University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1996

Dynamic strategy and Bloom filters in distributed query
optimization.

Sandeep. Kamat
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Kamat, Sandeep., "Dynamic strategy and Bloom filters in distributed query optimization." (1996).
Electronic Theses and Dissertations. 1800.
https://scholar.uwindsor.ca/etd/1800

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1800&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1800?utm_source=scholar.uwindsor.ca%2Fetd%2F1800&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Dynamic Strategy and Bloom filters
in Distributed Query Optimization

by

Sandeep Kamat

A Thesis
Submitted to the Faculty of Graduate Studies and Research
through the School of Computer Science in Partial
Fulfillment of the Requirements for the
Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada
1996

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliotheque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your filg Votre reféronce

Our file Notre reférence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier cu sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-30910-X

70 K180~

Sandeep Kamat 1996
© All Rights Reserved

Abstract

Distributed query optimization is an important issue in distributed database
management systems, since it can greatly affect the performance of the system.
Many query optimization strategies have been proposed to minimize either the
total cost or the response time. Most strategies are static in nature in the sense
that their construction is based on database statistics which are obtained prior
to query execution. In this thesis we investigate the use of dynamic strategies
and better estimation techniques in query optimization. Bloom filters are used to
obtain better estimates for query processing. Based on the above concept three
algorithms are proposed, first using a pure dynamic strategy, the second using
Bloom filters and the third using a combination of both. The performance of
these algorithms with respect to total cost is compared against the AHY algorithm.
The algorithms are executed against a large number of synthetically generated
databases and queries. The experiments show a significant improvement over the
AHY algorithm. The dynamic strategy shows an improvement over the static
strategy and the combination heuristic shows a marginal improvement over the

dynamic strategy.

To my parents

Acknowledgments

I would like to express my sincere gratitude and appreciation to Dr. Joan
Morrissey, who has been a constant source of inspiration and encouragement. Her
support, guidance were invaluable in the successful completion of this thesis. [am
thankful to Dr. Subir Bandyopadhyay for his insightful comments and constant
support. I would also like to thank Dr. Samson for his comments and suggestions.
[would also like to thank my colleague Mr. Bealor. [would like to thank my
friends Mohan and Lynn for all the help and support during the completion of
this thesis. Also thanks must go to Nandini and Ramesh whose friendship and
company was a constant source of strength, happiness and encouragement during
the final and critical phase of this thesis. Last, but not least, my family has
been a constant source of strength and encouragement which kept my hope and

confidence alive throughout the course of this work.

vi

TABLE OF CONTENTS

Abstract iv
Acknowledgments, vi
Listof Figures ix
Chapter 1 Introduction 1
1.1 Problem to be Investigated 2

1.2 The Thesis Objectives 2

1.3 Organization of the Thesis 3
Chapter 2 Background Review 5
2.1 Introduction 5

200 CostModel e 6

2.1.2 Semijoin Query Optimization 7

2.2 Dynamic Strategies in Query Optimization 11

2.3 Bloom Filters in Query Optimization 15
Chapter 3 The Algorithms 23
3.2 Introduction 23

3.3 Assumptions and Definitions 24

34 Algorithm W 31
3.4.1 The W heuristicindetail 32

342 Algoriti\m WExample. e 34

vii

35 Algorithm DW L L 37

3.6 Algorithm Bloom+W 38
3.7 Algorithm Bloom+DW 39
Chapter 4 Evaluation 42
4.1 Introduction 42
42 Methodology 42
43 Experimental Results 44
4.4 Discussionof Results 50
Chapter 5 Conclusions and Futurework 55
5.1 Fuwre Work 55
5.2 Conclusions e 56
Selected Bibliography 58
Appendix A: ExperimentaiData 61
VitaAuctoris 68

viii

Figure 2.1
Figure 2.2
Figure 3.1
Figure 4.1
Figure 4.2
Figure 4.3

Figure 4.4

Figure 4.5

Figure A.1
Figure A.2
Figure A.3
Figure A.4
Figure A.5
Figure A.6

List of Figures

Sample relation table: CREW. 16
Bloom Filter Vector on Attribute Age 16
Database Query Statistics 34
Results for 100% Connectivity 48
Results for 76 % Connectivity 49
Results for 50% Connectivity 50
Improvement of random and uniform distribution for

different connectivity 51

Improvement of W over AHY for Random distribution for

different querytypes 52
Results of Uniform Distribution at 100% connectivity . 62
Results for Uniform Distribution with 75 % connectivity 63
Results of Uniform Distribution at 50 % connectivity . . 64
Resuits for Random Distribution at 100 % connectivity 65
Results of Random Distribution at 75 % connectivity . 66

Results of Random Distribution at 50 % connectivity . 67

X

Chapter 1
Introduction

Distributed database systems (DDBMs) allow data to be stored at geographi-
cally distinct sites [Des92]. These sites are connected to each other via commu-
nication networks. Each site is able to process local transactions and may also
participate in the execution of global transactions. Global transactions are trans-
actions which access data from several sites. This kind of distribution of data
has many advantages. DDBMs allow for data sharing and distributed control, in-
creased reliability in terms of site failures and speed up in query processing. Sev-
eral commercial databases are now available which offer full-fledged distributed
architectures. It is also predicted that in the near future there will be more and

more use of distributed systems rather than centralized systems.

One important issue, on which the performance of distributed system depends,
is that of query processing. Since a query in a distributed system requires data
from several locations to be transferred over slow communication networks, the
cost of transferring data is a significant factor. An important issue is to choose

a strategy so as to process the query requiring data from several locations in

University of Windsor, 1995 1

Introduction

an optimal manner. The central problem is to obtain a sequence of database
operations such that the required cost function is minimized. Some of the most
important cost functions considered are the response time and the total cost of

processing the query in terms of the amount of data transferred over the network.

1.1 Problem to be Investigated

Many distributed database query optimizing algorithms depend on static
heuristics to derive optimal query processing strategies. Furthermore the statistics
used to perform the cost/benefit analysis are estimates of actual values present in
the database. This introduces a margin of error in the calculation of intermediate
results that can be compounded and propagated throughout the heuristic, often
resulting in a suboptimal solution. Our hypothesis is that better optimization

strategies can be obtained by

1. Using a dynamic strategy where more up to date information is available

2. Using better estimation techniques

This thesis tests this hypothesis.

1.2 The Thesis Objectives

A major objective is to investigate the effect of dynamic strategies and better
estimation techniques on the performance of distributed query processing. Four
different algorithms are to be investigated. We use Algorithm AHY [AHY83]
as the benchmark algorithm against which our algorithms are compared. DW is

a dynamic algorithm and Bloom+W uses Bloom filters [Blo70] to obtain better

University of Windsor, 1995 2

Introduction

estimates. Bloom+DW is the combination of the above two techniques. Our

experimental work attempts to answer the following questions:

1. Which approach is best ? The use of a dynamic strategy or the use of better
estimation techniques ?
2. Will a combination of better estimation techniques and a dynamic strategy

lead to further improvements ?

The performance of AHY, W, DW and Bloom+W are compared to answer the
first question. To answer the second question we compare the performance of

DVW, Bloom+W and Bloom+DW.

In order to do a systematic comparison of the above algorithms, a synthetic
database is generated using random and uniform distributions A large number
of queries are generated and executed. The queries are varied in the number of
relations and the number of join attributes at different levels of connectivity to
cover a wide range of queries. The total cost of executing each query, using each

algorithm, is recorded and compared.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 reviews related work
in the area of query optimization using semijoins. The properties of a semijoin
operations are discussed. Next several semijoin query processing algorithms are
presented. A detailed discussion of using Bloom filters in query optimization and

use of Bloom filters is also presented.

University of Windsor, 1995 3

Introduction

Chapter 3 presents the heuristic algorithms to be investigated. These include
Algorithm W, the dynamic version of W (DW), W using Bloom filters (Bloom+W
) and finally a dynamic version of W using Bloom filters (Bloom+DW).

In Chapter 4 the frame work for carrying out the experiments is presented.
The design of the benchmark queries is explained in detail. The results obtained

from the experiments are presented and discussed.

Finally in Chapter 5 we conclude and make suggestions for future work.

University of Windsor, 1995 4

Chapter 2
Background Review

2.1 Introduction

A distributed database system consists of a collection of data in which separate
parts of the collection are under the control of a separate DBMS running on
independent systems [Des92]. The major advantages of distributed databases are
increased data accessibility at local sites, increased reliability and the ability to
execute operations in parallel to achieve a lower response time. A user specifies
a query in a high level language describing what he/she wants. Various modules
of the database system, like the access planner and query optimizer, are used to
retrieve the required data. The objective of query optimization is to determine a
sequence of operations such that the cost of executing the query is minimized.
Here we consider a particular subclass of queries which involve only the select,
project, and join operations, hereafter referred to as SPJ queries. Most often
the join operation is the costliest operation and tremendous research effort has
gone into determining the optimum strategy for executing join operations. In

a centralized database the dominant cost is the /O for performing the join.

University of Windsor, 1995 5

Background Review

In a distributed database system the dominant cost when performing a multi-
attribute multi-relation join is that of the data transmission cost involved in
transferring relations from one site to another. The local processing cost is
relatively insignificant and is often ignored. One of the most popular methods of
performing multi-relation joins is to use a sequence of semijoin operations. The
semijoin operation eliminates tuples which can’t be part of the final result and
so they do not have to be transmitted. The problem of obtaining a optimal
sequence of semijoins so as to optimize the query is shown to be NP-hard
[WC93]. Hence various heuristic algorithms have been developed to obtain a
near optimal sequence of semijoins. Most of the research in this area falls under
the following four categories: using the join operation [AM91], using semijoin
operations [WLC91, BGW*81, AHY83, PC90, CL90. ?], using a combination
of both [CY93] and finally those that use improvements techniques [CL84,
BPR90]. In this report we present a brief survey of related work concerning
semijoin algorithms. In particular we concentrate on dynamic semijoin algorithms

[YLG*86, BPR90, BRP89] and algorithms based on Bloom filters [Blo70].

2.1.1 Cost Model

Frequently, in distributed query processing the objective is to minimize one
of two cost functions: the total cost or the response time. The total cost is the
sum of all the costs involved in the transmission of all data. The response time is
the elapsed time between the initiation of the query and the time the final results

are obtained. As the speed of the networks over which the data are transmitted

University of Windsor, 1995 6

Background Review

is relatively low, the data transmission cost is the most important factor. It is
assumed that the cost involved in transmitting data from one site to another is
linear and can be represented as

Cost =Cop + C; *X
where Co is the start-up cost of establishing a transmission and C; is a cost coef-
ficient associated with the amount of data transmitted (X). The local processing

cost is considered to be negligible and is ignored in most cases.

2.1.2 Semijoin Query Optimization

One common operation in distributed query optimization is the semijoin
operation. A semijoin between two relations R; and Rg on attribute j is defined as
follows. The relation Ry is projected over attribute j. The resulting distinct values
are shipped to the site of relation R; and relation R; is reduced using attribute j.
The cost of this semijoin is the cost of shipping the projected attribute j on relation
Rg. The benefit is the amount of reduction caused by attribute j on relation R;.
A semijoin is said to be profitable if the benefit is more than the cost of the
semijoin. This can be summarized as follows.

Cost (dij x dgj) = Size(d;j)

Benefit(d;; x dij) = Size(Rx) — (S(Ry) X p(dyj))

where p is selectivity of the attribute and is defined as the number of distinct

values in the attribute divided by the domain size of the attribute.

University of Windsor, 1995 7

Background Review

Profit ((l,'j A (ij) = Beneﬁt((l,-j A (lkj) - COS[(([,'J' bl (lkj)

A typical query has many relations and each relation has many joining
attributes. Query optimization algorithms perform a cost/benefit analysis on the
semijoins involved and select those semijoins which are beneficial for execution.
The sequence in which these operations are carried out also affects the overall

performance of the algorithms.

One of the earliest systems to use a semijoin algorithm was the SDD-I system
[BGW*81]. In SDD-I, after the local processing has been performed, all possible
semijoins are identified. A cost/benefit analysis is performed for each semijoin and
the semijoin with the least cost is selected and added to the schedule. The effect of
executing this semijoin is reflected in the remaining relations and their statistics are
updated. The cost/benefit analysis is again carried out for the remaining semijoins
and the process is repeated until no more profitable semijoins are left. Once the
semijoins are carried out, the reduced relations are sent to one site where the final
join is performed. This site is chosen so that the cost of transferring all the other
reduced relations is minimized. In the final stage, semijoins which were wrongly
considered to be beneficial are eliminated. This heuristic is a greedy heuristic
and as no backtracking mechanism is provided, it may not always produce the

optimal sequence of semijoins.

In [AHY83] two algorithms to minimize either the response time or the total

cost for simple queries are proposed. A simple query is one in which, after

University of Windsor, 1995 8

Background Review

the initial local processing, each relation has only one common join attribute.
Algorithm SERIAL and algorithm PARALLEL are used to reduce the toral cost

and response time respectively. Algorithm parallel is described below:

1. Order relation R; so that 5,< s5< ... < sp,.

2. Consider each relation R; in ascending order of size.

3. For each relation R;j (j < i), construct a schedule to R; that consists of the
parallel transmission of the relation R; and all schedules of relations Ry (k

<j). Select the schedule with minimum response time.
Algorithm serial is as follows :

1. Order relations R; such that ;< s5< ... < sp,.

2. If no relations are at the result node, then select strategy:
R;— Ry— ... — R,— result node.
Or else if R; is a relation at the result node, then there are two strategies:
Ri—- Ry— ... 2 Ri— ... = Rh— R or

Ri— Ry— ... = Ry—= Ry —=Ry— R¢

In [AHY83] an improved strategy for general queries is presented. General
queries are characterized by muitiple relations and each relation can have multiple

join attributes. Algorithm general is as follows:

1. Do all initial local processing.
2. Generate candidate relation schedule. Consider each join attribute to define

a simple query.

University of Windsor, 1995 9

3.

Background Review

a. To minimize response time, apply algorithm PARALLEL to each simple

query.

b. To minimize total time, apply Algorithm SERIAL to each simple query.

Integrate the candidate schedules. The integration is done by procedure
RESPONSE for response time minimization and by procedure TOTAL or
procedure COLLECTIVE for total time minimization.

Remove schedule redundancies. Eliminate relation schedules for relations

which have been transmitted in the schedule of another relation.

All the schedules generated by the application of algorithm PARALLEL are

integrated using procedure RESPONSE for response time minimization.

Procedure RESPONSE is given below:

Candidate schedule ordering. For each relation R;, sort the candidate sched-
ules on the joining attribute in ascending order of arrival time.

Schedule Integration. For each candidate schedule construct an integrated
schedule that consists of the parallel transmission of candidate schedules
having a smaller arrival time. Select the integrated schedule with the minimum

response time.

Procedure RESPONSE takes maximum advantage of the parallel transmission

of attributes. This can sometimes lead to traffic congestion on computer networks

and cause performance degradation. Hence algorithm TOTAL is proposed partic-

ularly for multiprocessing environments. The query processing strategy derived

University of Windsor, 1995 10

Background Review

by algorithm GENERAL (total time) is not optimal. This is because procedure
TOTAL does not consider the existence of redundant data transmissions in sep-
arate relation schedules. An alternative version of algorithm GENERAL (total
time) called algorithm GENERAL (collective) which is based on redundant trans-

mission is as follows;

I. Select candidate schedule. For each relation R; and for each joining attribute
djj, select the minimum cost candidate schedule that contains the transmission

of all components of attribute j with selectivities < 1.

2. Build processing strategy. For each relation R;, define the schedule to be the

parallel transmission of all dj; candidate schedules to R;.

3. Test variations of strategy. Using a removal heuristic, derive new strategies
by removing the most costly data transmissions. Compare the total time cost
of the new and old strategies. Maintain the less costly strategy and continue

testing until no cost benefit can be obtained.

2.2 Dynamic Strategies in Query Optimization

Static strategies rely on accurate estimates of intermediate results to derive
optimal solutions. If there is an error in the estimation, the results may be far
from optimal. To solve this problem two approaches can be taken. The first one
is to seek more accurate estimates. This often proves to be expensive in terms of

the size and maintenance of the required statistical data. The second strategy is

University of Windsor, 1995 11

Background Review

to use adaptive query execution techniques. In [YLG*86] some simple adaptive

techniques for the estimation of

1. the size of a relation resulting from a join or a semijoin
2. the data transfer rate between the sites and

3. the local processing costs.

are presented.

Only the first is relevant to our work and it is described below. The estimation
of the size of a relation due to a join or a semijoin operation is usually based on the
assumption that the attribute values are uniformly and independently distributed.
The authors propose a cost estimation technique where the initial cost estimation
formula is static and based on the assumptions mentioned above. The formula is
dynarnically adapted to a changing environment by comparing the actual number
of tuples returned with the estimated value. If the two numbers are drastically
different and one number is consistently below or consistently above the other,
then the two numbers will be recorded and used to adjust the cost estimation
formula. In [YLG'86] it is suggested that in order to avoid the propagation of
errors committed in the strategy formulation phase, only a semijoin or a small
number of semijoins at a time should be planned and then executed. Costs and
the size of the results can be obtained accurately and further calculations can be
carried out with the newly updated values. Another strategy [Ngu81] is to use
a Threshold mechanism. Initially a static strategy is generated together with a

dynamically updated threshold value. The threshold value is the average size

University of Windsor, 1995 12

Background Review
of the partial results. A “purely” dynamic query execution is triggered when
the average size of the intermediate results is greater than the threshold value.
In a purely dynamic execution a complete strategy is not formulated; instead,
an optimizing algorithm is used to plan the next relational operation which is
then immediately executed. Information about the result is obtained and used in
deciding on the next operation to be executed. In [BPR90] the use of threshold
values for dynamic query execution is also proposed. In comparison to the method
in [YLG*86] they propose a method to determine a execution value for each
partial result formed in the strategy execution instead of one value per query as

suggested by [YLG'86].

In [BRP89] a three phase approach for dynamic query processing is proposed.

1. Monitoring Phase : Processors exchange information about the progress of
the strategy execution and collect relevant information. Monitoring continues
until the completion of processing or until it is decided to correct the strategy.
Monitoring can either be distributed or individual or at a master site. In
distributed monitoring the processors exchange information about the progress
of the strategy execution using broadcasting. Any time a local processor forms
a partial result by performing a operation, it broadcasts its cost and size. Any
information processor may decide to correct the strategy. This strategy incurs
high overhead due to the broadcasted messages. In master monitoring, a
master site keeps track of the query execution and all nodes report to this

site. In individual monitoring, information processors do not co-operate in

University of Windsor, 1995 13

Background Review

the monitoring process at all. Any time a processor completes a relational
operation, it decides whether or not the strategy should be corrected using

only its local information.

2. Decision making Phase: A decision is made whether or not to correct
the current strategy because its cost or the size of its partial results differ
“too much™ from their estimates. This decision can be made through the
Reformulation or Thresholds approach. In the reformulation approach, any
time a new partial result is formed, the unprocessed portion of the strategy is
reformulated using available up-to-date information. If the new strategy leads
to a lower execution cost, a correction is made. In the thresholds strategy some
information is provided in support of the decision making process regarding
corrections. For each partial result two threshold values are prepared. The
strategy is corrected whenever the actual value crosses the threshold values.
A variation of this method utilizes only one threshold value for the query, the
average size of partial results. In addition, this value is dynamically updated

throughout the strategy’s execution.

3. Corrective Phase: The current strategy is aborted and a new, corrective strat-
egy is initiated. This correction can be carried out either through Centralized
Correction, Distributed Correction or Individual Correction. In centralized
correction only one information processor, the master, can formulate the new
corrective strategy. In distributed correction all processors supply each other

with information about their partial results. In individual correction the pro-

University of Windsor, 1995 14

Background Review

cessor which decides to abort formulates the corrective strategy and broadcasts

it to the other processors.

2.3 Bloom Filters in Query Optimization

The idea of a Bloom filter was introduced by Bloom in [Blo70]. This paper
introduced two new hash coding methods for applications where an error margin
due to collisions was tolerable. This tolerance of a margin of error allows the
size of the filters to be reduced, so that they can be kept in main memory for
rapid access. For example, consider an application where a set of words is to be
hyphenated. Also assume that in most of the cases (90 %) the rules for performing
these hyphenations are simple. In the remaining 10% it might be necessary to
perform an dictionary lookup. These words can be represented using a Bloom
filler. Whenever a new word is to be hypenated it is hashed and checked to see
if it is present in the Bloom filter. If it is present then a directory lookup is
performed. If the word is not present in the Bloom filter then the hyphenation is
carried out in the normal manner without a disk access. In some cases a word
might be wrongly hashed into the Bloom filter. In such cases an extra disk access
is performed. By choosing the size and the hashing transformations carefully
it is possible to make this error insignificantly small. The paper also analyses
the time/space requirements for the two different hash algorithms. The local
processing cost of creating a Bloom filter is less than the local processing cost of
performing a semijoin. Also the cost of transmitting a Bloom filter is much less

than that of transmitting a semijoin attribute.

University of Windsor, 1995 15

Background Review

A Bloom filter is basically a bit vector generated by using a hashing function
on an attribute. The filter can be viewed as a compressed representation of
the attribute values on which it has been generated. A Bloom filter provides a
probabilistic way to determine if an element is a member of a given set. A Bloom
filter consists of a bit vector of fixed size. The attributes values are hashed using a
hashing function and the corresponding bit values are set in the bit vector. Some
values might hash onto the same bit location. In this case the bit is set only
once. Consider the following example. The relation Crew has three attributes,
Name, Age, and Salary. The Bloom filter for attribute Age is represented by bit

vector Br. The Bloom filter for Age is as follows. The filter size is taken to be

Name Age Salary
Tuvoke 45 62
William 13 45

Catherine 37 67

Balana 29 89

Kess 4 50

Figure 2.1 Sample relation table: CREW

10 and the hash function is assumed to be Ceil(Age /10). Generally a hashing
function is chosen so as to minimize the collisions. Hashing on AGE gives the

following bit vector:

1 1 0 1 1 1 0 0 0 0

Figure 2.2 Bloom Filter Vector on Attribute Age

To reduce errors due to collisions two approachs can be taken. Multiple bit

vectors are created on the same attribute using different hashing functions or a

University of Windsor, 1995 16

Background Review

single bit vector is chosen of a larger size and the same value is hashed using
multiple hash functions. To test the membership of a element in the Bloom filter
the element is hashed on each of the hashing functions involved. If all address
bits produced by the hashing functions are set then that element is accepted to
be present in the filter. If even one of the bits is not set, then that element does
not belong to the set of values and is rejected. There is a chance that an element
might be accepted if all the bit values set were due to a collision. In [Mul90] it
is shown that this error. Pe, is equal to:
Pe=[1—(1—1/N)%jt

where

Pe : Probability of error.

N : The Size of the Bit vector.

t : The number of transformation or hashing functions.

k : number of element validly in the set.

In [Gre82] the design of Bloom filters for differential file access is discussed.
In a transaction processing system, huge numbers of transactions might be per-
formed every second. If the main database tables are updated for every trans-
action the performance of the database system comes down as the database files
are locked during every update. A solution to this problem is to use a differen-
tial file which will record all the transactions until they can be batch processed

periodically. The disadvantage of this method is that other users trying to access

University of Windsor, 1995 17

Background Review

the information from the main database in between the file updates might not
see the most up-to-date copy of the database. To avoid this, all the requests for
information have to first look up the differential file and if the information is not
present there then go to the main database. The use of Bloom filters to represent
the differential file reduces the time required to access the most current informa-
tion and also the information retrieved is always the most current. In [Gre82] a
simulation study of designing the Bloom filters so that the error rates are mini-
mized is presented. The parameters studied are the size of the Bloom filter and
the number of transformations applied on the filter. This paper presents inter-
esting insights into the use of Bloom filters and their performance. In [Mul83]
a further discussion on the above topic is presented. Instead of the simulation
approach used in [Gre82] this paper presents an analytical formula to study the
performance of Bloom filters. In [Mul93] the use of Bloom filters as better esti-
mators of intermediate results due to a join operation is discussed. Bloom filters
are used to estimate the size of a join operation between two relations. Their
estimation method is based on partial Bloom filters. The use of Bloom filters in
optimal semijoins for distributed database systems is discussed in [Mul90]. The
use of Bloom filters in the design of parallel database hardware is discussed in
[Coo090]. The filters give improved estimates of the number of false drops. False
drops are due to the occurrence of collisions while constructing a Bloom filter.
Here the case is explored where the relations are stored as bit vectors on each of

the individual columns and all the operations are carried out on the bit vectors

University of Windsor, 1995 18

Background Review

instead of on the original relations. The operations are carried out by special-
ized hardware and since the attributes are represented as individual bit vectors
the operations can be carried out in parallel. In [VG84] various algorithms for
relational and set operations based on hashing are presented. Specifically they
explore the hashing methods in three areas: multiple key comparisons, problem
partitioning and filter techniques. The application of hash filters in two-operand
operations is discussed. An example of the use of hash filters in performing a
join is presented. Though this paper does not mention the use of hash filters for
a semijoin operation, they have presented a comparison of multiple hash filters
and single filters with multiple hash functions for various filter densities. They
conclude that for filter densities of 0.5 or higher one filter with minimum density
is best. For low densities several serial filters are better. In [OV91] algorithms for
computing joins and semijoins of relations in a multiprocessor database machine
are presented and analyzed. They explore algorithms for both joins and semijoins
using hashed bit arrays. They have given formulas for computing the execution
time for different algorithms and conclude that different algorithms perform bet-
ter depending upon a number of parameters like the relation sizes, selectivity and
soon. Hence the best algorithm should be chosen on-the-fly while performing the

operation after comparing the results obtained by applying the given formulas.

Bloom filters are used in semijoin processing in the following manner. A
Bloom filter is constructed at one site for the attribute on which the semijoin is

to be performed. This Bloom filter is transmitted to the site of the other relation

University of Windsor, 1995 19

Background Review

which is to be reduced. The attribute values are hashed and checked in the Bloom
filter for membership as explained above. Those which fail the membership test
cannot possible join with a value at the original site and are ignored. Those passing
the membership test are transmitted to the query site. The algorithm proposed by
[Mul90] sends a sequence of small but optimally information dense Bloom filters
from the master site to the apprentice site. For the sake of simplicity the algorithm
is explained for a case where only two sites are involved. The algorithm is as

follows:

1. Site A prepares a one transform filter and sends it to site B. A one transform
filter is built by using only a single hash function on the attribute involved.
2. Site B computes the fraction of bits set and then:
— Builds the reduced Relation Rb.
— Calculates the fraction of tuples accepted faccept.
— Calculates the Reduction which is :

(1-Faccept) x Nb x size(Rb)

where (1-Faccept) gives the fraction of the tuples rejected, Nb is the total
number of tuples in relation Rb and size(Rb) gives the size of each tuple in
relation Rb.

3. If the reduction is greater than the filter size, then Site A is alerted and

the algorithm iterates from the beginning. Otherwise it sends the remaining

University of Windsor, 1995 20

Background Review

tuples of Rb to Site A.

The Bloom filter helps to identify ineffective semijoins quickly. Instead of
sending a big multitransform filter it sends a number of small one transform filters.
The space requirements of one multitransform Bloom filter and multiple single
transform Bloom filters is the same for the same error rate. Hence it is more
useful to use multiple single transform filters. The optimal size of a Bloom filter
is shown in [Blo70] to be

N = tk/ In(2)
where t is the number of filters and k is the number of distinct values in the
attribute. It is possible to estimate the number of tuples that will be rejected
by using the filter sent. Using this information it can be determined whether or
not the semijoin should proceed or should be rejected. The Bloom filters can be
built while performing the initial local processing of single operand operations

and hence do not pose a very high local processing cost.

Mullin [Mul90] presents a series of methods to estimate the size of a relational
Join operation. Here a Bloom filter is represented as set of bits along with the
size of the filter and the number of bits set. In some cases, to reduce the size of
the filter only a partial filter is stored. In such cases the size of the partial filter,

along with the size of the original filter, is stored.

In [Mul93] the authors discuss the use of Bloom filters for performing joins
and evaluate their performance in an actual distributed database environment.

Bloom filters are used to perform the Bloomjoins to filter out tuples that have no

University of Windsor, 1995 21

Background Review

matching tuples in a join. The Bloomjoin algorithm presented works as follows
Let S and T be the relations to be joined. S.a and T.b represent the attribute
over which these two relation will be joined. T’ represents the relation produced

by reducing T.

. Generate a Bloom filter, Bfs, from relation S. The Bloom filter is generated
by scanning S and hashing each value of column S.a to a particular bit in the
bit vector and setting that bit to “1".

2. Send Bfs to site 2.

3. Scan relation T at site 2, hashing the values of T.b using the same hash
function as in step (1). If the bit hashed to is 1™, then stored that tuple
into T'.

4. Send T' to relation site 1. At site I, join T’ to S and return the result to

the user.

The main disadvantage of Bloom filters is that they cannot be updated after a
deletion has occurred in the original relation from which the Bloom filters were
created. In this case either the inaccuracy of Bloom filters has to be accepted or

the whole filter has to be recreated.

University of Windsor, 1995 22

Chapter 3
The Algorithms

3.2 Introduction

In this chapter we present the algorithms in detail. Much of the material is
transcribed from [MBK96, MBB9S5]. First we state the assumptions we have made
about the query processing environment and then we define the common terms
used in the algorithms. Finally the algorithms W, Dynamic W, W using Bloom
filters and Dynamic W using Bloom filters are presented. Algorithm W is a static
strategy [MBB95]. It uses the concepts of marginal profit and gainful semijoins
to construct cost effective reducers. A comparison of this algorithm with AHY is
done in [MBB95]. Algorithm DW is the purely dynamic version of Algorithm W.
Dynamic algorithms have the advantage that they can base their calculations on
the most recent values and avoid error propagation due to inaccurate estimation.
Algorithm Bloom+W is a static heuristic which uses Bloom filters to get better
estimates of the costs and benefits when constructing the schedules. Algorithm

Bloom+DW is a dynamic heuristic which also uses Bloom filters. Bloom+DW

University of Windsor, 1995 23

The Algorithms

has the added advantage that it builds filters dynamically and hence has a more

accurate representation of the attribute information.

3.3 Assumptions and Definitions

A distributed database query processing environment is assumed. The rela-
tions are stored at different sites and there is no fragmentation or data replication.
These issues are assumed to be dealt with before the query processing stage.
An SPJ query model is considered where all initial local processing has already
been carried out. The attribute values are considered to be uniformly distributed
and are assumed to be independent of each other. The Bloom filters are single
function filters where only one hashing function is used to generate the filters.
The objective of the query processing is to reduce the total cost which can be
expressed in terms of the amount of data transferred over the network. The local

processing costs are considered to be insignificant and are ignored.

We consider m relations with n join attributes. The following values are

defined.

1. R;: Relation number i.

2. S(R;) : Size of relation R; in tuples.

3. d;; : The projection of R; over attribute j.
4. p(dj;) - The selectivity of attribute dj;.

University of Windsor, 1995 24

The Algorithms

5. D(d;j) : The domain of attribute dj; (the set of all possible values in attribute
djj.)
6. |djl: Cardinality of attribute d;j (the number of distinct values in attribute d;j)-

7. dij xdy; : The semijoin between relation i and relation k on the j‘h attribute.

The selectivity of an attribute is an estimate of the reduction power of that
attribute when applied to another attribute. For different algorithms selectivity is

calculated in a different manner [MBB95].

1. For Static heuristics :

_ d,,|
pldi;) = ITM]

2. For Dynamic heuristics :
The selectivity is calculated in the same manner as above. The only difference
is that it is calculated at run time from the actual values.

3. For Bloom filter heuristics :

|h(de,) () Btdy)]
pldej) = |J},(,1,“)|

where h(dj;) is the Bloom filter for djj and N represents the logical and
operation on the two filters. That is, the selectivity is estimated by first
calculating the cardinality of the bit intersection of the two filters involved

and then dividing by the cardinality of the original filter.

University of Windsor, 1995 25

The Algorithms

A semijoin between the attributes of two relations is represented as

dij % dy;j

For the semijoin following terms are defined

1. Cost : The cost of semijoin is the cost of sending attribute djj to the site of
Rk. That is,
C’((l,'j X (1,‘.1-) = Cy+ S((l,'j) x C1
where Cg is the start-up cost and C; is some positive constant. The formula
basically assumes that the cost of sending data over the communications line
is linearly dependent on the amount of data sent. In our work, for simplicity
we assume that the cost is same as the amount of data to be sent.

2. Benefit: The benefit of the semijoin is the amount of reduction in relation k,
due to the semijoin. That is,

B((l,'j X(lkj) = S(R) — (S(R) x /)((lij))

3. Profit: The profit of the semijoin is its benefit minus the cost.

P((l,'j X (l,‘.j) = B((l,'_,' X (lkj) - C((l,'j X (lkj)

4. Reducer: A reducer for a relation is a sequence of semijoin operations
which has a very high selectivity. The reducers are constructed for each join

attribute after performing a cost/benefit analysis on the sequence of semijoins

University of Windsor, 1995 26

The Algorithms

involved. A reducer is denoted by dmj*. The reducer can be used to reduce
a relation and the reduction effect depends on the selectivity of the reducer.

The selectivity of the reducer for different cases is defined below
a. Static heuristics:

e | in case of Ry, since dmj' cannot be used to reduce the relation Ry,.

» the product of the selectivities of all attributes which come after d;j
in the sequence otherwise, since R; has already been reduced by all
other attributes before it in the sequence.

* The selectivity of the reducer with respect to a relation not in the
sequence, but which has a common-join attribute is simply the product

of all the selectivities of the attributes in the sequence.

The selectivities of attribute dmj' for different cases is given below

1 L=

m
\ _ (dpi). 1 <m
PR, ((l,,,j) = { I=I:,I+1/(£j)
m
IT oldsj). otherwise

\ r=uqa

b. Dynamic heuristics : In the case of a dynamic heuristic, the selectivity
of dmj* with respect to any R; in the construction sequence is defined as
Idmj*l /1 dyjl. The selectivity of dmj* w.r.t any relation not in the sequence

is |dm; V ID(dmj).

University of Windsor, 1995 27

The Algorithms

In summary, given a sequence of semijoins which dynamically constructs

the reducer dmj' the selectivity of the reducer w.r.t R; is defined as follows.

1 L =1n

‘1771. - .
PR ((A “.) = H L€ a.m. il =m
' m J v

d,1 .
gy e .
I_I—L[D(rl.,) otherwise

c. Bloom Filter heuristics. For this case the selectivity of the reducer R; is

defined as follows:]
L =1m

h{d,.; . .
PR, ((*) = Jl—h((T,’)—)ll L€ a.m. il =1m

"m j

h(d,,;)0h(d,,)

ity

i otherwise
Once the reducers are constructed they can be applied to get further reduction
in the relations. The decision whether or not to use the reducer is made after
doing a cost benefit analysis of the semijoins involved. This is carried out
as follows:

The cost of using the reducer is the size of the reducer itself.

(:((lm; X Ri) = S(("";)

The benefit is the reduction in the size of relation R;. This is estimated as
B(d,; % i) = S'(Ri) x (1-pp, (45))

5. Marginal Profit: Marginal profit tries to look at the overall profit of a

semijoin. Some semijoins might not be immediately profitable but might

University of Windsor, 1995 28

The Algorithms

increase the profit of subsequent semijoins. Consider the semijoin d ;xdy;.
The marginal profit is defined as the difference in profit obtained by using
dyj*, rather than dxj' as the reducer. It is summed over all relations with a
common join attribute. The marginal profit is used to see the effects of the
current semijoin down the line [MBB95]. That is, it provides a look ahead
for the current semijoin and looks at the global picture of the effects of the
semijoin before a decision can be made as to whether to accept or reject
the semijoin. The marginal profit of a semijoin d,5 xd,; with respect to a
relation is calculated according to the following rules. The marginal profit
of d," X R, is zero as there is no marginal profit; an attribute can not be
used to reduce the relation to which it belongs. Also the marginal profit is
zero if the cost of the semijoin is greater than any potential benefit. In the
case where there is no profit in using dxj* but there is profit in using dyj*
then the marginal profit is the same as the profit of d,” x I;. Therefore

the marginal profit with respect to R; is
(0. ifi=y

0. if P((l”-* x R;) < 0and P (dw.* x Ri) <0
M P, (d,} xdy;) = P(d,; % Ri). if P(d,;%R) <0

P((lyj* X R,-). if i=ux

\ P({lw-* X R;) - P((l,j* X R;). otherwise

The marginal profit is than summed over all positive marginal profit

University of Windsor, 1995 29

The Algorithms

to get the total:

MP(d,] xdy;) = ilWPR. (45 = dy j) st MPg >0
6. Gain : Gain is defined as the sum of the profit and marginal profit of a
semijoin:
G(d,5 2 dys) = P(d,; xdy) + MP(d,} nd,)
A semijoin is said to be cost-effective if the gain is positive.
7. Bloom Filter: A Bloom filter is a hashed representation of the attribute values

on which it is constructed. It’s an array of bits and is constructed as follows:

a. Set all the bits in the bit vector to Zero.
b. Read the value of the attribute and hash the value using a hashing function
to produce a bit address.

¢. Set the addressed bit to 1.

The use of Bloom filters in the cost/benefit analysis of semijoins is carried
out as follows. Consider the semijoin «,; X d,;. The join attribute here is j.
This semijoin should be executed only if the cost of transmitting R,[j] to the

site of Ry is less than the benefit.

a. Using some hash function, construct filters for R,[j] and Ry[j].

b. Perform a bit-wise “and” of the two filters at some site. The number of
bits set is an estimate of the number of attribute values held in common.

Suppose this number is X.

University of Windsor, 1995 30

The Algorithms

c. Let IRp(j)l denote the number of attribute values in the projection of Ry
over the common-attribute.

d. The reduction in relation is estimated as

Ry = |Ril * i

3.4 Algorithm W

Algorithm W [MBB95] uses the concept of Marginal profit and gainful
semijoins to derive cost effective reducers. The algorithm follows a three phased
approach. In the first phase the schedules for the construction of the reducers are
established. Each attribute is considered separately. The outline of the heuristic

is as follows.

. Phase 1: Establish the schedules for the construction of the reducers. For
each join-attribute establish a reducer construction schedule in parallel. The

semijoins are considered in the order
((daj @ dp;) Mdej) ... % dy;

such that
S(duj) < S(dbj) < S(du) < S((lmj)

A semijoin, d,* x d,}, is appended to the schedule for dmj* if

University of Windsor, 1995 31

The Algorithms
a. P(d,; =d, i) >0 and MP(d,; = dy;) >0 or

b. P(d,; xdy;) <0 but G(d; xdy;) > 0

2. Phase 2: Examine the effects of the reducers and review the schedule of
those not used.
In this phase the reduction effects of the reducers, from smallest to largest, on
all applicable relations are considered. Profitable semijoins are appended to
the final schedules. Some reducers may not be applied to any relaticn as the
cost of shipping them may be greater than any potential benefits. In this case
the semijoin sequence for this reducer is reviewed and any profitable semijoins
are appended to the final schedule. This ensures that profitable semijoins will
be applied to the schedule but the unnecessary ones will not be executed.

3. Phase 3: Execute the schedule.
During this phase the reducers are first constructed in parallel. Then the
reducers are shipped to the designated sites in parallel. Finally the reduced

relations are transferred to the final assembly site, in parallel.

3.4.1 The W heuristic in detail

Consider m relations and n join-attributes. Let J be the set of all join attributes.

I. Stepl: In this step a cost/benefit analysis is carried out for every semijoin.

Each attribute is considered independently.

a. Sort the attributes according to the attribute size, such that

S(daj) < S(dp;) < ... < S(dwj)

University of Windsor, 1995 32

The Algorithms

b. Consider each semijoin in the sequence. Perform an cost/benefit analysis

on it and append it to the schedule if

o P(d; xdy;) >0 and MP(d,f xdy;) >0 or

. P((l“.* Y (lyj) < 0 but G(d“-‘ 0 (lyj) > ()

If daj >t dpj is appended to the schedule then " x d.; is evaluated next
otherwise d,; X d..; is evaluated next. This process is repeated until all
the semijoins in the sequence have been evaluated. The attribute reduced

in the final semijoin appended is the reducer.

2. Step 2: In this step each reducer is considered for application to the relations
present in order to see if further reductions are possible. The reducers are
sorted according to their size in ascending order. A cost benefit analysis is
done to check if the reducer is profitable. Profitable semijoins are appended
to the schedule.

3. Step 3: In this step those reducers not found to be profitable with respect to
all the relations in the above step are reviewed. Any profitable semijoins in
the sequence are appended to the final schedule. The marginal profit is not
considered in this step.

4. Step 4: In this final step the schedule is executed and the reduced relations
are shipped to the query site for joining. The reducers are constructed in
parallel, they are applied in parallel and the final shipping is done in parallel,

ensuring that the response time is reasonable even if it is not minimal.

University of Windsor, 1995 33

The Algorithms

3.4.2 Algorithm W Example.

Consider the following example having three relations and up to two join

attributes each.

Relation S(Ry) S(di1) p(dir) S(d;2) p(di2)
R1 1000 400 0.4 100 0.2
R2 2000 400 0.4 450 0.9
R3 3000 900 0.9 - -

Figure 3.1 Database Query Statistics

As there are two attributes each attribute is considered independently during
the construction of the schedule. These schedules can be constructed in parallel.
Attribute d;;: The first step is to sort the attributes in ascending order of size.
This gives us the sequence

d11 X day X d3y
Consider the semijoin dy; % dg;
The cost is the size of the attribute, 400 and the benefit is 1200. The marginal
profit for R3 is calculated as
MPr3= 3000(0.4 - 0.4 X 0.4) +400 - 160
In this case both the profit and marginal profit are greater than zero; hence the
semijoin is added to the schedule. Next 5" X d3; is examined: the cost is

160 units, the benefit is 2520 units. The marginal profit of the semijoin with

University of Windsor, 1995 34

The Algorithms

respect to R; is

MPR;= 1000 (0.4 — 04 X 09) +160 —144

Again both the profit and the marginal profit are positive so the semijoin is added
to the schedule. The reducer is called d3,*. It is constructed by the following

schedule:

400 , 160
dyy — day — d3

The schedule indicates that attribute d;; is sent to the site of relation R, at a
cost of 400 units. The attribute d;; of relation R, is reduced and sent to the site
of relation Rj at the cost of 160 units

Attribute d;; : Only one semijoin needs to be considered, d|> % ds>. The cost
of the semijoin is 100 units and the benefit is 1600. The marginal profit with
respect to Ry is

MPg; = 1000 (1 — 0.9) — 90.

Hence the schedule for constructing dj,”" is

100
iy — d:

(&
o

University of Windsor, 1995 35

The Algorithms

The next phase is where the reduction effects of each reducers are considered.
The reducers are first sorted according to there sizes. The reduction dy;° — R;
is considered first. The cost is 90 units and the benefit is 100 and therefore this
semijoin is appended to the schedule. The reducer d3;” is considered next. For
the purpose of calculations the updated sizes of relations are considered and these
relation sizes will be affected by the application of previous reducers. These
updated sizes are as follows: S(R;) = 900; S(R;) =160 and S(R;) =480.

We next consider the semijoin d3;* — R;. The cost is 144, the benefit is 576.
The semijoin is profitable and the semijoin is appended to the schedule. The final

schedule for execution is as follows.

400 160 144 2 ~
(111 — (1-21 —_ (131 (13‘1 - Rl Rl — Qb

dia 2 iy dn 2 R R 0s
18
Ry ¥ 0os

The total cost for this schedule is 1858 units: the response time is 1184 units.

University of Windsor, 1995 36

The Algorithms

3.5 Algorithm DW

Algorithm DW is a purely dynamic version of Algorithm W. The basic
strategy to build the reducers remains the same. In DW the reducers are built and
a decision is made to construct the smallest profitable reducer first. In the next
phase the semijoins to build the reducer are actually carried out dynamically. Each
semijoin is checked to see if it is gainful. If not it is dropped from the sequence.
Once a reducer has been constructed the whole process is repeated until all the

reducers are constructed and used. This algorithm is described in detail below

1. Estimate the size of the reducers
For each join attribute in the query estimate the size of the reducer. The
attributes are sorted in ascending order of attribute size. The cardinality of
the reducer dy;" is estimated as follows

(l,j" = p(dyj) * p(([;,j) ¥ ..o% pdyj) * S(dej)

2. Select a reducer to construct and use
Choose the smallest profitable reducer.
3. Construct the reducer
In this phase the reducer is built by executing one semijoin at a time. As soon
as the semijoin is executed the database statistics are updated. The cost/benefit
analysis is carried out for the remaining semjoins using the updated statistics.
4. Use the reducer

In this step the reducer is checked to see if it is profitable for application with

University of Windsor, 1995 37

The Algorithms

any of the relations involved in the query. Profitable semijoins are executed.
5. Repeat the process
The current reducer is marked as done and the whole process is repeated for

the remaining join attributes.

3.6 Algorithm Bloom+W

This is also a static heuristic but it uses the Bloom filters to obtain better
estimates of the cost and benefit of a semijoin. A Bloom filter is constructed
for every joining attribute in the query. The length of the Bloom filter is made
proportional to the domain size of the attribute. In this algorithm the basic strategy
remains the same. The manner in which the selectivities are calculated is different.

The algorithm is outlined below:
I. Build the reducer for each join attribute

a. Sort the attributes in ascending order of attribute size.

b. Estimate the cost and benefit for every semijoin in this order. For the
semijoin d,; X dy;, the cost is S(d,j) and the benefit is estimated as
S(Ry) + (1 - a0

c. The marginal profit is calculated as before. The semijoin is added to the
schedule if it is gainful.

d. If the semijoin is added then d, j* X d.; is considered next using h(d,;) N
h(ds;) as an approximation for h(dy;") and Ih(d;)Nh(dy;)! as an estimate

of Idpj.

University of Windsor, 1995 38

The Algorithms

e. Otherwise the semijoin d,; X d..; is considered next.
f. Repeat the process until all the semijoins in the sequence have been

considered.

2. Apply the profitable reducers to reduce the relations. Once the reducers are
built they are sorted in ascending order of size. A cost benefit analysis is
done for every relation. For the semijoin « _* x R; the cost is S(dmj*) and

‘m)

the benefit is

if d;j is used in the construction of the reducer. Else it is calculated as
A ()
S(R;) (1 — D5

3. Certain reducers will not be profitable for application to the relations. The
semijoin sequence in such reducers is re-examined and all the profitable

semijoins are added to the schedule.
4. Execute the Schedule: the schedules are executed and the reduced relations

are shipped to the query site where the answer is assembled.

3.7 Algorithm Bloom+DW

This algorithm combines the previous two algorithms to obtain the benefit

University of Windsor, 1995 39

The Algorithms

of both the algorithms. Bloom filters are used to get accurate estimates of the
projection sizes. As the filters are constructed and updated dynamically the most
current information is used and the filters always represent the current attribute
values. Here Bloom filters are used as accurate estimators and not as low cost

reducers. The heuristic is as follows:

. Sort the attributes in ascending order of size. Select the attribute whose
reducer has the smallest size and is profitable. The size of the reducer dxj*

is estimated as follows

d, 1= pldaj) * /)((l;,j) * ...k p(dyj) * S(d,j)

2. Construct the reducer for join attribute j:

a. Consider semijoin d,; X dy;. The cost for this semijoin is calculated as
S(dyj). The benefit is

thida,)0h(dy,)|
S(Ry) * (1 - T)

The marginal profit is calculated in the usual manner.
b. The semijoin is added to the schedule if it is gainful.

c. [Execute each semijoin in the reducer dynamically. After the execution
of the semijoin d,; % dy;, h(dbj*) is reconstructed dynamically using the
reduced attribute dp;. All the other attributes of relation b are rehashed

to construct their Bloom filters.

d. If the semijoin is executed then consider the semijoin dy ;X de else

consider the semijoin dqj X d,;.

University of Windsor, 1995 40

The Algorithms

% x R;. The cost

3. Apply the reducer by executing all profitable semijoins d,,, 5

for the semijoin is S(dm;"). The benefit is
d,;
S(R) * (1 - IH)
if R; was used in the construction of the reducer; otherwise the benefit is

estimated as
Ih(ll.,)nh('lm;)l
S(R;) * (1 T TR

In this chapter we have described five algorithms.

. Algorithm W, which is a static heuristic, uses the concept of marginal profit
and gainful semijoins to construct profitable reducers.

2. Algorithm AHY is used as a bench mark algorithm. The total cost version
of this algorithm is used to perform the bench marking.

3. DW is a dynamic algorithm which monitors the execution of semijoins and
minimizes the error due to propagation of wrong estimates.

4. Bloom+W is based on the use of Bloom filters. Bloom filters are used to
obtain a better estimates for calculation.

5. Bloom+DW combines the dynamic strategy with better estimation techniques.

In the next chapter we describe how the heuristics were evaluated and present

the results of our experiments.

University of Windsor, 1995 4]

Chapter 4
Evaluation

4.1 Introduction

To study the performance of the proposed algorithms a large number of
experiments were carried out. Each algorithm was executed on a large number of
synthetically generated test databases and the total cost in each case was calculated
and compared. The objective of these experiments was to test the total cost
of the proposed algorithms against the total cost of the AHY algorithm. The
performance study was carried out for a wide range of SPJ queries and different
data distributions. In this chapter, we will present the methodology for conducting

the experiments, present the experimental results and discuss the results.

4.2 Methodology

The performance evaluation of the algorithms is done by executing the algo-
rithms using a large number of synthetically generated test queries and databases.
It is assumed that the queries have undergone the initial local processing. As
a result, all the unary operations that could be executed locally are assumed to

have been done. The remaining query can be represented using parameters like

University of Windsor, 1995 4?2

Evaluation

the size of each relation, the number of attributes in each relation and for each
attribute the number of distinct values, the size of each attribute, the domain size

of each attribute and its selectivity.

Rel- Auribute 1 Attribute 2 Auribute 3

. Size Selectivity Size Selectivity Size Selectivity
3000 600 0.6 250 0.5 200 0.2
4000 800 0.8 500 1.0 400 0.4

Figure 4.1 Format of a typical query

In the above table the query has two relations and each relation has three at-
tributes. The first column indicates the size of a relation in terms of number of
tuples. The first relation has 3000 tuples and the second has 4000 tuples. The
remaining three columns have information regarding the relation attribute. For
each attribute two values are indicated. The first sub—column indicates the num-
ber of distinct values in the attribute and the second sub—column indicates the
selectivity of the attribute. The selectivity is calculated by dividing the size of a
column by its domain. The domain of each attribute is indicated in a separate file
called the domain table. By varying these parameters a wide range of queries can
be generated. In the performance evaluation the query parameters were varied

as follows:

University of Windsor, 1995 43

Evaluation

1. Each query has between 3 and 6 relations and each relation has between 2

and 4 attributes. Overall, this gives 12 different types of test queries.

2. The domain size of each attribute is varied between 500 to 1500. For the

sake of simplicity, all the domains are integer based.

3. The selectivity of each attribute is selected randomly to be between 0.5 and
1.0. The lower bound on selectivity was fixed at 0.5 so that the number of

queries producing the NULL result is small.

4. The size of each relation was randomly selected to be from between 800 and

6000 tuples.

5. The number of join attributes is varied to get three different levels of con-
nectivity: 50%, 75% and 100%. The attributes are chosen in a manner that

the queries remain connected.

The test queries are generated in the following manner. First, the number of
relations and the maximum number of attributes is chosen. Then the query
generator randomly selects the domain size for each attribute from the range
specified. Next the attributes for each relation are chosen so as to maintain
connectivity. The connectivity [MBB95] can be specified to be 50%, 75% or
100%. Connectivity is defined as the fraction of the total number of attributes

present in the query and is calculated as follows:

n
Y- (nwmber of joinattributesin R;)
=1 x 100%

nxXim

University of Windsor, 1995 4

Evaluation

where m is the total number of relations and n is the number of attributes in
each relation. A query is said to be connected when each relation shares at
least one common join attribute with another relation and the query graph is not
disconnected. That is, all the relations can be joined. The cardinality for each join
attribute is selected randomly. The cardinality is selected so that the selectivity
of the attribute is in the range 0.5 to 1.0. Lastly the cardinality of each relation
is selected in such a way that it exceeds the cardinality of all its attributes. Once
the statistical information is generated for the query, the relations are constructed
and populated with data according to the selected distribution. When a uniform
distribution is desired the actual values for each attribute are uniformly chosen
from the set of all values in the domain. The number of attribute values is selected
so as to satisfy the desired selectivity. For example, if a selectivity of 0.5 is chosen
and the domain size is 1000, then 500 unique values are randomly selected from
the set of 1000 values. These values are repeated an equal number of times to fill
the relation. In the case of a random distribution the initial selection of values is
the same. When the values are repeated each value is repeated a random number

of times.

4.3 Experimental Results

The results were obtained by carrying out a number of test runs. The test
runs can be divided into two distinct groups: those where the data are distributed

uniformly and those where the data are distributed randomly. The test runs in both

University of Windsor, 1995 45

Evaluation

cases are identical except for the data distribution. In each case there are twelve
different types of queries. These are obtained by varying the number of relations
and the number of attributes. The connectivity for each query is set at 50%, 75%,
and 100%. For each connectivity the query statistics are generated and populated
with synthetic data. Each of the five algorithms is run using this query. For each
algorithm the total cost is calculated and stored. This procedure is repeated 100
times for each type of query. Hence, in each distribution we have three levels of
connectivity, for each connectivity level we have twelve different types of queries
and for each query type we have 100 different queries. The results obtained for
each query type are averaged over the 100 queries. The results obtained for the

different algorithms are then compared with the AHY algorithm.

The following tables show the percentage improvement of various algorithms
over the AHY algorithm. The actual values of total cost for each algorithm
is presented in Appendix A. The three tables are for 100%, 75% and S50 %
connectivity. In each table the rows indicate the 12 different query types obtained
by varying the number of relations and attributes. The columns indicate the
percentage improvement of each of the four algorithms over the AHY algorithm.
For each algorithm the performance for Uniform and Random distributions is

presented. The total cost for each case is calculated as follows:

1. AHY: The total cost is the cost of performing all the semijoins and the cost

of sending the reduced relations to the query site.

2. W: The total cost is the cost of carrying out the semijoins in each schedule

University of Windsor, 1995 46

Evaluation

and the cost of sending the reduced relations to the query site.

3. DW: The total cost is the cost of performing the semijoins plus the cost of
sending the final reduced relations. We do not consider the cost of extra
messages sent as this was found to be very small [Bea95]

4. Bloom+W: The total cost is the cost of performing the semijoins plus the
cost of transmitting the Bloom filters plus the cost of sending the reduced
relations to the query site.

5. Bloom+DW: The total cost is the cost of performing the semijoins plus the
cost of sending the initial Bloom filters plus the cost of sending updated

Bloom filters plus the cost of sending the final reduced relations.

Once the total cost for each algorithm is calculated the percentage improve-
ment is calculated as follows. Let cost(unopti) represent the cost of sending the
original relations to the query site. This is the unoptimized cost of sending the
relations without any reduction. The improvement of the benchmark algorithm

AHY over the unoptimized cost is calculated as follows:

cost(unopti) — cost(AHY')

. x 100%
cost{unopti)

Valuel =

Let the cost of any algorithm be indicated by cost(Algo). Then the improve-

ment of the algorithm over unoptimized cost is calculated as follows:

cost{wnopti) — cost(Algo)

Value2 = x 100%

cost(unopti)

The improvement of an algorithm over AHY is calculated as follows:

Valuel — Value2

University of Windsor, 1995 47

Evaluation

4.3.1 Results for 100 % Connectivity :

Below are the results for the 100% connectivity experiments. Each entry in
the table indicates the average improvement for 100 different queries of same type.
For example, in the table below the entry 12.88 indicates that the improvement
of algorithm W over algorithm AHY for a uniform distribution and query type
3-2 is 12.88%. Note that the entry is averaged over 100 queries in this category.
The improvement for each query category is then averaged and is indicated in

the bottom most row.

The table below shows results for 100 % connectivity.

Query w DW Bloom+W Bloom+DW

Uniform Random Uniform Random Uniform Random Uniform Random
Type
3-2 1288 | 497 | 17.03 | 334 | 1474 | 6.48 | 16.64 | 5.05
3-3 1799 | 11.47 | 22.76 | 11.83 | 17.72 | 11.43 | 22.71 | 9.71
3-4 16.24 | 21.09 | 18.47 | 28.95 | 16.09 | 21.23 | 18.58 | 28.01
4-2 17.71 | 10.68 | 19.83 | 9.88 | 17.93 | 14.32 | 20.50 | 7.09
4-3 18.12 | 30.39 | 20.45 | 40.98 | 18.17 | 31.04 | 20.44 | 39.63
4-4 16.51 | 43.97 | 20.34 | 55.68 | 16.08 | 47.49 | 16.92 | 55.47
5-2 17.47 | 2547 | 21.34 | 2485 | 17.36 | 26.54 | 19.88 | 23.08
5-3 19.48 | 48.14 | 22.67 | 61.97 | 19.47 | 49.62 | 19.86 | 61.39
5-4 1395 | 61.05 | 16.14 | 65.44 | 1891 | 60.93 | 20.15 | 65.64
6-2 26.93 | 39.70 | 25.37 | 36.24 | 26.93 | 39.23 | 2791 | 37.40
6-3 1498 | 59.20 | 15.42 | 6491 | 14.89 | 60.74 | 15.42 | 67.56
6-4 12.26 | 64.22 | 15.53 | 66.66 | 12.27 | 63.81 | 12.54 | 66.39
Average | 17.04 | 35.03 | 19.61 | 39.23 | 17.55 | 36.07 | 19.24 | 38.82

Figure 4.2 Results for 100% Connectivity

University of Windsor, 1995 48

4.3.2 Results for 75 % Connectivity :

The table below shows the results for 75 % connectivity

Evaluation

Query DW Bloom+W Bloom+DW
Uniform Random Uniform Random Uniform Random Uniform Random
type
3-2 7.08 5.06 9.06 | 16.72 | 6.87 5.08 8.65 | 16.40
3-3 1234 | 8.02 | 12.87 | 3.38 1237 | 8.18 | 1297 | 2.65
3-4 16.26 | 14.08 | 24.88 | 15.85 | 18.34 | 1597 | 2492 | 15.94
4-2 11.16 | 1272 | 11.57 | 5.95 11.18 | 13.77 | 11.18 | 5.29
4-3 18.04 | 1872 | 16.46 | 15.28 | 18.04 | 19.59 | 21.82 | 15.09
4-4 18.65 | 2395 | 21.24 | 31.67 | 18.80 | 26.55 | 21.03 | 33.18
5-2 18.80 | 19.53 | 15.71 | 15.34 | 19.10 | 19.66 | 18.75 | 14.65
5-3 20.60 | 24.70 | 24.08 | 26.21 | 21.30 | 26.05 | 22.50 | 24.77
5-4 19.00 | 44.01 | 22.07 | 48.41 | 19.83 | 46.12 | 22.18 | 48.22
6-2 25.67 | 2436 | 26.37 | 20.22 | 2597 | 2497 | 26.42 | 20.73
6-3 19.59 | 3523 | 2097 | 41.47 | 19.58 | 3598 | 21.73 | 41.86
6-4 26.34 | 49.02 | 28.48 | 51.21 | 26.43 | 48.79 | 28.30 | 54.05
Average 1779 | 22.44 | 19.48 | 21.52 | 18.15 | 23.38 | 20.04 | 21.67

Figure 4.3 Results for 75 % Connectivity

University of Windsor, 1995

49

Evaluation

4.3.3 Results for 50% Connectivity :

The table below shows the results for 50 % connectivity.

Query w DW Bloom+W Bloom+DW

Uniform | Random | Uniform | Random | Uniform | Random | Unifomr | Random
Type
3-2 5.94 9.05 392 | 055 5.95 9.05 3.56 | 056
3-3 9.12 4.97 9.72 5.12 | 1030 | 4.88 9.28 4.72
3-4 1772 | 6.44 | 2037 | 9.50 | 17.54 | 8.38 | 20.35 | 8.82
4-2 10.72 | 10.70 | 9.48 5.80 { 10.58 | 10.54 | 9.20 | 5.51
4-3 12.73 | 8.65 13.40 1.2 13.89 | 8.61 13.40 | 3.38
4-4 16.90 | 842 | 20.23 | 2.75 | 16.87 | 10.79 | 20.16 | 2.75
5-2 15.57 | 10.62 | 12.84 | 4.11 15.57 | 10.49 | 12.85 | 2.33
5-3 21.69 | 10.34 | 2583 | 2.32 | 2297 | 13.94 | 26.27 | 1.97
5-4 19.26 | 12.69 | 25.71 | 10.45 | 21.96 | 17.22 | 25.30 | 9.24
6-2 25.60 | 17.14 | 21.19 | 9.60 | 27.05 | 15.58 | 21.80 | 5.72
6-3 18.80 | 15.11 | 17.55 | 1299 | 19.04 | 21.57 | 17.76 | 11.9
6-4 24.94 | 20.06 | 28.00 | 20.08 | 24.08 | 11.65 | 28.22 | 215
Average 16.58 | 11.18 | 16.70 | 6.09 | 17.15 | 11.65 | 16.72 | 5.02

Figure 4.4 Results for 50% Connectivity

4.4 Discussion of Results

All strategies showed some improvement over the AHY algorithm in terms
of reducing the total cost of processing a query. The following observations can

be made based on the results:

* A general observation can be made that the improvements were higher for

the random distribution than for the uniform distribution. This is because the

University of Windsor, 1995 50

Evaluation

attribute dependency is more in case of random distribution than in case of
uniform distribution. When an attribute is reduced the effect of reduction of
this attribute on the other attributes is more in case of random distribution.
This is especially true in cases where the attribute size and the size of
the relations are comparable as is the case in our experiments. At lower
connectivity, the uniform distribution showed better performance than the
random distribution. Also the higher the number of attributes, the greater the
improvement when the distribution is random. The above two observations
is also due to the same reasons. When the connectivity is lower the effect
of reduction of one attribute is not that much as when the connectivity is
higher. Also as the number of attributes increases the chances of this effect
also increases. Hence random distribution shows better improvements over

the uniform distribution.

University of Windsor, 1995 Sl

Evaluation

Random verses Uniform

Improvement

Connectivity

Figure 4.5 Improvement of random and uniform distribution for different connectivity

« The improvement increased as the number of attributes in the query increased
and the number of relations in the query increased. When the number of
attributes is small, the random distribution gives a poorer performance than

the uniform distribution.

University of Windsor, 1995 52

Evaluation

Wover AHY

70

567

30

Improvement

10

0

32 33 34 42 43 44 52 53 54 &2 63 64

Query Type

Figure 4.6 Improvement of W over AHY for Random distribution for different query types

* In case of the Dynamic algorithm the improvement was not very significant
over the improvement achieved by algorithm W. A small percentage of
improvement was shown in almost all the cases over algorithm W.

» There is virtually no difference in the performance of W and Bloom+W.
This because the basic strategy used for W and Bloom+W is the same. The

semijoins are considered in the same sequence in both the cases. The only

University of Windsor, 1995 53

Evaluation

difference is that Bloom+W uses the bloom filters to calculate profitability of
a semijoin. It was observed that most of the semijoins which were profitable
in case of W were also profitable in case of Bloom+W. Only those semijoins
where the profit was very near to zero showed a difference in performance.
This is because the effectiveness of Bloom filters is lost after the application
of first reducer. The effect of one reduction of attributes is not reflected in

the other bloom filters of other attributes as the these filters are not updated.

The average improvement showed by each algorithm is about 3 - 5% over
algorithm W. This small improvement is due to a number of factors. Algorithm
Bloom W uses static Bloom filters. Once the attributes are reduced the effect
of reduction is not reflected in the filters. Hence a margin of error is introduced
in this algorithm. Dynamic W considers the semijoins in the same sequence as
algorithm W. The difference being dynamic W will execute semijoins only if they
are absolutely profitable. Algorithm W might execute some semijoins which are
not actually profitable. This happens in those cases where the margin of profit is
small. Hence the only semijoins that are not executed by dynamic W are those
where the profit is near to zero. Hence the over all gain is small. The dynamic
version of W might give better performance if after each semijoin operation it
is possible to identify the semijoin with maximum profit and execute it. This is
especially true in the case of the random distribution where it is difficult to predict

the effect of one semijoin on the other attributes of a relation.

University of Windsor, 1995 54

Evaluation

Also we have used Bloom filters as single attribute reducers. The reduction
in a relation could be much greater if multiple Bloom filters were used to reduce
the relation simultaneously. Another way to use Bloom filters might be to get
a frequency distribution of the attribute values. With this kind of information it

would be much more easier to accurately predict the semijoin benefit.

University of Windsor, 1995 55

Chapter 5
Conclusions and Future work

5.1 Future Work

In this section we describe another algorithm which uses Bloom filters. Bloom
filters can be used as reducers instead of just for the purpose of estimating the
selectivities. Also as all the filters are built simultaneously multiple attribute
Bloom filters can be used to reduce the relations. This should lead to a significant
cost improvement. A detailed algorithm is given below. This algorithm modifies

algorithm Bloom+DW to use Bloom filters as reducers.

1. Sort the attributes in ascending order of their sizes. Select the attribute whose
reducer has the smallest size and is profitable. The size of the reducer dy;"

is estimated as follows

(l”-* = p(d,j) * /)((ij) k.. pldy;) * S(drj)

2. Construct the reducer for join attribute j:

a. Consider semijoin d,; % dp;. The cost for this semijoin is calculated as

S(daj). The benefit is

University of Windsor, 1995 55

Conclusions and Future work

S(Ry) * (1 — ———l——lh('l",;()?:()i,"’”)
The marginal profit is calculated in the usual manner.

b. The semijoin is added to the schedule if it is gainful.

¢. Execute each semijoin in the reducer dynamically. After the execution
of the semijoin d,; X dp;, h(dbj') is reconstructed dynamically using the
reduced attribute dyj. Also use the Bloom filters for other attributes to
see if the current tuple can be selected. The current tuple is selected only
when the semijoin attributes value is present and for each of the other
attributes the corresponding bit in their filter is set to 1. As the relation
is being reduced reconstruct the Bloom filters for all the attributes.

d. If the semijoin is executed then consider the semijoin d,* x d.; else

consider the semijoin d,; X d,;.

3. Apply the reducer by executing all profitable semijoinsd, ¥ x I?;. The cost

my

for the semijoin is S(dm;). The benefit is

. Ill".;l
S(Rl) * (1 - Ih((l.,)l
if R; was used in the construction of the reducer; otherwise the benefit is

estimated as
) Ih(:l.l)ﬂh(llm;)
S(R;) * (1 - ()]

Our hypothesis is that this algorithm will give significant improvements over

the algorithms proposed and tested in this thesis.
5.2 Conclusions

University of Windsor, 1995 56

Conclusions and Future work

In this thesis, we have studied the performance of algorithms based on dy-
namic query execution and Bloom filters. The performance study of these algo-
rithms was carried out against synthetically generated databases. The performance
of the algorithms was compared against a well known heuristic for query process-
ing, the AHY algorithm. Three different algorithms were compared. The first
algorithm was based on the dynamic execution of a query. This algorithm used
the most current information for calculation and reduced the errors due to the
propagation of inaccuracies. The second algorithm used Bloom filters to obtain
more accurate estimates of selectivities. The third algorithm is a combined strat-

egy which is by dynamic and uses Bloom filters.

The performance study was done using a large number of synthetically
generated test queries and databases. In total 12 different query types were used.
For each query type 100 different queries were generated. The database was
generated using both random and uniform distributions. The experimental results
indicated that in each case slight improvements were achieved over the previous
algorithm W. In all cases the improvement was significant compared to algorithm
AHY. The experiments have shown that with methods for better estimation of
selectivities and using dynamic execution the performance of algorithms can be

improved.

University of Windsor, 1995 57

[AHY383]

[AMO1]

[Bab79]

Selected Bibliography

Peter M. G. Apers, Alan R. Hevner, and S. Bing Yao. Optimization
algorithms for distributed queries. /[EEE Trans. on Software Engineer-
ing, pages 57-68, January 1983.

A. Ahn and S. Moon. Optimizing joins between two fragmented
relations on a broadcast local network. Info. Sysr., 16(2), 1991.

E. Babb. Implementing a relational database by means of specialized
hardware. ACM Trans. on Database systems, 4.1:1-29, 1979.

[BGW*81] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. Rothnie.

[Blo70]

[BPR90]

[BR88]

[Brag84]

[BRP89]

[BRP92]

[CL84]

[CL90]

[Co090]

Query processing in a system for distributed database (SDD-1). ACM
Transactions on Database Systems, 6(4):105-128, 1981.

B. H. Bloom. Space/time tradeoffs in hash coding with allowable
errors. Communications of the ACM, 13(7):422-426, 1970.

P. Bodorik, J. Pyra, and J. S. Riordon. Correcting execution of
distributed queries. Proc. Second Int. Symp. on Databases in parallel
and Distributed Systems, pages 192-201, July 1990.

P. Bodorik and J. S. Riordon. Distributed query processing optimiza-
tion objectives. Proc. Fourth Int. Conf. on Data Engineering, pages
320-329, 1988.

K. Bratbergsengen. Hashing methods and relational algebra opera-
tions. Procs. of the 10th VLDB Conf, pages 323-333, 1984.

P. Boderick, J.S. Riordan, and J. Pyra. Dynamic distributed query
processing techniques. In [7th Annual ACM Computer Science
conference, 1989.

P. Boderick, J.S. Riordan, and J. Pyra. Deciding to correct distributed
query processing. [EEE Transactions on Knowledge and Data
Engineering, 4(3), 1992.

L. Chen and V. Li. Improvement algorithms for semijoin query pro-
cessing programs in distributed database systems. IEEE on Comput-
ers, 33(11), 1984,

L. Chen and V. Li. Domain-specific semijoin: A new operation for
distributed query processing. Info. Sci. 52, 1990.

Martin C. Cooper. Estimating optimal parameters for parallel database
hardware. Int. Journal of Systems Sci, 23(1):119-125, 1990.

University of Windsor, 1995 58

[CP84]

[CY93]

[Dat90]
[Des92]

[Gre82]

[HY79]

[KR87]

[Loh89]

[LS88]

[MBB95]

[MBK96]

[ML386]

{Mul83]

[Mul90]

S. Ceri and G. Pelagatti. Distributed Databases: Principles and
Systems. McGraw Hill, 1984.

M. Chen and P. Yu. Combining join and semijoin operations for
distributed query processing. IEEE Transactions on Knowledge and
Data Engineering, 5(3), 1993.

C. Date. An Introduction to database Systems. Addison Wesley, 1990.

Bipin C. Desai. An Introduction to Database Systems. McGraw Hill,
1992.

L. L. Gremillion. Designing a bloom filter for differential file access.
Communications of the ACM, 25(9):600-604, 1982.

Alan R. Hevner and S. Bing Yao. Query processing in distributed
database systems. /EEE Transactions On Software Engineering,
5@3):177-187, 1979.

H. Kang and N. Roussopoulos. Using 2—-way semijoins in distributed
query processing. In Proc. 3rd Int. Conf. on Data Engineering, 1987.

G.M. Lohman. Is query optimization a “solved” problem? In Pro-
ceedings of the ODBF Workshop, number Tech Report CS/E 89-005,
pages 13-18, May 1989.

F. Li and L.V. Saxton. Two-way join optimization in partitioned
database systems. In Proc. 2nd Int. Conf. on Database Theory, pages
191-204, 1988.

J. M. Morrissey, S. Bandyopadhyay, and W. T. Bealor. A heuristic
for minimizing total cost in distributed query processing. Proceedings
of 7th International Conference on Computing and Information. Trent
University, pages 736-758, 1995.

J. M. Morrissey, W. T. Bealor, and S. Kamat. A comparative
evaluation of dynamic heuristics for cost minimization. Proceedings
of 8th International Conference on Computing and Information.
University of Waterloo, 1996.

Lothar F. Mackert and Guy M. Lohman. R* optimizer validation
and performance evaluation for distributed queries. Proc of the 12th
VLDB conference, August 1986.

J. K. Mullin. A second look at Bloom filters. Communications of the
ACM, 26(8):570-571, 1983.

J. K. Mullin. Optimal semijoins for distributed database systems.
IEEFE Transactions on Software Engineering, 16(5):558-560, 1990.

University of Windsor, 1995 59

[Mul93]

[Ngu81]

[OVO1]
[PCI0]

[RK91]

[Sego1]

[VG84]

[WC93]

[WLCI1]

[YC83]

[YLG™86]

James K. Mullin. Estimating the size of a relational join. Information
Systems, 18(3):189-196, 1993.

N. G. Nguyen. Distributed query management for a local area
distributed database system. Proc. 2nd Int. Conf. on Distributed
Computing Systems, Paris, France, pages 188-196, April 1981.
M.T. Ozsu and P. Valduriez. Principles of distributed database
systems. Prentice Hall International, 1991.

W. Perrizo and C. Chen. Composite semijoins in distributed query
processing. Information Sciences, 1990.

N. Roussopoulos and H. Kang. A pipeline n-way join algorithm based
on the 2—-way semijoin program. /[EEE Trans. on Knowledge and Data
Engineering, 3(4), 1991.

A. Segev. Strategies for distributed query optimization. /nformation
Sciences, 54:67-89, 1991.

P. Valduriez and G. Gardarin. Join and semijoin algorithms for a
multiprocessor database machine. ACM Transactions on Database
Systems, 9,1, March 1984.

C. Wang and M. Chen. On the complexity of distributed query
optimization. /IBM Technical Report RC 18671, 1993.

C. P. Wang, V. O. K. Li, and A. L. P. Chen. One-shot semijoin
execution strategies for processing distributed queries. Proc. 7th IEEE
Data Eng. Conf., April 1991.

C. T. Yu and C. C. Chang. On the design of query processing
strategies in a distributed database environment. Proceedings of the
1983 ACM-SIGMOD International Conference on Management of
Data, 1983.

C. Yu, L. Lilien, K. Guh, M. Templeton, D. Brill, and A. Chen.
Adaptive techniques for distributed query optimization. The second
International Conference on Data Engineering, pages 8693, Febru-
ary 1986.

University of Windsor, 1995 60

Appendix A
Experimental Data

A summary of experimental results for total cost is given in the following
tables. Each row of the table indicates a query type. The second column gives the
total cost for shipping the unoptimized relations to the query site. The subsequent
columns gives the total cost for each of the five algorithms used in the experiments.
The entries in each row represents the average over 100 different queries. The

last row gives the averages over all the different query types.

University of Windsor, 1995 61

Query Type | NO_OP AHY w bw Bloom+W Bloom+DW
32 24462.80 14019.90 10870.20 9854.10 10415.30 9950.10
33 34702.00 15040.90 8797.90 714420 8891.50 7161.80
34 49733.00 12626.50 4548.80 3439.70 4625.80 3387.30
42 38067.60 1363750 6897.40 6087.50 6811.60 5831.80
43 52416.40 14767.50 5268.80 4050.40 5242.80 4054.50
44 64650.00 13756.40 3085.20 2769.60 3361.20 2814.70
52 48359.10 13544.30 5093.80 5690.30 5149.90 3930.10
53 55520.00 13192.80 237590 2369.00 2384.70 2169.30
54 80700.00 13576.50 2321.10 2166.30 2351.20 2154.30
62 49740.00 17551.10 4157.50 4933.60 4157.30 3666.60
63 79650.00 14386.50 2457.80 2107.00 2527.00 2104.30
64 98620.00 14377.90 2282.80 2023.30 2274.90 2013.60
Average 56385.07 14206.48 4846.43 4386.25 4849.43 4103.20

Figure A.1 Results of Uniform Distribution at 100% connectivity

University of Windsor, 1995

62

Query Type NO_OP AHY w DwW Bloom+W Bloom+DW
32 19694.20 11283.70 9889.90 9499.90 9931.20 9581.00

33 29914.20 [4168.30 10478.30 10318.30 10469.40 10287.20

34 30784.90 13194.30 8188.40 5535.60 7549.20 5523.30

42 26160.00 14684.00 11765.10 11657.60 11758.80 11759.30
43 42085.00 18952.70 11361.10 12024.90 11361.10 9769.00

44 45287.10 15451.50 7005.80 5833.90 6936.20 5926.70

52 39718.60 17973.30 10505.50 11734.70 10385.50 10525.10

53 46090.00 16899.90 7404.70 5801.70 7081.90 6529.00

54 66800.00 18303.70 5609.90 3563.10 5054.10 3486.20

62 36724.80 18242.80 8814.50 8556.90 8705.70 8540.10

63 54860.00 18705.70 7957.80 7202.30 7963.60 6783.70

64 59430.00 20138.80 4483.10 3212.00 4433.60 3319.10
Average 41462.40 16499.89 8622.01 7911.74 8469.19 7669.14

Figure A.2 Results for Uniform Distribution with 75 % connectivity
University of Windsor, 1995 63

Query Type | NO_OP AHY w DW Bloom+W Bloom+DW
32 21443.90 15555.10 14280.30 16394.80 14280.30 16396.10
33 23895.80 15781.30 13602.20 13458.20 13321.00 13563.90
34 26894.40 13176.50 8411.30 7698.40 8460.50 7704.70
42 25919.70 19518.00 16740.00 17060.10 16775.90 17134.30
43 33057.30 19081.50 14873.70 14653.40 14488.40 14650.50
45 32622.10 16623.80 11109.80 10024.50 11120.60 10048.40
52 31120.60 20424.80 15580.60 16430.40 15580.60 16426.30
53 35810.80 19506.30 11737.30 10257.10 11278.80 10098.30
54 38757.40 21154.10 13689.20 11189.20 12642.00 11348.60
62 38622.20 22318.20 12431.70 14135.80 11870.60 13899.90
63 50648.10 25420.80 15899.60 16533.60 15779.50 16427.60
64 63070.00 23027.50 7298.40 5365.70 7838.50 5229.70
Average 35155.15 19298.99 12971.18 12766.77 12786.39 12744.03

Figure A.3 Results of Uniform Distribution at 50 % connectivity

University of Windsor, 1995

64

Query Type NO_op AHY w DW Bloom+W Bloom+DW
32 19694.20 11283.70 9889.90 9499.90 9931.20 9581.00

33 29914.20 14168.30 10478.30 10318.30 10469.40 10287.20

34 30784.90 13194.30 8188.40 5535.60 7549.20 5523.30

42 26160.00 14684.00 11765.10 11657.60 11758.80 11759.30
43 42085.00 18952.70 11361.10 12024.90 F1361.10 9769.00

L= 45287.10 15451.50 7005.80 5833.90 6936.20 5926.70

52 39718.60 17973.30 10505.50 11734.70 10385.50 10525.10
53 46090.00 16899.90 7404.70 5801.70 7081.90 6529.00

54 66800.00 18303.70 5609.90 3563.10 5054.10 3486.20

62 36724.80 18242.80 8814.50 8556.90 8705.70 8540.10

63 54860.00 18705.70 7957.80 7202.30 7963.60 6783.70

64 59430.00 20138.80 4483.10 3212.00 4433.60 3319.10
Average 41462.40 16499.89 8622.01 7911.74 8469.19 7669.14

Figure A.4 Results for Random Distribution at 100 % connectivity
University of Windsor, 1995 65

Query Type | NO_OP AHY w DW Bloom+W Bloom+DW
32 23374.90 18852.60 20035.70 30845.92 20039.80 22686.80
33 32620.00 29609.00 26993.10 28505.70 26940.90 28745.90
34 38484.30 34214.20 28794.80 28115.20 28070.10 28078.90
42 34344.20 31695.30 27327.50 29652.50 26967.40 29878.80
43 47218.00 42631.50 33791.00 35416.50 33383.30 35504.30
“ 59241.90 51177.70 36989.50 32413.80 35446.40 31520.50
52 45395.10 41988.90 3312390 35026.90 33065.20 35336.50
53 59404.60 52687.80 38015.50 37117.90 37210.40 37973.90
54 64799.50 53814.30 25297.70 22445.50 23927.80 22568.10
62 48150.60 46189.90 34460.80 36456.20 34165.60 36206.50
63 61509.40 57590.40 35920.00 32080.80 35458.10 31843.30
64 78795.90 68026.70 29401.60 27678.90 29579.60 25437.70
Average 49444 87 44039.86 30845.92 30639.21 30354.55 30481.77
Figure A.5 Results of Random Distribution at 75 % connectivity
University of Windsor, 1995 66

Query Type NO_OP AHY w DW Bloom+W Bloom+DW
32 21406.50 20957.00 19018.80 21075.70 19018.80 21076.20
33 26710.00 2423270 22904.40 25600.60 22928.50 25493.10
34 29185.50 27287.50 25408.10 24514.00 24840.70 24713.30
42 28649.20 26606.10 23541.20 24944.60 23585.70 25028.90
43 35515.00 32779.00 29706.00 32351.40 29721.20 33979.40
4 43202.80 39027.30 35388.40 37838.20 35236.80 37839.40
52 32880.20 31046.00 27554.30 29694.20 27498.20 30278.80
53 45809.90 42308.60 37570.60 41247.90 37502.10 41406.90
54 52391.00 49012.80 42365.50 43537.00 41710.70 44173.50
62 38127.70 35887.90 29351.60 32227.50 29322.80 33705.90
63 47103.20 44804.80 37687.00 38686.40 37464.50 39586.50
64 55084.10 52485.90 41437.90 41423.50 40601.80 40629.90
Average 38005.43 35536.30 30994.48 32761.75 30785.98 33159.32
Figure A.6 Results of Random Distribution at 50 % connectivity
University of Windsor, 1995 67

Vita Auctoris

Sandeep Kamat was born in Bombay, India. He graduated from University
of Poona obtaining a Bachelor’s Degree in Computer Science in 1991. From there
he joined the Indian Institute of Technology, Bombay as Software Engineer. He is
currently a candidate for a Master’s degree in Computer Science at the University

of Windsor and will complete all degree requirements in the Fall of 1996.

University of Windsor, 1995 68

IMAGE EVALUATION
TEST TARGET (QA—3)

%vN N

X G SRS NaN

.@W««z \/ qu\
X \/\

16

14

150mm

.25

IMAGE . Inc
653 East Main Stree

~@auw

APPLIED

© 1993, Applied Image, inc., All Rights Reserved

	Dynamic strategy and Bloom filters in distributed query optimization.
	Recommended Citation

	tmp.1363786207.pdf.zRDY1

