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Abstract

The main objective of this research was to find an optimal solution for the

simulation and analysis of workcells for some automated production processes. Two
processes were chosen for the study — assembly of a car fender, and spot welding of a
front support engine/transaxle mount. In closer defining of this task certain constraints
and requirements were postulated in order to make these processes economical and
productive. For safety reasons an operator was foreseen to be included in the
production process, and the possible collisions in the process had to be detected.
To meet this objective and postulated requirements, the simulation and analysis were
designed for a low-cost microcomputer, instead of expensive hardware systems often
used previously. The commercial Workspace software package was used because of
its flexible modeling, designing and process analyzing capabilities, including off-line
programming, calibration, animation, and collision avoidance.

The workcell simulation approach described in this thesis is a step forward in
providing a task-oriented solution to the problem of robotic cell design and
programming. It integrates off-line programming techniques with significant features
of welding technology. This particular graphical simulation and layout design of spot
welding and assembly proved the importance of production planning and analysis.
Simulation was running in real-time and each aspect of the production could be easily
tracked and analyzed. Changing throughput-setting variables could simulate various
production scenarios. For simple simulation the input is only run time, and for
complex simulation the input represents run time with down time. Another important

feature provided by - collision avoidance was also included into the simulation.



A unique feature of this study was the introduction of an operator into the
simulation, for the first time in the Workspace® software. The operator was defined
as a mechanism with eighteen joints.

All originally given constraints and requirements were successfully met in this

simulation.
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1. INTRODUCTION

1.1. Introduction to robotics

Research during the past twenty years has been directed towards creating soft
(flexible) automation techniques, which could be applied to small and medium batch
runs. This has culminated in the development of numerically-controlled milling
machines, flexible manufacturing systems, automatic guided vehicles, and industrial
robot-arms.

The development of the industrial robot-arm was of particular importance. Its
ability to emulate the senal-link manipulator nature of the human-arm has led to a
whole new class of production tasks, which may be profitably automated. Examples
are: paint-spraying, welding, PCB component insertion, assembly, and pick-and-place
operations. More recently, advances in image-recognition, tactile-sensing. and
artificial-intelligence have expanded the number of potential applications into those
areas where sensory feedback from the environment is required. such as picking up
objects which have been randomly placed on a conveyor-belt.

‘Dumb’ manipulators (controlled directly by a human instead of following a
computer program) have found further applications in carrying out tasks which might
be potentially hazardous to humans. Examples are: handling radioactive materials,
and manipulating objects underwater or in space [Owens, 1990].

The first robots were introduced in manufacturing industry in the USA in
1961. Since that time there has been a significant growth in the number of robots in
use and the range of applications in which they are used. Today robots play a key role

in industrial and manufacturing engineering. In developed countries, many large-scale



national and international research and development programs have been launched
and still are going on. For example, ESPRIT, BRITE, and EUREKA are large
European research programs that focus on robotics. NASA and the European Space
Agency also conduct robotics research for tele-operations in outer space. The
governments in United States, Canada, and Japan are currently funding large research
projects to develop the so-called fourth-generation robots. In the private sector,
several hundreds of companies are manufacturing and servicing robots of various
types. as well as supporting robotic systems and peripherals [Ulrich, 1990].

The main driving force in the development and application of robots and
mechanisms has been the automotive industry. The benefits of flexible automation
have been incorporated wholeheartedly into the automotive manufacturing process.
The automotive companies have also assisted the utilization of robots in other areas
by encouraging their suppliers to utilize the same technologies.

In general, robots may substitute for human operators in the following
situations [Groover, 1987]:

e Hazardous work environment for human operators
e Repetitive and heavy work cycles

e Parts difficult to handle by human operators

e Infrequent product changeovers

e Part positioning and orientating

Many commercially available industrial robots are widely used in
manufacturing and assembly tasks, such as material handling, spot/arc welding, parts
assembly, paint spraying, loading, and unloading numerically controlled machines.
Some robots are also used in space and undersea exploration, and prosthetic arm

research. According to a search of the Internet [www.rosl.com], there are over 100



robot manufacturers around the world. Table | is a list of some manufacturers and

their programming languages [Gong, 1998].

Table 1 A list of major and some minor robot manufacturers and their

programming languages

Manufacturer Programming Languages
ABB ARLA, RAPID

Adept V+

Comau PDL2

Eshed ACL

Fanuc RG2. Karel 2, Karel 3, TP
IBM (sold their robotics business to Sankyo over | AML/2

ten years ago)

Kawasaki AS

Motoman Inform 1, Inform 2
Nachi SLIM

Panasonic Parl-1, Parl-2

PSI PSI

RTX (ceased trading five years ago. RTX now | FRTX

handled by OXIM)

Samsung FARL-II

Seiko DARL 4

Toyoda TL-1

TQ TQ

Unimation (now called Staubli, and now use V+) | VAL I, VAL Il




1.2. The need for simulation

The techniques of Computer Aided Design have found extensive use in
replacing and improving the process of engineering drawing, architectural drawing,
and many other applications. However, an engineering process involving moving
parts can only be understood fully through the process of simulation.

Early techniques have involved taking a CAD engineering drawing of a
machined part and creating an animated simulation of the movements that the
machining centre must go through to create the part from a ‘raw’ block. As well as
providing a visualization of the process, a file can be created containing the required
instructions to the machining centre. The file can then be executed to create the part.

This extension of Computer Aided Design to Computer Aided Manufacturing
seemed desirable for Industrial Robotics. However, the kinematics involved in robot
movement is considerably more complex than that related to XYZ machining centres.
and the relation between the curves swept by the robot end-effector and the joint
variables is not straight-forward. Additionally, for a robot simulation to be of general
use, it must be capable of simulating a wide variety of robot types and configurations.

Despite these difficulties, simulation appears to provide a suitable interactive
graphical environment to improve the ease with which industrial robots are
programmed. Benefits such as the ability to detect off-line collisions between robots
and objects, and the ability to evaluate and optimize the time taken for a sequence of
movements off-line, have also provided major incentives to research and development

into robot simulation [Owens, 1990].



1.3. The history of commercially available simulations

Perhaps the first commercially available robot simulation was GRASP,
marketed by the UK Company BYG, which was developed at Nottingham University
over a period of seven years. GRASP is used in the UK by PA, Taylor-high-tech. and
a number of academic and research institutions. It has undergone a number of major
improvements, the most significant one was the introduction of solid modeling.
GRASP cannot model non-serial robot structures (e.g. parallelogram joints-frequently
found in robots) in its present formulation.

Computervision (CV) — a UK company better know for its CAD packages
marketed a simulation named "Robographics" which was used at Austin-rover and
Unimation.

The McAuto CAD division of McDonnell-Douglas company marketed a
series of packages designed for robot simulation, that were used by Cincinatti-
Millacron. PLACE is used for Robot cell layout and evaluation, BUILD is used for
robot modeling and can be used for real-time 3-D dynamic studies, COMMAND is
used for off-line programming, and ADJUST for robot calibration.

McAuto had the advantage that it was compatible with McDonnell-Douglas
CAD systems that were in widespread use. However the package does not provide
such basic features as hidden-line removal and collision-detection.

Technamatics, an Israeli-based company with a European base in Brussels,
marketed ROBCAD. The package is currently used by many of the European
carmakers (Ford, BMW, Volkswagen, and OPEL). ROBCAD can automatically
define object face — a useful feature if IGES CAD standard geometric information is

to be input, since IGES does not pass face information.



Deneb IGRIP is also currently used by many large manufacturing
organizations. Like ROBCAD, it is graphics workstation based. Some robot
manufacturers have created their own robot simulation software with limited
functionality specifically for selling alongside their own range of robots. Motoman
sells the Rotsy software based on a customization of a CAD package from a company
named 3D-Eye.

A number of other robot simulations are commercially available but have
made little impact on the market, including the Dassault "CATIA Robotics™ package
which is compatible with its CATIA CAD system and the General Electric
“CALMA” package. Dassault recently purchased Deneb and dropped their CATIA
robotics package.

ROSI marketed by Cambridge Control is a robot simulation, simulating the
dynamics of a robot — a different type of simulation. of little use in evaluating
workspaces, but of great use in design and evaluation of new robot structures. It can
also provide extremely accurate estimates of cycle times since it takes into account
not only the demanded joint position but also the lag between the demand and the
actual position due to the dynamics of the robot system. This is important for very fast
high-load applications, such as the robots produced by Lamberton Robotics (in
Coatbridge near Glasgow) for handling very large payloads (e.g. palletizing three

barrels at a time) [Owens, 1990].



1.4. Research into Robot Simulation

A considerable amount of academic research is devoted to the general
techniques involved in robot simulation, with many instructions developing their own
package.

Researchers at Brunel University use a language called UPL to implement a
robot simulation on a microcomputer-first-order reasoning to be used by the robot to
find a series of robot actions that will enable the robot to achieve its goal. Others have
concentrated on the design of a task-description language, possibly based on one of
the “modern™ algorithmic programming languages. A third approach has been to
examine the geometric nature of a robot task and reduce the degrees-of-freedom via

spatial reasoning [Owens, 1990].

1.5. Literature survey

A great deal of work can be found that relates to robotic research and
development. Some of this work deals with the control of industrial robots, which
cnables automatization of robot systems and improves their application reliability in
manufacturing processes [Craig 1989, Vukobratovic 1986, Critchlow 1985, Groover
1987, Ulrich 1990, and Gong 1998].

For the modeling, simulation, off-line programming, collision detection, and
layout analysis, industrial companies are currently using high-end workstations that
are in the high price range. There are some commercially available simulation
software packages with different capabilities and price.

XAnimate: An educational software for robot graphical simulation, has been

developed at Ohio University [Marhefka and Orin, 1996], to provide portable



graphical simulation at no cost. XAnimate's graphical user interface, C library of
functions, and set of predefined objects enable users to easily display animation
wireframe images or solid color object systems of any topological structure.

ROBO_SIM: A robotics simulation environment on personal computers has
been developed for the MATLAB matrix manipulation program. The package
consists of callable routines for performing specific calculations: the functions for
Forward and Inverse Kinematics, Arm dynamics, trajectory Planing, Control and
Simulation.

Neither software has enough capabilities for simulation, off-line programming,
and workcell analysis.

A group of scientists [Kukareko, Pashkevich, Khmel, Korzun, and Yurkevich,
1994], presented the results of their research devoted to computer-aided welding
workcell design, path planning and programming. This paper presents specially
developed algorithms and software tools for the simulation of arc and spot welding
robotic cells and the generation of technological programs. This algorithm cannot be
applied to the other industrial applications. The developed algorithm has been
implemented in the ROBARC package. This software has been used for welding
workcells design in automotive industry, and can be run only on IBM compatible
workstations. The workpiece that they used in this simulation has been designed using
the CATIA CAD system, and was transferred in DXF format to ROBARC. In their
workcell simulation, they did not provide a layout analysis.

Rooks [1997] examines the developing uses of off-line programming in the
automotive industry, particularly in the area of robot welding and robot painting. One

of the major reasons for the success of robot OLP in automotive production is the



development of graphical simulation tools. These analyses are provided in Robcad
and IGRIP software packages, but these are mainly PC-based.

PROWELD, a PC-based software package for low-level programmers is
developed for off-line programming of welding robots, and is evaluated for arc
welding using a six-degree of freedom industrial robot [Balkan, Arikan and Bulut.
1997]. This software has some limitations, such as the lack of Collision detection,
workcell analysis, advanced robot languages, import and export facility, direct and
inverse kinematics modeler, etc.

DENEB developed separate software for human factor and ergonomic
analysis, called ERGO [Alexopoulos, 1995]. For graphical simulation and off-line
programming, DENEB developed software TELEGRIP-Tele-interactive Graphics
Robot Instruction Program [Hewer, 1996]. Both software packages are based on PC
stations, and do not have capability for layout analysis.

Some research has been done in discrete event system simulation for planning
and design purposes. The motivation for using simulation is that it can often capture
and describe the complex interactions within a particular FMS where analytical
methods fail. Simulation is commonly used to gain insight into manufacturing
systems [Glover, Kelly, Laguna 1996], [Peters, Smith, Curry, LaJimodire 1996],
[Kelton, Sadowski, and Sadowski 1998]. Voss and Haddock [1994] presented a
discrete event simulation approach to the analysis of intelligent robotic systems. The

model is intended to help balance system design decisions.



1.6. The objective of the research

The objective of this research was to design and analyze a workcell for
automated assembly and spot welding of front-support member engine/transaxel
mount. The Workspace software is used to develop and monitor this particular
workcell. The main advantages of Workspace are capability for graphical simulation,
off-line programming of robots. mechanisms and human beings. and layout designs. It
is a PC-based software for Windows®, which makes it user-friendly and affordable
for average computer user.

In solving this problem the following requirements were considered:

e To automate the process with IRB6000 robots,

e To include one operator (for union and safety reasons),

e A total cell cost of no more than $ 600,000,

e Production must be at least 40,000 parts per year,

e Size of workcell is 24 X 30 sq. ft,

e Layout design (the number of jobs, the run-in time, the run time, the number of
jobs per hour),

e (Collision detection.

According to the literature survey and preliminary research in this thesis. it
was concluded that Workspace software could satisfy the above requirements and the
price.

The simulation and workcell for front support member engine/transaxel mount
is unique, because this industrial process has not been automated before and also
because this workcell includes a operator in the simulation, for the first time in the

Workspace software.
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2. Modeling and simulation

Many of the largest users of robotic production equipment, predominantly in
the automotive sector, are well aware of the benefits that effective simulation systems
can offer as a part of the design and specification process for their robotic systems.

Simulation is a powerful tool in the design of the manufacturing systems,
which can be analyzed. optimized and verified before the purchase or installation of
any capital equipment. It is a means to avoiding costly errors., speeding up

commissioning and ensuring the plant operates right first time [Rooks. 1997].

2.1. The Workspace software

Workspace is the first industrial robot simulation software package to be based
on a microcomputer. Since its commercial release in 1989 it has undergone many
revisions. With the latest software release (version 4.103) Workspace is in use on over
1000 industrial and educational sites worldwide as both a graphic simulation system

and a means of off-line programming a robot workcell.

2.1.1. Creating and simulating robot programs

Workspace will create and simulate robot programs in the native language of
the robot. There is, therefore, no need for postprocessors to translate from a
simulation language to the robot language: the full power of the robot language is
available through off-line programming. It is also possible to transfer existing robot
programs from the robot controller back into Workspace. Off-line programming using

Workspace is, therefore, a two-way process. This is particularly facilitated by the use
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of portable microcomputers which may be taken down onto the factory floor and used
next to a robot workcell.

The user first selects the target robot language. To create a robot program, the
user clicks on robot commands in a pull-down menu. These commands are
immediately written to an ASCII text file. In this way a robot program is created
without the necessity for the user to know the precise syntax of the commands, though
he may also use an in-built text editor if desired. As each command is written to the
file, it is simulated graphically on the computer screen in color 3D solid graphics.

Programs may be debugged by tracing through line by line seeing at each line
what is happening in the simulation. The value of variables may be watched or
examined throughout the program. If an error occurs at any point, the user will
immediately be placed in the Workspace text editor at the position in the robot
program where the error occurred, enabling him to promptly correct the error.

The full structure of the robot languages is implemented, including typed
variables. teachpoints, subroutines, looping., branching on condition, signals, and
condition handler interrupts.

Several robots working in co-ordination, each under the control of a separate
robot program may be simulated to produce one animation. During the simulation of
the robot program any collision that occurs between any objects in the workcell may
be automatically reported, and a cycle time is calculated for the overall sequence of
movements. The 3D volume of the envelope may be plotted, or 2D slices through the
envelope displayed on the screen.

All the main industrial and educational robot languages are implemented, and
a library of over 230 robot models is available to the user (though it is also possible

for users to create their own robots).
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2.1.2. The 3D CAD system and kinematics modeler

The first step in any simulation is to load the CAD models of the parts to be
processed into the simulation.

3D solid object (including combinations created using Constructive Solid
Geometry) or surfaces (including Bspline, Parametric. or Bezier surface) may be
created using Workspace’s own 3D CAD system, or else imported into Workspace
from an external CAD system using the DXF file format (common amongst
microcomputer based CAD systems such as AutoCAD) or the IGES file format
(common amongst graphics workstation based CAD systems such as CATIA). The
use of an unlimited number of layers for storing different levels of detail makes it
possible to turn off the display of object irrelevant to the current task, or display them
in wireframe for speed.

The movement of any mechanism may be modeled using a kinematics
modeler. The mechanism may have any number of joints in any serial or tree-structure
combination. Conveyors, automatic vehicle, and other independently moving objects

may also be modeled [User Guide Manual Workspace, 1997].

2.1.3. Defining positions

Positions and paths for the robot tool to move may be defined in several ways.
A software emulation of a teach pendant is available to move the robot either by
stepping individual joint angles or by stepping the xyz Cartesian position of the tool
relative to the robot world co-ordinate frame. Positions may be saved as teachpoint for
use in a robot program later. These are displayed on the screen graphically as

coordinate frames. If the robot is placed in a different position in the workcell then the
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teachpoints will change color if they are no longer achievable due to the limits on the
joints of the robot or due to the limited reach of the robot.

Positions may also be defined by clicking at different positions on the
computer screen (changing the view if necessary to define a 3D position).
Orientations may be defined in many different ways: for example by dragging the
approach vector of the teachpoint co-ordinate frame in a particular direction (using the

mouse).

2.1.4. Geometry Points

The easiest and most powerful way of defining robot positions is to use the
objects geometry. Points may be defined along the seam between two surfaces in such
a way that the position of the point on the seam. the distance of the point from the
seam, the lean of the approach vector of the tool towards the seam. or the angle
between the adjacent surfaces and the tool approach vector is set by the user. This is
of use in applications such as arc welding.

Points may also be defined normal to a surface so that the position on the
surface and the distance form the surface to the point is set by the user. As the point is
moved over the surface the point is always maintained normal to the surface. This is

of use in applications such as spot-welding [Owens, 1994].

2.1.5. Capabilities of Workspace

e To model new workcell layouts involving conveyors, AGV's and evaluate their
performance

e Communicate design concepts using state of the art 3D graphics and demonstrate
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process and plant design

Prepare analytical statistics of workcell performance
Prepare real time animations for presentations
Training and education in complete safety

Manage complex projects

Calibrate the robot to an accuracy of less than lmm

Generate robot programs off-line using a simple mouse driven menu system

2.1.6. Workspace Features

Some of Workspace Features are:

3D CAD system featuring Constructive Solid Geometry and Swept Polylines.
Advanced Robot languages of the major manufacturers.

Off-line Programming.

DXF/IGES import and export facility.

Robot and workcell calibration to less than Imm accuracy using Calibration
Plus®

Kinematics and inverse kinematics modeler for mechanisms with up to 22 joints.
For the rest of the features see Appendix A.l. [User Guide Manual for Workspace.

1997].
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2.2. Robot simulation

The simulation of industrial robots has become an important means to increase
the application efficiency of robots. In advanced manufacturing, it is desirable to
simulate the manufacturing systems and processes before installing physical
equipment. Simulation enables us to rectify errors in design and manufacturing
processes before the manufacturing system is set on the floor. Animation and
simulation can be packaged with multimedia production with graphical/textural
information {Gong, 1998].

Designing efficient work cells is a difficult task. The need to predict robot
movement. to avoid interference between robots and determine the optimum
placement for maximum reach is essential for the workcell design engineer. The
ability to design within confined spaces where there is a high risk of collision together
with identification of possible production bottlenecks is of utmost importance. [t is
also important to know how long each process within a cycle will take.

When a new design is to be incorporated. the concepts must be clearly
communicated to all team members. Simulation allows the planning of safety factors
because operating robots can carry a risk of injury.

The benefits of using simulation can easily be measured. With a faster design
of new workcell layouts, the engineering effort is reduced creating less pressure on
the team. Faster redesign means reduced downtime in line shutdowns for on-line
programming. New ideas can be tested on the computer, eliminating costly mistakes.
The cycie time can be examined to produce optimum schedules while verifying robot
reach and collision detection. More importantly, the optimization of workcells can be

achieved off-line, allowing the robot to continue operating during the planning phase.
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Off-line programming is available for similar reasons, and allows downloading to the
robot controller [Bernhardt, Schreck and Willnow, 1995].

Workspace can increase productivity and reduce system downtime. System
programming takes place before robot installation or while an existing workcell is in
operation. Complex layouts can be tested in complete safety either in an office
environment or on the shop floor. Simulation highlights potential problems before
they happen, allowing quick and easy modifications.

3D simulation has revolutionized the ways that engineers can work.
Workspace lets you add equipment to a workcell, delete or move objects for the most
complex of robotics applications, reducing development time and ensuring a complete
solution.

A graphical simulation system for the validation and specification of the robot
program is an integral part of an advanced programming system. It must provide a
library of emulated robots, transport devices, and end-effectors to build up a cell
model quickly. Modeling software for the robot’s environment and of the robot itself
must be available. The graphic representation enables the operator to check the
programmed operation. So the system contains specific tools for [Gong. 1998]:

e Robot modeling
e World modeling
e Description of motion
e (Collision detection
e Control code generation
There is a number of graphical simulation systems available in the market,

such as IGRIP, ROBCAD, CATIA, ADAMS, and Workspace.
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One of the aims of Workspace is to provide a realistic, 3D animation showing
how the machinery on a production line will work together. In addition to create
animation, we can test the robot’s reach, detect collision and get an indication of cycle
time for a workcell. The total cycle time is displayed in the information window after
a track has finished being recorded or replayed. During replay or recording the

elapsed cycle time can also be seen on the far right of the status line.

2.3. Modeling workcell components

A Workcell model presents the significant features and behavior of the
workcell components and defines the structure of relations among them. Here an
object-oriented approach is used for developing the model. The model is split up into
a hierarchy of classes characterizing certain properties of components such as
geometrical, physical and functional properties relevant to their mode of operation. A
Geometrical submodel is constructed by composition of rigid solids using a CAD
graphical editor. The relational aspect is modeled using a graph structure
characterizing spatial links between objects. Robot and positioner kincmatics
parameters are also included in the geometrical submodel. A physical submodel
provides simulation of the mechanical system [Kukareko, Pashkevich, Khmel,
Korzun, and Yurkevich, 1994].

Workspace is a powerful modeling package, that enables engineers and
designers to create their own ‘virtual’ world. The majority of robots and workcell
reside in factory, workshop, or laboratory environments. A typical application of
Workspace might be to test the feasibility of a chosen robot or robots to perform set
tasks within a given space. Workspace includes a library of common shapes, which

may be used to construct complex worlds with minimum effort.
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2.4. Creating mechanisms

A mechanism is a collection of dependent joints that control the motion of a
stand-alone structure (See Appendix A2). This structure can be serial or parallel, or a
combination of both.

To create a mechanism one has to model the flesh first (there are no named
limitations for the objects that make up a mechanism, unlike a robot). Next, one
should create the dependant joints defining the motion of the objects, which make up
the mechanism structure. It is necessary to create joints in between the component
objects making up the mechanism. In addition, it is also necessary to specify an
equation of motion for each joint so that Workspace knows how to simulate the
mechanism correctly.

The joint axes should be positioned using the same commands that were used
to modify robot axes. The expressions that define a particular joint’s movement
should be set.

Finally, one has to select the base of mechanism and issue the Create/Create
Mechanism command giving the total number of axes when prompted.

A mechanism resembles an ordinary robot as it has auxiliary joints and can be
controlled from the Pendant menu. However, it also differs from an ordinary robot
since it does not have any ordinary joints (it has dependent ones) or robot links [User

Guide Manual Workspace, 1997].

2.4.1. Modeling dependant joints to create a gripper

Dependant joints work by defining an attachment between a parent and child
object, and by defining a mathematical expression, which Workspace evaluates during
simulation to decide what the value of the joint displacement should be. The joint

coordinate axes are moved to the correct position and orientation using the commands
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on the ‘Edit Joint’ menu, bearing in mind that the z-axis represents the rotation axis
for the joint. There are actually two types of joint available: rotational and
translational (or prismatic). In the case of the translational joint, the z-axis defines the
direction of the joint motion.

To create a dependant joint between two objects, a decision needs to be made
on which object remains fixed (the parent) and which object actually moves (the
child) and the child object has to be selected. Then, the ‘Create dependent Joint’
command is selected. The commands are used to move and turn the joint to the
correct position.

The next step is to describe how the joints move by entering an ‘Expression
for dependent Joint’. The default is AXISPOS (1), which means that the joint will
move as the joint | of the robot is changed from the pendant menu. In this work
AXISPOS was not used because there was a special internal function for grippers
called GRIPPOS. This variable change from O to 100 when an 'Open Gripper’
command is issued and then goes back to O when the ‘Close Gripper’ command is
given. Obviously, there is not always necessary to have a displacement of 100 in
joint, so a scale factor has to be used. For instance, if the gripper consists of rotational
joints which only move by 30 degrees from closed to open then the expression would
be: GRIPPOS*0.3. If the gripper had translational joints which moved apart by a total
aperture of 100mm (2*50mm, one for each gripper) then the expression for each joint
would be: GRIPPOS*0.5.

Finally, it has to be checked whether GRIPPOS has the value that was
expected before modeling the gripper. For GRIPPOS to have zero value the gripper is
modeled closed, and for GRIPPOS=100 the command ‘Open Hand’ is issued. It is not

possible to move dependent joints until they are attached to a part of the robot - for
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example Link6. If there are several grippers that the robot can automatically attach
and detach from its Link6 during a task, we don’t get the grippers that are not in use
opening and closing when the robot issues gripper commands [User Guide Manual,

Workspace, 1997].

2.4.2. Auxiliary Axis and the Turntable

The turntable involves techniques similar to those used when modeling the
gripper, except that an auxiliary axis (number 7) of the robot controls the table instead
of GRIPPOS. The turntable will need auxiliary axis teachpoints storing for the two

positions that it will move to (AUXPOS variables in the teachpoint file).

2.5. Creating robots

The definition of robot: A reprogrammable, multifunctional manipulator
designed to move matenal, parts, tools, or specialized devices through various
programmed motions for the performance of a variety of tasks™. In the treatment
presented here, a robot will be taken to mean an industrial robot, also called a robotic
manipulator.

Workspace incorporates a wide range of facilities for the design, building,
testing and calibration of robot structures.

At the simplest level the mechanical structure of a robot can be considered as a
serial of links bolted together at the joints. Each bolt is sufficiently loose to enable the
Jointed links to move relative to each other. In Workspace, robots are special objects

which have additional “LINK” objects and data associated with them.
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By convention, the robot object is the object that 1s usually attached to the
floor at the base of the robot. This object should be given the model number of robot.

(E.g. IRB6000, Comau-S2).

2.5.1. Robot links

Workspace links are special objects that make up part of a robot. They are
named: Linkl, Link2. Link3. and so on. Linkl is attached to the robot base object.
Link2 is attached to Link!l and so on.

These links are objects attached in a special way. A robot link has an axis
associated with it that defines how the next link in the chain will move.

For this axis, there are two simple rules:
e For a translational joint. the next link moves along Z.
e For a rotational joint, the next link moves around Z.

The last link in the chain, usually Link6 has an axis even though there are no
more Link objects after it. The position of this axis determines the positions of the
robot’s end effector.

To create a typical 6-axis robot, the following is needed:

A robot object (base) — for the “waist™ axis

Linkl - for the “shoulder™ axis

Link2 - for the “elbow™ axis
e Link3 - for the “roll” axis

e Link4 - for “pitch™ axis

e Link5 - for “‘yaw” axis

e [ink6 — for the end effector frame
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So, at least seven objects are necessary to start with, (Figure 1). We cannot
attach any of the base or link objects together, this will be done automatically when
we issue the Create/Create Robot command. To each of these links, one may whish to
attach additional objects, e.g. motor housing. Once we have positioned the body of the

robot, issue the Create Robot command, we will be prompted to enter the number of

Link3

Rabot Object (Base
joints for this new robot. This will be equal to the highest link number [User Guide

Manual Workspace, 1997].

Figure 1 Link objects in the IRB2000 model
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2.5.2. Robot axes

Although it is possible to specify the location and orientation of an axis
directly in the robot A-matrix, there are two commands to do this directly in the CAD
editor. These commands are in the Edit/Edit Joint submenu:

e Move Axis
e Tum Axis

We cannot always move or turn an axis in the way we want. Workspace will
not allow us to turn or move an axis, so that the robot A — matrix becomes invalid.
The range of permissible angle and positions is determined by the application of
Denavit Hartenberg rules to the axes of the robot. To help us position all the joints we
can check the Edit/Edit Robot/ Settings/Show kinematics command. This option will
display the distance and offsets between the joints on our robot [User Guide Manual

Workspace, 1997].

2.5.3. Robot joint limits

Our robot model stores information for each of its joints. This information
includes the maximum and minimum values for the joint that is by default in mm for a
prismatic joint or in degrees for a revolute one. Also stored are the maximum speed

and acceleration for each joint.

2.5.4. Forward kinematics

Once we have defined the position and orientation of all our joint axes,
including the axis stored on the last link of our robot defining the robot’s end effector,

Workspace can calculate forward kinematics for our robot. This means that, given all
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the joint values, Workspace can calculate the position and orientation of the robot’s
end effector relative to the robot base. We can change these angles directly by using

the Pendant menu.

2.5.5. Inverse kinematics

Inverse kinematics is effectively the reverse of forward kinematics. That is,
given a desired x, y, z location and orientation for the robot’s end effector., we can
find the robot joint values required to make the robot’s end effector attain that

position.

2.5.6. Creating moving cables

A moving cable can be used (for example) to simulate the power supply cable
to a spot welding gun. As the robot is moved, one can see if the cable is likely to get
wrapped around the wrist or tool.

Before a moving cable is created, one must define two objects (one for each
end of the cable). Both these objects must have a co-ordinate frame defined on them.
To add a co-ordinate frame to an object, select the object and issue the command
Edit/Edit Object/Add Co-ordinate Frame. To edit an object's co-ordinate frame, the
command on the Edit/Edit Joint submenu is used.

When the two cable end objects (and their co-ordinate frames) have been
defined, one of the objects is selected and the command Create/Create Moving Cable
is issued. Then the other end object has to be selected and a name entered. The cross-

section of the cable is oval, so the dimensions that can be varied are:
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e cable width slot

e cable length slot

e cable length

The ends of the cable will be created normal to the z-axes of the co-ordinate

frames.

2.5.7. Procedure for Robot Modeling through the example of the Motoman

SK120

e Create the "flesh” of the robot.

e Rename all robot components to the appropriate names; for base use robot name,
for links use Link!, Link2, Link3, Link4, LinkS5, Linko.

e The next stage of the construction is to join the links into a robot structure. For
this operation co-ordinate frames must be placed at the joint centers and oriented
correctly. Attach all components to Linkl that are belonging to Linkl, the same
for Link2, Link3, and, Link6.

¢ Do not attach dependant joints.

e For the robot base use the robot's name (such as Motomansk 16, Comau, IRB6000,

..)

e Select the base of the robot and go to Create/Create Robot, Enter the number of
joint variables.

e Each joint must be in the correct position. To change their positions, go to
EdivEdit Joint/Move Axes, or EdivEdit Joint/Turn Axes.

e Edit the Kinematics of the robot: Edit/Edit Robot/Exact Kinematics, or if a similar

robot exists, copy Kinematics, EditEdit Robot/Copy Kinematics from another
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robot. If the robot has six degrees of freedom, normally one of two types of Exact
Kinematics is selected. When Joint2 and Joint3 rotate in same direction (e.g.
forward and down respectively), 6R(PUMA) will be used. When Joint2 and Joint3
rotate in opposite directions (e.g. forward and up respectively), 6R(GMFS700)

will be used (Figure2).

‘@ Select invkin template to attempt change to. B
e LRI FReeTrEY AT ‘ 72 ]

Figure 2 Invkin template

[f another robot model exists, that has a similar shape, and rotates in the same
directions, then the second model has to be imported into the current file. The
operating model should be moved to a different location, and the command switched
to File/Load Model and Add to Current Model. The second model has to be selected
from the directory that it is in. It will be imported into the current file at the (0,0,0)
location. By selecting the base of the robot and the CTRL button it will be possible to
operate that particular robot. Then the following commands should be applied:
selecting the operating robot; select Edit/Edit Robot/ Copy Kinematics from Another
Robot; confirm the copy; delete the imported robot, and move all of the joints into
place. Double check that the Exact Kinematics 1s correct.

e Match the template of the Exact Kinematics and make modifications to the robot

model if necessary.
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By choosing (for SK120) 6R(GMFS700), matrix ‘A’ is optaned (Figure3).

. é&unw' c —, .. o :
JBR(GMFS700) inverse kinematics require these A matrices:

Th1:dontcare D1:dontcare Afl:dontcare Al1: -90.00
Th2:dontcare D2:dontcare A2:dontcare Al2: 180.00
Th3:dontcare D3:dontcare A3:dontcare Al3: 90.00
Th4:dontcare D4:dontcare A4: 0.00 Al4: -90.00
ThS:dontcare D5: 0.00 A5 000 Al 90.00
Tht:dontcare D6:dontcare AbB:dontcare AlG:dontcare

.* A matrix constants

Y5
-
Slostein = I T e S i
] e e e Y

Figure 3 A matrix constants

Add the World Coordinate Frame to the robot, Edit/Edit Robot/Add Robot World
Frame. I order to move or rotate World Coordinate Frame to correct position, one
has to select the base of the robot and go to EditVEdit Joint, chose the option
World Coordinatc Frame, and go to Move/Turn Joint. The CP of the base must be
placed at the World Coordinate frame. To make this easier, one has to create the
base of the robot about that point (0,0,0).

In order to change the Tool Frame orientation for Joint6. enter: Modify: Tho, or

Two6, or AlG in matrix ‘A’, (Figured).
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World coordinate frame

Tool franj/

Figure 4 Tool and World coordinate frame

e Enter the robot limits for each joint, Edit/Edit Robot/Limits/Enter the given limits,
and make a modification if the Joint23 mechanical linkage is required.
e Edit the robot Velocity and Acceleration values, Edit/Edit Robot/Velocity and

acceleration. See (Figure 5).
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ﬂ Joint limits | x|

|
2 Min1: -180.00 i Max1: 180.00 Mxv1: 110.00 Mxal: 220.00 ;i
‘ Min2: -70.00 Max2: 70.00 Mxv2: 125.00 Mxa2. 250.00 i’
| Min3: -75.00 Max3: 75.00 Mxv3: 125.00 Mxa3: 250.00
{ Min4: -350.00 Max4. 350.00 Mxv4. 150.00 Mxad4. 300.00 :
: i
MinS: -130.00 Max$S: 130.00 MxvS: 150.00 MxaS: 300.00
| Min6: -355.00 Max6: 355.00 Mxv6: 250.00 Mxa6: 500.00 ‘
Mxlv: 400.00 Mxia: 400.00 Mn23: -115.00 Mx23: 35.00
Figure 5 Joint Limits
Minl, Min2, ..., Min6: is minimum rotation in degrees for Jointl, Join2, ... ,
Joint6
Max1, Max2, ... , Max6: is maximum rotation in degrees for Jointl. Join2, ...,
Joint6

Mxvl, Mxv2, ..

Mxal, Mxa2, ..

Join2, ..

... Joint6

., Joint6

Mxlv: is maximum linear trajectory velocity in mm/sec.

., Mxv6: is maximum velocity in degrees/sec. for Jointl, Join2,

. . . . R .
., Mxa6: is maximum acceleration in degrees/sec”. for Jointl,

Mxlv: is maximum linear trajectory acceleration in mm/sec’.
Create all dependant joints if they are required (i.e. if the robot has a
parallelogram structure on joints 2 and 3). Go to Create/Create Dependant Joint;

select O.K. to attach the part to the parent.
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e Checking of the working range information is sometimes outlined by particular
joint centre. Normally the center of joint5 is used. If nothing is specified, the end
of joint6 can be used. The Tool Center Point (TCP) has to be at the center of the
required joint. To move TCP to required joint center, command:
Action/Varniables/Assign System Variables/ SUTOOL. Then value for SUTOOL
has to be set.

If Z is the approach vector and the distance between jointS and joint6 is for
example +230mm, then change Pos to (0,0,230,0,0,0”). In order to create an accurate
range for the 2/3 limits, one of several processes may be used. Now the information of
the working range can be checked.

(a) If information on the work envelope, indicating any angles (either above or
below horizontal), is available, then those values are taken as positive and negative
2/3 limits.

(b) If all information on the work envelope, that indicates any point (x, y) along
the outer edge of the envelope is available, then the (x, y) coordinates are used as
(x, z) locations. The robot is moved to reach these points (through joint2 and joint3
only). Follow the x and z values in the Teach Pendant. Once a point is reached, the
values indicated for joint2 and joint3 should be recorded. If this point cannot be
reached because of limited joints2 and 3, one has temporarily to increase/decrease the
limit to reach the final point. After having obtained all given points, the largest +/-
values are taken and those 2/3 limits made (there is a back strap attached). If no back
strap is attached, the largest +/- values of joint3 are taken and made the 2/3 limits.
This is a trial and error process. Once the values for the 2/3 limits are obtained, they
are tumed ON through Robot Settings. Then the maximum and minimum values of

the 2/3 limits in Robot Limits are changed, to the new values. The Work Envelope is
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then compared to the given envelope. If the envelope is not correct, this process is
repeated as many times as needed until the correct values are obtained. In order to
move the TCP back to its correct position, the same steps are followed and Pos set
back to (0,0,0,0,0,0’").

For robot SKI120, the procedure is following: select CSG143; go to
Create/Create Dependant Joint; select link2 for parent. Select BKSTRP, and go to
Create/Create Dependant Joint; select CSG143 for parent. Go to EditEdit Joint, and
check type of joint Rotational/Translational, Direction of Axes and expression for
Dependant joint (for SK120 it will be AXISPOS (3) for both dependant joints).

Adding a Moving Cable into the model (if needed). The cable must come out
from one object and go to another (separate from the first object). The part from
which the cable comes out is selected by: Edit/ Edit Object/ Add coordinate Frame.

(a) This coordinate frame can be treated as a joint. Select it and move or turn it
accordingly. When turning the coordinate frame, the Z vector is the approach vector.
This means that the Z vector must be pointing in the direction that the cable must
follow.

(b) Select the part where the cable ends. Repeat steps (b) and (c). To keep twists
in the cable to a minimum, try to point the X and Y vectors in the same directions
between steps (b) and (c).

(c) Now the actual cable, can be created by going to Create/Create Moving Cable.

(d) The dimensions dialogue box appears, on the monitor. Modify the dimensions
to fit the chosen model.

(e) Attach selected moving cable to the robot (select the part where the cable

comes from and where it is ending).
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(f) The moving cable can go through all objects! To avoid this situation, move the
coordinate frames to a position where this will be avoided.
e Move the robot to see if all components are attached properly. Select the base of
the robot and go to EdiMove.
e Check all robot motions for possible collision. If a collision is detected, modify the
model so that the robot is not allowed to collide with itself.
e Create the Home position of the robot. EdiVEdit Robot/home Position
e Create the Zero position of the robot. EditVEdit Robot/Zero Position. Another
screen will appear, showing you the coordinates of the robot. Just select exit.
e When the robot model is complete, we must enter the Robot Settings, go to Edit/
Edit Robot Settings and fill up the form about the robot for Manufacturer. Robot 1.D..
Robot batch number, No. Auxiliary axes. Select box for Show kinematics, Shoulder

and elbow linked. Choose the approach vector. (See Figure 6).

Figure 6 Robot Settings
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Check the robot-working envelope, Options/Robot Ultilities/Envelope.
Workspace asks for the first and then for the second joint to vary. For joint2 and
joint3 the reachable envelope is on Figure7 (a), and for jointl and joint2 is on Figure7

(b). The working envelope is important to show the limits of operation of the robot

and also for safety considerations.

(b) /’{/%\t\;\\ \

Figure 7 Working Envelope

e There are circumstances where it is more useful to view a "slice" through the

working envelope. Such a "slice” view, known as a "Config Map". shows all possible
robot positions in the plane of interest. Put the CP at the world axes, go to
Options/Robot Utilities/Create Config Map. Use side view. The CP scrolls vertically

across the screen placing small crosses in the working envelope of robot (Figure 8).
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Figure 8 Configuration Map

When the robot is defined, this object will hold all the information Workspace

requires about the robot. This information includes:

An A-matrix defining the relationship between the robot’s joints.
The name of the inverse kinematics template used by the robot.
The number of joints.

The type of each joint (rotational or transiational).

Joint limits.

Joint maximum velocities.

Joint maximum accelerations.

Robot zero position.

Robot home position.

Robot structures in Workspace, are stored using the Denavit-Hartenberg (D-H)

convention. The D-H convention is a means cf assigning a co-ordinate system to each

link of an articulated chain. This results in a 4 x 4 homogeneous transformation
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matrix representing each link’s co-ordinate system at its joint, with respect to the
previous link’s co-ordinate system.

Through sequential transformations, performed by Workspace, the end
effector frame can be expressed in terms of the robot base co-ordinates.

The resulting ‘A’ matrices provide a precise mathematical means of storing

the structure of a robot at any position.
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3. ROBOT PROGRAMMING

3.1. On-line programming

On-line programming uses either the walk-through or the lead-though method.
In the walk-through method, the programmer moves the robot manually, while
information on position, velocity and other related variables is recorded by the robot’s
control system. This recorded motion can be played back whenever required. In the
lead-through method, the robot is moved to a number of desired positions by actuating
its drive mechanism, and these positions are recorded by using the teach pendant. The
last recorded position is compared with the previous position, and the appropriate
move command is automatically generated by the control system of the robot.

In on-line programming, the human programmer may be exposed to an
unpleasant atmosphere and the motions taught are, at best, at the programmer’s skill
level. This method seems to be suitable for pick-and-place or materials handling type
of tasks, but it becomes a time-consuming process for operations like arc welding or

spray painting, in which the entire path must be taught [Gong, 1998].

3.2. Off-line programming

In off-line programming, new robot programs can be prepared on a computer
and downloaded to a robot without interrupting its production. The major benefits of
off-line programming include: reduced downtime, giving greater capability to robots,
better understanding of process through simulation, and reduced risk of damage to
expensive equipment or of injury to operator. Using either textural languages or

graphics-based simulation and programming systems can do off-line programming.
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With increased use of industrial robots in a variety of production applications,
great attention has been devoted to investigation and development of off-line
programming of industrial robots. Advanced integrated off-line programming systems
include a CAD modeler, and, many of them also contain the components for a
geometric modeler and graphic animation system, an off-line programming language
and simulator, and an interface to the target robot system. In general, off-line
programming languages should have the following capabilities [Gong 1998]:

e User-definable tasks and subroutines

e User-definable end-effectors and robot arms

e Complex data structures and predefined state variables

e Coordinate transformation between frames

e Runtime definition of variables

e High level instructions for tactile sensors and vision

¢ Decision-making capabilities allowing the robot to recover from unexpected
events

e Use of CAD data

One of the major reasons for the success of robot off-line programming in
automotive production is the development of graphical simulation tools. Simulation
allows the cell or line to be visualized on the computer screen, particularly the
interactions between the moving robots and other production equipment as well as the
components, so that potential collisions and incorrect system layouts can be detected

[Rooks 1997].
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3.3. Programming languages of industrial robots

Presently, there are hundreds of commercially available robot languages. Most
of them are based on such classical programming languages as Pascal, C, Modula-2,
BASIC, and Assembler. Robot programming languages can be classified according to
the robot reference model, the type of control structure used for data, the type of
motion specification, the interfaces to external machines, and the peripherals used.
The following types of robot programming languages are available [Gong, 1998]:
e Point-to-point motion languages
¢ Basic motion languages at the Assembler level
e Non-structured high level programming languages
e Structured high level programming languages
e NC-type languages

e Task-oriented languages
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4. INDUSTRIAL APPLICATIONS FOR ASSEMBLY AND

WELDING

4.1. Assembly application

4.1.1. The application of robotics to assembly

The term assembly is defined here to mean the fitting together of two or more
discrete parts to form a new subassembly. The process usually consists of the
sequential addition of components to a base part or existing subassembly to create a
more complex subassembly or a complete product. As such, assembly operations
involve a considerable amount of handling and orienting of parts to mate them
together properly. The difference between assembly tasks and other material-handling
tasks is that value is added to the product through the assembly operation. Also, there
are often interactions that take place between two parts being assembled, between the
gripper and a part, and between other elements of the workcell. When parts are
fastened together (called parts joining), there are often additional interactions with the
medium used to join the components. All of these potential interactions can make
assembly operations considerably more complex compared to the simpler task of
moving a part from one location to another.

There are a variety of assembly processes used in industry today. These
include mechanical fastening operations (using screws, nuts, bolts, rivets, etc,).
welding, brazing, and bonding by adhesives. Some of these processes are more
adaptable to automatic assembly.

There is a growing interest in automated assembly because of the high manual

labor content of most assembly operations today. Automated assembly systems have
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traditionally been applied to high-volume products in which a large investment is
made in custom-engineering equipment, designed to perform the specific operations
required for those products. However, there is a large number of products,
representing a majority of the assembly operations performed in the U.S.A., where the
volume of production is low or medium. In these cases, it is not economically feasible
to make large investments in specialized assembly equipment Programmable and
flexible systems, including robotics, must be applied to these low-and medium-
volume assembly operations if automation is to be successfully achieved [Critchlow,

1985].

4.1.2. A Workspace model of on automotive assembly workcell

Mechanis X
Introduction

Mechanisms are non-robotic devices found in a workcell, such as turn tables,
conveyors, AGV’s, stamping presses, etc. These devices can be simulated and given
motion in Workspace. By simulating mechanisms, a more realistic simulation can be
created. Mechanisms are simple robots without the inverse kinematics, and therefore

share some of the same menus.

Strategy

e Create boxes, cylinders, to represent the fixture and finally fender on the top of

fixture (made of 400 boxes), (Figure 9).
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Figure 9 Fixture

Attach the named parts correctly is extremely important, because this is required
for correct motions. The attachment takes the form of a ‘parent-child”
relationship. Each child may only be attached to one parent. but a parent may have
many children. It is not permitted to attach a child to one of its ancestors. since
that would create a circular loop, and this would lead to ambiguities during object
movement etc. If a parent object is moved or tumed then all of its children are
moved or turned with it. If a child object is moved or turned, its parent object is
not. The attachment therefore is in one direction only.

Select the one leg for fixture base (named mechanism).

Select the Create/Create Mechanism menu.

Enter 2 for the number of Auxiliary Axis. One is for translation in X-direction,

and second for translation in Y-direction.
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There should be the name “mechanism” in the lower right-hand corner of the
screen and the pendant will show two axes. A mechanism has been created, but
the joints in the mechanism have yet to be defined.

Select the slider on a right side (named linkl), and select right, front, top leg
(named link2). Now define translation in X-direction. For the translation in Y
direction, select first right side (in left part of the fixture - named link3) and select
left, front, top leg (named link4).

Select linkl and go to the Create/Create Dependant Joint icon. Chose box45 as a
parent object. Select link2 and go to the Create/Create Dependant Joint icon.
Chose box73 as a parent object. Select link3 and go to the Create/Create
Dependant Joint icon. Chose box36 as a parent object. Select link4 and go to the
Create/Create Dependant Joint icon. Chose box88 as a parent object. Press enter
always after having selected the object.

A dependent joint is any joint that is not part of the serial robot structure linking
the base to linkl, linkl to link2, and so on. Dependent joints provide the user with
a great flexibility in defining joint movement of objects in the workcell that are
not parts of the main robot’s serial linkage. When a robot controls this movement.
it is just referred to as a dependent joint and is usually controlled via auxiliary
axes. If the structure needs to be a stand-alone system, it is called a mechanism.
Workspace treats a mechanism as a special kind of robot that only has auxiliary
axes.

Select link1 and go to Edit/Edit joint/Type of joint, and select translational. Repeat

the same for the other three joints.
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e The position of a dependent joint is controlled by an arithmetic expression. This
expression may be entered using the Expression of Dependent Joint. Select linkl
and go to EdivEdit joint/Expression of Dependent Joint.

e Forlinkl and link3 AXISPOS (1) has to typed because this represents translation
in the X-direction (Figure 9). For link2 and link4 AXISPOS (2) has to be typed
because they represent translation in the Y-direction.

o Go to Edit/Edit Robot/Robot Settings. For number of auxiliary Axes type 2. For

approach vector type Z, (Figure 10).

Robot Settings [ x]
Manutacturer l
Robot 1D. I

Approach Vector
[T Show kinematics C X-Axis
[T Shousder and ethow Bnked C Y.Axs
I~ Trple rol wnst @ Z.Axis
v o | X cace 7 e

Figure 10 No. of auxiliary axes

Robots in Workspace may have auxiliary axes associated with them. These
additional axes will appear on the pendant as “n (A)” (Figure 11), where n is the
number of the axes. Auxiliary axes may be used to control axes on the tool, a

positioner, slider or tumntable.
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Figure 11 Pendant for Fixture

e Seclect every link, one by one and orient the approach vector z in the desired
direction. Go to Edit/Edit joint/Turn axes.

Outcome

e A fully operational mechanism has been created. The fixture can be moved by
decreasing or increasing the value of jointl and joint3 together or of joint2 and
joint4 on the pendant menu.

e Joint limits can be set through the Edit/Edit Robot/Limits, (Figure 12).

m Joint limits [ X|

Min1: 15000 ] Maxi: 15000 | Mxvi: 20000 | Mxat: 400.00

Min2: -150.00 Max2: 150.00 Mxv2: 200.00 Mxa2: 400.00

Mxiv: 400.00 Mxia: 400.00

Figure 12 Joint limits for fixture

Minl, Min2: is minimum rotation (in degrees) for jointl and joint2
Max1, Max2: is maximum rotation (degrees) for jointl and joint2

Mxvl, Mxv2: is maximum velocity (degrees/second) of jointl and joint2
Mxal, Mxa2: is maximum acceleration (degrees/secondz)

Mxlv: maximum linear trajectory velocity (mm/second)

Mxla: maximum linear trajectory acceleration (mm/second-)
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Robot Comau-S2

Strategy

Create different solids to represent shape of robot.

Attach and name parts correctly: Linkl, Link2... Link6.

Select robot base and named robot.

Activate the Create Robot menu, and confirm 6 as the number of joints.

Once the axes are positioned graphically, it is usually best to make sure that the
‘A’-matrices numbers are exact. To show these numbers we can use EdivEdit

Robot/Exact kinematics command (Figure 13).

I A matrix constants X |

: Th1: 0.00 D1: 0.00 A1 150.00 Al: -80.00

Th2: 0.00 D2: -147.00 A2 650.00 Al2: 0.00

Th3: 0.00 D3: 0.00 A3: -100.00 Al3: 90.00

Th4: 0.00 D4:. 665.00 A4 0.00 Al4: -90.00

Ths: 0.00 D5: 0.00 A5 0.00 Al5: 90.00
The: 0.00 D6: 130.00 A6:. 0.00 Als: 0.00
Twi: 0.00

Figure 13 A matrix for robot Comau-S2

Check the Show kinematics box. The dimension of the robot model, i.e. the

distance and offsets between the joints of the robot, is shown in Figure 14.
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Figure 14 Dimensions of robot Comau-S

4.1.3. Off-line programming for the assembly operation using Karel 2 language

Introduction

One of Workspace’s main features is off-line programming. Workspace writes
all of its robot commands in the robot’s native language. All robot language
commands are found under the Action main menu. There is no need to post-process a

program written in Workspace; it can be downloaded directly to a robot controller.
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This capability also enables the user to upload and modify a program currently

running on a robot (mechanism). All the popular robot languages are available.

Strategy

Start from the Pendant menu. Go to leamm TP (teach points) on a Teach pendant,
save teach points file as B1#.kl

Go to Simulate/Start Track.

Give a name to the track: B3.kl

Select Action/Begin/Robot Move Commands/Move Aux. Now chose Aux
positions for a fixture, that was saved in B1# ki file.

When the track is finished, close the Robot Move Commands menu and select
End to end the track.

After selecting the Simulation/Edit Teachpoints icon, the teachpoint file should
appear in the Editing screen.

Selecting Edit Track icon, the Karel2 program should appear in the Editing screen.

Workspace is also capable of creating AVI files. These animation files can be

replayed using the media player supplied with Microsoft Window, or using

Workspace’s internal Media Player. AVI files are slow to create, but will play back in

real time and can be resized.

Go to Simulate/Replay track and Create AVI. Choose B2.kl for the track file,
B1#.kl for teach point file, and B2.AVI, for AVI file.
The last step is to go to Simulate/Media Player. The fixture should move through

the teachpoints in order, then go back to HOME POSITION.
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4.1.4. Running multiple programs simultaneously for robot and mechanism

Introduction

Workspace has the ability to run more then one program simultaneously. This
is useful when there is more then one robot or device in a workcell. In this project we
have robot and fixture.

The main program (track for robot) is referred to as the “Foreground Track™,

and all other programs (track for fixture) are referred to as “Background Tracks”

(Figurel 5).

Smulate Dptions ] [ x|

Tiackfle  |C\PROGRAM FILES\WORKSPACE 4\TRK\AD1 KL Browse I

Teach point fie IC\F’FIUGRAM FILES\WURKSPACE 4\TRK\AD1R K Browse I

AVile  |C\PROGRAM FILES\WORKSPACE 4\AVINAD T AVI Browse l
Background Tracks [} -~~~ -~ - ]

C \FROGRAM FILES\WORKSPALE 4\TRK\B2KL Add I
Clex
Delete J

[T Reatmewtervad [~ Equalintervals

’ L Frame Interval |05
Robot [ROBGT =l Intep. Interval  [05

Language KAREL2 Select I

EndCondtion  [FALSE

Stack Size 8192

_-/ oK XCmodl?uebl

Figure 15 Simulation Options

There is no limit to the number of background tracks in a simulation. All of
the programs do not have to be written in the same language. Communication
between programs is accomplished through signals.

The two main types of signals are “Digital Outs” (DOUT) and “Digital Ins”
(DIN). Before a program can use a DIN, the signal must be defined through a

Workspace command called SIGNALDEF.
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Strategy

Go to File/Load model, ADFINPROJECTI.mod. Then again go to File/Load
model and add to current model; choose BUBA3.mod. Now fixture and robot are
in one file.

This step is very important to attach the mechanism to the robot. The first idea for
attaching is to attach the mechanism base to the robot base, but it will not give a
solution for this problem. The second idea is to attach links parents to the robot
base: Linkl is attached to box45 and box45 will be put together with the robot
base; Link2 is attached to box73 and box73 will be put together with the robot
base; Link3 is attached to box36 and box36 will be put together with the robot

base; Link4 is attached to box88 and box88 will be put together with the robot

base; (Figure 16).

Figure 16 Workcell model for assembly operation
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e Now it is necessary to “connect” the device to the simulated robot controller.
There are already two auxiliary axes, and when the Pendant menu is pulled down,
additional axes are displayed. For a six axes robot, this axis will appear as “7(A)”
and “8(A)". Using EdivEdit joint/Expression for dependent joint, for linkl and
link3 one has to type AXISPOS (7), because they represent translation in X-
direction; for link2 and link4 one has to type AXISPOS (8), because they
represent translation in Y-direction. Now the joint depends upon the values “7(A)”
and “8(A)” on the Pendant menu. Finally we can show joint limits for the

mechanism and robot are brought together (Figure 17).

I Joint limits [ X]

i Min1:-15200 i] Max1: 15200 | Mxvi: 20000 | Mxat: 400.00

Min2: -195.00 Max2: 1500 Mxv2: 200.00 Mxa2: 400.00

Min3: -35.00 Max3: 245.00 Mxv3: 200.00 Mxa3. 400.00

Mind: -180.00 Max4: 180.00 Mxv4: 200.00 Mxa4: 400.00

MinS: -125.00 MaxS: 125.00 MxvS: 200.00 MxaS: 400.00

MinG: -210.00 Max6: 210.00 Mxv6: 200.00 Mxab: 400.00

Min?: -150.00 Max?7: 150.00 Mxv7. 200.00 Mxa?. 400.00

Ming: -150.00 Max8: 150.00 Mxv8: 200,00 '| Mxa8: 400.00

Mxiv: 400.00 Mxia: 400.00

Figure 17 Joint limits for robot and mechanism

There are already two separate programs for robot (AD2.kl) and mechanism
(B3.kl) tracks. Now it is necessary create a signal from the robot to the mechanism.

Thus, the mechanism starts moving after the robot stops (Figures 18a and 18b).
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PROGRAM AD?2 (for robot)
-- ' LANGUAGE KAREL 2
-- ' MEMORY 8192
-- ' ROBOT
-- TEACHPOINT DECLARATIONS
VAR
TPI1 : POSITION
TP2 : POSITION
TP3 : POSITION
TP4 : POSITION
TP5 : POSITION
TP6 : POSITION
TP7 : POSITION
TPS8 : POSITION
TP9 : POSITION
AUXI1 : AUXPOS
AUX2 : AUXPOS
AUX3 : AUXPOS
BEGIN
SUSEMAXACCEL=TRUE
%INCLUDE ADI1#
MOVE TO TP2
MOVE TO TP3
MOVE TO TP4
MOVE TO TP5
CLOSE HAND 1
-- ' GRASPOBJ 'CSG18’
MOVE TO TP6
MOVE TO TP7
MOVE TO TPS
OPEN HAND 1
MOVE TO TP9
MOVE TO SHOME:SUTOOL
--'Attachobject.1.’CSG18''CYLINDERS('

DOUT([1]=ON
—~!SIGNALDEF DIN{2], TRK\B3.KL,2
WAIT FOR DIN[2]=ON

MOVE TO TP7

MOVE TO TP8

-- ! Detachobject.1,'CSG18'

CLOSE HAND 1

-- ' GRASPOBJ 'CSG18'

MOVE TO TP7

MOVE TO TP3

MOVE TO TP4

MOVE TO TP5

OPEN HAND 1

MOVE TO TP4

MOVE TO TP3

MOVE TO TP2

MOVE TO SHOME:SUTOOL
END AD2

Figure 18(a) Robot program

52



PROGRAM B3(for mechanism)

-- ' LANGUAGE KAREL 2
-- ! MEMORY 8192

-- ' ROBOT

-- TEACHPOINT DECLARATIONS

VAR

TP1 : POSITION

TP2 : POSITION

TP3 : POSITION

TP4 : POSITION

TPS : POSITION

TP6 : POSITION

TP7 : POSITION

TPS : POSITION

TP9 : POSITION

AUXI : AUXPOS
AUX2 : AUXPOS
AUX3 : AUXPOS
BEGIN

—!SIGNALDEF DIN[1|,TRK\AD2.KL,1
WAIT FOR DIN[1]=ON

SUSEMAXACCEL=TRUE

%INCLUDE ADI1#

WITH SMOTYPE=JOINT
MOVE AUX TO AUX2

WITH SMOTYPE=JOINT
MOVE AUX TO AUX2

WITH SMOTYPE=JOINT
MOVE AUX TO AUX3

WITH SMOTYPE=JOINT
MOVE AUX TO AUXI

DOUT|2]=ON

ENDB3

Figure 18(b) Mechanism pregram
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4.2. Welding application

4.2.1. The application of robotics to spot welding

Spot welding was one of the first applications of robots because the required
accuracy and speed were available in early hydraulic robots, and the robot’s reach and
load-carrying capacity were far superior to those of a human operator. In spot
welding, two pieces of conductive metal are joined together by passing a large electric
current through them. This high current heats the contact point sufficiently to cause
local melting so that molten metal is formed momentarily. The current is on for a
short time only (pulsed), so nat the molten metal quickly solidifies, forming a strong
joint.

Owerheating occurs at the joint because of the resistance of the metal to the
passage of current through it. This is often called the I&R heating effect.

[-current (amperes)

R-resistance (ohms)

The robot end effector is the welding gun, which has powerful pincer
electrodes to force the metal together and provide good electrical contact during the
welding operation. Power for forcing the electrodes together is usually pneumatic or
hydraulic from a separate power source.

Computer-controlled sequencing of the robot and the spot-welding operation
is used today to improve the quality of the welds by accurately controliing the
duration and intensity of the current pulses used.

Fabrication of automobile bodies is the most common applications of spot
welding. Over 1200 spot-welding robots are used in the automobile application at

present time.
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The weight of the spot-welding gun and cable system was reduced by about a
half, so that smaller robots could be used and the improved accuracy of electric drives
could be obtained [Critchlow, 1985].

A successful spot-weld is one that is normal to both surfaces - clearly a
geometric problem. Many cells are still designed by the ‘chalk’ method where a man
with a piece of chalk marks crosses on the part where the spot-weld is required before
a robot programmer uses a teach pendant to teach each spot weld point and its
approach and depart points.

Workspace has commands for orienting geometry points (which are like robot
teachpoints except they are stored as part of the geometric model of the cell) normal
to a surface. The points can be turmed automatically about their approach vectors until
they become achievable - all the designer needs to do is to specify a point on the
surface and the distance from the surface and Workspace does the rest. The best
position for the robot relative to the part can also be automatically chosen to make all
the points achievable.

The problem becomes more complex when several robots are working in close
proximity within each other’s working envelope (the volume enclosing all the points
that the robot can physically reach). The task becomes a question of how can all the
spot-welds be reached in the shortest possible time, thereby ensuring that the cell does
not create a bottleneck on the production line. Collisions between objects are
highlighted in red so that they are clearly visible within the simulation and can be
avoided on the real robot.

Workspace stores geometry points linked together in a path. Sections of each
robot path can be cut and pasted between robots to try the effect of allocating different

spot-welds to different robots. A Cycle time can be reported either for a given
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sequence of movements or for the overall cycle. Statistics for the effect on throughput
of different cycle arrangements can be viewed graphically using a Gantt (bar) chart
and the resulting graph printed out together with a report validating the cycle time.
The effect of machine downtime and repair time can also be introduced using
customizable probability distributions and the effect of random fluctuations in

production over a year investigated [Owens, 1994].

4.2.2. Problem description of Industrial application for assembly and welding

Figure 19 Parts for Front support member engine/ transaxle mount

Front support member engine/transaxie mount has nine different parts. They
are all made of sheet metal (Figure 19).
The problem is to design an automated cell that performs the welding and

assembly operations, considering the requirements from manufacturer.
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The final product is shown on (Figure 20).

Figure 20 Front support member engine/ transaxle mount

The workcell under consideration is a collection of industrial equipment that is
spatially arranged for spot welding operations. It usually consists of a robot or several
robots with welding guns, positioner or conveyor, a workpiece, welding fixture.
control and sensing system.

Tehnological operation is described as a welding gun motion along given
points (spot welding) as well as motions between them.

A general formulation of the problem can be stated as follows: for a given set
of welding dots along with a complete model of the robot world, find a robot motion
allowing to reach the goal without any collisions between the robot, welding tool and
the objects belonging to the robot workspace.

The main difficulty in solving the general problem lies in its high algorithmic
complexity. So a more “practical” way is to consider several instances of the problem
that can be solved using specific approaches. As a result, the problem is decomposed

into the following tasks: to determine the number of robots in a workcell and their
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relative positions, to choose workpiece position, to select welding guns. to distribute

welding targets between robots, and to find the corresponding robot path.

4.2.3. Proposed scenario for workcell layout design

Having in mind the previously given constrains and requirements, it was

decided to choose in this work the following equipment in the simulation (Figure 21).

7045.6p33

==

+046-3296

Figure 21 Proposed scenario for workcell layvout design

e ABB IRB 6000 robot for spot-welding. This robot is required by the customer.

e Welding gun from ‘Centerline’ model no: CLTG-9535-12 (for spot welding). The
gun is appropriate for this application, because it can reach all points on the parts.

e Rotary table from ‘Ferguson’ model: HPM 60”. The size of the table is suitable
for size of the fixture, which is used for positioning, parts. The length of part is

over 1m, and on the rotary table must be enough space for positioning two parts at
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the same time.
e Part local storage area must be big enough for one pallet of prefinished parts and
one pallet of finished parts.
e (Calculation for cell cost: Robot =$150,000
Rotary Table =$30,000
Fixture =§5.000
Welding Gun =$20,000
Pallets for prefinished parts =$5,000
Pallets for finished parts =$5,000

Operators salary = $70,000

Sum = $285,000 < $600,000
Prices and costs are obtained from manufacturer (ABB, Ferguson, Centerline,
and Robot Simulations Ltd.)
e (Calculation for number of parts in the production:

Cycle time = 149 sec. per part

Pieces per hour:

@ 100% — (3600sec) / (149sec) =24 piecesperhour..............o..oil. (1)
@ 70% —»[(3600sec) / (149sec)] x 0.7 =17 pieces perhour............................ (2)

Pieces per shift;

@ 100% — (8 hours) X (24 pieces) = 192 pieces pershift ............................ (3)
@ 70% — (8 hours) X (17 pieces)= 136 pieces pershift............................... (4)

Pieces per year:

5 days X 8 hours X 17 pieces per shift X 48 weeks = 32,640 pieces per year........(5)
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To satisfy yearly requirements of 40,000 pieces, production has to run 10 hours shift:
S days X 10 hours X 17 pieces per shift X 48 weeks = 40,800 pieces per year...(6)
e The size of the cell matches in required dimensions of 24 X 30sq.ft
(8000mm X 10000mm), (Figure 22).

The next problem is how to handle and position the parts that the robot will
operate on. For positioning the part we recommend location pins on a rotary table

(Figure 22). Operator will handle the parts from local storage to the rotary table.

Figure 22 Pins for positioning parts

4.2.4. Operation sequences

The workcell includes a robot [RB6000 for spot welding, welding gun,
operator for martial handling and assembly, rotary table with fixture for positioning
parts, local storage for parts, and pallets for finished parts.

For this workcell the operation sequence will be:
e The operator will handle parts from local storage and positioned on rotary table
e The table will rotate for 180 °

e The robot will weld parts
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e The table will rotate for 180 °

e The operator will put three plates on the top of other parts (it is still positioned
with same pins)

e The table will rotate for 180 °

e The robot will weld that three plates

e The table will rotate for 180 °

e The operator will take finished part and put on pallet

4.2.5. Defining robot positions on the modeling parts

The easiest and most powerful way of defining robot positions is to use the
geometry of the objects. Points may be defined normal to a surface so that the position
on the surface and the distance form the surface to the point is set by the user, using
the Create/Create GPs on Surface command. As the point is moved over the surface it
is always maintained normal to the surface. This is of use in applications such as spot-
welding. Figure 23 shows geometry points on the modeling part that the robot will

follow in the track program.

oint
-~ v e A::: p
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Figure 23 Geometric Points (GP) points on surface
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One can then see immediately on the screen if the GPs are reachable. They
will be green if they are reachable, or red if they are not reachable.
By running a track one can see how a robot follows GP points on the surface.

Figure 24 represents wireframe and shade view of robot’s following GP points.

Figure 24 Robot following GP points

4.2.6. Solution for storing parts

Local storage is used for storing parts in a workcell. In this simulation the
representation of local storage is very simple, but in real production it is supposed to
be big enough for one shift (eight hours). The first storage is for row material and the
second storage is for finished parts (Figure 25). The size of local storage must be
cnough for 136 X 9 = 1224 prefinished parts. The storage for finished parts must be

organized for 136 finished parts.
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Local storage for

Local storage for prefinished parts

finished parts

Figure 25 Local storage

4.2.7. Envelope plotting

Workspace has a capability to plot the envelopes of all the robots in the

workcell in three dimensions, as shown on Figure 26.

Figure 26 Envelope plotting
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This enables to check which areas of the workspace may be deemed safe for a
user to work in (i.e. outside that volume which the robot is physically capable to
reach), or to check that there is no overlap between the envelopes of two robots or a
robot and other moving equipment. This option is important for improved planning of
the installation for safety.

To get the working envelope, use the Options/Robot Utilities/Envelope
command. Enter first joint variable to vary 1, and second joint variable to vary 2, and
the robot will achieve its maximum reach.

Display the Envelope for the robot, varying joints I and 2, and check if the
whole equipment lies within that envelope, viewing from the top of the workcell. This

will provide a quick first layout design of the workcell (Figure 27).

Figure 27 Layout design of workcell

A more sophisticated approach to robot and workcell layout design is to use
the ‘Config Map’. This is more detailed then an Envelope, because it shows only

positions that the robot can reach with a particular orientation. To see all the positions
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that robot can reach with the tool, in the z-elevation corresponding to the top of the
workpiece, one has to do following steps:
e Point the robot in the wanted orientation.
e Snap the CP onto the GP on the top of the workpiece, to define the z-elevation of
the configuration map.
e Change to top view and zoom out to define that the a configuration map is seen.
e To activate config map go to Option/Robot Utilities/Create Config Map.
Now, it is possible to see the area where the robot can reach the workpiece and
one may decide to make some small adjustments in the position of the workpiece or

turntable (Figure 28).

Figure 28 Configuration Map
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4.2.8. Creating an animation

An animation is created when track files are “replayed”. The track files are
programs written in the appropriate language for robots, mechanisms, operators, or
any device in workcell. In this simulation it is Karel2 language. Before running the
simulation one has to go to the Simulate/Simulate Options submenu to select
language, the teach point file, and the track files. ROBOT .kl is the foreground track,
the AZUR .kl and TABLE .kl are background tracks, and ANA-ALLE#. ki is the teach
point file. Also one has to select the type of animation file, in this case it is an AVI
file. The Frame Interval (the number of frames calculated per second of simulation
time) is 0.5s. If one wants to move the simulation images at the same time as ‘“‘real
life”, then he should select Real time interval check box. Workspace tries to

synchronize the cycle time with PC’s clock time (Figure 29).

Simulate Upltions | x|

Track fie IC;\MAGISTRATURA\CHANGE 4\ROBAOT KL

. Teach pont fie IC\MAGlSTRATURA\CHANGE 4\ANAALLARKL Browse l

Animationfle  [C\MAGISTRATURA\Change 4\NONAME AVI Browse |

-Background Tracks (2} — e e
C:\MAGISTRATURA\CHANGE 4\TABLE KL i Add i
C:\MAGISTRATURA\CHANGE 4\AZUR KL e Clear

Deiete |

- Animation Format —----———="~ L T e

G A C FLC !; [ Realtmeinterval ¥ Equalintervals

e ., Framelnteval 05
Stack Sce  [01%2 .

ledorp drdera s | .

Robot |IRBSOGJ _'_I

Language KAREL 2 Select

, EndCondion  [FALSE

./oxl xcml ?ﬂebl

Figure 29 Simulate Options
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When all file names are set, one can replay the track and create an AV file.

Go to Simulate/Replay Track and Create Animation (Figure 30).

Figure 30 Spot-welding application workcell
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5. DETECTION OF POTENTIAL COLLISIONS AND

OPTIMIZING SYSTEM LAYOUTS IN WORKSPACE

S.1. Throughput statistics

The statistics module in Workspace allows making accurate estimates of a
process cycle time. Effects such as run-in time, down-time, repair-time and machine
storage buffers may be included in the simulated production run. The results are
presented in text files containing statistics on each activity generated and Gannt charts
of time activity plotted. Those results are important in identifying unnecessary delays
in the process and adapting the model and/or track files accordingly [User Guide

Manual, Workspace4, 1997].

5.2. Preparing a statistics run

Workspace has three commands that should be inserted at appropriate places
in the track files. They are all available on the Action/WS Miscellaneous submenu, or
can be manually inserted to the existing tracks. Those commands are:
“LABELUSAGE", “LABELEVENT", and “ENDOFJOB™.

“LABELUSAGE ™ tells Workspace which statistics text file relates to which
robot or mechanism. The string after this command is the robot or mechanism’s name,
and the integer (2, 3, 4, etc.) represents the text file. The declarations need only be
made once, usually at the start of the main track. For example:

--! LABELUSAGE MAN, 2

--' LABELUSAGE ROBOT, 3

--! LABELUSAGE TABLE, 4
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The values 0 or 1 are reserved in Workspace for wait time and breakdown
respectively.

“LABELEVENT?™, inserts a line in one of the statistics text files. The string is
the text to be written and the integer indicates in which text file the line will be placed
into, as define by “LABELUSAGE ™. For example:

--! LABELEVENT 'Go pick up part from pallet’, 2

--! LABELEVENT 'Go to weld parts’, 3

--! LABELEVENT 'Turn table for 180 degrees’, 4

--! LABELEVENT '"Wait for man to pick up parts from pallet’, O

“ENDOFJOB” in a track tells Workspace that the track has completed one
cycle of the process. The command will therefore appear in several. This command
has no effect if the process is still in its run-in time. For example:

--' ENDOFJOB

Workspace replays a track (or set of tracks) over the run-in period as specified
on the throughput menu. When an “ENDOFJOB” command is encountered in the
track for the first time after the run-in time then Workspace starts a counter of
counting the number of jobs. Each subsequent time the job is encountered, the count
is incremented. At the end of the run time as specified on the throughput menu a
report is generated in a text file whose name can be specified by the user. This report
contains information on the number of jobs, the run-in time, the run time, and the
number of jobs per hour.

The downtime settings on the throughput menu are also written into the file.
These settings can be used to cause tracks to simulate a breakdown by entering a wait
state at random, in accordance with the efficiency of the track, as specified on the

throughput menu.
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The ENDOFJOB command is also used in recording usage for one cycle (from
the end of one job to the end of the next job). The usage is recorded as timings in text
files, which have the same name as the track files, and which are stored in the track
directory. These timings are created by each LABELEVENT command encountered
in the track. They include a step number, a description of the action as defined by the
LABELEVENT command, the duration of the action, the type of usage as referenced
by a usage number in the LABELEVENT command. This number refers to a usage
string defined by the LABELUSAGE command. LABELUSAGE commands should
always be at the beginning of one of the tracks as their only purpose is to make a
LABELEVENT usage number refer to a usage string. This allows putting a useful
comment when a particular part of the cycle is encountered. Once a replay of the
tracks has been made then a bar graph showing each track as a horizontal bar
representing time passing along the x-axis is also produced. Each bar changes color as
the usage changes for that track. A table is displayed above the graph, showing the

percentage of each type of usage over the track.

5.3. Analyses of workcell using Workspace

To analyze the workcell we should insert LABELUSAGE, LABELVENT and
ENDOFJOB commands into the tracks. This will then automatically generate a report
at the end of the simulation to show how the cycle time breaks down into individual
portions. Then we can view the behaviour of the cell when the robot or turntable, men

break down by turning on usedowntime.
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5.3.1. Throughput options

Before a workcell — analyzing track is initiated, the following options need to
be set up using the Options/Throughput options dialogue box.

e Run-in time — this is a value in hours for the time taken for the process to reach its
normal production rate. The default value is 0. Set the time for which a track is
allowed to run before the "ENDOFJOB” commands are used in recording an event
cycle or the number of jobs. It is necessary for most simulations to have a brief
run-in time before the timing of the cycle of events settles into a repeatable pattern.

e Run duration - this is a value in hours for the time that the process runs for. The
default value 1s 0.025 (90 sec). Set the time for which the number of jobs is
recorded. The number of jobs is incremented each time an “ENDOFJOB”
command is encountered in a track during this period.

e Use down-time — choose whether to simulate process down-time (due to failures).
The default value is false. When it is off Efficiency, Mean time to repair, and
Mean time before failure have no effect on the track. When it is on, periods of
downtime are simulated in each track at random. depending on the probabilities
calculated using the Mean time before failure. The length of the downtime is based
on the Mean time to repair.

e Track of interest — select which of the current tracks the statistical analysis will be
concentrated on.

e Main time to repair - this is a value (in minutes) for the time that it takes for failure
to be repaired and the process to restart. The mean time taken to repair a broken
track (which may be controlling a robot or mechanism or may simply be moving

objects using the Moveobject and Turnobject commands).
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e Time to repair Weibull shape — this value defines the spread of the “time to repair
PD”. Display time to repair PD is the “time to repair the Probability Density
Function™. It allows a positive real number, which represents the desired shape of
the probability distribution for the time to repair, to be entered. This probability
distribution governs the random generation of downtimes for the track of interest.

e Main time before failure - this is a value (in minutes) for the time before a failure
occurs.

e Main time before Weibull shape - this value defines the spread of the “time before
failure PD”. Display time before failure PD is the “time before failure Probability

Density Function™ (Figure 31).

T hroughput Settings | X|

~Run Options .
Runrin time (hours) [0
Run duration (hours) 0025 ; % Concel
[ Use downtime ? Hep
Track of interest. [ROBUT.KL ;_I '

Mean time to repair {mins) |0.1
Time to repair Weibull Shape |2
Mean time before fadure (mins) [i

Time before faiure Weibul Shape B

Figure 31 Throughput Settings

If down time is not used in simulation, results will be just cycle time. In case

that down time is considered, the results will be more complex.
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5.3.2. Simple analysis of a workcell without using down-time

In simple analysis of a workcell, down-time is not included. The result will be
just cycle time. For run-in-time 0.5 hours have been chosen, and for run duration 8

hours (Figure 32).

Thioughput Settings E3 :

~Run Options i

Run-in time (hours) [os

Run duration {hours) ﬁ T % Concel
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Track of interest. [ROBOT KL =]

Mean time to repair (mins}) IO'1
Time to repair Weibull Shape B
Mean time before faiure (mins) f

Time before faiure Weibul Shape B

Figure 32 Throughput Settings for simple simulation

“Generated on 3/2/1999(d/m/y) at 17:41:i9(h/m/s) by WORKSPACE(c)

Robot Simulations Ltd.”

Run-in time (hours) 0.5
Run duration (hours) 8
Use downtime Off
Number of jobs during run 96
Number of jobs per hour 12
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A comparison of these calculations and those of Workspace shows that the
restates are the same. For one hour, the number of pieces is 24 (see equation 1).
Workspace has accomplished 12.375 jobs, but in every job there are two finished
parts. The number of jobs during run is 96, which means 192 parts for 8 hours.

“Generated on 3/2/1999(d/m/y) at 17:41:19(h/m/s) by WORKSPACE(c)

Robot Simulations Ltd.” : AZUR.KL

Step Description [ime(sec) Usage
1 'Go to pick up part from pallet’ 24.69 MAN
2 'Wait for table to rotate’ 3.725 WAIT
3 'Go pick up part from pallet’ 24.69 MAN
4 'Wait for table to rotate’ 3.725 WAIT
5 'Go pick up part from pallet' 10.375 MAN
6 'Wait for table to rotate’ 9.6393 WAIT
7 'Go pick up part from pallet’ 10.375 MAN
8 'Wait for table to rotate' 50.8005 WAIT
9 'Turn a part' 3.3 MAN

10 '"Wait for robot to finish welding' 55.3474  WAIT
Il 'Tum a part’ 33 MAN
12 'Wait for robot to finish welding' 40.0582  WAIT
13 'Put a part in a basket' 6.22 MAN
14 'Wait for robot to finish welding' 37.1791 WAIT
15 'Put a part in a basket' 9.945 MAN

CYCLE 293.3695
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Those results describe the operation sequences and the time for each
sequence. The final cycle time for the operator is 293.3695 seconds. Workspace will
give the results for the throughput analysis of the turntable and the robot.

“Generated on 3/2/1999(d/m/y) at 17:41:19(h/m/s) by WORKSPACE(c)

Robot Simulations Ltd™: ROBOT.KL

Step Descripti i U

1 'Wait for table to stop’ 32.415 WAIT

2  'Go to weld parts' 15.1331 ROBOT
3 'Move robot to home position' 1.1643 ROBOT
4 'Wait for table to stop’ 12.1176 WAIT

5 'Go to weld parts’ 15.1267 ROBOT
6 'Move robot to home position' 1.1626 ROBOT
7 'Wait for table to stop' 3.725 WAIT

8 'Go to weld parts' 56.2378 ROBOT
9 'Move robot to home position’ 1.2127 ROBOT
10 'Wait for table to stop’ 3.725 WAIT

1T 'Go to weld parts’ 53.7138 ROBOT
12 'Move robot to home position’ 1.2086 ROBOT
13 '"Watit for table to stop' 3.725 WAIT
14 'Go to weld parts' 38.4055 ROBOT
15 'Move robot to home position’ 1.2276 ROBOT
16 'Wait for table to stop’ 3.725 WAIT

17 'Go to weld parts' 38.4399 ROBOT
18 'Move robot to home position’ 1.2342 ROBOT
19 '"Wait for table to stop’ 13.67 WAIT
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CYCLE 297.3695

The cycle time for the robot is 297.3695 seconds.

“Generated on 3/2/1999(d/m/y) at 17:41:19(h/m/s) by WORKSPACE(c)

Robot Simulations Ltd™: TABLE.KL

Step Description Time(sec) Usage
1 'Wait for man to pick up parts from pallet’ 28.69 WAIT
2 'Turn table for 180 degrees’ 3.725 TABLE
3 'Wait for a part' 24.69 WAIT
4  'Turn table for 180 degrees' 3.725 TABLE
5 'Wait for a part’ 16.2893 WAIT
6 'Turn table for 180 degrees’ 3.725 TABLE
7 'Watt for a part' 57.4505 WAIT

8 'Turn table for 180 degrees' 3.725 TABLE
9 'Wait for a part’ 549224 WAIT
10 'Tumn table for 180 degrees' 3.725 TABLE
11 'Wait a for part' 39.6332 WAIT
12 'Turn table for 180 degrees' 3.725 TABLE
13 'Wait for a part’ 39.6741 WAIT

14 'Turn table for 180 degrees' 3.725 TABLE
15 'Wait for a part' 6.22 WAIT

16 'Tum table for 180 degrees' 3.725 TABLE

17 'Wait for man to pick up parts from pallet’ 0

CYCLE 297.3695
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The cycle time for the table is 297.3695 seconds.

Once a replay of the tracks has been made, a bar graph showing each track as
a horizontal bar representing time passing along the x-axis is produced. Each bar has a
different color for each track. Yellow represents WAIT, black represents
DOWNTIME, red is for Operator’s track, blue is for Robot’s track, and green is for
Table’s track. A table is displayed above the graph, showing the percentage of each
type of usage over the track. Bottleneck is the Robot track (Figure 33). Analyzing the
bar graph and Workspace’s calculation for the Operator, Robot and the Table, it can
be concluded that the numbers match on the graph. The Robot and the Table are
waiting about 25 seconds while the operator is working. The Robot is still waiting,
and the Operator stops until the Table rotates for 180 degrees. When the Table stops,
the Robot will start to weld, and the Operator will load parts. In this graph we can see
that the Table can rotate only when the Robot and the Operator are not working. The
Robot and the Operator can work at the same time.

The Robot will wait 23.55%, the Operator will wait for 68.34%, and the Table

will wait for 89.84%.
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Figure 33 Bar graph showing each track as a horizontal bar representing time passing along the
x-axis for simple simulation
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5.3.3. Complex analysis of workcell considering down-time

To run a complex simulation one has to include downtime, mean time before
failure, time before failure Weibull Shape, mean time to repair, and time to repair
Weibull Shape for each device.

Time before failure is the key variable in reliability analysis. A variety of
probability distributions characterizes how long an entity will survive. The most
flexible distribution that is quite useful in reliability analysis is the Weibull
distribution. Failure time T is a continuous random variable with probability density
function f (x) [Lapin, 1997]. Throughput statistic in Workspace is based on the
Weibull distribution.

One of the most attractive features of robots is their reliability-98% up-time is
normal. Nevertheless, those 2% down-time may be critical to the company’s
production and could make the difference between profit and loss.

Although any component in a robotic system could wear out or be defective,
certain components are more susceptible than others to such problems. The power
system is the most important factor that affects maintenance. Other components that
often require attention are the mechanical parts, particularly moving parts. Failures
may be caused by corrosion, lack of lubrication, or leaks in seals. Wrists are
particularly subject to wear because of their extensive movement. End-effector, such
as grippers, spray paint heads, and welding tips are likewise sources of potential
problems. If spot weld gun tips are not periodically dressed, they will not produce
high-strength welds and will stick to the workpiece.

The controllers may be another source of breakdown. Electronic components

could malfunction because of power surges, excessive heat, microwaves, or vibration.
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In addition, contaminants in the atmosphere, including water vapor, could have
adverse effects [Nof, 1997].

Regarding different effects, which can cause the break down of the workcell,
reference will be made to the system designed in this work. Regular maintenance,
negligible influence of software and end-effector interface are assumed. Referring to
the research of Smith, [1992], mean time to failure for the robot and turntable is 3,000
hours. Concerning the operator, it is assumed that replacement is available.

The procedures for troubleshooting and diagnosing failures in robotics system
are generally carefully outlined in the service manual. An effective manual will be
carefully formatted with a table of contents that allows the technician to quickly
locate the section related to the problem at hand. To help the technician to solve
troubleshooting robotic problems quickly an expert system can be used. The
advantage of the expert system is that it puts a specialized knowledge base at the
disposal of an employee on the plant floor. The employee brings a portabie computer
up to the malfunctioning robot, switches on the computer screen and follows a simple
step-by-step artificial intelligence reasoning program that leads to the trouble and
explains how to fix it. Referring to previous research [Pasi, 1996], mean time to repair
for the robot and turntable is 2 hours (Figure 34).

[n the present experiments the simulation run for 2000 hours. Replay Track
Blind command was used in order to check that tracks run correctly, and to calculate
cycle time, number of parts per hour and number of parts during the simulation. This
command will not calculate pictures or store animations for the tracks and is,

therefore, faster.

80



Theoughput etting: | x|

Run Gptions : R -
Runvin time fhouss] lo ”/ onJ,

e ST o B I
~ Use downtime ? Heb I

Track of interest [AZUR KL 3]

Mean tme to (epaw (mins) I3
Tene to repar Wedul Shape B
Mean tme before takae (mins] [0

Teve: betose fakue Wednd Shace |2

I hiosghgrat e ttings !3
Aun Ophons r
Rusven time thoun) fo v oK
flun duration (hous) f2000 X Coce
' Use downéime ? Heo
Track of intevest. [ROBOT KL =l

Mean time to repar (mint) i
Time to tepas Wabndl Shape [z
Mean time before fakse {mins) 780000

Time befose fakaee Webull Shae 12

I hiounhput S ettingy

Run Options

Run-n me fhous) fo IL/ o |
. 2000

| Pondsain RO % e
¥ Use dovmntime ? Heo I
Track of interest. [TaBLE kL ~]
Mean time to repar (mans) 120
Time (O repak Welnd Shape

Mean time before fedae (ming)

Time beltare takse Webrll Shape

IK

Figure 34 Throughput Settings for Robet, Turntable, and Operator
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Parameter B designates time before failure of the Weibull shape and parameter
A represents time to repair the Weibull shape in the Weibull probability density
function. In this simulation default values: =2 and A=2 will be used. The Mean time

before failure represents the time before the breakdown of the track (Figure 35).

Frequency
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Figure 35 Probability Density function for time before failure
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The Mean time to repair is the time taken to repair a broken track which may
be controlling a robot or mechanism or may simply be moving objects using the

moveobject or tumobject commands (Figure 36).
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Figure 36 Probability Density function for time to repair
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“Generated on 15/2/1999(d/m/y) at 7:15:6(h/m/s) by WORKSPACE(c) R.S.L.

Run-in time (hours)
Run duration (hours)

Use downtime

ROBOT .kl

Mean time before failure (min)
Time before failure Weibull Shape
Mean time to repair (min)

Time to repair Weibull Shape

Efficiency (%)

TABLE.kI

Mean time before failure (min)
Time before failure Weibull Shape
Mean time to repair (min)

Time to repair Weibull Shape

Efficiency (%)

AZURKkI

Mean time before failure (min)
Time before failure Weibull Shape
Mean time to repair (min)

Time to repair Weibull Shape

Efficiency (%)

0

2000

180000

[§]

90

180000

90

Number of jobs during run

Number of jobs per hour

21600

10.8
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Workspace’s calculation for complex simulation for Robot, Table, and

Operator :

“Generated on 15/2/1999(d/m/y) at 18:20:54(h/m/s) by WORKSPACE(c)

AZUR.KL
Step Description Time(sec) Usage
1 'Go to pick up part from pallet’ 24.69 MAN
2 'Wait for table to rotate’ 3.725 WAIT
3 'Go pick up part from paliet' 24.69 MAN
4 'Wait for table to rotate’ 3.725 WAIT
S 'Go pick up part from pallet’ 10.375 MAN
6 'Wait for table to rotate' 9.6393 WAIT
7 'Go pick up part from pallet’ 10.375 MAN
8 'Wait for table to rotate’' 50.8005  WAIT
9 'Tum a part' 33 MAN
10 'Wait for robot to finish welding' 55.3474  WAIT
11 '"Turn a part’ 3.3 MAN
12 'Wait for robot to finish welding'’ 40.0582  WAIT
13 'Put a part in a basket' 6.22 MAN
14 'Wait for robot to finish welding' 37.1791 WAIT
15 'Put a part in a basket' 9.945 MAN
CYCLE 293.3695
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“Generated on 15/2/1999(d/m/y) at 17:50:45(h/m/s) by WORKSPACE(c)

ROBOT.KL
Step Description Time(sec) Usage
1 'Wait for table to stop’ 32.415 WAIT
2 'Go to weld parts' 15.1331 ROBOT
3 'Move robot to home position' 1.1643 ROBOT
4 'Wait for table to stop' 12.1176  WAIT
5 'Go to weld parts' 15.1267 ROBOT
6 'Move robot to home position' 1.1626 ROBOT
7 'Wait for table to stop' 3.725 WAIT
8 'Go to weld parts' 56.2378 ROBOT
9 'Move robot to home position' 1.2127 ROBOT
10 'Wait for table to stop’ 3.725 WAIT
11 'Go to weld parts' 53.7138 ROBOT
12 'Move robot to home position’ 1.2086 ROBOT
13 'Wait for table to stop' 3.725 WAIT
14 'Go to weld parts' 38.4055 ROBOT
15 'Move robot to home position’ 1.2276 ROBOT
16 'Wait for table to stop' 3.725 WAIT
17 'Go to weld parts' 38.4399 ROBOT
18 'Move robot to home position’ 1.2342 ROBOT
19 'Wait for table to stop' 13.67 WAIT
CYCLE 297.3695
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“Generated on 6/2/1999(d/m/y) at 17:50:45(h/m/s) by WORKSPACE(c)

TABLE.KL
Step Description Time(sec) Usage
1 Downtime 13 DOWNTIME
2 'Wait for man to pick up parts from pallet' 24.69 WAIT
3 'Turn table for 180 degrees' 3.725 TABLE
4 'Wait for a part' 24.69 WAIT
5 'Turn table for 180 degrees' 3.725 TABLE
6 'Wait for a part’ 16.2893  WAIT
7 'Turn table for 180 degrees’ 3.725 TABLE
9 'Wait for a part' 57.4505 WAIT
10 "Turn table for 180 degrees’ 3.725 TABLE
11 'Wait for a part' 549224 WAIT
12 'Turn table for 180 degrees’ 3.725 TABLE
13 'Wait a for part' 39.6332 WAIT
14 'Turn table for 180 degrees’ 3.725 TABLE
15 'Wait for a part' 39.6741 WAIT
16 'Turn table for 180 degrees' 3.725 TABLE
17 'Wait for a part’ 6.22 WAIT
18 'Tumn table for 180 degrees' 3.725 TABLE
170 'Wait for man to pick up parts from pallet' 0 WAIT
CYCLE 306.3695
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A complex simulation has downtime option switched on. When it is on,
periods of downtime are simulated in each track at random, depending on the
probabilities calculated using the Mean time before failure. The length of the
downtime is based on the Mean time to repair (Figure 37). Numbers from analyzing
the bar graph and Workspace calculation for the Operator, the Robot and the Table
match calculation numbers. The simulation will start with the Operator, until the
Robot and the Table are waiting for signals to start. On the graph one can see 13
seconds Down-time for the Table. Table will start to rotate when the Operator and the
Robot stop. The Robot will start to weld parts at the same time when the Operator
starts to load the parts. The number of jobs (2 completed parts) per hour is 10.8, and
the number of jobs for 2000 hours is 21600 or 43200 parts for one year (2000 hours of
run time).The annual production of 43200 pieces satisfies the original production

request of 40000 pieces per year.
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Figure 37 Bar graph showing each track as a2 horizontal bar representing time passing along the
x-axis for complex simulation
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5.4. Real-time collision avoidance

When planing a trajectory between goal points, it is clearly desirable to have
some method of choosing a path that is collision free [Owens, 1990].

Collision detection can help prevent expensive crashes before they happen.
There are three types of collision detection: Full, Partial and Near Miss. Full detection
detects all the collisions in any view or rendering mode. Partial detection only detects
collisions when in Hiddenline mode and Diagonal view. Near Miss detection will
notify the user when two objects get closer than a user defined distance. A Collision
List can be also used to select objects for which the collision is probable [User Guide
Manuel, Workspace4, 1997]. Figure 38 represents full collision detection between the

operator’s head and welding gun. In the collision analysis one can include all objects

that are in workcell.

"HEAD" Brep

“CB" ExtrudedPolyline
“TIP2" Brep
"CYUNDERT1" Cyhinder
"BOX112° Box

| I SaveText | Ext

Figure 38 Collision detection

90



5.5. Analysis of Results

The reason for modeling, simulation, off-line programming and layout design
of this workcell is to enable the production of defined automotive parts, under
required conditions. The starting point are nine components for front support member

engine/ transaxle mount (Figure 39).

Figure 39 Parts for Front support member engine/transaxle mount

Pre-requirements for workcell simulation:
e To automate the process with IRB6000 robots,
e To include one operator (for union and safety reasons),
o A total cell cost of no more than $ 600,000,
e Production must be at least 40,000 parts per year,

e Size of workcell is 24 X 30 sq. ft,

The Table 2 represents a Summary of Manufacturing Capacity Results which
include cycle time, number of pieces per hour, number of pieces per shift, and number

of pieces per year. The calculation was made both for 100% and 70% of production
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capacity. These results were obtained from calculation and they did not satisfy given
requirements (production was less than 40,000 parts per year).

Table 2 Summary of Manufacturing Capacity Resuits:

B Cycle Time Pieces/Hour Pieces/Shift Pieces/Year
[sec] One shift per
day

5 days per
week

48 weeks per

year
149 24 192 46.080
135 17 136 33.640

Calculation for 70% of production capacity does not reflect robot
performance. It represents down-time connected with normal production cycle that
manufacturer had in the past. E.g. down-times due to regular production breaks,
change over-time, set-up time, and unplanned delay. This calculation is usual
production tool for quick determination of “real life” capacity.

Table 3 represents the list of prices for all devices in a workcell. The price for
whole cell is $285,000 which is double less than the amount of money that was planed
for developing workcell. The numbers listed in the Table were obtained from

manufacturers.
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Table 3: Calculation for cell cost

Robot $150,000

Rotary table $30,000

Fixture $5,000

Welding gun $20,000

Pallets for prefinished parts $5,000

Pallets for finished parts $5,000

Operator’s salary $70,000

Sum $285,000<8600,000

Table 4 represents Workspace Simple and Complex Analysis Results
Comparison. For simple analysis, number of jobs during a run is 96, which means 192
parts during run. Run duration is 8 hours. Number of jobs per hour is 12, which means
24 parts per hour. For complex analysis run duration is 2000 hours, number of parts is

21.6, and number of parts during run (2000 hours) is 43200, which satisfies the

required number of parts (40000 per year).
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Table 4: Workspace Simple and Complex Analysis Results Comparison:

' Simple Analysis Complex Analysis

Run-in Time [hours] 0.5 0
Run duration [hours] 8 2000
Robot: 120
Mean Time to Repair
/ Table: 120
[min]
Operator: 3

Robot: 180000
Mean Time before Failure
/ Table: 180000
[min]
Operator: 240

Number of jobs during run

96 X2=192 21600 X 2 =43200
Number of jobs per hour 12X2=24 10.8 X2=21.6

One job includes two finished parts.
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Cell output consist of finished part, Robot Program (see Appendix A3), Work

Cell Layout Design (Figure 40).

Figure 40 Front support member engine/transaxie mount

The results of workcell analysis satisfy given requirements. It includes ABB
[RB600O0 robot, operator, size of workcell (24 X 30 sq. ft), number of parts per year

(40000). and price of workcell (§600,000), (Table 5).

Table 5: Requirements and results

To automate the process with IRB6000 robots, ABB [RB6000

To include one operator (for union and safety reasons), Operator

A total cell cost of no more than $ 600,000, $285.,000
Production must be at least 40,000 parts per year 43200 parts per year
Size of workcell is 24 X 30 sq. ft 234X 2345sq. ft
Collision detection No collision
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CONCLUSION

The greater acceptance, use and reliance of robot simulators are being driven
mainly by the increasing demands from the lower priced sector of the market. For a
fraction of the cost of an assembly cell, the user can now purchase a fully featured
simulator that will run happily on a modestly powered PC platform - one that in most
cases can already be found within the organization running a wordprocessor or
spreadsheet. The possibility for simulating changes to system software before
downloading a known working copy of the robot’s program in its native language is a
major contribution to safety in terms of personnel and damaged equipment.

Modeling, simulation and off-line programming has been conducted for an
automotive assembly workcell.

The workcell simulation approach described in this thesis is a step forward in
providing a task-oriented solution to the problem of robotic cell design and
programming. It integrates off-line programming techniques with significant features
of welding technology. The approach has been implemented in Workspace.

This particular graphical simulation and layout design of spot welding and
assembly proved the importance of production planning and analysis. This simulation
involves robot, rotary table and operator. The operator was defined as a mechanism
with eighteen joints.

Simulation was running in real-time and each aspect of the production could
be easily tracked and analyzed. Changing throughput-setting variables could simulate
various production scenarios. For simple simulation the input is only run time, and for
complex simulation the input represents run time with down time. Another important
feature provided by Workspace - collision avoidance is also included into the

simulation.
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Part of this simulation was presented to Ford Motor Company, and to General
Dynamic Company. The technical personnel were impressed with simulation
capabilities and performances.

All originally given constrains and requirements were successfully met in this

simulation.
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APPENDIX

A.l Workspace Features

Sophisticated 3D CAD system featuring Constructive Solid Geometry and Swept
Polylines.

High resolution 3D rendering in OpenGL. Textures specular highlights and
transparency with potential for 16 million colors.

Advanced Robot languages of the major manufacturers.

Special language development.

Off-line Programming.

Friendly mouse driven interface with Windows 95 and NT.

DXF/IGES/STEP import and export facility.

Robot and workcell calibration to less than Imm accuracy using Calibration Plus®

Kinematics and inverse kinematics modeler for mechanisms with up to 22 joints.

Computer Aided Learning, sub-system

Dynamic Link Libraries to external Pascal, C or C++ routines

Collision and near miss detection

Easy to use application macro's

Moving Cable simulation

Geometry Point (GP) to Teach Point (TP) conversion. Import and export of
geometry points to external

Automatic geometry path generation

Optimum positioning of robot

Simulation to real time animation conversion

Virtual reality for the Internet. Animated 3D scenes can be created using Internet
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VRML for web site display (User Guide Manuel for Workspace1997).
A.2 Key words

1. imitation or enactment, as of conditions

anticipated.

!\)

the act or process of pretending; feigning.

LI

an assumption or imitation of a

particular appearance or form;

counterfeit.

4. the representation of the behavior or
characteristics of one system through
the use of another system, esp. using a
computer.

5. aconscious attempt to feign some mental
or physical disorder.

[1300-50; ME simulacion < L simulatio a pretense.

See SIMULATE, - TION]

ro-bot (roh'buhbt, -bot) n.

1. a machine that resembles a human and does

mechanical, routine tasks on command.

o

a person who acts and responds in a
mechanical, routine manner; automaton.
3. any machine or mechanical device that
operates automatically with humanlike

skill.
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[< Czech, coined by Karel Capek in the play R.U.R.

(1920) from the base robot-, as in robota

compulsory labor, robotnik peasant owing such labor]

Dernived words

--ro-bot'ic, ro bot-is'tic(-buh tis'tik, -bo-), adj.

9

(V3]

.t

. an assembly of moving parts performing a

complete functional motion.
the agency or means by which an effect is

produced or a purpose is accomplished.

. machinery; mechanical appliances.

the structure or arrangement of parts of

a machine or similar device.

. routine methods or procedures.

. the theory that everything in the

universe is produced by matter in
motion. Compare DYNAMISM (def. 1),
VITALISM (def. 1).
a. the view that all biological

processes may be described in

physicochemical terms.

. amode of behavior that helps an

individual deal with the physical or
psychological environment. Compare

DEFENSE MECHANISM, escape mechanism .
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[1655-65; < NL mechanismus; LL mechanisma a
contrivance < Gk mechan (¢) MACHINE + NL -ismus,
LL -isma - ISM]

Derived words

--mech a-nis'mic, adj.

A .3 Track programs and teachpoint file

PROGRAM ROBOT
PROGRAM ROBOT
-- ' LANGUAGE KAREL 2
-- ' MEMORY 8192
-- ' ROBOT IRB6000
-- TEACHPOINT DECLARATIONS
VAR

AUXI1 : AUXPOS

AUX2 : AUXPOS

AUX3 : AUXPOS

AUX4 : AUXPOS

AUXS : AUXPOS

AUX6 : AUXPOS

AUX7 : AUXPOS

AUXS8 : AUXPOS

AUX9 : AUXPOS

AUXI10 : AUXPOS

AUXI11 : AUXPOS
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AUXI12 : AUXPOS
AUX13 : AUXPOS
AUX14 : AUXPOS
AUXI15 : AUXPOS
AUX16 : AUXPOS
AUX17 : AUXPOS
AUXI18 : AUXPOS
AUX19 : AUXPOS
AUX20 : AUXPOS
AUX21 : AUXPOS
AUX22 : AUXPOS
AUX23 : AUXPOS
AUX24 : AUXPOS
AUX25 : AUXPOS
AUX26 : AUXPOS
AUX27 : AUXPOS
AUX28 : AUXPOS
AUX29 : AUXPOS
AUX30 : AUXPOS
AUX31 : AUXPOS
BEGIN
REPEAT

SUTOOL=POS(123.2222,681.1944,43.7018,90,90,0,")
SUSEMAXACCEL=TRUE

%INCLUDE ANA-ALLA#
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--! DINSIGNALNAME DIN[1]

--! DINSIGNALNAME DIN[2]

--! DINSIGNALNAME DIN[3]

--! DINSIGNALNAME DIN[4]

--! DINSIGNALNAME DIN[5]

--! DINSIGNALNAME DIN[6]

--! DINSIGNALNAME DIN[7]

--! DINSIGNALNAME DIN([8]

--! DINSIGNALNAME DIN[9]

--! DINSIGNALNAME DIN[10]

--! DOUTSIGNALNAME DOUT[1]
--! DOUTSIGNALNAME DOUT[2]
--! DOUTSIGNALNAME DOUT[3]
--! DOUTSIGNALNAME DOUT[4]
--! DOUTSIGNALNAME DOUT][5]
--! DOUTSIGNALNAME DOUT[6]
--! DOUTSIGNALNAME DOUT[7]
--! DOUTSIGNALNAME DOUT([8]
--! DOUTSIGNALNAME DOUT[9]
--! DOUTSIGNALNAME DOUT[10]

--! DOUTSIGNALNAME DOUTI[11]

--! SIGNALDEF DIN[1], TABLE.KL,1
--! SIGNALDEF DIN[2], TABLE.KL,2

--! SIGNALDEF DIN[3], TABLE.KL,3
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--! SIGNALDEF DIN[4], TABLE.KL 4
--1 SIGNALDEF DIN[5], TABLEKL,S
--! SIGNALDEF DIN[6], TABLE.KL,6
--1 SIGNALDEF DIN{[7], TABLE.KL,7
--! SIGNALDEF DIN[8], TABLE.KL,8
--! SIGNALDEF DIN[9], TABLE.KL,9
--1 SIGNALDEF DIN[10}, TABLE.KL,10

--! SIGNALDEF DIN(11], TABLE.KL,i1

--1 SIGNALDEF DOUT([1], TRACK, 1
--1 SIGNALDEF DOUTI[2], TRACK,2
--1 SIGNALDEF DOUT[3], TRACK,3
--! SIGNALDEF DOUT[4], TRACK 4
--1 SIGNALDEF DOUT5], TRACK.5
--1 SIGNALDEF DOUTI6], TRACK.,6
--! SIGNALDEF DOUT[7], TRACK,7
--! SIGNALDEF DOUT[8], TRACK.8
--1 SIGNALDEF DOUT[9], TRACK,9
--1 SIGNALDEF DOUTI[10], TRACK, 10
--! SIGNALDEF DOUT[11], TRACK, 1
DOUT([1]=OFF

DOUT[2]=OFF

DOUT[3]=OFF

DOUT[4]=OFF

DOUT[5]=OFF
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DOUT([6]=OFF
DOUT[7]=OFF
DOUT[8]=OFF
DOUT[9]=OFF
DOUT[10]=OFF

DOUT[11]=OFF

-- Path 1

WITH SMOTYPE=JOINT

MOVE TO SHOME:SUTOOL

DOUT[1]=ON

REPEAT

WAIT FOR DIN[1]=ON

UNTIL DIN[1]=ON
--'LABELEVENT 'Go to weld parts', 3
--ITUSEMOVINGVIEW viewl, view2,2

WITH SMOTYPE=JOINT

MOVE TO POLYLINE93GP6

-- ' SPOTWELD 100,100

MOVE TO CSG343GP1

-- ' SPOTWELD 100,100

MOVE TO POLYLINE93GP4

-- ' SPOTWELD 100,100

MOVE TO CSG336GP1

-- ' SPOTWELD 100,100
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MOVE TO POLYLINE93GP2

-- ' SPOTWELD 100,100

--'LABELEVENT 'Move robot to home position’ , 3
WITH SMOTYPE=JOINT

MOVE TO SHOME:SUTOOL

--'LABELEVENT '"Wait for table to stop', O

DOUT([2]=ON

-- Path 2

REPEAT

WAIT FOR DIN[2]=ON
UNTIL DIN[2]=ON

--'LABELEVENT 'Go to weld parts', 3
WITH SMOTYPE=JOINT
MOVE TO CSG216GP3
-- ' SPOTWELD 100,100
MOVE TO CSG344GP1
-- ' SPOTWELD 100,100
MOVE TO CSG186GP1
-- ' SPOTWELD 100,100
MOVE TO CSG351GP1
-- ' SPOTWELD 100,100
MOVE TO CSG215GP2
-- ' SPOTWELD 100,100

--'LABELEVENT 'Move robt to home position’', 3
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WITH SMOTYPE=JOINT
MOVE TO SHOME:SUTOOL
--'LABELEVENT "Wait for table to stop', 0

DOUT[3]=ON

-- Path 3

REPEAT

WAIT FOR DIN[3]=ON
UNTIL DIN[3]=ON
--'LABELEVENT 'Go to weld parts' , 3
MOVE TO EXTRUSS8GP6
-- ' SPOTWELD 100,100
MOVE TO EXTRUSS8GP7
-- ' SPOTWELD 100,100
MOVE TO EXTRUSS8GPS
-- 1 SPOTWELD 100,100
MOVE TO EXTRUSS58GP9
-- ' SPOTWELD 100,100
MOVE TO EXTRUSS8GP10
-- 1 SPOTWELD 100,100
MOVE TO EXTRUSS58GP11
-- 1 SPOTWELD 100,100
MOVE TO EXTRUSS8GP12
-- ' SPOTWELD 100,100

MOVE TO EXTRUS60GP6
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-- ' SPOTWELD 100,100
MOVE TO EXTRUSS8GP13
-- ' SPOTWELD 100,100
MGVE TO EXTRUS225GP10
-- ' SPOTWELD 100,100
MOVE TO EXTRUS225GP9
-- ' SPOTWELD 100,100
MOVE TO EXTRUS225GP8
-- ' SPOTWELD 100,100
MOVE TO EXTRUS225GP7
-- ' SPOTWELD 100,100
MOVE TO EXTRUS62GPS5
-- ' SPOTWELD 100,100
MOVE TO EXTRUSG63GP1
-- ' SPOTWELD 100,100
MOVE TO EXTRUS63GP2
-- ' SPOTWELD 100,100
MOVE TO EXTRUS63GP4
-- ' SPOTWELD 100,100
MOVE TO EXTRUS63GP3
-- ' SPOTWELD 100,100
MOVE TO EXTRUSG63GP5
--  SPOTWELD 100,100
MOVE TO EXTRUSG63GP6

-- t SPOTWELD 100,100
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MOVE TO EXTRUS63GP7

-- ' SPOTWELD 190,100

--'LABELEVENT 'Move robt to home position’ , 3
WITH SMOTYPE=JOINT

MOVE TO SHOME:SUTOOL

--'LABELEVENT "Wait for table to stop’, 0

DOUT[4]=ON

--Path 4
REPEAT
WAIT FOR DIN[4]=ON
UNTIL DIN[4]=ON
--'LABELEVENT 'Go to weld parts’', 3
MOVE TO EXTRUS58GP20
-- ! SPOTWELD 100,100
MOVE TO EXTRUSS58GP21
-- ' SPOTWELD 100,100
MOVE TO EXTRUS60GP22
-- ! SPOTWELD 100,100
MOVE TO EXTRUS58GP23
-- 1 SPOTWELD 100,100
MOVE TO EXTRUSS58GP24
-- 1 SPOTWELD 100,100
MOVE TO EXTRUS58GP25

-- ! SPOTWELD 100,100
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MOVE TO EXTRUS60GP17
-- ' SPOTWELD 100,100
MOVE TO EXTRUS60GP18
-- ! SPOTWELD 100,100
MOVE TO EXTRUS225GP18
-- ' SPOTWELD 100,100
MOVE TO EXTRUS225GP20
-~ ! SPOTWELD 100,100
MOVE TO EXTRUS225GP17
-- ! SPOTWELD 100,100
MOVE TO EXTRUS225GP19
-- ' SPOTWELD 100,100
MOVE TO EXTRUS225GP16
-- ! SPOTWELD 100,100
MOVE TO EXTRUS62GP12
-- ! SPOTWELD 100,100
MOVE TO EXTRUS62GP13
-- ' SPOTWELD 100,100
MOVE TO EXTRUS62GP14
-- ' SPOTWELD 100,100
MOVE TO EXTRUS62GP15
-- ' SPOTWELD 100,100
MOVE TO EXTRUS62GP16
-- ! SPOTWELD 100,100

MOVE TO EXTRUS63GP12
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-- ' SPOTWELD 100,100

MOVE TO EXTRUS63GP13

-- ' SPOTWELD 100,100

--'LABELEVENT 'Move robt to home position’ , 3
WITH SMOTYPE=JOINT

MOVE TO SHOME:SUTOOL

--'LABELEVENT 'Wait for table to stop’, 0

DOUT[5]=ON

-- Path 5

REPEAT

WAIT FOR DIN[5]=ON
UNTIL DIN[5]=ON
--'LABELEVENT 'Go to weld parts', 3
MOVE TO EXTRUSS834GP1
-- ' SPOTWELD 100,100
MOVE TO EXTRUSS834GP2
-- ' SPOTWELD 100,100
MOVE TO EXTRUS828GP3
-- ' SPOTWELD 100,100
MOVE TO EXTRUS828GP2
-- 1 SPOTWELD 100,100
MOVE TO EXTRUS828GP1
-- ' SPOTWELD 100,100

MOVE TO EXTRUSS833GP1
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-- ' SPOTWELD 100,100
MOVE TO EXTRUSS833GP2
-- ' SPOTWELD 100,100
MOVE TO EXTRUSS833GP3
-- ' SPOTWELD 100,100
MOVE TO EXTRUS833GP4
-- ' SPOTWELD 100,100
MOVE TO EXTRUSS825GP3
-- ' SPOTWELD 100,100
MOVE TO EXTRUS825GP2
-- ' SPOTWELD 100,100
MOVE TO EXTRUSS825GP1
-- ! SPOTWELD 100,100
MOVE TO EXTRUS796GP2
-- ! SPOTWELD 100,100
MOVE TO EXTRUS796GP1
-- 1 SPOTWELD 100,100
--'LABELEVENT "Move robt to home position', 3
WITH SMOTYPE=JOINT
MOVE TO SHOME:SUTOOL
--'LABELEVENT '"Wait for table to stop', O

DOUT{[6]=ON

-- Path 6

115



REPEAT
WAIT FOR DIN[6]=ON

UNTIL DIN[6]=ON

--'LABELEVENT 'Go to weld parts', 3

MOVE TO EXTRUS792GP1
-- ' SPOTWELD 100,100
MOVE TO EXTRUS792GP2
-- ' SPOTWELD 100,100
MOVE TO EXTRUS786GP3
-- ' SPOTWELD 100,100
MOVE TO EXTRUS786GP2
-- ' SPOTWELD 100,100
MOVE TO EXTRUS786GP1
-- ' SPOTWELD 100,100
MOVE TO EXTRUS791GP1
-- ' SPOTWELD 100,100
MOVE TO EXTRUS791GP2
-- ' SPOTWELD 100,100
MOVE TO EXTRUS791GP3
-- ' SPOTWELD 100,100
MOVE TO EXTRUS791GP4
-- ' SPOTWELD 100,100
MOVE TO EXTRUS783GP3
-- ' SPOTWELD 100.100

MOVE TO EXTRUS783GP2
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-- ' SPOTWELD 100,100
MOVE TO EXTRUS783GP1
-- ' SPOTWELD 100,100
MOVE TO EXTRUS754GP2
-- ! SPOTWELD 100,100
MOVE TO EXTRUS754GP1
-- ' SPOTWELD 100,100
--'LABELEVENT 'Move robt to home position’, 3
WITH SMOTYPE=JOINT
MOVE TO SHOME:SUTOOL
--'LABELEVENT "Wait for table to stop', 0
DOUT[7]=ON

REPEAT

WAIT FOR DIN[7]=ON
UNTIL DIN[7]=ON
REPEAT

WAIT FOR DIN[8]=ON
UNTIL DIN[8]=ON
DOUT[1]=ON

REPEAT

WAIT FOR DIN[1]=ON
UNTIL DIN[1]=ON

-- DELAY 35000

UNTIL FALSE

END ROBOT
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PROGRAM TABLE
PROGRAM TABLE
-- ' LANGUAGE KAREL 2
-- ' MEMORY 8192
-- ! ROBOT MECHANISM
-- TEACHPOINT DECLARATIONS
VAR
AUXI1 : AUXPOS
AUX2 : AUXPOS
AUX3 : AUXPOS
AUX4 : AUXPOS
AUXS : AUXPOS
AUXG6 : AUXPOS
AUX7 : AUXPOS
AUXS8 : AUXPOS
AUX9 : AUXPOS
AUX10 : AUXPOS
AUX11 : AUXPOS
AUX12 : AUXPOS
AUXI13 : AUXPOS
AUXI14 : AUXPOS
AUXI1S5 : AUXPOS
AUXI16 : AUXPOS
AUX17 : AUXPOS

AUX18 : AUXPOS
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AUX19 : AUXPOS

AUX20 : AUXPOS

AUX21 : AUXPOS

AUX22 : AUXPOS

AUX23 : AUXPOS

AUX24 : AUXPOS

AUX25 : AUXPOS

AUX26 : AUXPOS

AUX27 : AUXPOS

AUX28 : AUXPOS

AUX29 : AUXPOS

AUX30 : AUXPOS

AUX31 : AUXPOS

BEGIN

SUSEMAXACCEL=TRUE
%INCLUDE ANA-ALLA#

--! DINSIGNALNAME DIN[1]
--! DINSIGNALNAME DIN[2]
--! DINSIGNALNAME DIN[3]
--! DINSIGNALNAME DIN[4]
--! DINSIGNALNAME DIN[5]
--! DINSIGNALNAME DIN[6]
--! DINSIGNALNAME DIN[7]
--! DINSIGNALNAME DIN[§]

--! DINSIGNALNAME DIN[9]
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--! DINSIGNALNAME DIN[10]
--! DINSIGNALNAME DIN[11]
--! DINSIGNALNAME DIN[12]
--! DINSIGNALNAME DIN[13]
--! DINSIGNALNAME DIN[14]
--! DINSIGNALNAME DIN[15]
--! DINSIGNALNAME DIN[16]
—! DINSIGNALNAME DIN[17]
--! DINSIGNALNAME DIN[18]
--! DINSIGNALNAME DIN[19]
--! DINSIGNALNAME DIN[20]

--! DINSIGNALNAME DIN[21]

--! DOUTSIGNALNAME DOUT([1]
--! DOUTSIGNALNAME DOUT([2]
--! DOUTSIGNALNAME DOUT([3]
--! DOUTSIGNALNAME DOUT[4]
--! DOUTSIGNALNAME DOUT/S5]
--! DOUTSIGNALNAME DOUTI6]
--! DOUTSIGNALNAME DOUT(7]
--! DOUTSIGNALNAME DOUT(8]
--! DOUTSIGNALNAME DOUT[9]
--! DOUTSIGNALNAME DOUT(10]
--! DOUTSIGNALNAME DOUT([11]

--! DOUTSIGNALNAME DOUTI12]
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--! DOUTSIGNALNAME DOUT([13]
--! DOUTSIGNALNAME DOUT[14]
--! DOUTSIGNALNAME DOUT(15]
--! DOUTSIGNALNAME DOUT[16]
--! DOUTSIGNALNAME DOUT{17]
--! DOUTSIGNALNAME DOUT/18]
--! DOUTSIGNALNAME DOUT([19]

--! DOUTSIGNALNAME DOUT[20]

--! SIGNALDEF DIN[1], ROBOT.KL,1
--! SIGNALDEF DIN{2], ROBOT.KL,2
--! SIGNALDEF DIN(3], ROBOT.KL,3
--! SIGNALDEF DIN[4], ROBOT.KL 4
--! SIGNALDEF DIN[5], ROBOT.KL,5
--! SIGNALDEF DIN[6], ROBOT.KL,6
--! SIGNALDEF DIN[7], ROBOT.KL,7
--! SIGNALDEF DIN[8], ROBOT.KL,8
--! SIGNALDEF DIN{9], ROBOT.KL,9

--! SIGNALDEF DIN[10], ROBOT.KL,10

--! SIGNALDEF DIN[11], AZURKL,11
--! SIGNALDEF DIN[12], AZUR.KL,12
--! SIGNALDEF DIN[13], AZUR.KL,13
--! SIGNALDEF DIN{[14], AZUR.KL,14

--! SIGNALDEF DIN[15], AZUR.KL,15
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--! SIGNALDEF DIN[16], AZUR.KL,16
--! SIGNALDEF DIN[17], AZUR.KL,17
--! SIGNALDEF DIN[18], AZUR.KL,18
--! SIGNALDEF DIN[19]. AZUR.KL,19
--! SIGNALDEF DIN[20]}, AZUR.KL,20

--! SIGNALDEF DIN[21], AZUR.KL,21

--! SIGNALDEF DOUT[1], TRACK,I
--! SIGNALDEF DOUT][2], TRACK,2
--! SIGNALDEF DOUT(3], TRACK,3
--! SIGNALDEF DOUT[4], TRACK 4
--! SIGNALDEF DOUT[S], TRACK,S
--! SIGNALDEF DOUT(6], TRACK.,6
--! SIGNALDEF DOUT[7], TRACK,7
--! SIGNALDEF DOUT(8], TRACK,8
--1 SIGNALDEF DOUT[9], TRACK,9

--! SIGNALDEF DOUT(10], TRACK,10

--! SIGNALDEF DOUT[11], TRACK,11
--1 SIGNALDEF DOUT(12], TRACK,12
--! SIGNALDEF DOUT[13], TRACK,13
--! SIGNALDEF DOUT[14], TRACK,14
--! SIGNALDEF DOUT[15], TRACK,15
--! SIGNALDEF DOUT[16], TRACK,16

--! SIGNALDEF DOUT[17], TRACK,17
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_-! SIGNALDEF DOUTJ[18], TRACK,18
-1 SIGNALDEF DOUT[19], TRACK,19
_-! SIGNALDEF DOUT[20], TRACK,20
REPEAT

DOUT[1]=OFF

DOUT[2]=OFF

DOUT[3]=OFF

DOUT[4]=OFF

DOUT[5]=OFF

DOUT[6]=OFF

DOUT[7]=OFF

DOUT[9]=OFF

DOUT[10]=OFF

DOUTI[11]=OFF

DOUT[12]=OFF

DOUTI[13]=OFF

DOUT[14]=OFF

DOUT[15]=OFF

DOUT[16]=OFF

DOUT[17]=OFF

DOUT([19]=OFF

DOUT[20]=OFF

--'LABELEVENT 'Wait for man to pick up parts from pallet' , 0
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REPEAT

WAIT FOR (DIN[1]=ON) AND (DIN[11}=ON)
UNTIL (DIN[1]=ON) AND (DIN[11]=0ON)
DOUT[8]=OFF

DOUT{18]=0OFF

--'LABELEVENT 'Turn table for 180 degrees', 4
WITH SMOTYPE=JOINT

MOVE AUX TO AUXI15

--'LABELEVENT 'Wait for a part', 0

DOUT([1]=ON
DOUT([11]=ON
REPEAT

WAIT FOR (DIN[2]=ON) AND (DIN[12]=0ON)
UNTIL (DIN[2]=ON) AND (DIN[12]=ON)
DOUT[1]=0OFF

DOUT[11]=0OFF

--'LABELEVENT 'Tumn table for 180 degrees', 4
WITH SMOTYPE=JOINT

MOVE AUX TO AUX31

--'LABELEVENT 'Wait for a part', 0
DOUT{2]=ON

DOUT[12]=ON
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REPEAT

WAIT FOR (DIN[3]=ON) AND (DIN[13]=ON)
UNTIL (DIN[3]=ON) AND (DIN[13]}=ON)
DOUT[2]=OFF

DOUT([12]=OFF

--'LABELEVENT 'Tum table for 180 degrees', 4
WITH SMOTYPE=JOINT

MOVE AUX TO AUX15

--'LABELEVENT 'Wait for a part’, 0
DOUT[3]=ON

DOUT([13]=ON

REPEAT

WAIT FOR (DIN[4]=ON) AND (DIN[14]=ON)
UNTIL (DIN[4]=0ON) AND (DIN[14]=0N)
DOUT([3]=0OFF

DOUT[13]=0OFF

--'LABELEVENT 'Turn table for 180 degrees', 4
WITH SMOTYPE=JOINT

MOVE AUX TO AUX31

--'LABELEVENT '"Wait for a part’, 0
DOUT[4]=ON

DOUT[14]=ON
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REPEAT

WAIT FOR (DIN[5]=ON) AND (DIN[15]=0ON)
UNTIL (DIN[5]=ON) AND (DIN[15]=ON)
DOUT[4]=OFF
DOUT(14]=OFF
--'LABELEVENT 'Turn table for 180 degrees' , 4
WITH SMOTYPE=JOINT
MOVE AUX TO AUX15
--'LABELEVENT '"Wait a for part', 0
DOUT[5]=ON

DOUT([15]=ON

REPEAT

WAIT FOR (DIN[6]=ON) AND (DIN[16]=0ON)
UNTIL (DIN[6]=ON) AND (DIN[16]=ON)
DOUT[5]=0OFF
DOUT[15]=0OFF

--'LABELEVENT 'Turn table for 180 degrees', 4
WITH SMOTYPE=JOINT
MOVE AUX TO AUX31

--'LABELEVENT '"Wait for a part', 0
DOUT[6]=ON

DOUT[16]=ON
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REPEAT

WAIT FOR (DIN[7]=ON) AND (DIN[17]=0ON)
UNTIL (DIN[7]=ON) AND (DIN[17]=ON)
DOUT[6]=OFF
DOUT[16]=OFF
--'LABELEVENT 'Turn table for 180 degrees' , 4
WITH SMOTYPE=JOINT
MOVE AUX TO AUXI15

--'LABELEVENT '"Wait for a part', 0

DOUT[7]=ON
DOUT[17]=ON
REPEAT

WAIT FOR DIN[18]=ON

UNTIL DIN[18]=ON

DOUT([7]=0OFF

DOUT[17]=0OFF

--'LABELEVENT 'Tum table for 180 degrees', 4
WITH SMOTYPE=JOINT

MOVE AUX TO AUX31

DOUT[8]=ON

DOUT[18]=ON

UNTIL FALSE

END TABLE
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PROGRAM AZUR

PROGRAM AZUR

-- ' LANGUAGE KAREL 2

-- ! MEMORY 8192

-- ' ROBOT MR_AZUR

-- TEACHPOINT DECLARATIONS

VAR

AUXI

AUX2:

AUX3

AUX4 :

AUXS

AUXG6 :

AUXT7 :

AUXS

AUX9:

AUXI10:

AUXI1I

AUX12

AUX13

AUX14 :

AUXI15:

AUXI6:

AUX17:

AUXI18:

: AUXPOS

AUXPOS

: AUXPOS

AUXPOS

: AUXPOS

AUXPOS

AUXPOS

: AUXPOS

AUXPOS

AUXPOS
: AUXPOS
: AUXPOS

: AUXPOS

AUXPOS
AUXPOS
AUXPOS

AUXPOS

AUXPOS
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AUX19:

AUX20:

AUX21

AUX22

AUX23

AUX24 :

AUX25

AUX26 :

AUX27 :

AUX28

AUX29 :

AUX30:

AUX31 :

-- NUMBER OF PARTS PRODUCED

AUXPOS

AUXPOS

: AUXPOS
: AUXPOS

: AUXPOS

AUXPOS

: AUXPOS

AUXPOS

AUXPOS

- AUXPOS

AUXPOS
AUXPOS

AUXPOS

PART : INTEGER

BEGIN

REPEAT

SUSEMAXACCEL=TRUE
%INCLUDE ANA-ALLA#

--! DINSIGNALNAME DIN[1]
--! DINSIGNALNAME DIN[2]
--! DINSIGNALNAME DIN[3]
--! DINSIGNALNAME DIN[4]
--! DINSIGNALNAME DIN[5]

--! DINSIGNALNAME DINJ[6]
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--! DINSIGNALNAME DIN[7]
--! DINSIGNALNAME DIN[8]

--! DINSIGNALNAME DIN[9]

--! DINSIGNALNAME DIN[10]

--1 DOUTSIGNALNAME DOUT([1]
- DOUTSIGNALNAME DOUT([2]
_-! DOUTSIGNALNAME DOUT([3]
—1 DOUTSIGNALNAME DOUT[4]
--1 DOUTSIGNALNAME DOUT[S]
- DOUTSIGNALNAME DOUT(6]
! DOUTSIGNALNAME DOUT([7]
-1 DOUTSIGNALNAME DOUT(S]
-1 DOUTSIGNALNAME DOUT[9]
--! DOUTSIGNALNAME DOUTJ[10]

--! DOUTSIGNALNAME DOUT([11]

--! SIGNALDEF DIN[11], TABLE.KL,11
! SIGNALDEF DIN[12], TABLE.KL,12
- SIGNALDEF DIN[13], TABLE.KL,13
-1 SIGNALDEF DIN[14], TABLE.KL,14
--1 SIGNALDEF DIN[15], TABLE.KL,15
--! SIGNALDEF DIN[16], TABLE.KL,16
1 SIGNALDEF DIN[17], TABLE.KL,17
-t SIGNALDEF DIN[18], TABLE.KL,18

--1 SIGNALDEF DIN[19], TABLE.KL,19
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--! SIGNALDEF DIN[20], TABLE.KL,20

--! SIGNALDEF DOUT([11], TRACK,11
--! SIGNALDEF DOUT([12], TRACK,12
--! SIGNALDEF DOUT([13], TRACK,13
--1 SIGNALDEF DOUT(14], TRACK,14
--! SIGNALDEF DOUT([15], TRACK,15
--! SIGNALDEF DOUT([ 16}, TRACK,16
--1 SIGNALDEF DOUT[17], TRACK,17
--! SIGNALDEF DOUT[18], TRACK,18
--! SIGNALDEF DOUT[19], TRACK,19

--! SIGNALDEF DOUT[20], TRACK.,20

DOUTJ[11]=OFF
DOUT[12]=OFF
DOUT[13]=OFF
DOUT[14]=OFF
DOUT[15]=OFF
DOUT[16]=OFF
DOUT[17]=OFF
DOUT[18]=OFF
DOUT[19]=OFF

DOUT{20]=0OFF
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WITH SMOTYPE=JOINT

MOVE AUX TO AUX4
--'LABELEVENT 'Go to pick up part from pallet’, 2
--'USEMOVINGVIEW viewl, view3,2
WITH SMOTYPE=JOINT

MOVE AUX TO AUX20

-- ! Attachobject,1,'CSG254''R_HAND'
WITH SMOTYPE=JOINT

MOVE AUX TO AUX19

-- ! Detachobject,1,"CSG254'

-- ! Attachobject,1,'CSG254','cylinder7'
WITH SMOTYPE=JOINT

MOVE AUX TO AUX20

-- ! Attachobject,1,'CSG247''/R_HAND'
WITH SMOTYPE=JOINT

MOVE AUX TO AUX21

-- ! Detachobject,1,'CSG247'

-- ! Attachobject,1,'CSG247' 'cylinder7’
WITH SMOTYPE=JOINT

MOVE AUX TO AUX3

-- ! Attachobject,1 '/EXTRUS98''R_HAND'
WITH SMOTYPE=JOINT

MOVE AUX TO AUXI

-- ! Detachobject,1,'EXTRUS98’

-- ! Attachobject,1,'/EXTRUS98' 'cylinder7'
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-- ! Detachobject,1,/CSG254"'

-- | Attachobject,1,'CSG254''EXTRUS98'
-- ! Detachobject,1,'CSG247'

-- ! Attachobject,1,'CSG247''EXTRUS98'
MOVE AUX TO AUX4

WITH SMOTYPE=JOINT

MOVE AUX TO AUX6

-- ! Attachobject,1,'CSG90','R_HAND'
WITH SMOTYPE=JOINT

MOVE AUX TO AUXS

-- ! Detachobject,1,'CSG90’

WITH SMOTYPE=JOINT

MOVE AUX TO AUXS

-- ! Attachobject,1,'CSG89','R_HAND'
WITH SMOTYPE=JOINT

MOVE AUX TO AUX7

-- ! Detachobject,1,'CSG89’

WITH SMOTYPE=JOINT

MOVE AUX TO AUXI10

-- ! Attachobject,1,’CSG91''R_HAND'
WITH SMOTYPE=JOINT

MOVE AUX TO AUX9

-- ! Detachobject,1,'CSGI1’

WITH SMOTYPE=JOINT

MOVE AUX TO AUX4
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-- ! Attachobject,1,'CSG89','extrus98'
-- ! Attachobject,1,'CSG90','extrus98’
-- ! Attachobject,1,'CSG91',’extrus98’
--'LABELEVENT '"Wait for table to rotate' , 0

DOUT[11]=ON

REPEAT
WAIT FOR DIN[11]=ON
UNTIL DIN[11]}=ON
--'LABELEVENT 'Go pick up part from pallet’, 2
WITH SMOTYPE=JOINT
MOVE AUX TO AUX20
-- ! Attachobject,1,'CSG255"'R_HAND'
WITH SMOTYPE=JOINT
MOVE AUX TO AUX19
-- ! Detachobject,1,'CSG255'
-- ! Attachobject,1,'CSG255','cylinder7'
WITH SMOTYPE=JOINT
MOVE AUX TO AUX20
-- ! Attachobject,1,'CSG262''R_HAND'
WITH SMOTYPE=JOINT
MOVE AUX TO AUX21
-- ! Detachobject,1,'CSG262’
-- ! Attachobject,1,'CSG262','cylinder7'

WITH SMOTYPE=JOINT
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MOVE AUX TO AUX3

-- ! Attachobject,l '/EXTRUS266','R_HAND'
WITH SMOTYPE=JOINT

MOVE AUX TO AUX1

-- ! Detachobject,1,'EXTRUS266'

-- ! Attachobject,l,'EXTRUS266','cylinder7'
-- ! Detachobject,1,'CSG262'

-- ! Attachobject,1,’CSG262'EXTRUS266’
-- ! Detachobject,1,'CSG255'

-- ! Attachobject,1,'CSG255''/EXTRUS266'
MOVE AUX TO AUX4

WITH SMOTYPE=JOINT

MOVE AUX TO AUX6

-- ! Attachobject,1,'CSG213'/R_HAND'
WITH SMOTYPE=JOINT

MOVE AUX TO AUXS

-- ! Detachobject,1,'CSG213’

WITH SMOTYPE=JOINT

MOVE AUX TO AUXS

-- ! Attachobject,1,'CSG211'R_HAND'
WITH SMOTYPE=JOINT

MOVE AUX TO AUX?7

-- ! Detachobject,1,’CSG211'

WITH SMOTYPE=JOINT

MOVE AUX TO AUXI10
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-- ! Attachobject,1,'CSG212''R_HAND'
WITH SMOTYPE=JOINT

MOVE AUX TO AUX9

-- ! Detachobject, 1,'CSG212’

WITH SMOTYPE=JOINT

MOVE AUX TO AUX4

-- ! Attachobject,1,'CSG211','extrus266’

-- | Attachobject,1,'CSG213','extrus266'

-- ! Attachobject,1,'CSG212','extrus266’
--'LABELEVENT "Wait for table to rotate' , 0

DOUT[12]=ON

REPEAT
WAIT FOR DIN[12]=0ON
UNTIL DIN[12]=ON
--!ILABELEVENT 'Go pick up part from pallet', 2
WITH SMOTYPE=JOINT
MOVE AUX TO AUX6
-- I Attachobject,1,'EXTRUS109'/R_HAND'
WITH SMOTYPE=JOINT
MOVE AUX TO AUXS
-- ! Detachobject,1,'EXTRUS109'
WITH SMOTYPE=JOINT
MOVE AUX TO AUXS8

-- ! Attachobject,1,'/EXTRUS65''R_HAND'
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WITH SMOTYPE=JOINT

MOVE AUX TO AUX7

-- ! Detachobject, | ,'EXTRUS6S'

WITH SMOTYPE=JOINT

MOVE AUX TO AUX10

-- ! Attachobject,1,'EXTRUS106',R_HAND'
WITH SMOTYPE=JOINT

MOVE AUX TO AUX9

-- ! Detachobject,1,'EXTRUS 106’

WITH SMOTYPE=JOINT

MOVE AUX TO AUX4

-- ! Attachobject, 1 'TEXTRUS109','extrus98'
-- ! Attachobject,1,'EXTRUSG6S','extrus98'

-- ! Attachobject,l,'EXTRUS106','extrus98’
--'LABELEVENT "Wait for table to rotate' . O

DOUT[13]=ON

REPEAT
WAIT FOR DIN[13]=ON
UNTIL DIN[13]=ON
--'LABELEVENT 'Go pick up part from pallet’, 2
WITH SMOTYPE=JOINT
MOVE AUX TO AUX6
-- ! Attachobject,1,'EXTRUS305''R_HAND'

WITH SMOTYPE=JOINT
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MOVE AUX TO AUXS

-- ! Detachobject,l,'/EXTRUS305’

WITH SMOTYPE=JOINT

MOVE AUX TO AUXS

-- ! Attachobject,1,'/EXTRUS302''R_HAND'
WITH SMOTYPE=JOINT

MOVE AUX TO AUX7

-- ! Detachobject,1,'/EXTRUS302'

WITH SMOTYPE=JOINT

MOVE AUX TO AUX10

-- ! Attachobject,1,'/EXTRUS303','R_HAND'
WITH SMOTYPE=JOINT

MOVE AUX TO AUX9

-- ! Detachobject,1,'EXTRUS303'

WITH SMOTYPE=JOINT

MOVE AUX TO AUX4

-- ! Attachobject,1,'/EXTRUS305",'extrus266'
-- I Attachobject,1,'/EXTRUS302','extrus266’
-- ! Attachobject,1,'/EXTRUS303','extrus266'
--'LABELEVENT "Wait for table to rotate', 0

DOUT[14]=ON

REPEAT
WAIT FOR DIN[14]=ON

UNTIL DIN[14]=ON
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MOVE AUX TO AUX28
--TUSEMOVINGVIEW view2, view3,3
WITH SMOTYPE=JOINT

MOVE AUX TO AUX29

-- ! Detachobject,1,'EXTRUS9S8'

WITH SMOTYPE=JOINT
MOVE AUX TO AUX4

--TUSEMOVINGVIEW view3, view2,1

--!ILABELEVENT '"Wait for robot to finished welding' , 0

DOUT[17]=ON

REPEAT
WAIT FOR DIN[17]=ON
UNTIL DIN[17]=ON
--'LABELEVENT 'Put a part in a basket’ , 2
--Set the labels for the different types of usage
--in this simulation so that Display events can used
--afterwards to show useful information
-- ' LABELUSAGE MAN,2
-- ! LABELUSAGE ROBOT,3
-- ' LABELUSAGE TABLE.4
WITH SMOTYPE=JOINT

MOVE AUX TO AUX25
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-- ! Detachobject,1,'EXTRUS266'
-- ! Attachobject,1,'/EXTRUS266',R_HAND'
WITH SMOTYPE=JOINT
MOVE AUX TO AUX28
--ITUSEMOVINGVIEW view2, view3,3
WITH SMOTYPE=JOINT
MOVE AUX TO AUX29
--TUSEMOVINGVIEW view3, viewl,1
-- ! Detachobject, 1,'/EXTRUS266'
WITH SMOTYPE=JOINT
MOVE AUX TO AUX4
DOUT(18]=ON
DOUT[11]=OFF
REPEAT
WAIT FOR DIN[18]=ON
UNTIL DIN[18]=ON

-- ! ENDOFJOB

-- ! Detachobject,1,'CSG255'

-- ! Placeobject,1,"CSG255',-554.9978,3068.9585,-244.4402,-136.9801 ,- &
29.7309,-18.1192

-- ! Detachobject,1,'CSG254'

-- ! Placeobject,1,'"CSG254',-554.9978,3068.9585,-244.4403,-136.9801 ,- &
29.7309,-18.1192

-- ! Detachobject,1,"CSG213'
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-- ! Placeobject,1,'CSG213',-1485.6829,1810.1866,695.1567,-114.6363,2.0884, &
27.4466
-- ! Detachobject,1,'CSG90’
-- ! Placeobject,1,'CSG90',-1485.6829,1810.1867,695.1567,-114.6363,2.0884, &
27.4466

-- ! Detachobject,1,'CSG211’

-- ! Placeobject,1,'CSG211',-1590.4275,1983.8669,-1106.8143,-167.7188,- &
15.5303,32.3849

-- ! Detachobject,1,'CSG89’

-- ! Placeobject,1,'CSG89',-1590.4275,1983.8669,-1106.8143,-167.7188,- &
15.5303,32.3849

-- ! Detachobject,1,'CSG247'

-- ! Placeobject,1,'CSG247',-771.8863,1529.4629,-1949.4995,146.3416,- &
32.3962,49.7031

-- ! Detachobject,1,'CSG262'

-- ! Placeobject,1,'CSG262',-771.8863,1529.4629,-1949.4995,146.3416,- &
32.3962,49.7031

-- ! Detachobject,1,'CSG212'

-- ! Placeobject,1,'CSG212',-1339.1779,637.0717,-1592.3544,169.3178,- &
12.5851,79.1982

-- ! Detachobject,1,'CSG91'

-- ! Placeobject,1,'CSG91',-1339.1779,637.0717,-1592.3544,169.3178,- &
12.5851,79.1982

-- ! Detachobject,1,'EXTRUS305'

-- ! Placeobject,1,'/EXTRUS305',-1485.6829,1810.1866,695.1567,-114.6363, &
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2.0884,27.4466

-- ! Detachobject,1,'/EXTRUS 109’

-- ! Placeobject,1,'EXTRUS109',-1485.6829,1810.1867,695.1567,-114.6363, &
2.0884,27.4466

-- ! Detachobject,1,'/EXTRUS302’

-- ! Placeobject,1,'/EXTRUS302',-1590.4275,1983.8669,-1106.8143,-167.7188,- &
15.5303,32.3849

-- ! Detachobject,1,'EXTRUS6S’

-- ! Placeobject,1,'/EXTRUS65',-1590.4275,1983.8669,-1106.8143.-167.7188,- &
15.5303,32.3849

-- ! Detachobject,1,'EXTRUS303'

-- ! Placeobject,1,'EXTRUS303',-1339.1779,637.0717,-1592.3544,169.3178,- &
12.5851,79.1982

-- ! Detachobject,1,' EXTRUS106’

-- ! Placeobject,1,'EXTRUS106',-1339.1779,637.0717,-1592.3544,169.3178,- &
12.5851,79.1982

-- ! Placeobject,1,'/EXTRUS266',-859.7103,2446.5938,-1455.1798,166.6203, &
2.5124,-6.5378

-- ! Placeobject,1,'/EXTRUS98',-859.7103,2446.5938,-1455.1798,166.6203, &

2.5124,-6.5378

UNTIL FALSE

END AZUR
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~ WORKSPACE teachpoint file
AUXI[1]=-10
AUX1[2]=0
AUXI1{3]=0
AUX1[4]=0
AUXI1[5]1=0
AUXI1[6]=0
AUX1[7]1=50
AUX1[8]=0
AUX1[9] =20
AUXI1[10]=0
AUXI1[11]=0
AUXI[12]=0
AUXI[13] =30
AUXI1[14]=0
AUX1[15] =35
AUXI1[16] =10
AUXI1[17]=0
AUXI1[18] =0
-- END AUX1
AUX2[1]=0
AUX2[2]=-110
AUX2[3]=-10
AUX2[4]1=0

AUX2[5]=0
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AUX2[6] =0
AUX2[7] =50
AUX2[8] =0
AUX2[9] = 20
AUX2[10] =0
AUX2[11]=0
AUX2[12] =0
AUX2[13] = 30
AUX2[14] =0
AUX2[15] = 35
AUX2[16] = 10
AUX2[17] =0
AUX2[18] =0
- END AUX2

AUX3[1] =10

AUX3[2] =-120

AUX3[3] =-50
AUX3[4] =0
AUX3[5]=0
AUX3[6] =0
AUX3[7] = 50
AUX3[8] =0
AUX3[9] =20
AUX3[10] =0

AUX3[11]=0
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AUX3[12] =0
AUX3[13] =30
AUX3[14] =0
AUX3[15] =35
AUX3[16] = 10
AUX3[17]=0
AUX3[18]=0
-- END AUX3
AUX4[1]=0
AUX4[2] =0
AUX4[3]=0
AUX4[4] =0
AUXA4[5]=0
AUX4[6] =0
AUX4[7] =0
AUX4[8] =0
AUX4[9] =0
AUX4[10] =0
AUX4[11]=0
AUX4[12] =0
AUX4[13]=0
AUX4[14] =0
AUX4[15]1=0
AUX4[16] =0

AUXA4[17] =0
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AUX4[18] =0
-- END AUX4
AUXS[1] =-30
AUXS5[2] = 40
AUXS5[3]1=0
AUX5[4] =0
AUXS[5] =30
AUXS5[6] =0
AUX5[7] =43
AUXS[8] = -20
AUXS5[9] =30
AUX5[10] =0
AUX5[11]=0
AUXS5[12] =0
AUXS5[13] =39
AUXS5[14] = -10
AUXS[15] = 30
AUXS5[16] =0
AUX5[17] =0
AUXS[18]=0
-- END AUXS5
AUX6[1] =-10
AUXG6[2] = -35
AUXG6[3] = -55

AUX6[4] =0
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AUXG6[5] = -40
AUX6[6] =0
AUXG6([7] = 40
AUXG6[8] = 20
AUX6[9] = 10
AUX6[10]=0
AUX6[11]=0
AUX6[12]=0
AUX6[13]=0
AUX6[14] =0
AUX6[15]1=0
AUX6[16] =0
AUX6[17] =0
AUX6[18] =0
- END AUX6
AUX7[1]=0
AUX7[2] =25
AUX7[3]=0
AUX7[4] =0
AUX7[5]=0
AUX7[6]=0
AUXT7[7] = 45
AUX7[8] =0
AUX7[9] = 26.5

AUX7[10] =0

149



AUX7[11]1=0
AUX7[12] =0
AUX7[13]=0
AUX7[14] =0
AUX7[15] =0
AUX7[16] =0
AUX7[17]=0
AUXT7[18] =0
— END AUX7
AUXS8[1]=-10
AUX8[2] = -55
AUXS8[3] = -50
AUX8[4] =0
AUX8[5] =0
AUX8[6] =0
AUXS8[7] = 15
AUXS8[8] =0
AUXS8[9] = 26.5
AUXS8[10] =0
AUXS8[11]1=0
AUXS8[12]=0
AUX8[13]=0
AUXS8[14] =0
AUXS8[15]=0

AUX8[16] =0
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AUXS8[17] =0
AUXS[18] =0
-- END AUXS8
AUX9[1] =-15
AUX9[2] = -15
AUX9[3]=0
AUX9[4] =0
AUX9[5] = -20
AUX9[6] = -10
AUX9[7] = 50
AUX9[8] =7
AUX9[9] =21
AUX9[10] =0
AUX9[11]=0
AUX9[12] =0
AUX9[13]=0
AUX9[14] =0
AUX9[15] =0
AUX9[16] =0
AUX9[17] =0
AUX9[18] =0
-- END AUX9
AUXI10[1] =-5
AUXI10[2] = -45

AUXI10[3] =-50
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AUXI10[4] =0
AUXI10[5] = -20
AUX10[6] = -10
AUX10[7] = 20
AUX10[8] = 12
AUX10[9] = 21

AUXI10[10] =0
AUXI0[11] =0
AUX10[12] =0
AUX10[13] =0
AUX10[14] =0
AUXI10[15] =0
AUX10[16] =0
AUXI10[17] =0
AUX10[18] =0
— END AUX10
AUX11[1]=-5

AUX11[2] = 50
AUXI11[3] =0

AUX11[4] =0

AUXI1[5] =0

AUX11[6]=0

AUXI11{7] =40
AUX11[8] =0

AUX11[9] =33
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AUXI1[10] =0
AUX11[11]=0
AUXI11[12] =0
AUXI11[13] =0
AUXI1[14] =0
AUXI11[15] =0
AUX11[16] =0
AUXI1[17]=0
AUX11[18] =0
-- END AUX11
AUX12[1] =-5

AUXI2[2] =-50
AUXI12[3] =-60
AUXI2[4] =0

AUXI2[5]=0

AUXI2[6]=0

AUX12[7] =30
AUXI12[8] =5

AUX12[9] = 33
AUXI12[10] =0
AUXI2[11]=0
AUXI2[12] =0
AUX12[13]=0
AUXI2[14] =0

AUX12[15] =0
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AUX12[16] =0
AUXI2[17] =0
AUX12[18] =0
- END AUX12
AUX13[1]=0

AUX13[2] = -50
AUX13[3] = -50
AUX13[4] =0

AUX13[5]=-10
AUX13[6] = -20
AUXI13[7] =30

AUX13[8] =5

AUX13[9] = 15.5

AUX13[10] =0
AUX13[11]=0
AUX13[12]=0
AUX13[13]=0
AUX13[14] =0
AUX13[15]=0
AUX13[16] =0
AUX13[17]=0
AUX13[18] =0
-- END AUX13
AUX14[1]=0

AUX14[2] =0
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AUX14[3]=0
AUX14[4] =0
AUX14[5] =0
AUX14[6]=0
AUX14[7] =30
AUX14[8] =10
AUX14[9] = 45
AUX14[10] =0
AUX14[11]=0
AUX14[12] =0
AUX14[13] =0
AUX14[14] =0
AUX14[15] =0
AUX14[16] =0
AUX14[17] =0
AUX14[18] =0
-- END AUX14
AUXI15[1]= 170
-- END AUXI5
AUX16[1] = 350
-- END AUX16
AUX17[1] =530
-- END AUX17
AUX18[1]=710

-- END AUXI18
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AUX19[1]=-10
AUX19[2] = 40
AUX19[3]1=0
AUX19[4] =0
AUX19[5] =10
AUX19[6] = 0
AUX19[7] = 40
AUX19[8] =-15
AUX19[9] = 29
AUX19[10] =0
AUX19[11]=0
AUX19[12] =0
AUX19[13] =0
AUX19[14] =0
AUX19[15]=0
AUX19[16] =0
AUX19[17]=0
AUX19[18]=0
- END AUXI19
AUX20[1] =0
AUX20[2] = -80
AUX20[3] = -40
AUX20[4] =0
AUX20[5] = -50

AUX20[6] = -30
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AUX20[7] = 40
AUX20[8] =5
AUX20[9] = -21
AUX20[10] =0
AUX20[11]=0
AUX20[12] =0
AUX20[13]=0
AUX20[14] =0
AUX20[15] =0
AUX20[16] =0
AUX20[17]=0
AUX20[18]=0
- END AUX20
AUX21[1] =-10
AUX21[2] =-15
AUX21[3] =0
AUX21[4] =0
AUX21[5]=-10
AUX21[6] =-10
AUX21[7] =20
AUX21[8] =0
AUX21[9] = 56
AUX21{10]=0
AUX21[11]=0

AUX21[12] =0
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AUX21[13]=0
AUX21[14] =0
AUX21[15] =0
AUX21[16] =0
AUX21[17] =0
AUX21[18] =0
- END AUX21
AUX22[1]=-10
AUX22[2]=0
AUX22[3]=0
AUX22[4]=0
AUX22[5]=0
AUX22[6]=0
AUX22[7] =70
AUX22[8]=0
AUX22[9] = 20
AUX22[10] =0
AUX22[11]=0
AUX22[12] =0
AUX22[13] = 50
AUX22[14] =0
AUX22[15] = 35
AUX22[16] = 10
AUX22[17] =0

AUX22[18]=0
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-- END AUX22
AUX23[1] =-20
AUX23[2] =0
AUX23[3] =0
AUX23[4] =0
AUX23[5] =0
AUX23[6] =0
AUX23[7] =51
AUX23[8] =0
AUX23[9] =20
AUX23[10] =0
AUX23[11]=0
AUX23[12]=0
AUX23[13] =51
AUX23[14] =0
AUX23[15]=21.5
AUX23[16]=0
AUX23[17]=0
AUX23[18]=0
— END AUX23
AUX24[1]=-10
AUX24[2] =0
AUX24[3] =0
AUX24[4] =0

AUX24[5] = 0
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AUX24[6] =0
AUX24[7] = 70
AUX24[8] =0
AUX24[9] = 20
AUX24[10] = 0
AUX24[11]1=0
AUX24[12] =0
AUX24[13] = 50
AUX24[14] = 0
AUX24[15] = 35
AUX24[16] = 10
AUX24[17] =0
AUX24[18] =0
-- END AUX24
AUX25[1] = -20
AUX25[2] =0
AUX25[3] =0
AUX25[4] =0
AUX25[5] =0
AUX25[6] =0
AUX25[7] = 50
AUX25[8] =0
AUX25[9] = 35
AUX25[10] =0

AUX25[11]1=0
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AUX25[12] =0
AUX25[13] =39
AUX25[14] =0
AUX25[15] =35
AUX25[16] = 10
AUX25[17] =0
AUX25[18] =0
-- END AUX25
AUX26[1] = 890

-- END AUX26

AUX27[1] = 1070

- END AUX27
AUX28[1] = -20
AUX28[2] =0
AUX28[3]=0
AUX28[4] =0
AUX28[5]=0
AUX28[6] =0
AUX28[7] = 65
AUX28[8] =0
AUX28[9] = 35
AUX28[10] =0
AUX28[11]=0
AUX28[12] =0

AUX28[13] =55
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AUX28[14] =0
AUX28[15] = 35
AUX28[16] = 10
AUX28[17] =0
AUX28[18] =0
-- END AUX28
AUX29[1]=0
AUX29[2] = 110
AUX29[3] = -60
AUX29[4] =0
AUX29[5]=0
AUX29[6] =0
AUX29[7] = 55
AUX29([8] = -5
AUX29[9] = 15
AUX29[10] =0
AUX29[11] =0
AUX29[12] =0
AUX29[13] = 55
AUX29[14] =0
AUX29[15] = 10
AUX29[16] = 10
AUX29[17] =0
AUX29[18] =0

-- END AUX29
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AUX30[1] = 1250
-- END AUX30
AUX31[1]=-10

-- END AUX3I1
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