedule would be compiled. This method,
however, was unable to respond to dynamic changes in the load and often included
simplifying assumptions such as all the load varying in the same proportion. Now, with the
development of ‘fast’ computer systems and the availability of data from Supervisory Control
And Data Acquisition (SCADA) systems, online decisions can be made which are based on
the real-time condition of the distribution system.

The automation of electrical power distribution circuits has long been an active area
of research, and has been achieved with varying degrees of success [81-88]. As the size of
distribution systems continues to grow, so too does the computational difficulty associated
with their control. As a result distribution engineers are finding it increasingly important to

have computational tools at their disposal which are capable of handling such large-scale
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problems. In order for the computational tools to be particularly useful, they must be capable
of fast processing in real-time for on-line applications. Many of the computational tools
which are currently being developed are based on Artificial Intelligence techniques. The use
of these ‘modemn’ techniques in solving both the placement and the control problems shall be
discussed next. For a discussion of those methods which do not employ these ‘modern’
techniques, the reader is referred to [4].
3.3 “Modern” Techniques for Voltage and Reactive Power Control

“Modemn” techniques for solving the voltage and reactive power problems include
techniques based on fuzzy logic and fiizzy sets, expert systems, artificial neural networks and
genetic algorithms. These techniques have been applied to both the placement and control
subproblems of the voltage and reactive power problem and include references [10 - 28].
Each of these techniques will be discussed in detail, and their application by other researchers
to the voltage and reactive power problems will be thoroughly examined.
3.3.1 Methads Based on Fuzzy Logic Systems

Fuzzy set theory and fuzzy logic was first introduced by Zadeh in 1965 [41]. Fuzzy
logic makes it possible to generate precise solutions to a problem based on imprecise,
uncertain or approximate information. Fuzzy logic is a superset of conventional (Boolean)
logic that has been extended to handle the concept of partial truth - truth values between
completely true and completely false. A fuzzy set is a class of objects having a continuum of
degrees of membership which are characterized by a membership function. The membership

function assigns a degree of membership to each object. The degree of membership ranges



from zero to one; zero represents non-membership and one represents complete membership.
The degree of membership can also be thought of as the degree of truth associated with an
object. In this case, the value zero would correspond to completely false, while the value one
would correspond to completely true. As an example, consider the following statement: the
load at a bus of a distribution feeder is heavy.

The question then becomes how light is 1.0

“light”. Fuzzy sets are ideally suited to II(L)O.S
answering such questions. 02
If X is a space of points, with a 0'8_0 0405 1.0
generic element of X being denoted by x, then - 2.’5"‘]
X = {x}. A fuzzy set A in X, characterized e e

1.0 | /
by the membership function p ,(x), is defined

to be the set of ordered pairs, A = {x, p(x) L)

| x € X and p,(x) € [0,1]. Many of the

notions from ordinary sets, such as: empty, 0.0
inclusion, union, intersection and complement

also extend to fuzzy sets and will be defined 1.0
now. A fuzzy set is empty, A = {}, if and

u@)
only if p(x) =0 for all x e X. Two fuzzy sets,

A and B, are equal, A = B, if and only if 0.0
are only if ™ %40 05 10

L[pu]
(c)

a fuzzy set , A, is defined by py(x) = 1 - Figure 3.1. (a) Membership functions, (b)
compliment and (c) intersection and union.

= pp(x) for all x € X. The compliment, A, of
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pA(x). Ais said to be a subset of B, A c B, if and only if p,(x) < pa(x). The union of A and
B is a set C = A u B, whose membership function u(x) = max [u,(x), up(x)]. The
intersection of A and B is the fuzzy set C = A n B, whose membership function is given by
Hc(x) = min [u(x), pa(X)]-

To illustrate the concepts of fuzzy sets, consider again the example of the load, L, at
a bus of a distribution feeder. The fuzzy sets light, moderate and heavy, can be defined by the
membership fUnNCtions jigy,, Mo a0d Hyy, respectively, as shown in Figure 3.1(a). From
this it can be seen that a load of about 0.4 p.u. would be interpreted as belonging to the set
light with a degree of 0.2, as belonging to the set moderate with a degree of about 0.5, and
as not belonging at all to the set high [6]. Figure 3.1(b) illustrates the compliment of the
fuzzy set light, and Figure 3.1(c) illustrates the notions of the union and intersection of the
fuzzy sets light and moderate.

Fuzzy sets have been applied to a diverse range of power system applications [*find
a ref summarizing fs apps in pwr sys]. Their suitability to the voltage and reactive power
control problem has also been considered [10-12]. What follow is a review of their
application in this area.

In [11], Tomsovic presents a fuzzy linear programming approach to the voltage and
reactive power control problem for the purpose of voltage regulation. In his formulation, the
steady state power flow equations are decoupled and linearized, and the voltage constraints
are modeled by fuzzy sets. He considers multiple objective functions and tests his system
using the IEEE 30-bus system under two cases. In the first case, there is a minor voltage

violation, and in the second case there are severe voltage violations. He considers two sets
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of fuzzy objective for each case, and compares the results from the fuzzy linear programming
method with those obtained using a standard linear programming approach. In the standard
linear programming formulation, the objective was to minimize control adjustments while
satisfying all constraints. The first set of fuzzy objectives consisted of giving a priority to the
available controls as well as the objective of minimal control adjustment. Priority was
translated into a cost function by assigning weights to each type of control, with reactive
compensator injection and generator voltage control being given priority over on load tap
changing transformer adjustment. It should be pointed out that no method of determining
these weights was presented. A security consideration was added to the first set of fuzzy
objectives to form the second set of objectives. This security objective expressed a preference
for maintaining significant reactive power reserves for each generator. For both sets of
objective functions, the fuzzy linear programming method sought to maximize a net savings
function, which was defined by the intersection of the constraints with the objective functions.
For the case of minor voltage violations, all three methods resulted in a solution which
satisfied all voltage constraints in a single iteration. For the case of the serious voltage
violations, however, the standard linear programming approach required several iterations
while the fuzzy approaches only required a singie iteration. In this simulation, the solution
from the standard linear programming method required fewer control actions than either of
the fuzzy methods. The ability of fuzzy based methods to make compromises between
multiple conflicting objectives was well demonstrated under this situation, as the solution
from the second fuzzy approach resulted in a smaller adjustment of generator at bus 8,
compared with the solution from the first fuzzy method, by making a tap adjustment at bus
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26. This represents the compromise between the minimal control adjustment objective, the
voltage constraints and the objective of maintaining reactive power reserves at the generators.

Abdul-Rahman and Shahidehpour, {10], present a fuzzy based linear programming
approach to the voltage and reactive power control problem for the purpose of reducing
losses under the limitation of voitage constraints. In their approach, the power losses in each
section of the system are linearized about the current operating point with respect to the bus
voltages, and represent the objective functions. The relationships between voltage
increments, transformer tap positions and VAR sources (generator reactive power outputs
and switchable capacitors) are derived and correlations between them are given by a modified
Jacobian matrix. As a result of this formulation, inversion of the modified Jacobian matrix
is not required, resulting in a considerable savings in computation time. Abdul-Rahman and
Shahidehpour use fuzzy sets to model the linearized objective functions as well as the voltage
constraints. They present membership functions for the objectives which are dependant on
the current operating point of the system. The membership functions for the bus voltage
constraints are defined such that slight voltage violations are allowed. They accomplish this
with a membership function that for voltages between the crisp limits has a value of one, while
bus voltages that exceed these limits have a value of satisfaction that decreases to zero at a
pre-specified voltage increment. In the fuzzy environment the process of maximizing the
objective functions while satisfying the constraints is equivalent to maximizing an overall
membership function that is defined as the intersection of the fuzzy sets describing the
objectives and the constraints. The overall solution of the problem represents a compromise

between the objectives which try to push the voltages towards the extremes in order to
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minimize the losses and the constraints which seek to keep the voltages away from the
extremes. Considering that the problem domain is convex, the formulation of n multiple
objectives by decomposing the total losses of the system into its n additive parts seems to be
unnecessary as it will lead to the same solution as the single objective of minimizing the total
losses, provided that equal weights are assigned to all the individual objectives, as was the
case in their work. The fuzzy based linear program approach was implemented and tested on
the Ward and Hale 6-bus system as well as a modified IEEE 30-bus system. Their approach
for the 6-bus system resulted in losses being about two percent lower than those obtained
from a non-fuzzy based method. As well, the fuzzy based approach converged in five
iterations, while the non-fuzzy method required seven iterations to converge, however, the
computation time per iteration for the fuzzy case was about 0.38 seconds, while for the non-
fuzzy method it was only about 0.33 seconds. For the 30-bus system, the fuzzy based
approach resulted in losses being reduced by 12.9% as compared to the losses from a non-
fuzzy approach, this can be explained by the fact that the fuzzy based approach resulted in the
voltages at six of the buses exceeding their crisp limits. The fuzzy approach required 10
iterations with a time per iteration of 2.99 seconds, while the non-fuzzy method required 14
iterations with a time per iteration of 2.23 seconds. In each case, the fuzzy based linear
programming approach was faster than the non-fuzzy based linear programming approach,
as the non-fuzzy method required the inversion of the Jacobian matrix at each iteration, while
the fuzzy based method did not. Overall, their results were quite promising.

Lu and Hsu, [12], present a fuzzy based dynamic programming approach to control
an on load tap changing transformer and an on/off switchable capacitor at a distribution
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substation. The objective of their controller is to maintain the secondary bus voltage as close
as possible to its nominal value, while keeping the power factor as close to unity as possible,
under the constraint of keeping the number of switching actions of both the on load tap
changing transformer and the capacitor to a minimum. In their approach they develop fuzzy
membership functions for the voltage, power factor, number of tap changing transformer
switching actions and the number of capacitor switching actions. Their objective becomes
that of maximizing the sum of these objectives over a 24 hour period. They do not make use
of fuzzy operators such as the intersection of fuzzy sets. Using forecasted load data, Lu and
Hsu report that their fuzzy based approach results in an improvement both in the voltage at
the secondary bus and the power factor at the substation. It should be pointed out that their
algorithm employs a load model which represents the load as a combination of constant
power, constant current and constant impedance loads, with the proportionality coefficients
for both the real and the reactive power being taken from the annual report of the Taiwan
Power Company for the substation under study.
3.3.2 Methods Based on Artificial Neural Networks

Artificial neural networks (ANNSs) have been applied to a diverse range of power
system applications [9,39]. Their suitability to the voltage and reactive power control
problem has been well studied [15 - 22]. The details of ANNs will be presented next, as well
as a review of their application to voltage and reactive power problems.

ANN:Ss are low level, parallel distributed processing systems, which are modeled after
the neurons in the human nervous system. ANNs consist of many loosely connected

processing elements (PEs) which are linked by weights analogous to the biological synapse
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[43]. These weights are self adjusted by the ANN while it is being trained, hence, ANNs are
capable of learning a relationship between complex input and output variables. The output
of the each PE is determined by a transfer function, such as the sigmoid function, hyperbolic

tangent or sine functions [6]. A PE is shown below in Figure 1.

Inputs Weights
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Element (P.E.)
Figure 3.2. A Processing Element of an Artificial Neural Network.

In order to be useful, ANN must first be trained in order to minimize the error
function to an acceptable value. Training is accomplished by adjusting the network weights
using an algorithm such as the backpropagation algorithm [6]. One of the characteristic
features of ANNSs is its ability to adjust its own weights, for this reason the training of the
ANN is similar to a learning process. Perhaps the most common method for the ANN to
adjust its weights is through the use of the backpropagation algorithm. According to the
backpropagation algorithm a global error function is associated with the network, usually it
is the difference between the actual output of the ANN and the desired output. This error is
attributed to all of the PEs, and is corrected by propagating it backwards through the network
connections from one layer to the next, until the input layer is reached [6]. Hence, the name
“backpropagation.” As the error function passes through each of the PEs, the network
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weights are adjusted appropriately. In effect, with the backpropagation algorithm, the input
is forward propagated through the network connections until the output layer is reached, the
error at the output is then determined, and is then propagated back through the network until
the input layer is reached.

Depending upon the configuration of the interconnections between processing
elements ANNs demonstrate various abilities including: classification, nonlinear mapping,
optimization, feature extraction, and pattern recognition [43]. The four principle ANN
architectures are [43]:

a) the layered feed-forward neural networks, such as the multi-layer perceptron,

b) the recurrent neural networks, such as the Hopfield network,

<) the laterally connected neural networks, such as the Kohonen network, and

d) the hybrid neural networks, such as the Counter-propagation network.
Irrespective of the particular architecture employed all neural networks consist of layers of
neurons (processing elements), with each neuron in a given layer being connected to the input
of every neuron in the next layer, as shown

- . . Hiddea L
in Figure 3.3. As a result of being highly Iapat Layer o Leyen Output Layer

interconnected ANNSs have the attributes of
generalization, fault tolerance, and noise
rejection [43]. In addition , due to their
massive parallelism ANNs are not restricted Figure 3.3. Interconnection of processing

elements in an Artificial Neural Network.
by the bottle neck characteristic typical of

von Neuman computers, i.c. sequential processing computers [15,43].
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In [16], Kojima et al. present an ANN based controller for switching a capacitor bank
installed on a distribution system. They used a recurrent neural network to leamn the dynamics
and inverse dynamics of a power system. Recurrent neural networks are inherently associated
with the dynamics of the system because of their internal feedback loop, as well, sequential
signal treatment is easier with recurrent neural networks than with other ANN configurations.
They compare their ANN based controller to a conventional controller using a power system
having 10 buses and 2 tap changing transformers and 5 static VAR compensators. In their
approach, each compensator has a separate controller. Using simulated data their ANN
controllers require a total training time of about 45 minutes on a Sun SPARC station 2. The
objective of their controller is to improve the stability of the system and prevent voltage
collapse by providing maintaining the voltage and reactive power at each bus as close as
possible to their reference values. They report that their ANN based controller results in
fewer useless switching actions and has RMSE:s for both the voltage and the reactive power
, with respect to their reference values, that are five times better than those obtained using
conventional control on the same system.

Dash et al, [17] applied a three layer feed-forward neural network to a modified IEEE
30 bus system to evaluate the performance of two training algorithms (backpropagation and
combined backpropagation-Cauchy’s leamning algorithm) in controlling the capacitors at
selected buses [17]. The results of their tests show that while both algorithms produced
satisfactory results, the combined backpropagation-Cauchy algorithm was more effective.
They tested the system under two conditions for each training scheme. In the first case, the
there were 12 inputs to the ANN, these were the P, Q and |V] at four buses which were
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chosen based on a sensitivity analysis. In the second case, there were 24 inputs to the ANN,
these were the P, Q and |V] at the original four buses plus another four buses which were also
chosen based on a sensitivity analysis of the system. The ability of their ANN to consistently
perform well even when the net is faulty, and presented with noisy information was illustrated
as their ANN controller produced consistent outputs even when presented with noisy inputs
and faults as high as 20% in the network.

In [20], Hsu and Yang present a combined ANN dynamic programing solution to the
capacitor scheduling problem for an eight bus distribution feeder of the Taiwan Power
Company, having one on/off switched capacitor at each bus. They employ a Kohonen neural
network structure to classify the daily load pattems into clusters, or groups, of similar load
patterns. In their study, each daily load pattern is a 24 dimensional vector which consists of
the substation load level measured at each hour during the day. Hsu and Yang make use of
historical load data which was available for the feeder under study. Before clustering the load
patterns, the optimal compensation scheme taking into account voltage constraints, the cost
of the losses and of switching the capacitors for each load pattern, that is, the optimal on/off
states of each capacitor for each hour, is calculated off-line. After classification, the
compensation schemes for each cluster are averaged resulting in a 24 8-dimensional vectors
where each element represents the state of a particular capacitor at the particular hour, and
has a value from O to 1. As the load patterns in each cluster a very similar, their respective
compensation schemes will also be quite similar, and hence, the elements will be very close
to either 0 or to 1. The degree that each element is close to 0/1 indicates the degree of
certainty that the capacitor represented by that element will be offon. Those elements with
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a value that is either below some threshold or above some other threshold are assigned a 0/1
as appropriate. For those elements which are less certain, a second dynamic programming
approach is used to decide their 0/1 (off/on) states. For a day in the future, the forecasted
load pattern is then compared with each cluster and it is grouped with the most similar one,
where the similarity is determined by the forecasted load patterns Euclidean distance from the
various clusters. Once the forecasted load pattern is grouped, the appropriate compensation
scheme is then chosen. The results obtained from their method were quite good, and for the
small system studied, the ANN required about 10 minutes to be trained, and once trained, the
capacitor schedule for a given load pattern could be determined in less than one minute. Their
method however, does not consider voltage regulators, and requires that a large amount of
historical data to train the ANN.

Santoso and Tan, [21], develop an expert system using a two-stage ANN in order to
control, in real-time, the multi-tap capacitors which are installed on the distribution system
having a nonconforming load profile. The goal of their expert system is to minimize the
losses without violating any voltage constraints. They propose an expert system which
employs several three layer feed-forward ANNs for both its knowledge base and for its
inference engine. Their first stage of their control network predicts the load profile of the
distribution system based on the input of P,Q, and |V| at certain buses, as well as from the
current tap settings of the capacitors. The second stage of their control network then
determines the optimal capacitor tap settings based on the load profile predicted by the first
stage. They simulated their control system on a 30 bus distribution system which they further
divided into six subsystems, with each subsystem having a first stage ANN to predict its load
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pattem. In addition, the aggregate load of each subsystem varied independently among four
discrete load levels, while the real and reactive powers in each subsystem varied
proportionally. Their test system had five capacitors which needed to be controlled, these
capacitors were placed at fixed locations according to the method presented in [44] which
takes into account the peak power demand, varying load profile, as well as the cost of the
compensators. All of the ANNs in their study were trained using simulated data, and none
required more than 200 seconds to be trained, resulting in a total training time of less than 25
minutes. Once trained, their expert system produced quite good resuits, and had an average
solution time of 2.8 seconds. While their results are promising, they are for a rather small
distribution system, and require that the system be subdivided into subsystems; such a division
may not be obvious for a larger more realistic size system. As well, their algorithm does not
consider the control of voitage regulators.

In [22], Gu and Rizy present an ANN based method for the combined control of
capacitor banks and voltage regulators in a distribution system. They employ a three layer
feed-forward ANN and the backpropagation training algorithm. The inputs to their ANN
controller are the P,Q and [V] at select points of the distribution system, as well as the current
tap settings. In addition, there is one output for each controlled device, that is, each output
corresponds to a particular capacitor or voltage regulator. Their goal of their ANN based
controller is to minimize the distribution losses under the constraint that the bus voltages are
within +5% of their rated values. They apply their ANN controller to the same 30-bus system
as that presented in [21,61]. The location of the capacitors are the same as in [21], but their
ratings are increased and a nine tap voltage regulator is added at bus 4 in order to satisfy the
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voltage constraints under maximum loading conditions. As well, Gu and Rizy only consider
on/off switched capacitors, as opposed to four position capacitors as was considered in [21].
Their ANN was trained with simulated data on a Pentium 90 MHz based personal computer
with a total training time on the order of minutes. Once trained their ANN based controller
had a solution time of a few milliseconds! Obviously, the speed of their approach would be
well suited for real-time, on-line application. Using simulated data, they performed Moante
Carlo simulations, and report that their controller resuited in average energy losses that were
only 0.19% higher than the true optimal energy losses for the system. Their method however,
often results in slight voltage violations occurring at two of the thirty buses.

ANN based approaches have the advantage that they do not require algorithm or rule
development, they do however require a large amount of accurate training data so that the
ANN can learn to recognize the correct response to a particular input pattern. ANNs have
proven themselves to be quite useful for applications in which the existing models do not have
enough accuracy and where large amounts of historical data are available for training; an
example of such an application is load forecasting. The applications of ANNs to the voltage
and reactive power control problem offers the benefit of a fast solution, as time consuming
load flows to not need to be performed. Despite this however, their applicability to the
voltage and reactive control problem is limited by the following: a) a considerable amount of
time is required for collecting accurate training data, the ANN must be trained for each
distribution network to which it is applied, and any subsequent changes in the system must
be accounted for. To date, ANNs have only been applied to small sized distribution systems.

The author is only aware of one case in which ANNs were applied for the control of both
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switched capacitors and multi-tap voltage regulators under the constraint of bus voltages.
3.3.3 Methods Based on Expert Systems

Expert systems are computer programs that have knowledge in a particular, usually
narrow, domain and are capable of solving problems which require that knowledge. For this
reason, expert systems are often referred to as knowiedge based systems. The aim of expert
systems is to perform an intellectual task in a particular field by reproducing the reasoning
behaviour of a human expert in that field [74]. Recently, the application of expert systems
to various power system problems have been studied, [76,77]. Of particular interest here, is

their suitability to voltage and reactive power control problems.

Expert systems consist of three main

Expert System
components, a knowledge base, an inference engine
Knowledge
and a user interface. The knowledge base comprises Base
the knowledge that is specific to the problem domain, Database
d includes si facts about the domain, rules that
an udes simple u omain, rules Ruke Base
describe phenomena in the domain, and heuristics and
methods for solving problems in the domain [14]. m&mi' o
The former is generally contained within a database, User
Interface
while the later two normally form what is called a rule

base. The inference engine is what drives the expert Figure 3.4. Block diagram of an
Expert System.

system, it applies the knowledge in the knowledge

base in order to solve a problem. In essence, the inference engine is capable of deducing (or

inducing) facts or information from the knowledge base which have not been stored in it. The
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base which have not been stored in it. The user interface provides the communication
between the expert system and the user. A block diagram of an expert system is shown in
Figure 3.4. One of the most desirable characteristics of expert systems is their ability to
justify, or explain, their line of reasoning to a human user. As a result of this characteristic,
expert systems lend themselves very well to applications of assisting or training humans in a
particular area of expertise. This is the primary role that expert systems have played in the
area of voltage and reactive power control. What follows is a review of the research in which
expert systems are applied to voltage and reactive power control problems.

In [13], Liu and Tomsovic present an expert system to assist in the decision making
process of the voltage and reactive power control problem for the purpose of eliminating
voltage violations. They provide theoretical justification for empirical rules, which their
expert system applies in order generate the appropriate control actions to alleviate slight
voltage violations. The controls considered are shunt capacitor, transformer tap changers and
generator voltages. When the expert system deems the voltage problem to be severe, it
formulates the problem so that an available application software package can be utilized.
Their expert system was implemented in the production system language OPS5 developed by
Carnegie-Mellon University [13]. They evaluated their expert system on a modified [EEE 30
bus system under various test scenarios with encouraging results. Liu and Tomsovic note that
in order to develop an expert system for practical purposes would require a lot of research
into areas such as methodologies to deal with large, complex systems and computational
efficiency in real time environments.

Cheng, Malik and Hope, [14], develop an expert system for the control of voltage and
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reactive power for the purpose of voltage regulation. Their expert system employs a
methodology known as the sensitivity tree as part of its knowledge base. However, the
sensitivity factors of the sensitivity tree must be determined for various operating
configurations, and they may not be obvious. The control measures considered to overcome
voltage violations are shunt capacitors, transformer tap changes and generator voltage
adjustments. They implemented their expert system in the PROLOG language and evaluated
it using a modified IEEE 30-bus system under various scenarios with promising resuits.

In [35], Yokoyama, Niimura and Nakanishi present an expert system for the purpose
of voltage regulation. Unlike traditional expert systems, theirs employs fuzzy rules in its rule
base. They define fuzzy membership functions for the bus voltages, the sensitivity of bus
voltages to control action and the adjustable margin of each controller. They evaluated their
fuzzy expert system on a modified IEEE 14-bus system, and compared the results obtained
with those from a conventional expert system proposed by Liu and Tomsovic, [13]. They
found that as a consequence of fuzzy modeling, the control actions determined by their expert
system often results in coordinated control action, whereas, the traditional expert system
tended to select only the controller with the highest sensitivity to correct voltage violations.
Hence, their fuzzy expert system approach often resulted in more complex control action
being taken, however, this also resulted in the distribution system being less vulnerable to
further voltage violations as compared to when the conventional expert system was used. It
should be pointed out, however, that their expert system did not consider the use of tap
changing transformers and employed several simplifications to model the system, including

a constant power model for the loads and a linear relationship for the sensitivity of the bus
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voltages to the control action.

Salama et al., [71,72], develop an expert system for assisting the distribution planning
engineer with the determination of the optimal locations, sizes and scheduling of shunt
capacitors and the tap settings of voltage regulators. The objective of their expert system was
to maintain the bus voltages within limits while reducing the peak power and energy losses.
The knowledge base of their expert system was based on the methods of Grainger et al.,
[54,59-61], and Salama et al., [63,64]. Their expert system was implemented using an expert
system shell, Nexpert Object, written in the C language by Neuron Data Inc. [72], on both
a 33 MHz 80486DX and a 16 MHz 80386SX based computer. They tested their expert
system on an [EEE 34 bus distribution system. The results obtained using their expert system
were very close to those obtained by applying the method of [64] to the same system, under
the same conditions. Salama et al. do not mention the time required by their expert system
to arrive at a solution, however, as it employs an iterative procedure, it is not likely that it is
suitable for real time applications.

The application of expert systems to voltage and reactive power problems is still in
the early stages of development. To date, the approaches reported are primarily aimed at
training or assisting the distribution engineer. In all of the expert systems based approaches
just discussed, the authors do not mention the time required for their systems to armive at a
solution. As well, none of the researchers examined a system of realistic size. There is still
much work that needs to be done in order to develop expert system based methods for

solving voltage and reactive power control problems.
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3.3.4 Methods Based on Genetic Algorithms

Genetic Algorithms (GAs) were developed by John Holland and his colleagues at the
University of Michigan [42]. They are based upon the principles of natural selection and
natural genetics. Genetic algorithms form a domain independent search and optimization
technique which is inherently robust, and can be applied to a wide variety of problems where
traditional solution methods are not available or provide unsatisfactory results. The physical
processes involved include competition, selection, reproduction, and mutation.

Genetic algorithms are essentially a random search technique which is guided towards
the optimal solution. In genetic algorithms each generation, t, consists of a population of n
individuals, P(t) = {x,",....x,'}, where each individual, x/, represents a possible solution point
in the search space. Each individual in the population is evaluated according to an objective
function to determine its “fitness”, hence, the objective function is often referred to as a
fitness function, f{x'). The “better” individuals in the current generation, P(t), are selected
probabilistically to be parents for the next generation, P(t+1). These parent individuals are
paired off into mating pairs, and give rise to the offspring that comprise the new generation
by the probabilistic application of genetic operators. In genetic algorithms the two most
common operators are crossover and mutation. After several generations the population
converges, and the best individual hopefully represents the optimum solution {6].

In genetic algorithms, as in natural genetics, each individual is characterized uniquely
by its genetic makeup. In natural systems, one or more chromosomes combine to form the
total genetic structure of an organism, with each chromosome being made up of many genes

which may take on some number of values called alleles, As well, the position of a gene within
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a chromosome, its locus, is identified separately from its function. For example, an animal’s
eye colour gene may be described by its allele value, brown eyes, and its locus, position 10.
In artificial systems, such as genetic algorithms, a chromosome is equivalent to a string which
is comprised of features or detectors analogous to the genes in a biological system. The
features in the artificial system may take on different values and may be located at different
positions along the string. In natural genetics, the organism formed by the interaction of the
genetic material with its environment is referred to as the phenotype, while in genetic
algorithms, the structures decode to form a particular solution in the search space [38]. The
designer of an artificial system has several options for coding the parameters of the system;
this will be discussed in greater detail later on in this section. As well, it should be pointed
out that as a result of their structure, genetic algorithms are particularly well suited to
problems in which the control variables take on discrete values.

Genetic algorithms manipulate a population of individuals, solutions to a problem, by
operating on an encoded representation of the solution. This encoded representation is
equivalent to the genetic material of an individual organism in nature. Each individual has a
fitness value associated with it. The fitness of an individual is determined by evaluating it
according to some fitness (objective) function. As genetic algorithms use a fitness function
they have the advantage of not requiring auxiliary information such as derivatives or gradients
to be computed; such auxiliary information is often difficult and time consuming to compute,
and often requires several unrealistic simplifications to be made to the representation of the
problem. The fitness of an individual provides the means for comparing it with others

members of the gene pool. The higher the fitness value of an individual, the higher its
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representation in the population and the higher its chances of being selected to reproduce.
This artificial version of natural selection, may be implemented according to any one of the

following schemes [38]:

d) deterministic sampling,

e) remainder sampling without replacement,
) stochastic sampling without replacement,
g) remainder sampling with replacement,

h) stochastic sampling with replacement, and
1) stochastic tournament ( Wetzel ranking).

Regardless of which selection scheme is employed, only those individuals which are selected
can contribute to the mating pool and reproduce.

By the use of a fitness function, genetic algorithms are able to focus in on higher
payoff regions of the solution space. In fact, the number of strings in a given region increases
at a rate that is proportional to the statistical estimate of the fitness of that region {42]. While
a statistician would require many samples from all the possible regions to estimate the average
fitness of each region, the genetic algorithm manages to accomplish this with far fewer strings
and almost no computation. The reason for this remarkable ability lies in the fact that a single
string belongs to all the regions in which any of its features appear. Consider the string
11101001; it is a member of the regions 11****** (where * indicates that a bits value is
unspecified), 1******], **101*** and so on. These regions are referred to as similarity
templates or schemata [38). The largest regions, those schemata which contain many

unspecified bits, will typically be sampled by a large fraction of the strings in a population,
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thus, a genetic algorithm that manipulates a population of 100 strings actually samples a vastly
larger number of schemata (approximately 100° [38]). This implicit parallelism is one of the
principle advantages that GAs have over other search processes.

Once the competition and selection processes are completed and the mating pool is
full, a new generation is formed by the probabilistic application of two operators to those
individuals in the mating pool. These operators are crossover and mutation. Crossover is
used to exchange portions of genetic material between mating string pairs. Mutation is the
operation whereby new individuals are created by making small, random changes in the
genetic coding of an individual.

Crossover combined with Before Crossover Afier Crossover

reproduction according to fitness is what give 01100101010/11011 01100101010/01000

genetic algorithms the bulk of their *
processing power [38]. Crossover is a two v

step process. First, pairs of strings are picked 10010100011{01000 10010100011{11011

at random from the mating pool for Figure 3.4. Crossover operation.
crossover. Then a random number in the range of [0,1] is generated; crossover for a mating
pair only proceeds if the number generated is lower than the crossover rate which is specified
at the start of the algorithm, otherwise, the two individuals are passed on to the next
generation unaltered by the crossover process. If crossover is to occur for a mating pair, then
a crossover point somewhere along the length of the strings is chosen at random, and all

portions of the strings beyond the crossover point are exchanged to form new strings. The

crossover operation is illustrated in Figure 3.4.
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Mutation plays a secondary role in genetic algorithms. It serves to recover lost
genetic information. Consider for example a population in which the value of the feature
(gene) in the 10" position of every individual has converged to ‘1°. It would be impossible
therefore, for reproduction and crcssover alone to ever generate a value other than ‘1’ in that
position in any individual. Mutation, however, would allow this to occur, thereby recovering
lost genetic information. Mutation occurs after crossover by changing the value of a gene at
a location along the string. Mutation at a location only proceeds if a randomly generated
number in the range [0, 1] is less than the mutation rate which is specified at the start of the
algorithm. Mutation rates on the order of one mutation per thousand bit transfers have been
shown to obtain good results [23,38].

One problem with genetic algorithms is that the user must specify the population size,
as well as the crossover and mutation rates. Large populations increase the time required for
the population to converge to the optimal solution but at the same time, increase the
population’s diversity and helps to prevent premature convergence, a topic to be discussed
shortly. Studies have shown that the population size, crossover rate and mutation rate are
closely related [23,38]. Small populations require relatively large crossover and mutation
rates compared to those of larger populations [6,23,38].

One issue that often arises when genetic algorithms are applied to arbitrary problems
is that the objective is more naturally stated as the minimization of some cost function rather
than the maximization of some profit function [38]. When this occurs, the objective function
must be mapped to fitness form. Several methods of accomplishing this are presented by

Goldberg [38].

45



Another issue involves the convergence rate of genetic algorithms. When the
algorithm is first run, it is common to have a few extraordinary strings in a population of
otherwise mediocre individuals. This often results in those individuals with the highest fitness
generating a disproportionate number of offspring in the next generation, particularly when
the population size is small. This is a main cause of premature convergence. In contrast, after
many generations the population, while still being quite diverse, may contain individuals with
approximately the same fitness levels. As a consequence, average members of the population
contribute nearly the same number of offspring to the next generation as the best individuals.
Thus, the driving force of the genetic algorithm, survival of the fittest, is lost. In both this
situation and with premature convergence, fitness scaling can help. Goldberg describes in
detail how fitness scaling may be performed [38].

As was mentioned earlier, there are numerous methods of coding the parameters of
the problem to be optimized to the strings in a genetic algorithm. The coding may be binary
or decimal, direct or mapped, to name but a few. However, regardless of the particular
coding used there are two principle guidelines which should be followed when selecting the
coding of the problem parameters into string format. They are the principle of minimal
alphabets, and the principle of meaningful building blocks [38].

The principle of minimal alphabets states that one should choose the smallest possible
alphabet that permits a natural expression of the problem. A simple example illustrates the
reason behind this principle. Consider for example that we are trying to code the integers
from O to 31. This may be accomplished by using a five digit binary coding or it may be

accomplished by using a 32 character alphabet consisting of the 26 letter (A-Z) and 6 digits
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(1-6). The two coding methods are shown in Table 3.1.

00000
00001

1100]
11010
1J01]

Bi Codi Nonbi
A
B
Z
|
2
6

11111
Table 3.1. Comparison of coding schemes.

In the binary case it is evident that there are similarities which may be exploited, however,
with the 32-letter alphabet there are none. The principle of meaningful building blocks states
that “the user should select a coding so that short, low-order schemata are relevant to the
underlying problem and relatively unrelated to schemata over other fixed positions” [38].
One final issue that must be addressed before discussing the previous research
applications of genetic algorithms to voltage and reactive power problems is that of how they
deal with constraints. Constraints that cannot be violated may be implemented either by
imposing penalties on individuals that violate them, or by creating decoders that avoid
creating individuals that violate constraints. Each of these methods has advantages and
disadvantages. If the problem domain is one in which the production of an individual that
violates the constraints is likely, the genetic algorithm spends most of its time evaluating
illegal individuals. As well, if the penalty imposed is quite high, when a legal individual is
found the population may converge on it without finding better individuals as the paths to

other legal individuals will likely require the production of illegal individuals as intermediate
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structures [5]. In contrast, if the penalty imposed is too low, the system may converge on
individuals that violate constraints, but whose fitness is still higher than those which do not,
because the objective function can be better satisfied by accepting the small penalty than by
avoiding it [S]. The use of decoders to prevent individuals that violate constraints from being
created frequently results in an algorithm that is too computation intensive to run efficiently
[51

During the 1990's there has been much interest into the suitability of genetic
algorithms to various power system problems, [29,30,79,80}, and to the voltage and reactive
power problems in particular [23-28]. In [24], Ajjarapu and Albanna proposed the use of
genetic algorithms to the capacitor placement problem. While they do not present an actual
algorithm, they do get the ball rolling, so to speak, by discussing the suitability of GAs to the
problem and suggesting a fitness function for the problem. This section will present the
research which has been performed to date applying genetic algorithms to voltage and
reactive power problems.

In [23], Haida and Akimoto propose a genetic algorithm for optimizing the voltage
profile on a distribution system by controlling shunt capacitors. They evaluated their genetic
algorithm using a simple seven bus system. Their genetic algorithm employed remainder
stochastic sampling without replacement as its selection scheme, and sigma truncation scaling.
The fitness function was the average of the bus voltage deviations from their nominal values,
modified by penalty factors imposed for the violation of operational constraints. They
considered the effects of changing the genetic algorithm of population size, crossover rate,

mutation rate and coding type. They observed that there is a trade off between the population
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size and the mutation rate, that is, they found that the smaller the population size, the higher
the mutation rate that is required, and vice versa. As well, they found that crossover rates
between 0.6 and 0.8 did not significantly affect the performance of the GA. They observed
little difference between the use of gray coding and binary coding schemes. In their approach
there is one capacitor at each bus, and their ratings are encoded in the chromosomes.
However, the authors do not explain how the coding scheme corresponds to the actual VAR
ratings of the capacitors; as well, it seems unlikely that a practical distribution system would
have a multi-tap switched capacitor at every bus. They report that their GA resulted in better
solutions and in fewer iterations that other simple search methods. While Haida and Akimoto
acknowledge that their approach was tested on a small system and only considered capacitor
control, they suggest that it is an important first step on the way to developing
computationally efficient techniques for solving the voltage control problem.

Iba, [25], presents a method based on genetic algorithms for solving the voltage and
reactive power control problem. In his method, the distribution system is broken down into
subsystems, with each subsystem being evaluated according to four objective functions:
voltage violation, generator VAR violation, power loss, and the weighted sum of the three.
He proposes two genetic operators, interbreeding and manipulation to replace the operators
of crossover and mutation. According to his interbreeding scheme a new individual is formed
by applying the traditional stochastic selection rules to each subsystem in turn. His
manipulation operator consists of stochastically applying if-then rules to the strings. He
tested his algorithm using practical 51 and 224 bus systems. Using an HP9000/730 (76MIPS)

based computer his algorithm required 27 seconds to perform 17 generations and 93 seconds
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to perform 80 generations for the 51 bus system with a population of 50 individuals, and
11:19 to perform 33 generations and 15:10 to perform 41 generations for the 224 bus system
with a population of 100 individuals. The probability of his algorithm converging to a
solution within 70 generations is 90%, however, it is possible that it will fail to converge
within 80 generations. As well, the solution obtained is not always the global optimum. One
advantage of GAs over other methods clearly illustrated by Iba’s work is that the final
generation consists not only of the best solution, but also of several quasi-optimal solutions.
Iba, however, does not specify the loading conditions of the system, how the power flows
were calculated, or how the compensators were placed on the system.

In [28], Pierre et al. present a genetic algorithm approach to the problem of placing
shunt capacitors on a radial distribution system. Their algorithm uses as its fitness function
the sum of the cost of real power losses and the cost of capacitors placed on the system. In
formulating the problem they assume that the system is a balanced three phase system with
time invariant loads. They do not consider energy losses in their formulation, and while they
acknowledge the importance of bus voltage constraints, they do not include a mechanism for
satisfying these constraints. They test their genetic algorithm on a simple ten bus system
using a crossover rate of 0.6 and a mutation rate of 0.001. Their approach is successful in
that it reduces the operating cost of the system; however, it results in capacitors being placed
at every bus, something which is unlikely to ever occur in practice. As well, as every bus is
considered as a candidate for capacitor placement, their approach would become
computationally impractical if applied to a realistically sized system.

Sundharajan and Pahwa, [27], addressed the capacitor placement problem on a radial
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distribution system by first applying a sensitivity analysis to determine candidate nodes, and
then employing a genetic algorithm to determine the best size, type and location of capacitors
from amongst the candidate locations. Their method considered the cost of both power and
energy losses, as well as the cost of the capacitors. They divided the year into four load
levels, with the bus loads being assumed to vary in proportion at each load level. They
implemented their genetic algorithm using a software package GENESIS (GENEtic Search
Implementation System) and a set of C programs. They applied their method to two test
systems: a 30 bus system described in [61] and a 9 bus system. Using the 30 bus system their
algorithm resulted in capacitors being placed at eight buses when a penalty for placement at
more than five buses was applied. This resulted in an annual savings of $39404.61. Using the
9 bus system they studied the effects of the crossover and mutation rates on the performance
of the system. They found that a crossover rate of 0.8 and a mutation rate of 0.003 yielded
the best results when the population size was 50. In addition, it should be pointed out that
they employed an elitist selection scheme in which the best individual in each generation was
automatically contained in the next generation. While their results seem promising, there s
still room for improvement as they do not consider the use of voltage regulators or
operational constraints such as bus voltage violations. As well, the authors do not mention
the processing time required by their algorithm.

Miu, Chiang and Darling, [26], considered the capacitor placement problem using a
two stage approach. Their method also included the possibility of capacitor replacements.
Like Sundharajan and Pahwa, [27], they employed a heuristic method to first determine

candidate locations for placement or replacement of capacitors. They then applied a genetic
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algorithm to optimally place and/or replace the capacitors on the distribution system. After
a user specified number of generations, their GA was stopped, and the best two solutions
were further evaluated using a heuristic method in order to improve upon the solutions
locally. They tested their algorithm on an actual 292 bus feeder in the New York State
Electric and Gas Corporation which already had 9 capacitors placed on it. In their study they
used a population size of 50, a crossover rate of 0.7, and a mutation rate of 0.005. They
found that their two stage approach always led to a better solution and in a shorter amount
of time than by using either the GA or heuristic methods alone. For example, after 100
generations (3 hours and 20 minutes) their two stage approach resulted in the same solution
that was returned by the genetic algorithm alone after 170 generations (5 hours and 40
minutes). The genetic algorithm portion of their system considers the cost of the power
losses as well as the costs of placing and/or replacing the capacitors in its fitness function.
As well, the operational constraints such as the bus voltage limits are implemented by
imposing a penalty on those string which violate them. Although their results are quite
promising, their method does not consider either the cost of energy losses or the use of
voltage regulators.

While considerable progress has been made in applying genetic algonthms to the
placement problem, little has been done in the way of solving the control problem. The
success of genetic algorithms in solving the placement problem suggests that they could well
be applied to the control problem. As well, the qualities of genetic algorithms seems to make
them ideally suited to handling this problem, and deserves further investigation. This shall be

the focus of the remainder of this thesis.
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3.4 Summary

Over the years many improvements have been made both in the manner in which
voltage and reactive power problems are formulated and in the way the system is modeled.
These improvements have been accompanied by improvements in the capabilities of
microprocessors. Together these advancements have made it possible to develop fast
techniques for real-time, online control of compensators placed on the distribution system.
Many of the methods currently being studied are based on ‘modern’ techniques including:
fuzzy logic and fuzzy sets, artificial neural networks, expert systems, and genetic algorithms.
The use of these techniques developed by other researchers to solve both the placement and
control problems has been discussed. The use of genetic algorithms to solve the control
problem seems particularly promising. Evaluating their suitability to the control problem shall

be the focus of the remainder of this thesis.
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Chapter 4

Solution Methodology

4.1 Introduction

Based on the literature review presented in Chapter 3, genetic algorithms were
thought to be quite applicable to the control problem. As a consequence, a method of solving
the control problem for the purpose of reducing distribution system losses under the
constraint of bus voltages using genetic algorithms was developed. In fact, two approaches
were taken: one which employed a penalty based fitness function and the other which
employed a fuzzy logic based fitness function. This chapter describes in detail these two
genetic algorithm methodologies  As well as presenting the solution methodology, this

chapter presents the system model and problem formulation adopted in this thesis.
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4.2 System Modeling

In this thesis, the distribution system is assumed to be a balanced three phase system,
and hence, a single phase representation can be used. The control devices consist of shunt
capacitors and voltage regulators which are assumed to be already placed optimally on the
system using a method such as that of Grainger and Civanlar, {59,60,61]. The distribution
system is modeled using a Tt-equivalent representation.
4.2.1 Load Sensitivity to Voltage

Studies performed as part of the Athens Area Control Experiment, [8,92]
demonstrated that while feeder losses are reduced following power factor corrections, that
the system losses actually increase as a result of the improvement in voltage profile associated
with the compensation. In fact, they observed that the increase in load actually exceeded the
amount of the loss reduction, and consequently, the real power injected at the substation
increased. They attributed the difference between the experimentally observed increase in the
power injected at the substation and the expected reduction in power predicted by their
simulation model to the use of a constant power representation for the loads. In order to
account for this discrepancy, they proposed a model that represented each load as a parallel
combination of constant power, constant current and constant impedance loads as shown in
Figure 4.1.

Let P, (V) be the real power consumed by some load as a function of the applied

voitage, V. Using a Taylor series expansion, P; (V) can be rewritten as:

P,(V) = P(V,) = PL(V)V-V,) + —;—P,_”(VO)(V~ v, + HOT @.1)
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Figure 4.1. Voltage dependent model of the load at bus i.

where V, denotes the nominal voltage, and HOT stands for higher order terms. As
distribution voltages are typically maintained within +5% of their nominal values, an accurate

approximation for P_(V) can be obtained by ignoring the HOT. Equation 4.1 then becomes:

P.(V) = [P(Vy) - VP (V) + %V:PL”(V(,)] S ARRAHUA e [%PL”(P},)] VE a2)

From this it is clear that if the nominal power, P;(V,), and the first and second derivatives of
the load with respect to voltage, P’ (V) and P“;(V), can be determined, then P, (V) can be
represented as a quadratic polynomial in voltage. Using the following definitions for the

coefficients:
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P=P,(V,) - VPV, + %V:P,_”(VO)

I =PV, - VP, (V) (4.3)

a1
R'= EPL”(VO)

Equation 4.2 can be written as:

P(WVN)=P+IV+R'V? (4.9)

This can be interpreted as the real power consumed by a constant power sink, P, a constant
current sink, I, and a constant resistance, R. Similar expressions can be obtained for the
reactive power.

Without knowing the sensitivities of each load, it is difficult to determine its model
parameters. By assuming that each load component (i.e. constant power, constant current,
and constant impedance) contributes a given fraction of the total load at nominal voltage, the
load model can be made to assume any voltage dependence by varying the component

contribution parameters, €;, €, and €, that is:

P =¢€,P, (V)
Py
I, =€ o
0 4.5)
P,V
R'=¢, )
Vo

where
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€ +€ +€,=1 (4.6)

The disadvantage with this model is that the component contribution parameters must be
specified by the distribution system engineer, and they may not be obvious.

In this thesis, a constant power model is used. This model is perhaps the most
commonly used by researchers and utilities alike. While it may not be the most accurate
model for a particular distribution system, it does produce the most conservative results when
calculating line losses, and thus serves as a lower bound on the losses a utility might see in
practice [6]. It should be pointed out that the above model could have been incorporated into
this thesis by modifying the load flow portion of the program. However, without the specific
operational experience necessary to determine the component contribution parameters, it
would be quite difficult to offer a general-purpose load model, and hence the constant power
model is used.

4.2.2 Load Flows

Load flow analysis is used to determine the apparent power and voltages at each bus
in the distribution system under steady state conditions and has been described in many
textbooks (for example, [90,91]). While there are several methods for performing load flow
analysis the Gauss-Seidel technique and the Newton-Raphson techniques are perhaps the
most common. Both methods can be carried out very quickly using modern computers,
however, the Gauss-Seidel method is preferred for distribution systems as the low X/R ratios
typical of distribution systems often leads to ill-conditioned Jacobian matrices which can cause

the Newton-Raphson method to fail to converge [90]. As well, the Gauss-Seidel technique
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has the following advantages:

a) it is relatively insensitive to the initial voltage estimates,

b) it has reasonably small memory requirements, and

c) it is simple to implement in a computer program.
Every possible solution in the control problem requires a load flow to be performed so that
its merits can be assessed. As a result, for a large distribution system, even with the use of
a fast computer, the time required to complete a load flow to evaluate every solution would
be prohibitive. This is the main reason for not performing an exhaustive search. While the
use of an optimization technique such as genetic algorithms does reduce the number of times
that a load flow analysis must be performed, these load flows still consume most of the
processing time required by the optimization technique. It is important therefore, to examine
the issue.

Using the nt-equivalent representation, the distribution system is characterized by a

system of n nonlinear equations:

Ugys] = [Ygysl [Vgys] 4.7

where n is the number of buses in the system, I is the bus current vector, Yy is the bus
admittance matrix, and Vg, is the bus voitage vector [90]. The bus admittance matrix may
be formed using a simple procedure. A diagonal element, Y,, is equal to the sum of the
admittances connected to bus i, and an off-diagonal element, Y, is equal to the negative of
the admittance of the network element connecting bus i to bus j. It is clear that the bus

admittance matrix is both symmetric and sparse, hence, the memory requirements can be
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reduced by only storing nonzero elements of the :n(n+1) elements as opposed to all n’
elements.

From Equation 4.7 it is clear that the current at the i* bus is given by:

L= ,21: Y.V, =YV,+ le: Y,V 4.8)
o
Solving this for V, gives:
1 n
Vi3 &L YY) (4.9)
H s=1
Je1
and recalling Equation 2.2
I = Y 4.10
[ V. ( ° )

1
;= — Y.V)
Y, v it (4.11)

Equation 4.11 involves only the bus voltages and apparent powers as variables, and can be
solved iteratively using the most recent estimates of the bus voltages until the change in bus
voltages is smaller than some specified tolerance, €. The iterative process employed to solve

this system of equations is known as the Gauss-Seidel method, and forms the basis of the load
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flow analysis used in this thesis. It should be pointed out that equation 4.11 is only used for
load buses (buses where the real and reactive power are specified), however, since
distribution systems rarely contain generators this is sufficient. Using a similar procedure, an
equation for generator buses can be developed.

In order to reduce the computing time, several calculations can be performed before
the iterative procedure is initiated. These calculations only involve the constant quantities of

the admittance matrix values and bus loads, and are given as follows:

P, -j2) Y,
Ai=—r— B=y (4.12)
i i
Substitution of these quantities into Equation 4.11 gives:
A B n
iz oo le: BY; (4.13)

i
Jei

A load flow algorithm based on Equations 4.12 and 4.13, and having a convergence
tolerance, € = 10, was implemented using Visual C++. This algorithm was verified by
comparing the results obtained by it with those obtained by other researchers. Table 4.1
shows the results obtained using this algorithm for a distribution system consisting of three
feeders with a total of 16 buses. Table 4.1 also shows the results presented by Civanlar et al.,
[89] for the same system. It is clear that the voltages are identical, except for minor
differences in the phase angle of less than 1°.

It should be remembered that the Gauss-Seidel method is an iterative technique , and
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may require a considerable number of iterations to converge (or may even fail to converge)
on a solution. To improve the time required for this technique to converge it is possible to
make use of an acceleration factor. For larger systems (more that 50 buses) it may be
preferable to use a faster method for performing load flow analysis such as that proposed by
Rizy et al, [92]. However, for the system considered in this thesis it was felt that the Gauss-
Seidel technique was sufficient as convergence and speed of convergence were not significant
issues.
4.2.3 Load Variations with Time

It is well known that the loads on a power system are dynamic, that is, they vary over
time. These variations may occur quite rapidly (during switching on or off of parts of the
power system), or may take place more gradually, as in the case of daily load vanations. It
is these gradual changes due to load variations that are of interest in this thesis. System loads
may be broadly grouped into three load categories: residential, commercial, and industrial.
As well, the total load at a particular point in the distribution system may be some
combination of these load types. The variation of each load type over the period of a year
can be divided into three seasons during which the daily load profiles are quite similar [82].
These three seasons are: Summer, Winter, and Spring/Fall. Daily load profiles during each
season can be further divided into four periods: weekday peak period, weekday off-peak
period, weekend peak period, and weekend off-peak period [82]. Hence, the annual load
variation of each of the three load types can be divided into twelve periods, and the load
variation of the total load can be determined by the weighted sum of the three load types

during each period, where the weights are determined from the proportion of each load type
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at the load point.

In this thesis, the twelve period model was used. Using the load conversion factors
presented by Abdel-Salam, [65], the load profile for each of the twelve periods was obtained.
For the system studied in this thesis, the load at each bus was assumed to consist of 15%
industrial load, 25% commercial load, and 60% residential load. To more realistically model
the unpredictability of the loads, the load at each bus was multiplied my a uniformly
distributed random number between 0.85 and 1.15. This technique also eliminates reliance
on the unrealistic approximations used by many researchers that:

a) the loads at every bus vary in the same proportion, and

b) the reactive power consumed by the load is a fixed fraction of the real power

consumed by the load.
While this technique for modeling the variation of loads over time is by no means accurate,
it does provide a reasonable method for developing load profiles to evaluate the performance
of the genetic algorithm developed in this thesis.

As a result of the daily load variations, the compensation must be changed periodically
in order to maintain the system losses at their practical minimum levels. This is of course the
goal of the control problem, and the aim of this thesis. Miller, [1], suggests that these
adjustments can be made “infrequently” over a period of several minutes. Hence, in order to
be useful, any algorithm which solves the control problem (including the one developed in this
thesis) must be capable of arriving at a solution within a maximum of five minutes. Another
factor which must be considered in deciding the frequency of adjusting the compensation level

is the increased wear, and hence, increased maintenance and repair cost to equipment as a
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result of more frequent switching operations. As well, the effect of transients caused by
switching operations must be considered.
4.3 Problem Formulation

In this thesis, the objective is to apply a genetic algorithm to optimally control shunt
capacitors and voltage regulators placed on a distribution system for the purpose of reducing
losses, while satisfying the bus voltage constraints. To accomplish this task, the problem has
to be formulated in such a way that the genetic algorithm can be applied. In this thesis a
genetic algorithm was implemented in Visual C++ using the methods outlined by Goldberg,
[38], for creating a genetic algorithm. This was discussed in detail in Chapter 3.

The genetic algorithm used in this thesis operated on a population of popsize
individuals, where each individual corresponds to a point in the solution space. In this case,
that means that each individual represents any possible combination of compensator settings.
To accomplish this, each individual was coded as a string consisting of genes integer coded
features, or genes, where genes is the number of compensators to be controlled. In this
thesis, the value of each gene corresponds to the tap setting of the controlled device. For
example, if the 3™ gene corresponds to a voltage booster that is placed at bus 23 of the
distribution system, then if this gene had the value 7, this would correspond to the tap of that
voltage booster being in its 7" position. In this way, the locations and ratings of each
compensator for each of its possible switching positions is capable of being coded as an
individual in the population of the genetic algorithm, and hence, the entire solution space can
be effectively searched using this genetic algorithm approach.

In this thesis, the initial population of the genetic algorithm consisted of popsize
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individuals which were randomly chosen from the solution space. As well, the genetic
algorithm was allowed to proceed for max_gens generations before being terminated. At
each generation, reproduction was performed using an elitist selection process, where the best
individual in the generation was automatically added to the mating pool and the remaining
(popsize-1) individuals were selected using the stochastic sampling with replacement
technique as outlined in {38]. Once the mating pool was selected crossover was applied at
a rate of cross_rate to form the new population. Finally, the mutation operator was applied
as outlined in Chapter 3 at a rate of mutation_rate. In this thesis, the population size, the
crossover rate and the mutation rate remained constant at every generation. As well, in order
to alleviate possible convergence problems, linear scaling as described by Goldberg, [38]}, was
employed throughout this thesis.

As the objective of this thesis is to minimize the distribution losses under varying load
conditions while satisfying the constraints on the bus voltages, it was necessary to determine
an objective function that was capable of accomplishing this. Mathematically the problem can
be stated as follows:

min[P,,] = min((P, - P,)) = min (P, - 3 P)] .14

suchthat V. <V <V __ fori=1.n

where P, is the losses, P, = P, is the power supplied by the substation, and P, is the total
power demanded by the bus loads, P, As mentioned in Chapter 3, however, genetic
algorithms seek to maximize a fitness function, not to minimize one. Consequently, the

problem is restated as that of maximizing the percent reduction in losses, that is:
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lossy,,

Plo.vs
P ) * 100%] (4.15)

loss,,,

max[% P, ] = max [(

where P, . is simply the real power losses of the system without compensation, i.e. the bare
system, and P, is given by Equation 4.14 and includes the constraints on the bus voltages.
The problem is now stated in a form that is suitable for use with a genetic algorithm, except
that it does not include a means for dealing with the bus voltage constraints. As was outlined
in Chapter 3, the previous research applying genetic algorithms to the capacitor placement
problem used a fitness function that was proportional to the total losses of the distribution
system modified by a penalty that was applied for constraint violations. Initially, this was the
approach adopted in this thesis, and was incorporated by reducing the objective function,
Equation 4.15, by 10% for each constraint violation. Hence, the fitness function used

becomes:

max [ng. (% Plos_y)] (4' 1 6)

where %P, is the percent loss reduction given by Equation 4.15, and k is the number of
buses having constraint violations.

Upon further consideration of the problem. it was thought that by using a fuzzy logic
based approach for the fitness function, that the objective could be better achieved. With a
fuzzy based approach, the task becomes that of maximizing the intersection between the fuzzy
set describing the percent loss reduction and the fuzzy sets describing the bus voltage

constraints. The fuzzy set for the bus voltage violations is shown in Figure 4.3(a) and that
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for the total losses is shown in Figure 4.3(b). In this thesis, the same fuzzy set was used to

represent the voltage constraints at each bus, however, each bus could just as easily had its

own fuzzy set associated with it. In this way, a compromise is made between solutions that

improve the loss reduction by pushing the bus voltages to their extreme values, and the

constraints which seek to keep the bus voltages away from their extremes. In this thesis, the

constraints on the bus voltages was that they be within £5% of their nominal values. As was

pointed out in Chapter 3, this value is typical in much of the research into voltage and reactive

power problems, however, the method used in this thesis, could easily have handled other

values for constraints on the bus voltages including different constraints for different buses.

The reader is referred to the Appendix for more details on the fuzzy fitness function.
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Figure 4.3(a). Membership function for
the number of bus voltage violations.
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4.4  Tests Performed

Having formulated the control problem in a manner that is suitable for solution by a
genetic algorithm, the tests performed can now be described. In this thesis, all test were
performed using the distribution system described in references [21,61]. This is a radial
distribution system consisting of 30 load buses, with 6 lateral branches, and is shown in Figure
4.4. The system data is given in Table 4.2. The compensators that are to be controlled on
this system have the maximum ratings and locations of those which were used by Gu and
Rizy, [22], and consists of 5 switchable capacitors and 1 voltage regulator. The S switchable
capacitors were initially placed on the system according to the method of Santoso and Tan,
[44], and have the tap settings shown in Table 4.3. The voltage regulator is located at bus
4 and has nine tap positions which are distributed equally between 1.0 and 1.1 per umt.

For this test system the total number of compensators to be controlled is 6, and hence,
genes is 6. As well, the total number of points in the solution space is 5°9' = 28125.
Obviously, even for this small test system, the time required for an exhaustive search to be
performed would be prohibitive. In fact, to be useful the genetic algorithm approach
developed in this thesis must be capable of arriving at a solution in less than 5 minutes, as was
mentioned in Section 4.2.3. As a consequence, the method developed in this thesis must
usefully process only a small fraction of the total 28125 possible solutions. This requires that
the genetic algorithms used in this thesis operate on a small population, and that they are
capable of converging in a reasonable number of generations. Throughout this thesis a
population size of popsize = 20 individuals was used. This is quite small among genetic

algorithms. As well, it will be shown in the next chapter that the genetic algorithms used here
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only require about 25 generations to converge. Hence, the genetic algorithm effectively
searches only 20%2S = 500 points, or less than 2% of the total search space.

In this thesis, two groups of tests were performed. In the first group, the sensitivity
of the solution to the values of the parameters of the genetic algorithm was investigated. In
particular, the effect of variation of the mutation rate and the crossover rate on the
performance of the genetic algorithm were studied. It is well known that the population size,
the crossover rate, and the mutation rate are closely related, hence, in order for the genetic
algorithm to perform well these parameters must first be determined. Since the population
size is fixed, as was discussed above, it was only necessary to determine the appropnate
mutation and crossover rates. This is the primary purpose of the first group of tests.

Making use of the results from the first group of tests, the second group of tests
compared the performance of the genetic algorithm using the penalty based fitness function
with the genetic algorithm using the fuzzy based fitness function. The results from the genetic
algorithm were also compared with the result of an exhaustive search using the same objective
function as the penalty based GA method. All tests in the second group were performed
under the twelve loading conditions obtained from the method outlined in Section 4.2.3. Both

groups of tests, and the results are discussed in greater detail in the next chapter.
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Bus Bus Branch Impedance Maximum Load at Bus j
i J r; (Q) x; () P (kW) Q (kVAR)
0 1 0.5096 1.7030 0 0
1 2 0.2191 00118 522 174
2 3 0.3485 0.3446 0 0
3 4 1.1750 1.0214 936 312
4 5 0.5530 0.4806 0 0
5 6 1.6625 0.9365 0 0
6 7 1.3506 0.7608 0 0
7 8 1.3506 0.7608 0 0
8 9 1.3259 0.7469 189 63
9 10 1.3259 0.7469 0 0
10 11 3.9709 2.2369 336 112

11 12 1.8549 1.0449 657 219
12 i3 0.7557 0.4257 783 261
13 14 1.5389 0.8669 729 243
8 15 0.4572 0.4131 477 159
15 16 0.7282 0.4102 549 183
16 17 1.3053 0.7353 477 159
6 18 0.4838 0.4206 432 144
18 19 1.5898 1.3818 672 224
19 20 1.5389 0.8669 495 165
6 21 0.6048 0.5257 207 69
3 22 0.5639 0.5575 522 174
22 23 0.3432 0.3393 1917 639
23 24 0.5728 0.4979 0 0
24 25 1.4602 1.2692 1116 372
25 26 1.0627 0.9237 549 183
26 27 1.5114 0.8514 792 264
1 28 0.4659 0.0251 882 294
28 29 1.6351 0.9211 882 294
29 30 1.1143 0.6277 882 294

Table 4.2. System data for the 30 bus test system [21].
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Bus Location

13

15

23

25

o0j o

1 {800

1000

1600

2000

600

750

1200

1500

Tap Position

400

500

800

1000

L W IN

200

250

100

400

500

Capacitor Rathg (kVAR)

Table 4.3. Capacitor locations and ratings.
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Chapter 5

Results and Discussion

S.1 Introduction

In this thesis, two groups of tests were performed. The first group of tests studied
the effect of the mutation rate and the crossover rate on the performance of the genetic
algorithm. The second group of tests compared the performance of three search methods:
the genetic algorithm using a penalty based fitness function, the genetic algorithm using a
fuzzy based fitness function, and an exhaustive search of the solution space. All tests were
performed using the 30 bus system described in Chapter 4.
5.2  Group One Tests - Genetic Parameters

In order to determine the optimal values of the crossover rate and the mutation rate
used in the genetic algorithm, a series of tests was performed. Using the penalty based fitness

function described in Section 4.3, the effect of varying the mutation rate and the crossover

74



rate on the performance of the genetic algorithm was able to be evaluated, and appropriate
values were determined.

The first series of tests consisted of using a fixed crossover rate of 0.6 to determine
the effect of the mutation rate on the performance of the genetic algorithm. Using this fixed
crossover rate, four different mutation rates, 0.001, 0.003, 0.01 and 0.03 were considered.
All four tests were performed under the same loading conditions using the 30 bus distribution
system described in Chapter 4 . Because genetic algorithms are a probabilistic search method,
each test was performed S times, and the average fitness of the population at each generation
is plotted against the number of generations for each of the four mutation rates studied in
Figures 5.1-5.4. Figure 5.5 shows the average results over the five tests for each of the four
mutation rates studied. As the mutation rate increases, the search becomes more random and
changes occur more frequently making it easier for the algorithm to escape from local
optimums; on the other hand, with a low mutation rate changes take place in a comparatively
smoother fashion, and hence, the algorithm is less able to escape from local optimum
solutions. This is particularly true in small population genetic algorithms, as is the case here,
because the population is so small that it requires a higher mutation rate to effectively search
the solution space, as compared with a large population genetic algorithm. The inability of
the genetic algorithm to escape from local optimal solutions is evident in Figures 5.1-5.4, as
the mutation rate is increased, the genetic algorithm is able to more consistently arrive at good
solutions, while for the lower mutation rates each trial results in a significantly different level
of fitness. From Figure 5.5, it can be seen that a mutation rate of 0.03 gives a better

performance than the others, hence, this value was used as the mutation rate in all the
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remaining tests.

Using, the fixed mutation rate of 0.03, the effect of the crossover rate was then
studied. Tests using the same distribution system as the mutation rate tests were performed
for four values of crossover rate: 0.4, 0.6, 0.8, 1.0. Again, each test was performed S times,
and the average fitness of the population at each generation for each trial is shown in Figures
5.6-5.9. Figure 5.10 shows the average of the results over the five tests from each of the four
crossover rates studied. A lower crossover rate corresponds to a lower exploration rate of
the solution space and brings new structures into the population gradually. A higher
crossover rate, in comparison, may eliminate high performance strings faster than selection
can make improvements. This effect of the crossover rate on the convergence of the genetic
algorithm is quite clear in Figures 5.6-5.10. Figure 5.10 indicates that a crossover rate of 1.0
performs slightly better than the other values tested, and hence, shall be used in all the
remaining tests. As well, it is clear from Figures 5.9 and 5.10 that using the value of 1.0 for
the crossover rate and 0.03 for the mutation rate always resuits in genetic algorithm
converging in less than 25 generations, and hence max_gens is set at 25 for all the remaining

tests described in this thesis.
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5.3  Group Two Tests - Performance of the Genetic Algorithm

Having fixed all the parameters of the genetic algorithm, it can now be applied to the
control problem. In this section the results of the genetic algorithm using both the penalty
based fitness function and the fuzzy logic based fitness function are presented. As well, the
performance of the genetic algorithm technique using these two fitness functions are
compared to the global optimal as determined by performing an exhaustive search of the
solution space using the penalty based objective function.

Using the method outlined in Chapter 4, twelve load profiles were generated. Each
of the optimization methods were then tested using the same twelve load profiles. As genetic
algorithms are a probabilistic search technique, three trials were performed for each of the
twelve load level for both of the genetic algorithm approaches.

5.3.1 The Penalty Based Fitness Function

The results of the three trials using the genetic algorithm having a penalty based fitness
function are shown in figures 5.11-5.23. Figure 5.11 shows the percent loss reduction for
each of the three trials for each of the twelve periods. It is evident that the results from
amongst the three trials at each load period are quite close, they differ by less than 1%.
Although the results are not identical from trial to trial they are quite comparable. In fact, one
of the beneficial features of the genetic algorithm approach is that the final solution consists
not only of the best individual, but also contains other near optimal solutions. Figure 5.37
compares the results of the first trial using the genetic algorithm approach with an exhaustive
search of the solution space for each of the twelve periods studied. From this it is clear that

the results from the genetic algorithm using the penalty based fitness function are always
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slightly less than or equal to the giobal optimal solution. While the genetic algorithm is not
guaranteed to find the global optimal, it does consistently find quite comparable near optimal
solutions.

The voltage profile of the distribution system resulting from the compensation
determined by the genetic algorithm with the penalty based fitness function for the three trials
at each of the twelve periods studied are given in Figures 5.12-5.23. Upon examination of
the voltage profiles, it is clear that all of the bus voltages are within the 5% limits as
required. In this respect the genetic algorithm using the penalty based fitness function was
successful, as none of the final solutions resulted in constraint violations. Figures 5.38-5.49
compare the bus voltages obtained by the first trial of the genetic algorithm using the penaity
based fitness function with those of the bare system and those of the distribution system when
compensated according to the results of exhaustive search for each of the twelve periods
studied. It should be mentioned that the bus voltage profile of the bare system for every load
period violates the +5% constraint at several buses. The ability of the genetic algorithm using
the penalty based fitness function to consistently arrive at solutions which do not violate the
voltage constraints is quite noteworthy. As was mentioned in Chapter 3, the method of
implementing constraints in a genetic algorithm is quite important, this will be discussed
further in the next section.

Table 5.1 shows a typical initial and final population of the genetic algorithm. From
this it is evident that the genetic algorithm starts from a random population of individuals and
converges to a final population that contains several optimal or near optimal solutions. Table

5.2 shows the total losses of the distribution system for the bare system, as well as for the



system after being compensated by each of the three methods. From this table, it can be seen
that of the 36 trials performed using the penalty based fitness function, 7 resulted in the global
optimal solution being found.

When evaluating the performance of the genetic algorithm approach it is important
not only to consider the quality of solution, but also the time required to arrive at the solution.
As was discussed earlier, in order to be useful any method of performing the control problem
must be capable of arriving at a high quality solution in less than five minutes. The time
required by the genetic algorithm using the penalty based fitness function was less than 3
minutes and 30 seconds in every case. This is quite acceptable. It should be pointed out that
the time required by the genetic algorithm to arrive at a solution is primarily limited by the
time required to perform a load flow analysis for the system. In this thesis the Gauss-Seidel
technique was used as was discussed in Chapter 4. This method is not the fastest method
available, however it was felt that for the system being studied here that this technique was
sufficient. If this method were to be applied to a larger distribution system, consisting for
example of several hundred buses, one of the faster load flow techniques might be required.
The solution of the genetic algorithm is not sensitive to the load flow technique employed,
providing that the technique yields accurate results.

5.3.1 The Fuzzy Logic Based Fitness Function

The results of the three trials for each of the twelve periods from the genetic algorithm
using the fuzzy logic based fitness function are shown in figures 5.24-5.36. Figure 5.24
shows the percent loss reduction for the three trials for each of the twelve load periods

studied. From this it is evident that the results from amongst the three trials at each load
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period are quite similar. Although the results are not identical from trial to trial they are quite
comparable. Again, this is evidence of one of the benefits of the genetic algorithm approach,
that is, that the final solution consists not only of the best solution, but also contains several
other near optimal solutions. Figure 5.37 compares the results of the first trial of the genetic
algorithm approach using the fuzzy logic based fitness function with the results of an
exhaustive search of the solution space for each of the twelve periods studied. From this it
is clear that the results from the genetic algorithm using the penalty based fitness function are
always close, or equal to the global optimal solution. Unlike the penalty based method,
however, the fuzzy logic based method often resuits in a solution that has a higher percent
loss reduction than the global optimal solution. In each instance that the losses were reduced
further by the fuzzy logic based method than by the global optimal solution a voltage violation
occurred at bus S. This is the result of the trade off between solutions which tend to reduce
losses and those which tend to keep the voltages away from their limits.

Figures 5.25-5.36 show the bus voltages for the three trials at each of the twelve load
periods. Upon examining these figures it can be seen that in 11 out of the 36 trials (4 out of
the 12 periods) performed, the genetic algorithm using the fuzzy logic based fitness function
results in a voltage violation at bus 5. In each of these cases, the losses are reduced further
by the genetic algorithm technique than by the global optimal solution which never violates
voltage constraints. This is a result of the trade off performed by the fuzzy logic method
between the number of bus voltage constraints and the percent loss reduction of the
distribution system. This problem could be corrected by modifying the fuzzy objective

functions for the number of constraint violations and the fuzzy objective function for the
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percent loss reduction. Another way to resolve this problem would be to incorporate a more
complicated fuzzy fitness function, perhaps one that sought to minimize the intersection
between the total system losses and the number of constraint violations AND the degree of
violation. The fuzzy fitness function used in this thesis was chosen for its similarity with the
penalty based fitness fisnction so that the two methods could be more easily compared. While
the quality of the solution obtained by the genetic algorithm using the fuzzy logic based fitness
function are not as good as those obtained by the genetic algorithm using the penalty based
fitness function, they should not be discounted. As far as the author knows, this is the first
time that a fuzzy based fitness function has employed to solve the control problem. The
results from the fuzzy based method while not ideal are quite promising, and the idea deserves
further study.

From Table 5.2 it can be seen that of the 36 trials performed using the fuzzy logic
based fitness function, 3 were identical to the global optimal solution. The time required by
the genetic algorithm using the fuzzy logic based fitness function was comparable to that
required by the penalty based method, and never exceeded 3 minutes and 30 seconds. This
is quite acceptable. It is worth mentioning that the time required to obtain the global optimal
solution by performing an exhaustive search ranged from 2 hours and 45 minutes to 3 hours!
This clearly illustrates the effectiveness of the genetic algorithm to quickly arrive at the

optimal or near optimal solution.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

In this thesis, two genetic algorithm approaches have been applied to the problem of
controlling shunt capacitors and voltage regulators for the purpose of reducing losses, while
maintaining the bus voltages within +5% of their nominal rated values. The first genetic
algorithm approach used a penalty based fitness function, while the second genetic algorithm
used a fuzzy logic based fitness function. The results obtained by the genetic algorithm
methods were compared with the global optimal solution, which was obtained by performing
an exhaustive search using the penalty based objective function.

The genetic algorithm method using the penalty based fitness function found the
globai optimal solution in 7 out of 36 trials, and near optimal solutions in the other 29 tnals.

In every case, the penalty based method resulted in the voltage constraints being satisfied at
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all buses. The genetic algorithm method using the fuzzy logic based fitness function found
the giobal optimal solution in 3 out of the 36 trials performed. However, in 11 of the tnals
the fuzzy based method results in a voltage violation at bus S. In each of these 11 cases, the
total losses of the distribution system were reduced further by the fuzzy based method than
by the global optimal solution. This is a result of the trade-off performed by the fuzzy method
between the number of voltage violations and the total losses, and could have been corrected
by modifying the fuzzy objective functions or the fuzzy fitness function. The fuzzy fitness
function used in this thesis was chosen because of its similarity with the penalty based fitness
function. It should be remembered however, that the giobal optimal was determined using
the penalty based fitness function, and hence, it is not surprising that the penalty based method
would result in more occurrences of the global optimum than the fuzzy based method.
Both genetic algorithm methods had a solution time of less than 3 minutes and 30

seconds. This is well within the time limits for an algorithm to be useful for real-time, on-line
application. The exhaustive search required from 2 hours and 45 minutes to 3 hours to
determine the global optimal solution.
6.2 Recommendations for Future Research

In this thesis, all tests were performed on a 30 bus radial distribution system. While the
size of this system is typical of the research into the control problem, it is far from realistic.
A practical distribution system may consist of several hundred buses or more. The time
required for the method developed in this thesis to arrive at a solution is largely dependant
on the time required for a load flow to be performed, and hence, on the size of the distribution

system. In this thesis the Gauss-Seidel technique was employed to perform the load flows.
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This method, however is far from being fast. In order for the method presented here to still
be useful for real-time, on-line application to a more practical sized distribution system would
require a much faster load flow technique. Since the genetic algorithms presented here are
reasonably insensitive to the load flow technique employed it should not be too difficult to
modify this method to accommodate a larger sized distribution system. A load flow technique
based on an artificial neural network might be quite effective in this regard, and deserves
study. As well, in this thesis, a constant power model was employed for the loads. However,
for practical implementation, a more realistic model such as that described in Chapter 4 would
likely be required; again an artificial neural network load flow approach might prove
successful.

The results obtained by the genetic algorithm method using the fuzzy logic based
fitness function, while not ideal were quite promising. As was mentioned, the fuzzy objective
functions and the fuzzy fitness function was chosen because of their similarity to the penalty
based fitness function. This choice was made to assist in comparing the two methods,
however, another choice of fuzzy objective functions and fuzzy fitness function might yield

better results. This certainly deserves further study.
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Appendix

With the penalty based method, the fitness function is reduced by 10% for each
constraint violation. In order to obtain similar performance using a fuzzy logic based fitness
function, two fuzzy sets are required. One set for the percent loss reduction, and another set
for the number of constraint violations. One of the faults of both the penalty based method
and the fuzzy logic based method is that they do not take into account the magnitude of the
violations.

As with the penalty based method, it is desirable that the fuzzy logic based fitness
function have a lower value for an individual that violates constraints, than the fitness function
value of an individual with the same percent loss reduction and no constraint violations. The
penalty based method accomplishes this by subtracting a percentage of the total fitness from
the individual that violates the constraints. This method has the advantage that the final
solution does not depend on the current operating condition (loading condition) of the
system. This however is not the case with the fuzzy logic based fitness function. In order to
obtain the desired performance using the fuzzy logic based method, the min operator is used,
that is the fuzzy logic based fitness function is defined as the intersection between the fuzzy
set for the number of constraint violations and the fuzzy set for the percent loss reduction.
In this way the value of the fuzzy fitness function represents a trade off between individuals
which seek to reduce losses by pushing the bus voltages to their limits, with those that
endeavor to keep the number of constraint violations to a minimum.

The fuzzy sets for both the number of constraint violations and the percent loss

reduction may be found in Figures 4.3(a) and 4.3(b) respectively. It is known based on the
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results of the exhaustive search that the maximum optimum percent loss reduction is 22.3%
and the minimum optimum percent loss reduction was 14.0%. Knowing this the membership
function describing the percent loss reduction was formed. From the membership function
describing the percent loss reduction, it is evident that the fitness value of the optimum
solution varies between 0.892 and 0.560. In order to ensure that the fitness value of an
individual having constraint violations is lower than an otherwise equivalent individual
without constraint violations it is desirable to select the value of the membership function for
the number of constraint violations as somewhat lower than these values. When values for
the membership function for the number of constraint violations for a single constraint
violation was chosen to be less than 0.5 the genetic algorithm had problems converging to the
global solution as it was easily trapped in local optimal solutions. It was found that a value
of 0.75 for the membership function for the number of constraint violations for a single
violation yielded similar results to the penalty based method. As a result this is the value that
was chosen. It should be pointed out, however, that as a result of this choice it is possible to
obtain a final solution from the genetic algorithm using the fuzzy logic based fitness function
that violates constraints at one or more buses. This was evident from the results presented

in Chapter S.
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